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Foreword

I wrote this thesis in 2021. The last two years were the strangest I (and probably
you also) have ever experienced, where nothing has been familiar. The unprecedented
COVID-19 pandemic and health crisis has affected our lives globally, and the year
2020 was nominated as the second-hottest year on record for the planet. In May
2020, extreme rainfall events and flooding in the Kasese District in Uganda wrecked
houses, power stations, and hospitals and drowned villages. This disaster also affected
neighboring countries such as Kenya and Rwanda. Moreover, when social distancing
was recommended, floods forced thousands of people suffering from homelessness and
needing emergency food assistance to vacate. On the other side of the world, Australia
experienced one of the worst wildfires in modern history, the Tropical Storm Isaias
hit Florida, and floods caused damage in Germany.

These events prompted me to rethink why I am pursuing a PhD in water
management and geography science as we are clearly failing! It was devastating to
experience and hear about these environmental disasters one by one and to witness
the vulnerability within and between countries.

When I attended the final conference for the Global Resource Water (GRoW)
project in 2020 (online due to the pandemic), I came across a talk that made me think.
I do not remember who spoke, but it began with, “We saw this year as important for
accessing clean water in people’s lives, due to the pandemic”. It was stated by the
World Health Organization and others that outbreaks of infectious diseases, including
COVID-19, require that humans have access to clean water, sanitation, and hygienic
conditions.

Different studies have shown that, due to COVID-19 lockdowns, a CO2 reduction
was recorded on Earth for the first time due to less international travel. I realized that,
regardless of how complicated our problems are, we still have an extreme influence on
our environment, yet we can change paths if we believe that our livelihood depends
on it. It also made me rethink the importance of the path I started in life. Therefore,

I want to believe that we can still change our paths. The United Nations (UN)



sustainable development goals (SDG) and 2016 Paris agreement challenge us to change
the way we think about the environment and about threats to humanity. I hope my

work can be a grain in our unified effort to help Earth breathe.

Nazli Turini



Abstract

Rainfall is an essential parameter in the analysis and research of water resource
management. However, the complexity of rainfall combined with the uneven
distribution of ground-based gauges and radar in developing countries’ mountainous
and semi-arid areas limits its investigation. In this context, satellite-based rainfall
products provide area-wide precipitation observations with a high spatio-temporal
resolution, engaging them in hydrological management in ungauged basins.

Therefore, in this study, I investigated method to establish a satellite-based
rainfall algorithm for ungauged basins. The algorithm combines the new
Integrated Multi-SatEllite Retrieval for the Global Precipitation Measurement (GPM)
(IMERG) rainfall products and second-generation geostationary orbit (GEO) systems
developing rainfall retrieval techniques with the high spatio-temporal resolution using
machine learning algorithms.

For the first step, microwave satellite and Meteosat Second Generation Spinning
Enhanced Visible and Infrared Imager (MSG SEVIRI) data for Iran were collected
to develop a regionally based new rainfall retrieval technique. The method used
geostationary multispectral infrared (IR) data to train Random forest (RF) models. I
employed the microwave (MW) rainfall information from the IMERG as a reference for
RF training. The rainfall area was delineated in the first step, followed by rainfall rate
assignment. The validation results showed the new technique’s reliable performance in
both rain area delineation and rain estimate, particularly when compared to IR-only
IMERG. Multispectral IR data improves rainfall retrieval compared with one single
band.

In the next step, I investigated the applicability of the developed algorithm in
Ecuador with different orography and rainfall regimes compared to Iran. For this
aim, I used the Geostationary Operational Environmental Satellite-16 (GOES-16) as
the GEO satellite, which covers Ecuador at a suitable angle. The feature selection
and algorithm tuning were performed to regionalize the models for Ecuador. The

validation results show the reliable performance of the method in both rain area



delineation and rain estimation in Ecuador. The results proved the suitability of
the developed algorithm with different GEO systems and in different regions. Some
inaccuracies at the Andes’ high elevation were evident after the spatial analysis of the
validation indices. Evaluating the validation results against a high spatio-temporal
radar network showed that the developed algorithm has difficulty capturing drizzles
and extreme events dominant in the Andes’ high elevations and needs improvement.

In summary, this research presents a new satellite-based technique for rainfall
retrieval in a high spatio-temporal resolution for ungauged regions, which can be
applied in parts of the world with different rainfall regimes. This findings could be
used by planners and water managers regardless of the availability of rain gauges at
ground. Furthermore, the research showed, for the very first time, the advantage
of using the new generation of GEO satellite combined with microwave satellites
integrated in GPM IMERG for estimating rainfall.
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Zusammenfassung

Der Niederschlag ist ein wesentlicher Parameter bei der Analyse und Erforschung
der Bewirtschaftung von Wasserressourcen. Die Komplexitat des Niederschlags in
Verbindung mit der ungleichméfigen Verteilung von bodengestiitzten Messgeréten
und Radar in den gebirgigen und halbtrockenen Gebieten von Entwicklungslandern
schrankt jedoch seine Untersuchung ein. In diesem Zusammenhang liefern
satellitengestiitzte Produkte flichendeckende Niederschlagsbeobachtungen mit einer
hohen raumlich-zeitlichen Auflésung, die fiir das hydrologische Management in nicht
beprobten Einzugsgebieten eingesetzt werden kénnen.

Daher konzentriert sich die vorliegende Untersuchung auf die Erstellung eines
satellitengestiitzten Niederschlagsalgorithmus fiir nicht beprobte Einzugsgebiete.
Die neuen IMERG (Integrated Multi-SatEllite Retrieval for Global Precipitation
Measurement (GPM)) Satellitenprodukte werden mit geostationéren Orbit-Systemen
(GEO) der zweiten Generation mittels Algorithmen des maschinellen Lernens zur
Niederschlagsermittlung mit hoher raumlicher und zeitlicher Auflésung kombiniert.

In einem ersten Schritt wurden Mikrowellensatelliten- und Meteosat-Daten der
zweiten Generation des Spinning Enhanced Visible and Infrared Imager (MSG
SEVIRI) fir den Iran gesammelt, um eine neue, regional basierte Methode zur
Niederschlagsermittlung zu entwickeln. Die Methode verwendete geostationére
multispektrale Infrarotdaten (IR), um Random-Forest-Modelle (RF) zu trainieren.
Als Referenz fiir das RF-Training wurden Mikrowellen-Niederschlagsdaten (MW) des
IMERG verwendet. Im ersten Schritt wurde das Niederschlagsgebiet abgegrenzt,
gefolgt von der Zuordnung der Niederschlagsmenge. Die Validierungsergebnisse
zeigen, dass die neue Technik sowohl bei der Abgrenzung des Niederschlagsgebiets
als auch bei der Niederschlagsschitzung zuverlassig funktioniert, insbesondere
im Vergleich zum IR-only IMERG. Multispektrale IR-Daten verbessern die
Niederschlagsermittlung im Vergleich zu einem einzelnen Band.

Im néchsten Schritt wurde die Anwendbarkeit des entwickelten Algorithmus

in Ecuador untersucht, das sich in Bezug auf die Orographie und das

1ii



Niederschlagssystem vom Iran unterscheidet. Zu diesem Zweck wurde der
Geostationary Operational Environmental Satellite-16 (GOES-16) als GEO-Satellit
verwendet, der Ecuador in einem geeigneten Winkel abdeckt. Die Auswahl der
Features und das Tuning des Algorithmus wurden durchgefithrt, um die Modelle
fir Ecuador zu regionalisieren. Die Validierungsergebnisse zeigen die zuverléssige
Leistung der Methode sowohl bei der Abgrenzung von Regengebieten als auch
bei der Schatzung der Niederschlagsmenge in Ecuador. Die Ergebnisse belegen
die Eignung des entwickelten Algorithmus fiir verschiedene GEO-Systeme und
verschiedene Regionen. Nach der rdumlichen Analyse der Validierungsindizes wurden
einige Ungenauigkeiten in denhohen Lagen der Anden deutlich. Die Auswertung
der Validierungsergebnisse anhand eines raumlich-zeitlichen Radarnetzes zeigt, dass
der entwickelte Algorithmus Schwierigkeiten bei der Erfassung von Nieselregen und
extremen Wetterereignissen hat, die in den hohen Lagen der Anden vorherrschen, und
dahingehend verbessert werden muss.

Diese Forschungsarbeit stellt ein neues satellitengestiitztes Verfahren zur
Niederschlagsermittlung mit hoher rdumlicher und zeitlicher Auflésung vor, das auf
Regionen ohne Bodenstationsmessungen und unterschiedliche Niederschlagsregime
angewendet werden kann. Dieser Algorithmuskann von Planungs- und
Wasserwirtschaftsamtern oder anderen einschlégigen Einrichtungen unabhangig von
der Verfiigbarkeit von Regenmessern am Boden genutzt werden. Dariiber hinaus
zeigte die Untersuchung zum ersten Mal den Vorteil der Nutzung der neuen
Generation von GEO-Satelliten in Kombination mit den in IMERG integrierten

Mikrowellensatelliten fiir die Bewertung der Niederschlagsmenge.
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Chapter 1

Introduction

1.1 Motivation

The United Nations (UN)-sustainable development goals (SDG) include 17 goals
adopted in 2015 with the aim of world equality in economic prosperity and
environmental sustainability [1]. One of the SDGs’ most significant concepts is water
security. SDG 6 is dedicated to sanitation and drinking water supply (targets 6.1 and
6.2), also including issues related to integrated water resources management (IWRM)
(target 6.5).

As the World Water Development Report 2015 [2] asserts, "Water is at the core
of sustainable development." Therefore, water is crucial and remains relevant to
current times, where water management strategies for local people may lead to higher
environmental stress nationally and globally [3].

Establishing a goal for securing sustainable and adequate water resources is required
to understand the relationship between finite water resources, climate diversity, and
different elements of sustainability. Precipitation is a vital link in the global water
cycle and represents climate change; thus, adequate spatio-temporal precipitation
information is essential for proper water management strategies [4, 5].

However, accurate precipitation measurement is challenging because of large
spatio-temporal variations. Ground-based rainfall observations are insufficient due
to the inadequate and uneven distribution of rain gauges and radars, especially in
developing countries, mountainous, remote areas, and semiarid regions [6, 7, 8]. On
the other hand, the need for high-quality rainfall contrasts with the observed decline
in ground-based observation worldwide [9].

Consequently, the complexity of rainfall and poor data availability limit

investigation and research in developing countries, mountainous, remote areas, and
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semiarid regions [10]. These limitations are a big issue since data collection is the
first step in the tool chain for water resource management [10].

Remote sensing applications and numerous recent satellite missions allow
monitoring precipitation around the globe [10]. For this reason, in many developing
countries, mountainous, remote areas, and semiarid regions, satellite-based rainfall
products are the only sources of precipitation information both in space and time,

rendering them attractive for water management and research in ungauged basins.

1.2 Current satellite-based rainfall products

Precipitation rates from satellites can be estimated from visible (VIS) to infrared (IR)
sensors on Geostationary Earth Orbit (GEO) satellites or, from microwave (MW) on
Low Earth Orbiting Low Earth Orbiting (LEO) satellites [11].

MW sensors provide relatively accurate precipitation information due to their
sensitivity to cloud hydrometeors. By contrast, IR sensors on GEO satellites scan
the relationship between cloud top temperature and precipitation rate. However, they
provide a higher spatio-temporal resolution, which is of great interest to near-real-time
applications.

In 1997, the first space-borne Precipitation radar (PR) onboard the Tropical
Rainfall Measuring Mission (TRMM) was launched with TRMM Microwave Imager
(TMI) [12]. TMI MW measurements could be compared directly with vertical PR
scans of atmospheric columns in time and space [13].

Recent operational or research algorithms for rainfall retrieval utilize the GPM
Microwave Imager (GMI) on board the Global Precipitation Measurement (GPM)
satellites [14]. The GMI instrument carries 13 microwave channels ranging in
frequency from 10 GHz to 183 GHz (four high frequency, millimeter-wave channels
near 166 GHz and 183 GHz) [14] and provides significantly improved spatial resolution
compared with the TMI (Table 1.1).

GEO satellites scan the Earth more frequently and provide better temporal
resolution , therefore, they are more attractive for real-time precipitation monitoring
[15]. GEO satellites can view about one-third of the Earth’s surface. Still, the
data quality toward the extremities diminishes due to the increasing scan angle to
the exterior. Therefore, five operational GEO satellites are required to ensure full
west—east coverage [16].

The sensors’ technology varies among the GEO satellites (e.g., Advanced Baseline
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Imager (ABI) [17], MSG SEVIRI [18], Advanced Himawari Imager (AHI)); however,
they all provide VIS and IR sensors in a high spatio-temporal resolution.

Currently, active GEO satellites include the METEOSAT series [1§]
operated by the European Organisation for the Exploitation of Meteorological
Satellites (EUMETSAT), two U.S.-operated Geostationary  Operational
Environmental ~Satellite (GOES) [17] operated by the National Oceanic
and Atmospheric Administration (NOAA), the Japanese Himawari satellites
(https:/ /himawari8.nict.go.jp/) operated by the Japan Meteorological Agency,
Elektro-L satellites developed by the Russian Federal Space Agency by NPO
Lavochkin.

The second generation of GEO systems deliverers more detailed cloud properties
due to their higher spectral resolution. The ABI sensor in GOES-16 is a multispectral
passive imaging radiometer that scans the earth every 10 minutes with 16 spectral
channels, ranging from visible (0.47 p) to long-wave IR (13.3 p) [17]. The
Spinning Enhanced Visible and InfraRed Imager (SEVIRI) sensor on the Meteosat
Second-Generation Spinning Enhanced Visible and Infrared Imager (MSG SEVIRI)
satellite scans the earth in 11 IR wavelengths between 0.6 and 14 p with a nominal
spatial resolution of 4 km? every 15 minutes [18].

Table 1.1 reviews the primary instrumentation used for rainfall retrieval from VIS,
IR and MW spectrums.

Table 1.1: Review of satellite instrumentation for rainfall retrieval

Instrument Satellite Channels Bands Spatial Temporal
AVHHR NOAA / MetOp 5 VIS / IR 1 twice daily
MSG SEVIRI MSG 12 VIS / IR 1-4 15 minutes
ABI GOES 16 VIS / IR 0.5-2  5-15 minutes
TMI TRMM 5t 10.7-85.5 GHz 525 twice daily

GMI GPM 13 10-183 GHz 6-26 2-3 hours
AHI Himawari 5 VIS / IR 16 30 minutes

Although high spatio-temporal satellite-based rainfall is earning demand within
scientific and management communities, it still confronts many difficulties. One
difficulty is to derive high-quality precipitation estimates from each sensor, followed
by the more significant challenge of merging information from different sensors.
Combined products aim for better accuracy, spatial coverage, and extended time

series [19].



Chapter 1 Introduction

In recent years, combined MW-IR methods have attempted to exploit the
advantages of both systems for more accurate precipitation dissipation at a higher

spatio-temporal resolution globally and regionally [12].

The empirical relationship between IR and MW sensors was developed to (i) Find
the IR threshold for rain area delineation and rain estimate using MW rainfall
information as a reference; or, (ii) match the cumulative distribution functions of
MW-based rainfall and brightness temperature from IR scans to generate the IR rain
rate equation assuming that colder clouds produce more rain [12, 20, 21, 22]; (iii)
regression methods in which the related MW estimates coincide with IR pixel data

to demonstrate a regression-based equation for rain-rate estimation [23, 24, 25].

Another algorithm strategy is to obtain the “best” local estimate for a given grid
box. This method has been used to generate precipitation products in a medium
resolution in high accuracy rather than high temporal resolution time series [19].
The algorithm of the 3B42-RT product of the TRMM [12] is based on available MW
estimates from different satellites every 3 h in the spatial resolution of 0.25° x 0.25°.
The gaps between grids are then filled with rainfall estimates retrieved from the
MW-calibrated IR algorithms. The instrumental differences between IR and MW

may affect the spatial accuracy of rainfall products [19].

The Climate Prediction Center MORPHing technique (CMORPH) [26] uses the
propagation of precipitation estimates between two MW scans using IR-based cloud
tracking. CMORPH is a global precipitation algorithm that estimates rainfall
at 0.25° every half hour. Using IR imagery, motion vectors in space and time
advance the precipitation estimates derived from passive microwave (PMW) sensors.
Furthermore, a time-weighted linear interpolation modifies the shape and intensity
of the precipitation between microwave sensor scans. This algorithm can include
any precipitation data from MW scans into precipitation retrieval using the temporal

forward and backward scans to propagate rainfall [26].

The Integrated Multi-SatEllite Retrieval for the Global Precipitation Measurement
(IMERG) [27] mission and its GPM core satellite is the newest global 30-min
precipitation product with spatial 0.1° resolution [27]. IMERG unifies all the PMW
observations from the GPM constellation network [27]. PMW precipitation primarily
uses theGoddard profiling algorithm (GPROF) [28, 29], using a Bayesian approach
conditioned upon surface classes, surface temperature, and total precipitable water.
First, all the PMW estimates are intercalibrated in this algorithm. Then, as Huffman

et al. [27] demonstrated, the Ku-band is used as a reference to calibrate Global
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Precipitation Climatology Centre (GPCC) V2.3 product [30] to seasonal and regional
adjustments. In the next step, the morphing process from CMORPH fills the gaps
from the PMW estimates by applying motion vectors computed from ancillary data.
Then, the Kalman filter approach [31] uses IR-calibrated precipitation from the
Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks (PERSIANN)—Cloud Cluster System algorithm [20, 32] to supplement the

morphed precipitation.

IMERG integrates one thermal band at 10.7 pm of IR in it’s algorithm (IR-only). In
addition, Huffman et al. [27] stated that managing the large volume of multi-spectral
IR retrieval from different GEO platforms is challenging. There is a mismatch of
IR-based rainfall estimation and surface precipitation motions due to IMERG limiting
its bands to one and the restriction of visible data to daylight hours. Therefore,
Huffman et al. [27], in the official document of IMERG, encouraged scientists and
researchers to contribute and develop algorithms for improving the IR-based rainfall
in IMERG since different validation studies’ IR retrieval estimations have performed
poorly in IMERG [33, 34].

Combining IR data from the GEO satellite with machine learning techniques was

accurate in satellite-based rainfall retrieval algorithms [35, 36, 37, 38].

In satellite-based rainfall retrievals, machine learning techniques relate the predictor
variables and rainfall estimates. The great advantage of machine learning algorithms
over physically-based models is that they offer a higher potential in handling
non-linear and complicated relationships between variables and a larger volume of
training data [39].

The most globally famous machine learning-based rainfall retrieval is PERSIANN
[22]. Using the GEO IR information, it uses an artificial neural network to cluster
pixels based on their surface characteristics. A multivariant linear function mapping
is developed for each group to relate the variables to rainfall rate estimates. Also,
available algorithms such as PERSIANN provide rainfall daily in 0.25° x 0.25°, which

is a low temporal and spatial resolution [22].

Additionally, different studies have already developed the retrieval based on
multispectral IR bands from the second generation of GEO satellites and used
ground-based information as a reference. Kiihnlein et al. [35, 36] demonstrated the
capability of random forest (RF) to estimate rainfall in midlatitudes. The algorithm
is based on information from MSG SEVIRI and uses ground-based radar data as

a reference to (i) delineate the precipitating cloud areas; (ii) differentiate between
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convective and advective-stratiform precipitating areas; (iii) estimate the rainfall rates
assigned separately to the convective and advective-stratiform precipitating areas.
Although the algorithm by Kiihnlein et al. [35, 36] provides accurate rainfall
information regionally, a significant drawback is that it is related to ground-based
radar availability, which restricts its usage to the availability of ground truth data.
As mentioned previously, many places with complex topography are characterized by
less precipitation ground truth data. Therefore, the developed retrieval by Kiihnlein

et al. [35, 36] cannot apply to all regions.

1.3 Aims and Hypotheses

The overview presented in Section 1.2 shows that existing satellite-based rainfall

retrieval has the following advantages and weaknesses:

o Available products such as PERSIANN [22] and IMERG [27] provide rainfall
information globally but in a low spatial and temporal resolution, which are not

applicable for water resource management;

« MW sensors return comparatively accurate precipitation estimates, but their

temporal resolution is coarse;

o« GEO satellites scan the earth more frequently and provide better temporal
resolution [15]. However, they provide less accurate rainfall information.
Second-generation GEO systems provide more detailed information about

precipitation-relevant cloud properties due to their higher spectral resolution.

e Regionally developed algorithms based on the new generation of GEO
satellites (e.g., algorithm developed by Kiihnlein et al. [35, 36] provide high
spatio-temporal resolution. However, they are trained based on ground truth
data. Unfortunately, less precipitation ground truth data are available in most
arid and semi-arid areas and complex topography. On the other hand, by
applying RF techniques in IR-based rainfall retrieval by Kiihnlein et al. [35,
36], the possibility of obtaining more information from second-generation GEO

systems and handling large volumes of rainfall is provided;

o The IMERG [27] product, as the newest global MW-IR algorithm, unifies all
the PMW observations from the GPM constellation network to benefit from the
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accuracy of PMW sensors in rainfall retrieval. However, when geostationary IR
data is incorporated into IMERG, managing the large volume of multispectral
IR retrieval from different GEO platforms becomes challenging. Therefore, in
IMERG, only one thermal band at 10.7 pm is integrated.

Therefore, to maximize the aforementioned benefits and overcome the weaknesses
of satellite-based rainfall products, and support water management in regions without

enough rainfall information, the aim of this thesis was formulated as follows:

Aim To combine the advantages of second-generation GEO systems and PMW
rainfall information from the new IMERG product to develop a regionally
adapted rainfall retrieval scheme with a high spatio-temporal resolution based

on machine learning algorithms in ungauged regions.

The following four hypotheses were developed in accordance with the thesis aim

mentioned above:

Hypothesis 1 the combination of PMW rainfall information with multispectral
IR data from modern GEO satellites using machine learning algorithms can
improve rainfall retrieval accuracy and provide high spatio-temporal resolution

for rainfall information in ungauged regions.

Hypothesis 2 the developed algorithm in hypothesis 1 is transferable with equal

accuracy to areas with complex topography and rainfall regimes.

Hypothesis 3 the accuracy assessment is highly dependent on the spatial coverage

and resolution of the products.

Hypothesis 4 the main uncertainties in the satellite-based rainfall retrievals are due

to drizzle and high rainfall rates, which are difficult to capture.

1.4 Study Areas

In order to test the aforementioned hypotheses, Iran and Ecuador, with their high
spatio-temporal rainfall variability and complex topography, were chosen as study
areas in this thesis (Figure 1.1). These regions were selected to support the Seasonal
Water Resources Management for Semiarid Areas: Regionalized Global Data and
Transfer to Practise (SaWaM) project funded by the Federal Ministry of Education
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and Research (BMBF). I chose the GEO satellites GOES-16 (2 km?2, 10 minutes)
for Ecuador and MSG-1 (4 km?, 15 minutes) for Iran for their spatial resolution and
central view on the aforementioned regions ((Figure 1.1-a). More detailed descriptions
of MSG-1 and GOES-16 can be found in Chapters 2 and 3, respectively.

Ecuador (Figure 1.1-b) extends from 28°N - 18.58°S and from 68.58°W - 82°W
with an area about 1,500,000 km?, covering different climatological zones, from
northern Ecuador to the central Andean plateau. The extreme east—west precipitation
variability is due to the Andes mountain region. In Ecuador, the precipitation drivers
mainly include the biannual migration of the intertropical convergence zone (ITCZ),
El Nino-Southern Oscillation (ENSO), and the cold von Humboldt current in the
Pacific Ocean. Furthermore, the Amazon basin and the Andes mountain range
strongly impact precipitation [40, 41]. The rainfall amount in Ecuador differs from
the Pacific coast south around 300 mm annually to the upper Amazon basin. The
average rainfall of 3500 mm per year provides high rainfall variability in space and

time over Ecuador [42].

Iran (Figure 1.1-c) is located between the 20°N-40°N latitudes and 44°E-63°E
longitudes and has an area of about km?. Two mountain ranges in Iran play a
significant role in rainfall distribution. Along the Caspian Sea, the Alborz range
in the north extends east-west with a maximum altitude of ~5000 m.a.s.l. The
Zagros Mountains stretch from northwest to southeast with a maximum elevation
of ~3500 m.a.s.l. These two mountainous ranges are essential to the variety of rainfall
amounts and distribution. Iran is considered an arid or semiarid country with an
average rainfall of ~250 mm in a year. The rainfall ranges from 50 mm in the
deserts to 1600 mm on the Caspian sea. The main drivers of precipitation in Iran
originate from migrating Mediterranean lows from the west and Sudan lows from
the southwest. The interactions between these synoptic systems and the complex
topographic cause the precipitation to be highly variable in space and time [43, 44].
The dominant precipitation types in January, February, November, and December are
stratocumulus, altostratus, stratus, and nimbostratus; whereas, during warm months,
cumulus, altocumulus, and deep convective have the maximum precipitation rate in
Iran [45].



1.5 Thesis Structure

——= =~ = -

=6 : . Pk = =
45*'\ < s

A

! .
R _—__h'—._l—_-
4 I R
R 1 1
<
A—____

¢

’
g R .
. L
— ——— — i

Caspian sea 39.0

36.0
33.0
30.0
27.0

-81.0 -79.5 -780  -76.5  -75.0 450 48.0 51.0 540 57.0 60.0 63.0
(b) (0)
Elevation (a.s.l) [ 1>2500-3400m

B study Area 1 IMERGRange g <=800m [ >3400-4200 m
- Country Boundary I:l MSG1 Range [ ]>800-1600m [ ] >4200-5000m
Il Ocean ) GOES-16 Range 1 >1600-2500 m [ > 5000 m

Figure 1.1: (a) The study areas of the thesis and the coverage of MSG-1, GOES-16
and IMERG. The elevation of (b) Ecuador and (c) Iran.

1.5 Thesis Structure

In order to examine the aforementioned hypothesis in section 1.3, the following
working packages were developed. An overview of the complete thesis structure is

provided in Figure 1.2.
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WP1 development of a high spatio-temporal resolution satellite-based product for
MSG SEVIRI (15 minutes, 3 km?) and GPM IMERG for Iran using random
forest. The algorithm relies on precipitation information from the IMERG and
multispectral IR data from the MSG-1 satellites.

WP2 transfer the algorithm developed in WP1 to Ecuador with different climatic
and orographic patterns and other geostationary satellite data (GOES-16).

WP3 identifying inaccuracy in the developed product by validation with

ground-based observations on a sub-daily timescale.

The combination of PMW rainfall

information with multispectral IR data Development of high
from modern GEO satellites using spatio-Temporal resolution rainfall Comparing the
machine learning algorithms can improve from MSG1 and GPM IMERG results with
rainfall retrieval accuracy and provide based on machine learning (RF IR-only IMERG
high spatio-temporal resolution for model) in Iran
rainfall information in ungauged regions

Chapter 2

Developed algorithm is tansferable with
equal accuracy to areas with another
topography and rainfall regimes

Transfer the algorithm to Ecuador
with different climatic and Comparing the
orographic patterns and other results with
geostationary satellite data IR-only IMERG
(GOES-16)

Chapter 3

The accuracy assessment is highly
dependent on the spatial coverage and
resolution of the products

Identifying inaccuracy in the developed
algorithm by validation with ground based

The main uncertainties in the observation on a sub-daily time scale .

satellite-based rainfall retrievals are due
to drizzle and high rainfall rates, which

Chapter 4

are difficult to capture

Figure 1.2: Thesis structure of hypothesis, working packages and related chapters.

WP1 was conceptualized to answer Hypothesis 1. Iran’s complex topography and
semiarid climate was selected as a case study for developing a new satellite-based
algorithm for rainfall retrieval in high spatio-temporal resolution (3 km?, 15 minutes)
applying the RF. The algorithm was based on the IR bands of MSG SEVIRI (Chapter

10
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2) and GPM IMERG (chapter 2.2.3). RF models using microwave-only rainfall
information from the GPM IMERG product as a reference were developed to (i)
delineate the rainfall area and (ii) assign the rainfall rate (Section 2.2.6). The most
important predictors and hyperparameter tuning parameters were selected for each
month, considering the seasonal variability of rainfall (Section 2.2.6). The positive
validation results against independent MW-based IMERG, gauge data, and the
IR-only IMERG led to Hypothesis 2 regarding the transferability of the developed
algorithms to other areas with different topography and rainfall characteristics.
Therefore, WP2 was conceptualized to answer Hypothesis 2.

In WP2, T transferred the satellite-based rainfall retrieval developed in WP1 to
Ecuador (Chapter 3). Ecuador was chosen as a perhumid region with complex
topography to examine the algorithm’s applicabiliry and accuracy in another part
of the world. The feature selection and tuning of the RF models (Section 3.2.3.1)
for Ecuador was redone since the region has other climatic orographic patterns
compared with Iran and a different geostationary satellite (GOES-16- Section 3.2.4.1).
The positive results obtained with the developed algorithm in WP2 proved the
applicability of rainfall-retrieval algorithm in different world regions. Similar to
WP1, the results showed that using multi-spectral IR data improves the retrieval
performance compared with single-spectrum IR approaches; however, the results
still indicate uncertainties for the Andes’ high elevation. The availability of the
Radarnet-Sur network [46] in Ecuador empowered to investigate the uncertainty
structure of the algorithm over complex topography in more detail using a high
spatio-temporal resolution gauge and weather radar data. Therefore, in this WP3, I
evaluated the performance of MW-based IMERG compared to RF-based rainfall and
IR-only IMERG to characterize the impact of climatic and topographic conditions
on satellite-based rainfall products at the time of MW overpass. This validation
was performed against high spatio-temporal resolution data from ground-based radar
networks and meteorological stations in a high temporal resolution. Therefore, WP3
was conceptualized to answer Hypotheses 3 and 4.

This thesis consists of three manuscripts comprising Chapters 2, 3 and 4 as the
core and consitutes significant contributions to the SaWaM project funded by Global
Resource Water (GRoW)-BMBF to fill the gap between local and global models and to
support SDG-6. All of the manuscripts are published in peer-review journals. Chapter
5 summarizes the research findings providing answers to the hypotheses proposed in

section 1.5. Finally a brief outlook for further investigation is presented.

11
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Chapter 2 Estimating high spatio-temporal resolution rainfall from MSG1 and
GPM IMERG based on machine learning: case study of Iran

Abstract

A new satellite-based technique for rainfall retrieval in high spatio-temporal resolution

(3 km, 15 min) for Iran is presented. The algorithm is based on the infrared bands of
the Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager (MSG
SEVIRI). Random forest models using microwave-only rainfall information of the Integrated
Multi-SatEllite Retrieval for the Global Precipitation Measurement (GPM) (IMERG)
product as a reference were developed to (i) delineate the rainfall area and (ii) to assign the
rainfall rate. The method was validated against independent microwave-only GPM IMERG
rainfall data not used for model training. Additionally, the new technique was validated
against completely independent gauge station data. The validation results show a promising
performance of the new rainfall retrieval technique, especially when compared to the GPM
IMERG IR-only rainfall product. The standard verification scored an average Heidke Skill
Score of 0.4 for rain area delineation and an average R between 0.1 and 0.7 for rainfall rate
assignment, indicating uncertainties for the Lut Desert area and regions with high altitude

gradients.

Keywords: Meteosat; satellite; rainfall retrieval, Random Forest, GPM, IMERG,

semi arid areas,Iran

2.1 Introduction

In semi-arid areas, the limited water availability from rainfall poses problems for
agriculture and forestry (food and timber products), potable water supply, and energy
production by hydro-power via dams. Climate change studies generally point to a
reduction of rainfall, especially in semi-arid areas [1], which will most likely aggravate
water scarcity in the future. This also holds for the arid and semi-arid regions of Iran,
where the signal is strongly varying on the local scale [2, 3, 4, 5, 6]. To monitor changes
in rainfall availability, accurate rainfall estimation at fine spatio-temporal resolution is
important for water resource management. Thus, a dense ground observation network
is also a precondition for proper hydrological modeling. Most arid and semi-arid
regions are characterized by few precipitation gauge stations. Iran, where more than
60% of the country is composed of semi-arid regions, is facing two challenges: a
strong information demand for water security on the one, confronted with a coarse
network of operational rainfall gauges on the other. For this reason, in Iran but also in
many other arid and semi-arid regions, satellite rainfall products are the only source
providing area-wide precipitation observations in space and time, which renders them

potentially attractive for hydrological management in ungauged basins [7]. However,
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their applicability in hydrology depends on the quality of the satellite data and the
rainfall retrieval method used. Several products exist to derive rainfall from passive
single or multi-spectral infrared (IR) sensors, passive microwave sensors, active radar
instruments, and data fusion algorithms merging microwave and radar data with IR
on geostationary satellites globally (e.g. TRMM [8]; CMORPH [8, 9]; PERSIANN
[10]).

Several studies in global rainfall-retrieval inter-comparison missions showed that the
microwave and radar-based fusion systems are for the most part superior to purely
passive IR techniques, and are particularly superior to rainfall-satellite-based models
[11]. Data fusion algorithms increasingly include the GEO-IR (Geostationary Orbit,
InfraRed) data, as well as the newest generation of global products, the Integrated
Multi-SatEllite Retrieval (IMERG) for the Global Precipitation Measurement Mission
(GPM) [12]. GPM was started in 2014 as a new generation of rainfall retrieval
as a post-TRMM (Tropical Rainfall Measuring Mission) joint US—Japan mission.
The GPM provides multi-channel, dual polarization passive microwave sensors and
active scanning radar. The improvements of GPM in comparison to TRMM are: (i)
The orbital inclination has been expanded from 35° to 65° to cover more important
additional climate zones. (ii) Upgrading the precipitation radar to two frequencies, Ku
band (13.6 GHz) and Ka-band (35.5 GHz). Anticipated advantages include a better
sensitivity to light precipitation, and information on the particle size distribution in
rain and snow. (iii) A GPM Microwave Imager (GMI) with a higher spectral resolution
at frequencies of 10.65, 18.7, 23.8, 26.5, 89, 165.5, and 183.3 GHz [13]. Compared
to TRMM, GMI was improved particularly by adding high-frequency channels (165.5
and 183.3 GHz) which lead to a better sensibility to light and solid precipitation [12].
However, the integration of GEO-IR data in IMERG is limited to only one thermal
band at 10.7 pm, due to the difficulties in handling the data volume of multi-spectral
GEO retrievals from various GEO platforms around the globe, and the limitation of
visible data to daylight hours [12]. Despite the generally lower accuracy of an IR-based
rainfall retrieval, the use of comprehensive IR data for rainfall retrieval-—even in
data fusion schemes—has been highly recommended based on the experience of the
IPWG (International Precipitation Working Group) rainfall retrieval missions [14],

particularly due to its high temporal resolution.

On the regional scale, however, regionally adapted algorithms using only passive
IR data from geostationary orbit (GEO) revealed good accuracy, particularly when

the full spectrum of available bands in combination with machine learning techniques
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were used [7, 15, 16, 17, 18, 19, 20]. The main advantage of GEO systems for
rainfall retrieval is the high temporal resolution (15-30 min image repetition), which
is lacking for passive microwave and radar sensors, perfectly matching the short-term

characteristics of rainfall systems.

Concerning the incorporation of geostationary IR data in satellite-based rainfall
retrieval algorithms, machine learning techniques are used extensively to identify
relationships between predictor variables and rainfall estimates [10, 19, 21, 22, 23,
24, 25, 26]. They offer a high potential in dealing with non-linear and complex
relationships between the variables, but also with highly correlated predictor variables
[20]. In recent years there has been considerable interest in the application of
random forest (RF) in rainfall retrieval techniques [17, 18, 27, 28]. RF is usable as a
classification and regression technique and produces more accurate predictions than
single-tree algorithms [29]. It offers a number of features compared to other machine
learning algorithms that make it suitable for application in the remote sensing of
rainfall: (i) It handles large data sets efficiently, while for example neural networks
(NNETS) are not efficient in dealing with high-dimensional data without reducing the
dimensions [30]. (ii) It has the potential to select predictors and define which are
the most important. (iii) It has high accuracy in classification, while it is difficult to
ensure classification accuracy with support vector machines (SVMs) for multi-class
problems [30]. (iv) There is no need for complex data processing beforehand [30].
Islam et al. [27] classified rainfall areas from a satellite-borne passive microwave
radiometer using RF classification. Kiihnlein et al. [17],Kiithnlein et al. [18] modeled
rainfall in Germany using RF, and trained MSG1 data with ground-based radar data.
Both obtained promising results for the use of RF in rainfall retrieval. Min et al.
[28] recently used Himawari-8 and GPM data to model rainfall using RF. Meyer
et al. [20] compared different machine learning techniques (neural network, averaged
neural network, support vector machine, and random forest) for satellite-based rainfall
retrieval. They concluded that all of them are well suited for satellite-based rainfall

retrieval, and none of them were significantly better than the others.

Several studies have applied the above-mentioned globally available data sets to Iran
and compared the performance with gauge data. An intercomparison of PERSTANN
and TRMM-based products showed the superior performance of the TRMM-based
products, but still found some underestimations and bias problems [31, 32] . PODs
(probabilities of detection) of 40% and less were achieved, depending on the region.

A bias correction could be applied to slightly improve the quantitative precipitation

20



2.2 Data and Method

assessment results [33]. In a recent study in Iran, it could be shown that the new
IMERG product outperformed TRMM-based products and ERA-Interim reanalysis
rainfall particularly for orographic, stratiform, and heavy precipitation [34]. However,
the authors stressed that the occurrence of over- and underestimations indicated
a remaining challenge of reliable satellite-based rainfall retrieval in Iran. They
emphasized that the limited spatio-temporal coverage of data in the algorithm (e.g.,
limited MW /radar and operational rain gauge network) in comparison to the complex
topography, as well as the high spatio-temporal variability of rainfall in the semi-arid
area, were most likely the main reason for the obtained inaccuracies.

Thus, the main aim of the current study was to combine the advantages of
second-generation GEO systems and the new IMERG product in order to develop
a regionally adapted rainfall retrieval scheme with high temporal resolution based on
a machine learning algorithm. In detail, we used the Meteosat Second Generation
(MSG) SEVIRI (Spinning Enhanced Visible and InfraRed Imager) multispectral
radiances and RF algorithm, and the RF model was regionally trained using passive
microwave (sounder and imager) rainfall from GPM IMERG. However, RF model
training was restricted to areas and time slots where the best microwave quality of
IMERG was available. The area validation of the applied RF model rainfall products
was also conducted for pixels from microwave-based IMERG, but for pixels that were
independent from the model training data set. The same was true for RF model
product point validations with available weather station data, which were not used

in the generation of the IMERG product and were thus completely independent.

2.2 Data and Method

This section firstly describes the general rainfall retrieval method (section 2.2.1).
Then, we give an overview of the data sets that were used (section 2.2.2, 2.2.3,
2.2.4). After that, we describe the RF model generation and the final rainfall retrieval
model in detail (section 2.2.5,2.2.6, 2.2.7 and 2.2.8).

2.2.1 Rainfall Retrieval Development

The aim of this study was to develop a new satellite rainfall product by combining
the available microwave-based GPM IMERG rainfall information, which has the

advantage of accurate rainfall estimates, with the high spatio-temporal resolution of
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MSG. Toward this end, the new rainfall retrieval algorithm is based on the IR bands
of MSG1 and trained with the best microwave-quality data of the IMERG product
(i.e., microwave-based IMERG). The general workflow is depicted in Figure 2.1. The
basic principle of this algorithm is first to delineate the rainfall area within cloudy
regions with an RF classification. In the second step, this information is then used
to estimate the rainfall amount with a RF regression model. These two steps are
implemented following previous studies which showed promising results for central
Europe and other areas [17, 19, 28, 35].
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Figure 2.1: Schematic view of the rainfall retrieval workflow.
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The work flow of the development of the new rainfall retrieval method is depicted
in Figure 2.1. First, the RF model predictors had to be matched to a spatio-temporal
homogenous data set: (i) MSG1 SEVIRI IR-channels, (ii) its spatial texture features,
(iii) channel differences, and (iv) ancillary geo-information data were processed and
collected for areas and time slots that were also covered by the microwave-based
IMERG products (rain area and rate) (section 2.2.5) (Figure 2.1, left). The data
were used to train and develop the two RF-models: (i) The RF classification to
delineate rainy and no-rain cloud areas (Figure 2.1 left, in section 2.3.2.1), and (ii)
the RF regression model to estimate rainfall ( Figure 2.1, right, in section 2.3.2.2).
The training of rainfall area delineation and rainfall estimate assignment were done
independently.

Both best-trained RF-models were applied to the study area (Figure 2.2) and the
resulting rain area/amounts were validated against an independent microwave-only
IMERG dataset from regions which were not used during the training process (see
section 2.3.2.3). Finally, the RF-models were applied to the whole time period of
available MSG-SEVIRI data in the original spatial and temporal resolution (15 min)
of MSG1. Because the first validation was conducted with IMERG (even with pixels
not involved in training), a second, completely independent, validation of the RF
rainfall estimate was conducted against gauge stations which were neither part of the
IMERG product nor used for model training (see section 2.3.2.4). Note that the term

“feature” that is generally used in RF models has the same meaning as “predictor”.

2.2.2 Predictor Dataset

The rainfall retrieval model presented here uses the IR wavelengths (all bands between
3.9 and 14 u) from MSG1 SEVIRI. Processing was performed using software developed
by Dronner et al. [36]. In addition to the MSG1 data, the cloud mask (CLM) product
[37], which is mainly based on the MSG SEVIRI data, was used to outline the domain
for cloudy pixels that was used for training the RF models. Several IR bands from
MSG1 SEVIRI and different band combinations (DIF) that have been proven to
improve the rainfall estimation by satellites were included as predictors [18, 35]. This
also holds for the spatial variability in the spectral bands and DIFs [38, 39, 40, 41],
where respective metrics were also included as predictors for the RF models. Different
texture features were calculated from a 3x3 pixel moving window approach: For the
single bands (i) variograms (VARs), (ii) madograms (MADs), (iii) rodograms (RODs)

and (iv) cross-variograms (CVs), as well as (v) pseudo cross-variograms (PCs) of each
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channel combination [39].

Besides that, an increasing number of studies found that mountainous regions in
semi-arid areas are one of the great challenges regarding rainfall satellite retrievals
both, in IR and microwave products. This is due to the high weather variability [42]
related to the topographic forcing of rainfall formation and decay. Similar conclusions
are also drawn for low and mid-elevation areas of Iran [32, 33, 43, 44, 45]. Due to
the importance of topography for rain formation, (i) terrain elevation (ELV), (ii)
the Topographic Position Index (TPI), (iii) the Topographic Roughness Index (TRI),
(iv) slope and (v) aspect were also added as predictors to the training data set. The
predictors are derived from the Global 30 Arc-Second Elevation DEM [46]. The list
of predictors that are used in this study is depicted in Table 2.1.

Table 2.1: All predictors initially used for rainfall retrieval development. MSG bands
are shown with their central wavelength in p. CV: cross-variogram; ELV:
terrain elevation; MAD: madogram; PCV: pseudo CV; ROD: rodogram;
TPI: Topographic Position Index; TRI: Topographic Ruggedness Index;
VAR: variogram. AT indicates the temperature band differences. WV:
Wave Length.

MGS band Derived data Ancillary geo-information
IR 3.9 AT (all band combination) ELV
WV 6.2 VAR (all bands) TPI
WV 7.3 MAD (all bands) TRI
IR 8.7 ROD (all bands) Slope
IR 9.7 CV (all band combination) Aspect

IR 10.8 PCV (all band combination)

2.2.3 GPM IMERG Training and Validation Data

To train and validate the RF model developments for rain area and amount against the
predictors (section 2.2.2, Table 2.1), we used the microwave-based rainfall estimates
from the IMERG product only. IMERG is a level-3 gridded precipitation product
from the GPM constellation. It calibrates, merges, and interpolates the measurements
from a network of satellites, together with a precipitation gauge analysis every half
hour in 0.1° spatial resolution [47]. IMERG is designed to use as many low Earth
orbit (LEO) satellites as possible to compensate for the limitations in available
satellite microwave precipitation estimates as effectively as possible, in conjunction
with IR estimates from GEO satellites. IMERG has three runs to provide different
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user requirements for latency and accuracy. This study focuses on the final run of
30-min IMERG Version 05 (IMERG-VO05), using the gauge-adjusted estimates from
12 months of data between February 2017 and February 2018. Since IMERG-V05,
the quality index (QI) is included as a new variable with half-hourly resolution in
the metadata provided by NASA [47]. The QI is a metric concerning the relative
skill of the temporally fluctuating mix of different passive-microwave-and IR-based
rainfall estimates in half-hourly IMERG products. Additionally, the time of the
overpass of each microwave swath in each scene is also available under the flag
HQ observation. For the rainfall retrieval model development, the microwave-based
pixels from the multi-satellite precipitation estimates with the gauge calibration
sub-dataset of IMERG was used for training and validation. The final compiled data
set (including predictor and target variable dataset) was selected on cloudy pixels,
where the high-quality IMERG data was available (QI > 90%). Seventy percent of
the compiled dataset in each scene was randomly selected as the training dataset, and

thirty percent of the remaining pixels in the scene were selected for validation.

2.2.4 Station Data for Independent Point Validation

Precipitation gauge data for February 2017 till January 2018 were obtained from the
Islamic Republic of Iran Meteorological Organization (IRIMO) for Khouzestan and
Urmia provinces. These data are independent of the gauges used for the IMERG
calibration, and are in two different recorded time steps. One group consists of the
rainfall in every 6 hours, and another group records data at a daily scale. They
were complemented by the data derived from the Urmia Lake Restoration Program
(ULRP.sharif.ir/en). The data from both organizations underwent quality checks
before they were delivered. The distribution of rainfall gauge stations used in this

study is shown in Figure 2.2.

2.2.5 Data Processing

With reference to Figure 2.1, our new rainfall retrieval was done in five steps. The
first step included data processing. The different temporal and spatial characteristics
of MSG1 data (15 min; 3 by 3 km? at the sub-satellite point) and IMERG (30
min; 11 by 11 km?) were addressed to ensure pixel matching between Meteosat,
geo-information, CLM, and IMERG data. Thus, MSG1, CLM, and geo-information
data were projected and resampled (average) to the spatial resolution of IMERG.
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Figure 2.2: Distribution of available rainfall gauge station in the study area.

Because MSG feature and IMERG training data can temporally deviate by hours, the
temporal overlap of <7 min was used to ensure proper comparability between both
data groups. A seven-minute threshold was determined as an average acquisition
time between the MSG1 scan in Iran (occurring between minutes 7 and 10 for each
full disk scan of Earth with MSG1) and HQ observation time overpass of IMERG.
Then, the QI was used to mask out the microwave-based-only pixels from the entire
IMERG data set. Finally, the CLM product was used to limit the training data sets to
areas where precipitation is generally possible, as indicated by cloudiness. However, it
should be stressed that for the training of the RF models, only pixels with rain rates
higher than 0.2 mm/h were considered as rainy, warranting reliable information on
rainfall in IMERG [12, 48]. This threshold was chosen due to the estimated minimum
detectable rain rates of the Ka- and Ku-band radars [49]. After the last step of
preprocessing, a consistent data set for training and validation of the RF models was

compiled.

2.2.6 Model Training and Tuning

The first step for the training of the RF models was the selection of the most important
predictors. This involved a reduction to the best-performing predictor sets out of the
initial feature data space presented in Appendix 2.A. Here, the predictor selection
was conducted by applying a recursive feature elimination (RFE) for each month of

the training dataset. RFE started with all of the initial 121 predictors and removed
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the least significant ones using the feature importance metrics of the RF methods
[29]. TIn each step of this iterative RFE procedure, the model quality was calculated
using the out-of-bag (OOB) score. The OOB score was measured during model fitting
based on the left out data (one-third of the observations) for each tree in the RF [50,
51]. The set of predictors with the best average ranking (sorted based on feature
importance) that reached the highest OOB score was filtered from the original set of
121 (Appendix 2.A) for each month and used as the training input for the final RF

models.

With the completion of the RFE step, we iteratively tuned the hyperparameters,
including the total number of decision trees and the number of input features (n)
used at each node to get the optimal setting for the RF classification and regression
model in each month, following the successful approach of different studies [18, 28,
39] for RF model training. For each parameter set, RF models were trained based
on the tuning data set and the OOB score was calculated. In addition, the balance
parameter in the RF package “compute sample weight” from Scikit-learn 0.20.2 [52]

in Python 2.7 was also implemented for both RF regression and classification.

o save computation time for RFE and parameter tuning, we randomly selected
the data from the whole training dataset. For rainfall area delineation, 10,000 pixels
from the available training pixels in the month were randomly selected including
2000 rainy and 8000 cloudy pixels. For the rainfall estimate RFE parameter tuning,
we randomly selected 2000 rainy pixels in each month. It should be stressed that
the distribution of rainfall rate within a month varies and RF regression models are
not able to predict unbalanced datasets [28]. Therefore, in order to increase the
rainfall prediction accuracy, the balanced sampling technique [28] was used for RFE
and parameter tuning of the RF regression. For each month, the rainfall rate was
classified with the range of 1 mm/h and the probability of occurrence of every rain rate
class was calculated for each tuning data set. The class with the average probability
of occurrence (APO) was selected and the new sample stemmed from the original
sample by simply decreasing the low rain rate sample to the APO. Fifty runs were
performed for both RFE and parameter tuning to produce fifty series of a randomly
selected pixel for each month. Differences between these fifty realizations reflected
the whole range of internal variability of the microwave-based IMERG in the region

and in the month.
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2.2.7 Application of the Rainfall Retrieval Model

After the successful adjustment of the microwave-based IMERG models for rainfall
area delineation and rainfall rate assignment, each 15-min image from MSG1 was then
processed using the best trained models at the microwave-based IMERG resolution of
11 km to generate rainfall estimates with high spatio-temporal resolution. Since the
microwave-based IMERG models are limited in time, the range of the available models
in a day differs between 3 and 25, depending on the time of year. To generate the
rainfall estimates in MSG1 generic resolution, we applied the models in the scene of
the same time slot, and the following scenes until the next microwave-based IMERG
RF model was available. In cases where the previous model belonged to the last
months, the first model in the upcoming months was applied for the scenes, where a

model was available.

2.2.8 Validation

In order to assess the model performances, two different validation strategies were

employed:

e The performances of the trained rainfall area delineation and rainfall rate
assignment models were investigated on a scene-by-scene basis, using 30% of

the independent pixels from each scene.

e The overall performance of the rainfall area delineation and rainfall rate
assignment was investigated against gauge station after application of the model

in the whole study area for the whole time period.

First, the performance of the rainfall area delineation and rainfall rate assignment
on a scene-by-scene routine was investigated after training the model. By extracting
the data pairs of the validation data sets on a pixel basis, a total of 287,750 pairs
of RF classification/regression and microwave-based IMERG were made available at
a half-hourly resolution for validation. Then, in the next step, the performances of
RF models were compared in the same location with sub-dataset IR-only IMERG.
With the latter analysis, we could reveal if the new multispectral GEO retrievals were
superior to the IR-only IMERG solution.

For the validation of rainfall area delineation, all pixels from the validation dataset
that were classified as cloudy by CLM were considered. First, we calculated the
crosstables for the RF classification and IR-only IMERG using RF-modeled pixel
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values in comparison to the microwave-based IMERG as reference. The hits (H),
misses (M), false alarms (F) and correct negatives (C) between each pair of the dataset
were calculated. A hit was considered when both the reference and the estimate pixels
were raining; a miss was indicated when the reference was raining but the estimate
was not; a false alarm occurred when the reference was not raining but the estimate
was; and a correct negative was when both the reference and the estimate were not
raining. From the hits, misses, false alarms, and correct negatives, we calculated
the average half-hourly probability of detection (POD), false alarm ratio (FAR), and
Heike skill score (HSS) as validation metrics. The detailed equations and the range

of these metrics are shown in Table 2.2. The POD indicates the fraction of correctly

Table 2.2: Validation metrics with equation, theoretical range and optimum value.

Name Metrics equation Rang Optimum
Probability of detection POD=7%; [O,l] 1
False alarm ratio FAR:% [0,1] 0
. . _ 2(HxC-FxM)
Heike skill score HSS—(H_M)(M+C)+(H+F)(F+C) [0,1] 1
Mean absolute error MAE=L1 %7, |P, - O - -
Root mean square error RMSE=y/ w - -
Correlation coefficient — R= (X (PO (¥, P (i, 9i)) [-1,1] 1
V(T (P2)=(Z, (P))2)((n 1y 0)~(E1, 0:)2)

modeled rain pixels. A perfect score is 1. The FAR gives the percentage of estimated
pixels incorrectly estimated as rain. A perfect score is 0, implying that the RF
clagsification or the IR-only IMERG never estimate a qualified precipitation rate
when the microwave-based IMERG indicates no precipitation. The HSS is a metric
for the general model performance that quantifies whether the estimate is worse or
better than the microwave-based IMERG. A perfect score is 1. To evaluate the ability
of the RF regression model to estimate rainfall, the correlation between the reference
dataset and the estimated half hourly rainfall was calculated using the correlation
coefficient (R) Root Mean Square Error (RM SE) and the Mean Absolute Error
(M AE) were also calculated. All rainy pixels from Microwave based IMERG were

used for the validation of rainfall estimate.
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2.3 Results

2.3.1 Training Results

In each of these steps, first we selected the most important features (results in
section 2.3.1.1), then tuned the hyperparameters for the model development ( results
in section 2.3.1.2) and finally the RF models were applied. Please note that due to
the low availability of rainy pixels in June, training and validation was not possible

for this month.

2.3.1.1 Results of Recursive Feature Elimination

RFE results are depicted in 2.3. In Figures 2.3a,c, the average RF classification and
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Figure 2.3: Results of the feature elimination. (a) OOB score vs Number of features
for RF classification (rain area) in February,(b) Number of features
selected for RF classification and related OOB score for the time period,
(c) OOB score vs Number of features for RF regression (rain amount) in
February, (d) Number of features selected for RF regression and related
OOB score.

regression in February are respectively shown as examples. The RF classifications
for rain are delineated showeing the best model performance with an OOB score of

0.85 at 33 remaining features. The performance of the RF regression model for rain
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amount was less pronounced, with the best model performance at an OOB score of
around 0.2 and 20 remaining features. In both models, having more features from
the set resulted in a worse result. The same process was performed in each month
for the whole time period, and the number of features that led to the best RF model
performances was defined. The optimum number of features is shown in Figure 2.3b
for RF classification and Figure 2.3d for RF regression with respective OODB scores
for the study period. The number of features of RF classification in summer (July,
August, September) increased significantly. However, July, August, and September
showed the highest OOB scores in both RF classification and RF regression.

In the next step, feature importance was used to define the most important

predictors considering the optimum number of already-defined predictors.
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Figure 2.4: Selected predictors and related feature importance for the time period.
(a) RF classification, (b) RF regression. Numbers on the x-axis represent
feature IDs (Please refer to Appendix 2.A for the legend and list of
features).

Figure 2.4 illustrates the selected predictors and the feature importance for both
RF classification and RF regression. In both models, the combination of CV for the
IR 8.7 (features 79-82), CV for IR 9.7 (features 83-85), CV for IR 10.8 (features 86
and 87), and CV for IR 12.0 (feature 88) did not play roles at all, except for July which
showed greater complexity in the rainfall area delineation due to the lower number of

cloudy pixels. This was also true for all MADs (features 45-52). The single channel
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of IR 10.8 had a relatively high feature importance in the warm seasons for the RF
classification. This channel provides information about the cloud-top temperature,
and thus the cloud height [18].

Figure 2.4b shows that the terrain features were identified as having the highest
impact in modeling the rainfall amount. Besides that, for both rainfall delineation and
rainfall assignment, the AT 8.7-10.8 (features 28) and AT 10.8-12.0 (features 34) were
mostly selected in each month. These band combinations have been proven to provide
information about the cloud water path [53] and thus improve rainfall retrieval models
[18]. In both models, one or more of the combination of band WV 6.2 with WV 7.3,
IR 8.7, IR 9.7, IR 10.8, IR 12.0, and IR 13.4 (features 16-21) was selected in each
month. The differences between the brightness temperature in water vapor and IR
channels were shown to correspond to deep convective clouds with heavy rainfall [54,
55, 56]. These band combinations have been proven to provide information about the
cloud water path [53] and thus improve rainfall retrieval models [18]. In both models,
one or more of the combination of band WV 6.2 with WV 7.3, IR 8.7, IR 9.7, IR 10.8,
IR 12.0, and IR 13.4 (features 16-21) was selected in each month. The differences
between the brightness temperature in water vapor and IR channels were shown to

correspond to deep convective clouds with heavy rainfall [54, 55, 56].

2.3.1.2 Parameter Tuning

For RF model training, we tuned the parameters iteratively in order to find an optimal

model with regard to the number of decision trees and the number of input features

().

Processing time(sec)
-
S

e
®
@
=]

0OB score
e
@
&
@

0.846 1

50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
Number of decision trees Number of decision trees

(@) (b)

Figure 2.5: Results of the tuning procedure: (a) RF classification (rain area), (b) RF
regression (rainfall), both in February. n = number of input features.

The sample parameter tuning for February is shown as an example in Figure 2.5.
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The model performance of rain area and rain estimate assignment increased
significantly in the beginning until the number of decision trees reached 250. Beyond
this, the increase slowed down. This trend was almost the same for each month of the
time period. The OOB score values were almost the same when more features were
considered at the nodes and the number of trees increased. As a compromise between
prediction accuracy and processing time, a cut-off was made at a number of trees of

250 and n was set to default in both final RF models for the rainfall area delineation

(\/ Numberof f eatures) and rainfall rate assignment (Number of features /3).

2.3.2 Accuracy of Rain Area and Rainfall Retrieval

The validations of the RF models for rainfall area delineation and rainfall rate
assignment were conducted independently. In each step, the results of the model were
compared pixelwise with the microwave-based IMERG. Furthermore, the results were
compared to [R-only IMERG. In order to compare the RF model results with IR-only
IMERG, the validation scores for IR-only IMERG were also calculated.

2.3.2.1 Rainfall Area Delineation

The validation scores for rain area delineation were calculated on a pixel basis for each
scene. As the ratio of the number of non-rainy pixels to rainy pixels was quite high,
we had an unbalanced dataset. An unbalanced dataset in rainfall delineation using
RF classification was shown to influence the model accuracy [18, 28]. As suggested by
several authors [18, 28], the balanced sampling technique was used to improve model
performance. The number of non-rainfall but cloudy pixels that normally define the
majority class were randomly downsampled in order to equal the number of majority
and minority classes. This technique was applied in two sample weeks from July
and August in the training dataset. We defined different scenarios to conduct diverse
sensitivity studies. Table 2.3 summarizes the statistics on the verification scores of

RF classification with different ratios of majority versus minority class.

Table 2.3: Validation scores for RF classification with different ratio of classes.

Model Name Cloudy (Majority Class)/ POD FAR HSS
Rainy (Minority Class) Pixels July October July October July October
Scenario-0 1:1 0.84 0.85 0.80 0.75 0.22 0.30
Scenario-1 2:1 0.82 0.79 0.74 0.68 0.32 0.37
Scenario-2 3:1 0.73 0.74 0.69 0.64 0.36 0.40
Scenario-3 4:1 0.71 0.68 0.68 0.61 0.37 0.42
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he HSS and FAR showed better model performance in both months in Scenario-3.
Therefore, we implemented the Scenario-3 relation between cloudy and rainy pixels
for the whole study period for rainfall area delineation. The verification scores for
rain area delineation are presented in Figure 2.6. Given that the evaluation was
done on the number of microwave-based IMERG scenes, results are summarized as
box-and-whiskers plots and are shown for both the newly developed RF model and
the to-date implemented IR-only IMERG procedure.

Il RF classification model
I IMERG-IR only
]

FAR

HSS

Feb Mar Apr May

Figure 2.6: Standard verification scores for RF classification model (rain area). The
scores are calculated on a scene-by-scene basis. Boxes show 25th, 50th,
and 75th percentiles. Whiskers extend to the most extreme data point
between 75th-25th percentile. Outliers are shown as points.

Figure 2.7 shows an example of the spatial distribution of the RF prediction of
the rain area, showing the rain area detected by RF classification (Figure 2.7b) in

comparison to the microwave-based IMERG (Figure 2.7a). The RF classification
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showed a good agreement with the observed rain areas.

2017/03/24 at 03:00 UTC 2017/03/24 at 03:00 UTC

g

S1°E
(a) (b)

Figure 2.7: Sample satellite scene from 24th March 2017 03:00 UTC. The rainfall
area from (a) microwave-based IMERG as well as corresponding (b) RF
classification results. The pixels are selected only where the IMERG
microwave was available.

2.3.2.2 Rainfall Rate Assessment

The evaluation metrics for rainfall rate assessment are shown in Figure 2.8. The
comparison of the RF regression rainfall assessment and microwave-based IMERG,
as well as [R-only IMERG retrievals, was conducted for 1595 scenes of precipitation
events in the study period. The number of pixel pairs available for the time period
was 287,750.

Figure 2.8 also reveals the occasional high RMSE and MAE between the RF
regression and microwave-based IMERG retrievals in almost all months, which are
shown as outliers.

As an example Figure 2.9 shows the microwave-based IMERG (Figure 2.9a) and
the newly developed rain rate retrieval (Figure 2.9b) for 24 March 2017 at night.

2.3.2.3 Overall Performance of the Merged Rainfall Retrieval Model (Rain
Area and Rate)

To assess the overall performance of the rainfall retrieval developed in this study, the
RF classification and RF regression was combined and the finally merged product
(rain area and rate) was evaluated (Figure 2.10). Thus, all errors from both RF
models were accumulated in the final spatio-temporal rainfall estimate. The validation
of the model was conducted only for areas that were classified as rainy in the

microwave-based IMERG product.

35



Chapter 2 Estimating high spatio-temporal resolution rainfall from MSG1 and
GPM IMERG based on machine learning: case study of Iran

16

B RF regression model

+
' ' s IMERG-IR only
12 .

‘

RMSE (mm/hr)
W

* b
sl ;h&LLg
ﬁézT; i,
Eéﬁ-#ﬁ%&? A0 iaidi):o

Figure 2.8: Standard validation scores for RF regression model (rain rate). The scores
are calculated on a scene-by-scene basis. Boxes show 25th, 50th, and 75th
percentiles. Whiskers extend to the most extreme data point between
75th-25th percentile. Outliers are shown as points.

The outliers of RMSE and MAE increased compared to the rain estimate validation
in section 2.3.2.2. The high RMSE and MAE could be related to the number of
pixels in the calibration dataset, especially for April, September, May, July, October,
December, and January. This relationship is shown in Figure 2.11. The higher RMSE
and MAE values were normally shown for scenes in months with fewer rainy pixels
in the calibration dataset. However, other factors (e.g., the complexity of the rainfall
rate, influenced by parameters like elevation diversity in the scene) may have led to

uncertainties in the RF model.

Figure 2.12 gives an overview of the model performance along with the altitude

during different time periods of the study period. The study period was divided into
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2017/03/24 at 03:00 UTC 2017/03/24 at 03:00 UTC
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Figure 2.9: Sample satellite scene from 24th March 2017 03:00 UTC. The rainfall
estimate for this scene from microwave-based IMERG (a) as well as
corresponding RF classification (b) results. The pixels are selected only
where the IMERG microwave was available.

two rainy seasons (i.e., March, April, May (MAM) and October, November, December
(OND)) and one dry season (i.e., July, August, September (JAS)). Terrain elevations
around 200-500 m showed relatively high maximum RMSE and MAE values for all
time periods. These heights can mostly be found in the Lut Desert and along the
coast of the Caspian Sea (Figure 2.12a).

Figure 2.13c-d indicates the spatial distribution of the MAE and RMSE, and
Figure 2.13e-f, shows the spatial distribution of the MAE and RMSE relative to
the average rainfall rate for the whole study period (February 2017 to February 2018)

in the study region.

The average RMSE and MAE (Figure 2.13c¢-d) showed relatively higher values in
the Zagros mountainous region ( 0.5-6 mm/h for MAE and 0.4-16 mm/h) and
Alborz mountainous range (0.5-8 mm/h for MAE and 0.5-12 mm/h). Meanwhile,
in Figure 2.13c,d the relative RMSE and MAE in the mountainous region show some
uncertainties in the area between 50E, 32N and 51E, 33N with the value of 18.67 and
in the connection zone between Zagros and Alborz in the north-west of the country
with values between 0.5 and 25. The RMSE, MAE, and rainfall rate near the coast of
Caspian Sea, at the northern slopes of Alborz mountains (Figure 2.13-¢,d) indicated
higher errors ( 20 mm/h). In the Kavir Desert in the center of the country, the RMSE
and MAE of the RF model were estimated as 0.1-16 mm/h.
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Figure 2.10: Standard validation scores for RF regression model (rain rate). The
scores are calculated on a scene-by-scene basis. Boxes show 25th, 50th,
and 75th percentiles. Whiskers extend to the most extreme data point
between 75th-25th percentile. Outliers are shown as points.
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2.3.2.4 Comparison to Gauge Stations

To validate the RF model performance against a completely independent dataset, we
used gauge stations from Iran (Figure 2.1) as a reference. In this step, we applied the
model to the original spatial and temporal resolution of MSG-1 (3 km?, 15 minutes)
for the whole study period, and the results were compared to the available rain gauges.
The 15-min rainfall rates were added up to 6 h and 24 h, respectively. For comparison,
the pixel values of the corresponding station coordinates were extracted.

The overall performances of the model against gauge are shown in Figure 2.14

and 2.15. During our research period, the available gauge stations for our study
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Figure 2.11: RMSE and MAE values as a function of the number of pixels in the
training dataset for different months.

were 45 synoptic stations in the temporal resolution of 6 h and 32 stations with daily

resolution. Our results indicate the expected seasonal behavior for rain area validation

scores. During the dry summer (JAS), the RF model performed worst with a POD

less than 0.2, FAR more than 0.6, and poor performance, as indicated by the low HSS.
In the rest of the year, the average HSS was 0.3-0.55 and 0.25-0.55 per 6-h and per
day, respectively. The best POD ranged between 30% to 70% in winter, autumn, and
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Figure 2.12: Maximum and mean RMSE and MAE values for different elevation
levels for different time periods MAM: March-April-May; JAS:
July-August-September; OND:  October-November-December.(a)
indicates the mean RMSE for MAM, (b) shows average MAE for MAM,
(c) shows mean RMSE for JAS, (d) indicates mean MAE for JAS,
(e)shows mean RMSE for OND and (f) indicates mean MAE for OND.

spring. The average daily RMSE was around 16 mm and the average daily MAE was
around 10 mm depending on the month. The overall range of R was between 0.17
and 0.8 for all months except JAS.
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Figure 2.13: Spatial distribution of (a) elevation, (b) average rainfall rate, (c) average
MAE, (d) average RMSE, (e) average MAE to average rainfall rate
(MAE rate), and (f) average RMSE to average rainfall rate (RMSE rate).

2.4 Discussion

2.4.1 Performance of Rain Area and Rainfall Retrieval Model

Feature elimination and parameter tuning procedures were carried out to determine
the final input feature set. The results of the feature selection in RF regression

(rain rate) indicate that the models identified the close link between topography and

41



Chapter 2 Estimating high spatio-temporal resolution rainfall from MSG1 and
GPM IMERG based on machine learning: case study of Iran

1 ||mmm 6hr mm 6hr I 1.0
m day mm day

Wyvd

1 ||mmm 6hr B Ghr 1.0
H dzy Hl day

Figure 2.14: Standard validation scores for the RF classification model (rain area
delineation) against gauge stations. The scores are based on the data
pairs of 6 h/daily for the time period from February 2017 until the end
of 2017. The scores were calculated based on all available pairs for the
time period for POD, FAR, and HSS. The gray boxes indicate the results
for stations with 6-h resolution and the blue boxes for stations with
daily resolution. Boxes show 25th, 50th, and 75th percentiles. Whiskers
extend to the most extreme data point between 75th and 25th percentile.
Outliers are shown as points.

rainfall. Consequently, the feature importance of these five features was relatively
high compared to the other features. This is not surprising, as the elevation plays
an important role in rainfall amount. Additionally, in rainfall delineation, at least
one of these features were selected. In general, the models tended to prioritize band
combinations and texture features over the use of single bands. The feature selection
of each month for both models shows that the models preferred to use two bands in
combination where the dominant texture metric selected in almost all months was the
pseudo cross-variogram. This behavior was also shown by [39] in fog retrieval using
RF.

The validation of the rainfall retrieval against independent microwave-based
IMERG showed promising results, but also highlighted the difficulty of rainfall

retrievals at high altitudes and near coastlines.
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Figure 2.15: Standard validation scores for RF regression model (rain rate) against
gauge stations. The scores are based on the data pairs of 6 h/daily for
the time period from February 2017 to the end of 2017. The scores were
calculated from the pairs in which rainy events from the RF model or
gauge were available. The absolute value of R is shown here. The gray
boxes indicate the results for stations with 6-h resolution, and the blue
boxes for stations with daily resolution. Boxes show 25th, 50th, and 75th
percentiles. Whiskers extend to the most extreme data point between
75th and 25th percentile. Outliers are shown as points.

In the rainfall area delineation step, as a general pattern, Figure 2.6 reveals that

the predictions of the developed RF classification model clearly outperformed the

IR-only IMERG product. Overall, the central tendency of the verification scores for

each month were very good for the RF model. However, the extent of the whiskers

were rather wide in HSS, indicating that the performance of the model varied. The
FAR was relatively high in all months, but was still better than IR-only IMERG. As
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indicated by the FAR, there was a general tendency to overestimate the rain area.
Additionally, the indices exhibited a seasonal dependency, with more false alarms
and lower HSS during summer months (July, August, September). The fact that
predictions for summer months were generally slightly worse might be due to the
warm air beneath the clouds that might lead to more evaporation of the precipitation
during summer (i.e., the same rain from clouds could reach the ground in winter, but

not in the summer).

The verification scores for rain area delineation were superior to those in previous
studies by Kiihnlein et al. [17] and Meyer, Dronner, and Nauss [19] and Min et al.
[28], which might be due to the feature selection process that was done in our study

but not in the mentioned studies.

In the next step, the RF regression model (Figure 2.8) was capable of predicting
rainfall rates accurately, and better than the IR-only IMERG. The performance
quality of the RF regression followed a seasonal trend where the RMSE and MAE were
slightly higher in July and August—the drier months, with lower rainfall amounts and
lower rain areas. Visually (Figure 2.9), there was a good coincidence of rain rates,
but the new RF model seemed to exhibit a tendency to underestimate the higher rain
rates (3-5 mm/h).

As has been seen so far, RF was able to model the rainfall when each step
of the rainfall retrieval was evaluated separately. The performance of the model
when both steps of the rainfall retrieval were combined was also investigated. The
results are presented in Figure 2.10 as box-and-whisker plots. In comparison to
the results in 2.3.2.2, the general performance of the newly developed model was
reduced, as expected. The RMSE and MAE showed a less-consistent relationship, and
the correlation coefficient between the merged RF model and the microwave-based
IMERG was lower than for training. The range of R illustrates more variability
in the boxplot. However, compared to the IR-only IMERG validation, R values
indicated that the RF model developed in this study still performed significantly
better compared to IR only.

On the other hand, the maximum values of MAE show the overestimation of the
new RF model. The overestimation of the model in Iran, with its high amount of
arid and semi-arid regions, might be attributed to environmental barriers. In this
climate, due to the heat under the clouds, raindrops may evaporate before reaching
the surface, which leads to an overestimation of the retrieval—particularly in the dry

seasons [33].
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The advantage of the feature selection was also indicated by the correlation
coefficient for the modeled rainfall quantities. The results show an improvement
of the infrared-based rainfall retrieval compared to Meyer, Dronner, and Nauss [19].
The correlation coefficient in our study varied between 0.23 and 0.8, while in the study
by Meyer, Drénner, and Nauss [19] he average correlation coefficient was around 0.33.
However, our model showed slightly higher RMSE values (mm/h) compared to those
in the works of Meyer, Dronner, and Nauss [19] and Min et al. [28].

It is important to note that aside from the environmental barrier and land
characteristics of the case study, the number of training data sets in RF was seen
to influence the model performance—especially for April, September, May, July,
October, December, and January. This relationship is shown in Figure 2.11. The
lower number of pixels may have led to weak learning of the RF model, especially when
the data was complex. This is because RF is a bootstrap model [29], which means
that the random samples are chosen from the training dataset, and the performance
of the model is highly dependent on the properties and distribution of this dataset.
When the sample size is low, the set of possible random selections may not represent

the proper distribution of the rainfall, causing the model to perform poorly [57].

The validation of the model in different altitudes and different seasons (Figure 2.12),
highlighted the limitation of the RF model in different terrain elevations. One of the
challenges of the model was in the elevation range of 200-500 m. These heights
are located in Lut and Kavir Deserts and along the coast of Caspian Sea. The lower
performance in these areas might be due to decreasing evaporation of raindrops below
the cloud in the desert and increasing rainfall rates due to higher humidity near the

Caspian Sea.

Additionally, mean RMSE and MAE values increased with increasing elevation
during MAM (Figure 2.12a,b) and OND (Figure 2.12¢,f). During JAS (Figure
2.12¢,d) tthe mean MAE and RMSE values decreased with increasing elevation.
During the rainy season (OND and MAM), the relatively poor performance of the
RF model for elevations above 1500 m a.s.l. might be attributed to uncertainties
in the microwave-only rainfall information of IMERG over snow-covered areas in
mountainous terrain [12]. Furthermore, higher RMSE and MAE values might be due
to uncertainties in the retrieval of solid precipitation. Additionally, the spatial map of
average RMSE and MAE (Figure 2.13c,d) shows that these uncertainties were along
the Zagros mountains in the west and the Alborz mountain range in the north of Iran.
The RF model performed best for mid-altitudes between 500 and 1500 m a.s.l. Near
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the coast of Caspian Sea, at the northern slopes of the Alborz mountains the RMSE
and MAE (Figure 2.13-c¢,d) values indicated higher errors. This might be due to the
high rainfall rates (10-30 mm/h) and uncertainties in connection with orographically
induced rainfall effects. The MAE and RMSE rates did not show these characteristics.
This means the rainfall rates in these places are quite high, and this affected the RMSE
and MAE, which was expected (Figure 2.13e,f). However, both parameters indicated
uncertainties for the transition zone between the Zagros mountain range and the Lut
Desert. These uncertainties might be due to differing climatic influences in both
regions. There were spots of high inaccuracy (Figure 2.13e,f) in the area between
54E, 28N and 62E, 33N with average rainfall rates of 0.2-0.5 mm/h. This might be
due to the evaporation of the raindrops below the cloud in semi-arid regions, which
especially leads to overestimation for low rainfall rates.

One of the greatest drawbacks of using microwave-only IMERG was the timing of
the overflight of the microwave satellite in the study region. It is likely that some
rainfall events were not recorded due to unfavorable timing of its overflight over Iran,

and this introduced uncertainty in the training of our model.

2.4.2 Comparison to Gauge Stations

The overall performance of the model is promising (Figure 2.14 and 2.15), and the
results show the seasonal behavior for all rainfall area validation scores. The low
number of rainfall events and relatively low amounts of rainfall might be the reason
for the poor performance during the summer season. Moreover, the comparison
of point data with satellite data might be more vulnerable to uncertainties during
summer when highly convective rain clouds predominate. During such events, the
spatial displacement due to parallax shifting [19] for MSG1 pixel coordinates relative
to the gauge station coordinates might be more relevant. Additionally, wind drift
and rainfall evaporation below clouds could cause higher discrepancies between RF
model output and station measurements. Note also that despite possible RF model
uncertainties, rainfall measurement errors at the ground might also be a topic for
discussion. Interestingly, the RF model output showed almost the same performance
regardless of the temporal resolution, which is in contrast to the results of [18, 19].
This is due to the fact that six hourly stations and daily stations are independent
from each other.

Our technique had a clear advantage in rain area detection compared to global

datasets which were evaluated in Iran. Katiraie-Boroujerdy et al. [33] examined the
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performance of CMORPH, PERSIAN, and TRMM 3B42 with a spatial resolution of
29 km. The highest POD of 0.4 and the lowest FAR of 0.2 were achieved on a seasonal
scale (spring and winter). Our model showed PODs of 0.2-0.7 for spring and winter
and lower FAR between 0.1 and 0.6 for spring and winter on a daily and six-hourly
scale with a spatial resolution of 3 km. The spatial and temporal resolution affected
the performance of the model.

The evaluation results of TRMM 3B42 (POD 0.39-0.5 and FAR 0.55-0.71 at
a daily scale and spatial resolution of 29 km) in Iran in another study by Sharifi,
Steinacker, and Saghafian [34] demonstrate the advantage of our model in the case of
rain area detection in Iran. In the same study, the IMERG V05 (spatial resolution of
11 km and temporal resolution of 30 min) showed relatively better POD compared to
TRMM 3B42 with the value of 0.46-0.77 and FAR of 0.43-0.59 at daily resolution,
which still shows the better performance of our model. In the same study, the
evaluation of rain estimate for IMERG and TRMM showed RMSEs of around 7.10
mm and 7.72 mm in a day respectively. The estimated correlation coefficients were
0.46-0.52 for IMERG and 0.27-0.42 for TRMM. These results indicate that our model
performed less accurately than IMERG, but the values of the correlation coefficient
and MAE confirmed that our rain estimations were superior to TRMM.

Please note that this comparison needs to be interpreted with caution. Although
these comparisons were conducted in the same country, the gauges were not the same.
Additionally, Katiraie-Boroujerdy et al. [33] set a minimum number of gauges in each
grid pixel to represent the ground-truth rainfall, while we used only one gauge per
pixel. The assessment of satellite rainfall products with a low number of gauges in
each grid pixel led to an underestimation of the quality of satellite products, since
point-scale observations of scarce gauges cannot be a representative of the spatial

distribution of rain [58].

2.5 Conclusions

In the present study, a new rainfall retrieval technique using microwave satellite and
MSG1 data was developed for Iran as a case study. The method uses geostationary
multispectral satellite data to train RF models. Microwave-only GPM IMERG rainfall
information was considered as a reference for model training. In a first step, the
rainfall area was delineated, followed by rainfall rate assignment. The method was

validated against independent microwave-only GPM IMERG rainfall data not used
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for model training. Additionally, the new technique was validated against completely
independent gauge station data. The validation results indicate that the new
technique was capable of retrieving rainfall correctly. This offers the potential for high
spatio-temporal (3 km, 15 min) rainfall resolution in near-real-time for Iran, which
is important for water resources disciplines and hydrological modeling, as examples.
Concerning the importance of the respective predictor variables, elevation and related
indices were shown to be important for rainfall area delineation and rainfall rate
assignment. However, there were challenging regions with higher uncertainties, such
as the coastlines of the Caspian Sea and the Lut Desert. In both regions, the relative
humidity seemed to play a critical role. The IR-based technique is based on the
indirect relationship between cloud top temperature and rainfall rate. Therefore, it
is limited to the characteristics of the top of the cloud. Higher relative humidity
near the Caspian Sea may lead to absorption of the humidity of the rainfall drops
under the clouds before reaching the ground, and lead to consequent underestimation
of rainfall using satellite-based rainfall products. The lower relative humidity in the
Lut Desert could cause the evaporation of rain drops below clouds before reaching
the ground. As a consequence, satellite-based rainfall retrieval overestimated the
rainfall rate at the ground. Therefore, relative humidity could be included as an
additional predictor variable for the RF models. The study of [28] showed that
the incorporation of atmospheric information from numerical weather models could
improve satellite-based rainfall retrievals. In a next step, potential improvements by
including relative humidity data as a predictor should be investigated. In addition,
the influence of the complex climatic and topographic situation in Iran together with
the seasonally differing atmospheric dynamics on the performance of the new rainfall

retrieval technique should be investigated in more detail.

In cases where there is not enough data available for feature selection, model tuning
and model training (June in our case), RF models from a similar month (e.g., July

in our case) or some kind of climatological model could be applied.

The main advantage of the proposed method is its applicability at a global scale.
Since it relies only on microwave rainfall information from IMERG for RF model
training, it could be applied theoretically on a global scale without the need for
ground-based rainfall information. Previous studies mostly trained the RF models
with ground-based rainfall measurements, which restricts the usage to the respective
regions. For regions without sufficient ground-based rainfall measurements, these

methods are not applicable. Our method could be applied to different regions with
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different climatology and altitude. This approach has the potential to be applied in
nearby semi-arid regions with comparable climatic patterns, such as Iraq or Kuwait.
However, we recommend that the influence of the orography and the distance to
the sea be verified before application. For other regions with different climatic and
orographic patterns and other geostationary satellite data, the processes of feature
selection and the tuning of the RF models should be re-implemented in order to adapt
the models to the specific circumstances.

Concerning the sufficient accuracy of the obtained results for water resources
disciplines and hydrological modeling the comparisons with validation results of
other satellite-based retrieval techniques in the discussion (section 2.4 show a
good performance of our technique. This is especially true considering the high
spatio-temporal resolution of our data. However, the performance of hydrological
modeling with the usage of satellite-based rainfall data generally has been shown to
depend not just on the rainfall data but also on other factors as hydrological model
formulation, topography, precipitation type and seasonality [59]. In order to apply our
technique for hydrological modeling in Iran we would have to perform a bias correction
of the satellite-based rainfall data with rain gauges, if available in the catchment and
to recalibrate the hydrological model based on the satellite-based rainfall data as

suggested by Maggioni and Massari [59].
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2.A Appendix A

1-IR 3.9
2-WV 6.2
3-WV 7.3

4-1R 8.7

5-IR 9.7
6-IR 10.8
7-IR 12.0
8-IR 13.4

9-AT 3.9-6.2
10-AT 3.9-7.3
11-AT 3.9-8.7
12-AT 3.9-9.7
13-AT 3.9-10.8
14-AT 3.9-12.0
15-AT 3.9-13.4
16-AT 6.2-7.3
17-AT 6.2-8.7
18-AT 6.2-9.7
19-AT 6.2-10.8
20-AT 6.2-12.0
21-AT 6.2-13.4
22-AT 7.3-8.7
23-AT 7.3-9.7
24-AT 7.3-10.8
25-AT 7.3-12
26-AT 7.3-13.4
27-AT 8.7-9.7
28-AT 8.7-10.8
29-AT 8.7-12.0
30-AT 8.7-13.4
31-AT 9.7-10.8
32-AT 9.7-12.0

33-AT 9.7-13.4
34-AT 10.8-12.0
35-AT 10.8-13.4
36-AT 12.0-13.4

37-VAR(3.9)

(6.2)

39- VAR(? 3)
(8.7)
41- VAR(9 7)
42-VAR(10.8)
43-VAR(12.0)
44-VAR(13.4)
45-MAD(3.9)
46-MAD(6.2)
47-MAD(7.3)
8.7)
49-MAD(9.7)
50-MAD(10.
51-MAD(12.
(13.

52-MAD(1

8)
0)
4)

(
(
(
48-MAD(
(
1
1

58-ROD(10
59-ROD(12.0)
60-ROD(13.4)
61-CV 3.9-6.2
62-CV 3.9-7.3
63-CV 3.9-8.7
64-CV 3.9-9.7

65-CV 3.9-10.8
66-CV 3.9-12.0
67-CV 3.9-13.4
68-CV 6.2-7.3
69-CV 6.2-8.7
70-CV 6.2-9.7
71-CV 6.2-10.8
72-CV 6.2-12.0
73-CV 6.2-13.4
74-CV 7.3-8.7
75-CV 7.3-9.7
76-CV 7.3-10.8
77-CV 7.3-12.0
78-CV 7.3-13.4
79-CV 8.7-9.7
80-CV 8.7-10.8
81-CV 8.7-12.0
82-CV 8.7-13.4
83-CV 9.7-10.8
84-CV 9.7-12.0
85-CV 9.7-13.4
86-CV 10.8-12.0
87-CV 10.8-13.4
88-CV 12.0-13.4
89-PCV 3.9-6.2
90-PCV 3.9-7.3
91-PCV 3.9-8.7
92-PCV 3.9-9.7
93-PCV 3.9-10.8
94-PCV 3.9-12.0
95-PCV 3.9-134
96-PCV 6.2-7.3

97-PCV 6.2-8.7
98-PCV 6.2-9.7
99-PCV 6.2-10.8
100-PCV 6.2-12.0
101-PCV 6.2-13.4
102-PCV 7.3-8.7
103-PCV 7.3-9.7
104-PCV 7.3-10.8
105-PCV 7.3-12.0
106-PCV 7.3-13.4
107-PCV 8.7-9.7
108-PCV 8.7-10.8
109-PCV 8.7-12.0
110-PCV 8.7-13.4
111-PCV 9.7-10.8
112-PCV 9.7-12.0
113-PCV 9.7-13 4
114-PCV 10.8-12.0
115-PCV 10.8-13.4
116-PCV 12.0-13.4
117-ELV
118-TPI
119-TRI
120-Slope
121-Aspect
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Chapter 3 Random forest-based rainfall retrieval for Ecuador using GOES-16 and
IMERG-V06 data

Abstract

Accurate rainfall information at a high spatiotemporal resolution for water resource

management, particularly in water-scarce remote areas, is characterized by a coarse network
of operational precipitation gauge stations. For such regions, satellite-based rainfall
products potentially represent a source of reliable and area-wide data on rainfall. This
paper presents an algorithm for satellite-based rainfall retrieval in Ecuador. The algorithm
relies on the precipitation information from the Integrated Multi-SatEllite Retrieval for
the Global Precipitation Measurement (GPM) (IMERG) and infrared (IR) data from the
Geostationary Operational Environmental Satellite-16 (GOES-16). It was developed to (i)
classify the rainfall area (ii) assign the rainfall rate. In each step, the most important
predictors and hyperparameter tuning parameters were selected monthly. Between 19
April 2017 and 30 November 2017, brightness temperature derived from the GOES-16
IR channels and ancillary geo-information were trained with microwave-only IMERG-V06
product using random forest (RF). Validation was done against independent microwave-only
IMERG-V06 data not used for model training. The validation results showed the promising
performance of the new rainfall retrieval technique (multispectral), especially compared to
the IR-only IMERG rainfall product. This indicates that using the multispectral IR data
can improve the retrieval performance compared to single-spectrum IR approaches. The
standard verification scored a median Heidke skill score of 0.6 for the rain area delineation
and R between 0.5 and 0.62 for the rainfall rate assignment, indicating uncertainties for
Andes’s high elevation. Comparison of RF rainfall rates in 2 km? resolution with daily rain

gauge measurements reveals the correlation of R = 0.33.

Keywords: Ecuador; GOES-16; GPM IMERG; machine learning; rainfall retrieval;

random forest

3.1 Introduction

Precipitation is necessary to study the hydrological cycle and to support water
management. In areas characterized by a coarse network of operational rain
gauge stations, highly variable spatiotemporal precipitation patterns cannot fully be
captured. This particularly holds for regions with a complex climate and topography
[1]. Ecuador is one of such areas; the Andes Mountains characterize the country with
the highest peaks exceeding elevations of 6268 above sea level (m.a.s.l.), bordered
by the Amazon region in the east and the lowlands of the Pacific coast, where the
southern coastal part has a semi-arid climate [2, 3, 4]. Because the rain gauge network

is coarse in Ecuador, satellite-based rainfall products represent an alternative source
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of reliable and area-wide information on rainfall.

Several products exist to derive rainfall from single or multispectral visible
(VIS)/infrared (IR) and microwave (MW) sensors, and from merged MW and VIS/IR
sensors (e.g., Climate Prediction Center MORPHing technique (CMORPH) [5],
Precipitation Estimation from Remotely Sensed Information using Artificial Neural
Networks (PERSIANN) [6, 7], and Tropical Rainfall Measuring Mission (TRMM)
MultiSatellite Precipitation Analysis (TMPA) [8].

Concerning the combination of geostationary (GEO) IR with MW sensors on
polar-orbiting satellites, empirical relationships between IR data and MW-based
precipitation information can be derived for rainfall at a high spatiotemporal
resolution [9, 10, 11]. Hong et al. [7], Huffman et al. [8], Kidd et al. [12], Levizzani,
Bauer, and Joseph Turk [13] and Todd et al. [14] used the probability matching
method between the cumulative distribution functions of the MW rain rate and the
IR brightness temperature. Regression methods were applied by Kuligowski [15],
Martin et al. [16], Miller, Arkin, and Joyce [17] and Vicente, Scofield, and Menzel
[18], in which the MW-based rainfall estimates were related to coincident IR data.
Huffman et al. [8] merged TRMM rainfall information with MW and GEO IR data
in the TMPA product with accurate precipitation estimates at a high spatiotemporal
resolution. Typically, MW-based rainfall data are used to calibrate IR-based products
and fill the spatial and temporal gaps where MW data is not available. The Integrated
Multi-SatEllite Retrieval for the Global Precipitation Measurement (GPM) (IMERG),
the TRMM successor, the GPM [19] mission with its GPM core satellite and the
so-called GPM constellation, provides a new global 30-min precipitation product with
a 0.1° resolution [19]. Different studies have indicated the higher performance of the
IMERG compared to other global satellite-based rainfall products ([20, 21, 22, 23,
24].

In Ecuador, several satellite-based rainfall products have been evaluated against
gauge networks. PERSIANN [7] shows low consistency with daily rain gauge
registration [25] in rain area detection. Manz et al. [23] compared the performance of
TMPA and the IMERG against gauge data at different temporal (hourly, three-hourly,
daily) resolutions. The IMERG showed better rain area detection and rainfall
estimation than TMPA, particularly in the high Andes. In another study by Erazo
et al. [26] in the high Andes, TRMM 3B43 Version 7 retrievals showed a high
correlation of approximately 0.82 on a monthly scale compared to the interpolated

gauge information at a spatial resolution of 0.25°.

99



Chapter 3 Random forest-based rainfall retrieval for Ecuador using GOES-16 and
IMERG-V06 data

Concerning the above-stated use of multiple sensors to increase the accuracy of
satellite-based rainfall retrievals, new-generation GEO multispectral sensors, such as
Meteosat Second-Generation Spinning Enhanced Visible and Infrared Imager (MSG
SEVIRI), HIMAWARI, and the Geostationary Operational Environmental Satellite 16
(GOES-16), offer the potential to use more spectral bands for rainfall retrieval. This
higher spectral information can improve the IR-only part of the IMERG product,
relying solely on the 10.8 pm channel. Several studies have documented improved
satellite-based rainfall estimation by integrating full spectral information compared
to a single IR channel [27, 28, 29, 30, 31, 32, 33, 34].

On the regional scale, new GEO satellite systems offer the possibility to retrieve
rainfall information at a higher spatiotemporal resolution compared to the IMERG
product (GOES-16 (10 min, 2 km?), MSG SEVIRI (15 min, 3 km?), and HIMAWARI
(10 min, 2 km?)). This would allow capturing smaller-scale rainfall events that occur
due to topographic forcing and other local precipitation processes in a more accurate
way [23, 35, 36, 37].

Although the remote sensing of rainfall at a high spatiotemporal resolution is
becoming more prevalent, the main challenge of combining data from diverse sensors
to make strides in inconsistency, precision, scope, and convenient rainfall estimates
still remains [27]. Recently,machine learning (ML) techniques have been used to
retrieve rainfall from multispectral GEO data [6, 7, 29, 30, 31, 32, 33, 34, 38, 39].
They offer high potential for dealing with nonlinear and complex relationships between

a target variable, such as rainfall, and its predictors [40]

The objective of this study was to provide accurate rainfall information at a high
spatiotemporal resolution for Ecuador. We aimed to develop an algorithm to generate
regionally adapted rainfall products for Ecuador based on the new GOES-16 system.
The high spatiotemporal resolution of GOES-16 offers excellent potential to provide
rainfall information in a quasi-continuous manner. The algorithm uses multispectral
IR from GOES-16 to estimate surface rainfall rates based on RF [41]. Microwave-only
precipitation information from IMERG-V06 was used as a reference to train the RF
model (see the section 3.2.4.3 for more detail). The developed algorithm includes two
steps: (i) Classification of the rainfall area and (ii) assignment of the rainfall rate.
In each step, feature selection and tuning of the RF model are implemented. We
validated the RF model results against the independent microwave-based IMERG-V06
rainfall data not used for model training. To analyze a potential improvement in

comparison to algorithms that rely only on one infrared channel we also validated

60



3.2 Methodology and data

the results of the IMERG IR-only dataset against the MW-based rainfall data.
Additionally, we applied the RF models to an independent time period and validated
the results with independent gauge data. In this step, we also validated the results
of the IR-only IMERG products against the gauge data.

3.2 Methodology and data

3.2.1 The architecture and configuration of the rainfall retrieval

model

We developed a new satellite-based rainfall retrieval method that uses a combination
of GEO data and polar orbiting MW-based rainfall information to produce high
spatio-temporal rainfall information. The novelty is the application of machine
learning random forest methods for this purpose. Microwave-only precipitation
information from the IMERG-V06 was used as a reference to train the RF models.
The RF rainfall retrieval algorithm workflow is shown in Figure 3.1. The algorithm
was developed in a processing framework in Python 2.7 using the Scikit-learn 0.20.2
package [42].

In the first step, the predictors and the target variable (i.e., rainfall) are processed
to generate training/validation and application datasets in the same spatiotemporal
resolution. Rainfall area delineation is then conducted by RF classification, where
all cloudy pixels from the binary class of cloud mask (BCM) [43] are classified into
rainy or non-rainy. After the rainfall rate assignment is realized by RF regression,
the respective RF regression model is applied to the second step’s RF' classification
model. The quality of both RF models (i.e., the RF classification and RF regression
models) is assessed using the validation dataset. Finally, the RF models are applied

to the independent time period and validated against the independent gauge data.

The RF classification and RF regression training is conducted based on the MW
overpasses in the IMERG, and the feature selection and tuning of the hyperparameters
are performed monthly. The term “feature” used in the RF models has the same
meaning as “predictor.” The number of available models for one day ranges from 1 to
4 on average, depending on the time of year (Figure 3.2). In regions with complex
topography, the higher temporal resolution models lead to better precipitation

estimates [29].
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Figure 3.1: The adapted workflow of the rainfall retrieval for Ecuador with the new
GOES-16 system. GOES-16; IMERG; OOB; RF.

3.2.2 Data processing—matching between GOES-16 and the

microwave-based IMERG

To train and validate the rainfall retrieval model, multiband GOES-16 Advanced
Baseline Imager (ABI) IR data, IMERG data, and the digital elevation model (DEM)
were downloaded and extracted for Ecuador (Figure 3.1—data processing stage). he
GOES-16 and IMERG data were processed in Python 2.7. Because of the different
spatial resolutions of the GOES-IR bands and the BCM ( 2 km?), IMERG ( 11 km?),
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Figure 3.2: The number of scenes with enough data for the RF model training and
validation for Ecuador. Boxes show the 25th, 50th, and 75th percentiles.
Whiskers extend to the most extreme data points between the 75th and
25th percentiles. Outliers are shown as diamonds.

and DEM ( 1 km?), we used the average resampling techniques in gdal [44] to ensure
pixel matching between the different datasets. All of the data were projected to
WGS84 and resampled to the spatial resolution of the IMERG ( 11 km?).

We used different sub-datasets in the IMERG product (Table 3.A.1 in Appendix
3.A ). We selected training and validation pixels from “precipitationCal” when the
overpass of passive microwaves (PMWs) was available (“HQobservation”). We filtered
the pixels where the “PrecipitationQualityIndex” was >0.6 (which indicates the

current half-hour microwave swath data) [45].

In the pixels of the training and validation datasets, we also selected the
“IRprecipitation” from the IMERG. This dataset provides level 3 IR retrieval from
PERSTANN-CCS in the IMERG. These IR data are calibrated to the merged
PMW-only estimates regionally [45]. We used this dataset to compare it to the
results of our rainfall retrieval.

To compile the most solid dataset for model training and validation, we defined the
following criteria: (i) For temporal matching; we collected paired GOES-16 and the
microwave-based IMERG where the difference in the observation time (scan time for
GOES and “HQobservationTime” for the IMERG) between both datasets was within
7 min; (ii) the IMERG “PrecipitationQualityIndex” was considered to select pixels
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with the high-quality merged MW-only precipitation estimates (“HQprecipitation”);
(iii) following Hou et al. [46], we used a threshold of 0.2 mm/h to distinguish between
rainy and non-rainy pixels in the IMERG product; (iv) we only considered cloudy
pixels detected by the BCM. The predictor variables listed in Table 3.1 were extracted
for the pixels fulfilling all criteria only, together with the corresponding MW-only
precipitation estimate. Then the dataset is divided into training/validation dataset
and application (temporally independent validation). The training/validation dataset

was randomly divided into a training dataset (70%) and a validation dataset (30%).

Table 3.1: Overview of the predictor variables considered for the RF regression and
the RF classification. Geostationary Operational Environmental Satellite
(GOES) bands are shown with their central wavelength in micrometers
(n). AT indicates the temperature band differences. CV, cross-variogram;
EL, terrain elevation; IR, infrared; MAD, madogram; PCV, pseudo-CV;
ROD, rodogram; TPI, Topographic Position Index; TRI, Topographic
Ruggedness Index; VAR, variogram; WV, water vapor

GOES satellite

Ancillary geoinformation

GOES bands Derived data
IR 3.9 AT (all band combination) ELV
WV 6.2 VAR (all bands) TPI
WV 6.9 MAD (all bands) TRI
WV 7.3 ROD (all bands) Slope
IR 8.4 CV (all band combination) Aspect
IR 9.6 PCV (all band combination)
IR 10.3
IR 11.2
IR 12.3
IR 13.3

To consider the complex diurnal precipitation processes in Ecuador, the above
mentioned approach was applied on a scene-based, whenever possible. According to
the criteria mentioned above, whenever enough rainy pixels of the MW-based IMERG
rainfall product were available for a scene of the study area, we compiled a scene-based
dataset. Of this scene-based dataset 70% of the pixels were used for model training
and the remaining 30% of the pixels were used for validation.

Figure 3.2 provides an overview of the number of scenes used for the RF model
training and validation in Ecuador for each month. The overall pixels used for the

RF model training and validation were 1,202,213 and 516,145, respectively.
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3.2.3 Training and validation of the RF models
3.2.3.1 Model training and hyperparameter selection for the RF models

For rain area delineation cloudy pixels were separated into rainy and non-rainy areas
by the implementation of RF classification in Scikit-learn-0.20.2 [42] in Python 2.7
(Figure 3.1—Training). The classification training dataset was extremely unbalanced.
The average ratio between the non-rainy and rainy pixels in a scene was approximately
10:1. To address this imbalance, we kept all of the observations belonging to the
minority rainy class (microwave-based IMERG >0.2 mm/h) and randomly selected
(with replacement) non-rainy pixels according to different ratios (Table 3.A.2 in
Appendix 3.A). Finally, we decided on five times more non-rainy pixels than rainy
pixels, which provided the highest Heidke skill score (HSS) (Table 3.A.2 in Appendix
3.A).

The first step for RF classification is determining the most important predictors
and hyperparameter tuning (Figure 3.1-Training). Both steps are conducted monthly.
Concerning feature selection, a common precipitation retrieval approach based on
GEO IR data is defining a relationship between cloud-top brightness temperatures
and reference rainfall amounts, assuming the rainfall rate increases as the cloud-top
temperature decreases. As shown in several studies [6, 27, 34|, other GEO-derived
rainfall-relevant features could improve rainfall retrieval from satellites.

In this study, selecting the most important predictors was achieved by applying
recursive feature elimination (Figure 3.A.1 in Appendix 3.A). This process determines
the best-performing predictor sets out of the initial predictor space (Table 3.1). The
RF modeling was started with all 181 predictors, and the least significant predictors
were removed based on the “feature importance” metrics using Scikit-learn for RF
methods [41]. At the end of each iteration, before removing the least important
predictor, the model’s quality was calculated using the out-of-bags (OOB) score [41,
42]. Ultimately, we filtered the predictors with the best average ranking based on
feature importance and the highest OOB score from the original set of 181 monthly.

Then, to obtain robust RF performance results, we tuned and optimized the
hyperparameters. We iteratively tuned the hyperparameters monthly, including the
total number of decision trees and the number of input features (n) used at each
node, to determine the optimal setting for the RF classification. Moreover, a grid
search of the parameter options was conducted to identify the best combination of

hyperparameters based on the OOB score and optimal processing time.
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For addressing the imbalance between the non-rainy and rainy pixels monthly, we
selected 2000 pixels randomly from the minority class (rainy pixels) and 10,000 pixels
from the majority class (non-rainy pixels) for both the predictor selection and the
hyperparameter tuning [34]. Additionally, we used the ‘class weight="balanced’ in
RF from Scikitlearn0.20.2 [42] to include a balanced weight bootstrap subsample of the
RF models. This balance mode automatically adjusts weights inversely proportional
to the class frequencies [42]. To ensure spatially and temporally robust results, we
repeated the predictor selection and hyperparameter tuning 50 times to produce 50
independent datasets of randomly selected pixels for each month [34].

For the rainfall rate assignment, the RF regression model was trained with rainfall
information from the microwave-based IMERG (rainfall rate >0.2 mm/h). The
feature selection and hyperparameter tuning were conducted in the same way as for
the RF classification. As rainfall rates are not evenly distributed, unbalanced rainfall
datasets are difficult to predict by RF. To obtain more balanced rainfall datasets, we
applied two different undersampling methods. In this case, undersampling signifies
the removal of low rainfall rates with high frequencies in favor of high rainfall rates
with low frequencies.

The first undersampling was applied during the monthly feature selection and
hyperparameter tuning. We classified the rainfall rate monthly with a range of 1
mm/h and estimated the probability of occurrence (PO) of every class. The average
probability of occurrence (APO) was calculated by simply summing up all POs to
the number of defined classes each month. If the PO in a class was higher than the
APO, we randomly selected rainfall pixels from said class until the PO reached the
APO. If the classes of precipitation rate ranges contained fewer pixels than the APO,
we took all of these classes’ values.

We applied the second undersampling during the monthly feature selection and
hyperparameter tuning and on the RF scene-based training. Here, we used the sample
weight in the fit command of the RF package “compute sample weight,” which assigns
a balanced weight to each rainfall class in the bootstrap subdataset [42]. Table 3.A.3
in Appendix 3.A summarizes the model’s performance with and without applying the

classweight or computesampleweight functions in RF.

3.2.3.2 Validation of rainfall area delineation and rainfall rate assighment

The result RF classification and RF regression was validated against the independent

microwave-based IMERG rainfall from the validation datase. Validation was done for
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the detected rainfall area and the assigned rainfall rate separately and the combined
final rainfall product (RF-combined).

To analyze the performance of the RF classification, we calculated the HSS,
probability of detection (POD), and false alarm ratio (FAR) in the study area over the
study period (Table 3.A.4 in Appendix 3.A). Meanwhile, to evaluate the performance
of the RF regression, we used the correlation coefficient (R), the root-mean-square
error (RMSE), and the mean absolute error (MAE) (Table 3.A.4 in Appendix 3.A).
The validation statistics were calculated for every scene for which enough validation
pixels were available. To analyze a potential improvement of our approach compared
to existing retrieval models that rely only on one IR channel, we validated the IR-only
sub-dataset in the IMERG in the same way.

We have also used these validation metrics to analyze the spatial performance of
the rain area delineation and rain rate assignment. We evaluated all metrics for each
pixel in the study area. Moreover, to better understand the model performance with
respect to the rainfall rate in the different regions, the relative RMSE and MAE were
calculated by dividing their values in each pixel by the average MW-based IMERG
rainfall rate over the whole period. Furthermore, the mean differences between the
MW-based IMERG rainfall rate and the RF-combined model from the validation
dataset were investigated. To calculate the mean difference, we subtracted the
MW-based IMERG rainfall in each pixel from that of the RF-combined model and

averaged it over the whole period.

3.2.3.3 Application and validation of the model in GOES native resolution

To generate the RF rainfall retrieval at a high spatiotemporal resolution (2 km?2, 15
min), we applied the models in the scenes where the microwave-based IMERG was
available in the same time slot and the following scenes until the next microwave-based
IMERG RF model was available.

To analyze our approach’s potential improvement compared to the IR-only IMERG,
we also generated the RF rainfall retrieval for 11 km? and 15 min. The rainfall area
delineation and rainfall rate assignment’s overall performance was investigated against
gauge stations (Figure 3.4) ffor the studied period using the HSS and R, respectively
(Table 3.A.4 in Appendix 3.A). For this purpose, the RF rainfall retrieval data (15
min and 2 km?/11 km?) were aggregated to the gauge data’s daily resolution. The
aggregation was conducted when at least 92 scenes of the RF rainfall retrieval were

available. The RF-only IMERG data were aggregated daily when at least 42 scenes
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from the IR-only IMERG were available. We used a threshold of 0.6 mm/day to
delineate between rainy and non-rainy days. The R was calculated for days with rain

in all datasets.

3.2.4 Dataset
3.2.4.1 GOES

GOES-16 is placed at 75.2°W longitude as its operational location [47, 48]. TThe
primary instrument is the Advanced Baseline Imager (ABI), a multispectral passive
imaging radiometer. ABI measures the Earth’s radiance in 16 spectral channels
ranging from visible (0.47 pm) to long-wave IR (13.3 pm) every 15 min. Included
are ten IR bands between 3.9 and 13.4 pm with a nominal spatial resolution of 2 km?
at the sub-satellite point. GOES-16 has been available since 19 April 2017, and this
study used data from only one year, 19 April 2017 to 19 April 2018. The dataset
from 19 April 2017 to 30 November 2017 is used for training and validation, and the
dataset between 1 January to 19 April 2018 is used for application and temporally
independent validation of the algorithm.

Several studies have shown that multispectral satellite data provide information
about microphysical and optical cloud properties [49, 50, 51, 52, 53]; therefore, such
data can improve satellite-based rainfall retrievals [29, 30, 31, 32, 34]. Thies, Nauss,
and Bendix [54] demonstrated that the channel differences between IR bands provide
information about the cloud phase, the cloud top, and the cloud water path, which
can improve satellite-based rainfall retrievals [29, 32, 34]. We, therefore, considered
the IR bands and the IR channel differences as predictor variables in our RF-based
approach.

Spatial information, such as the variance within spectral bands, which are
important for capturing clouds’ heterogeneity, cannot be obtained by only looking
at single pixel values [55]. Information about the spatial variance within a given
raster dataset has improves the output of satellite-based cloud detection and rainfall
retrieval techniques [29, 30, 34, 55, 56]. To consider the spatial variability of raining
clouds, texture features were calculated from these predictor variables using a 5 x
5 pixel moving window approach. For individual predictors, variograms (VARs),
madograms (MADs), and rodograms (RODs) were calculated, while for each possible
predictor variable combination, cross-variograms (CVs) and pseudo cross-variograms
(PCVs) were calculated [29, 30, 34, 55] (please refer to Schultz et al. [56] for more
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information). IIn addition to the GOES-16 IR channels, the BCM was used to restrict
the rainfall retrieval algorithm to cloudy pixels. A list of the predictors based on
GOES spectral bands is shown in Table 3.1.

3.2.4.2 Ancillary geo-information

Due to their high weather variability, mountainous regions present a great challenge
to satellite-based rainfall retrievals [57, 58]. Therefore, in this study, the terrain
elevation (ELV), Topographic Position Index (TPI), Topographic Roughness Index
(TRI), slope, and aspect (orientation of the slope) were considered. The ELV was
provided by the Global 30 Arc-Second Elevation DEM [59]. The TRI, slope, and
aspect were retrieved from the ELV in GRASS GIS-7 [60], and the TPI was calculated
from the ELV in SAGA [61]. Table 3.1 provides an overview of the predictors. Initially,
we considered 181 predictors for the development of the RF models.

3.2.4.3 IMERG

The IMERG is a product that merges and intercalibrates all available MW-based
precipitation estimates, MW-calibrated IR estimates, and rain gauge measurements
globally [45]. Here, we used the IMERG-V06, which is the latest available version, for
which Tan et al. [62] demonstrated the general improvement in the precipitation field
compared to version-05. The IMERG-V06 uses five PMW instruments to estimate
rainfall. The PMW precipitation estimates were intercalibrated by applying the
CMORPH algorithm [5] to compute the motion vectors from the IR measurements
and the diverse atmospheric variables in numerical models to produce the gridded
rainfall at a fine resolution quasi-globally (11 km?, 30 min). This gridded product
was completed by microwave-calibrated rainfall estimates retrieved from an artificial
neural network model from PERSIANN-CCS [7] and GEO IR. The final rainfall
estimate was calibrated with monthly gauge data from the Global Precipitation
Climatology Center (GPCC) [45] (for more information, refer to Huffman et al. [45]).
The different sub-datasets in the IMERG final half-hourly product used in this study
are shown in Table 3.A.1 in the Appendix 3.A.

The microwave-based rainfall estimates from the IMERG-V06 product with
the highest quality (see section 3.2.2) were used as a reference for developing the
GOES-IR rainfall retrieval. The spatial distribution of the MW-based IMERG
average rainfall rate for the study period is illustrated in Figure 3.3a. Overall, the

rainfall rate varied between 0.2 and >8 mm/h. The rainfall distributed unevenly

69



Chapter 3 Random forest-based rainfall retrieval for Ecuador using GOES-16 and
IMERG-V06 data

over the country, depending on the altitude of the regions. The Amazon area
was rainier compared to the Andes and the Pacific coastal plains. The rainfall in
mountainous areas showed more variability in space, ranging between 0.2 and 6
mm/h. In transition areas from the Andes to the Amazon rainforest, the rainfall
rate increased, mostly in the southeast of Ecuador. The rainfall in these regions was
predominantly of the subscale convective systems [63]. For the semi-arid areas in
the Southwest of Ecuador and the Northwest of Peru lower rainfall rates between 0.2

and 4 mm/h can be seen.

Average rainfall rate, microwave-based IMERG (mm/h)
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Figure 3.3: Spatial distribution of (a) the microwave-based IMERG average rain rate
from 19 April 2017 to 30 November 2020, and (b) the elevation.

3.2.4.4 Gauges

We used a rain gauge network comprising 22 stations with daily resolution (Figure 3.4)
to validate the final RF rainfall retrieval. The data were acquired from the National
Institute of Meteorology and Hydrology (INAMHI) in Ecuador. These data are not
part of the GPCC network and were thus not considered for the gauge-calibrated final
IMERG product.
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Available gauge observations
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Figure 3.4: The distribution of the gauges used in this study. INAMHI, National
Institute of Meteorology and Hydrology.

3.3 Results

3.3.1 Feature selection and the most important predictors

Figure 3.5a illustrates the optimum number of predictors for RF classification
(orange) and RF regression (blue) with the respective optimum OOB score. The
RF classification showed a number of features between 18 and 25 for an OOB score of
approximately 0.85 and did not vary much between the months. The RF regression
offered a higher variability between the months, with the best model performance for
25 features with an OOB score of 0.6. Figure 3.5b shows the selected features and the
feature importance for both the RF classification and the RF regression. Ancillary
geoinformation played a vital role in modeling the rain area and the rainfall amount,
which is not surprising, as elevation played a crucial role in the rain dynamics. The
texture features were also identified as important predictors for the RF models. This

especially holds for the PCV calculated for the different channel combinations.
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Figure 3.5: Feature selection: (a) Number of features selected for the RF
classification and regression with the related optimum OOB score for
the training/validation period. (b) The most important predictors and
related features for both the RF classification and the RF regression. The
predictors were selected when chosen at least three times for both the
RF regression and the RF classification. Boxes show the 25th, 50th, and
75th percentiles of the feature importance. Whiskers extend to the most
extreme data points between the 75th and 25th percentiles. Outliers are
shown as diamonds.

3.3.2 Temporal validation of the RF rainfall retrieval

To assess the quality of the RF rainfall retrieval during the validation/training period
(19 April 2017 to 31 November 2017), verification scores for the RF classification, the
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RF regression, and the RF-combined model were investigated. The verification scores
are shown as a monthly boxplot to understand the model performance at different
times of the study period (Figure 3.6, Figure 3.7, and Figure 3.8). December 2017
was not included due to the low availability of GOES-16 data.

B - @ RF classification model
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Figure 3.6: Box plots of the verification scores for the rainfall area delineation (RF
classification), over the microwave swath in training/validation period.
Boxes show the 25th, 50th, and 75th percentiles. Whiskers extend to the
most extreme data points between the 75th and 25th percentiles. Outliers
are shown as diamonds.

The boxes show the monthly 25th, 50th, and 75th percentiles of the verification

indices. The whiskers extend to the maximum and minimum verification scores in a

month between the 75th and 25th percentiles. Beyond the whiskers, the scores are
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Figure 3.7: Box plots of the verification scores for the rainfall rate assignment over
the microwave swath in training/validation period. Boxes show the 25th,
50th, and 75th percentiles. Whiskers extend to the most extreme data
points between the 75th and 25th percentiles. Outliers are shown as
diamonds.

considered outliers and are plotted as individual diamonds [64].

Regarding the RF classification (Figure 3.6, the median of the POD per month
varied between 0.55 and 0.63 in October 2017 and November 2018, respectively. The
overall performance indicated by the HSS experienced slight changes between the
different months, with higher amplitudes in April and September and an overall
median of HSS of 0.6. The average FAR per month ranged from 0.21 to
0.4. Compared to the IR-only IMERG, the RF classification models show better
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Figure 3.8: Box plots of the verification scores for the rainfall rate assignment
combined with the rain area delineation (RF-combined model), over the
microwave swath in training/validation period. Boxes show 25th, 50th,
and 75th percentiles. Whiskers extend to the most extreme data points
between the 75th and 25th percentiles. Outliers are shown as diamonds.

performance.
For the RF regression, the median of the R, RMSE, and MAE per month (Figure
3.7) was 0.6, 1.5 mm/h, and 1.4 mm/h, respectively. The monthly variation in the

values indicated no changes. As with the RF classification, the RF regression model

outperformed the IR-only IMERG results.

Altogether, the RF-combined model validation resulted in R values between 0.5

and 0.62 (Figure 3.8).

Compared to the validation results for the independent
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RF regression (Figure 3.7), this is of lower quality. Again, the RF-combined model
outperformed the IR-only IMERG.

Figure 3.9 displays the monthly mean and maximum rainfall amounts for the
RF-combined model and the MW-based IMERG. Concerning the mean rainfall
rate, the RF-combined model showed an overestimation compared to the MW-based
IMERG, although the annual cycle was in good accordance in both datasets. The
extreme events were analyzed if the maximum rainfall amount per month in the
MW-based IMERG could be reproduced by the RF-combined model for the same
location and the same time step. The graph indicates that the RF models had
problems detecting high rainfall amounts compared to the MW-based IMERG and

underestimated the rainfall amount.
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Figure 3.9: The monthly mean and maximum rain rates for RF-combined model and
the microwave-based IMERG in the training/validation period.

3.3.3 Spatial validation of the RF rainfall retrieval

Figure 3.10 shows the spatial performance of the RF classification for the studied
period. The HSS (Figure 3.10a) and POD (Figure 3.10b) share similarities in their
spatial distribution. In the east of Ecuador, with the Amazon rainforest and a higher
average rainfall rate (Figure 3.3a), the overall performance of the RF was better,
proven by higher POD (Figure 3.10 b), higher HSS (Figure 3.10a), and lower FAR
(Figure 3.10c) values.

Along the Ecuadorian coast with lower average rainfall rates (Figure 3.3a), the
HSS (Figure 3.10a) was between 0.1 and 0.8 with higher uncertainties near the cities
of Jipijapa (in the south) and Muisne (in the north). The performance of the RF
classification models seemed to be influenced by the topography (Figure 3.3 b). The

HSS values (Figure 3.10a) are lower in areas around the peak elevations near Azogues,
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Figure 3.10: Distribution of (a) POD, (b) FAR, and (c) HSS in the study region for
the retrieval of the rain area. The performance of the RF classification
along the elevation is shown in (d) over the training/validation period.
The variables were calculated for each grid point of the validation dataset
over the training/validation period.

Ambato (Chimborazo area), Cuenca (Cajas National Park), and Sangolqui-Quito

(Pichincha volcano). The FAR (Figure 3.10c) showed comparatively higher values in
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these high-elevation areas.

The RF classification showed some uncertainties from the coastal transition areas to
the Andes and the Andes to the Amazon rainforest. As an example, this was indicated
by the high FAR value of approximately 0.75 at —78.5°W and —1.5°S (Imbabura
Volcano), as well as the lower POD and HSS values for these regions. Altogether,
the evaluation results indicate inaccuracies in the RF classification for the highest

elevations around the volcanoes.

Figure 3.10d provides an overview of the RF classification performance, along
with the altitude. A terrain elevation of approximately 0-500 .a.s.] has the
best performance; such heights are located in the Amazon and the coastal areas
(Figure 3.3b). With increasing elevation, the rain area delineation’s performance
decreased until 3500 .a.s.l For regions above 3500 .a.s.l, the models performed poorly.
Altogether, the graph confirms the low performance of the rain area delineation in

the higher elevation and volcano regions of the Andes.

The evaluation results of the RF-combined model are displayed in Figure 3.11. The
calculated mean differences between the average rainfall rates from the RF-combined
model and the MW-based IMERG product indicates an overestimation by the
RF-combined model over almost the entire Ecuador. In the mid-east of Ecuador and
the southern parts of the Andes, the RF-combined model showed an underestimation.
Moreover, across the eastern slopes of the Andes, with generally higher rainfall rates,

the model underestimated the rainfall (Figure 3.3).
The relative MAE (Figure 3.11b) and relative RMSE (Figure 3.11c) show similar

spatial performances, which seem to be related to the spatial distribution of the
average rainfall rate in Figure 3.3a. For areas with lower average rainfall rates in
mountainous regions, higher relative MAE and RMSE values were calculated. This
is also true for the western parts of the coastal plains and the semi-arid areas of
northwestern Peru and southwestern Ecuador. The RF-combined model performed
better in the Amazon basin. Figure 3.11d shows the better performance of the
RF-combined model for higher rainfall rates concerning R and MAE. The mean
differences between the MW-based IMERG and RF-combined model rainfall rates
increased for higher rainfall rates.

The RMSE and MAE values for the study area are between 0 and 4 mm/h (Figure
3.12a, b) . Higher RMSE and MAE values can be seen in the transition zones from

lower to higher altitudes across the eastern and western slopes of the Andes. For
example, high MAE and RMSE values occurred at —79.45° W and —1.15° S and at
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Figure 3.11: Spatial distribution of (a) the mean differences between the MW-based
IMERG and the RF-combined model rain rates; (b) the relative MAE;
(c) the relative RMSE; (d) the performance of the rainfall retrieval as
box plots for low, medium, and high precipitation rates according to
percentiles. The boxes display the 25th, 50th, and 75th percentiles.
The relative MAE and RMSE were calculated by dividing the MAE and
RMSE values in each pixel by the average MW-based IMERG rainfall
rate over the training/validation period. Nan is the values in which no
data from MW-based IMERG was available.

~77.3° W and 1.36° S. This corresponds to areas with higher mean rainfall rates
(Figure 3 a). The R values show a higher spatial variability in the RF-combined
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model’s performance, and lower R values can be found in some higher elevated
areas and along the coast. Generally, the model performance slightly increases with

elevation but decreases at very high elevations (Figure 3.12d).
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Figure 3.12: The (a) RMSE, (b) MAE, and (c) R in relation to latitude, longitude,
and elevation. The (d) RMSE, MAE, and R spatially averaged in relation
to elevation over the training/validation period.
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3.3.4 The overall performance of the RF rainfall retrieval

compared to gauge data

We compared the final product of the RF rainfall retrieval in two different spatial
resolutions against independent daily gauge measurements from 1 January to 19 April
2018.

The results for the RF rainfall retrieval in 11 km? resolution showed a median HSS
of 0.35 for all INAMHI rain gauge stations (Figure 3.13a), while the HSS for the
IR-only IMERG product tends toward 0.2. The RF rainfall retrieval shows a better
performance in estimating the rainfall rate (Figure 3.13a) with R values around 0.34
(Figure 3.13a).

Figure 3.13 ¢, d displays the spatial distribution of the HSS and R values for the RF
rainfall retrieval in 15 min and 2 km? resolution. The worst HSS was related to the
transition areas from the Andes to the Amazon rainforest. The highest HSS of 0.5 was
obtained for the station near Portoviejo. The R value was also the most substantial
for the station near Portoviejo, and was high ( 0.4—0.7) in the western/northern parts
of Ecuador and the Amazon region. For the northern stations, lower R values were
observed. The median R value for all the stations was 0.33, and the best correlation

was 0.70. The HSS did not show much variability across the different regions.

3.4 Discussion

The feature selection results for the RF classification and the RF regression indicated
that the models identified the close link between topography and rainfall. The feature
importance of ancillary geoinformation was relatively high compared to the other
predictors and was frequently selected. This shows that elevation plays a vital role in
the rainfall model. The selected predictors for both models showed that the models
preferred to use two bands in combination, where the dominant texture metric selected
in almost all months was the PCV. This was also shown by Egli, Thies, and Bendix
[55] and Turini, Thies, and Bendix [34].

The models showed a high R ( 0.64) with a low RMSE ( 2.78 mm/h) and a low MAE
( 1.66 mm/h). The variability of the R per month (Figure 3.8) indicated a connection
to the detected rain area (Figure 3.6). Following the rain delineation models’ lower
performance in July 2017 and October 2017, the RF-combined model’s quality was

also worse for these months.
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Figure 3.13: (a) Boxplot of the validation measures of HSS and R for the comparison
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of RF rainfall retrieval and the IR-only IMERG at an 11 km? resolution
against the INAMHI gauge data. The scores were calculated based on
all the available data for the period between 1 January 2018 and 19
April 2018. The boxes display the 25th, 50th, and 75th percentiles. (b)
An example of the RF-based rainfall rate for 12 January 2018 at 18:00
UTC at a high spatiotemporal resolution (15 min and 2 km?). (c) Spatial
distribution of the HSS for the RF rainfall retrieval in 2 km? and at daily
resolution. (d) Spatial distribution of the R for the RF rainfall retrieval
in 2 km? and at daily resolution.



3.4 Discussion

The verification scores for the rain area delineation showed an improvement in
comparison to previous studies. On average, the HSS in our study was 0.6, while in
the studies by Kithnlein et al. [31] and Min et al. [39] was between 0.2 and 0.5 and
0.53, respectively. This might be due to our study’s feature selection process, but not
in the mentioned studies. For Ecuador, the study of Ward et al. [25] revealed POD
of 0.36 and FAR of 0.2 for the rain area in the TRMM 3B42 product at a daily
timescale and a spatial resolution of 0.25° in a small basin of Paute in Ecuador near
Cuenca. In this region, our RF models for the rain area delineation obtained POD
between 0.3 and 0.48 and FAR between 0.2 and 0.3 in 15 min and 0.1°. This shows
the application of new ML algorithms such as RF could improve MW-IR blending

algorithms.

Concerning the rainfall rate assignment, the median R in our study was between
0.5 and 0.62 for half-hourly retrievals, while Kiithnlein et al. [31] obtained R between
0.14 and 0.46 for Germany at an hourly resolution. In another study, Kiihnlein et al.
[32] achieved R between 0.69 and 0.72 on an hourly scale in Germany. Our product
had a slightly lower performance than that of Kiihnlein et al. [32], which might be
due to the more complex topography in Ecuador than Germany. Small-scale regional
conventions are common in Ecuador [63], while Germany has large-scale advective
systems, particularly in winter, which are easier to detect. Subscale convective rainfall
systems due to local topographic conditions [63] are probably not captured by GOES

data, while the large-scale advective rainfall systems in Germany are easier to detect.

The validation of the TRMM in Ecuador with interpolated rainfall data from
intense gauges revealed a mean R of 0.82 for a monthly spatial resolution of 0.25°
[26]. Kithnlein et al. [32] showed that the performance of rainfall products increases

by increasing the time interval.

Figure 3.9 indicates that the RF models have problems in predicting high rainfall
rates, which was also shown by Kiihnlein et al. [32]. Since the applied RF regression
model is a very low-order regression model (only the average of the observations over
the leaves was used), extreme events were underestimated compared to the training
dataset’s average values [32]. Therefore, estimating the extreme events useful for
flood management, e.g., under El Nino conditions (e.g., Bendix et al. [65] remains a

challenge for the proposed RF-based rainfall retrieval.

The RF classification results indicated a relationship to the different climate zones
in the study area. In the semi-arid regions in the southwest of Ecuador and the
northwest of Peru, the RF models showed lower HSS and POD (Figure 3.10a,b) than
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the more rainy regions in the Amazon rainforest. For the RF-combined model, higher
MAE and RMSE were found in the semi-arid areas with lower rainfall rates (Figure
3.3 and Figure 3.10 ). Training separate models for different climate zones might be

an approach for further improvement.

The spatial details of the RF models’ performance enable us to identify better the
error sources and their contributions to different climates. The spatial variability in
the RF model performance could also be attributed to the fact that the training and
validation pixels were selected randomly in each scene. As a result, the RF models
were better able to capture the short-term variability of the rainfall distribution. The
more extended training period provided more information from the MW swats in
different regions and times [27, 34]. Another reason for the spatial differences in
the verification score could be related to the different viewing geometries between
the GEO and the polar-orbiting MW systems [27, 34]. These problems introduce
some lags in rainfall events that might be problematic for rainfall structure analysis
[27].  Furthermore, differences between the MW systems considered in the GPM
constellation might be an issue. According to Tan et al. [62], MW sensors’ different
properties could lead to different rainfall rates for the same rainfall event, even when

the same retrieval scheme is applied.

The results confirmed the rainfall estimation limitations of satellites across
regions with a complex topography (Figure 3.10d and Figure 3.11d). In Ecuador,
high-elevation areas and volcanoes are covered by ice, which is erroneous in the
MW-based IMERG [66]; this is a surface-screening problem. The snow and ice on
the ground weaken the upwelling microwave signal, erroneously considered the PMW

retrieval’s rainfall [67].

Compared to the RF-only IMERG, the RF models showed distinct improvements in
rain area delineation (Figure 3.7) and rainfall rate assignment (Figure 3.8). This is in
agreement with the results of Kolbe et al. [29, 30] and Turini, Thies, and Bendix [34].
Also, we compared our product with INAMHI gauge measurements. The RF-based
rainfall retrieval performed better on the 11 km? and 15 min scale than the IR-only
IMERG (Figure 3.11a). This illustrates the higher potential of using multispectral
GEO data rather than only one IR channel rainfall retrieval, as is done in the IMERG.

We found an R of 0.33 and a HSS of 0.27 for the RF-based rainfall retrieval (2 km?,
15 min). Zubieta et al. [68] examined TRMM-based products’ performance (TMPA
V7 and TMPA RT) and the IMERG-V03 with a spatial resolution of 0.25° and 0.1°,

respectively, in the Peruvian-Ecuadorian Amazon basin. In this study, the daily HSS
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varied from 0 to 0.2 in the Andean region. Our RF-based rainfall retrieval showed
HSS values from 0.05 to 0.5 for the same areas at a 2 km? and 15 min resolution.

The evaluation results for the IMERG and TMPA obtained by Manz et al. [23] at a
daily scale and 0.25° revealed higher R in regions with higher precipitation, confirming
our results. In the same study, the IMERG-V05 (R of 0.2 to 0.5) showed a better R
than the TMPA product (R of 0.2), which still confirms the better performance of
our RF-based rainfall retrieval (R of 0.33).

It must be noted that the evaluation of satellite-based precipitation products using
a few gauges has uncertainties. One reason is the different measurements and viewing
geometry. Another issue is the point observations from a scarce gauge network
that cannot represent the spatial rainfall distribution. In regions with substantial
precipitation variability at the local scale, such as in Ecuador, this is more relevant for
validating satellite-based rainfall products [69]. Another point is the daily temporal
aggregation of our satellite-based rainfall product. Due to the scan cycle, some rain
events might not be captured by our retrieval method. More rain gauges with a
higher temporal resolution and a ground-based radar network would be ideal for a

more realistic validation.

3.5 Conclusion

The validation showed that the RF models could retrieve good rainfall information
over Ecuador with higher accuracy than the IR-only IMERG. This illustrates the
viability of our approach and the benefit of using multispectral IR data. Meanwhile,
the spatial variability of the evaluation illustrates the influence of different climate
zones and topography in Ecuador, which should be investigated in more detail in
future studies.

High precipitation values were underestimated by the proposed algorithm, as
mentioned earlier, due to RF regression problems with extreme values. This is an
important issue for future research. We need more training datasets with extreme
events; therefore, the ML algorithm can differentiate between heavy and light rain.
A two-step classification approach could be used for defining extreme rainfall events.
The first step delineates rainy and non-rainy areas. In the second step, the rainfall
area is divided into “non-extreme rainfall events” and “extreme rainfall events.” A
regionally defined threshold could separate non-extreme rainfall events and extreme

rainfall events based on rainfall amounts. After classification, the RF regression
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models could be trained and applied separately for different classes. Another
possibility could be using other ML techniques such as neural networks or extreme
learning machine algorithms [70].

This study was limited to the available microwave-only data of the IMERG.
Therefore, some rainfall events might not have been recorded due to the overflight
of the microwave satellite in Ecuador, which introduces uncertainty in our model’s
training.

The RF-based rainfall retrieval showed medium performance against daily-scale
ground-based rainfall measurements. To obtain ideas for further improvement of the
algorithm, we are currently investigating the error structure in more detail using

high-resolution gauge and weather radar data.
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Figure 3.A.1: The architecture of recursive feature elimination for selecting the most
important predictors in RF classification.

Table 3.A.1: List of the different sub-datasets in the IMERG-V06 product (half-hourly
data final run) and definitions used in this study

Sub-dataset Definitions
precipitationCal Multi-satellite precipitation estimate with gauge calibration
HQobservationTime Microwave satellite observation time
[Rprecipitation IR~only precipitation estimate
PrecipitationQualityIndex Quality Index for precipitationCal field
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Table 3.A.2: Median HSS scores for the random forest (RF) classification with
different class ratios and applying “class_weight = balanced" in RF
over the training/validation period in Ecuador

Ratio between non-rainy (majority class)

Model name and rainy (minority class) pixels HSS POD FAR
Scenario-0 1:1 0.41 0.87 0.63
Scenario-1 2:1 053 0.77 054
Scenario-2 3:1 0.57 0.70  0.40
Scenario-3 4:1 0.58  0.65 0.35
Scenario-4 5:1 0.6 0.62 0.31

Table 3.A.3: Median HSS and R for the RF classification (ratio of 1:5) and the RF

regression with and without applying the class weight function in the

RF model
Median HSS with a 1:5 ratio distribution Median R with for
for the training/validation period training/validation period
Including class Without class Including class Without class
weight balance weight balance weight balance weight balance
0.6 0.58 0.64 0.6

Table 3.A.4: Validation metrics with equations, theoretical ranges, and optimum
values, TP, true positive; FN, false negative; FP, false positive; TN,
true negative; P rainfall from RF regression; O microwave-based IMERG
rainfall; n, number of pixels considered in the validation.

Name Metrics equation Range Optimum Validation
Probability —of POD=%- [0.1] 1 Spatial
detection temporal
False alarm ratio FAR:FFTC [0,1] 0 Spatial

temporal

. . o 2(HxC—-FxM) .
Heidke skill HSS= TGO (L FY(F0) [0,1] 1 Spatial
score temporal
Mean absolute MAE=1Y"|P, -0 - - Spatial
error temporal
Root mean RMSE=y/ w - - Spatial
square error temporal
Correlation R— (n Z?;l(lini—(Z?;l Pi)(yz?;l 0)) ’ [_1’1] 1 Spatlal
. V(O S, (P=(S, (P)2) (R T1, 02)~(Z1, 04)2)

coefficient temporal
Mean differences Average (microwave-based IMERG Spatial

minus RF-combined model)
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Chapter 4 Assessment of Satellite-Based Rainfall Products Using a X-Band Rain

Radar Network in the Complex Terrain of the Ecuadorian Andes

Abstract

Ground based rainfall information is hardly available in most high mountain areas of the

world due to the remoteness and complex topography. Thus, proper understanding of
spatio-temporal rainfall dynamics still remains a challenge in those areas. Satellite-based
rainfall products may help if their rainfall assessment are of high quality. In this
paper, microwave-based integrated multi-satellite retrieval for the Global Precipitation
Measurement (GPM) (IMERG) (MW-based IMERG) was assessed along with the
random-forest-based rainfall (RF-based rainfall) and infrared-only IMERG (IR-only
IMERG) products against the quality-controlled rain radar network and meteorological
stations of high temporal resolution over the Pacific coast and the Andes of Ecuador.
The rain area delineation and rain estimation of each product were evaluated at a spatial
resolution of 11 km? and at the time of MW overpass from IMERG. The regionally calibrated
RF-based rainfall at 2 km? and 30 min was also investigated. The validation results indicate
different essential aspects: (i) the best performance is provided by MW-based IMERG in
the region at the time of MW overpass; (ii) RF-based rainfall shows better accuracy rather
than the IR-only IMERG rainfall product. This confirms that applying multispectral IR
data in retrieval can improve the estimation of rainfall compared with single-spectrum IR
retrieval algorithms. (iii) All of the products are prone to low-intensity false alarms. (iv)
The downscaling of higher-resolution products leads to lower product performance, despite
regional calibration. The results show that more caution is needed when developing new
algorithms for satellite-based, high-spatiotemporal-resolution rainfall products. The radar
data validation shows better performance than meteorological stations because gauge data
cannot correctly represent spatial rainfall in complex topography under convective rainfall

environments.

Keywords: complex terrain; Ecuador; GPM IMERG; rainfall; radar network;

satellite retrieval

4.1 Introduction

Understanding precipitation amounts and patterns is essential for sustainable
water management and monitoring the hydrological cycle [1]. In complex
mountainous regions characterized by high spatiotemporal variability, coarse networks
of operational precipitation gauge stations are often lacking. The spatiotemporal
variability, combined with lack of gauge data, makes the time series and area-averaged
rainfall analysis more complicated in these regions [2]. This also applies to the complex

topography of the Andes in Ecuador.
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Early satellite-based rainfall retrieval efforts estimated rainfall from geostationary
infrared (IR) data , using the indirect relationship between precipitation rate and the
temperature of cloud on top [3]. Hence, the algorithms and the product accuracy
were limited to the top of the cloud’s characteristics. Unlike IR, microwave (MW)
sensors measure thermal radiance from actual precipitation particles in the clouds;

consequently, MW retrieval generally provides superior precipitation information [4].

A recent result of the continuous technological improvement of low-Earth-orbiting
passive MW satellites and spaceborne radars in the MW band is the Global
Precipitation Measurement (GPM) mission [5]. GPM was launched in 2014 as post
Tropical Rainfall Measuring Mission (TRMM) [6]. Compared with TRMM, the GPM
improved sensitivity to light precipitation and distribution of rain and snow. These
improvements have achieved by a two-frequencies precipitation radar (Ku band (13.6
GHz) and Ka-band (35.5 GHz)) as well as the GPM multi-channel microwave imager
(GMI) that accommodates higher spectral resolution at frequencies of 10.65, 18.7,
23.8, 26.5, 89, 165.5, and 183.3 GHz [5, 7, §|.

However, several studies showed that machine learning could improved the
regionally calibrated retrievals using simply passive IR data from geostationary orbit
(GEO) [3, 8, 9, 10, 11, 12, 13]. Compared to the passive MW and radar sensors,
the GEO systems provide the high temporal (10-30 min) and spatial (2-4 km?)
resolution. It is essential to capture the short-term characteristics of rainfall systems

in the retrieval [8]

A few studies have investigated the performance of satellite-based rainfall products
over Ecuadorian areas. The Precipitation Estimation from Remotely Sensed
Information using Artificial Neural Networks (PERSIANN) [14] shows low agreement
with rain gauge in daily resolution [2] in rain area detection. Manz et al. [15]
investigated the performance of the integrated multi-satellite retrievals for GPM
(IMERG) [5] and TRMM multi-satellite precipitation analysis (TMPA) [6] against
gauge data with different temporal resolutions (hourly, 3 h, and daily). In their
study, IMERG showed better agreement than TMPA, especially on the high elevation
of Andes. Erazo et al. [16] reported that at high elevations in the Andes, TRMM 3B43
Version 7 retrievals showed a higher correlation (R? = 0.82) on monthly compared
with interpolated gauge data at a spatial resolution of 27.75 km?2. The result of the
validation of the regionally developed algorithm in Ecuador, the random forest-based
rainfall (RF-based rainfall) of Turini et al. [3] with an 11 km? resolution, obtained a

median Heike skill score (HSS) around 0.35 for daily gauge stations, meanwhile the
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lower performance of the IR-only from the IMERG (IR-only IMERG) showed by HSS
= (0.2. In their method, they used the Random forest algorithm to retrieve rainfall.
In this text, the RF-based rainfall stands for the rainfall retrieval from random forest
algorithm [3]. The RF-based rainfall retrieval performed in estimating the rainfall

rate with correlation coefficient (r) values 0.34 [3].

To improve satellite-based products’ overall performance, understanding the sources
of error on the highest possible temporal resolution is crucial [6, 17]. Given the high
spatiotemporal variability of rainfall in Ecuador, spatiotemporally high-resolution
validation sources for rainfall are lacking. Therefore, as stated before, only a couple
of studies have investigated the performance of satellite-based rainfall products at

higher spatiotemporal resolution [15, 18].

Different studies have found that, due to the variability of weather and climate in
complex terrain, the satellite retrievals are posed to challenges both in IR and MW
(3, 8, 12, 13, 19]. Dinku et al. [19] evaluated the impact of topography on IR-based
Tropical Applications of Meteorology using Satellite and ground-based observation
(TAMSAT) [20] in East Africa for 1998-2012, comprising five different countries:
Uganda, Kenya, Tanzania, Rwanda, and Burundi. In the study, the elevation varied
between 1500 and 4500 m [19]. TAMSAT showed an underestimation. Dinku et al. [19]
argued that the underestimation corresponded mainly to convective and orographic
rainfall during the rainy season (March, April, and May), mostly in the windward
exposition.

In this work, we aimed to validate different satellite-based rainfall products
to identify and understand sources of errors in the complex elevation of the
Andes in Ecuador on a sub-daily time scale. Our aim was not just to compare
satellite-based rainfall products with ground measurements but also to identify
the sources of the differences between the satellite-based rainfall products and
ground measurements. Therefore, in this study, we evaluated the performance
of MW-based IMERG in comparison with RF-based rainfall and IR-only IMERG
against high-spatiotemporal-resolution data from ground based radar network and
high temporal resolution of meteorological stations to characterize the impact of
climatic and topographic conditions on satellite-based rainfall products at the time
of MW overpass. We also assessed the performance of regionally trained RF-based
rainfall in Ecuador on the subdaily time scale (30 min) and high spatial resolution (2

km?) with the aim of finding the source of possible errors for further development.

Following a description of the climatology of the study area, the satellite-based
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rainfall products, ground based radar data and meteorological stations are described
in Section 4.2.1. Section 4.2.2 introduces the evaluation methodology with a focus on
rain area detection and rain estimation. The results are presented in Section 4.3 and
discussed in Section 4.4. Finally, the important findings are summarized in Section
4.5.

4.2 Materials and Methods

4.2.1 Data
4.2.1.1 Radar

In the current study, the data from two rainfall radars, which are part of the
Radarnet-Sur network in Southern Ecuador, were used. The westernmost radar
system is located on Cerro Guachaurco (3100 m above sea level (m.a.s.l) (GUAXX
radar)). Another radar system is located at 4450 (m.a.s.l) (to the best of our
knowledge, this is the highest worldwide) on the Paragtillas peak on the north border
of the Cajas National Park in Southern Ecuador (CAXX radar). The radars have a
maximum range of 100 km? and provide images with spatial resolutions of 500 m
every 5 min. For more information about the Radarnet-Sur network (Figure 4.1a)
infrastructure, please refer to Bendix et al. [21]. The coverage of radars in this study
is shown in 4.1a.

Radarnet-Sur calibration strategies have been continuously developed since 2006.
The calibration strategy is based on a statistical procedure that uses the available
rain gauge data. The data processing and correction algorithms in this empirical
calibration consisted of four steps: (i) clutter and noise removal; (ii) atmospheric and
geometric attenuation correction; (iii) interpolation of blind sectors; (vi) application
of the empirically derived daily variable Z/R relationship. In this equation Z means
radar reflectivity factor and R stands for rainfall intensity. For more information
about the calibration algorithm, please refer to [22]. The final product from the
radars used a blending technique for overlapping areas and temporal data gaps were
completed using additional data from the rain gauges. For further information about
the extended calibration strategy, please refer to [23].

The observed rainfall data from the radars were quality-controlled for detecting
possible inconsistencies and selecting high-quality data. All the scenes from the radars

were visually inspected. National Institute of Meteorology and Hydrology (INAMHI)
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Figure 4.1: The distribution of (a) meteorological stations (19 April 2017 to 28
February 2018) and spatial coverage of radars (GUAXX: 16 June 2017
to 1 February 2018; CAXX: 19th April 2017 to 1 July 2017) used in this
study, (b) the radars in the study period (GUAXX: 16 June 2017 to 1
February 2018; CAXX: 19th April 2017 to 1 July 2017). For validation
purposes, we excluded the radar data in the very near range ( <10 km
distance from the radar site) to avoid contamination through noise. We
also excluded the far range >50 km due to possible attenuation errors.
Nevertheless, we show the rainfall amount in the entire radar range for
better illustration. The extent of study area is shown in windows (W)-1.
(c) Spatial distribution of the elevation in the radar coverage area. W-2
and W-3 rectangles outline the extent of Figure 4.2a.b.

(daily), the Universidad TécnicaParticular de Loja (UTPL) gauge network (10 min
resolution), and the Cuenca University gauge network were used as references. The
scenes in which there were no rain in the radar but rain in each of the gauges and
vice versa were removed. Additionally, obviously failed recordings were manually
removed. Furthermore, we used the infrared channel IR 3.9 from GOES-16 to detect
the movement of cold clouds and radar rainfall rate. Although we have enough data
available in our observation period, electronic technical problems and other issues

caused data failure.

We delivered the final products of radar reflectivity and rainfall rate after
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attenuation and clutter correction for the time period between April 2017 and the
end of January 2018 (GUAXX: 16 June 2017 to 1 February 2018; CAXX: 19 April
2017 to 1 July 2017). The reflectivity ranged from -31.5 to 91.5 dBZ with a total of
256 possible values.

The spatial distribution of the sum of the radar rainfall for the observation period
is shown in Figure 4.1b. The rainfall sum , showing totals between 250 and 4492 mm.
The rainfall pattern is different over the study region, covering a climatically diverse
area. The spatiotemporal rainfall distribution in the radar coverage is generally
affected by the Andes mountains, the El Nio-Southern Oscillation (ENSO), the
biannual migration of the intertropical convergence zone (ITCZ), and also the cold
von Humboldt current in the Pacific Ocean, [15, 24, 25]. On the eastern sides of the
Andes, the strong topographic slopes and easterly winds result in orographic effects

[26, 27], which is causing the cyclical spatiotemporal rainfall behavior

4.2.1.2 Meteorological Stations

A meteorological station network, comprising 21 high-temporal-resolution rain
stations, was used in this study. Meteorological station data were obtained from
UTPL and University of Cuenca. Meteorological stations from UTPL and University
of Cuenca provide rain data every 10 and 5 min, respectively. Daily rainfall
information was acquired from INAMHI. Meteorological station data from 19 April
2017 to 28 February 2018 were used as validation information to examine radar
quality. The high temporal resolution meteorological stations from UTPL and the
University of Cuenca are used to validate the satellite-based products at the time of
MW-overpasses. We obtained the data from all organizations after quality checks.

The quality check for the station data from the University of Cuenca is performed
by drawing a cumulative precipitation curve that identifies abnormal records (outliers
and wrong measurements). These measurements are disregarded from the time series.
In addition, correlation to nearby stations is also performed as a double check if
necessary. In order to maximize the quality of the measurements, regular maintenance
of the stations in the field (every three weeks or fewer) is performed. For the INAMHI
data,it is checked if daily values are between 0 and 250 mm, which is the maximum
daily precipitation value registered at a national scale.

Figure 4.1a shows the distribution of the meteorological stations used in this study.

It should be noted that these data are not included in the Global Precipitation
Climatology Center (GPCC) network and therefore not used for the gauge-calibrated
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final IMERG product.

4.2.1.3 Integrated Multi-Satellite Retrievals for GPM

IMERG is a level 3 product which integrates all MW sensors, MW-calibrated
IR estimates, and rain gauge measurements on a global scale [28]. All MW
estimates, after calibration, were subjected to the Climate Prediction Center
MORPHing technique (CMORPH) [29] to calculate the motion vectors from the IR
measurements and the different atmospheric variables from numerical models. In
regions without direct PMW overpasses, the algorithm uses the retrieved rainfall
from PERSIANN-CCS [14] and GEO IR (IR-only IMERG) to complete the gridded
product. In the last step, the monthly rain data from the GPCC were used to as a
bias correction of the rainfall estimate [28].

In this study, the latest available version of IMERG (IMERG-V06 [28]), which
displayed an overall improvement in the precipitation estimation compared with
version-05 [30], was used.

The IMERG provides rainfall estimates with the spatial resolution of 0.1° (11 km?)
in every 30 min. We focused on the final product of IMERG Version 06 (IMERG-V06),
gauge-adjusted retrievals for the study period. NASA also provided the quality
index (QI) as a variable in 30 min resolution [31]. The QI indicates the relative
quality of rainfall estimates in half-hourly IMERG products, fluctuating temporally
between passive MW (PMW) and IR-based rainfall estimates. Additionally, the
time of the overpass of each MW swath is provided in metadata with the name
of "THQobservationTime’.

For our validation, the multi-satellite precipitation estimates with the gauge
calibration subdata set of IMERG (precipitationCal), as well as "[Rprecipitation”
was used. In this study, IRprecipitation and IR-only IMERG are equivalent.

4.2.1.4 Random Forest-Based Rainfall

The random forest-based rainfall (RF-based rainfall) product is the regionally
calibrated rainfall retrieval scheme developed Ecuador by Turini et al. [3]. The
algorithm uses random forest (RF) to calculate rainfall rates in surface level by means
of multi-spectral IR data from Geostationary Operational Environmental Satellite 16
(GOES-16). The algorithm is trained based on MW-only precipitation data from
IMERG-V06. The RF-based rainfall product was implemented by (i) delineating the

rain area, and (ii) assigning of the rainfall rate at 11 km? spatial resolution and for
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the time of a MW overpass. As predictors, GOES IR bands, band combinations,
geostatistical texture features calculated from the original GOES IR bands, and
ancillary data were used. Turini et al. [3] used the geostatistical texture features
to capture the clouds’ heterogeneity. They calculated the texture features using a
5 x 5 pixel moving window method. First, for each GOES IR band, variograms
(VARs), madograms (MADs), and rodograms (RODs) and then, for each possible
bands combination, cross-variograms (CVs) and pseudo cross-variograms (PCVs) were
calculated. Please refer to Schulz et al. [32] for more information about definitions and
equations of texture features. The most important features were obtained monthly for
each of the steps (rain area delineation and rainfall rate assignment) separately. The
model tuning and feature selection results showed that, in addition to the ancillary
data, the information recorded in the geostatistical texture features was the most
important for rain area delineation and rainfall rate assignment [3].

The PCV was the dominant texture feature selected in almost all months, both for
rain area delineation and rain rate assignment [3].

After training the models, the RF-based rainfall at a high spatiotemporal resolution
(2 km?, 15 min) was estimated. In this step, the models were applied to the GOES-16
scenes where MW-IMERG was available and the following scenes until the next model
was present in Turini et al. [3]. The product is available from 19 April 2017 to 19
April 2018.

4.2.2 Methods

Three different validations were employed in this study to assess satellite-based rainfall
product performance. Due to the different availabilities of the slots of the products,
the period for this study ranged from 19 April 2017 to 1 February 2018 in the time

slots where radar data are available.

e The performance of the satellite-based rainfall products are investigated against
the X-band rain radar network at the time of MW overpass at a spatial resolution
of 11 km?.

e The performance of the satellite-based rainfall products is investigated against
the ground based meteorological station network at the time of MW overpass at

a spatial resolution of 11 km?.
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o The RF-based rainfall product is validated against the X-band rain radar network

in the temporal resolution of 30 min and spatial resolution of 2 km?2.

4.2.2.1 Validation of Satellite-Based Rainfall Products at the Time of MW
Overpass from IMERG

The first validation was performed to investigate satellite-based rainfall products’
performance against X-band rain radar network when MW overpass sensors from
IMERG are present. This is essential since the IMERG data set has been widely used
to develop satellite-based rainfall products [8, 12, 13, 33].

We used different subdata sets in the IMERG product. We first considered the
pixels from “precipitationCal” when the PMWs swat was available (“HQobservation”).
Then, the pixels with the “PrecipitationQualitylndex” >0.6 (which indicates the
current half-hour microwave swath data) [31] were picked out. “IRprecipitation”
were also selected in the same pixels from IMERG. This data set (IR only) was
retrieved from the PERSTANN-CCS in IMERG, which are calibrated regionally to the
PMW-only measures [28]. Therefore, in this study, we named this product “IR-only
IMERG”.

To compile the most robust data set for the first validation of satellite-based rainfall
products against the radars at the time of MW overpass in IMERG, we defined
the following criteria: (i) For temporal matching, we used “HQobservationTime” for
IMERG to determine the exact time of MW overpass in each pixel. Then, we rounded
the MW overpass time to the closest 5 min to be compatible with the temporal
resolution of the radar (every 5 min). In this step, we assumed that the RF-based
rainfall and IR-only IMERG have the same timing as the time of MW overpass.
(ii) To ensure the high-quality rainfall information from IMERG (merged MW-only
precipitation estimates), we used the “PrecipitationQualitylndex”. (iii) Sensitivity to
light rain continuously degrades with increasing distance from the radar. To only
assess the near range, we applied a circular mask with a radius of 50 km from the
center of each radar. (iv) A mask for filtering the radar data for plausibility was
also applied. A value of 1 indicates reliable data from radars. (v) There was some
noise in the center of the radar due to the cross-talk from the antenna’s side-lobes.
Therefore, we omitted the inner pixels with a radius of 10 km from the center for
the validation. (vi) Due to the different spatial resolutions of the RF-based rainfall
(2 km?), radar (0.5 km?), radar quality index (0.5 km?), DEM (1 km?), and IMERG

(11 km?), the average resampling techniques in gdal [34] were used to guarantee
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spatial matching between the different data sets. In our study, we used the WGS84
projection coordinate system and all dataset were resampled to the spatial resolution
of IMERG (11 km?). (vi) The 0.5 mm/h was used as a threshold between rainy and
non-rainy pixels for validation. (vii) The pixels in the radar considered rainy (>0.5
mm/h) but red has a dBZ lower than —15 were considered false and filtered out from

the validation data set.

By applying above criteria and withdraw the data pairs of the first validation
against radar on a pixel basis, a total of 117,183 pixels of radar and MW-based
IMERG, RF-based rainfall, and IR-only IMERG were made available at a half-hourly

resolution for validation.

In the second validation, the overall performance of the rainfall area delineation and
rainfall rate assignment was investigated for each product against data from ground

based meteorological stations at the time of the MW overpass.

For comparison with the meteorological ground based station network, we only
considered pixels with a minimum number of three gauges (see Figure 4.2). Tang
et al. [35] underline that gauge networks with limited numbers of gauges in each pixel
leads to underestimation of the performance of satellite-based rainfall products. This
is because the point observations of gauges cannot represent pixel-based precipitation.
Therefore, for this validation the stations from University of Cuenca with the temporal
resolution of 5 min (Ana Davis, Zona Militar Davis and Balzay) and from UTPL
(UTPL Militar, UTPL Tecnico and UTPL Villonaca) with the temporal resolution of

10 min are considered.

To generate the dataset for ground truth validation of the three satellite-based
products against the gauge network, we proceeded as follows: (i) for temporal
matching, we used “HQobservationTime” for IMERG to determine the exact time
of MW overpass in each pixel. Then, we rounded the WM overpass time to the
closest 5 min to be compatible with the temporal resolution of the radar (every 5
min). In this step, we assumed that the RF-based rainfall and IR-only IMERG have
the same timing as the time of MW overpass. (ii) To ensure the high-quality rainfall
information from IMERG (merged MW-only precipitation estimates), we used the
“PrecipitationQualityIndex”. In the next step (iii), the spatial matching were done
using the average resampling techniques in gdal [34] to resample the products to the
spatial resolution of IMERG (11 km?). (iv) The threshold of 0.5 mm/h was used
to distinguish between rainy and non-rainy events. (v) After selecting pixels, the

arithmetic mean rainfall from station data was computed in these pixels, given that
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Figure 4.2: Location of pixels with a minimum number of three gauges for (a) the
University of Cuenca gauge network and (b) the UTPL gauge network.
In Figure 4.1a, W-2 and W-3 rectangles outline the extent of (a) and (b),
respectively.

every pixel includes three stations at minimum.

4.2.2.2 Validation of RF-Based Rainfall Products in Native Resolution

In the third validation, we investigated the general behavior RF-based rainfall in
rainfall area delineation and rainfall estimation in the native spatial resolution (2
km?) and every 30 min in the entire study area for th study period. To prepare the
data set for this validation strategy, we defined the following criteria: (i) In our study,
area, subscale convective rainfall systems in the transition zones and valleys[36] are
dominant. To understand satellite-based rainfall products’ capability to capture these
events, we kept the original spatial resolutions of the RF-based rainfall, 2 km?; (ii) to
minimize the uncertainties caused by the potential temporal offset between RF-based
rainfall products, the radar and RF-based rainfall were aggregated in time to 30 min.
For the temporal aggregation of the radar and the RF-based rainfall, we considered
a unit conversion between mm/h and mm/30min. (iii) We used a threshold of 0.2
mm,/30min to distinguish between rainy and non-rainy pixels for validation; (iv) equal

t the first validation strategy, the pixels of the radar considered rainy (>0.2 mm/30
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min) at a dBz lower than —-15 dBz were considered false and were removed from the
validation data set. (v) We omitted the inner pixels within a radius of 10 km? from
the center; (vi) a mask for filtering the radar data for plausibility was also applied.
(vii) In the next step, the RF-based rainfall was aggregated for the observation period

in 1 h, 3 h, and daily for evaluation against the radar.

4.2.2.3 Validation Metrics for Rainfall Area Delineation and Rainfall Estimate

We considered all pixels from the validation data set in each validation strategy for the
validation of rainfall area delineation. First, we calculated the cross-table’s respective
satellite-based rainfall products in comparison with the radar as a reference. Therefore
we calculated the misses (M), hits (H), false alarms (F), and correct negatives (C).
We define hit when the satellite-rainfall product and the radar are both raining in
the same location; A miss occurs when the satellite-rainfall product is not raining but
the radar shows rain, a false alarm holds when the satellite-rainfall product is raining
but the radar is not and a correct negative is when both, the satellite-rainfall product

and radar are showing cloudy but not rainy conditions (Figure 4.3).
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Figure 4.3: Schematic view of how H, M, and F were designated in the rain area
validation. The dry pixels are shown in white, and the rainy pixels are
shown in grey. The standard approach defines M (F) when a rainy pixel
in the radar (satellite-based rainfall product) is related to a dry pixel
in the satellite-based rainfall product (radar) at the same time. In the
temporal event-based approach (fourth row), the M (F) in the vicinity
time of hits are defined as a reduction (continuous) in the event duration.
Thus, the terms Duration+ (Duration-) are described. True misses and
true false alarms are the errors occurring simultaneously or in the same
pixel, respectively [17].

We also defined temporal and spatial events. Schematic images of temporal and
spatial events are illustrated in Figures 4.3 and 4.4, respectively.

Temporal events were defined to check the time lag effect of satellite scanning.
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You et al. [37] stressed this aspect for PMW observation. Later, Maranan et al. [17]
investigated the time lag effect in IMERG, where false alarms were reduced through

the temporal shift in IMERG relative to surface observations.
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Figure 4.4: Schematic view of how hits, misses, and false alarms are designated in
the rain area validation. The dry pixels are shown in white, and the
rainy pixels are shown in grey. The standard approach defines M (F)
when a rainy pixel in the radar (satellite-based rainfall product) is related
to a dry pixel in the satellite-based rainfall product (radar) at the same
time. In the spatial event-based approach (second row), the M (F) in the
neighboring pixels are defined as a spatially drifted miss (false alarm) of
the event. The errors simultaneously and in the same pixel are called true
misses and false alarms, respectively.

We calculated the probability of detection (POD), false alarm ratio (FAR), and
Heike skill score (HSS) as validation metrics from the H, M, F, and C.

To evaluate the accuracy of estimated rainfall from each satellite-based rainfall
product, we used the mean absolute error (MAE), root mean square error (RMSE) and
mean error (ME), and their normalized counterparts. These metrics were calculated
when it was rainy for both radar and satellite-based rainfall products. Table 4.1 shows

the detailed equations and the range of these metrics.
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Table 4.1: List of validation metrics used in this study for rain area delineation and
rain estimate.

Name Metrics Equation Range Optimum
Probability of detection POD:ﬁ (0,1) 1
False alarm ratio FAR:% (0,1) 0
Heike skill score HSS:(H_M)f](\iXC(’;?gﬁQ)(MC) (0,1) 1
Mean absolute error MAE=L1 %7 |P, - O, - -
3 Zia [P0l

Normalized mean absolute NMAE=
error

Root mean square error RMSE=+/ w - -
[Sr (Pi-0))?
NRMSE=Y—F—~—

1 n .
n Zizl Oz

Normalized root mean square

% Z?:l O;
error
_1ywn
Mean error ME=_ >, (P - 0;) - -
1 n
. =i (Pi=0;
Normalized mean error NME=z5=2* - 21’(1 5 ) - -
n Li=1 Y1

4.3 Results

4.3.1 Validation Metrics for Satellite-Based Rainfall Products at
the Time of MW QOverpass against X-Band Rain Radar
Network

4.3.1.1 Rain Area Delineation

The frequency of occurrence of the cross-table components formed on all available
MW overpass timing (n = 51,384) is presented in Figure 4.5. Less than 5% of the
MW overpass times in either radar or satellite-based rainfall products contain rainfall
and a total of 0.73%, 0.58%, and 0.39% are hits for MW-based IMERG, RF-based
rainfall, and IR-only IMERG, respectively. Successively, false alarms dominated the
error with a fraction of 2.53% for MW-based IMERG, 2.08% for RF-based rainfall,

111



Chapter 4 Assessment of Satellite-Based Rainfall Products Using a X-Band Rain

Radar Network in the Complex Terrain of the Ecuadorian Andes

and 2.24% for IR-only IMERG. All three product show reasonable agreement with
the radar at the time of MW overpass Table 4.2. All products have a high FAR (0.78
for MW-based IMERG and RF-based rainfall, and 0.85 for IR-only IMERG).
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Figure 4.5: Standard cross-table approach for all available MW overpass times for the
validation of rain area delineation for (a) IR-only IMERG, (b) RF-based
rainfall, and (c) MW-based IMERG. Note that the correct negative
fraction extends to 100%.

Table 4.2: The rain area delineation performance of satellite-based rainfall over the
MW overpass time compared to ground radar network.

Satellite-Based Rainfall Products POD FAR HSS

MW-based IMERG 0.74 0.78 0.33
RF-based rainfall 0.58 0.78 0.31
IR-only IMERG 0.39 0.85 0.2

Overall, MW-based IMERG exhibits relatively better performance (HSS = 0.33),
RF-based rainfall performs somewhat the same as MW-based IMERG (HSS = 0.3),
whereas IR-only IMERG performs the worst (HSS = 0.2). This shows the higher
potential of using multispectral GEO data (RF-based rainfall) compared with only
one IR channel rainfall retrieval, as is the case for IR-only IMERG [3, 8, 12, 13].
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Figure 4.6 reveals the spatial performance of the satellite-based rainfall products at
the time of MW overpass during the study period. Figure 4.6¢,f,i shows the spatial
distribution of HSS for MW-based IMERG, IR-only IMERG, and RF-based rainfall,
respectively. The HSS share similarities in the spatial distribution for all products,
with the maximum occurring at the north and northeast of the study region (0.4-0.7
for MW-based IMERG,and 0.4-0.8 for IR-only IMERG and RF-based rainfall).
However, in the northwestern part of the region, the ability to capture precipitation
is almost lost due to the lower POD and higher FAR (0.7-1 for MW-based IMERG,
IR-only IMERG, and RF-based rainfall) in all the products. The GUAXX radar
performs better in terms of POD in general but with a relatively higher FAR (0.6-1
for MW-based IMERG, and 0.7-1 for IR-only IMERG and RF-based rainfall), and
this phenomenon illustrates that the products have difficulties in capturing the rainfall
in these region (HSS of 0.1-0.6 for MW-based IMERG, 0.1-0.3 for IR-only IMERG,
and 0.1-0.6 for RF-based rainfall). Please note that the time periods of available data
for GUAXX and CAXX are different.

Figure 4.7 provides an overview of the validation metrics of the three satellite-based
rainfall products for rain area delineation, along with the altitude. All products
have a high FAR and a convincing POD. The performance at a terrain elevation of
approximately 0-1500 m.a.s.l is relatively lower for all of the three products with
HSS of 0.2-0.29 for MW-based IMERG, 0.1-0.22 for IR-only IMERG, and 0.2-0.25
for RF-based rainfall. The rain area delineation performance increased until 3000
m.a.s.] At 0-750 m.a.s.], the RF-based rainfall (HSS = 0.25) performs the best of all
products.

Figure 4.8 provides an overview of the rain area delineation performance, along
with different rainfall rates. In all products, rainfall rates lower than 2 mm /h have the
highest FAR. With increasing rainfall rate, the performance of all products increases
until 6 mm/h. For a rain rate of more than 6 mm/h, the products perform steadily.
Altogether, the graph confirms (i) the poor rain area delineation performance at lower
rainfall rates in Ecuador, and (ii) the WM-based IMERG shows the best performance

with different rain rates in Ecuador, followed by RF-based rainfall.

4.3.1.2 Rainfall Estimation

Table 4.3 exhibits the ability of satellite-based rainfall products to estimate rainfall
at the time of MW overpass. RF-based rainfall shows the best performance compared

with the two other products. All three products underestimate rainfall, indicated by
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Figure 4.6: Spatial distribution of the validation metrics for rain area delineation at
the time of MW overpass. (a) POD, (b) FAR, and (c) HSS showing the
matrics for MW. The variables were calculated for MW-based IMERG.
(d) POD, (e) FAR, and (f) HSS illustrating the performance of IR-only
IMERG. (g) POD, (h) FAR, and (i) HSS showing the RF-based rainfall
performance. The variables were calculated for each grid point of the
validation data set over the stated period. For better illustration, we
show the results up to 75 km distance from the center of each radar.

their negative ME and NME.

The scatter plots in Figure 4.9 illustrate how the rainfall rate at the time of MW

overpass is distributed for each of the satellite-based rainfall products against the
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Figure 4.7: Boxplot of the validation metrics for rain area delineation over the MW
overpass time. The performance of (a) MW-based IMERG, (b) IR-only
IMERG, and (c) RF-based rainfall along elevation. Boxes show the 25th,
50th, and 75th percentiles. Whiskers extensions are to the maximum data
value between the 75th and 25th percentiles. Diamonds indicate outliers.

radar. Only pixels with hits are considered, therefore the number of hits (n) differs
for each product (Figure 4.9a,d,g). The overall variability in all the products is high,
which might be due to issues in timing or/and rainfall estimation (Figure 4.9a,d,g)
[17]. Overall, IR-only rainfall shows the best correlation line close to 1:1. The
regression line also indicates the underestimation by RF-based rainfall. MW-based
IMERG and IR-only rainfall overestimate the rainfall rate. Figure 4.9b,e,h shows the

rainfall rate for each product against radar in quantile-quantile (Q—Q) plots.

The Q—Q plot ignores the corresponding time steps in order to underline the

differences between the radar and each product in a more comprehensive manner
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Figure 4.8: The rain area delineation performance over the MW overpass time and at
11 km? for different rainfall rates for (a) MW-based IMERG, (b) RF-based
rainfall, and (c) IR-only IMERG.

[17]. In MW-based IMERG (Figure 4.9b) the rainfall rate is almost evenly distributed
up to 5 mm/h, the positive values for MW-based IMERG at higher rainfall rates are
more evident. The distribution of the rainfall rate between radar and IR-only IMERG
shows more discrepancies (Figure 4.9¢). IR-only IMERG shows negative biases until
the 90th percentile and shows high positive bias for the higher rainfall rates. RF-based

rainfall is distributed relatively even for all rainfall rates, with a slight negative bias
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Table 4.3: The rainfall estimation performance of satellite-based rainfall over the

MW overpass time compared to ground radar network.

Satellite-based RMSE NRMSE MAE NMAEME NME
rainfall (mm/h) (mm/h) (mm/h)
products
MW-based 2.96 0.82 1.86 1.35 148 -1.07
IMERG
RF-based 2.47 0.8 1.66 1.16  -1.34 -0.93
rainfall
IR-only IMERG 4.65 1.27 2.5 1.63 213 -1.39
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Figure 4.9: Comparison of rainfall rates estimated by the radar and satellite-based

products. (a,d,g) Scatter plot with radar rainfall rates (x-axis) and
microwave-based IMERG, IR-only IMERG, and RF-based rainfall rates
(y-axis), respectively. Only pixels with hits are considered. The
parameters n show the total number of hits. (b,g,h) Quantile-quantile
(Q-Q) plot of the radar (x-axis) and microwave-based IMERG (y-axis),
IR-only IMERG (y-axis), and RF-based (y-axis) rainfall rates. The 10th,
50th, and 90th percentiles are illustrated. (c,f,i) The distribution of
cumulative rainfall rate for the contingency table of each satellite-based
product. The radar rain rate is displayed in black as a reference.
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between 3 and 5 mm /h. Overall, IR-only IMERG and MW-based IMERG are unable
to model the most extreme rainfall rates. For extreme rainfall rates, RF-based rainfall
shows better performance. The cumulative distribution of the rainfall rates for hits
and the other contingency table elements is compared in Figure 4.9¢.f, i, for MW-based
IMERG, IR-only IMERG, and RF-based rainfall, respectively. In MW-based IMERG
(Figure 4.9¢) and RF-based rainfall (Figure 4.9i), around 60% of the FARs is equal to
or less than 1 mm/h. This is also true for IR-only IMERG (Figure 4.9f). The FAR is
also shown for higher rainfall rates in the RF-based rainfall product. This underlines
that the algorithm is flawed for low-intensity rainfall in these products [17]. The
misses show the same distribution as the radar’s distribution for all three products.

Figure 4.10 provides an overview of the validation metrics of the three
satellite-based rainfall products for rain estimation along with altitude. MW-based
IMERG and IR-only IMERG have difficulty estimating rainfall at lower elevations
(0-500 m.a.s.l), which is shown by the extension of the boxplot for NRMSE and
NMAE in this elevation range. RF-based rainfall has relatively lower values of
NRMSE, NMAE, and NME at an elevation of 0-500 m.a.s.l. With increasing
elevation, the rain estimation performance is relatively moderate until 2500 m.a.s.l.
For high terrain elevations of approximately 2500-4000 m.a.s.l, all products show a
significant uncertainty, mainly in NME. All the products underestimate the rainfall
rate at high elevation (2000-4000 m.a.s.1).

4.3.2 Validation Metrics for Satellite-Based Rainfall Products at
the Time of MW Overpass from IMERG against

Meteorological Stations

Table 4.4 summarizes the performance of satellite-based rainfall products for rain area
delineation against meteorological stations at the time of MW overpasses for the pixel
in W-2 (Figure 4.2a) and W-3 (Figure 4.2b).

The validation scores show the superior performance of the IMERG-MW-based
and RF-based rainfall products in comparison to IMERG-IR-only in W3. W2
shows a slightly better performance for RF-based rainfall while IR-only IMERG and
MW-based IMERG are more or less the same. Still, all of the products overestimate
precipitation area. These behaviors are similar to the validation of the rainfall
products at the MW overpass time against the X-band rain radar network (Table 4.2).

However, the validation scores indicate a lower performance of the satellite-based
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Figure 4.10: Boxplot of the validation metrics for rain estimation at the MW overpass
time. The performance of (a) MW-based IMERG, (b) IR-only IMERG,
and (c) RF-based rainfall are shown along with elevation. Boxes show
the 25th, 50th, and 75th percentiles. Whiskers extensions are to the
maximum data value between the 75th and 25th percentiles. Diamonds
indicate outliers.

rainfall products by using the radar data compared to higher scores by using the
station data. This is not surprising, since a low number of the gauges in a pixel (3
gauges in 11 km?) is not representative for the spatial distribution of rain. Therefore,
the assessment of satellite-based rainfall products against a low number of gauges in

each pixel underestimates their performance [35].

Table 4.5 shows the satellite-based rainfall products’ ability to estimate the rainfall
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Table 4.4: Rain area delineation performance of satellite-based rainfall products at
the time of MW overpass compared to the meteorological station network.
Pixel W-2 and W-3 are shown in Figure 4.2a and Figure 4.2b, respectively.

Pixel Number

Satellite-Based Rainfall Products

POD FAR HSS

W-3
W-3
W-3
W-2
W-2
W-2

MW-based IMERG
RF-based rainfall

[R-only IMERG

MW-based IMERG
RF-based rainfall

IR-only IMERG

0.33
0.25
0.17
0.29
0.35
0.23

0.83
0.83
0.89
0.82
0.78
0.82

0.21
0.19
0.12
0.19
0.24
0.19

at the time of MW overpass against ground truth data. The behavior of satellites is

different in two pixels. In W-2, IR-only IMERG shows the best performance compared

to the other two products. Meanwhile, in W-3, the RF-based rainfall capture the rain

estimate more accurately compared to other products. In general, all of the products

overestimate rainfall slightly (positive ME).

Table 4.5: Rainfall estimation performance of satellite-based rainfall over the MW
overpass time compared to ground radar network.

Pixel Satellite-Based RMSE NRMSE MAE NMAE ME NME
Number Rainfall Products  (mm/h) (mm/h) (mm/h)

W-3 MW-based IMERG 1.10 1.03 0.96 0.91 0.83 0.78
W-3 RF-based rainfall 0.48 0.45 0.85 0.80 0.83 0.78
W-3 [R-only IMERG 3.32 3.11 3.27 3.07 0.83 0.80
W-2 MW-based IMERG 1.03 0.87 0.68 0.57 0.68 0.57
W-2 RF-based rainfall 1.11 0.94 1.05 0.89 0.60 0.71
W-2 IR-only IMERG 0.68 0.58 0.49 0.41 0.77 0.67

4.3.3 Validation Metrics for RF-Based Rainfall Products in

4.3.3.1 Rain Area Delineation

Native Resolution

Using the analysis techniques described in Section 4.2.2.3, the ability of RF-based

rainfall to estimate rainfall in comparison with the radar at 2 km? spatial resolution
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and 30 minute temporal resolution is shown in Figure 4.11 (n= 1,048,575). Less than
3% of the time steps in either radar or RF-based rainfall contain rainfall including
0.31% of hits (Figure 4.11a). The errors are dominated by false alarms at 1.57%.
The decomposition of misses using the temporal event-based approach shows that
almost 12% of the misses occur in the coincidental timing from radar precipitation
(Figure 4.11b, Duration —, yellow bar; Duration +, black bar), whereas the spatially
drifted misses are not recognizable (Figure 4.11d). Almost 4% of the overestimation
occurs by overestimating event duration (Figure 4.11c), and 8.5% by overestimating

events in the neighboring pixel (Figure 4.11e).

Figure 4.11: (a) Standard contingency table approach for all available RF-based
rainfall products for both radars at 2 km? and 30 min. Note that
the correct negative fraction extends to 100%. (b,c) The temporal
event-based approach of the contingency table was evaluated in the M
and F subsets, respectively. (d,e) The spatial event-based approach of
the contingency table was evaluated in the M and F subsets, respectively.
The numbers in the bars show the percentage.

The performance is summarized in Table 4.6. As expected, a noticeable result is
the high FAR of 83%, showing that 83% of rainy events are false alarms. This is
almost similar behaviour as for RF-based rainfall at the MW overpass in 11 km?
temporal resolution (Table 4.2). By applying the algorithm in 2 km? spatial and
30 min temporal resolution, the ability of rain detection by RF-based rainfall has
reduced compared to the RF-based rainfall in MW-overpasses and at 11 km? spatial
resolution (HSS = 0.31).

4.3.3.2 Rain Estimation

Table 4.7 summarizes the performance of RF-based rainfall in estimating rain at

2 km? spatial and 30 min temporal resolution. The RF-based rainfall shows better
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Table 4.6: Performance evaluation of RF-based rainfall at rainfall area delineation for
2 km? spatial and 30 min temporal resolution.

Satellite-Based Rainfall Products POD FAR HSS
RF-based rainfall 0.28 0.83 0.20

performance in estimating rainfall at higher resolution compared with lower resolution

(Table 4.3 ).

Table 4.7: Performance evaluation of RF-based rainfall for rainfall estimation 2 km?
spatial and 30 min temporal resolution.

Satellite-Based RMSE NRMSE MAE NMAE ME NME
Rainfall Products (mm/h) (mm/h) (mm/h)
RF-based rainfall 2.39 1.07 1.72 0.77 0.51 0.22

Focusing on hits, Figure 4.12 shows the rain estimation retrieval ability of RF-based
rainfall in comparison with the radar. The scatter plot in Figure 4.12a shows the
distribution of the half-hourly rain rates. The rain rates illustrates high variability,
suggesting problems in rain estimation retrieval and/or timing. This is also shown
in Figure 4.9g at the time of MW overpass. Figure 4.12b shows the Q—Q plot for
RF-based rainfall. The overall estimation of the rainfall is placed along the 1:1 line
to the 90th percentile. However, the curve deviates towards the left after the 90th
percentile, showing an overestimation of rain intensities in the outliers. Figure 4.12¢
decomposes the results in more detail. Overall, RF-based rainfall is unable to detect
the most extreme rainfall rates, as reported by Turini et al. [3]. The cumulative
distribution of rainfall rates for hits, misses, radar, and false alarms are compared
in Figure 4.12a. Around 60% of false alarms and misses are less than or equal to
1 mm/h. This is also true for 60% of event-based (temporally and spatially) false
alarms Figure 4.12d. The event-based misses are evenly distributed over the different

rainfall rates.
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Figure 4.12: Comparison of rain rates estimated by the radar and RF-based rainfall
at 2 km? and 30 min. (a) Scatter plot with radar rainfall (x-axis) and
RF-based rainfall (y-axis). Only the pixels with hit are considered. (b)
Q-Q plot of radar (x-axis) and RF-based rainfall rates (y-axis). The
10th, 50th, and 90th percentiles are illustrate. (c) The distribution of
cumulative rainfall rate for the contingency table. (d) The distribution of
cumulative rainfall rate based on the event-based (spatial and temporal)
contingency table.

4.3.4 Validation Metrics for RF-Based Rainfall Products at

Different Temporal Resolutions

To validate the results of rain area delineation and rain estimation in different
temporal resolutions, Figure 4.13a,b presents the validation metrics with the radar for
the whole study region and observation period. The results show the best agreements
regarding rain area delineation in daily resolution (POD 0.68, HSS 0.4, and FAR 0.6).

The rain estimation indices for RF-based rainfall do not show a significant
improvement for the different temporal resolutions. The NME suggests the
overestimation of precipitation by RF-based rainfall at lower resolution (after 3 h)
and an underestimation at higher temporal resolutions. Note that in this step, we

considered rainfall at a rate of more than 0.5 mm/h as rainy.

4.4 Discussion

In Section 4.3.1, satellite-based rainfall products at the time of MW overpasses from
IMERG were assessed using radar data. We evaluated the satellite-based products in

grid cells at the time of MW overpasses and a spatial resolution of 11 km?.
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Figure 4.13: Comparison of the validation metrics between the radar and RF-based
rainfall at 2 km? and 30 min, 1 h, 3 h, and daily. The performance of
RF-based (a) rain area delineation and (b) rain estimation is shown for
different temporal resolutions.

The verification scores for rain area delineation revealed that the MW-based
IMERG has superior performance in estimating rain area (POD = 0.74, HSS = 0.33).

RF-based rainfall, which is trained based on MW-based IMERG, has slightly lower
performance compared to MW-based IMERG data (HSS = 0.31). IR-only IMERG
performed the worst in Ecuador. This is in line with the findings of Kolbe et al.
[12], Kolbe et al. [13], Turini, Thies, and Bendix [8], and Turini et al. [3]. It shows
that multispectral GEO data has more potential than using one IR channel only for

rainfall retrieval.

The frequent false alarm is one of the most noticeable issues identified in the present
study. This agrees well with the result of IMERG-V06 validation in the west African
forest zone [17] and confirms the previous investigation of IMERG-v05 by Manz et al.
[15] in the Andes region. In our study, around 60% of the false alarms were related to
rain rates less than 1 mm/h for all products (Figure 4.9), which was found to be the
dominant rainfall intensity in this region of the world [38]. We also note that the radar
potentially underestimated rainfall [39, 40, 41, 42]. This was also reported elsewhere
for the radars in Ecuador [23]. In MW-based IMERG and RF-based rainfall, with
increasing the rainfall rate, the FAR decreases while POD does not change (Figure
48).

The results of the topography-based evaluation indicated the high detection
accuracy of MW-based IMERG and RF-based rainfall in different topographical

regions. Moreover, the highest errors occurred for coastal areas and foothills
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(0-1500 m.a.s.l) and high mountains regions (>3000 m.a.s.l) compared to the other
topographical regions. All the products experienced challenges in estimating rainfall
at high elevation in the Andes (Figure 4.10). In Ecuador, high-elevation areas and
volcanoes have two issues for rainfall retrieval algorithms: (i) They are regularly
covered by ice, which generates errors in MW-based IMERG [28, 43]; (ii) the drizzle
on the high elevation is hard to be captured by MW and IR channels. This conclusion
is in agreement with the findings of study conducted by Prakash et al. [44], who
assessed the performance of IMERG products in monsoon-dominated regions in India.
Their results showed that IMERG was affected by the orographic process, which leads
to higher errors in mountainous areas. Another study by Kim et al. [45] revealed the
disadvantage of IMERG products over mountainous and coastal regions. Similar
results were obtained by Turini et al. [3] in Ecuador for RF-based rainfall. They
argued that because of local topography, the subscale convective rainfall systems
probably could not be captured by GOES data and IMERG [3, 36]. Altogether, at
the elevation of 0-750 m.a.s.l, RF-based rainfall showed the best performance of all
products (Figures 4.7 and 4.10).

Concerning rainfall rate validation, the overall variability in all the products is high,
suggesting rainfall rate estimation and/or timing issues. Different studies discuss a
possible time lag between the satellite-based rainfall products and the ground-based
rainfall measurements as a source of degrading validation results [17, 37, 46, 47,
48]. The time lag is defined as the time shift when satellite observation and surface
precipitation rate from ground data obtain to their optimum correlation. This time
lag might be due to the time it takes for the precipitation detected by the satellite
to reach the ground [17, 46]. You et al. [37] related the precipitation time from GMI
to the environmental temperature and storm top height. They found that when the
storm is taller, the lag time increases to obtain the optimum correlation between the
GMI and ground truth data. This is due to the long way of raindrops from the storm
top to the gauge.

Ignoring the corresponding time steps in the Q—Q plots shows that the MW-based
IMERG and RF-based (Figure 4.9b,h) rainfall rates are distributed up to 5 mm/h
evenly. The positive values in MW-based IMERG at higher rainfall rates are more
evident. Conversely, the rainfall rate distribution between the radar and IR-only
IMERG shows more discrepancies (Figure 4.9¢). The validation of satellite-based
rainfall products against the gauges show lower consistency (Table 4.5). However,

in the term of rain area delineation (Table 4.4), the RF-based rainfall product
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shows better performance than IMERG-IR-only, which confirms the potential to use
multispectral GEO data.

The validation of satellite-based rainfall show a slight overestimation of rainfall
totals for all products (Table 4.5).

It should be noted that the evaluation of satellite-based products against only a
few gauges has high uncertainties [8, 35], especially in areas with high small-scale
precipitation variability in mainly convective environments, like the Ecuadorian
Andes, where point based observations at weather stations cannot properly represent
the spatial rainfall distribution.

The validation of RF-based rainfall retrieval at high spatiotemporal resolution for
all the available rain events is shown in Table 4.6. The RF-based rainfall is calibrated
locally for Ecuador. The importance of local calibration, which involves determining
relevant climatic parameters, including the selection of appropriate temperature
thresholds for clouds and a local correlation systematic biases that may not have
been adjusted in global products, have been mentioned in different studies [49, 50,
51].

RF-based rainfall for 2 km? and 30 min shows a lower HSS compared to the
RF-based rainfall for 11 km? at the time of MW overpass. This was expected
because the errors at higher temporal resolutions may cancel each other out following
the aggregation to a lower temporal resolution [49]. However, in terms of rainfall
estimation, RF-based rainfall performs better at higher spatial resolution (Table 4.3).
This result needs to be interpreted with caution, since the rainfall events at the time
of MW overpasses differ from the validation of the RF-based rainfall at 2 km? and 30
min.

An event-based analysis was then used to investigate the source of error in the
RF-based rainfall product. Shifting the RF-based rainfall backward by one to two
time steps (i.e., 30 min) resulted in the more accurate detection of rainfall around
10% (Figure 4.11b) by lowering the misses. RF-based rainfall rates are lower than
their counterparts in radar, as shown in Figure 4.12d. We speculate that this lag
appears due to the lag time between the time of MW overpass and the GOES-16 scan
time. The RF-based rainfall algorithm relies on the precipitation information from
MW-based IMERG and IR data from GOES-16.

However, RF-based rainfall also has a high FAR. The event-based spatial analysis
reduced the FAR by 8.5% (Figure 4.11e), but the challenge remains the same.
High FAR values occur for all the different types of rain with different intensities

126



4.5 Conclusions

(Figure 4.12c,d). The reason for the high FAR in RF-based rainfall might be (i) the
high amount of FAR from MW-based IMERG in Ecuador (Table 4.2), which is used as
a reference for calibrating of RF-based rainfall; (ii) A bias in IR retrievals that classify
cold cloud pixels as rainy. They experience difficulties in defining the correct rainfall
cloud and profile, thus producing error in statistical-physical rainfall algorithms.

By increasing the temporal resolution of the RF-based rainfall product, the
performance of the product increased. However, the FAR (60% in daily resolution)

remains a main challenge.

4.5 Conclusions

In this study, we evaluated and compared the performance of different satellite-based
rainfall products over the Pacific coast and Andes of Ecuador. A mesoscale
quality-controlled rain radar network was used as the rainfall reference. Statistical
comparison indices were used to analyze the performance and to describe different
aspects of the satellite-based rainfall products. The first validation was performed at
11 km? spatial resolution and at the time of MW overpass for MW-based IMERG,
RF-based rainfall, and IR-only IMERG products. Based on the validation, MW-based
IMERG and RF-based rainfall provided better rainfall estimates in Ecuador than
IR-only IMERG during MW overpasses. The distribution of the evaluation metrics
spatially shows the impact of topography and the complex climate zonations in the
study region. High precipitation values were better captured by the MW-based
IMERG and the RF-based rainfall algorithms. The frequent false alarms are one of
the most important issues in all products; FAR decreases with an increasing rainfall
rate. Future studies on the lag time are therefore required in order to elucidate the
high FAR in the satellite-based products. In the third validation, we investigated
regionally calibrated RF-based rainfall products for Ecuador. RF-based rainfall is
trained by MW-based IMERG. Although the product shows convincing results at a
MW overpass of 11 km?, the performance decreased by increasing the resolution to
2 km? spatial and 30 min temporal resolution. Furthermore, RF-based rainfall is
trained to the available microwave-only data from IMERG. Consequently, due to the
low temporal resolution of the data from MW satellites, some rainfall events might

not have been considered [8].
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Chapter 5

Conclusions and Outlook

5.1 Conclusions

The research developed a new rainfall retrieval technique using LEO microwave and
GEO multispectral satellite data. This project supports water management in areas
with sparse ground truth rainfall data. Ground-based rainfall information is hardly
accessible in most world regions due to remoteness and complex topography. These
challenges impose difficulty on planners and decision-makers in the water management
field. For this reason, in many regions, satellite rainfall products are available to
receive information on precipitation in space and time [1].

Thus, the main aim of this thesis was to combine the advantages of
second-generation GEO systems and the new IMERG product to develop a regionally
adapted rainfall retrieval scheme with a high temporal and spatial resolution based
on a machine learning algorithm in ungauged areas. This aim was based on four
different hypotheses.

Hypothesis 1 states that multispectral GEO IR data and machine learning can
improve the newest generation of rainfall products’ rainfall retrieval for ungauged
regions. Therefore, in the chapter 2 (WP1), a new rainfall retrieval technique
was developed for Iran using microwave satellite and MSG1 data. The MW
rainfall data from IMERG-V05 was used as a training references in RF models.
In this algorithm two models for the rainfall area delineation and rainfall rate
assignment were developed using RF. The method was validated against independent
microwave-only GPM IMERG rainfall data. The validation results verified Hypothesis
1 with high accuracy. Combining second-generation precipitation radar information
with multispectral IR from modern GEO satellites using the machine learning

algorithm RF provides a high spatio-temporal resolution of rainfall in Iran. The new

134



5.1 Conclusions

rainfall retrieval performed well in the validation against independent MW-IMERG,
particularly compared with the GPM IMERG IR-only rainfall product (Section
2.3.2.3).  Also, further validation was performed against daily gauge data. The
results showed improvement of rainfall retrieval with the developed rainfall product
in high spatio-temporal resolution in comparison with other global products which

were evaluated in Iran. This confirmation allowed us to test the second hypothesis.

Hypothesis 2 reads: “The developed algorithm in Hypothesis 1 is transferable with
equal accuracy to areas with complex topography and rainfall regimes”. Therefore,
in chapter 3 (WP2), I investigated the applicability of the developed algorithm in
Ecuador to another rainfall regime and geostationary satellite (GOES-16) compared
with Iran. So, in this chapter, I developed the rainfall retrieval product for
Ecuador using multispectral IR information from GOES-16 and microwave-only data
from IMERG-V06 using RF. The MW overpass from IMERG-V06 was used as a
reference to train the RF models for rain area delieation and rainfall rate assignment
separately. Considering the regional specifications of Ecuador, the feature selection
and tuning of the RF models were conducted again. I applied two different validation
strategies to estimate the model accuracy: i) The RF-based rainfall product (11
km? and 30 minutes) was validated against independent microwave-only IMERG-V06
information; ii) the RF-based rainfall product (2 km? and daily) was validated against
daily gauge stations. The validation demonstrated that the developed algorithm could
retrieve reliable rainfall information in Ecuador more accurately than the IR-only
IMERG product (Section 3.3.2 and 3.3.4), confirming the approach’s viability and
Hypothesis 2. The developed algorithm could be applied in another region with
complex topography with equal accuracy. Meanwhile, the spatial variability of the
evaluation displays the influence of the topography in Ecuador, where inaccuracy
appears in the higher elevations of the Andes (Section 3.3.3). These results might be
due to the small-scale regional convective rainfall in more complex regions of Ecuador
2], which are difficult to be capture using GOES data. On the other hand, the detailed
analysis of validation results showed that the developed RF models could not capture
extreme events (Section 3.3.2). Therefore, Hypotheses 3 and 4 are designed to identify

and understand the error source in the developed algorithm.

Hypothesis 3 evaluates whether the accuracy assessment of satellite-based rainfall
products is highly dependent on the spatial coverage and resolution of the products.
Hypothesis 4 reads: "The main uncertainties in the satellite-based rainfall retrievals

are drizzle and extreme rainfall rates, which are difficult to capture." In Chapter
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4 (WP3) I validated different satellite-based rainfall products to test Hypotheses
3 and 4. The accuracy of MW-based IMERG compared to RF-based rainfall and
IR-only IMERG data was evaluated against high spatio-temporal resolution data from
ground-based radar networks and high temporal resolution data from meteorological
stations to assess satellite-based rainfall products under climatic and topographic
conditions at the time of MW overpass in 11 km? (Section 4.2.2.1). Furthermore, I also
validated the performance of regionally trained RF-based rainfall models for Ecuador
at 30 min and 2 km? to evaluate the spatial resolution’s impact on the accuracy
of satellite-based rainfall products. The validation resulted in different aspects: (i)
The spatial resolution significantly impacted the performance of RF-based rainfall
even with a regionally trained product. The product performed better at a higher
resolution. In order to develop high spatio-temporal resolution rainfall information
based on MW data, more frequent temporal MW data must be available; (ii) the
RF-based rainfall products in high spatio-temporal resolution (2 km?) performed
better in a lower temporal resolution (Section 4.3.4) (iii) the validation metrics
spatial distribution demonstrated the influence of topography and complex climate
zonation on the rainfall retrieval accuracy of the study region; (iv) the validation
of satellite-based rainfall products against the gauges (Section 4.3.2) showed lower
consistency than radar (Section 4.3.1), which might be because convective rainfall
in complex terrains could not be captured with the spatial resolution of GOES-16
data accurately. (v) The discrepancy between the RF-based rainfall products and
radar data is more evident in higher rainfall rates (Section 4.7 and 4.3.1.2); (vi) the
validation showed that around 60% of false alarms and misses are <1 mm/h (Section
4.7 and 4.3.1.2).

Evidence from this chapter suggests that the spatial and temporal resolution of the
satellite-based rainfall product influences rainfall estimate accuracy. Furthermore,
plotting the evaluation metrics spatially made it evident that the same satellite-based
product has different accuracy for different topographical and climatic zones (i-iv).
Therefore, Hypothesis 3 was confirmed. The aforementioned points (v) and (vi)
confirm that the RF-based rainfall product has difficulty detecting extreme rainfall
rates and drizzle. Therefore, Hypothesis 4 is acceptable.

In summary, the following contributions and novelties of this thesis are:

(1) The new regionally adapted MW-IR rainfall retrieval algorithm in a high
spatio-temporal resolution was developed based on modern GEO multispectral

IR data and random forest algorithm for ungauged regions, which overcame
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the limitations of previously existing rainfall retrievals relying on ground-based
rainfall. Therefore, the developed algorithm is transferable with equal accuracy

to areas with different topography and rainfall regimes;

(2) The developed algorithm overcomes limitations in IMERG concerning the

application of geostationary IR data;

(3) The source of differences between the developed satellite-based rainfall product
and ground measurements was investigated. This validation was performed
in a high spatio-temporal resolution (2 km? and 30 minutes) against high
temporal resolution ground-based radar data and meteorological stations. This
method was a novel approach to finding the source of possible errors for further
development considering the time of MW overpass. The results confirmed the
importance of the availability of high spatio-temporal ground-based rainfall
resolutions in validation strategies and showed that the developed algorithms
need improvement to cope with very low/high rainfall rates over complex

terrains.

5.2 Qutlook

The main conclusions of this thesis are summarized in Section 5.1.

After developing this algorithm, potential improvements, including atmospheric
parameters as a predictor, should be investigated. This improvement allows us to
incorporate regional and seasonal specifications of the area directly into the algorithm.
In addition, the impact of climatic zones, climatic dynamics, and topographic
situations should be considered in the performance of the new rainfall retrieval
technique. The results suggest that the developed algorithms need improvement,
particularly to cope with very low/high intensities. Therefore, additional work must
be conducted to establish whether another machine learning algorithm, training
approach, or data set could be applied to capture drizzle and extreme events over
complex regions. We are currently in the process of investigating these aspects with
the DFG research project “Dynamics of precipitation in transition: The water source

for the Galapagos Archipelago under climate change”.
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