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Abstract 

In countries such as Mexico, there is a lack of rain measurement stations. 

Additionally, in the Bajo Grijalva Basin, data of only three or fewer stations 

are integrated into satellite products of missions such as Tropical Rainfall 

Monitoring Mission (TRMM) and Global Precipitation Mission (GPM). 

Although Satellite missions enable obtaining rainfall at constant spacing 

(e.g., 11 km for GPM), this resolution is not suitable for local 
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management. Integrating a larger quantity of gauge data with 

downscaled satellite values allows for obtaining local-scale precipitation 

data. In this work, Ordinary kriging (OK) was applied to downscale yearly 

aggregated precipitation satellite data (GPM-IMERG and TRMM: 

TMPA/3B43) and regression kriging (RK) to integrate them with the gauge 

measurements available in the basin of study. The resulting data were 

compared with the interpolation results of gauge measurements using OK 

and universal kriging (UK). Leave-one-out cross-validation (Lou-CV), 

principal components analysis, a correlation matrix, and a heat map with 

cluster analysis helped to evaluate the performance and to define 

similarity. An Inverse Distance Weighting (IDW) interpolation was 

included as a low-performance criterion in the comparison. OK performed 

well to downscale GPM satellite estimates. The RK integration of gauge 

data with downscaled GPM data got the best validation values compared 

to the interpolation of gauge measurements. Geostatistical methods are 

promising for downscaling satellite estimates and integrating them with 

all the available gauge data. The results indicate that the evaluation using 

performance metrics should be complemented with methods to define 

similarity among the values of the obtained spatial layers. This approach 

allows obtaining precipitation data useful for modeling and water 

management at the local level. 

Keywords: Bajo Grijalva, geostatistical data downscaling, regression 

kriging, satellite precipitation, tropical basin. 
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Resumen 

En países como México hacen falta más estaciones de medición de lluvia. 

Además, en la cuenca Grijalva, datos de solo tres o menos estaciones se 

integran en productos satelitales de misiones como Tropical Rainfall 

Monitoring Mission (TRMM) o Global Precipitation Mission (GPM). Aunque 

las misiones satelitales permiten obtener estimaciones de lluvia a un 

espaciamiento constante (p. ej., 11 km para GPM), esta resolución no es 

adecuada para gestión local. La integración de una mayor cantidad de 

datos de pluviómetros con valores de satélite aumentados de escala 

puede ser útil para obtener datos de precipitación de escala local. En este 

trabajo se aplicó kriging ordinario (OK) a los datos satelitales de 

precipitación (GPM y TRMM) agregados anualmente y regresión kriging 

(RK) para integrar los datos resultantes con datos de todos los 

pluviómetros disponibles. Los resultados de esta integración se 

compararon con los resultados de la interpolación de datos de 

pluviómetros utilizando OK y kriging universal (UK). Una interpolación del 

inverso de la distancia al cuadrado (IDW) se consideró como criterio de 

bajo desempeño. Los métodos de evaluación y de definición de similaridad 

fueron validación cruzada (Lou-CV), análisis de componentes principales, 

matriz de correlación y mapa de calor con análisis de conglomerados. OK 

funcionó bien para desescalar las estimaciones satelitales de GPM. La 

integración RK de datos de pluviómetros con datos de GPM desescalados 

con OK obtuvo los mejores parámetros de validación en comparación con 

las interpolaciones de mediciones de pluviométros. Los métodos 

geoestadísticos son prometedores para desescalar las estimaciones 

satelitales e integrarlas con todos los datos disponibles de pluviómetros. 
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Los resultados indican que la evaluación usando parámetros para evaluar 

la efectividad de la interpolación usando datos medidos debe 

complementarse con métodos para definir similaridad entre las capas 

espaciales obtenidas. Este enfoque permite obtener datos de precipitación 

útiles para modelado y manejo del agua a nivel local. 

Palabras clave: Bajo Grijalva, cuenca tropical, desescalamiento 

geoestadístico de datos, precipitación satelital, regresión kriging. 
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Introduction 
 
 

Knowledge of where, when, and how much rain falls is essential for 

scientific research and societal applications (Skofronick-Jackson et al., 

2018). A better understanding of the spatial and temporal precipitation 

(PP) patterns is still necessary to quantify the risks and design suitable 

mitigation measures in the context of climate change (Agou, Varouchakis, 

& Hristopulos, 2019). As Smalley and L’Ecuyer (2015) point out, practical 

decision-making for hydrologists, infrastructure, and land use, under 

forecasts of increasing or decreasing PP volume, can only be made with 
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fine-scale, detailed knowledge of the volume, and spatial distribution of 

PP. 

According to New, Todd, Hulme, and Jones (2001), gauges that 

measure the PP at a single point remain the most common approach to 

ground-based measurement and are the ultimate reference and the only 

measurement method available in many regions of the world. However, 

the direction and magnitude of climatic trends cannot be reliably inferred 

from single-site records, even over relatively homogeneous terrain (Pielke 

et al., 2000). Achieving good locations for stations for data collection is 

difficult (WMO, 2008). Synoptic observations should be representative of 

an area up to 100 km around the station, but for small-scale or local 

applications, the considered area may have dimensions of 10 km or less 

(WMO, 2008). 

In countries like Mexico, particularly in tropical regions as the study 

area, there is a lack of rain measurement stations. Tapia-Silva, Silván-

Cárdenas, and Rosales-Arriaga (2013) reported that the National 

Meteorological Service (SMN) stations included approximately 3 300 

observation sites. Assuming that each site was representative of an area 

of 100 km2, as defined by WMO (2008) for flat areas, 330 000 km2 would 

be covered, which was only 17 % of the territorial extension of Mexico. 

PP estimates by satellite media have been investigated intensely 

since the 1970s (New et al., 2001). One of the emblematic missions has 

been the Tropical Rainfall Monitoring Mission (TRMM) (Kummerow, 

Barnes, Kozu, Shiue, & Simpson, 1998; Kummerow et al., 2000; Huffman 

et al., 2007). TRMM had a satellite-borne active microwave system, as 

well as a passive microwave radiometer. Global Precipitation Mission 
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(GPM) (Kidd et al., 2020) is a joint US and Japan mission launched in 

2014 that follows, extends, and enhances the legacy of the TRMM (Kidd 

et al., 2020). The Integrated multi-satellite retrievals for GPM (IMERG), 

released in 2014, uses inter-calibrated estimates from the international 

constellation of PP-relevant satellites and other data, including monthly 

surface PP gauge data, to obtain half-hour, 0.1° x 0.1° gridded datasets 

(Kidd et al., 2020, p. 343). 

According to GPCC (2012), data from very few gauge stations (three 

ay the most) have been integrated into TRMM and GPM for the basin’s 

region. TRMM included rain products with a resolution of approximately 

30 km2 and IMERG (GPM) of around 11 km2. As suggested by Smalley 

and L’Ecuyer (2015), knowledge about the volume and the spatial 

distribution of PP at the fine scale cannot be represented using this 

resolution. Additionally, rainfall satellite products are not error-free 

(Huffman et al., 2020, p. 350; Anagnostou et al., 2010; AghaKouchak, 

Behrangi, Sorooshian, Hsu, & Amitai, 2011; Zulkafli et al., 2014, p. 515), 

and extended validation processes have been developed (Kidd et al., 

2020, pp. 11-12; Anagnostou et al., 2020). The errors are due to the 

sensor frequencies and channels, the type of PP, its heterogeneity within 

the sensor’s footprint, and the algorithm used to calculate the PP rate 

(Massari & Maggioni, 2020, p. 515). Regarding the estimation methods 

implemented in Greene and Morryssey (2000), uncertainty was 

associated with satellite PP estimates, stemming from unknown variations 

in the space and time of the physical and statistical relationships between 

PP and satellite-sensed radiance. 
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Field measurements have been frequently used to validate or 

compare the PP information obtained by satellites (Kidd et al., 2020, pp. 

11-12; Laurent, Jobard, & Toma, 1998; Bowman, 2005; Bell, 2003). As 

described in the last paragraphs, the available gauge measurements and 

satellite estimates cannot capture the PP spatial variability in zones like 

the studied basin. That is why some integration schemes have been 

developed. For example, New et al. (2021) presented a procedure that 

weights the individual input components by the inverse of the random 

error to produce a final merged product. Wu, Zhang, Sun, Lin and He 

(2018) merged data from TRMM Multi-Satellite P Analysis (TMPA) 3B42 

with rain gauges. 

Another integration possibility is the application of geostatistics, 

particularly kriging (Matheron, 1963). According to Curran and Atkinson 

(1998), a powerful synergy between geostatistics and remote sensing has 

been realized since the 1980s. However, Van der Meer (2012) indicates 

that, although the research regarding the use of geostatistics in remote 

sensing is growing, this has not yet been established as a standard 

practice. A geostatistical integration can be implemented, given that 

satellite products allow obtaining rainfall estimates for a particular region 

at constant spacing and that point measurement stations allow obtaining 

the value considered accurate. Regression kriging (RK) (Hengl, Gerard, 

Heuvelink, & Rossiter, 2007) can predict unknown values based on field 

measurements using estimations from satellite images as auxiliary 

variables. 

Kriging has been defined as the best unbiased linear estimator 

(Cressie, 1990; Hengl, 2009) to predict values at unmeasured locations. 
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These techniques have been successfully explored to generate more 

representative PP spatial layers from point measurements (Smalley & 

L’Ecuyer, 2015; Holawe & Dutter, 1999; Goovaerts, 2000; Keblouti, 

Ouerdachi, & Boutaghane, 2012). However, in countries like Mexico, the 

kriging application presents problems in capturing the local spatial 

variability due to the mentioned reduced number of gauge stations. 

Additionally, their location is not favorable since many of them were 

installed in easily accessible areas without consideration of a geographic 

sampling design, and others are no longer functioning. 

TRMM Satellite estimates have been previously downscaled and 

integrated with field measurements using kriging (Abdollahipour, Ahmadi, 

& Aminnejad, 2022). Park, Kyriakidis, and Hong (2017) used kriging to 

downscale monthly TRMM-3B43 data at ~25km over South Korea. After 

that, the authors applied methods such as kriging with external drift 

(KED) and simple kriging with local means to integrate gauge data with 

the downscaled precipitation estimates. Chen, Gao, Yiguo, and Li (2020) 

downscaled TRMM daily PP data covering China’s Henan Province for the 

period 1 January 2015 to 31 December 2016 through a “temporal 

upscaling – spatial downscaling – temporal downscaling” strategy. After 

that, the authors merged the results with gauge observations in a 

multivariate geostatistical framework. Chen, Zhang, She and Chen (2019) 

used kriging and other spatial analysis methods as geographically 

weighted regression to downscale PP data from the TRMM-3B43V7 

product and to integrate the results with rain gauge data from 2001 to 

2014 on reaches of the Yangtze River in China. Cersosimo et al. (2018) 

downscaled other satellite data over south Italy as Operative Precipitation 
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Estimation at Microwave Frequencies (OPEMW) and Microwave Humidity 

Sounder (MHS) observation using KED. Other geostatistical integration 

schemes of PP field measurements and satellite estimates have been 

reported in the literature (Wang & Lin, 2015; Lin & Wang, 2011; Verdin, 

Rajagopalan, Kleiber, & Funk 2015; Sivasubramaniam, Sharma, & 

Alfredsen, 2019; Wu et al., 2018; Nerini et al., 2015). Also, work has 

been done to integrate ground radar and rain gauge data using 

geostatistics (Dumitrescu, Brabec, & Matreata, 2020; Berndt, Rabiei, & 

Haberlandt, 2013; Yang & Ng, 2019). 

After this review, before the present work, GPM PP estimates had 

not been downscaled and integrated with gauge measurements using 

geostatistics, and this kind of downscaling and integration had not been 

done and evaluated for tropical areas outside Asia and Europe. In this 

research, geostatistical methods were applied to obtain a suitable spatial 

pattern of yearly aggregated PP-values at the local (basin) scale. These 

kinds of PP-values are valuable indicators of processes, such as water 

availability (Tapia-Silva & Gómez-Reyes, 2020), desertification (Morin, 

Marra, & Armon, 2020), water use, and water extraction (Ruiz-Alvarez, 

Singh, Enciso-Medina, Ontiveros-Capurata, & Corrales-Suastegui, 2020), 

and water management and the identification of regions vulnerable to 

climate change (Rata, Douaoui, Larid, & Douaik, 2020). 

Ordinary kriging (OK) was applied to downscale the satellite data 

(GPM and TRMM) and RK to integrate the results with gauge data. These 

RK integration results were compared with the interpolation results of 

gauge data using OK and universal kriging (UK). IDW was included as a 

criterion for comparison purposes since it offers limited capacities to 
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capture the variable's spatial pattern. Leave-one-out cross-validation 

(Lou-CV), principal components analysis, a correlation matrix, and a heat 

map with cluster analysis helped to evaluate the results and to define 

similar values among them. 

As a main result, a geostatistical downscaling and integration 

approach between satellite PP-estimates from GPM and TRMM and all 

available gauge data was developed and evaluated. The objective of this 

work was to answer the following questions: Is it possible to generate, 

through geostatistical methods, a downscaled PP spatial layer of satellite 

estimates of PP which can be integrated with all available gauge data for 

obtaining a spatial pattern suitable for the local scale, at aggregated 

annual values for a particular year? How do the RK results compare with 

other interpolation methods such as OK, and UK? 

 
 

Materials and methods 
 
 

Study region 
 
 

The Bajo Grijalva basin (Figure 1) is located southeast of Mexico and 

covers an area of 9 830 km2 (Conagua, 2015). A 30 km buffer was 

generated on the basin polygon obtained from the Instituto Nacional de 

Estadística y Geografía (INEGI) (INEGI, 2010) to delimit the study area 

(Figure 1). 
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Figure 1. Bajo Grijalva Basin and its municipalities, with a 30 km buffer 

and the gauge measurement locations. 
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This basin includes 12 municipalities in Tabasco and 20 in Chiapas. 

The largest river system in the country, the Grijalva-Usumacinta, 

converges in this area. The runoff of its rivers is the largest in the Mexican 

Republic, with around 3 700 m3/s on average annually (Conagua, 2015). 

The plains of this basin have recurrent flooding due to runoff generated 

by heavy rains, mainly conducted by the Sierra River (Cepal & Cenapred, 

2008). 

 
 

Data 
 
 

The 2001 PP gauge data of the stations located in the 30 km buffer were 

obtained from the database provided by the SMN (Gobierno de México, 

2020). As mentioned, the selected time interval (annual values) is 

suitable for modeling activities. It allows the estimation of water 

availability at the local scale in the same basin (Tapia-Silva & Gómez-

Reyes, 2020). The gauge data were revised to avoid missing records and 

were grouped by year. On the other hand, the 2001 aggregates of TRMM 

(TMPA/3B43) (Kummerow et al., 1998; Kummerow et al., 2000) were 

downloaded from GES DISC (2011). The corresponding GPM data (IMERG 

Final Precipitation) (Huffman, Stocker, Bolvin, Nelkin, & Tan, 2019) were 

downloaded from Google Earth Engine (GEE©) using the script included 

in the appendix. 

The statistical properties (skewness, coefficient of variation, 

normality fit, mean, and confidence intervals) of the used data are given 
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in Table 1. As can be observed, the parameters indicate many differences 

among them. For example, the mean of the gauge measurements was 

lower than the same value of the GPM estimates and higher than the 

corresponding value of the TRMM estimates. The log-transformed gauge 

measurements could be assumed normal, and its skewness was very 

close to zero. 

 

Table 1. Statistical properties (skewness, coefficient of variation, 

normality fit, mean and confidence intervals) of used data. 

2001-yearly 

aggregated 

PP data set 

Skewness 
Coefficient 

of variation 

P-value of Shapiro 

Wilcoxon test (if 

>0.05 normality 

can be assumed) 

Mean 

Mean 

confidence 

intervals 

Left Right 

Gauge 

measurements 
1.06 48.3 0.0013 1601.5 1393.3 1809.6 

Log- 

transformed 

gauge 

measurements 

(used to 

interpolate) 

0.009 6.5 0.753 3.157 3.102 3.212 

TRMM satellite 

estimates 
0.25 36.19 0.0005 508.1 478.1 538.1 

GPM satellite 

estimates 
-0.67 0.64 8.9e-11 2174.2 2140.2 2208.2 
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Methodology overview 
 
 
Figure 2 includes a flow chart showing an overview of the developed 

methodology. The 2001 aggregated gauge data were interpolated using 

OK, UK and IDW. As a downscaling method, the values of the TRMM cells 

at the original resolution of approx. 30 km, were interpolated using OK. 

The same procedure was implemented using the GPM cell centers at their 

original resolution (approx. 11 km). The gauge data were interpolated 

with RK using the TRMM data at the original resolution (30 km) as an 

auxiliary variable. To improve the spatial pattern of the resulting PP layer, 

RK of gauge data was implemented with the TRMM OK-downscaled 

values, in one case, and with the GPM Ok-downscaled values in the other, 

as secondary information. This is the approach proposed in this work to 

integrate gauge data with satellite estimates of PP. In RK, the mean was 

estimated from the linear relationship with the auxiliary variable (TRMM 

or GPM OK-downscaled layers). Since only a linear relationship between 

the gauge measurements and satellite estimated PP-values was found and 

not with elevation, the latter variable was not included in the RK 

interpolation. All resulting layers were visually inspected to observe 

spatial discontinuities. Only the layer from the RK integration of gauge 

data and TRMM at original resolution (without downscaling) had them and 

was discarded. 
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Figure 2. Methodology overview. 

https://crossmark.crossref.org/dialog/?doi=10.24850/j-tyca-15-01-02&amp;domain=pdf&amp;date_stamp=2024-01-01


 

 

 

 

 

 

 

 

 2024, Instituto Mexicano de Tecnología del Agua. 
Open Access bajo la licencia CC BY-NC-SA 4.0 
(https://creativecommons.org/licenses/by-nc-sa/4.0/) 

69 

Tecnología y ciencias del agua, ISSN 2007-2422, 
15(1), 54-110. DOI: 10.24850/j-tyca-15-01-02 

 

 

As the gauge measurements were skewed (Table 1), they were log-

transformed. The variogram model (s. Equation (6) in section Kriging) 

was fitted to the empirical values using an optimization procedure in R (R 

Core Team, n.d.) with the ‘fit.variogram’ function of the package gstat 

(Pebesma, 2004). 

The 270 m resolution was selected because it is useful for obtaining 

PP spatial layers for planning and management activities, such as annual 

hydrological balances at the local scale of basins (e.g., Tapia-Silva & 

Gómez-Reyes, 2020). The theory of applied kriging methods and 

procedures such as Lou-CV, performance evaluation, and definition of 

similarity of the resulting values, are described in the following 

paragraphs. 

 
 

Kriging 
 

 
According to Hengl (2009), the original idea of kriging came from the 

mining engineer D. G. Krige and the statistician H. S. Sichel. Matheron 

(Matheron, 1963; Matheron, 1965) followed the empirical work of Krige 

and established the Theory of Regionalized Variables, which is the base 

of geostatistics (Oliver & Webster, 2015). Since the mathematical 

formulation of kriging can be very extensive in the literature (e. g., 

Goovaerts, 1997), a summary of the mathematical basis of the applied 

kriging techniques is provided in this section. 
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Kriging accounts for local variations in the mean by limiting the 

domain of stationarity to a local neighborhood, Ω, around the position, x, 

where the variable is to be estimated. Let Z(x) = Y(x) + m(x) be a 

stochastic process with a variable mean that is determined by m(x) and 

the covariance function C(h). As such, Y(x) is a stochastic process with a 

null mean. A linear estimator is a linear combination of measurements 

Z(x1), Z(x2),…, Z(xn) at positions x1, x2,…, xn ∈ Ω. Specifically (Goovaerts, 

1997, p. 126): 

 

 𝑌𝑌� (x) = ∑ 𝜆𝜆𝑘𝑘(𝑥𝑥)𝑌𝑌(𝑥𝑥𝑘𝑘)𝑛𝑛
𝑘𝑘=1  (1) 

 

or: 

 

�̂�𝑍(𝑥𝑥) = 𝑚𝑚(𝑥𝑥) + ∑ 𝜆𝜆𝑘𝑘(𝑥𝑥)[𝑍𝑍(𝑥𝑥𝑘𝑘) −𝑚𝑚(𝑥𝑥𝑘𝑘)]𝑛𝑛
𝑘𝑘=1  (2) 

 

If the mean is constant in domain Ω, then it can be eliminated from 

the equation above by forcing the kriging weights to sum to one, in which 

case, the estimator is called OK, and is expressed as (Goovaerts, 1997, 

p. 133): 

 

�̂�𝑍𝐾𝐾𝐾𝐾(𝑥𝑥) = ∑ 𝜆𝜆𝑘𝑘(𝑥𝑥)𝑍𝑍(𝑥𝑥𝑘𝑘)𝑛𝑛
𝑘𝑘=1  (3) 

 

with: 
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∑ 𝜆𝜆𝑘𝑘(𝑥𝑥) = 1𝑛𝑛
𝑘𝑘=1  (4) 

 

The Lagrange multiplier method (Goovaerts, 1997, p. 133) is used 

to obtain the optimal weights that minimize the estimation of the error 

variance, which results in the following system of equations: 

 

 {∑ 𝜆𝜆𝑘𝑘(𝑥𝑥)=1
𝑛𝑛
𝑘𝑘=1  

∑ 𝜆𝜆𝑘𝑘(𝑥𝑥)𝐶𝐶�𝑥𝑥𝑗𝑗−𝑥𝑥𝑘𝑘�+𝜇𝜇(𝑥𝑥)=𝐶𝐶�𝑥𝑥𝑗𝑗−x�𝑛𝑛
𝑘𝑘=1 ,𝑗𝑗=,……,𝑛𝑛

 (5) 

 

where μ denotes the Lagrange multiplier. Alternatively, when considering 

the relation between the covariance function and the semivariogram 

function γ(h), i.e., C(h)=C(0)-γ(h), then the above system can be written 

as: 

 

{∑ 𝜆𝜆𝑘𝑘(𝑥𝑥)=1
𝑛𝑛
𝑘𝑘=1  

∑ 𝜆𝜆𝑘𝑘(𝑥𝑥)𝛾𝛾�𝑥𝑥𝑗𝑗−𝑥𝑥𝑘𝑘�+𝜇𝜇(𝑥𝑥)=𝛾𝛾�𝑥𝑥𝑗𝑗−x�𝑛𝑛
𝑘𝑘=1 ,𝑗𝑗=,……,𝑛𝑛

 (6) 

 

OK assumes a stationary mean, that is, it is a constant of the 

random function Z(x), of the real underlying value. However, it is often 

not constant throughout the entire study area. When that is the case, a 

non-stationary regionalized variable has two components: the drift (which 

is the average or the expected value of the regionalized variable, called 

the structured component) and the residual (which is the difference 
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between the values of the parameter that are considered real and the 

drift, called the random component) (Matheron, 1971, p. 5). 

UK divides the random function into a linear combination of 

deterministic functions: the smooth and non-stationary trend (drift or 

mean) μ(x) ε R, and the residual random function Y(x): = Z (x) - μ (x) 

(Wackernagel, 2003, p. 300). UK assumes that μ(x) is a function of the 

spatial location, and this can be approximated by the following model 

(Kumar, 2007): 

 

𝜇𝜇(𝑥𝑥) = ∑ 𝛼𝛼𝑖𝑖𝑓𝑓𝑖𝑖(x)𝑛𝑛
𝑖𝑖=1  (7) 

 

Where 𝛼𝛼𝑖𝑖 is the coefficient to be estimated based on the data, fi = 

the basic function of drift as a function of the spatial coordinates, and n 

= the number of functions used in the drift model. 

As with OK, the weights in UK are obtained by minimizing the 

variance of the prediction error subject to the unbiasedness restriction. 

The Lagrange multiplier is applied once again, taking into consideration 

the spatial autocorrelation structure to obtain the optimal weights. 

RK is the Best Linear Unbiased Prediction (BLUP) model for spatial 

data, and all other techniques, such as OK, IDW, etc. can be seen as its 

special cases (Hengl, 2009, pp. 29-30; Hengl et al., 2007). In matrix 

notation, RK is commonly written as (Hengl, 2009, p. 28): 

 

�̂�𝑍𝑅𝑅𝐾𝐾(𝑥𝑥𝑜𝑜) =  𝑞𝑞𝑜𝑜𝑇𝑇 ∙ �̂�𝛽𝐺𝐺𝐺𝐺𝐺𝐺 + 𝜆𝜆𝑜𝑜𝑇𝑇 ∙ �𝑍𝑍 − 𝑞𝑞 ∙ �̂�𝛽𝐺𝐺𝐺𝐺𝐺𝐺� (8) 
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�̂�𝑍𝑅𝑅𝐾𝐾(𝑥𝑥𝑜𝑜) is the predicted value at the location 𝑥𝑥𝑜𝑜, 𝑞𝑞𝑜𝑜 is the vector of p + 1 

predictors, 𝛽𝛽�𝐺𝐺𝐺𝐺𝐺𝐺 are regression coefficients estimated with OLS (Ordinary 

Least Squares) or optimally with GLS (Generalized Least Squares), and 𝜆𝜆𝑜𝑜 

is the vector of the n kriging weights used to interpolate the residual. It 

has a prediction variance that reflects the position of new locations 

(extrapolation) in both geographical and feature spaces (Hengl, 2009, p. 

28; Hengl et al., 2007): 

 

𝜎𝜎�𝑅𝑅𝐾𝐾2 (𝑥𝑥𝑜𝑜) = (𝐶𝐶𝑜𝑜 − 𝐶𝐶1) − 𝑐𝑐𝑜𝑜𝑇𝑇 ∙ 𝐶𝐶−1 ∙ 𝑐𝑐𝑜𝑜 + (𝑞𝑞𝑜𝑜 −  𝑞𝑞𝑡𝑡 ∙ 𝐶𝐶−1 ∙ 𝑐𝑐𝑜𝑜)𝑇𝑇 ∙ ( 𝑞𝑞𝑡𝑡 ∙ 𝐶𝐶−1 ∙ 𝑞𝑞)−1 ∙ (𝑞𝑞𝑜𝑜 −  𝑞𝑞𝑡𝑡 ∙

𝐶𝐶−1 ∙ 𝑐𝑐𝑜𝑜) (9) 

 

Where Co + C1 is the sill variation and co is the vector of the 

covariances of residuals at the unvisited location. 

According to Hengl (2009, p. 29), if the residuals show no spatial 

autocorrelation (pure nugget effect), the RK converges to pure multiple 

linear regression given that the covariance matrix (C) becomes an identity 

matrix. Hengl (2009, p. 29) indicated that, if the target variable shows no 

correlation with the auxiliary predictors, the RK model reduces to OK 

because the deterministic part equals the (global) mean value. 
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Evaluation and similarity of results 
 

 
All interpolation results were evaluated using Lou-CV. The evaluation 

parameters were the determination and correlation coefficients (R2 and r, 

respectively) and z-scores (𝑧𝑧𝑖𝑖) calculated as (Bivand, Pebesma, & Gómez-

Rubio, 2013, p. 225): 

 

𝑧𝑧𝑖𝑖 = 𝑍𝑍(𝑥𝑥𝑖𝑖)−𝑍𝑍�[𝑖𝑖](𝑥𝑥𝑖𝑖))
𝜎𝜎[𝑖𝑖](𝑥𝑥𝑖𝑖)

 (10) 

 

with 𝑍𝑍[𝑖𝑖](𝑥𝑥𝑖𝑖) and 𝑍𝑍�[𝑖𝑖](𝑥𝑥𝑖𝑖) as the cross-validation prediction for 𝑥𝑥𝑖𝑖 and 𝜎𝜎[𝑖𝑖](𝑥𝑥𝑖𝑖) 

as the corresponding kriging standard error. According to Bivand et al. 

(2013 p. 225) 𝑧𝑧𝑖𝑖 it is a standardized residual, and, if the variogram model 

is correct, it should have mean and variance values close to 0 and 1.  

The Lou-CV-residuals were analyzed calculating their mean value 

and the root mean square error (RMSE) was calculated as: 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑍𝑍(𝑥𝑥𝑖𝑖)−𝑍𝑍�(𝑥𝑥𝑖𝑖))2𝑛𝑛
𝑖𝑖=1

𝑛𝑛
 (11) 

 

Nash-Sutcliffe Efficiency (NSE) and Ratio of Standard Deviation 

(RSD) were also included in the evaluations of the Lou-CV results. They 

were calculated as: 
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𝑁𝑁𝑅𝑅𝑅𝑅 = 1 − ∑ (𝑍𝑍(𝑥𝑥𝑖𝑖)−𝑍𝑍�(𝑥𝑥𝑖𝑖))2𝑛𝑛
𝑖𝑖=1

∑ (𝑍𝑍(𝑥𝑥𝑖𝑖)−𝑍𝑍�(𝑥𝑥𝑖𝑖))2𝑛𝑛
𝑖𝑖=1

 (12) 

 

𝑅𝑅𝑅𝑅𝑅𝑅 =
�1
𝑛𝑛
∑ (𝑍𝑍(𝑥𝑥𝑖𝑖)−𝑍𝑍�(𝑥𝑥𝑖𝑖))2𝑛𝑛
𝑖𝑖=1

�1
𝑛𝑛
∑ (𝑍𝑍(𝑥𝑥𝑖𝑖)−𝑍𝑍�)2𝑛𝑛
𝑖𝑖=1

 (13) 

 

Following Burgan and Aksoy (2022), the ranges of these parameters 

and their remarks are the following: -∞ ≤ NSE ≤ 1, NSE approaching 1 

shows better performance; 0 ≤ RMSE ≤ ∞, RMSE has the dimension as 

the variable, and this parameter approaching zero shows better 

performance; 0 ≤ RSD ≤ ∞, RSD approaching zero shows better 

performance. For NSE and RSD, Burgan and Aksoy (2022) provide the 

following criteria of performance metrics: very good: 0.75 < NSE ≤ 1.00, 

0.00 ≤ RSD ≤ 0.50; Good 0.65 < NSE ≤ 0.75, 0.50 < RSD ≤ 0.60; 

adequate: 0.50 < NSE ≤ 0.65 0.60 < RSD ≤ 0.70; and finally inadequate: 

NSE ≤ 0.50 RSD > 0.70. 

Additionally, to define the similarity of the values of the obtained 

spatial layers and their grouping, a correlation analysis including a 

heatmap and a dendrogram, as well as a principal components analysis 

(PCA), were implemented. All validation procedures were performed in 

the free statistical software R (R Core Team, n.d.) using its package gstat 

(Pebesma, 2004). 
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Results 
 
 

OK, UK, and IDW prediction and Lou-CV results 
 
 

The resulting evaluation parameters obtained from the Lou-CV, for all 

interpolations are in Table 2. 

 
Table 2. The Lou-CV resulting parameters of the interpolations of the 

2001 PP yearly values. 

Interpolation 

approach 

Adj. 

R2 
r p-value 

Residuals 

mean 
NSE RSD RMSE 

Zi- 

mean variance 

OK of gauge 

measurements 
0.31 0.57 9.258e-06 1.08 0.23 0.87 671.8 0.01 1.33 

UK of gauge 

measurements 
0.29 0.54 1.666e-05 1.083 0.19 0.89 690.2 0.01 1.38 

IDW of gauge 

measurements 
0.2 0.44 0.0005 111.05 0.19 0.89 688.5 na na 

OK-downscaling of TRMM 0.91 0.95 2.2e-16 0.53 0.91 0.30 135.91 -0.001 1.33 

OK-downscaling of GPM 0.99 0.99 2.2e-16 -0.02 0.99 0.1 37.11 -0.020 2.98 

RK-integration of gauge 

measurements and OK-

downscaled TRMM 

0.35 0.59 1.546e-06 1.07 0.29 0.83 644.5 -0.01 1.53 

RK-integration of gauge 

measurements and OK-

downscaled GPM 

0.41 0.64 1.266e-07 1.06 0.40 0.76 590.8 -0.001 1.41 
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The prediction and Lou-CV results of the interpolation of gauge 

measurements using the OK, UK, and IDW methods are shown in Figure 

3. For the OK interpolation (part a in Figure 3), a gaussian semivariogram 

model was fitted. The results of the OK interpolation showed a smoothed 

spatial pattern with the highest PP-values in the western part of the study 

area followed by the eastern part. The Lou-CV results from the OK 

prediction were the following: adjusted R2 of 0.31, r = 0.57, and p-value 

= 9.26e-06. The CV-residual mean and the RMSE were 1.08 and 671.8, 

respectively. The parameters NSE and RSD had the values 0.23 and 0.87, 

respectively, indicating an inadequate performance (Burgan & Aksoy, 

2022). However, the obtained Lou-CV-zi values had a mean of 0.009 and 

a variance of 1.33, which, according to Bivand et al. (2013, p. 225) 

indicates a good fit for the semivariogram model. The map of zi-values 

shows the locations with the lowest values (with a minimum of -4.87) 

located at the center and the southeast part of the area of study. The 

locations with the highest zi-values (with a maximum of 2.26) were in the 

middle and the south of the area. 
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Figure 3. The prediction and leave-one-out cross validation (Lou-CV) 

results of the ordinary kriging (OK) (a), universal kriging (UK) (b), and 

inverse distance weighted interpolation (IDW) (c) interpolations of the 
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annual values of 2001 precipitation (PP) gauge measurements; (a) and 

(b) include plots of the fitted semivariogram as well as a map showing 

the spatial distribution of the zi obtained from the Lou-CV; (a), (b), and 

(c) includes a scatterplot that compares the predicted values and the 

gauge measurements and shows R2 and r, the p-value, the mean of the 

CV residuals, and the RMSE. 

 

For the UK interpolations (part b in Figure 3), a spherical 

semivariogram model was fitted, and the gauge measurements were log-

transformed. The spatial pattern of the resulting spatial layer can be 

defined as smooth as it resulted from the OK interpolation results. The 

highest predicted values were also located in the east and west parts of 

the study area. A difference between the OK and UK interpolation results 

can be observed in the middle part of the UK-prediction layer, in which a 

small zone with the lowest values was present. This was not observed for 

the OK prediction. The results of the Lou-CV for the UK prediction were 

the following: an adjusted R2 of 0.29, an r of 0.54, and a p of 1.66e-05. 

The obtained CV-residual mean and the RMSE values were 1.08 and 

690.2, respectively. The parameters NSE and RSD had values of 0.19 and 

0.89, respectively, indicating an inadequate performance (Burgan & 

Aksoy, 2022). However, the zi-mean was 0.011 and the zi-variance 1.38, 

which indicates good fit of the semivariogram model (Bivand et al., 2013, 

p. 225). The Lou-CV parameters of the UK prediction were slightly lower 

than the corresponding parameters of the OK prediction. 

The spatial distribution of the locations with the lowest and highest 

zi-values from the UK prediction was like the OK prediction. In the case 
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of the UK prediction, the lowest zi -value was -4.96, and the highest was 

2.48. In both cases (OK and UK), the mean and variance of the zi -values 

were close to 0 and 1, respectively, which, according to Bivand et al. 

(2013, p. 225), indicates a good fit of the semivariogram model with a 

slightly better performance of the OK interpolation. 

The IDW interpolation results are shown in part c of Figure 3. For 

this interpolation, the effect of the measurement values from individual 

stations, that generate circular influence zones around them, could be 

observed. This spatial pattern can be considered incorrect, as the PP 

patterns are distributed over a regional or global context more than a 

local range around the gauge stations (Smalley & L’Ecuyer, 2015). As 

expected, the parameters of Lou-CV for this interpolation R2=0.2 and 

r=0.44 (p-value=0.0005) were the lowest compared to the OK and UK 

results. The parameters NSE and RSD had the values 0.19 and 0.89, 

respectively, indicating an inadequate performance (Burgan & Aksoy, 

2022). 

 
 

Evaluation of OK downscaling of satellite estimates 
 
 

The results of the geostatistical downscaling procedure of satellite 

estimates of TRMM and GPM using OK are presented in Figure 4. 
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Figure 4. Prediction and Lou-CV results of the OK downscaling 

procedure of TRMM satellite estimates (a) and results of the OK-

downscaling procedure of GPM satellite estimates (b) for 2001 annual PP 
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values. Each part of the figure includes maps of the data at the original 

resolution and maps of the downscaled values, the fitted semivariogram 

to these data, the results of the Lou-CV with two graphs: A scatterplot 

between the OK predictions and the original values (cell center values) 

including the values of R2 and r, p, the mean of the CV residuals, and 

the RMSE; and map showing the spatial distribution of zi-values. 

 

The gauge measurements had values from 540 to 3 948 mm, the 

original TRMM estimates (part (a) to the left) from 883 to 2 510 mm, and 

the GPM estimates (part (b) to the left) from 1 225 to 2 963 mm (ranges 

of 3 408, 1 627, and 1 738 mm, respectively). The satellite estimates 

have the lowest ranges because they are considered spatial smoothers 

due to the large grid cell size as compared to point (gauge) measurements 

(Toté et al., 2015). 

For the OK downscaling of TRMM (Figure 4, part a), it was not 

necessary to transform the data, and it was possible to fit a circular 

semivariogram model. The obtained spatial layer had a smoother pattern 

than the original TRMM layer, which is more suitable for the local scale. 

Lou-CV parameters of the OK downscaling of TRMM (part a of Figure 

4, below the maps) were adjusted R2=0.91, r = 0.95, and p-value = 2.2e-

16. The CV-residual mean and RMSE values were 0.53 and 135.9, 

respectively. The parameters NSE and RSD had the values 0.91 and 0.30, 

respectively, indicating very good performance (Burgan & Aksoy, 2022). 

The resulting zi-values had a mean of 0.001 and a variance of 0.43, 

indicating a good fit for the semivariogram model (Bivand et al., 2013, p. 
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225). The zi-values had a minimum of -1.64 and a maximum of 1.69. The 

resulted parameters indicated a close fit between the predicted and the 

measured PP-values. 

A wave semivariogram model was fitted for the OK downscaling of 

the GPM values (part b of Figure 4). According to the Lou-CV, an almost 

perfect fit between the gauge measurements and predicted values was 

observed (adj. R2=0.99, r=0.99, and p-value=2.2e-16). The CV-residual 

mean and the RMSE values were -0.021 and 37.11. The parameters NSE 

and RSD had the values 0.99 and 0.1, respectively, indicating very good 

performance (Burgan & Aksoy, 2022). The zi-values had a mean of -

0.0204 and a variance of 2.98, which indicates a good fit for the 

semivariogram model (Bivand et al., 2013, p. 225). The obtained 

evaluation parameters were the best compared to the other interpolation 

approaches (for integration or downscaling). 

 
 

Evaluation of RK integration of gauge measurements 
and satellite estimates 

 
 

The results of the RK integration with TRMM at the original resolution are 

shown in part a of Figure 5. A gaussian semivariogram was fitted. A linear 

relationship between gauge measurements and the corresponding TRMM 

values was observed with an adjusted R2 of 0.48 (r = 0.69, p-value = 

3.77e-09). However, the original TRMM resolution generated a spatial 

pattern with many discontinuities in the resulting spatial layer. 
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Figure 5. Prediction and Lou-CV results of the RK integration of yearly 

2001 aggregated values of PP obtained from gauge measurements and 

satellite estimates. Part a: results of the integration with TRMM at the 
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original resolution. Part b: results of the integration with the OK-

downscaled TRMM PP estimates. Part c: results of the integration with 

the OK-downscaled GPM PP estimates. Each part of the figure includes 

the map of the predicted PP-values, the scatterplot that shows the linear 

relationship between the integrated values and the fitted 

semivariogram. Parts (b) and (c) include the Lou-CV results with two 

graphs: a scatterplot between the OK-predictions and the measured 

values showing the values of R2, r, p, the mean of the CV residuals, and 

the RMSE, and a map displaying the zi spatial distribution. 

 

The results of the RK-integration of gauge measurements using OK-

downscaled TRMM as an auxiliary variable are shown in part b of Figure 

5. A linear relationship (R2 = 0.48, r = 0.69, p = 4.582e-09) between the 

gauge measurements values and the OK-downscaled TRMM values 

enabled to use of these downscaled values to obtain the trend of the 

predicted values in the applied RK model. A spherical semivariogram fitted 

the log-transformed gauge measurement values. The resulting spatial 

pattern was like the UK prediction (Figure 3, part b). The interpolation 

Lou-CV parameters R2 = 0.35, r = 0.59, p-value = 1.54e-06, mean of the 

CV-residuals = 1.07, and RMSE = 644.5 indicated a moderate fit between 

the predicted and the measured PP-values. The parameters NSE and RSD 

had values 0.29 and 0.83, respectively, indicating an inadequate 

performance (Burgan & Aksoy, 2022). The R2 and r values were higher 

for this interpolation compared with the corresponding values of the OK 

(Figure 3, part a) and UK (Figure 3, part b) interpolations of gauge 

measurements. This can be also observed in Table 2. The zi-values had a 
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mean of -0.009 and a variance of 1.53. They indicated a good fit for the 

RK-semivariogram model (Bivand et al., 2013, p. 225). The zi map shows 

that the locations with the lowest values (with a minimum of -5.47) were 

located at the center and the southeast parts of the area of study. The 

locations with the highest zi-values (with a maximum of 2.23) were in the 

center and the middle of the area of study. 

In the case of the RK integration using OK-downscaled GPM as 

auxiliary information (part b of Figure 5), a linear relationship (adjusted 

R2 = 0.52, r = 0.72, and p = 6.124e-10) between the gauge 

measurements and these downscaled values enabled to obtain the trend 

of the predicted values in the applied RK model. A wave semivariogram 

was fitted. The Lou-CV parameters (R2 = 0.41, r = 0.64, p-value = 1.26e-

06, mean of the CV-residuals = 1.07, and RMSE = 590.8) indicated a 

moderate linear relationship between the integrated PP-values. The 

parameters NSE and RSD had the values 0.40 and 0.76, respectively, 

indicating an inadequate performance (Burgan & Aksoy, 2022). However, 

the mean (-0.009) and variance (1.53) of the zi-values indicated a good 

fit of the semivariogram model (Bivand et al., 2013, p. 225). The lowest 

values of the zi-map (with a minimum of -5.17) were located at the center 

and the southeast part of the study area. The highest values (with a 

maximum of -2.45) were observed also in the center and southeast parts. 

These results indicate an acceptable performance of the predictive model 

to obtain a locally suitable spatial layer. Among the methods that 

interpolated gauge measurements, the RK-integration with these 

measurements with OK-downscaled GPM-values resulted in the best Lou-

CV parameters (Table 2). 
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PCA and correlation comparison among layers of 
predicted PP-values 

 
 

The heatmap, the correlogram, and the PCA biplot to define similarity 

among the values of the obtained PP-layers are included in Figure 6. The 

results of RK-integration of gauge measurements with OK-downscaled 

GPM values (shown in the figure as RK_OK.GPM) and OK-downscaling of 

GPM (OK_GPM) were the closest to each other by forming a cluster with 

hot colors in the correlation heatmap (shown in the figure as Figure 6, 

part a). OK-downscaled TRMM (shown in the figure as OK_TRMM) and 

IDW were the more separated results from all the others. They were not 

grouped in any cluster and had the coldest colors in the heatmap. The 

same situation was observed in the PCA biplot (Figure 6, part c). The 

results of OK-downscaled TRMM were the most separated from the other 

results, followed by IDW. As observed in this biplot, the results of OK-

downscaled GPM (shown in the figure as RK_OK.TRMM) and RK-

integration of gauge measurements with OK-downscaled GPM values were 

close to each other. The results shown in the three parts of Figure 6 

verified the similarity between the predictions of OK and UK of gauge 

measurements. They were close to each other in the PCA biplot and the 

heatmap. The heatmap showed warm colors between them with an r of 

0.96, but they were separated from the other interpolation results. 
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Figure 6. (a): Heatmap of correlation analysis showing clustering by 

dendrogram, (b): correlogram with scatterplots of the bivariate 

comparisons, r and significances (shown with the asterisks, three of 
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them mean high significance), as well as histograms of each prediction 

result, and (c): biplot of the PCA of the predicted PP values. The 

compared results are predictions using OK, UK and IDW of gauge 

measurements, OK downscaled TRMM (OK_TRMM), OK downscaled GPM 

(OK_GPM), RK integration of gauge measurements with OK-downscaled 

TRMM values (RK_OK.TRMM), and RK-integration of gauge 

measurements with OK-downscaled GPM values (RK_OK.GPM). 

 

The closeness between the results of OK-downscaled GPM and the 

results of the RK-integration of these with gauge measurements with OK-

downscaled GPM values was confirmed in the correlogram (Figure 6, part 

b) with an r of 0.95. All correlations were highly significant (indicated by 

three asterisks in the correlation matrix). IDW showed r < 0.8 with all the 

other interpolation results except for a r = 0.89 with RK-integration of 

gauge measurements and OK-downscaled TRMM values, confirming its 

low performance and the closeness between both results. 

Regarding the scatterplots of the bivariate comparison (Figure 6, 

part b), the results were different, particularly in the higher PP-values. A 

trend line could be fitted for their low values, but it presented an abrupt 

slope reduction for their higher values. That happened, for example, 

between the RK-integration of gauge measurements with OK-downscaled 

GPM values and IDW and between OK-downscaled GPM and OK-

downscaled TRMM. The histograms of the prediction results are shown in 

Figure 6, part b, as a diagonal of squares, formed from the upper left 

corner to the lower right corner. They indicated the dissimilarity of IDW 
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with respect to all the other predictions. This dissimilarity was observed 

in terms of the shape and scale of the histogram. 

 
 

Discussion 
 
 

The focus of the present work was to evaluate geostatistics to downscale 

satellite estimates (TRMM and GPM) and to integrate the results with 

gauge measurements to obtain a spatial layer of annual PP-values suitable 

to be used at the local scale in a tropical basin, taking a year as a case of 

study. This approach is part of the work´s novelty, since, after the 

performed literature review, no work had been done about the 

geostatistical downscaling of GPM PP estimates and its integration using 

RK with gauge measurements in a tropical basin and outside Asia and 

Europe. 

The studied satellite estimates integrate, since its production, 

gauge data of very few stations (three at the most) for the studied zone 

(GPCC, 2012). Therefore, in the present study, all the available gauge 

data were integrated with the satellite estimates to obtain a local suitable 

spatial PP layer. The OK downscaling procedure of GPM satellite estimates 

resulted in a substantial improvement in the local spatial pattern of the 

resulting layer. 

Among the interpolation approaches of gauge measurements, the 

best-Lou-CV evaluated method was the RK integration of these 

measurements with OK-downscaled GPM values. These results can be 
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suitable to be used at a local scale because they integrated all the 

available gauge data, considered the reference values (New et al., 2001), 

and the GPM estimates, which can capture the spatial variability of the 

PP. However, the parameters NSE and RSD indicated an inadequate 

performance of this geostatistical integration approach. Therefore, more 

research considering aggregated values of other years and other climatic 

conditions is required to confirm these results. The OK and UK 

interpolations had lower values of the Lou-CV parameters than the RK 

results. OK was slightly better than UK. The observed spatial pattern of 

the predicted values from all interpolation approaches was different. This 

pattern can be the first element to select a method to obtain a PP spatial 

layer useful at the local scale. Given that the PP patterns are distributed 

over a regional or global context more than a local range around the 

gauge stations (Smalley & L’Ecuyer, 2015), the resulted IDW spatial 

pattern was considered incorrect. 

According to the Lou-CV parameters, the RK-integration of gauge 

measurements with OK-downscaled GPM outperforms the integration of 

gauge measurements with OK-downscaled TRMM. The closeness between 

the results of OK-downscaled GPM and the RK-integration of gauge 

measurements with OK-downscaled GPM values, observed in the PCA and 

the correlation analysis (described in the previous section), is interesting 

since the former includes measurements, and the latter does not. 

Additionally, Figure 4 (part b) and Figure 5 (part c) show a similar spatial 

pattern between both predictions but different from the other results. This 

observation confirms that GPM satellite estimates can be downscaled 
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utilizing OK to obtain a layer suitable at the local scale with or without 

integration with field measurements. 

Collocated cokriging (CK) was not included in this work to make the 

integration because it was developed for situations where the auxiliary 

information is not spatially exhaustive (Knotters, Brus, & Voshaar, 1995; 

Hengl et al., 2007). According to Hengl et al. (2007), when applying RK, 

the auxiliary variable should not account for 100 % of the variability on 

the value to interpolate. The condition is that both variables are 

correlated. No linear relationship between the gauge values and altitude 

was found. However, for other climatic conditions and geographic zones, 

elevation can be a factor that partly defines the spatial variability of PP. 

Therefore, its inclusion can improve the estimates within the here 

proposed geostatistical integration scheme, as found by other studies 

(Goovaerts, 2000; Rata et al., 2020). The effects of the pixel size, 

methods that determine parameter uncertainty, such as Bayesian kriging, 

and the inclusion of other auxiliary variables, such as the distance to the 

coast, can be further investigated. All the mentioned are considerations 

to be included in future research. 

Previously performed research (Abdollahipour et al., 2022; Park et 

al., 2017; Chen et al., 2020; Chen et al., 2019) included performance 

metrics to validate with field measurements but not the determination of 

the similarity of the predicted PP values using PCA, cluster and 

correlogram analysis, taking a low-performance interpolation approach as 

reference. In this research, IDW of gauge measurements was considered 

the reference for low performance. This way, a similarity was found 

between the results of IDW and the RK integration of gauge 
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measurements with OK downscaled TRMM and between the results of IDW 

and OK downscaled TRMM by itself. These results, and the lowest Lou-CV 

parameter values of IDW, indicated that TRMM estimates were not 

suitable at the local scale; although, the TRMM OK downscaling became 

high Lou-CV evaluation parameters (zi-values, RMSE, NSE, and RSD). 

These findings are relevant since TRMM satellite estimates at different 

periods have been the most integrated with field measurements using 

kriging (Abdollahipour et al., 2022; Park et al., 2017; Chen et al., 2020; 

Chen et al., 2019). 

 
 

Conclusion 
 
 

The present work shows that geostatistical techniques can help to 

downscale satellite PP data and integrate them with field values to 

generate PP spatial layers that can be useful at the local scale for tropical 

basins as the studied area. The evaluation of results, which usually 

involves performance metrics from cross-validation procedures, should be 

complemented with methods to define the similarity of the resulted values 

to a reference interpolation result which can be of low performance, as 

done in the present research. The reason for this is that, although an 

interpolation result can have good validation performance metrics, at the 

same time, it can have a high degree of similarity to the low-performance 

layer. It means that the applied interpolation method can perform well 

predicting the observed values, while it can perform not well doing the 

same at not measured locations, like the reference (low performance) 
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layer. As previous research found, geostatistical techniques can be 

applied to downscale TRMM satellite data and integrate it with field values. 

However, this study found that the TRMM results can be like IDW, and 

therefore, in such cases, it is not advisable to use them at the local scale 

for tropical basins as the study zone. Instead, OK downscaled GPM can be 

used with or without RK geostatistical integration with gauge 

measurements to obtain a PP layer suitable to the local scale. The 

developed research lets to conclude that OK performs well to downscale 

PP GPM satellite estimates. 

The RK integration of OK-downscaled GPM satellite estimates with 

gauge measurements can substantially improve the Lou-CV indicators 

compared to the predicted values from UK and OK predictions of gauge 

measurements. The resulting spatial layer can be considered an improved 

product in terms of being more suitable for the local scale, at which the 

decision-making process can be made. According to the PCA, cluster, and 

correlogram analysis, the spatial layers obtained from OK downscaled 

GPM data, as well as the spatial layer resulting from its RK integration 

with gauge measurements, show similar values meaning that they are 

suitable for the local scale. 

This research showed that geostatistical methods are effective for 

downscaling satellite estimates and for integrating them with rain gauge 

measurements to obtain spatial layers capable of supporting the decision-

making process at the local level. 
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Appendix 
 
 

// Google Eearth Engine (GEE) script to download GPM data.  

var dataset = 

ee.ImageCollection('NASA/GPM_L3/IMERG_MONTHLY_V06') 

 .filterDate('2001-01-01', '2001-12-31'); 

 

// Select the max precipitation and mask out low precipitation values. 

var precipitation = dataset.select('precipitation').sum(); 

var mask = precipitation.gt(0.01); 

var precipitation = precipitation.updateMask(mask); 

var precipitation = precipitation.multiply(720)  

var palette = [  

 '000096','0064ff', '00b4ff', '33db80', '9beb4a', 
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 'ffeb00', 'ffb300', 'ff6400', 'eb1e00', 'af0000' 

]; 

var precipitationVis = {min: 0.0, max: 2000, palette: palette}; 

Map.addLayer(precipitation, precipitationVis, 'Precipitation'); 

Map.setCenter(-92, 17, 7); 

 

var geometry = ee.Geometry.Rectangle([-94.4, 18.8, -91.5116, 15.0]); 

 

Export.image.toDrive({ 

 image: precipitation, 

 description: "GPM_Precipitation_2001_mmanno", 

 scale: 11000, 

 region: geometry, 

 fileFormat: "GeoTIFF", 

 }); 

1 
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