323 research outputs found

    Un enfoque de regionalización simple como alternativa para obtener datos de lluvia en una cuenca de zona tropical y no monitoreada

    Get PDF
    (Eng) The availability of rainfall information with high spatial resolution is of fundamental importance in many applications in the field of water resources. Commonly, the rainfall data in developing countries are obtained by rain gauge stations. However, many studies show that traditional measures based on rain gauge stations may not reflect the spatial variation of rainfall effectively. Although satellite data have been widely used around the world, when applied to local regions the spatial resolution of these products is too coarse. In this paper, an approach to identify a downscaling method through geostatistical regionalization to improve water resources models with short spatial and temporal scales and with limited rainfall data is presented. Three different models were applied: Cokriging, Inverse Distance Weight (IDW) and Kriging. Statistical parameters such as mean absolute error (MAE) and root mean square error (RMSE) were computed. A cross-validation process showed a better fit for most of the stations using the Cokriging method. The regionalization results were quite comparable with the rain gauge stations data. Although the model outcomes did not improve remarkably, the contribution of this approach may have the potential to provide useful rainfall data at spatial scales shorter than the present resolution.(Spa) La disponibilidad de información de precipitación con alta resolución espacial es de fundamental importancia en el campo de los recursos hídricos. Comúnmente, los datos de lluvia se obtienen mediante estaciones pluviométricas. Sin embargo, investigaciones demuestran que las medidas tradicionales pueden no reflejar la variación espacial de la precipitación efectiva. Por otro lado, cuando se aplican datos de satélite a regiones locales su resolución espacial es demasiado gruesa. Este trabajo presenta un enfoque para identificar un método de reducción de escala mediante la regionalización geoestadística para mejorar los modelos de recursos hídricos que contienen escalas cortas espaciales y temporales y datos de precipitación limitada. Se aplicaron tres modelos diferentes: Cokriging, Peso Inverso de la Distancia (IDW) y Kriging. Se calcularon parámetros estadísticos como el error medio absoluto (MAE) y la raíz del error cuadrático medio (RMSE). Un proceso de validación cruzada mostró un mejor ajuste para la mayoría de las estaciones utilizando el método Cokriging. Los resultados de regionalización fueron comparables con los datos de estaciones pluviométricas. Aunque los resultados de los modelos no mejoraron notablemente, la contribución de este enfoque puede tener el potencial de proporcionar datos de precipitación útiles a escalas espaciales más cortas que la presente resolución

    Geoestadística para integrar mediciones de campo con estimaciones satelitales adecuados para escala local

    Get PDF
    En países como México hacen falta más estaciones de medición de lluvia. Además, en la cuenca Grijalva, datos de solo tres o menos estaciones se integran en productos satelitales de misiones como Tropical Rainfall Monitoring Mission (TRMM) o Global Precipitation Mission (GPM). Aunque las misiones satelitales permiten obtener estimaciones de lluvia a un espaciamiento constante (p. ej., 11 km para GPM), esta resolución no es adecuada para gestión local. La integración de una mayor cantidad de datos de pluviómetros con valores de satélite aumentados de escala puede ser útil para obtener datos de precipitación de escala local. En este trabajo se aplicó kriging ordinario (OK) a los datos satelitales de precipitación (GPM y TRMM) agregados anualmente y regresión kriging (RK) para integrar los datos resultantes con datos de todos los pluviómetros disponibles. Los resultados de esta integración se compararon con los resultados de la interpolación de datos de pluviómetros utilizando OK y kriging universal (UK). Una interpolación del inverso de la distancia al cuadrado (IDW) se consideró como criterio de bajo desempeño. Los métodos de evaluación y de definición de similaridad fueron validación cruzada (Lou-CV), análisis de componentes principales, matriz de correlación y mapa de calor con análisis de conglomerados. OK funcionó bien para desescalar las estimaciones satelitales de GPM. La integración RK de datos de pluviómetros con datos de GPM desescalados con OK obtuvo los mejores parámetros de validación en comparación con las interpolaciones de mediciones de pluviométros. Los métodos geoestadísticos son prometedores para desescalar las estimaciones satelitales e integrarlas con todos los datos disponibles de pluviómetros. Los resultados indican que la evaluación usando parámetros para evaluar la efectividad de la interpolación usando datos medidos debe complementarse con métodos para definir similaridad entre las capas espaciales obtenidas. Este enfoque permite obtener datos de precipitación útiles para modelado y manejo del agua a nivel local

    LMODEL: A satellite precipitation methodology using cloud development modeling. Part I: Algorithm construction and calibration

    Get PDF
    The Lagrangian Model (LMODEL) is a new multisensor satellite rainfall monitoring methodology based on the use of a conceptual cloud-development model that is driven by geostationary satellite imagery and is locally updated using microwave-based rainfall measurements from low earth-orbiting platforms. This paper describes the cloud development model and updating procedures; the companion paper presents model validation results. The model uses single-band thermal infrared geostationary satellite imagery to characterize cloud motion, growth, and dispersal at high spatial resolution (similar to 4 km). These inputs drive a simple, linear, semi-Lagrangian, conceptual cloud mass balance model, incorporating separate representations of convective and stratiform processes. The model is locally updated against microwave satellite data using a two-stage process that scales precipitable water fluxes into the model and then updates model states using a Kalman filter. Model calibration and updating employ an empirical rainfall collocation methodology designed to compensate for the effects of measurement time difference, geolocation error, cloud parallax, and rainfall shear

    Spatial downscaling of satellite precipitation data in humid tropics using a site-specific seasonal coefficient

    Get PDF
    This paper described the development of a spatial downscaling algorithm to produce finer grid resolution for satellite precipitation data (0.05°) in humid tropics. The grid resolution provided by satellite precipitation data (>0.25°) was unsuitable for practical hydrology and meteorology applications in the high hydrometeorological dynamics of Southeast Asia. Many downscaling algorithms have been developed based on significant seasonal relationships, without vegetation and climate conditions, which were inapplicable in humid, equatorial, and tropical regions. Therefore, we exploited the potential of the low variability of rainfall and monsoon characteristics (period, location, and intensity) on a local scale, as a proxy to downscale the satellite precipitation grid and its corresponding rainfall estimates. This study hypothesized that the ratio between the satellite precipitation and ground rainfall in the low-variance spatial rainfall pattern and seasonality region of humid tropics can be used as a coefficient (constant value) to spatially downscale future satellite precipitation datasets. The spatial downscaling process has two major phases: the first is the derivation of the high-resolution coefficient (0.05°), and the second is applying the coefficient to produce the high-resolution precipitation map. The first phase utilized the long-term bias records (1998-2008) between the high-resolution areal precipitation (0.05°) that was derived from dense network of ground precipitation data and re-gridded satellite precipitation data (0.05°) from the Tropical Rainfall Measuring Mission (TRMM) to produce the site-specific coefficient (SSC) for each individual pixel. The outcome of the spatial downscaling process managed to produce a higher resolution of the TRMM data from 0.25° to 0.05° with a lower bias (average: 18%). The trade-off for the process was a small decline in the correlation between TRMM and ground rainfall. Our results indicate that the SSC downscaled method can be used to spatially downscale satellite precipitation data in humid, tropical regions, where the seasonal rainfall is consistent

    Spatio-temporal appraisal of water-borne erosion using optical remote sensing and GIS in the Umzintlava catchement (T32E), Eastern Cape, South Africa.

    Get PDF
    Globally, soil erosion by water is often reported as the worst form of land degradation owing to its adverse effects, cutting across the ecological and socio-economic spectrum. In general, soil erosion negatively affects the soil fertility, effectively rendering the soil unproductive. This poses a serious threat to food security especially in the developing world including South Africa where about 6 million households derive their income from agriculture, and yet more than 70% of the country’s land is subject to erosion of varying intensities. The Eastern Cape in particular is often considered the most hard-hit province in South Africa due to meteorological and geomorphological factors. It is on this premise the present study is aimed at assessing the spatial and temporal patterns of water-borne erosion in the Umzintlava Catchment, Eastern Cape, using the Revised Universal Soil Loss Equation (RUSLE) model together with geospatial technologies, namely Geographic Information System (GIS) and remote sensing. Specific objectives were to: (1) review recent developments on the use of GIS and remote sensing technologies in assessing and deriving soil erosion factors as represented by RUSLE parameters, (2) assess soil erosion vulnerability of the Umzintlava Catchment using geospatial driven RUSLE model, and (3) assess the impact of landuse/landcover (LULC) change dynamics on soil erosion in the study area during the period 1989-2017. To gain an understanding of recent developments including related successes and challenges on the use of geospatial technologies in deriving individual RUSLE parameters, extensive literature survey was conducted. An integrative methodology, spatially combining the RUSLE model with Systeme Pour l’Obsevation de la Terre (SPOT7) imagery within a digital GIS environment was used to generate relevant information on erosion vulnerability of the Umzintlava Catchment. The results indicated that the catchment suffered from unprecedented rates of soil loss during the study period recording the mean annual soil loss as high as 11 752 t ha−1yr−1. Topography as represented by the LS-factor was the most sensitive parameter to soil loss occurring in hillslopes, whereas in gully-dominated areas, soil type (K-factor) was the overriding factor. In an attempt to understand the impact of LULC change dynamics on soil erosion in the Umzintlava Catchment from the period 1989-2017 (28 years), multi-temporal Landsat data together with RUSLE was used. A post-classification change detection comparison showed that water bodies, agriculture, and grassland decreased by 0.038%, 1.796%, and 13.417%, respectively, whereas areas covered by forest, badlands, and bare soil and built-up area increased by 3.733%, 1.778%, and 9.741% respectively, during the study period. The mean annual soil loss declined from 1027.36 t ha−1yr−1 in 1989 to 138.71 t ha−1yr−1 in 2017. Though soil loss decreased during the observed period, there were however apparent indications of consistent increase in soil loss intensity (risk), most notably, in the elevated parts of the catchment. The proportion of the catchment area with high (25 – 60 t ha−1yr−1) to extremely high (>150 t ha−1yr−1) soil loss risk increased from 0.006% in 1989 to 0.362% in 2017. Further analysis of soil loss results by different LULC classes revealed that some LULC classes, i.e. bare soil and built-up area, agriculture, grassland, and forest, experienced increased soil loss rates during the 28 years study period. Overall, the study concluded that the methodology integrating the RUSLE model with GIS and remote sensing is not only accurate and time-efficient in identifying erosion prone areas in both spatial and temporal terms, but is also a cost-effective alternative to traditional field-based methods. Although successful, few issues were encountered in this study. The estimated soil loss rates in Chapter 3 are above tolerable limits, whereas in Chapter 4, soil loss rates are within tolerable limits. The discrepancy in these results could be explained by the differences in the spatial resolution of SPOT (5m * 5m) and Landsat (30m * 30m) images used in chapters 3 and 4, respectively. Further research should therefore investigate the impact of spatial resolution on RUSLE-estimated soil loss in which case optical sensors including Landsat, Sentinel, and SPOT images may be compared

    Statistical and stochastic post-processing of regional climate model data: copula-based downscaling, disaggregation and multivariate bias correction

    Get PDF
    In order to delineate management or climate change adaptation strategies for natural or technical water bodies, impact studies are necessary. To this end, impact models are set up for a given region which requires time series of meteorological data as driving data. Regional climate models (RCMs) are capable of simulating gridded data sets of several meteorological variables. The advantages over observed data are that the time series are complete and that meteorological information is also provided for ungauged locations. Furthermore, climate change impact studies can be conducted by driving the simulations with different forcing variables for future periods. While the performance of RCMs generally increases with a higher spatio-temporal resolution, the computational and storage demand increases non-linearly which can impede such highly resolved simulations in practice. Furthermore, systematic biases of the univariate distributions and multivariate dependence structures are a common problem of RCM simulations on all spatio-temporal scales. Depending on the case study, meteorological data must fulfill different criteria. For instance, the spatio-temporal resolution of precipitation time series should be as fine as 1 km and 5 minutes in order to be used for urban hydrological impact models. To bridge the gap between the demands of impact modelers and available meteorological RCM data, different computationally efficient statistical and stochastic post-processing techniques have been developed to correct the bias and to increase the spatio-temporal resolution. The main meteorological variable treated in this thesis is precipitation due to its importance for hydrological impact studies. The models presented in this thesis belong to the classes of bias correction, downscaling and temporal disaggregation techniques. The focus of the developed methods lies on multivariate copulas. Copulas constitute a promising modeling approach for highly-skewed and mixed discrete-continuous variables like precipitation since the marginal distribution is treated separately from the dependence structure. This feature makes them useful for the modeling of different meteorological variables as well. While copulas have been utilized in the past to model precipitation and other meteorological variables that are relevant in hydrology, applications to RCM simulations are not very common. The first method is a geostatistical estimation technique for distribution parameters of daily precipitation for ungauged locations, so that a bias correction with Quantile Mapping can be performed. The second method is a spatial downscaling of coarse scale RCM precipitation fields to a finer resolved domain. The model is based on the Gaussian Copula and generates ensembles of daily precipitation fields that resemble the precipitation fields of fine scale RCM simulations. The third method disaggregates hourly precipitation time series simulated by an RCM to a resolution of 5 minutes. The Gaussian Copula was utilized to condition the simulation on both spatial and temporal precipitation amounts to respect the spatio-temporal dependence structure. The fourth method is an approach to simulate a meteorological variable conditional on other variables at the same location and time step. The method was developed to improve the inter-variable dependence structure of univariately bias corrected RCM simulations in an hourly resolution

    The future of Earth observation in hydrology

    Get PDF
    In just the past 5 years, the field of Earth observation has progressed beyond the offerings of conventional space-agency-based platforms to include a plethora of sensing opportunities afforded by CubeSats, unmanned aerial vehicles (UAVs), and smartphone technologies that are being embraced by both for-profit companies and individual researchers. Over the previous decades, space agency efforts have brought forth well-known and immensely useful satellites such as the Landsat series and the Gravity Research and Climate Experiment (GRACE) system, with costs typically of the order of 1 billion dollars per satellite and with concept-to-launch timelines of the order of 2 decades (for new missions). More recently, the proliferation of smart-phones has helped to miniaturize sensors and energy requirements, facilitating advances in the use of CubeSats that can be launched by the dozens, while providing ultra-high (3-5 m) resolution sensing of the Earth on a daily basis. Start-up companies that did not exist a decade ago now operate more satellites in orbit than any space agency, and at costs that are a mere fraction of traditional satellite missions. With these advances come new space-borne measurements, such as real-time high-definition video for tracking air pollution, storm-cell development, flood propagation, precipitation monitoring, or even for constructing digital surfaces using structure-from-motion techniques. Closer to the surface, measurements from small unmanned drones and tethered balloons have mapped snow depths, floods, and estimated evaporation at sub-metre resolutions, pushing back on spatio-temporal constraints and delivering new process insights. At ground level, precipitation has been measured using signal attenuation between antennae mounted on cell phone towers, while the proliferation of mobile devices has enabled citizen scientists to catalogue photos of environmental conditions, estimate daily average temperatures from battery state, and sense other hydrologically important variables such as channel depths using commercially available wireless devices. Global internet access is being pursued via high-altitude balloons, solar planes, and hundreds of planned satellite launches, providing a means to exploit the "internet of things" as an entirely new measurement domain. Such global access will enable real-time collection of data from billions of smartphones or from remote research platforms. This future will produce petabytes of data that can only be accessed via cloud storage and will require new analytical approaches to interpret. The extent to which today's hydrologic models can usefully ingest such massive data volumes is unclear. Nor is it clear whether this deluge of data will be usefully exploited, either because the measurements are superfluous, inconsistent, not accurate enough, or simply because we lack the capacity to process and analyse them. What is apparent is that the tools and techniques afforded by this array of novel and game-changing sensing platforms present our community with a unique opportunity to develop new insights that advance fundamental aspects of the hydrological sciences. To accomplish this will require more than just an application of the technology: in some cases, it will demand a radical rethink on how we utilize and exploit these new observing systems

    Distributed hydrological modelling and application of remote sensing data

    Get PDF

    Satellite-based remote sensing of rainfall in areas with sparse gauge networks and complex topography

    Get PDF
    Rainfall is an essential parameter in the analysis and research of water resource management. However, the complexity of rainfall combined with the uneven distribution of ground-based gauges and radar in developing countries’ mountainous and semi-arid areas limits its investigation. In this context, satellite-based rainfall products provide area-wide precipitation observations with a high spatio-temporal resolution, engaging them in hydrological management in ungauged basins. Therefore, in this study, I investigated method to establish a satellite-based rainfall algorithm for ungauged basins. The algorithm combines the new Integrated Multi-SatEllite Retrieval for the Global Precipitation Measurement (GPM) (IMERG) rainfall products and second-generation geostationary orbit (GEO) systems developing rainfall retrieval techniques with the high spatio-temporal resolution using machine learning algorithms. For the first step, microwave satellite and Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager (MSG SEVIRI) data for Iran were collected to develop a regionally based new rainfall retrieval technique. The method used geostationary multispectral infrared (IR) data to train Random forest (RF) models. I employed the microwave (MW) rainfall information from the IMERG as a reference for RF training. The rainfall area was delineated in the first step, followed by rainfall rate assignment. The validation results showed the new technique’s reliable performance in both rain area delineation and rain estimate, particularly when compared to IR-only IMERG. Multispectral IR data improves rainfall retrieval compared with one single band. In the next step, I investigated the applicability of the developed algorithm in Ecuador with different orography and rainfall regimes compared to Iran. For this aim, I used the Geostationary Operational Environmental Satellite-16 (GOES-16) as the GEO satellite, which covers Ecuador at a suitable angle. The feature selection and algorithm tuning were performed to regionalize the models for Ecuador. The validation results show the reliable performance of the method in both rain area delineation and rain estimation in Ecuador. The results proved the suitability of the developed algorithm with different GEO systems and in different regions. Some inaccuracies at the Andes’ high elevation were evident after the spatial analysis of the validation indices. Evaluating the validation results against a high spatio-temporal radar network showed that the developed algorithm has difficulty capturing drizzles and extreme events dominant in the Andes’ high elevations and needs improvement. In summary, this research presents a new satellite-based technique for rainfall retrieval in a high spatio-temporal resolution for ungauged regions, which can be applied in parts of the world with different rainfall regimes. This findings could be used by planners and water managers regardless of the availability of rain gauges at ground. Furthermore, the research showed, for the very first time, the advantage of using the new generation of GEO satellite combined with microwave satellites integrated in GPM IMERG for estimating rainfall.Der Niederschlag ist ein wesentlicher Parameter bei der Analyse und Erforschung der Bewirtschaftung von Wasserressourcen. Die Komplexität des Niederschlags in Verbindung mit der ungleichmäßigen Verteilung von bodengestützten Messgeräten und Radar in den gebirgigen und halbtrockenen Gebieten von Entwicklungsländern schränkt jedoch seine Untersuchung ein. In diesem Zusammenhang liefern satellitengestützte Produkte flächendeckende Niederschlagsbeobachtungen mit einer hohen räumlich-zeitlichen Auflösung, die für das hydrologische Management in nicht beprobten Einzugsgebieten eingesetzt werden können. Daher konzentriert sich die vorliegende Untersuchung auf die Erstellung eines satellitengestützten Niederschlagsalgorithmus für nicht beprobte Einzugsgebiete. Die neuen IMERG (Integrated Multi-SatEllite Retrieval for Global Precipitation Measurement (GPM)) Satellitenprodukte werden mit geostationären Orbit-Systemen (GEO) der zweiten Generation mittels Algorithmen des maschinellen Lernens zur Niederschlagsermittlung mit hoher räumlicher und zeitlicher Auflösung kombiniert. In einem ersten Schritt wurden Mikrowellensatelliten- und Meteosat-Daten der zweiten Generation des Spinning Enhanced Visible and Infrared Imager (MSG SEVIRI) für den Iran gesammelt, um eine neue, regional basierte Methode zur Niederschlagsermittlung zu entwickeln. Die Methode verwendete geostationäre multispektrale Infrarotdaten (IR), um Random-Forest-Modelle (RF) zu trainieren. Als Referenz für das RF-Training wurden Mikrowellen-Niederschlagsdaten (MW) des IMERG verwendet. Im ersten Schritt wurde das Niederschlagsgebiet abgegrenzt, gefolgt von der Zuordnung der Niederschlagsmenge. Die Validierungsergebnisse zeigen, dass die neue Technik sowohl bei der Abgrenzung des Niederschlagsgebiets als auch bei der Niederschlagsschätzung zuverlässig funktioniert, insbesondere im Vergleich zum IR-only IMERG. Multispektrale IR-Daten verbessern die Niederschlagsermittlung im Vergleich zu einem einzelnen Band. Im nächsten Schritt wurde die Anwendbarkeit des entwickelten Algorithmus in Ecuador untersucht, das sich in Bezug auf die Orographie und das Niederschlagssystem vom Iran unterscheidet. Zu diesem Zweck wurde der Geostationary Operational Environmental Satellite-16 (GOES-16) als GEO-Satellit verwendet, der Ecuador in einem geeigneten Winkel abdeckt. Die Auswahl der Features und das Tuning des Algorithmus wurden durchgeführt, um die Modelle für Ecuador zu regionalisieren. Die Validierungsergebnisse zeigen die zuverlässige Leistung der Methode sowohl bei der Abgrenzung von Regengebieten als auch bei der Schätzung der Niederschlagsmenge in Ecuador. Die Ergebnisse belegen die Eignung des entwickelten Algorithmus für verschiedene GEO-Systeme und verschiedene Regionen. Nach der räumlichen Analyse der Validierungsindizes wurden einige Ungenauigkeiten in denhohen Lagen der Anden deutlich. Die Auswertung der Validierungsergebnisse anhand eines räumlich-zeitlichen Radarnetzes zeigt, dass der entwickelte Algorithmus Schwierigkeiten bei der Erfassung von Nieselregen und extremen Wetterereignissen hat, die in den hohen Lagen der Anden vorherrschen, und dahingehend verbessert werden muss. Diese Forschungsarbeit stellt ein neues satellitengestütztes Verfahren zur Niederschlagsermittlung mit hoher räumlicher und zeitlicher Auflösung vor, das auf Regionen ohne Bodenstationsmessungen und unterschiedliche Niederschlagsregime angewendet werden kann. Dieser Algorithmuskann von Planungs- und Wasserwirtschaftsämtern oder anderen einschlägigen Einrichtungen unabhängig von der Verfügbarkeit von Regenmessern am Boden genutzt werden. Darüber hinaus zeigte die Untersuchung zum ersten Mal den Vorteil der Nutzung der neuen Generation von GEO-Satelliten in Kombination mit den in IMERG integrierten Mikrowellensatelliten für die Bewertung der Niederschlagsmenge
    corecore