CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Germination of primed seed under NaCl stress in wheat.
Authors
M Al Issawi
MP Fuller
JH Hamza
HZ Rihan
Publication date
1 December 2012
Publisher
'Hindawi Limited'
Doi
Abstract
Copyright © 2012 Michael P. Fuller et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Soil salinity affects a large and increasing amount of arable land worldwide, and genetic and agronomic solutions to increasing salt tolerance are urgently needed. Experiments were conducted to improve wheat seed performance under salinity stress conditions after priming. An experiment was conducted using a completely randomized design of four replications for germination indices in wheat (Triticum aestivum L. cv. Caxton). Normal and primed seed with PEG6000 at −1MPa and five concentrations of NaCl (0, 50, 100, 150, and 200mM) were tested. Results indicate that priming seed significantly (P < 0.05) increased germination percentage at first count and final count, coefficient of velocity of germination, germination rate index, and mean germination time, while increasing of NaCl concentration significantly reduced it. Priming seed improved germination attributes at all NaCl concentration levels. The priming appeared to be able to overcome the effect of salt stress at 50 to 100mMand reduce the effect of NaCl at higher concentrations up to 200 mM. The primed seed gave both faster germination and led to higher germination when under salt stress. We conclude that using priming techniques can effectively enhance the germination seed under saline condition
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.5402%2F2012%2F1678...
Last time updated on 01/04/2019