231,935 research outputs found

    Germination responses to light of four Neotropical forest tree species along an elevational gradient in the southern Central Andes

    Get PDF
    Seed germination is a key part of plants' life cycle and is mostly affected by the genetic background, the environmental conditions experienced by the mother plant and the seedbed conditions. The germination response to light is essential to optimize germination and seedling establishment in space and time. In addition, the germination response to light is a trait often related to the response of the seeds to their position in the soil (uncovered/buried). Here, we studied the germination response to light of four key tree species of the Yungas forest (Anadenanthera colubrina, Enterolobium contortisiliquum, Jacaranda mimosifolia and Handroanthus impetiginosus) sampled along an elevational and environmental gradient with contrasting vegetation cover and disturbance. Relative light germination (RLG) and mean germination time (MGT) were determined. Final germination was tested under cycles of light (8 h) and darkness (16 h) versus complete darkness (24 h) and elevation, and MGT was tested as a function of elevation of the provenance. The RLG increased from smaller to larger-seeded species. The MGT of three of the studied species was affected by the elevation of the provenance. Complete darkness negatively affected final germination, while two species exhibited a significant interaction between the provenance and light. The variable germination responses to light along the elevational gradient highlights the influence of the environment on germination as a key factor that should be considered for forest management, conservation and restoration projects

    DOF AFFECTING GERMINATION 2 is a positive regulator of light-mediated seed germination and is repressed by DOF AFFECTING GERMINATION 1

    Get PDF
    Abstract BACKGROUND: The transcription factor DOF AFFECTING GERMINATION1 (DAG1) is a repressor of the light-mediated seed germination process. DAG1 acts downstream PHYTOCHROME INTERACTING FACTOR3-LIKE 5 (PIL5), the master repressor, and negatively regulates gibberellin biosynthesis by directly repressing the biosynthetic gene AtGA3ox1. The Dof protein DOF AFFECTING GERMINATION (DAG2) shares a high degree of aminoacidic identity with DAG1. While DAG1 inactivation considerably increases the germination capability of seeds, the dag2 mutant has seeds with a germination potential substantially lower than the wild-type, indicating that these factors may play opposite roles in seed germination. RESULTS: We show here that DAG2 expression is positively regulated by environmental factors triggering germination, whereas its expression is repressed by PIL5 and DAG1; by Chromatin Immuno Precipitation (ChIP) analysis we prove that DAG1 directly regulates DAG2. In addition, we show that Red light significantly reduces germination of dag2 mutant seeds. CONCLUSIONS: In agreement with the seed germination phenotype of the dag2 mutant previously published, the present data prove that DAG2 is a positive regulator of the light-mediated seed germination process, and particularly reveal that this protein plays its main role downstream of PIL5 and DAG1 in the phytochrome B (phyB)-mediated pathway

    Effect of thermal shock and ruminal incubation on seed germination in Helianthemum apenninum L. Mill (Cistaceae)

    Get PDF
    Effect of thermal shock and ruminal incubation on seed germination in Helianthemum apenninum (L.) Mill. (Cistaceae). Here, we analyse the effect of different treatments on seed germination in Helianthemum apenninum (L.) Mill. (Cistaceae), considering scarification with sandpaper, thermal shock simulating the heat from fire, and incubation in the rumen of sheep and goat simulating passage through the gut of ruminants. Mechanical scarification boosted the germination (95% vs. 6% of control treatment), indicating that the seeds have a potentially high germination rate if the coat is eroded. Thermal shock did not improve germination. Incubation in rumen increased seed germination, up to a 32% after 48h in ruminal liquid versus 12% for control seeds in the case of sheep. The results suggest that germination in H. apenninum, while not enhanced by heat from fires, may be enhanced by herbivore ingestion

    Striga seed-germination activity of root exudates and compounds present in stems of Striga host and nonhost (trap crop) plants is reduced due to root colonization by arbuscular mycorrhizal fungi.

    Get PDF
    Root colonization by arbuscular mycorrhizal (AM) fungi reduces stimulation of seed germination of the plant parasite Striga (Orobanchaceae). This reduction can affect not only host plants for Striga, resulting in a lower parasite incidence, but also false hosts or trap crops, which induce suicidal Striga seed germination, thereby diminishing their effectiveness. In order to better understand these AM-induced effects, we tested the influence of root colonization by different AM fungi on the seed-germination activity of root exudates of the Striga hermonthica nonhost plants cowpea and cotton on S. hermonthica. We also tested the effect of AM fungi on the seed-germination activity of the Striga gesnerioides host plant cowpea on S. gesnerioides. Moreover, we studied whether mycorrhization affects the transport of seed-germination activity to above-ground plant parts. Mycorrhization not only resulted in a lower seed germination of S. gesnerioides in the presence of root exudates of the S. gesnerioides host cowpea but also seed germination of S. hermonthica was also lower in the presence of root exudates of the S. hermonthica nonhosts cowpea and cotton. Downregulation of the Striga seed-germination activity occurs not only in root exudates upon root colonization by different AM fungi but also in the compounds produced by stems. The lowered seed-germination activity does not appear to depend on the presence of seed germination inhibitors in the root exudates of mycorrhizal plants. The implication for Striga control in the field is discusse

    Germination of primed seed under NaCl stress in wheat.

    Get PDF
    Copyright © 2012 Michael P. Fuller et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Soil salinity affects a large and increasing amount of arable land worldwide, and genetic and agronomic solutions to increasing salt tolerance are urgently needed. Experiments were conducted to improve wheat seed performance under salinity stress conditions after priming. An experiment was conducted using a completely randomized design of four replications for germination indices in wheat (Triticum aestivum L. cv. Caxton). Normal and primed seed with PEG6000 at −1MPa and five concentrations of NaCl (0, 50, 100, 150, and 200mM) were tested. Results indicate that priming seed significantly (P < 0.05) increased germination percentage at first count and final count, coefficient of velocity of germination, germination rate index, and mean germination time, while increasing of NaCl concentration significantly reduced it. Priming seed improved germination attributes at all NaCl concentration levels. The priming appeared to be able to overcome the effect of salt stress at 50 to 100mMand reduce the effect of NaCl at higher concentrations up to 200 mM. The primed seed gave both faster germination and led to higher germination when under salt stress. We conclude that using priming techniques can effectively enhance the germination seed under saline condition

    Responses of germination to light and to far-red radiation—can they be predicted from diaspores size?

    Get PDF
    This paper presents an update of a dataset of seed volumes previously released online and combines it with published data of the photoblastic response of germination of fruits or seeds (light or dark conditions), and of the effects of enhanced far-red radiation on germination. Some evidence was found to support that germination in larger diaspores might be indifferent to light or dark conditions. Similarly, germination in smaller diaspores might be inhibited by far-red radiation. However, the length, width, thickness, volume, shape, type of diaspore, or relative amplitude of volume is essentially useless to predict photoblastic responses or the effects of far-red radiation on germination of diaspores

    Seed Germination in Ginkgo biloba L. I. Influences of Cold Treatment, Gibberellic Acid and Red Light

    Get PDF
    The influences of cold treatment, gibberellic acid and red light treatment on rate of germination of seeds of Ginkgo biloba L. were followed for a 12-wk period. Dispersal units were collected, and the outer fleshy layer was removed soon after harvest. Of water-imbibed, non-cold-treated seeds, 50% of those which germinated did so within 11 wk after planting. A single application of red light accelerated the 50% germination time by 3 wk. Imbibition in GA3 solution did not appear to accelerate germination. With 4-wk cold treatment the 50% germination time was accelerated 6 wk in water-imbibed seeds. Both red light and GA3 treated seeds also were accelerated 6 wk by cold treatment. An 8-wk cold treatment accelerated the 50% germination time 7 wk for all three treatment groups. The influence of red light observed on non-cold-treated seeds was not seen with seeds receiving a cold treatment prior to irradiation. A 12-wk cold treatment period delayed germination in all treated groups. Dry storage of seeds for 4mo at 25 C also delayed germination regardless of red light, GA3 or cold treatment

    Effects of Nanosilica Powder from Rice Hull Ash on Seed Germination of Tomato (Lycopersicon esculentum)

    Get PDF
    open5noNanosilica powders were synthesized from rice hull ash (RHA) and their effects on seed germination of tomato plants were investigated. Synthesized nanosilica powder was subjected to various characterization studies for identification of the size, structure, morphology and elemental composition. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) results showed that the nanoparticles were in agglomerated form with an average diameter of 46.5 nm and 40 nm, respectively. X-ray diffractometry (XRD) indicated that nanosilica powder is amorphous in nature. The nanosilica powder was also characterized as having a purity of 98.33% using EDXRF spectroscopy and having a surface area 172.19 m2 g-1 using the Brunauer-Emmett-Teller (BET) method. The study showed that nanosilica powder significantly improved germination parameters such as germination percentage, germination index, vigor index, mean germination time and average shoot length of tomato but not fresh weight and dry weight. The best results were found at 5gL-1 nanosilica powder. The increase over untreated control seeds was 22% for germination percentage, 47% for germination index, 92% for vigor index and 55% for average shoot length with the addition of 5 gL-1 nanosilica powder. Nanosilica powder-mediated improvement of seed germination in tomato suggests a potential application of nanosilica powder in seed germination of the plant. The study can serve as theoretical basis for further agricultural applications of nanosilica powder.openMaria Morissa Lu, Diana Marie De Silva, Engelbert Peralta, Alvin . Fajardo, Milagros PeraltaMaria Morissa, Lu; DE SILVA, DIANA MARIE; Engelbert, Peralta; Fajardo, Alvin.; Milagros, Peralt

    Differential Effects of Increasing Salinity on Germination and Seedling Growth of Native and Exotic Invasive Cordgrasses

    Get PDF
    Soil salinity is a key environmental factor influencing germination and seedling establishment in salt marshes. Global warming and sea level rise are changing estuarine salinity, and may modify the colonization ability of halophytes. We evaluated the effects of increasing salinity on germination and seedling growth of native Spartina maritima and invasive S. densiflora from wetlands of the Odiel-Tinto Estuary. Responses were assessed following salinity exposure from fresh water to hypersaline conditions and germination recovery of non-germinated seeds when transferred to fresh water. The germination of both species was inhibited and delayed at high salinities, while pre-exposure to salinity accelerated the speed of germination in recovery assays compared to non-pre-exposed seeds. S. densiflora was more tolerant of salinity at germination than S. maritima. S. densiflora was able to germinate at hypersalinity and its germination percentage decreased at higher salinities compared to S. maritima. In contrast, S. maritima showed higher salinity tolerance in relation to seedling growth. Contrasting results were observed with differences in the tidal elevation of populations. Our results suggest S. maritima is a specialist species with respect to salinity, while S. densiflora is a generalist capable of germination of growth under suboptimal conditions. Invasive S. densiflora has greater capacity than native S. maritima to establish from seed with continued climate change and sea level rise.Ministerio de Educación, Cultura y Deporte (FPU14/06556

    Influence of diesel fuel on seed germination

    Get PDF
    The use of plant-based systems to remediate contaminated soils has become an area of intense scientific study in recent years and it is apparent that plants which grow well in contaminated soils need to be identified and screened for use in phytoremediation technologies. This study investigated the effect of diesel fuel on germination of selected plant species. Germination response varied greatly with plant species and was species specific, as members of the same plant family showed differential sensitivity to diesel fuel contamination. Differences were also seen within plant subspecies. At relatively low levels of diesel fuel contamination, delayed seed emergence and reduced percentage germination was observed for the majority of plant species investigated. Results suggest the volatile fraction of diesel fuel played an influential role in delaying seed emergence and reducing percentage germination. In addition, the remaining diesel fuel in the soil Lidded to this inhibitory effect on germination by physically impeding water and oxygen transfer between the seed and the surrounding soil environment, thus hindering the germination response
    corecore