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Abstract
In order to delineate management or climate change adaptation strategies for natural
or technical water bodies, impact studies are necessary. To this end, impact models
are set up for a given region which requires time series of meteorological data as driv-
ing data. Regional climate models (RCMs) are capable of simulating gridded data
sets of several meteorological variables. The advantages over observed data are that
the time series are complete and that meteorological information is also provided
for ungauged locations. Furthermore, climate change impact studies can be con-
ducted by driving the simulations with different forcing variables for future periods.
While the performance of RCMs generally increases with a higher spatio-temporal
resolution, the computational and storage demand increases non-linearly which can
impede such highly resolved simulations in practice. Furthermore, systematic biases
of the univariate distributions and multivariate dependence structures are a common
problem of RCM simulations on all spatio-temporal scales.
Depending on the case study, meteorological data must fulfill different criteria. For
instance, the spatio-temporal resolution of precipitation time series should be as fine
as 1 km and 5 minutes in order to be used for urban hydrological impact models.
To bridge the gap between the demands of impact modelers and available mete-
orological RCM data, different computationally efficient statistical and stochastic
post-processing techniques have been developed to correct the bias and to increase
the spatio-temporal resolution. The main meteorological variable treated in this
thesis is precipitation due to its importance for hydrological impact studies. The
models presented in this thesis belong to the classes of bias correction, downscal-
ing and temporal disaggregation techniques. The focus of the developed methods
lies on multivariate copulas. Copulas constitute a promising modeling approach
for highly-skewed and mixed discrete-continuous variables like precipitation since
the marginal distribution is treated separately from the dependence structure. This
feature makes them useful for the modeling of different meteorological variables
as well. While copulas have been utilized in the past to model precipitation and
other meteorological variables that are relevant in hydrology, applications to RCM
simulations are not very common.
The first method is a geostatistical estimation technique for distribution parameters
of daily precipitation for ungauged locations, so that a bias correction with Quantile
Mapping can be performed. The second method is a spatial downscaling of coarse
scale RCM precipitation fields to a finer resolved domain. The model is based on the
Gaussian Copula and generates ensembles of daily precipitation fields that resemble
the precipitation fields of fine scale RCM simulations. The third method disaggre-
gates hourly precipitation time series simulated by an RCM to a resolution of 5
minutes. The Gaussian Copula was utilized to condition the simulation on both spa-
tial and temporal precipitation amounts to respect the spatio-temporal dependence
structure. The fourth method is an approach to simulate a meteorological variable
conditional on other variables at the same location and time step. The method was
developed to improve the inter-variable dependence structure of univariately bias
corrected RCM simulations in an hourly resolution.





v

Contents

Abstract iii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Regional climate and observed data . . . . . . . . . . . . . . . . 1
1.1.2 Climate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Limitations of RCM simulations . . . . . . . . . . . . . . . . . . 3
1.1.4 Statistical and stochastic post-processing . . . . . . . . . . . . . 4

1.2 Objectives, research questions and innovations . . . . . . . . . . . . . . 5
1.3 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Acknowledgements and funding information . . . . . . . . . . . . . . . 8

2 Overview of statistical and stochastic principles 11
2.1 Random variables and descriptive statistics . . . . . . . . . . . . . . . . 11
2.2 Distribution functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Empirical cumulative distribution function . . . . . . . . . . . . 12
2.2.2 Parametric distribution functions . . . . . . . . . . . . . . . . . . 13

Uniform distribution . . . . . . . . . . . . . . . . . . . . . . . . . 14
Gaussian distribution . . . . . . . . . . . . . . . . . . . . . . . . 14
Exponential distribution . . . . . . . . . . . . . . . . . . . . . . . 14
Weibull distribution . . . . . . . . . . . . . . . . . . . . . . . . . 15
Log-normal distribution . . . . . . . . . . . . . . . . . . . . . . . 15
Gamma distribution . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Choosing a parametric distribution function . . . . . . . . . . . 16
Kolmogorov-Smirnov Test . . . . . . . . . . . . . . . . . . . . . . 16
Bayesian Information Criterion . . . . . . . . . . . . . . . . . . . 17

2.2.4 Simulating from a parametric distribution function . . . . . . . 18
2.2.5 Simulating from heavy-tailed distributions . . . . . . . . . . . . 18

2.3 Spatio-temporal dependence . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Multivariate distribution functions . . . . . . . . . . . . . . . . . . . . . 21
2.5 Copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Geostatistical bias correction of RCM precipitation 27
3.1 Overview of bias correction methods . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Delta Change Approach . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.2 Dry Day Correction . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.3 Quantile Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.1.4 Double Quantile Mapping for future periods . . . . . . . . . . . 30

3.2 Study region and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 Study region and observation data . . . . . . . . . . . . . . . . . 31
3.2.2 The CORDEX-Africa RCM ensemble . . . . . . . . . . . . . . . . 34

Bias of the CORDEX-Africa precipitation simulations reported
in other studies . . . . . . . . . . . . . . . . . . . . . . . 34



vi

Bias of the CORDEX-Africa precipitation simulations in the
study region . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Development of a new geostatistical bias correction model for un-
gauged locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4 Calibration of the geostatistical bias correction model . . . . . . . . . . 42
3.4.1 Parametric distribution function of observed precipitation . . . 42
3.4.2 Normality of distribution parameters . . . . . . . . . . . . . . . 45
3.4.3 Variograms of distribution parameters . . . . . . . . . . . . . . . 46
3.4.4 Fitting a distribution function to the RCM simulations . . . . . 47

3.5 Evaluation of the geostatistical bias correction model . . . . . . . . . . 48
3.5.1 Maps of interpolated distribution parameters . . . . . . . . . . . 49
3.5.2 Cross-Validation of interpolated distribution parameters . . . . 50
3.5.3 Comparison of simulated observations and observed precipi-

tation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Annual sums of precipitation of simulated observations . . . . 53
Monthly sums of precipitation of simulated observations . . . . 54
Daily precipitation of simulated observations . . . . . . . . . . . 55

3.5.4 Evaluation of the distribution of the regional climate models . . 56
3.6 Evaluation of the projected climatology of the bias corrected RCMs . . 57

3.6.1 Projected change of annual precipitation . . . . . . . . . . . . . 57
3.6.2 Projected change of monthly precipitation . . . . . . . . . . . . 62
3.6.3 Projected change of daily precipitation . . . . . . . . . . . . . . 64
3.6.4 Projected change of onset of rainy season . . . . . . . . . . . . . 65

3.7 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Copula-based spatial downscaling of RCM precipitation 69
4.1 Overview of downscaling techniques . . . . . . . . . . . . . . . . . . . 69

4.1.1 Dynamical downscaling . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.2 Statistical downscaling . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Study region and RCM precipitation data . . . . . . . . . . . . . . . . . 72
4.3 Development of a stochastic copula-based downscaling model . . . . . 74
4.4 Calibration of the stochastic copula-based downscaling model . . . . . 78

4.4.1 Distribution functions . . . . . . . . . . . . . . . . . . . . . . . . 78
4.4.2 Spatial correlograms . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.5 Evaluation of downscaled precipitation . . . . . . . . . . . . . . . . . . 82
4.5.1 Daily precipitation fields . . . . . . . . . . . . . . . . . . . . . . . 82
4.5.2 Spatial correlation of stochastic simulations . . . . . . . . . . . . 85
4.5.3 Distribution of stochastic simulations . . . . . . . . . . . . . . . 86
4.5.4 Brier skill scores of daily stochastic simulations . . . . . . . . . 88
4.5.5 Comparison of daily dynamical and stochastic simulations . . . 90

4.6 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Copula-based temporal disaggregation of RCM precipitation 95
5.1 Overview of time series and disaggregation models . . . . . . . . . . . 95

5.1.1 Time series models . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.1.2 Disaggregation techniques . . . . . . . . . . . . . . . . . . . . . 97

5.2 Study region and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3 Development of a copula-based disaggregation model . . . . . . . . . . 100
5.4 Calibration of the copula-based disaggregation model . . . . . . . . . . 103

5.4.1 Bias corrected hourly input data . . . . . . . . . . . . . . . . . . 103
5.4.2 Statistics of 5 minute data . . . . . . . . . . . . . . . . . . . . . . 103



vii

Observed distribution functions . . . . . . . . . . . . . . . . . . 104
Observed cross correlation . . . . . . . . . . . . . . . . . . . . . 105
Observed auto correlation . . . . . . . . . . . . . . . . . . . . . . 106

5.5 Evaluation of the copula-based disaggregation model . . . . . . . . . . 107
5.5.1 Example of spatio-temporal disaggregation for one event . . . . 107
5.5.2 Correlograms of disaggregated time series . . . . . . . . . . . . 110

Simulated cross correlation . . . . . . . . . . . . . . . . . . . . . 110
Simulated auto correlation . . . . . . . . . . . . . . . . . . . . . 111
Influence of bias corrected RCM on correlograms . . . . . . . . 112

5.5.3 Simulated distribution functions . . . . . . . . . . . . . . . . . . 112
5.6 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Multivariate Vine Copula-based Bias Correction 115
6.1 Overview of multivariate bias correction methods . . . . . . . . . . . . 115
6.2 Study region and data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.3 Development of a new copula-based multivariate bias correction model117
6.4 Calibration of the copula-based multivariate bias correction model . . 120
6.5 Evaluation of the copula-based multivariate bias correction model . . . 124
6.6 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 Summary and conclusions 127

A Appendix to Chapter 3 - Geostatistical bias correction of RCM precipitation131

B Appendix to Chapter 5 - Copula-based temporal disaggregation of RCM
precipitation 139

C Appendix to Chapter 6 - Multivariate Vine Copula-based Bias Correction 145





ix

List of Figures

1.1 Summarizing flow chart of the four newly developed post-processing
techniques and their motivation. . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Histogram of daily precipitation intensities in Hamburg (1993-2012). . 12
2.2 Empirical cumulative absolute and relative frequency of daily precip-

itation intensities in Hamburg (1993-2012). . . . . . . . . . . . . . . . . 13
2.3 Parametric CDFs fitted to daily precipitation intensities in Hamburg

and empirical CDF (1993-2012). . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Empirical scatter plot of CDF values (Emp) and parametric copula

densities (AMH, Cla, FGM, Fra, Gum) of hourly air temperature (u)
and shortwave downwelling radiation (v) in the Berchtesgaden Na-
tional Park in the season SON (2001-2010). . . . . . . . . . . . . . . . . . 24

3.1 Transformation of non-zero precipitation amounts with Double Quan-
tile Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 The study region in West Africa and the location of the observation
stations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Mean annual sum of precipitation of the West African observation
data (1950-2005). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Hovmöller diagram of mean monthly precipitation of the West African
observation data (1950-2005). . . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 Mean daily precipitation on rainy days xw in the season JJA (1950-2005). 33
3.6 Mean daily probability of precipitation pw in the season JJA (1950-2005). 33
3.7 Mean of mean annual sum of simulated precipitation of 173 grid cells

against annual sum of closest measurement station - uncorrected his-
torical period (1950-2005). . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.8 Mean monthly sum of precipitation averaged over 173 grid cells -
uncorrected historical period (1950-2005). . . . . . . . . . . . . . . . . . 36

3.9 Difference of mean monthly sums of precipitation in the uncorrected
RCP 8.5 scenario (2005-2100) to the uncorrected historical period (1950-
2005). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.10 Flowchart of the geostatistical bias correction method. . . . . . . . . . . 40
3.11 Boxplot of BIC-values of nine parametric distribution functions fitted

to daily precipitation intensities in August (1950-2005). . . . . . . . . . 43
3.12 Empirical and Gaussian distribution of pw (a) and xw (b) in August

(1950-2005). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.13 Experimental and fitted variograms γx of xw in east-west (a) and north-

south direction (b) in August (1950-2005). . . . . . . . . . . . . . . . . . 46
3.14 CDF of historical (1950-2005) and future (2006-2100, RCP8.5) precip-

itation of one model and of simulated observations in June for one
cell. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



x

3.15 QQ-Plot of historical (1950-2005) and future (2006-2100, RCP8.5) pre-
cipitation of one model in June for one cell center with bisecting line
(blue) and regression line (red). . . . . . . . . . . . . . . . . . . . . . . . 47

3.16 Kriged probability of precipitation pw (a) and mean wet day amount
xw (b) in August (1950-2005) - Diamonds: Observed, Squares: Kriged. . 49

3.17 Scatterplot of interpolated pw compared to observed value in August
(1950-2005). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.18 Scatterplot of interpolated xw compared to observed value in August
(1950-2005). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.19 Ratio of accepted KS-Tests of simulated precipitation. . . . . . . . . . . 52
3.20 Mean annual sum of precipitation of simulated observations and near-

est measurement station (1950-2005). . . . . . . . . . . . . . . . . . . . . 53
3.21 Mean monthly sum of precipitation of simulated observations and

nearest measurement station (1950-2005). . . . . . . . . . . . . . . . . . 54
3.22 Difference of mean monthly sum of precipitation of simulated obser-

vations to nearest measurement station (1950-2005). . . . . . . . . . . . 54
3.23 QQ-Plot of simulated and observed daily precipitation for Ouagadougou,

Burkina Faso (a) and for a cell in the north of Ghana (b) (1950-2005). . . 55
3.24 Mean monthly sum of precipitation of simulated observations and

nearest measurement station (1950-2005). . . . . . . . . . . . . . . . . . 56
3.25 Violin plot of change of future annual precipitation for the three RCP

scenarios in the near future 2020-2050 (a) and the far future 2070-2100
(b) in comparison to the historical period 1970-2000. . . . . . . . . . . . 58

3.26 Absolute difference of annual precipitation in the near future 2020-
2050 (a) and far future 2070-2100 (b) in comparison to the historical
period (1970-2000) for RCP 2.6. . . . . . . . . . . . . . . . . . . . . . . . 59

3.27 Absolute difference of annual precipitation in the near future 2020-
2050 (a) and far future 2070-2100 (b) in comparison to the historical
period (1970-2000) for RCP 4.5. . . . . . . . . . . . . . . . . . . . . . . . 60

3.28 Absolute difference of annual precipitation in the near future 2020-
2050 (a) and far future 2070-2100 (b) in comparison to the historical
period (1970-2000) for RCP 8.5. . . . . . . . . . . . . . . . . . . . . . . . 61

3.29 Mean monthly sum of precipitation averaged over 173 grid cells - bias-
corrected RCP 8.5 scenario - a: near future (2020-2050), b: far future
(2070-2100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.30 Difference of mean monthly sums of precipitation in the bias corrected
RCP 8.5 scenario in the near future 2020-2050 (a) and the far future
2070-2100 (b) compared to historical period (1970-2000). . . . . . . . . . 63

3.31 QQ-Plot of bias corrected historical (1950-2005) and future (2006-2100,
RCP 8.5) precipitation intensities in June for one cell. . . . . . . . . . . 64

3.32 Map of observed (circles) and bias corrected (squares) DOYon of the
best model in the historical period 1970-2000. . . . . . . . . . . . . . . . 65

3.33 Violin plots of ∆DOY of the bias corrected near future 2020-2050 (a) and
far future 2070-2100 (b) in comparison to the historical period 1970-2000. 66

4.1 Total annual precipitation of the coarse scale (42 km, a) and the fine
scale (7 km, b) RCM in the calibration year 1971. . . . . . . . . . . . . . 72

4.2 Example of daily precipitation patterns of the coarse scale (a) and
fine scale RCM simulations (b) for a heavy precipitation event on
November 17, 1972. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



xi

4.3 Scatter plot of daily precipitation of the coarse cells (x-axis) against
average daily precipitation of the fine scale sub-fields (y-axis) in the
calibration year 1971 for the complete study region. . . . . . . . . . . . 74

4.4 Flowchart of the simulation of fine scale precipitation fields. . . . . . . 75
4.5 Artificial example of the conditioning of two fine scale value with the

four closest coarse scale values. . . . . . . . . . . . . . . . . . . . . . . . 77
4.6 Conditional CDF of the two fine scale cells given their four condition-

ing values in the artificial example. . . . . . . . . . . . . . . . . . . . . . 77
4.7 Empirical CDF of daily precipitation in the calibration period (1971)

of one coarse scale cell and its central fine scale cell. . . . . . . . . . . . 79
4.8 Scaling behavior of θ with a fixed shape parameter k from the 1-year

calibration period to the complete 30-year period for the coarse scale
(a) and fine scale RCM precipitation amounts (b). . . . . . . . . . . . . 80

4.9 Empirical and fitted correlograms of fine scale RCM to coarse scale
RCM (a) and fine scale RCM to fine scale RCM (b). . . . . . . . . . . . . 81

4.10 Precipitation on November 17, 1972 - Original coarse scale RCM (a),
original fine scale RCM (b), stochastic simulation with median areal
mean precipitation (c) and IDW interpolation of coarse scale precipi-
tation (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.11 Stochastically simulated precipitation for November 17, 1972 - Spread
of 10% and 90%-quantiles of stochastic simulations (a), mean differ-
ence of fine scale RCM precipitation field and stochastic simulations
(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.12 Correlograms of five stochastic ensemble members and the dynamical
simulations for the fine to coarse scale values (a) and for the fine to
fine scale values (b) in the year 1972. . . . . . . . . . . . . . . . . . . . . 85

4.13 Standardized anomalies of the total annual precipitation, the mean
amount on wet days and the rainfall probability for the coarse (a) and
fine (b) scale WRF simulations . . . . . . . . . . . . . . . . . . . . . . . . 86

4.14 Quantile-Quantile-Plot of stochastic simulations with the calibration
year 1971 (a) and the calibration year 1982 (b). Crosses: Average dis-
tribution of simulations, shaded area: spread of simulated distributions. 87

4.15 Brier skill score of stochastic simulations for a threshold of Q50 ≈

1.55 mm d−1 in the period 1972-2000. . . . . . . . . . . . . . . . . . . . . 88
4.16 Violin plot of Brier skill scores of the proposed copula-based method

and IDW-fields for ten ascending quantile-based precipitation thresh-
olds in the period 1972-2000. . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.17 Mean difference of dynamical and stochastic daily precipitation (mean
over 50 samples) - 1972-2000. . . . . . . . . . . . . . . . . . . . . . . . . 90

4.18 Performance of stochastic simulations - Reproduction of dry days (a),
reproduction of wet days (b), correlation of wet day amounts (c) and
explained variance of wet day amounts (d) - 1972-2000. . . . . . . . . . 91

5.1 Location of the 16 measurement stations used for the calibration of the
disaggregation model and the 9 target locations . . . . . . . . . . . . . 99

5.2 Flowchart of the selection of spatial and temporal conditioning values
to set up the conditional distribution function. . . . . . . . . . . . . . . 102

5.3 QQ-Plot of observed and simulated 5-minute-precipitation for Freiburg
in the season JJA (1951-2013). . . . . . . . . . . . . . . . . . . . . . . . . 104



xii

5.4 Fitted cross correlograms of observed 5 minute precipitation in the
region of Freiburg for different temporal lags in the season JJA (1951-
2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5 Fitted auto correlogram of observed 5 minute precipitation in the re-
gion of Freiburg in the seasons DJF, MAM, JJA, and SON (1951-2013). . 106

5.6 Order of disaggregation of bias-corrected hourly precipitation for a
heavy precipitation event on July 29, 2005 (2 pm) for the first three
locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.7 Selection of disaggregated time slices for the first three locations. . . . 108
5.8 Mean precipitation of each time step of candidate time series for the

first three locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.9 Fitted cross correlograms of observed (1951-2013) and disaggregated

(1980-2009) 5 minute precipitation with a temporal lag of τ = 0 min
in the region of Freiburg in the seasons DJF (a), MAM (b), JJA (c) and
SON (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.10 Fitted auto correlograms of observed (1951-2013) and disaggregated
(1980-2009) 5 minute precipitation in the region of Freiburg in the
seasons DJF (a), MAM (b), JJA (c) and SON (d). . . . . . . . . . . . . . . 111

5.11 QQ-Plots of disaggregated (1980-2009) against oberseved (1951-2013)
precipitation in a temporal resolution of 5 (a), 10 (b), 15 (c), 30 (d)
minutes in Freiburg. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.1 Locations of the 22 meteorological stations in the Berchtesgaden Na-
tional Park. Background map retrieved from GeoBasis-DE / BKG (2019).116

6.2 Flowchart of the univariate bias correction with Quantile-Mapping
and selection of variable for post processing. . . . . . . . . . . . . . . . 118

6.3 Conditional CDFs of relative humidity in the season DJF for different
conditioning values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.4 Scatter plot of τK of QM and QMV applied to the scenario run (2020-
2049) against observations in the seasons DJF (a), MAM (b), JJA (c)
and SON (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

A.1 Mean monthly sum of precipitation averaged over 173 grid cells - bias-
corrected RCP 2.6 scenario - a: near future (2020-2050), b: far future
(2070-2100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.2 Mean monthly sum of precipitation averaged over 173 grid cells - bias-
corrected RCP 4.5 scenario - a: near future (2020-2050), b: far future
(2070-2100). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.3 Model-averaged ∆DOY in the near future (2020-2050) for RCP 2.6 (a),
RCP 4.5 (b) and RCP 8.5 (c). . . . . . . . . . . . . . . . . . . . . . . . . . 135

A.4 Model-averaged ∆DOY in the far future (2070-2100) for RCP 2.6 (a),
RCP 4.5 (b) and RCP 8.5 (c). . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.5 Example of a nearly constant experimental and fitted variograms of
λwbl in March (1950-2005). . . . . . . . . . . . . . . . . . . . . . . . . . . 137

B.1 Mean ratio of valid measurements of the 16 gauges in the proximity
of Freiburg (1951-2013). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

B.2 Fitted cross correlograms of observed (1951-2013), disaggregated (1980-
2009) and shuffled (1980-2009, n = 0, m = 0) 5 minute precipitation
with a temporal lag of τ = 0 min in the region of Freiburg in the
seasons DJF (a), MAM (b), JJA (c) and SON (d). . . . . . . . . . . . . . . 140



xiii

B.3 Fitted auto correlograms of observed (1951-2013), disaggregated (1980-
2009) and shuffled (1980-2009, n = 0, m = 0) 5 minute precipitation
in the region of Freiburg in the seasons DJF (a), MAM (b), JJA (c) and
SON (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

B.4 Fitted cross correlograms of observed (1951-2013) and bias corrected
(1980-2009) hourly precipitation with a temporal lag of τ = 0 min in
the region of Freiburg in the seasons DJF (a), MAM (b), JJA (c) and
SON (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

B.5 Fitted auto correlograms of observed (1951-2013) and bias corrected
(1980-2009) hourly precipitation in the region of Freiburg in the seasons
DJF (a), MAM (b), JJA (c) and SON (d). . . . . . . . . . . . . . . . . . . . 143





xv

List of Tables

2.1 KS Test statistics of five different distribution functions. . . . . . . . . . 17
2.2 BIC values of five different distribution functions. . . . . . . . . . . . . 17
2.3 Bivariate copulas, copula densities and conditional distribution func-

tions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Annual rating of all CORDEX-Africa models. . . . . . . . . . . . . . . . 38
3.2 Cross validation of Kriging and IDW for pw. rxy: Correlation, MAE:

mean absolute error, MSE: mean squared error. . . . . . . . . . . . . . . 50
3.3 Cross validation of Kriging and IDW for xw. rxy: Correlation, MAE:

mean absolute error, MSE: mean squared error. . . . . . . . . . . . . . . 51

4.1 Average BIC-value of nine tested parametric distribution functions in
the calibration period 1971. . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1 Selected CDFs for the five observed meteorological variables (2001-2010).120
6.2 Kendall’s τK of the ten meteorological variable pairs of the observa-

tions and the univariately bias-corrected QM reanalysis run. . . . . . . 121
6.3 Sum of absolute values of τk of the individual observed variables. . . . 121
6.4 Σ|∆τK| of the univariately bias corrected reanalysis run to the obser-

vations for individual variables. . . . . . . . . . . . . . . . . . . . . . . . 122
6.5 Selected copulas of the four variables T, P, H, SW in the observed and

QM time series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.6 Percental improvement of the absolute difference between observed

and simulated Kendall’s τK of QMV in comparison to QM. . . . . . . . 124

A.1 CORDEX-Africa RCMs that were bias-corrected for the historical pe-
riod (1950-2005). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.2 CORDEX-Africa RCMs that were bias-corrected for the future period
(2006-2100) - the simulation period can differ for the different RCP
scenarios RCP 2.6, 4.5 and 8.5. . . . . . . . . . . . . . . . . . . . . . . . . 132

C.1 Locations of the 22 meteorological measurement stations in the Bercht-
esgaden National Park. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145





xvii

List of Abbreviations

ACF Auto Correlation Function
AMOC Atlantic Meridional Overturning Circulation
BIC Bayesian Information Criterion
BC Bias Correction
BLRP Bartlett Lewis Rectangular Pulse Model
BMBF Bundesministerium für Bildung und Forschung
BS Brier Score
BSS Brier Skill Score
CCDF Conditional Cumulative Distribution Function
CCF Cross Correlation Function
CDF Cumulative Distribution Function
CMIP Coupled Model Intercomparison Project
CORDEX Coordinated Regional Climate Downscaling Experiment
CPDF Conditional Probability Density Function
CRU Climatic Research Unit
DDC Dry Day Correction
DJF December January February
DOY Day Of Year
ECDF Empirical Cumulative Distribution Function
GCM General Circulation Model
GPCP Global Precipitation Climatology Project
IDW Inverse Distance Weighting
iid independent identically distributed
IPCC Intergovernmental Panel on Climate Change
JJA June July August
KDE Kernel Density Estimation
KS Test Kolmogorov Smirnov Test
MAE Mean Absolute Error
MAM March April May
ME Mean Error
MLM Maximum Likelihood Method
MLR Multiple Linear Regression
MOM Method Of Moments
NSRP Neyman Scott Rectangular Pulse Model
PACF Partial Auto Correlation Function
PDF Probability Density Function
QM Qauntile Mapping
QMV Qauntile Mapping with Vine Copula Simulation
QQ-Plot Quantile-Quantile-Plot
RCM Regional Climate Model
RCP Representative Concentration Pathway
RMSE Root Mean Square Error
SON September October November



xviii

SYNOPSE Synthetische Niederschlagszeitreihen für die optimale
Planung und den Betrieb von Stadtentwässerungssystemen

WASCAL West African Science Service Center on Climate Change and Adapted Land Use
WRF Weather Research and Forecasting Model



xix

List of Symbols

auni Lower boundary parameter of the uniform distribution
avsp Range parameter of spherical variogram model
buni Upper boundary parameter of the uniform distribution
c Copula density
C Copula
C0 Nugget value of variogram
Cvsp Sill parameter of spherical variogram model
D Kolmogorov-Smirnov Test statistic
D∗ Threshold at a given significance level α for the Kolmogorov-Smirnov Test
f (x) Univariate probability density function (PDF)
f (x1, ..., xn) n-dimensional probability density function (PDF)
fc Conditional probability density function (CPDF)
F(x) univariate cumulative distribution function (CDF)
F(x1, ..., xn) n-dimensional cumulative distribution function (CDF)
Fc Conditional cumulative distribution function (CCDF)
h Distance / Spatial lag
I Identity matrix
kwbl Shape parameter of Weibull distribution
kgam Shape parameter of Gamma distribution
Kν Modified Bessel function of second kind
kΘ Number of parameters of a parametric distribution function
L Likelihood
n Sample size or number of dimensions
P Probability
pd Probability of no precipitation (dry)
pw Probability of precipitation (wet)
Ri Empirical rank of a value xi in its sample
rmat Range parameter of Matérn correlogram model
sx Empirical standard deviation of sample of X
s2

x Empirical variance of sample of X
u, v CDF value / relative rank corresponding to x, y
usim, vsim Simulated CDF value
uth Threshold CDF value
w Uniform random number for the inversion of a CCDF
x, y Realization of a random variable X, Y
x Mean of a random variable X
x∗ A specific value of X
xsim A realization of a random variable X simulated from a CDF or CCDF
z Standard normal variable

α Significance level
∆DOY expected difference of DOY that marks of the rainy season in a future period
γgam Lower incomplete Gamma function



xx

γ̂ parametric variogram model
γ̂hl h-lambda variogram model
γ̂sp spherical variogram model
γxy covariance of X and Y
γ∗ experimental variogram
Γ Gamma function
Γ Correlation matrix
λexp Parameter of exponential distribution
λce Parameter of exponential correlogram model
λhl Parameter of h-lambda variogram model
λK Kriging weight
λwbl Scale parameter of Weibull distribution
µ First statistical moment of a random variable
µF Fuzzy membership function
µL Lagrange multiplier
νmat Shape parameter of Matérn correlogram model
φ Gaussian PDF
Φ Gaussian CDF
ρsp Spearman Correlation coefficient
ρxy Pearson Correlation coefficient
ρ̂ Parametric correlogram model
ρ̂exp Exponential correlogram model
ρ̂mat Matérn correlogram model
σ2 Second central statistical moment of a random variable
Σ Covariance matrix
τ Temporal lag
τK Kendall’s Tau
θgam Scale parameter of Gamma distribution
Θ Single parameter of an unspecified distribution function
Θ Parameter set of an unspecified distribution function or a copula
ϑ dry day correction threshold



1

Chapter 1

Introduction

1.1 Motivation

1.1.1 Regional climate and observed data

Knowledge of a region’s climatology is indispensable for the management of its wa-
ter bodies, agriculture, ecosystems or technical systems like urban drainage. Reliable
and long time series of meteorological variables in a sufficient spatio-temporal reso-
lution are a prerequisite to analyze the climatology and event characteristics of the
region or system at hand. Furthermore, such data is required to run impact models
which simulate for example the discharge in a catchment or the potential crop yield.
Long time series are required so that management decisions also take extreme events
or accumulated events like dry spells into account. Since the climate is projected
to change for most regions of the world (IPCC, 2013), decisions makers are also
confronted with adapting the management strategies to the uncertain future climate.
Such adaptations may be the redesign of a sewage system so that the future discharge
can be safely routed. In agriculture, it may be a change of crop types or sowing and
harvesting dates to accommodate the projected future climatology. Decision makers
often need to make expensive long-term investments to adapt the given natural or
technical system to the uncertain future conditions. Depending on the case, a failure
of the system may endanger human lives or cause high damages. Therefore, a sound
meteorological data base is required to derive the necessary adaptation strategies.

For many technical or natural systems, precipitation is of utmost importance.
On the one hand, excessive precipitation amounts can cause a sewage system or a
river to overflow into vulnerable areas. Plants in a rain-fed agriculture may suffer
from stagnant moisture. On the other hand, the ecosystem in a river or hydro power
generation may be adversely affected by long dry spells and related low water levels.
Plants can die off if too little water is available and a sewage system starts clogging
if the water level and discharge is too low to flush it.

Precipitation can be extremely variable in time and space (e.g. Kim et al., 2019).
Torrential rain can occur quickly while a nearby location remains dry, in particular
in complex mountainous terrain. In contrast, temperature is less variable in space
and time. Precipitation is also a complex variable in a statistical sense because
the distribution of daily and sub-daily positive precipitation amounts is generally
very skewed as some rare but impactful extreme values are much higher than the
average amount. Furthermore, many values are zero and therefore, a mixed discrete-
continuous distribution is required.
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Under optimal conditions, long time series of highly-resolved observed meteo-
rological variables are available at all locations of interest in a study region. Long
time series without data gaps are especially important in hydrology, because extreme
floods cannot always be related to extreme precipitation as the antedecent conditions
of the soil also controls the magnitude of floods (Verhoest et al., 2010). Meteorological
data have been observed at measurement stations for decades and sometimes even
centuries. However, measurement stations are often sparsely distributed across a
given region. Unfortunately, the number of operating measurement stations has
heavily declined since 1990 for most regions of the world (Lorenz and Kunstmann,
2012), which poses problems for the calibration and evaluation of remote sensing
and simulation techniques. An aggravating factor is that some variables were not
easily observable in the past, e.g. the automated measuring of precipitation in a tem-
poral resolution of 5 minutes. Therefore, water resource management is typically
confronted with large uncertainties regarding the meteorological input variables of
local impact models.

Depending on the meteorological variable and system, spatial fields of the vari-
able are preferable to point data, for example precipitation fields in complex moun-
tainous regions with a quickly responding river catchment. In such a region, high
rainfall amounts with a high spatio-temporal variability can occur. By relating infor-
mation like the reflectivity of a radar beam (Germann et al., 2006) or the attenuation of
the signal of commercial micro wave links (Haese et al., 2017) to gauge data, remotely-
sensed products like precipitation fields can be derived for a region. The quality of
these estimated products depends on how well the relation between the remotely-
sensed signal and the meteorological variable can be established and on local effects
like mountains that block radar beams. Since observed time series are only avail-
able for historical periods, additional uncertainties how the management should be
adapted to the unknown future climatology arise. For instance, an intensification
of daily and sub-daily precipitation extreme events has been reported for the last
decades and this trend is expected to remain for future periods (e.g. Barbero et al.,
2017).

1.1.2 Climate models

Physically-based climate model simulations constitute an alternative source for cli-
mate data. A multitude of physically-based models has been developed in order
to provide long gridded time series of meteorological variables for past and future
conditions. General Circulation Models (GCMs) simulate the mass and energy fluxes
in the atmosphere in a spatial resolution of currently up to 0.25◦ (Buizza et al., 2017).
Before this recent model development, the highest horizontal resolution was about
0.5◦ (Anav et al., 2013). GCMs can incorporate the available observed meteorological
variables as initial and boundary conditions and they generate time series for the
whole globe. However, decision making in water resources management often re-
quires a higher spatio-temporal resolution than what the GCMs can provide because
many meteorological and hydrological processes are highly variable in space and
time.

Regional Climate Models (RCMs) use the GCM simulations as driving boundary
conditions and are set up for a confined region of interest that is nested into the
numerical grid of the GCM with a higher spatio-temporal resolution (Rummukainen,
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2009). This technique is often referred to as physical or dynamical downscaling.
Further scale improvements can be attained by nesting another domain with even
higher spatial and temporal resolution into the first simulation domain of the RCM
(e.g. Wagner et al., 2012).

RCMs offer many appealing features for regional climate analyses and the appli-
cation of impact models. Most notably, time series are generated on a spatial grid
without any data gaps for gauged and ungauged locations. Since the model structure
of GCMs and RCMs is based on the physical processes in the atmosphere and on
the ground, simulations with a good setup resemble the observed spatio-temporal
dependence structures and univariate distributions. By changing boundary forcing
like radiative forcing or atmospheric conditions like greenhouse gas concentrations
(van Vuuren et al., 2011), future conditions can be simulated with a GCM which in
turn provides boundary forcing data for RCM simulations in future periods. Studies
that investigated the impact of a projected increase in temperature of 0.5 K demon-
strated how sensitively runoff models can react to these seemingly small differences
(e.g. Paltan et al., 2018). Since GCM and RCM simulations describe the physical pro-
cesses they can be used to study highly complex interacting systems which in turn
influence a region’s climate. For instance, Caesar et al. (2018) modeled the Atlantic
Meridional Overturning Circulation (AMOC) with GCMs and RCMs for a historical
period and the simulated trend of sea surface temperature agrees with the observed
trend. This study demonstrates the skill of physically-based models in simulat-
ing complex, non-linear systems. An observation-based statistical model would be
hardly capable of modeling such a non-linear system under non-stationary condi-
tions. The importance of physically-based simulations becomes especially apparent
when considering tipping points at which a drastic change of a system occurs. Lenton
et al. (2008) presented a list of potential tipping elements of the Earth, for example the
Indian Monsoon system or the Greenland ice-sheet. Thus, reliable RCM simulations
are a necessity to lay a foundation for regional climate change adaptation strategies
under climate change conditions.

In data-scarce regions, a surrogate to missing observed time series can be attained
by simulating meteorological variables with dynamical downscaling techniques.
Wagner et al. (2009) utilized dynamically simulated and remotely-sensed information
to drive a hydrological model for a region in West Africa. Also, the RCM can be run
for future periods to study the local climate change. For instance, in studies by
Chiew et al. (2010) and Chen et al. (2012), hydrological models were calibrated with
downscaled precipitation fields for historical conditions to study the change in river
discharge for future scenarios.

1.1.3 Limitations of RCM simulations

Studies by Shrestha et al. (2006) and Bruni et al. (2015) underline the importance of the
spatio-temporal resolution of meteorological input data for the application of hydro-
logical models. Especially urban hydraulic models require precipitation in sub-daily
and sometimes even sub-hourly resolution because the time of concentration can be
very short and any failure of an urban drainage system can lead to large damages.
Since the discharge in an urban drainage system is generated by water that precipi-
tated at different locations in the catchment, a single gauge is usually not sufficient
to describe the spatio-temporal variability within a catchment.
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Dynamical downscaling can be used to simulate highly resolved meteorological
variables. RCM simulations with a finer spatial resolution typically reproduce the
statistics of the observed variables at a finer temporal resolution better (e.g. Sunyer
et al., 2016). The spatial and temporal resolutions of RCMs are interlinked because
the time step of the numerical simulation is chosen to ensure numerical stability at a
given spatial resolution. However, the computational and storage demand increases
non-linearly as a finer resolution of the time steps necessitates a refinement of the 3-
dimensional grid spacing of the RCM. Also, some impact studies require even higher
resolved input data than what is attainable in practice. For instance, an analysis by
Ochoa-Rodriguez et al. (2015) in different European catchments revealed that rainfall
fields should have a resolution of at least 1 km and 5 minutes for a hydraulic model
to perform sufficiently well in the catchments under study. The high computational
and storage demand currently impedes multidecadal RCM simulations in such a
high resolution.

Another problem arises for impact modelers when systematic differences be-
tween observed and simulated distribution functions of meteorological variables
exist. Such a systematic error is called bias. As meteorological variables are phys-
ically linked to one another, a bias will further propagate to other variables within
the RCM and in subsequent impact models. There are several error sources of RCM
simulations (Teutschbein and Seibert, 2013). Depending on the spatio-temporal reso-
lution, RCMs may use simplified formulations to solve small scale processes. For
example, the simulation of cloud formation or turbulence is very challenging and
computationally demanding. Also, the physical processes are sometimes not fully
understood and not all variables are feasibly observable. Parametrization gives a
plausible estimation based on empirical dependence. Therefore, some of the output
variables can be regarded as an estimation and not as a direct solution of the physical
equation systems. Additionally, numerical effects, computationally limited spatio-
temporal resolution, uncertainties of the initial and boundary conditions and using
a single parameter to represent a certain property of a grid cell like e.g. the land
use or vegetation type render it impossible for an RCM to reproduce all historical
observations exactly.

1.1.4 Statistical and stochastic post-processing

In order to bridge the gap between the needs of users of impact models and the
currently available RCM simulations, statistical and stochastic post-processing tech-
niques can be employed. These techniques reduce the systematic deviations of the
model’s univariate distributions to the observed ones, increase the spatial and tem-
poral resolution or transform the simulated time series in such a way that a formerly
problematic statistical property agrees with the observed one. In this chapter, only
a short introduction to existing post-processing techniques is given. A detailed
overview is presented in each chapter of this thesis to demonstrate how the newly
developed methods differ from the approaches in the literature.

The bias of RCM simulations is often removed by using different statistical or
stochastic bias correction techniques. A comprehensive review of bias correction
methods was presented by Maraun (2016). As a faster alternative to dynamical
downscaling, many different statistical and stochastic downscaling approaches have
been developed to increase the spatial resolution of GCMs and RCMs (e.g Maraun
et al., 2010; Goly et al., 2014). While there are many different techniques that carry
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the name downscaling (including bias correction), this work utilizes the term down-
scaling to refer to the spatial refinement of RCM simulations based on the statistical
dependence between physical models in different spatial resolutions. A huge set of
downscaling and bias correction techniques was applied to European precipitation
and temperature data by Hertig et al. (2019). This study also examines the perfor-
mance of the different techniques in great detail.
If the temporal resolution of RCM simulations is too low for further applications, they
can still constitute a valuable tool to provide precipitation time series for future and
present conditions. The desired temporal resolution can be attained by performing
a statistical or stochastic disaggregation. Disaggregation can be used for example
to estimate the sequence of hourly precipitation based on the daily precipitation
simulated with an RCM if the hourly simulations are not satisfactory or available.
Disaggregation models are of course not limited to RCMs but can also be used to
estimate temporally finer resolved rainfall intensities of observation data.

Many statistical approaches in hydrological and atmospheric science utilize cor-
relation or covariance to describe the dependence structure of variables. Regression
techniques can be used for statistical downscaling or interpolation. A potential
problem of these methods is that the parameters are influenced by the univariate
distributions of the variables which complicates transferring the parameters to un-
gauged locations. Regression leads to a single predicted value that represents the
’best estimate’ but this value may no longer follow the actual distribution of that
variable and the variability can be too low. Given the non-linear behavior of hydro-
logical systems, it is important that simulated variables follow the observed distri-
bution function and that extreme values are present. For such purposes, simulation
techniques are favorable because the predicted variables are not as smooth as with
regression techniques. Furthermore, they can provide an ensemble of realizations to
quantify the uncertainty of the prediction.

In recent years, copulas have been employed in many scientific disciplines as a
simulation technique. Copulas allow for a separation of the marginal distribution of
the variables of interest from the dependence structure which makes them a flexible
tool for stochastic modeling because the model components can be determined in-
dependently. An ensemble of realizations of an unknown variable can be simulated
conditionally on a set of known variables. A concise introduction to copulas can be
found in Genest and Favre (2007). Copulas have been used in hydrology to simulate
spatial fields of precipitation conditional on rain gauge observations (e.g. Bárdossy
and Li, 2008) or to simulate continuous precipitation time series (e.g. Vernieuwe et al.,
2015). Within the field of RCM post-processing however, copulas are still not very
common. Exceptions are the studies by Laux et al. (2011) and Ben Alaya et al. (2014).

1.2 Objectives, research questions and innovations

The objective of this work is the development of computationally-efficient statistical
and stochastic post-processing methods to improve the applicability of meteorolog-
ical time series simulated by an RCM. The focus of the methods presented in this
thesis lies on multivariate copulas of more than two dimensions. These are the Gaus-
sian Copula and Vine Copulas (Aas et al., 2009) which decompose the multivariate
copula into pairs of common bivariate copulas.
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To check the suitability of the chosen approaches, evaluations of the generated
time series against observations were performed. Due to the importance and com-
plexity of precipitation, it is the central meteorological variable treated in this thesis.
However, the presented methods can also be utilized for other variables since they
utilize distribution functions and statistical measures of dependence which can be
calculated for other variables as well. Statistical downscaling and bias correction
techniques are usually calibrated with data from meteorological measurement sta-
tions. Since RCMs provide time series on a spatial grid, models that are transferable
to ungauged locations were required.
The research questions in this thesis are:

1. How can multivariate copulas be utilized to increase the spatio-temporal
distribution and to improve the dependence structure of RCM simulations?

2. How well do the stochastic simulations agree with observed univariate and
multivariate statistics?

3. What are the advantages of the developed models compared to other ap-
proaches and what are the limiting factors for extensions and applications to
other variables?

4. How can the model parameters be estimated for ungauged location in a study
region and what are the limitations?

Several novel approaches have been developed in this thesis. The main innova-
tions can be summarized as follows:

• Estimation of the distribution functions of ungauged locations for bias correc-
tion and simulation purposes with a geostatistical approach. The technique
has been utilized to perform a bias correction of the complete CORDEX-Africa
ensemble in a data scarce region in West Africa. A similar bias correction model
has been developed independently by Mamalakis et al. (2017) for the Italian is-
land Sardinia. The distinguishing feature is mainly that the model presented
in this thesis utilizes anisotropic variograms. Nevertheless, geostatistical ap-
proaches to estimate unknown distribution functions for Quantile-Mapping
are not very common and constitute a novel approach.

• Development of a novel model structure that employs the Gaussian Copula to
simulate ensembles of spatially correlated precipitation fields conditional on a
coarse scale field. The model is based on an existing copula model by Bárdossy
and Li (2008) which was developed to simulate precipitation fields from gauge
measurements. Alongside the models proposed in Thober (2016) and Ben Alaya
et al. (2014), it is one of the first applications of copulas to spatially correlated
downscaling of climate model simulations. The model has been presented in
the publication by Lorenz et al. (2018).

• First application of the Gaussian Copula for the disaggregation of precipita-
tion. The model was applied to highly-resolved RCM simulations and spatially
distributed precipitation time series in a temporal resolution of 5 minutes were
obtained. In order to take the spatio-temporal dependence structure into ac-
count, several spatial and temporal conditioning values were employed.

• First application of Vine Copulas to improve the inter-variable dependence
structure of bias corrected RCM time series of four different meteorological
variables.
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1.3 Outline of the thesis

This thesis describes four statistical and stochastic techniques to refine the distri-
bution functions and spatial and temporal resolution of meteorological time series
simulated with RCMs. In each chapter that describes one of these four methods, an
overview of several existing approaches is given at first. Afterwards, the study region
and data is presented and the need for a new statistical or stochastic post-processing
technique is discussed. Then, the mathematical principles of the respective tech-
nique are shown. Afterwards, the model is applied to a data set and analyses of the
simulated precipitation time series are shown.

• Chapter 1 has formulated the motivation behind the post-processing techniques
and gives an overview of the thesis.

• Chapter 2 introduces the statistical principles that are necessary for the different
post-processing methods.

• Chapter 3 presents a geostatistical bias correction procedure. The chosen
method utilizes Kriging to estimate the distribution of a meteorological vari-
able at unmeasured locations and transforms the RCM simulations via Double-
Quantile-Mapping. The estimated distributions were compared with the ob-
served distribution and a cross validation was performed. The RCM simu-
lations of daily precipitation of the CORDEX-Africa ensemble have been bias
corrected for historical and future periods for a study region in West Africa
where the measurement network is very irregular and sparse. The onset of the
rainy season and the change of monthly and annual statistics was investigated
to study how the climatology is projected to change in the future.

• Chapter 4 describes a stochastic spatial downscaling method. The developed
technique uses the Gaussian Copula to generate ensembles of spatially coher-
ent precipitation fields based on coarse scale RCM precipitation simulations
for the fine scale RCM domain. The method has been applied to daily RCM
precipitation simulations for Central Europe in a resolution of 42 km and 7 km.
Distribution functions and dependence measures were calculated and com-
pared with the RCM simulations and performance measures were calculated
to analyze the daily values simulated with the stochastic method.

• Chapter 5 is concerned with the disaggregation of precipitation simulated by
an RCM for several grid cells. Disaggregation was carried out by simulating
spatio-temporally correlated time series based on observed statistics with the
Gaussian Copula. Hourly RCM precipitation simulations were bias corrected
for a region around Freiburg, Germany. Gauge measurements in a resolution
of 5 minutes were employed to build the stochastic model and to evaluate the
distribution and spatio-temporal dependence structure of the disaggregated
time series.

• Chapter 6 introduces an approach to simulate a meteorological variable based
on its dependence to three other variables at the same location and time step.
The four-dimensional dependence structure was modeled with a Vine Copula
to take the different (and partially asymmetric) dependence structures between
the meteorological variables into the account. The method has been utilized
to post-process bias corrected hourly RCM simulations for the Berchtesgaden
National Park in Germany.
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• Chapter 7 gives a short overview of the developed models and addresses the
research questions stated in this chapter.

The presented methods were developed to circumvent limiting aspects of RCM
simulations that hinder their direct application for a given case study. Figure 1.1
presents an overview of how these methods are related and how they are motivated.
Some impact models may need a finer spatial resolution than what is attainable with
dynamical downscaling which motivates the stochastic downscaling (Chapter 4) to
estimate fine scale precipitation fields. In other cases, the temporal resolution may be
too coarse and the temporal disaggregation technique (Chapter 5) can be employed.
A common problem of RCMs is the bias of the simulated variables but this bias can
be defined differently. If only a single meteorological variable is required to run an
impact model, a univariate bias correction (Chapter 3) is sufficient. But for more
complex impact studies, the dependence structure between the different variables
may need to be corrected as well. This problem can be tackled with the multivariate
bias correction method (Chapter 6).

1.4 Acknowledgements and funding information

The bias correction method presented in Chapter 3 has been developed within the
BMBF research program WASCAL (West African Science Service Center on Climate
Change and Adapted Land Use).

The spatial downscaling method in Chapter 4 and the temporal dissaggregation
technique in Chapter 5 have been developed within the BMBF project SYNOPSE
(Synthetische Niederschlagszeitreihen für die optimale Planung und den Betrieb
von Stadtentwässerungssystemen).

The multivariate Vine Copula model for post-processing univariately bias cor-
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Figure 1.1: Summarizing flow chart of the four newly developed
post-processing techniques and their motivation.
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Chapter 2

Overview of statistical and
stochastic principles

The post-processing methods presented in this thesis are based on the statistical
properties of random variables. These properties are described by different measures
which are required for the calibration of the stochastic models and to assess the
performance of the refinement techniques. This chapter presents the statistical basics
of the different methods with real world data sets to serve as a reference chapter. An
extensive overview of common statistical methods that are used in atmospheric and
meteorological science can be found in Wilks (2011). Afterwards, an introduction to
copulas is given. Additional formulas that are necessary for the different developed
techniques are presented in the respective chapters.

2.1 Random variables and descriptive statistics

From a statistical perspective, every measurement of a meteorological variable is a
realization of a random process. To obtain information about the statistical proper-
ties of a random variable X, a sample of different realizations xi measured at certain
points in time or space i is considered. A sample of n realizations {x1, ..., xn} of X is
used to calculate different descriptive measures.

The mean x is the average value of a data set. If the sample size n is large enough
that the sample {x1, ..., xn} is representative of the random variable X, x equals the
first statistical moment µ.

x =
1
n

n∑
i=1

xi (2.1)

The variance s2
x measures the spread of the random variable in relation to x. Its

square root sx is the standard deviation. For large samples, s2
x converges towards the

second central moment σ2.

s2
x =

1
n− 1

n∑
i=1

(xi − x)2 (2.2)

The number of occurrences of a value x∗ in a sample is called absolute frequency.
The relative frequency (or probability) is calculated by dividing the absolute fre-
quency by n. For example, the precipitation probability pw is estimated by dividing
the number of wet values nw = #{x|x > 0} by n.

pw =
nw

n
(2.3)
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The number of realizations of X that are less than or equal to x∗ is called absolute
cumulative frequency. The corresponding non-exceedance probability P[X ≤ x∗] (or
empirical relative cumulative frequency) is calculated by dividing by the sample size
n.

P[X ≤ x∗] =
#{x|x ≤ x∗}

n
(2.4)

2.2 Distribution functions

The methods presented in the following chapters employ distribution functions
which assign relative cumulative frequencies (the non-exceedance probabilities) to
random variables {x1, ..., xn}. These functions can be empirical or parametric. To
illustrate the construction of the empirical distribution and the fitting and selection
of a parametric distribution function, an example data set of observed daily precipi-
tation intensities for the city of Hamburg, Germany in the period 1993-2012 is used.
The sample size is n = 1420 values.

2.2.1 Empirical cumulative distribution function

The histogram of the precipitation intensities (Figure 2.1) shows that most values
are rather small - for example the absolute frequency of values below 0.7 mm d−1

(the first bar in the histogram) amounts to 362, whereas very high values e.g. above
40 mm d−1 occur rather rarely.
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Figure 2.1: Histogram of daily precipitation intensities in Hamburg
(1993-2012).
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Ordering the precipitation intensities in ascending order and assigning the corre-
sponding rank Ri (increasing from 1 to n) to each value xi results in the empirical cu-
mulative absolute frequency. The empirical cumulative distribution function (ECDF)
is calculated by dividing the ranks Ri by n (Equation (2.4)). In Figure 2.2 the empirical
distribution of the positive daily precipitation intensities is shown. The left y-axis
corresponds to the absolute ranks Ri whereas the right y-axis are the relative ranks ui.
For instance, the rank of 11.2 mm d−1 amounts to R = 1302. The cumulative relative
frequency (the probability of non-exceedance) amounts to u = 1302

1420 ≈ 91.69%.
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Figure 2.2: Empirical cumulative absolute and relative frequency of
daily precipitation intensities in Hamburg (1993-2012).

2.2.2 Parametric distribution functions

Observed values are discrete because measurement devices have a resolution, e.g.
0.01 mm. For stochastic modeling, it is necessary to find an invertible function F(x)
defined by a parameter set Θ that returns the probability of X ≤ x∗ for arbitrary
values of x∗.

F(x) = P[X ≤ x] (2.5)

The probability density function (PDF) f (x) is the derivative of the CDF F(x). The
PDF is very important for the construction of parametric CDFs because fitting a
distribution function to a data set is often only possible for the PDF. The CDF can
then be obtained by analytical or numerical integration of the PDF.

f (x) =
d
dx

F(x) (2.6)

The parametric function is fitted to a sample of the random variable with the Method
of Moments (MoM) or the Maximum Likelihood Method (MLM). The MoM can be
used if the distribution parameters Θ can be calculated from descriptive measures
of the random variable like the mean or the variance.
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The MLM optimizes the function’s parameters Θ by varying their values and
calculating the log-likelihood lnL for each parameter set.

lnL(x;Θ) =
n∑

i=1

ln f (xi|Θ) (2.7)

The parameter set Θ which returns the maximum log-likelihood that the random
variable X could stem from this parametric distribution function is selected.
The following section presents the most important parametric distribution functions
used in this thesis.

Uniform distribution

The uniform distribution is the simplest available distribution function as it assign
the same PDF value to all values on its domain [auni, buni].

f (x) =
1

buni − auni
(2.8)

The uniform CDF is defined as:

F(x) =
x− auni

buni − auni
(2.9)

Recalling the definition of the empirical probabilities (Equation (2.4)) and setting
auni = 1/n, buni = 1 and x = Ri/n, it can be seen that CDF values are uniformly
distributed. This property will be very important later for the stochastic simulations
from a distribution function and copulas.

Gaussian distribution

The Gaussian (or normal) PDF utilizes two parameters µ and σ.

f (x) =
1

√

2πσ2
e−

1
2 (

x−µ
σ )2

(2.10)

The MoM can be used to estimate its two parameters: the mean estimator is µ := x
and the standard deviation estimator is σ := sx. The integration to the CDF is not
straightforward and is performed numerically or by using tabulated values after
the variable has been transformed to the standard normal space via z =

x−µ
σx

. The
standard normal PDF is denoted by φ and the CDF by Φ.

Exponential distribution

Another common parametric distribution function is the exponential distribution
which only has one parameter λexp. In this case, the MoM can be used as well by
setting λexp := 1

x .
f (x) = λexpe−λexpx (2.11)

This function can be integrated analytically to the CDF F(x).

F(x) = 1− e−λexpx (2.12)
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Weibull distribution

A parametric distribution function that cannot be fitted easily via descriptive statistics
is the Weibull distribution. The PDF is defined by a scale parameter λwbl and a shape
parameter kwbl.

f (x) =
kwbl

λwbl
(

x
λwbl

)kwbl−1e−(
x

λwbl
)kwbl

(2.13)

The corresponding CDF can be calculated analytically.

F(x) = 1− e−(
x

λwbl
)kwbl

(2.14)

While it is possible to use the MoM for fitting the Weibull distribution (Teimouri
et al., 2013), it is more common to use the MLM to optimize the parameter set
Θ = {λwbl, kwbl}.

Log-normal distribution

Another parametric distribution function which is often fitted to precipitation in-
tensities, is the log-normal distribution. It is obtained by transforming the positive
precipitation amounts x to ln x. Then, these transformed values are fitted with a
normal distribution (Equation (2.10)).

Gamma distribution

The PDF of the Gamma distribution is defined by a shape parameter kgam and a scale
parameter θgam.

f (x) =
xkgam−1e−

x
θgam

Γ(kgam)θ
kgam
gam

(2.15)

The function Γ in the denominator is the Gamma function.

Γ(kgam) =

∫
∞

0
tkgam−1e−tdt (2.16)

The CDF is defined as:

F(x) =
γgam(kgam,

xgam

θgam
)

Γ(kgam)
(2.17)

The function γgam in the numerator is the lower incomplete gamma function.

γgam(kgam,
x

θgam
) =

∫ x
θgam

0
tkgam−1e−tdt (2.18)

Typically, the MLM is used to estimate the parametersΘ = {kgam,θgam}.



16 Chapter 2. Overview of statistical and stochastic principles

2.2.3 Choosing a parametric distribution function

Selecting a given parametric function to represent the distribution function of the
random variable is based on statistical and visual tests because not every parametric
function that has been fitted to a sample will be capable of reproducing the observed
empirical CDF. Figure 2.3 shows the empirical CDF and the five fitted parametric
CDFs.
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Figure 2.3: Parametric CDFs fitted to daily precipitation intensities in
Hamburg and empirical CDF (1993-2012).

The normal and exponential distribution are rather far-off from the true distribu-
tion. For an automated and objective selection of a distribution function, statistical
tests are used.

Kolmogorov-Smirnov Test

One method to check the overall performance of a parametric distribution function
is the Kolmogorov-Smirnov Test (KS Test) which calculates the absolute difference
∆i = |Femp(xi) − Fpar(xi)| between the parametric and the empirical CDF values for
all xi. The test statistic D is the maximum absolute difference between the two
distributions.

D = max(∆i) (2.19)

This test statistic D is compared to a threshold D∗ that depends on the significance
level α of the test and on the sample size n. For a significance level of α = 5%, D∗

becomes 0.0510 in this example. If the test statistic D is larger than the threshold
D∗ the hypothesis that the empirical and parametric distributions are identical is
rejected. For each significance level, different test statistics are tabulated. Table 2.1
lists the D-values and whether the hypothesis of identical distributions is rejected.
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Distribution D Hypothesis of identical distributions
Normal 0.1973 rejected

Exponential 0.1256 rejected
Weibull 0.0310 accepted

Log-normal 0.0560 rejected
Gamma 0.0458 accepted

Table 2.1: KS Test statistics of five different distribution functions.

According to the KS Test, the Weibull distribution is the best suited distribution
as it has the minimum deviation D from the empirical CDF values.

Bayesian Information Criterion

The Bayesian Information Criterion (BIC, Schwarz, 1978) employs the likelihoodL of
a fitted distribution with a given parameter set consisting of kΘ parameters and the
sample size n.

BIC = −2 ln(L) + kΘ ln(n) (2.20)

The higher the likelihood is, the lower the BIC gets and the better suited the respec-
tive distribution function is. The inclusion of the number of parameters penalizes
distribution functions with more parameters, so that from two distribution functions
with comparable likelihoods, the one with less parameters will be chosen. The rea-
soning behind this criterion is that models with less parameters are more robust and
less prone to over-fitting.
The BIC values of the five parametric CDFs support the selection of the log-normal
distribution instead of the Weibull distribution as it returned the lowest BIC (Table
2.2). The KS Test however rejected the hypothesis that the measurements stem from
a log-normal distribution. Due to only having one parameter, the exponential dis-
tribution also seems like a good choice according to the BIC, even though the KS
Test has rejected the hypothesis that the precipitation intensities are exponentially
distributed.

Distribution lnL BIC
Normal -4454.3 8923.1

Exponential -3410.8 6828.8
Weibull -3325.3 6665.2

Log-normal -2559.7 5134.0
Gamma -3342.8 6700.1

Table 2.2: BIC values of five different distribution functions.

This example is meant to show that the selection of a parametric CDF is not
straightforward and that different criteria can lead to different choices. In the end,
the choice of a parametric function should be supported by additional qualitative
tests like quantile-quantile plots (QQ-Plots) which plot the sorted values of two
random variables against each other.
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2.2.4 Simulating from a parametric distribution function

Once a parametric distribution function has been selected, stochastic simulations can
be performed. As the CDF values are uniformly distributed in [0, 1], it is possible
to draw a set of uniform random numbers usim ∼ U(0, 1) and invert the parametric
CDF to obtain a realization x.

x = F−1(usim) (2.21)

In case of precipitation it is necessary to also simulate 0 mm with a dry probability of
pd = 1 − pw which is not possible with a single parametric distribution. The overall
distribution is constructed as a mixed discrete-continuous distribution.

usim(x) =
{

pd + pwF(x) if x > 0
≤ pd else (2.22)

The zero amounts obtain a censored CDF value usim ≤ pd. This means that usim is
unknown and can take on any value between 0 and pd. To invert this truncated
distribution, the random numbers are compared with the dry probability pd. If a
random number usim is below pd, the simulated value will become xsim = 0. In the
other case, the CDF value of the non-zero precipitation amounts is calculated as
uw =

usim−pd
1−pd

.

xsim =

{
F−1(

usim−pd
1−pd

) if u > pd

0 if u ≤ pd
(2.23)

2.2.5 Simulating from heavy-tailed distributions

For some very heavy-tailed distributions like precipitation in a temporal resolution
of 5 minutes a further split might be necessary if no parametric CDF is capable of
reproducing the extreme values. In such a case, the non-zero precipitation amounts
of X can be split up into two parts Xlow and Xup and both parts are fitted separately.
This procedure requires a separation threshold xth which depends on uth, e.g. 0.9, to
obtain individual CDFs for the values below the 90%-Quantile and the upper 10% of
the measured values.

Xlow = {x|x ≤ xth} (2.24)
Xup = {x|x > xth} − xth (2.25)

To simulate a non-zero precipitation amount x from this composite distribution, a
random number u ∼ U(0, 1) is drawn. If u ≤ uth it will be adjusted to ulow = u

uth
, if

u > uth it will become uup = u
1−uth

.

x =

F−1
low(ulow) if u ≤ uth

xsplit + F−1
up (uup) else

(2.26)

If data does not follow a single parametric distribution function, a Kernel Density
Estimated distribution (KDE, Rosenblatt, 1956) is another alternative. This method
approximates the PDF as a combination of several kernels. KDE generates a function
that behaves like an empirical CDF but there are two advantages: in contrast to a
discrete ECDF, the KDE-CDF is smooth and simulations from a KDE-CDF can exceed
the maximum in the sample (or fall below the minimum, respectively).
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2.3 Spatio-temporal dependence

Until now, only statistics of univariate random variables have been presented. How-
ever, it is also important to consider the dependence that a value has to another
value in a certain distance in space or time. A review of spatio-temporal dependence
modeling in hydrology can be found in Hao and Singh (2016).
The most common statistical measures of dependence are covariance and correlation
which represent the dependence of a variable X and a variable Y with a single scalar.
xi and yi could be precipitation measurements at two different stations separated by
a distance of h or at the same station but with a temporal lag τ between the measure-
ments.
The covariance γxy is a measure that describes the linear dependence of two variables
X and Y.

γxy =

n∑
i=1

(xi − x)(yi − y)

n− 1
(2.27)

Dividing the covariance by the product of the standard deviations of X and
Y results in the Pearson correlation coefficient ρxy. A value of 1 indicates perfect
linear dependence, −1 the opposite and 0 means that the two variables are linearly
independent.

ρxy =
γxy

sxsy
(2.28)

To overcome the problem of the linearity assumption in Pearson’s ρxy, the rank-
based statistic Spearman’s ρsp can be calculated. The calculation requires a trans-
formation of the random variable to its ranks. Then, a calculation of the correlation
coefficient is done with the ranks. This transformation makes it possible to detect
non-linear dependence in a data set.
Another measure of non-linear dependence is Kendall’s τK which counts the num-
ber of concordant and discordant pairs. A pair consisting of (xi, yi) and (x j, y j) is
concordant if both values are increasing or both are decreasing.

τK =
|xi > x j, yi > y j|+ |xi < x j, yi < y j| − |xi > x j, yi < y j| − |xi < x j, yi > y j|

n(n−1)
2

(2.29)

A detailed example with a small data set of these two rank-based statistics can be
found in (Genest and Favre, 2007).

An estimation of the expected correlation of censored values separated by a
spatial (or temporal) distance of h can be obtained as the average correlation of all np
CDF value pairs u and v that are separated by approximately h. A simple approach
to treat the censored values is setting u to 0.5pd for dry values (Bárdossy and Pegram,
2012). The CDF values are transformed to the standard normal space via Φ−1 to
obtain the empirical correlation ρ∗ as a function of the separation distance. Fitting
a parametric correlogram model ρ̂ enables estimating the correlation for arbitrary
distances.

ρ∗(h) =
1
np

np∑
i=1

Corr{Φ−1(ui), Φ−1(vi)} (2.30)
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A more complex method utilizes the Maximum Likelihood Method (Durban and
Glasbey, 2001). Pairs are treated differently depending on whether one or more of
the values is censored, e.g. 0 mm of precipitation. The correlation coefficient ρ of
pairs separated by a certain separation lag is calculated by maximizing the combined
likelihood of three sets I1, I2 and I3. Those three sets have individual likelihoods:

• I1 - Both values are uncensored [> 0 mm]:

L1 =
1

2π
√

1− ρ2
e

−1
2(1−ρ2)

{Φ−1(u)2+Φ−1(v)2
−2ρΦ−1(u)Φ−1(v)}

(2.31)

• I2 - u is censored [0 mm] and v is uncensored [> 0 mm]:

L2 = φ(Φ−1(pd))Φ(
Φ−1(pd) − ρΦ−1(v)√

1− ρ2
) (2.32)

• I3 - Both values are censored [0 mm]:

L3 =

Φ−1(pd)∫
−∞

Φ−1(pd)∫
−∞

1

2π
√

1− ρ2
e

1
2(1−ρ2)

(x2
1−2ρx1x2+x2

2)dxdy (2.33)

The correlation coefficient ρ of different temporal or spatial lags is then calculated
from a parametric correlogram function ρ̂ whose parameters are optimized by max-
imizing the combined log-likelihood:

lnL =
∑

ln(L1) +
∑

ln(L2) +
∑

ln(L3) (2.34)

The optimization is performed on the parameters of the correlogram function
and not on the correlation coefficient of individual lags. Otherwise, the optimiza-
tion might return a non-valid correlation function as discussed in Allard and Bourotte
(2014). Pfaff (2013) used this approach to estimate the parameters of a variogram
function.
The parametric correlogram models that were used in this thesis to maximize the
combined likelihood are the exponential and the Matérn model. These models
estimate the correlation in time (auto-correlation function, ACF) or space (cross-
correlation function, CCF) based on the separation lag h. In the case of an ACF, h is
a temporal lag, e.g. 10 minutes. In the case of a CCF, h is the distance in space, e.g.
10 km. When both ACFs and CCFs are employed, h is used for spatial lags and τ for
temporal lags to make the equations clearer.

The exponential model is the simplest correlogram model. It utilizes a single
parameter λce to describe how the correlation decreases over an increasing lag h.

ρ̂exp(h) = e−λceh (2.35)

The Matérn model (e.g. Minasny and McBratney, 2005) is very flexible but also rather
complex. It has two parameters νmat and rmat and utilizes the Gamma function Γ and
the modified Bessel function of the second kind Kν:

ρ̂mat(h) =
1

Γ(νmat)2νmat−1
(

2h
√
νmat

rmat
)νmatKν(

2h
√
νmat

rmat
) (2.36)
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2.4 Multivariate distribution functions

Distribution functions can also be defined for more than one variable in which case
the function is called multivariate:

F(x, y) = P[X ≤ x, Y ≤ y] (2.37)

The multivariate CDF is not always attainable in a closed form through analytical
integration of the density function f (x, y) which necessitates numerical integration.
One such multivariate distribution is the multivariate normal distribution with co-
variance matrix Σ:

f (x1, ..., xn) =
1√

(2π)ndet(Σ)
e
−1
2 (x−µ)TΣ−1(x−µ) (2.38)

Alternatively, this PDF can be expressed with the correlation matrix Γ and the identity
matrix I:

f (x1, ..., xn) =
1√

(2π)ndet(Γ)
e
−1
2 (x−µ)T(Γ−I)−1(x−µ) (2.39)

The assumption behind the multivariate normal distribution is that the random
variables X1, ..., Xn are normally distributed. If this is not the case they are usually
normalized with an appropriate transformation like the Box-Cox transformation.

2.5 Copulas

An alternative to using a multivariate distribution function which requires the uni-
variate distribution of the separate random variables to stem from a certain univari-
ate distribution is using copulas. Copulas offer two main advantages over common
multivariate distribution techniques. First of all, the distribution functions of the
variables are calculated separately for each variable and therefore meteorological
variables that follow very different distributions can be modeled. The second ad-
vantage is that the dependence structure is modeled separately from the univariate
distributions. The available copula models can describe positive or negative de-
pendence and asymmetric dependence, for example a stronger dependence of high
values. The first publication on copulas was presented by Sklar (1959). A detailed
introduction to copulas can be found in Nelsen (2006).

A copula C expresses the multivariate distribution F of a set of values (x1, ..., xn)
by their respective CDF values (u1, ..., un). The univariate CDFs F(x) = u are also
called marginal distributions.

F(x1, ..., xn) = C(u1, ..., un) (2.40)

The copula density c can be calculated by partial derivation:

c(u1, ..., un) =
∂nC(u1, ..., un)

∂u1...∂un
(2.41)
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For the bivariate case (n = 2), several parametric copula functions exist. These
copulas are defined through a parameter Θ that is related to Kendall’s τK. One of the
key features of these copulas is that the conditional distribution Fc of a CDF value V
given a CDF value u can be calculated analytically:

Fc(v|u) = Pr[V ≤ v|U = u] =
∂C
∂u

= w (2.42)

A realization of V can be obtained by drawing a random number w ∼ U(0, 1) and
inverting this conditional distribution function.

vsim = F−1
c (w) (2.43)

Finally, a transformation of the simulated CDF value vsim to xsim is achieved with
the inverse of its univariate distribution function and a realization of the random
variable X is obtained:

xsim = F−1(vsim) (2.44)

Table 2.3 lists some of the most commonly used bivariate copulas and their cor-
responding densities and conditional distributions. The equations were compiled
from different sources, mainly Nelsen (2006) and Trivedi and Zimmer (2013). Also the
relation of Kendall’s τK to the copula parameter Θ and the range of values that Θ
can take on is given. For the copula families Gumbel, Clayton, and Farlie-Gumbel-
Morgenstern, a direct calculation of Θ from τK is possible, whereas the Frank and
Ali-Mikhail-Haq copulas require a numerical procedure to calculate Θ. The calcula-
tion of the Frank Copula’s parameter Θ requires a Debye function of the first kind:
D1(x) = 1

x

∫ x
0

t
et−1 dt.
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Copula family Ali-Mikhail-Haq (AMH)

C(u, v) uv
1−Θ(1−u)(1−v)

c(u, v)
1−Θ+ 2Θuv

1−Θ(1−u)(1−v)

(1−Θ(1−u)(1−v))2

Fc(v|u) v−Θu+Θv2

(1−Θ(1−u)(1−v))2

τK = f (Θ) 3Θ−2
Θ −

2
3 (1−

1
Θ )2 ln(1−Θ)

Range of Θ ∈ [−1, 1[

Copula family Clayton (Cla)

C(u, v) (max(u−Θ + v−Θ
− 1; 0))−1/Θ

c(u, v) (1 + Θ)(uv)−1−Θ(u−Θ + v−Θ
− 1)−

1
Θ−2

Fc(v|u) u−Θ−1(u−Θ + v−Θ
− 1)−

1
Θ−1

τK = f (Θ) Θ
2+Θ

Range of Θ ∈ [−1,∞[\{0}

Copula family Farlie-Gumbel-Morgenstern (FGM)

C(u, v) uv(1 + Θ(1− u)(1− v))

c(u, v) 1 + Θ(1− 2u)(1− 2v)

Fc(v|u) v + Θ −Θv2
− 2Θuv + 2Θuv2

τK = f (Θ) 2
9 Θ

Range of Θ ∈ [−1, 1]

Copula family Frank (Fra)

C(u, v) −
1
Θ ln(1 + (e−Θu

−1)(e−Θv
−1)

e−Θ−1 )

c(u, v) Θ(1−e−Θ)e−Θ(u+v)

((1−e−Θ)−(1−e−Θu)(1−e−Θv))2

Fc(v|u)
(e−Θv

−1)e−Θu

e−Θ−1+(e−Θu−1)(e−Θv−1)

τK = f (Θ) 1 + 4
Θ (D1(Θ) − 1)

Range of Θ ∈ R\{0}

Copula family Gumbel[-Hougaard] (Gum)

C(u, v) exp(−((− ln(u))Θ + (− ln(v))Θ)1/Θ)

c(u, v) (Θ − 1− ln C(u, v))exp{ln(C(u, v)) + ((Θ − 1) ln(− ln(u)) − ln(u))

Fc(v|u)
(− ln(u))Θ−1((− ln(u))Θ+(− ln(v))Θ)1/Θ−1

uexp{((− ln(u))Θ+(− ln(v))Θ)1/Θ}

τK = f (Θ) Θ−1
Θ

Range of Θ ∈ [1,∞[

Table 2.3: Bivariate copulas, copula densities and conditional distri-
bution functions.
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Empirical and parametric copula densities are illustrated in Figure 2.4 for CDF
value pairs of observed hourly air temperature (u) and shortwave downwelling
radiation (v) in the autumn season SON in the Berchtesgaden National Park. More
details on this data is given in Chapter 6.

Figure 2.4: Empirical scatter plot of CDF values (Emp) and parametric
copula densities (AMH, Cla, FGM, Fra, Gum) of hourly air temper-
ature (u) and shortwave downwelling radiation (v) in the Berchtes-

gaden National Park in the season SON (2001-2010).
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The empirical scatter plot of CDF values (Figure 2.4, Emp) shows asymmetric
dependence: High values exhibit a stronger dependence than low values. The five
parametric copula densities were calculated from τK. As was the case for univariate
distribution functions, a selection of the best fitting copula model is necessary. To
this end, the squared differences between the empirical and parametric copulas are
calculated and the copula model which has the smallest differences is selected. In this
example, the Gumbel copula was chosen as the best fit as it can model the observed
asymmetric dependence.

The majority of copulas are bivariate. An extension to higher dimensions (n>2)
is possible for the Frank and Clayton Copula (Fischer et al., 2009). But those copulas
are defined by a single parameter Θ which constricts their application to cases where
the dependence structure between all variable pairs does not differ by a lot.
Vine copulas (Aas et al., 2009) allow the decomposition of a multivariate distribution
into pair copulas but the model structure is very complex. The Gaussian Copula is
comparatively simple and has been used in other studies to simulate daily precipi-
tation (Bárdossy and Li, 2008). This copula offers the advantage that it can deal with
any number of conditioning values which makes it possible to simulate precipitation
amounts conditionally on multiple spatial or temporal neighbors. The Gaussian
Copula is a special form of the multivariate Gaussian distribution. Instead of the
vector of CDF-values u = (u1, ..., un), CDF-values that have been transformed to the
standard normal space via the inverse of the univariate Gaussian CDF Φ are used.
Another necessary transformation makes use of the univariate Gaussian PDF φ. The
density of the Gaussian Copula is defined as:

c(u1, ..., un) =
1

n∏
i=1
φ(Φ−1(ui))

1

(2Π)
n
2
√

det(Γ)
e−0.5(Φ−1(u)T(Γ−1

−I)Φ−1(u)) (2.45)

The term Γ is the correlation matrix of the data set and I is an identity matrix of
the same size. In practice, Γ is estimated via a parametric function (a correlogram
model) of the separation lag of points in either space or time. The two methods of
calculating the correlation of censored data is given in section 2.3.
With a correlogram model, it is possible to estimate the correlation coefficients of a
set of points in space or time and set up the correlation matrix. With the correlation
matrix defined, conditional simulations can be performed. If a set of values (u2, ..., un)
is given, the conditional PDF fc (CPDF) of the unknown value u1 is:

fc(u1|u2, ..., un) =
c(u1, ..., un)

c(u2, ..., un)
(2.46)

Because the denominator c(u2, ..., un) (the copula density of the conditioning values)
is constant, it can be removed from the equation which results in the simplified
conditional density function. To simulate u1, this conditional density function is
integrated numerically to the conditional CDF Fc(u1|u2, ..., un) (CCDF). Afterwards,
it is normed so that the codomain of Fc lies in [0, 1]. Then, Fc can be inverted with a
random number w ∼ U(0, 1) to obtain a realization of u1:

u1 = F−1
c (w), w ∼ U(0, 1). (2.47)
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Chapter 3

Geostatistical bias correction of
RCM precipitation

In this chapter, a newly developed geostatistical bias correction method for RCM
precipitation and its application to a sparsely gauged catchment in West Africa is
presented. In this region, many people rely on rain-fed subsistence agriculture. In
order to adapt the crop cultivation to climate change, reliable precipitation time
series for present and future conditions for the complete region are required. A
community-based RCM ensemble has been created within the CORDEX project.
While this ensemble provides a gridded data set of meteorological time series for
present and future time periods, significant biases are present. Therefore, a bias cor-
rection is necessary, so that the observed climatology is reproduced by the historical
simulations. Correcting the bias of RCM simulations requires observed statistics for
every RCM grid cell to set up the transfer function to transform the RCM simulations
to the observed distribution but this distribution is unknown for ungauged locations.
The unknown local climatology was estimated by Kriging distribution parameters
of observed data to ungauged sites to serve as a surrogate for the missing local in-
formation.

3.1 Overview of bias correction methods

Bias correction is applied to climate model simulations to reduce systematic dif-
ferences to observed data. To this end, a transfer function is constructed which
transforms a meteorological variable simulated by an RCM to a bias corrected value.
The available bias correction techniques differ in how the transfer function is built.
A review of different bias correction techniques, their possible short-comings and
extensions and an introduction to the historical origins of bias correction of numeri-
cal weather forecasts is given by Maraun (2016). An application of the two statistical
bias correction methods Delta Change Approach and Histogram Equalization to the
temperature and precipitation simulations of the RCM COSMO-CLM is given in Berg
et al. (2012).
Other studies presented copula-based bias correction schemes (Laux et al., 2011; Mao
et al., 2015) that measure the dependence of observed and simulated precipitation at
the same time step and generate an ensemble of values from the conditional distri-
bution. Most bias correction techniques are deterministic and aim at the correction
of the distribution of simulated intensities however and only a single bias corrected
value is returned.
A technique to transform the simulated variables so that the spatial correlation of
the observed variables is reproduced has been introduced by Bárdossy and Pegram
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(2012). In some case studies, only a single output variable of the RCM is of interest,
for example the daily temperature or precipitation. If several variables need to be
bias corrected, the correction is mostly performed individually for each variable. Re-
cently, methods that aim at a multivariate bias correction have been proposed (Piani
and Haerter, 2012; Cannon, 2016; Vrac, 2018). These methods can strongly change the
statistics of the meteorological variables since they introduce a further transforma-
tion of the RCM data. There is a debate about the applicability of bias correction
in general because the variables of the uncorrected RCM are physically consistent.
After the bias correction, this may no longer be the case and higher aggregated vari-
ables can exhibit a stronger bias than before the correction (Ehret et al., 2012). In
practice however, bias correction is still widely applied since a biased meteorological
input variable is regarded as very detrimental to subsequent impact models.

3.1.1 Delta Change Approach

The easiest technique to bias correct the RCM simulations is the Delta Change Ap-
proach. This technique uses the average deviation of the RCM simulations from the
observed values and corrects the RCM simulations via a single number ∆. This
number is either added to the simulated value xsim or multiplied with it to obtain a
bias corrected value xBC. In both cases the mean of the RCM simulations xsim and the
mean of the observations xobs are required to calculate ∆.
The additive correction is normally used for variables like temperature. For instance,
if the RCM’s daily temperature is on average colder by 2 K than the observations,
2 K are added to the RCM values.

xBC = xsim − ∆, ∆ = xsim − xobs (3.1)

In the case of precipitation, it is common to calculate the ratio of the average daily
precipitation in the RCM to the observation and divide all RCM values by this factor.
So if the RCM overestimates the observed mean by 5%, each RCM value is divided
by 1.05.

xBC =
xsim

∆
, ∆ =

xsim

xobs
(3.2)

While the Delta Change Approach is easily applicable, it has the disadvantage of not
being able to correct the higher moments of the variables. Another problem of this
approach is its bad performance if the climatic conditions of the validation period
differs from those of the calibration period (Teutschbein and Seibert, 2013).

3.1.2 Dry Day Correction

For precipitation, a correction of the frequency of wet values is necessary in most
cases because RCM simulations typically exhibit more time steps with precipitation
than is observed. Frei et al. (2003) analyzed the precipitation probability of RCM
simulations and gridded observation data for several regions in Europe and found
an overestimation of the precipitation probability for many months and RCMs.
One cause for an excessive precipitation probability is the drizzle effect. RCMs often
simulate too many low intensity precipitation events when compared to observations
(e.g. Sun et al., 2006). The probability that a grid cell is wet is also scale-dependent.
Argüeso et al. (2013) showed that simulations with the Weather Research and Fore-
casting Model (WRF, Skamarock and Klemp (2008)) in a spatial resolution of 10 km



3.1. Overview of bias correction methods 29

have a much higher precipitation probability than the 2 km simulations for the same
domain. This behavior is to be expected. If one were to construct a gridded data
set from rain gauges, larger areas would also be more likely to receive precipitation
than smaller areas because one gauge with a non-zero measurement would cause the
grid cell to be wet. In practice, it is however often the case that there is a mismatch
between the spatial resolution of the RCM and the observations: if precipitation has
been measured by a gauge, Xobs is a variable corresponding to a single point in space
and therefore a difference between pw,obs and pw,sim is to be expected. Furthermore,
rain gauges may miss very light precipitation amounts that are below the detection
limit. Nevertheless, gauge data is commonly used to perform bias correction - either
because there is no other data available or because the bias corrected time series are
desired to behave like gauge data for further applications.

An overestimated precipitation probability can be corrected by setting all val-
ues below a chosen threshold ϑ (e.g. 1.0 mm d−1) to zero. This threshold should
be calculated individually for each cell so that the frequency of values above the
threshold is equal to the observed precipitation probability. This procedure requires
calculating the observed precipitation probability pw,obs first. Then, only the nsimpw,obs
largest values of the RCM simulations will be considered as actual precipitation. The
threshold ϑ is thus the value that fulfills:

nsimpw,obs = #{xsim|xsim ≥ ϑ} (3.3)

After the threshold has been found, all values below it are set to zero and the
remaining values are shifted towards zero to allow for the fitting of a parametric
distribution function. This approach has been used amongst others in Volosciuk et al.
(2017) and Lafon et al. (2012). A correction for the rare converse case, that the wet
day probability is higher in the observations than in the simulations, was developed
by Themeßl et al. (2010) who infilled very low intensities until the observed wet day
probability was matched.

3.1.3 Quantile Mapping

A more complex way to correct the bias than the Delta Change Approach is Quantile
Mapping which is closely related to Histogram Equalization and Local Intensity
Scaling. The distribution of the observed variable is reproduced by inverting the
CDF of the observed variable Fobs with the CDF value of the RCM simulations
Fsim(xsim). Thus, the general characteristics of the RCM time series, such as when the
highest values occur, remain the same but each value is mapped to its corresponding
observed quantile.

xBC = F−1
obs{Fsim(xsim)} (3.4)

Fobs and Fsim can either be empirical or parametric. One problem of choosing an
empirical CDF is that the observed maximum cannot be exceeded. Also, the time
series of observations should be as long as the RCM time series which can be circum-
vented by interpolating between the two values with a given rank or by sampling
from the observation set until it is as large as the simulation set (Piani and Haerter,
2012). Parametric CDFs are capable of generating values larger than the observed
maximum and the discrete nature of the measurements (e.g. a resolution of 0.1 mm
of the measurement device) is less apparent in the bias corrected time series. Finding
a function that fits the skewed precipitation intensities simulated by RCMs can be
challenging, as discussed in Gudmundsson et al. (2012).
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For climate change studies, the traditional Quantile Mapping cannot be used directly.
Fitting a distribution function Fsim to the future period and inverting the observed
distribution Fobs with the CDF values in the future, would result in a bias corrected
time series with a distribution function that is identical to the one of the observations.
The only difference would be how the large and small values tend to cluster in space
and time in the different time periods.

3.1.4 Double Quantile Mapping for future periods

As the distribution of precipitation intensities is typically not the same for RCM
simulations for future periods, bias correcting these future simulations should con-
sider the climate change signal of the RCM. The Double Quantile Mapping method
presented by Bárdossy and Pegram (2011) utilizes the historical CDF to calculate the
CDF values of the future period. A parametric distribution function Fsim,hist is fitted
to the historical RCM time series and the CDF values of the future period are calcu-
lated with this CDF. This way, a change of the intensity distribution leads to a bias
corrected time series whose distribution is no longer identical to the observed one.

xBC = F−1
obs(Fsim,hist(xsim, f ut)) (3.5)

The Double Quantile Mapping is illustrated in Figure 3.1 with artificial data.
Since the CDFs of the historical and future RCM differ, the precipitation amount
xsim, f ut which is the 90%-Quantile in the future period attains a larger CDF value
Fsim,hist(xsim, f ut) = 0.95.
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Figure 3.1: Transformation of non-zero precipitation amounts with
Double Quantile Mapping.
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3.2 Study region and data

In the following, a study region in West Africa is presented. The CORDEX-Africa
RCM ensemble provides gridded time series of several meteorological variables for
this region for historical and future periods but a bias to the observed climatology
exists. The study region and observation data is introduced in subsection 3.2.1. The
CORDEX-Africa ensemble and its bias is presented in subsection 3.2.2.

3.2.1 Study region and observation data

The study region consists of 173 grid cells with a spatial resolution of 0.44◦ in the
states of Burkina Faso, Ghana, Ivory Coast, Benin, Togo, Mali and Niger. The spatial
grid stems from the CORDEX-Africa RCM ensemble. From a merged data set of
precipitation observations that has been collected within the BMBF research program
WASCAL, 172 stations in the proximity of the study region have been extracted for
the period 1950 to 2005 (Figure 3.2).

100 0 100 200 300 400 km

CORDEX grid
Observations

Elevation (SRTM)

0
4138.05

Legend

Figure 3.2: The study region in West Africa and the location of the
observation stations.
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The mean annual sum of precipitation (Figure 3.3) decreases from South (up to
1418 mm a−1) to North (as low as 439 mm a−1). Stations on the same degree of latitude
have relatively similar annual sums.

Figure 3.3: Mean annual sum of precipitation of the West African
observation data (1950-2005).

The rainy season is very distinct in West Africa and dominated by the West
African Monsoon. From November to February, the Intertropical Convergence Zone
(ITCZ) intersects the study region and dry air flows from the Sahara towards the
south-west. This dry season is known as the Harmattan. In March, the ICTZ shifts
towards the North and wetter air masses are transported towards the north-east.
The seasonality of monthly precipitation is illustrated in the Hovmöller diagram in
Figure 3.4. From February, the southern locations already receive precipitation. Over
the course of the rainy season, the monthly amounts increase until August. At this
time, the maxima occur at the southern border of Burkina Faso. From September,
the precipitation amounts decrease quickly.
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Figure 3.4: Hovmöller diagram of mean monthly precipitation of the
West African observation data (1950-2005).
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In Figure 3.5, the mean daily precipitation intensity on rainy days xw in the season
June-August is shown. As Figure 3.4 showed, the mean monthly precipitation occurs
in the center of the study region in this season. The mean can vary on comparatively
small scales which may be related to data gaps and decadal variability in the data
set. But in general, stations on the same degree of latitude have more similar means
whereas the mean varies more strongly from North to South.

Figure 3.5: Mean daily precipitation on rainy days xw in the season
JJA (1950-2005).

The mean daily probability of precipitation pw (Figure 3.6) shows similar char-
acteristics but the highest values lie still in the South. This means that the higher
monthly sums in the North are related to very strong events, whereas more compar-
atively low daily precipitation amounts fall in the South.

Figure 3.6: Mean daily probability of precipitation pw in the season
JJA (1950-2005).

Some regions, especially Northern Ghana, have only a few measurement stations.
This spatial arrangement of the measurement stations and the anisotropy of the
presented statistics motivated a geostatistical approach to estimate the distribution
functions Fobs for ungauged locations.
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3.2.2 The CORDEX-Africa RCM ensemble

An ensemble of daily RCM precipitation simulations in a spatial resolution of 0.44◦

has been provided by the the CORDEX-Africa project (Coordinated Regional Cli-
mate Downscaling Experiment) for a historical control period (1950-2005) and future
scenarios (2006-2100). The ensemble consists of 23 different model combinations.
The advantage of an ensemble of RCMs is that it provides a set of scenarios which
are utilized to run an impact model. The impact studies does not rely on a single
simulated time series and thus the uncertainty can be quantified. A bias in simu-
lated precipitation is especially concerning for agricultural planning in a region with
a distinct rainy season like West Africa because the sowing depends on the onset of
the rainy season.

For the future period, four different Representative Concentration Pathways
(RCPs) have been defined as possible scenarios to accommodate the uncertainties of
how anthropogenic green house gas concentrations and stratospheric adjusted radia-
tive forcing will change (van Vuuren et al., 2011). These scenarios were also adopted
by the Intergovernmental Panel on Climate Change (IPCC). Within the CORDEX-
Africa project, three scenarios have been used (RCP 2.6, RCP 4.5 and RCP 8.5). RCP
2.6 has been used in only five cases, while RCP 4.5 and RCP 8.5 have been used by
almost all participating institutes. A list of the available simulations, time period
and how leap years are treated can be found in Table A.1 and Table A.2 in Appendix
A. Because some impact models require Gregorian calendar data, the simulated pre-
cipitation time series have been stretched to the Gregorian calendar by selecting the
intensity of the closest day of the year. Afterwards, the intensities were rescaled
such that the annual sum is consistent with the original model. There is no unique
solution to this issue - one possibility is to linearly interpolate the intensities to the
Gregorian calendar (Hempel et al., 2013) but this approach was not used because it
can severely cut the extreme values.

Bias of the CORDEX-Africa precipitation simulations reported in other studies

An inter-comparison of ten CORDEX-Africa RCMs driven by ERA-Interim reanaly-
sis data by Nikulin et al. (2012) has shown that all models exhibit a significant bias
in the rainy season JAS - in both positive as well as negative direction - for West
Africa when compared with data from the Global Precipitation Climatology Project
(GPCP) . Remarkably, ERA-Interim shows a dry bias for West Africa in this season,
but the RCMs driven by ERA-Interim can lead to positive and negative biases. Some
of the models simulated the onset of the rainy season too early, some have problems
regarding the northward extension of the monsoon rain belt.
Mascaro et al. (2015) reported similar findings for the Niger River basin. They com-
pared the annual precipitation of 18 GCM-RCM combinations of the CORDEX-Africa
ensemble for the historical period with data from the Climatic Research Unit (CRU).
In the most western sub basin close to the source of the Niger River, an underesti-
mation of as low as −60% was found, while most models overestimated this statistic
for the three following sub basins (up to +60%).

The bias of RCM precipitation is not only determined by the chosen RCM but dif-
ferent parametrization schemes can lead to highly varying precipitation simulations
with the same RCM. Klein et al. (2015) investigated the influence of parametrization
schemes on the resulting precipitation fields with a single RCM. To this end, the WRF
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model was set up for West Africa in a spatial resolution of 24 km and ERA-Interim
reanalysis data was used to drive the model. 27 combinations of parametrization
schemes were utilized and it was found that the absolute bias in mean daily precipi-
tation in the rainy season can be higher than 2 mm d−1 (both negative and positive).
This variability illustrates the importance of the choice of parametrization schemes
and explains the large uncertainties of ensemble simulations which comprise differ-
ent RCMs with different driving models and not only a single RCM with different
schemes.

Bias of the CORDEX-Africa precipitation simulations in the study region

The majority of the models from the CORDEX-Africa ensemble overestimate the
annual sums of precipitation in the presented study region. Figure 3.7 is a scatter plot
of the annual sums of the control run for the historical period (1950-2005) averaged
over all GCM-RCM combinations against the annual sum of the closest measurement
station.
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Figure 3.7: Mean of mean annual sum of simulated precipitation of
173 grid cells against annual sum of closest measurement station -

uncorrected historical period (1950-2005).

Figure 3.7 illustrates that the mean annual sum of precipitation is overestimated
by the ensemble for nearly every location. Single GCM-RCM combinations exhibit
a much stronger bias: Annual sums of more than 2500 mm have been simulated
by individual ensemble members. Such an overestimation poses huge problems for
subsequent crop models because it may be assumed that more water is available
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than in reality. For the historical period this bias can be detected by comparing
the simulations with observed data. For the future period, this bias is more critical
because the future climatology is unknown. Assuming that the general climatology
is matched by a model and that the projected climate is un-biased, wrong planting
decisions could be made.

Not only then annual sums, but also the mean monthly sums of precipitation are
biased in most models. Figure 3.8 shows the spread of the ensemble and its mean.
The mean of the nearest observation stations is also included for reference purposes.
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Figure 3.8: Mean monthly sum of precipitation averaged over 173
grid cells - uncorrected historical period (1950-2005).
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As planting dates may be planned based on the onset of the rainy season, this
bias calls for a correction scheme in order to avoid bad decisions like planting too
early because an RCM indicates that a certain ratio of the annual precipitation has
already fallen. While the mean over the 23 GCM-RCMs is closer to the observed
mean monthly sums, there is still a pronounced overestimation for the months of
April to June. Using the mean of an ensemble as an alternative to bias correction
is also critical because doing so would not reproduce the distribution of the daily
intensities and the precipitation probability.

The spread of the mean monthly sums for the uncorrected RCP 8.5 scenario
looks quite similar to the historical period shown in Figure 3.8. To illustrate the
climate change signal in the future period (2005-2100), the differences of the monthly
sums were calculated (Figure 3.9). In general, a slight intensification of the rainfall
amounts during the rainy season is projected but individual models can project
highly increasing or decreasing monthly amounts. The bias correction should make
use of this projected climate change signal but also reproduce the climatology of the
historical period.
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Figure 3.9: Difference of mean monthly sums of precipitation in the
uncorrected RCP 8.5 scenario (2005-2100) to the uncorrected historical

period (1950-2005).

Daily precipitation intensities also exhibit a bias but this is treated in more detail
in section 3.5.4 since the bias correction was performed on daily precipitation.
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While the future climate is unknown, not all model combinations should be re-
garded as equally suited to simulate future conditions. A model which is able to
reproduce the observed climatology of the past can be assumed to be more capable
of simulating reliable projections for the future. In order to evaluate the performance
of the different models, an analysis of the uncorrected mean monthly sums was
carried out. Before the analysis, it was intended to also investigate how well the
time series of the simulations agree with the observed series. This approach was
dismissed because none of the models was able to match the time series of annual
sums very well. The rank correlation of the annual time series in the control period
1950-2005 ranges from −0.06 to 0.13 for all models which indicates that no model is
significantly better than the others at reproducing the observed temporal structure
of annual precipitation. This analysis therefore only investigates how well average
monthly statistics are reproduced.
For each model and month, the average mean error MEavg of the monthly precipi-
tation amounts was calculated as a weighted average. The average mean error was
calculated as the weighted average over all cells nc with the weight wi of each cell
i depending of the distance between the cell center and its nearest station. This
weighting was introduced to give a higher importance to locations with data ob-
served close to the cell centers.

MEavg =
nc∑
i

wi(xobs,i − xsim,i);
∑

i

wi = 1 (3.6)

Afterwards, the average mean errors of each month and model were evaluated with a
trapezoidal fuzzy rule to give a value of 1 to the model with the best performance (i.e.
the lowest absolute ME) and 0 to the model with the highest absolute ME. The overall
annual rating score of each model was then calculated as the weighted average of
the fuzzy membership functions’ value with monthly weights of wmon =

xobs,imon
xobs,ann

to
give a higher importance to the months belonging to the rainy season. The results of
this analysis can be found in Table 3.1.

Model combination Rating [-] Model combination Rating [-]
CCLM4 CNRM-CM5 0.386 UQAM-CRCM5 MPI-ESM 0.663

UQAM-CRCM5 CanESM2 0.413 CCLM4 MPI-ESM 0.690
SMHI-RCA4 CSIRO-Mk3 0.458 SMHI-RCA4 HadGEM2 0.713
HIRHAM5 EC-EARTH 0.466 CCLM4 HadGEM2 0.714
HIRHAM5 NorESM1 0.473 SMHI-RCA4 EC-EARTH 0.724

KNMI-RACMO22T HadGEM2 0.529 SMHI-RCA4 ESM2M 0.751
SMHI-RCA4 IPSL-CM5A-MR 0.545 SMHI-RCA4 MIROC5 0.756

REMO2009 MPI-ESM 0.548 SMHI-RCA4 MPI-ESM 0.760
SMHI-RCA4 NorESM1 0.549 CCLM4 EC-EARTH 0.760
SMHI-RCA4 CanESM2 0.554 CanRCM4 CanESM2 0.761

KNMI-RACMO22T EC-EARTH 0.579 SMHI-RCA4 CNRM-CM5 0.856
REMO2009 EC-EARTH 0.613

Table 3.1: Annual rating of all CORDEX-Africa models.
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3.3 Development of a new geostatistical bias correction model
for ungauged locations

RCM precipitation is usually afflicted by bias and a correction technique is required
for further impact studies. This was shown to be the case for the CORDEX-Africa
simulations in the study region. The bias correction techniques presented in sec-
tion 3.1 build the transfer function by utilizing observed data. For instance, the
observed mean xobs in the Delta Change Approach or the CDF of the observed vari-
able Fobs in Quantile Mapping. Due to the irregular measurement station network, it
was necessary to construct the transfer function of the bias correction for ungauged
sites. Utilizing the closest measurement station for each grid cell would lead to high
uncertainties for grid cells that have no nearby stations. For instance, there is no
observed data for several grid cells in Ghana and Benin (Figure 3.2). Assigning the
closest measurement station would also lead to jumps in the statistics of the assigned
rainfall gauges for neighboring cells as one cell might have a Northern station as the
closest neighbor while an adjacent cell might have a Southern station as its closest
neighbor. This would be especially problematic in regions with a highly-variable
local climatology as in mountainous regions or in this case West Africa where the
climatology depends strongly on the degree of latitude (Figure 3.4). Therefore, the
method can also be used in other regions or for the estimation of CDF parameters in
copula-based models.

The Double Quantile Mapping method presented in subsection 3.1.4 has been cho-
sen to bias correct the CORDEX-Africa precipitation ensemble because regular Quan-
tile Mapping has shown to outperform simpler methods like the Delta Change Approach
in other studies and because the full distribution including the frequency of wet val-
ues is bias corrected. Gudmundsson et al. (2012) found that empirical Quantile Mapping
resulted in the best bias corrected simulations but this approach requires complete
observation time series for every location in the simulation period which are not
available. The unknown point scale distribution functions Fobs (Equation (3.5)) for
each grid cell in the study region are estimated by interpolating the parameters of the
observed distribution functions to all grid cell centers in the region of interest with
Ordinary Kriging. The estimated distribution Fobs was utilized to generate so called
"simulated observations" (see Chapter 2, Subsection 2.2.4 for details on simulating
from a parametric CDF). A Double Quantile Mapping with Dry Day Correction was then
carried out for each RCM cell with the estimated CDFs Fobs. The complete process is
illustrated in Figure 3.10.
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Figure 3.10: Flowchart of the geostatistical bias correction method.

For the sake of simplicity, the Kriging method is explained for a single CDF pa-
rameter denoted by Θ. If several parameters are required to estimate the distribution
function at unmeasured locations, the following procedure has to be done for each
parameter individually. Mamalakis et al. (2017) kriged the parameters of a General-
ized Pareto distribution to ungauged locations, whereas Mosthaf and Bárdossy (2017)
kriged precipitation quantiles to estimate unknown distributions.

It has been discussed that the estimation of the variogram and Kriging with non-
normally distributed random variables can be problematic (e.g. Cressie and Hawkins,
1980) and to this end a transformation of non-normal variables like precipitation is
often performed (e.g. Erdin et al., 2012). If the parameter Θ is or can be transformed
such that it is normally-distributed, the experimental variogram is calculated for
different separation distances hi. If n locations with observed data are present, an
n × n-distance matrix is calculated that contains the separation distance between
all location combinations (k, l). The number of locations that are approximately
separated by a distance of hi is denoted by Ni and will be used to calculate the average
semi-variance γ∗ (the experimental variogram) of values at the given separation
distance.

γ∗(hi) =
1

2Ni

Ni∑
hk,l≈hi

(Θk −Θl)
2 (3.7)

Afterwards a parametric function γ̂ needs to be fitted to estimate the variogram
values for any separation distance. Two parametric variogram models, the h-lambda
model and the spherical model, were utilized. The h-lambda model γ̂hl estimates the
semi-variance with a single parameter λhl:

γ̂hl(h) = hλhl (3.8)
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The spherical model γ̂sp has two parameters, the sill Cvsp and the range avsp, and is of
the form:

γ̂sp(h) =

 Cvsp(1.5 h
avsp
− 0.5 h3

a3
vsp
) if h ≤ avsp

Cvsp else
(3.9)

Additionally, the nugget parameter C0 was used to allow for the estimated semi-
variance to increase rapidly for non-zero separation distances h. Depending on
which model fits better, the variogram model γ̂ becomes either C0 + γ̂hl or C0 + γ̂sp.
Anisotropic variograms can be calculated as a linear combination of the directional
variograms γ̂x and γ̂y, so if the variogram value increases more strongly in one
direction, the expected overall semivariance γ̂ between the unknown point and the
observation location will be higher if the two points are mainly separated along this
axis.

γ̂(h) = γ̂x(hx) + γ̂y(hy) (3.10)

For instance, in West Africa precipitation pairs on the same degree of latitude
have a lower semi-variance than pairs on the same degree of longitude because
γ̂x(h) < γ̂y(h). As Kriging minimizes the estimation uncertainty, a higher Kriging
weight is given to neighboring gauges that are on the same degree of latitude.
Once the variogram model is selected, an estimate of the CDF parameters and the
precipitation probability can be obtained for each unmeasured location m by Krig-
ing the parameters of the neighboring measurement stations. Kriging estimates the
unknown CDF parameter Θ∗ as a linear combination of the observed parameters Θi
which each have a weight λK,i.

Θ∗ =
n∑

i=1

λK,iΘi,
n∑

i=1

λK,i = 1 (3.11)

The Kriging weights λK are obtained by solving the Kriging equation system that
minimizes the estimation uncertainty of the unknown value. The distance of the
measurement locations to the unknown point is denoted as him, hi j is the distance
between two locations i and j with observed values andµL is the Lagrange multiplier.

γ̂(h11) · · · γ̂(h1n) 1
...

. . .
... 1

γ̂(hn1) · · · γ̂(hnn) 1
1 · · · 1 0



λK,1

...
λK,n
µL

 =

γ̂(h1m)

...
γ̂(hnm)

1

 (3.12)

To avoid negative weights λK,i, the adjustment procedure proposed by Deutsch (2005)
was implemented.
With the interpolated parameter Θ, the parametric CDF Fobs (Equation (3.5)) is defined
and a Double Quantile Mapping can be performed for the ungauged locations.
The statistical properties of the point measurements are transferred to the ungauged
locations and a surrogate for the unknown distribution Fobs is provided. Alternatively
to these point statistics, a Block Kriging could be performed. The choice of the
Kriging method is governed by the impact studies that will be performed with the
bias corrected time series. If plot scale models are used, the bias corrected time
series should behave like station data. Mapping block scale simulations to local
scale distributions is sometimes referred to as downscaling because this form of
bias correction transfers the simulated precipitation values to the distribution of the
gauge scale (e.g. Chen et al., 2013).
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3.4 Calibration of the geostatistical bias correction model

The bias correction model depicted in Figure 3.10 requires observed CDFs Fobs for
the ungauged locations and CDFs Fsim,hist fitted to the dry day corrected RCM pre-
cipitation time series in the historical period 1950-2005. The historical period stems
from the CORDEX-Africa ensemble and was also chosen for the observed data.

The estimation of the CDF Fobs of daily precipitation is based on Kriging the
parameters of the observed CDF to the ungauged locations. The required steps to
calibrate the model are:

• Selection of a parametric distribution function (subsection 3.4.1)

• Testing the normality of the distribution parameters (subsection 3.4.2)

• Calculating variograms of the distribution parameters (subsection 3.4.3)

The precipitation probability pw was also interpolated to the ungauged locations to
calculate the Dry day Correction threshold ϑ for the historical period. The following
subsections illustrate the required steps for the month of August which is the month
with the highest measured precipitation amounts.

The CDF Fsim,hist was estimated for each cell directly with KDE. This is discussed
in subsection 3.4.4.

3.4.1 Parametric distribution function of observed precipitation

An analysis of the BIC values (see Chapter 2, section 2.2.3) of nine distribution func-
tions that are implemented in the programming language MATLAB was performed
in order to select an appropriate distribution function. The nine distribution func-
tions are: Weibull (Wbl), Gamma (Gam), Exponential (Exp), Generalized Extreme
Value (GEV), Generalized Pareto (Gp), Log-Normal (Logn), Logistic, Log-Logistic
and Rayleigh. A boxplot of the BIC values of the respective distributions is given
for the month of August in Figure 3.11. The spread of the BIC value corresponds to
the gauges with enough data to fit a distribution function. The BIC was chosen as
an evaluation criterion, because it accounts for the goodness of fit of a parametric
distribution function via the likelihood of the fitted distribution. Furthermore, the
BIC favors distribution functions with few parameters, as a low number of param-
eters results in a low BIC value. A parameter parsimonious distribution function is
favorable for scarcely gauged regions, which is discussed in more detail later in this
section. According to the BIC-values, there is no parametric distribution function
that clearly outperforms all other functions as the differences are rather small. While
the BIC values of some other distributions are slightly lower, the exponential distri-
bution was chosen to model Fobs for the observed daily precipitation intensities.
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Figure 3.11: Boxplot of BIC-values of nine parametric distribution
functions fitted to daily precipitation intensities in August (1950-2005).

The exponential distribution is defined by a single parameter λexp.

F(x) = 1− e−λexpx (3.13)

The parameter λexp is the reciprocal value of the mean wet day amount xw. Since the
mean wet day amount is easier interpretable, xw was interpolated to the ungauged
location instead of λexp.

Even though the exponential distribution did not result in the minimum BIC
values, it was chosen for the following reasons:

• Piani et al. (2010) argue that a robust transfer function with few parameters is
favorable for climate change studies. The exponential distribution’s parameter
λexp = 1

xw
is defined by the mean of the random variable which is a simple and

robust statistic that is not strongly influenced by single extreme values.

• As the rainy season is very pronounced in West Africa, a subdivision of the year
into 9 seasons was made (one season for the dry season November to February
and separate parameters for the other months). Fitting the seasonal CDF
parameters with a moving window approach was also tested but rejected since
it smoothed the monthly sums of precipitation too strongly and underestimated
the strong seasonality in West Africa. As the estimation of variograms and
the fitting of the distribution parameters is dependent on a sound basis of
observation data, a distribution function with a single parameter can be fitted
more easily.

• QQ-Plots of the simulated daily intensities against the observed ones showed
a good fit for most locations.
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• Stations on the same degree of latitude are generally more similar than stations
on the same degree of longitude which has motivated anisotropic variograms to
represent this observed feature of the West African climate system. Calculating
experimental anisotropic variograms requires splitting the sample into subsets
which reduces the sample size for the calculation of the directional variograms.

• Fitting a parametric CDF with more than one parameter can result in a high
variability of the parameters between neighboring locations. The resulting
variograms can be very flat with nearly constant values. One problem of such
flat variograms is that nearly equal Kriging weights are given to all neighbor-
ing stations. Therefore, the generated maps are very smooth and local trends
cannot be reproduced and a high estimation uncertainty for unknown points
ensues. The other problem is that the Kriging matrix can become non-invertible
if the variogram functions generate nearly identical values for a certain spatial
configuration. This problem occurred for instance, for the Weibull distribu-
tion’s scale parameter λwbl in March. Figure A.5 in Appendix A shows the
experimental and fitted variograms of the scale parameter λwbl. The experi-
mental variogram γ∗ and the fitted spherical model γ̂sp are nearly constant.
In contrast, the parameter of the exponential distribution is determined by the
mean wet day amount which is a more stable descriptive measure. Thus, the
estimation variance is more strongly influenced by the geometric configuration
of the unknown point and the neighboring gauges and local trends in the ob-
served distribution parameters can be respected. Possible extensions to lessen
the problem of volatile or nearly-constant variograms could be to interpolate
only one CDF parameter and make assumptions about the other CDF param-
eter, e.g. that it is constant for the complete region or that it correlates with the
elevation or another geographical information and estimate it based on this de-
pendence. For instance, Marra et al. (2019) estimated the shape parameter of the
Weibull distribution based on the fitted scale parameter with linear regression.

The selection of a suitable distribution function for the observed variable could be
based on different criteria. In the end, the selection of a single parametric distribution
function remains somewhat subjective and can be motivated by practical problems
like the sample size, the number of parameters of the distribution function or the tail
behavior.
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3.4.2 Normality of distribution parameters

An investigation of the distribution parameters pw and xw showed that they are ap-
proximately normally distributed for all seasons and no further transformation was
performed. Figure 3.12 exemplifies this investigation for the month of August. The
theoretical Gaussian CDFs were obtained by simulating from a Gaussian distribution
with the standard deviation and mean of the observed CDF parameters within the
study region.

Figure 3.12: Empirical and Gaussian distribution of pw (a) and xw (b)
in August (1950-2005).
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3.4.3 Variograms of distribution parameters

Experimental anisotropic variograms of xw and pw were calculated for ten separation
distances ranging from 0 to 300 km and four directions (0◦, 45◦, 90◦, 135◦) to find
the direction of maximum anisotropy (Krūminiene, 2006). It was found that lower
semi-variances of xw are to be expected when going from east to west (Figure 3.13 (a))
as when going from north to south (b) for both parameters. This anisotropy relates
to the rainfall band that moves across West Africa from south to north during the
rainy season. The numbers at the experimental variogram markers are the numbers
of gauge pairs corresponding to the respective distances.

Figure 3.13: Experimental and fitted variograms γx of xw in east-west
(a) and north-south direction (b) in August (1950-2005).
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3.4.4 Fitting a distribution function to the RCM simulations

RCM precipitation intensities are typically highly skewed and the probability of pre-
cipitation is generally overestimated when compared with observation data. Figure
3.14 shows the empirical distribution of one model (KNMI-RACMO22-HadGEM2)
in June for one cell. The historical and future (RCP 8.5) precipitation probability pw
amounts to approximately 90% , whereas the interpolated pw is only about 28%.
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Figure 3.14: CDF of historical (1950-2005) and future (2006-2100,
RCP8.5) precipitation of one model and of simulated observations

in June for one cell.

While the future pw is a bit lower than in the historical period, the values above
40 mm d−1 are higher. This is shown in the Quantile-Quantile-Plot in Figure 3.15.
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Figure 3.15: QQ-Plot of historical (1950-2005) and future (2006-2100,
RCP8.5) precipitation of one model in June for one cell center with

bisecting line (blue) and regression line (red).
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In a first step, the RCM precipitation was dry day corrected. The Dry Day
Correction (subsection 3.1.3) was calibrated by calculating the threshold ϑ for each
season, grid cell and CORDEX-Africa model. The assumption is that the threshold
ϑ remains constant for the future period.
The remaining values were shifted towards 0 and a distribution was fitted to the
positive amounts. Finding a parametric distribution Fsim,hist that fits such highly
skewed data is very problematic. Instead, a KDE-CDF (Chapter 2, subsection 2.2.5)
was utilized. This type of CDF was chosen due to the very high extreme values that
can occur in a large ensemble of RCM simulations. The data set is large enough
to allow for a robust fit of the KDE-CDF on a monthly basis with the dry season
November - February pooled into one season.

3.5 Evaluation of the geostatistical bias correction model

In this section, the performance of the bias correction model is evaluated by compar-
ing the simulated observations with observed data. Afterwards, the bias-corrected
RCM precipitation is compared with observations to evaluate the suitability of the
KDE-CDF to fit the historical time series of RCM precipitation.

• Maps of the interpolated distribution parameters are shown in subsection 3.5.1.

• The distribution parameters were interpolated to the gauge locations to perform
a cross validation. The results of this analysis are presented in subsection 3.5.2.

• The simulated observations were also compared with the nearest observations
on different aggregation levels. The difference of these analyses to the cross
validation is that the simulated observations were simulated for the grid cell
centers of the study region and not for the locations with observation data.
Comparisons of the annual, monthly and daily precipitation are given in sub-
section 3.5.3.

• The fit of the KDE-CDF to the historical RCM simulations was evaluated by
performing a bias correction for the historical period and comparing monthly
precipitation to the nearest observed values in subsection 3.5.4.
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3.5.1 Maps of interpolated distribution parameters

With the fitted variograms γ̂(h), the Kriging Equation System was built for each
ungauged location. Measurement stations were considered as supporting points of
the interpolation of the precipitation probability pw if at least 500 valid daily values
had been measured in the given season. The interpolated field of pw in August is
shown in Figure 3.16 (a). For the mean wet day amount xw (Figure 3.16 (b)) it was
required that at least 100 wet values had been measured at each location.

Figure 3.16: Kriged probability of precipitation pw (a) and mean wet
day amount xw (b) in August (1950-2005) - Diamonds: Observed,

Squares: Kriged.
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3.5.2 Cross-Validation of interpolated distribution parameters

A cross-validation was performed by interpolating the probability of precipitation
and the mean wet day amount xw to every measurement location where enough data
is available to fit the exponential distribution function. The interpolating was done
with the Kriging procedure and a standard Inverse Distance Weighting procedure
(IDW) for comparison purposes. The supporting points for the interpolation were
the four closest measurement stations surrounding the unknown point. Figure 3.17
shows the performance of estimating pw for August and the season-wise performance
is given in Table 3.2.
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Figure 3.17: Scatterplot of interpolated pw compared to observed
value in August (1950-2005).

Kriging IDW
Season rxy[−] MAE[−] MSE[−] rxy[−] MAE[−] MSE[−]
1 NDJF 0.82383 0.00444 0.00007 0.82456 0.00441 0.00007
2 Mar 0.91475 0.00965 0.00024 0.91600 0.01072 0.00028
3 Apr 0.94214 0.01473 0.00049 0.94711 0.01380 0.00048
4 May 0.92342 0.01881 0.00064 0.91764 0.01969 0.00070
5 Jun 0.85170 0.02492 0.00111 0.86046 0.02346 0.00106
6 Jul 0.71645 0.03122 0.00178 0.73081 0.03047 0.00169

7 Aug 0.69614 0.03837 0.00260 0.71198 0.03704 0.00248
8 Sep 0.89916 0.03459 0.00208 0.90684 0.03200 0.00198
9 Oct 0.90536 0.02171 0.00115 0.90865 0.02193 0.00121

Average 0.85255 0.02205 0.00113 0.85823 0.02150 0.00111

Table 3.2: Cross validation of Kriging and IDW for pw. rxy: Correla-
tion, MAE: mean absolute error, MSE: mean squared error.



3.5. Evaluation of the geostatistical bias correction model 51

Analogously, the interpolated mean wet day amount xw in August is illustrated
in Figure 3.18 and Table 3.3 shows the seasonal performance.
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Figure 3.18: Scatterplot of interpolated xw compared to observed

value in August (1950-2005).

Kriging IDW
Season rxy[−] MAE[mm

d ] MSE[mm
d ]2 rxy[−] MAE[mm

d ] MSE[mm
d ]2

1 NDJF 0.48593 1.42200 3.26400 0.52886 1.34700 3.03000
2 Mar 0.51964 1.75200 4.71900 0.52296 1.75100 4.72300
3 Apr 0.56343 1.43700 3.45500 0.56281 1.44500 3.50100
4 May 0.65652 1.03600 1.77600 0.65027 1.03400 1.81300
5 Jun 0.50501 0.96550 1.48800 0.49143 0.96680 1.52900
6 Jul 0.55925 1.03600 1.80600 0.51425 1.08400 1.96500

7 Aug 0.59585 1.21600 2.30800 0.57006 1.24400 2.40800
8 Sep 0.47808 0.93650 1.37900 0.43842 0.97710 1.48200
9 Oct 0.48068 1.06200 1.66300 0.50142 1.05900 1.62300

Average 0.53827 1.20700 2.42867 0.53116 1.21199 2.45267

Table 3.3: Cross validation of Kriging and IDW for xw. rxy: Correla-
tion, MAE: mean absolute error, MSE: mean squared error.

Both methods reproduce the observed statistic similarly for the month of August.
The probability of precipitation pw was interpolated slightly better with IDW, whereas
Kriging resulted in slightly lower errors for the mean wet day amount xw. The
seasonal analysis shows that the performance of the methods in August is similar
in the other months. For pw, IDW performs slightly better on average (Table 3.2),
whereas the kriged xw values have lower mean absolute errors and higher correlation
coefficients (Table 3.3). de Amorim Borges et al. (2006) interpolated daily precipitation
in Brazil with different methods and also found that IDW may outperform more
complicated interpolation methods.
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To evaluate the performance of the estimated CDF, a statistical test against a CDF
fitted to observation was carried out. For each location with valid CDF parameters,
the measured values of the corresponding season serve as a reference set xre f .
With the observed CDF parameters, a set of values xsim,obs of the same length as xre f
was simulated with the truncated exponential distribution. Likewise, a set xsim,krig
was simulated from the estimated CDF parameters that were interpolated from the
neighboring stations. Both simulated sets were then tested with a KS-Test at a
significance level of α = 5% against the reference set. Figure 3.19 presents the ratio
of accepted tests for each season.

Figure 3.19: Ratio of accepted KS-Tests of simulated precipitation.

It can be seen, that the summer months do not always follow the exponential
distribution and that the winter months are better represented by the exponential
distribution. As Kriging tends to produce smoothed estimates, less tests were ac-
cepted for the sets simulated from the kriged parameters. The kriged parameters’
ratio of accepted KS-Tests lies in the range of 69.6 to 100%. Since the exponential
distribution fitted to observed precipitation was not always capable of passing the
KS-Test neither, the ratios of accepted KS-Tests of kriged parameters was divided
by the ratio of accepted KS-Tests with observed parameters to separate the Kriging
performance from the suitability of the exponential distribution. In cases where the
exponential distribution with observed parameters passed the KS-Test, between 79.1
and 100% of the estimated distributions also passed the test.
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3.5.3 Comparison of simulated observations and observed precipitation

In the previous analyses, the simulated observations were generated for locations
with measured data and a comparison of the distributions was performed. In the
following, the simulated observations were generated for the grid cell centers of
the study region and the comparison was performed with the closest measurement
station. As was shown in Figure 3.2, there is no observed data for several grid cells.
Therefore the closest measurement station can be separated by as much as 91 km
from the grid cell centers.

Annual sums of precipitation of simulated observations

The annual sum of precipitation is a very robust statistic and can be matched well
by the simulated observations (Figure 3.20) as the majority of points lie close to the
bisecting line.

Figure 3.20: Mean annual sum of precipitation of simulated observa-
tions and nearest measurement station (1950-2005).
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Monthly sums of precipitation of simulated observations

The average monthly sums of precipitation were also reproduced rather accurately
by the simulated observations with a mean difference of 1.7 mm mon−1 to the nearest
observed monthly sum (Figure 3.21).
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Figure 3.21: Mean monthly sum of precipitation of simulated obser-
vations and nearest measurement station (1950-2005).

A map of the average difference of the simulated mean monthly precipitation to
the nearest observed value is given in Figure 3.22. The locations of the measurement
stations that were used for this comparison are marked as crosses.
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Figure 3.22: Difference of mean monthly sum of precipitation of sim-
ulated observations to nearest measurement station (1950-2005).
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Daily precipitation of simulated observations

The Quantile-Quantile-Plots of the simulated and observed daily precipitation in-
dicate that the data sets simulated from the exponential distribution are generally
similar to the observed distribution of the nearest station. Figure 3.23(a) shows the
simulated observations for Ougadougou, Burkina Faso. The QQ-Plots of some cells
indicate an underestimation of the extreme values. Figure 3.23(b) is an example of
one the worst fits for a cell in the north of Ghana. This region exhibits high extreme
values which the exponential distribution cannot reproduce accurately.
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Figure 3.23: QQ-Plot of simulated and observed daily precipitation
for Ouagadougou, Burkina Faso (a) and for a cell in the north of Ghana

(b) (1950-2005).
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3.5.4 Evaluation of the distribution of the regional climate models

The CDF of Fsim,hist was fitted to the daily positive precipitation amounts xRCM,hist of
the historical period 1950-2005 with a KDE-CDF. When the fit of a CDF is perfect,
the CDF values are uniformly distributed. A regular Quantile Mapping (subsection
3.1.2) was performed for the historical period and the mean monthly sums of the
bias corrected models of the historical period were calculated and plotted with the
nearest observed monthly sums (Figure 3.24). As the diagram looks nearly identical
to the comparison of the simulated and nearest observations (Figure 3.21), it can be
concluded that the KDE-CDF fits the RCM precipitation well.
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Figure 3.24: Mean monthly sum of precipitation of simulated obser-
vations and nearest measurement station (1950-2005).
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3.6 Evaluation of the projected climatology of the bias cor-
rected RCMs

A total of 48 models were bias corrected (Table A.2 in Appendix A). 5 models were
run for the RCP 2.6 scenario, 22 for RCP 4.5 and 21 for RCP 8.5. For an analysis of the
projected climatology, the future period was split up into the near future (2020-2050)
and the far future (2070-2100). The historical period was chosen as 1970-2000 so that
all periods are 30 years long.
The differences between the bias corrected historical and future climatology are
caused by a change in the distribution. Since the Dry Day Correction thresholds ϑ
can be very large (subsection 3.6.3), a change of its non-exceedance probability in
the future period introduces a change of the bias corrected distribution that cannot
be inferred from the raw simulations. Therefore the large number of uncertain low
precipitation amounts can have a huge influence on the simulations’ statistics. Sim-
ilar findings were reported by Polade et al. (2014) who separated the contribution of
changes in the number of wet days (> 1 mm d−1) from the changes in precipitation
amounts on wet days to the annual sum of the CMIP5 (Coupled Model Intercom-
parison Project Phase 5) ensemble. Between 40◦ S and 40◦ N, changes in the wet day
frequency contributed more than 50% to the change of annual precipitation.

3.6.1 Projected change of annual precipitation

The mean annual sum of precipitation is projected to change for all RCP scenarios
but the magnitude and sign of change depend on the given RCP scenario and the
geographical location. Figure 3.25 (a) is a violin plot of the difference of the annual
precipitation in the near future. The differences were averaged over all grid cells and
the spread of the violins relates to the different models in the ensemble. The median
change amounts to −10.6 mm a−1 for the RCP 2.6 scenario. For the scenarios RCP 4.5
and RCP 8.5, the median change is positive and stronger (28.3 mm a−1 for RCP 4.5
and 79.2 mm a−1 for RCP 8.5).
For the far future (2070-2100), similar differences were calculated (Figure 3.25 (b)). In
the RCP 2.6 scenario, a median decrease of −25.1 mm a−1 is expected. For the other
scenarios, the difference is again positive (41.8 mm a−1 for RCP 4.5 and 106.6 mm a−1

for RCP 8.5). In contrast to the near future, the spread is larger and more models
project very large differences of more than 400 mm a−1.
This does not necessarily indicate that more water will be available for crop culti-
vation because the globally rising temperature might lead to a higher evapotran-
spiration. Also, the annual cycle is projected to change slightly, so that the larger
available quantity of water precipitates later in the year. This is further discussed
in subsections 3.6.2 (Projected change of monthly precipitation) and 3.6.4 (Projected
change of onset of rainy season).
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(a)

(b)

Figure 3.25: Violin plot of change of future annual precipitation for
the three RCP scenarios in the near future 2020-2050 (a) and the far
future 2070-2100 (b) in comparison to the historical period 1970-2000.
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The location-specific average change of annual precipitation was calculated to
identify regions where the ensemble members show a strong climate change signal.
The amount of annual precipitation is generally projected to increase for most loca-
tions and RCP scenarios. In the RCP 2.6 scenario however, the annual totals decrease
for the northern regions by as much as −52 mm a−1 in the near future (Figure 3.26 (a)).
For the far future (b), the map looks similar and a decreased annual precipitation
amount is expected for the northern regions. In comparison to the near future, the
future is projected to be slightly drier.
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Figure 3.26: Absolute difference of annual precipitation in the near
future 2020-2050 (a) and far future 2070-2100 (b) in comparison to the

historical period (1970-2000) for RCP 2.6.
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The average difference of the annual sum of precipitation in the near future
(Figure 3.27 (a)) and far future (b) to the historical period is positive for the RCP 4.5
scenario. The increasing annual sums occur mainly in the southern regions as in the
RCP 2.6 scenario. Differences between the far and near future are very small.
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Figure 3.27: Absolute difference of annual precipitation in the near
future 2020-2050 (a) and far future 2070-2100 (b) in comparison to the

historical period (1970-2000) for RCP 4.5.
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The simulations of the RCP 8.5 exhibit the highest differences in comparison to
the historical period for the near future (Figure 3.28 (a)) and the far future (b). For
all cells, increased annual sums of precipitation were calculated. Also, the difference
of the far to the near future are larger than for the other RCP scenarios and for every
cell, the annual precipitation is projected to intensify.
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Figure 3.28: Absolute difference of annual precipitation in the near
future 2020-2050 (a) and far future 2070-2100 (b) in comparison to the

historical period (1970-2000) for RCP 8.5.
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3.6.2 Projected change of monthly precipitation

In general, the spread of the mean monthly sums of precipitation is reduced by the
bias correction method. The largest differences occur for the RCP 8.5 scenario and
therefore, the spread of the projected monthly sums is only shown for this scenario
(Figure 3.29). The mean monthly sums of the nearest observations stations are also
included for reference purposes. The corresponding plots for the other two scenarios
can be found in Appendix A (Figure A.1 and Figure A.2).

Figure 3.29: Mean monthly sum of precipitation averaged over 173
grid cells - bias-corrected RCP 8.5 scenario - a: near future (2020-2050),

b: far future (2070-2100).

The majority of the models project increasing mean monthly sums for the RCP
8.5 scenario when compared with the historical period 1970-2000 (Figure 3.30). As
the ensemble spread is very large, there exist models however which project lower
mean monthly sums for the near and far future.
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Figure 3.30: Difference of mean monthly sums of precipitation in the
bias corrected RCP 8.5 scenario in the near future 2020-2050 (a) and
the far future 2070-2100 (b) compared to historical period (1970-2000).



64 Chapter 3. Geostatistical bias correction of RCM precipitation

3.6.3 Projected change of daily precipitation

The distribution of precipitation in the future generally differs from the historical
period. The Double Quantile Mapping calculates the CDF values of the future period
according to the CDF corresponding to the historical period (Equation (3.5)) to ac-
count for the different climatic conditions projected for the future. Therefore, a shift
in the distribution of the CDF values occurs and they are not uniformly distributed
in the future period. A comparison of the bias corrected future and historical time
series in June (Figure 3.31) shows how the large values are projected to increase for
the model cell that was presented before (Figure 3.15).
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Figure 3.31: QQ-Plot of bias corrected historical (1950-2005) and future
(2006-2100, RCP 8.5) precipitation intensities in June for one cell.

The Dry Day Correction method also leads to a difference of the bias corrected
historical and future distributions. The assumption is that the threshold ϑ remains
constant for the future period. For the presented model, location and season, the ob-
served precipitation probability is pw = 28.1% with corresponding ϑ = 4.38 mm d−1.
Applying this ϑ to the future period changes pw to 29.2%. Thus, the precipitation
probability is slightly higher in the bias corrected RCP 8.5 time series even though
the wet day probability (≥ 0 mm d−1) in the uncorrected future period is lower than
in the uncorrected historical period (Figure 3.14). This is caused by more values
exceeding the threshold ϑ in the future period. It can be seen that the future CDF
in Figure 3.14 intersects the historical CDF at around 1 mm d−1. A change of the
occurrence of these uncertain low values cannot always be utilized to estimate a
trend. Therefore, ϑ was assumed to remain constant for the future period as in
Pierce et al. (2015). Estimating a trend of the precipitation probability pw in the raw
RCM simulations to adjust this threshold for future conditions is not always feasible
as there might be no discernible trend because an RCM might have no zeros at all
(e.g. the Hirham-EC-EARTH model). In such a case, pw is 100% for the historical
and future period and a change in pw cannot be estimated. Calculating ϑ for the
historical period and assuming its validity for future conditions did lead to the most
stable results. Because of the strong bias of most GCM-RCM combinations, very
high thresholds (ϑ > 15 mm d−1) were necessary for certain months and locations.
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3.6.4 Projected change of onset of rainy season

A Fuzzy Rule-based methodology (Zadeh, 1965) to define the onset time of the rainy
season has been developed by Laux (2009). To assess how the climatology is projected
to change after the bias correction, the time series of daily intensities were analyzed
with the Fuzzy Method 2 developed by Laux (2009). This method calculates the onset
of the rainy season based on two criteria: The first fuzzy membership function
µF,1 evaluates the amount of precipitation that has fallen in a period of five days
with a triangular function that increases from 0 to 1 over the support {18 mm

5d , 25 mm
5d }.

The second function µF,2 counts the number of wet days in this 5 days period and
evaluates the membership with another triangular function with a support of {1, 3},
so a single wet value will lead to µF,2 = 0. The combined fuzzy rule response is then
calculated as the product of µF,1 and µF,2. The first day of the year (DOYon) which
fulfills µF,1µF,2 ≥ 0.42/3 defines the onset of the rainy season.

The DOYon was calculated for all bias-corrected models for the individual grid
cells. As an example, a map of DOYon is given for the model with the best perfor-
mance in the historical period (Figure 3.32). The general structure is well met by this
bias corrected time series. In the southern parts, the rainy season starts earlier in
the year (approximately in mid-April) as the monsoon rain belt moves from south to
north. In the northern parts, the Fuzzy Rule estimates the rainy season to start about
two months later.
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Figure 3.32: Map of observed (circles) and bias corrected (squares)
DOYon of the best model in the historical period 1970-2000.

To investigate if the rainy season is projected to start earlier or later in the future,
the areal mean difference ∆DOY = DOYon, f ut −DOYon,hist was calculated for all mod-
els. The historical period covers the period 1970-2000 and the future was split up
into the near future 2020-2050 and far future 2070-2100. The areal mean difference
∆DOY of each model and RCP scenario as well as the average over all models of a
certain RCP scenario are given in the violin plot in Figure 3.33.
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Figure 3.33: Violin plots of ∆DOY of the bias corrected near future 2020-
2050 (a) and far future 2070-2100 (b) in comparison to the historical

period 1970-2000.

Depending on the RCP scenario and future period, the rainy season is projected
to begin 0 to 8 days later in the future on average. While the average differences ∆DOY
of each RCP scenario are rather small, larger changes can be observed for individual
models (between 10 days earlier and 41 days later). The different spreads of the
violins is partially related to the number of available models in the different RCP
scenarios (5 for RCP 2.6, 22 for RCP 4.5 and 21 for RCP 8.5). As the temperature and
solar radiation is most likely increasing in the future, the fuzzy rule µF,1 may need
to be changed to take the higher potential evapotranspiration into consideration.
Therefore, optimal planting dates are expected to occur later in the year even though
the annual sum of precipitation is projected to increase (Figure 3.25). Maps of the
average ∆DOY can be found in Appendix A for the near (Figure A.3) and far (Figure
A.4) future.



3.7. Summary and outlook 67

3.7 Summary and outlook

A geostatistical technique to estimate the distribution functions of daily precipitation
of ungauged locations has been developed. The CDF parameters were kriged from
station locations and were utilized to generate so called "simulated observations" to
perform a Double Quantile Mapping of the precipitation time series of the CORDEX-
Africa ensemble for a study region in West Africa.
The Kriging procedure is flexible since it estimates the CDF parameters of ungauged
locations as a function of the distance to gauges. Different parametric CDF functions
can be selected for other regions and meteorological variables. Another possibility
to generate simulated observations would be to interpolate the quantiles of the ob-
served ECDF as in Mosthaf and Bárdossy (2017) and then fit a parametric function
to the interpolated quantiles. Alternatively, the CDF function, with which a daily
precipitation amount is bias corrected, could depend on atmospheric circulation pat-
terns and not on the month. All of these possible extensions depend on the available
data and subsequent applications however. If the observed distributions are very
skewed, higher-parametric CDFs might be necessary and thus more data is required
to ensure that the fitting results in a stable estimate of the true distribution. On the
other hand, the seasonality or the influence of circulation patterns might be dominant
and that would require splitting the data set into many small sub samples which in
turn impedes using a higher-parametric CDF or a quantile-based interpolation.
An analysis of the projected climate change after the bias correction revealed that
West Africa will most likely experience higher rainfall amounts in the period 2006-
2100. The onset of the rainy season however is not projected to change by a lot. If
more water will be available for crop cultivation cannot be inferred from the projected
precipitation time series. An analysis of several bias-corrected RCM simulations re-
vealed for example a projected temperature increase between 1 and 2 K in the Black
Volta basin for the near future 2019-2045 (Kwakye, 2016). Thus, increasing short wave
radiation or temperature (and consequentially higher evapotranspiration) may coun-
teract that higher precipitation amounts are expected in the future.
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Chapter 4

Copula-based spatial downscaling
of RCM precipitation1

This chapter describes a copula-based spatial downscaling model for RCM precipita-
tion fields. A high spatial resolution is especially important in regions with complex
orography and a high local variability of precipitation events. While the rather coarse
resolution of 0.44◦ of the CORDEX simulations presented in Chapter 3 is sufficient
to provide valuable local information in a comparatively flat region like West Africa,
a higher resolution is required for a region like Central Europe. Dynamically down-
scaled precipitation fields can provide fine scale information for subsequent models
and analyses but the computational demand is very high. Therefore, it would be
helpful to generate fine scale precipitation maps that resemble RCM simulations in
a faster way so that the fine scale RCM must not be run for the complete time period
of interest. To this end, a copula-based downscaling technique has been developed.
Nested daily RCM simulations for a region in Central Europe with the WRF model
in two different spatial resolutions (7 km and 42 km) served as a training set to derive
the statistics necessary to simulate fine scale precipitation values from the multivari-
ate Gaussian Copula. The model was calibrated with RCM simulations for the year
1971 and the evaluation was performed for the period 1972-2000. The evaluation
comprises the spatial correlation and statistical distributions of the simulated pre-
cipitation fields. Daily precipitation time series were analyzed by calculating Brier
Skill Scores and the skill of reproducing the occurrence and amount of precipitation.
An advantage of the developed model over deterministic downscaling techniques
is that ensembles of predictand fields are generated 200 times faster than with the
original fine scale RCM. Due to the generation of ensembles, the uncertainty that
is inherent to downscaling can be estimated. The method has the potential to be
used in other downscaling applications to generate ensembles of spatially correlated
predictands based on other predictors. As copulas treat the dependence structure
separately from the marginal distributions of the predictors and predictands, it is
possible to simulate meteorological variables from any desired distribution function.

4.1 Overview of downscaling techniques

Two different approaches to increase the spatial resolution of GCM simulations are
dynamical and statistical downscaling. Dynamical downscaling is performed with
regional climate models for a chosen region. Statistical downscaling estimates a fine
scale variable of interest (the so called predictand) based on the statistical dependence
to coarse scale variables (predictors).

1Most contents of this chapter have been published in Hydrological Processes (Lorenz et al., 2018).
In this chapter, additional analyses are presented.
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4.1.1 Dynamical downscaling

The advancement of processing power and more sophisticated physics schemes has
enabled running regional climate models with increasingly finer spatial and tem-
poral resolutions. The coarse scale information from a GCM is used as boundary
conditions of spatially refined, physically-based simulations of the processes in the
atmosphere. Further refinement can be accomplished by nesting even finer resolved
RCM domains into the dynamically downscaled region.
There are many recent developments of high-resolution dynamical downscaling
models which have shown to improve the simulated precipitation fields and distri-
bution functions when compared with coarser RCMs. For instance, Prein et al. (2015)
analyzed the added value of fine scale RCM simulations with a spatial resolution
below 4 km. Such high resolution models allow the physically based simulation
of convective precipitation which is usually parametrized in coarse RCMs. They
compared the performance of RCMs with a spatial resolution ranging from 0.5 km to
4 km to coarser RCM simulations and found an added value in the representation of
the diurnal cycle in summer and spatial patterns but not in the mean precipitation.
The development of increasingly higher resolved RCMs is an area of research where
new challenges have to be tackled at different scales (i.e. cloud parametrizations or
new physics schemes). It can thus be expected that dynamical simulations in high
spatial resolution will further improve in the future. Limiting factors are primarily
the required process time and the storage demands.

4.1.2 Statistical downscaling

Statistical downscaling is faster than dynamical downscaling because the computa-
tional demand is lower. Also, because the predictands are typically observed values
that are used for the calibration of the statistical downscaling model, the estimated
variables tend to follow the observed distribution. The shortcoming in comparison
to dynamical downscaling is that this method is not physically-based which compli-
cates the application for future scenarios. Also, statistically downscaled fields can be
too smooth in complex regions.
Many statistical downscaling techniques have been employed in the past to estimate
fine scale fields of meteorological variables based on atmospheric predictors (Wilby
and Wigley, 1997; Maraun et al., 2010; Yang et al., 2017). Depending on the chosen
model, the downscaling is either deterministic or stochastic. A deterministic model
produces a single realization of a predictand for a given set of predictors whereas a
stochastic downscaling model generates multiple realizations of the predictand. A
comparison of widely-used statistical downscaling techniques like multiple linear
regression (MLR) or positive coefficient regression applied to meteorological predic-
tor fields of a general circulation model was presented by Goly et al. (2014). Over the
past years, several stochastic downscaling methods have been developed. Gagnon
and Rousseau (2014) estimated the daily precipitation intensity of fine scale grid cells
(4 km, 8 km and 12 km) based on the surrounding eight coarse scale grid cells of an
RCM in a resolution of 45 km. The model incorporates anisotropy effects and wind
speed, wind direction and the convective available potential energy as covariates.
All fine scale cells at first obtain the value of their corresponding coarse scale cell.
These values are then updated successively according to the distribution parameters
that are expected based on the neighbors. Mehrotra and Sharma (2010) downscaled
precipitation fields of a GCM with a Markov model that simulates conditional on
atmospheric state variables, the past wetness state of each location and the fraction



4.1. Overview of downscaling techniques 71

of wet values over an area around each location. Allcroft and Glasbey (2003) showed
how spatially aggregated radar-based precipitation fields can be disaggregated back
to the original resolution by transforming precipitation to a Gaussian variable via
quadratic transformation. The starting point of their downscaling approach is the
coarse scale value uniformly distributed across all corresponding fine scale cells.
Those values are then updated with Gibbs Sampling (Geman & Geman, 1984). Fine
scale precipitation is simulated as a Gaussian Markov Random Field that is condi-
tioned on spatial and temporal neighbors until the fine scale values within a coarse
cell agree to a prescribed threshold with the higher aggregated value. Volosciuk et al.
(2017) developed a methodology to bias correct and downscale RCM simulations
of precipitation. A gridded observation data set was used to correct the bias of the
RCM fields and the downscaling to the station scale was achieved by estimating the
fine scale distribution parameters with a vector generalized linear model.

In contrast to standard methods like multivariate regression, copulas model the
dependence of a set of variables separately from the univariate distribution of the
variables. Additionally, ensembles of an unknown variable can be simulated con-
ditionally on predictors. A method based on bivariate copulas that generates real-
izations of fine scale precipitation conditional on a coarser precipitation value was
presented by van den Berg et al. (2011). Their model was developed with radar-derived
rain fields that were aggregated to a coarser spatial resolution. The simulated fine
scale precipitation values are distributed randomly over the domain covered by
each coarse scale cell. The methodology has also been adapted to simulate soil
moisture values conditioned on satellite-derived observations in a coarser resolution
(Verhoest et al., 2015). Bivariate copulas have also been used to simulate ensembles
of station-scale precipitation intensities based on radar fields (Vogl et al., 2012) and
RCM simulations (Mao et al., 2015). Bias-corrected time series were attained by av-
eraging the ensemble of realizations from the conditional distribution. Ben Alaya
et al. (2014) developed a probabilistic regression model to estimate the parameters of
the conditional distributions of minimum and maximum temperature, precipitation
amount and occurrence at the station scale based on atmospheric predictors. The
model was coupled with the Gaussian Copula to introduce spatial correlation of the
predictands. The Random Mixing method presented by Bárdossy and Hörning (2015)
generates spatial fields that are in accordance with linear and non-linear constraints
as a combination of independent random fields that are simulated with the Gaussian
copula. This method was applied by Haese et al. (2017) to simulate precipitation fields
that are in accordance with rain gauge measurements and path-averaged rain rates
of commercial microwave links.

Fine scale RCM precipitation shows an added value in comparison to coarse scale
RCM precipitation which makes it an attractive predictand. Dynamically down-
scaled fine scale precipitation shows a high correlation to coarse scale precipitation
and therefore coarse scale precipitation is a valuable predictor for fine scale pre-
cipitation. However, as it will be shown in the following, the relation is uncertain
and large differences in the amount of precipitated water can be found for different
sub-regions. The uncertain relation between coarse and fine scale RCM precipitation
amounts is a property that cannot be replicated with techniques like interpolation,
multiplicative random cascades (e.g. Rupp et al., 2012) or the methods by van den Berg
et al. (2011) and Bárdossy and Hörning (2015). Thus, a stochastic simulation technique
is required to address this variability while respecting the spatial correlation of the
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estimated fine scale precipitation fields. The application of copulas for spatial down-
scaling is not very common, even though copulas offer a lot of flexibility for treating
differently distributed variables, and therefore a copula-based model was sought.
Also, downscaling with only one variable and staying within the realm of a single
RCM in different resolutions is rarely done despite the steadily improving quality of
fine scale RCM simulations.

4.2 Study region and RCM precipitation data

In this section, daily RCM precipitation in two different spatial resolutions for a
domain that encompasses the majority of Germany, Austria and Switzerland and
their surrounding countries, are presented. The daily precipitation simulations were
performed by Berg et al. (2012) with WRF for the time period 1971 to 2000. The
RCM was driven by 6-hourly ERA40-reanalysis data (Uppala et al., 2005) for a coarse
domain in a spatial resolution of 42 km (124 x 116 cells) and a fine scale domain
in a spatial resolution of 7 km (174 x 174 cells). Figure 4.1 shows the total annual
precipitation amount of the year 1971 for the coarse (a) and fine (b) RCM in the study
area.

Figure 4.1: Total annual precipitation of the coarse scale (42 km, a)
and the fine scale (7 km, b) RCM in the calibration year 1971.

Both model configurations led to nearly identical mean annual sums for this year
(870.3 mm a−1 in the 42 km simulations and 902.5 mm a−1 in the 7 km simulations) but
the fine scale simulations exhibit higher annual sums and more variation in many
regions, e.g. in the Harz Mountains in Central Germany, the Black Forest in Germany,
the Vosges and Jura Mountains in France and the Alpine region.

While the annual totals are similar, larger differences exist in the daily precipita-
tion fields. The dynamical simulation of fine scale precipitation is not driven by the
coarse scale RCM’s precipitation but its state variables in the atmosphere. Precipi-
tation is an output variable of the RCM and therefore, the coarse scale precipitation
has no influence on the precipitation of the fine scale simulations. Nevertheless, it is
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reasonable to assume a statistical dependence between the precipitation amount in
a coarse scale RCM’s cell and its corresponding fine scale RCM cells’ values. Figure
4.2 shows that there is a strong similarity of the daily precipitation patterns of the
coarse (a) and fine (b) scale RCM for a heavy precipitation event on November 17,
1972.

Figure 4.2: Example of daily precipitation patterns of the coarse scale
(a) and fine scale RCM simulations (b) for a heavy precipitation event

on November 17, 1972.

The main patterns of the precipitation fields are similar but large differences be-
tween the fine and coarse simulations can occur as well. One such case can be seen
in Figure 4.2 in the northwest. While several coarse cells are wet, there are mostly
zero precipitation amounts in the fine scale field. The opposite case can be seen
in south-west Germany where the amounts in the fine scale simulations are much
higher.

To demonstrate these differences of the RCM simulations, the daily precipitation
amounts in the calibration year 1971 of the coarse scale simulations and the aver-
age precipitation of the corresponding 36 fine scale cells are shown in Figure 4.3.
While there is a positive dependence between the coarse and fine scale precipitation
amounts, there are also cases where one amount is very low and the other one is
rather high. The relation between coarse and fine scale precipitation is therefore
uncertain.
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Figure 4.3: Scatter plot of daily precipitation of the coarse cells (x-axis)
against average daily precipitation of the fine scale sub-fields (y-axis)

in the calibration year 1971 for the complete study region.

4.3 Development of a stochastic copula-based downscaling
model

Since a high amount in the coarse scale field can lead to high and low fine scale
amounts and vice versa, the prediction of fine scale precipitation from coarse scale
precipitation is uncertain. Therefore, a stochastic model that generates ensembles of
fine scale precipitation fields is required to address the uncertainty of the dynamical
downscaling with a stochastic method. The need for stochastic downscaling meth-
ods has also been stated by Maraun (2016). If the fine scale RCM can only be run for
a short time period, the calibration of a downscaling is based on this limited time
period which calls for a parsimonious and robust model. That fine scale fields are
only available for a shorter period than coarse scale fields is a common problem in
hydrology. One such case would be that the fine scale fields stem from a compar-
atively short measurement period (e.g. a recently set-up radar that has only been
operational for one year) and that longer time series are only available for coarser
observations (e.g. satellite data that has been recorded over several years). The chal-
lenge is to stochastically generate ensembles of fine scale precipitation fields which
respect the spatial correlation structure and the inherent variability of the dynami-
cally downscaled precipitation fields with a parsimonious model.
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In this section, a novel copula-based downscaling model for the simulation en-
sembles of fine scale precipitation fields is presented. Precipitation is simulated for
the fine scale domain by conditioning the simulation of each fine scale value on
the surrounding coarse scale precipitation amounts with the Gaussian Copula (see
Chapter 2, section 2.5). To set up the copula density c, distribution functions F(x)
are required to transform precipitation x to CDF values u. The Gaussian copula is
defined by a correlation matrix Γ. Fitting a parametric correlogram model ρ̂ allows
setting up the correlation matrix Γ of an arbitrary set of points in space that either
belong to the coarse or the fine scale domain. The correlograms were calculated for
both scales. Due to a copula-based simulation of predictand fields, an ensemble of
possible realizations is obtained which allows an estimation of the uncertainty of
downscaling meteorological variables. Contrary to other downscaling techniques,
the transfer function of predictors and predictands is not fitted for each location
separately because the correlation matrices of sets of points are estimated based on
the separation distance. The method was developed with RCM simulations as in
Gaitan et al. (2014) and Chen et al. (2013), but it can be adapted to real observations of
other meteorological variables. A summarizing flow chart of the simulation process
is given in Figure 4.4.

Legend

Coarse scale RCM
precipitation

Transform precipitation to CDF values
via truncated coarse scale CDF

Coarse scale RCM CDF
values

Locations of fine scale
RCM cells

Transform CDF values to precipitation
via truncated fine scale CDF

n fine scale precipitation
fields

Input /
Output

Process

Estimate correlation matrix R of fine
scale domain with exponential

correlogram function

Generate correlated random numbers
w from decomposed matrix R

Simulate n fine scale CDF values
conditional on m closest coarse scale

RCM CDF values

Figure 4.4: Flowchart of the simulation of fine scale precipitation
fields.
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The CDF value of fine scale precipitation u1 was simulated conditionally on the
precipitation amounts of m = n − 1 = 4 coarse scale neighbors (u2, ..., un). The con-
ditional distribution from which fine scale precipitation was simulated was obtained
from the Gaussian Copula density c(u1, ..., un) of the unknown fine scale point and
the coarse conditioning values.

c(u1, ..., un) =
1

n∏
i=1
φ(Φ−1(ui))

1

(2Π)
n
2
√

det(Γ)
e−0.5(Φ−1(u)T(Γ−1

−I)Φ−1(u)) (4.1)

The Gaussian copula was chosen because it can deal with any number of condi-
tioning values allowing for smooth fine-scale precipitation fields that exhibit spatial
correlation similar to the original RCM fields.
The unknown correlation matrix Γ was modeled with two correlogram models. A
correlogram model ρ̂cc was fitted to the empirical correlation coefficients in different
separation distances ρ∗cc of the coarse RCM precipitation fields. Likewise, a correlo-
gram model ρ̂ f c was built to estimate the correlation between fine scale and coarse
scale precipitation values in a certain separation distance.

From the copula density c(u1, ..., un), the conditional PDF fc(u1|u2, ..., un)was built
and integrated to the conditional CDF Fc. A fine scale CDF value u1 was simulated
by inverting this conditional CDF with a uniformly distributed random number w.
In a last step, u1 is transformed to precipitation with its CDF F(x).

u1 = F−1
c (w), w ∼ U(0, 1). (4.2)

The random numbers w were simulated from a generating correlation matrix R
because independent random numbers were found to lead to an underestimation of
the fine scale correlation of the downscaled fields. To generate spatially-correlated w
fields, a Cholesky decomposition of R into the triangular matrix L was performed. R
was calculated with the correlogram model ρ̂ f f of fine scale precipitation to ensure
that R is positive-definite.

R = LLT. (4.3)

Independent uniformly distributed random numbers u ∼ U(0, 1) for all fine cells in
the complete domain were recorrelated via the triangular matrix L to obtain 50 w
fields for the fine scale domain. With these 50 fields, 50 precipitation fields were
simulated for each day to address the uncertainty of the downscaling process.

w = Φ(LΦ−1(u)) (4.4)

Wilks (1999) simulated the rainfall amounts on wet days from a parametric CDF
with spatially-correlated random numbers. In this case, w were used to invert the
conditional distribution to obtain CDF values.
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The conditioning process is illustrated in Figure 4.5. For the blue fine scale cell on
the left, the conditional distribution Fc(ul|0.90, 0.85, 0.98, 0.95) is calculated to obtain
CDF realizations ul. For the orange cell on the right, the conditional distribution is
Fc(ur|0.90, 0.85, 0.70, 0.75).
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Figure 4.5: Artificial example of the conditioning of two fine scale
value with the four closest coarse scale values.

It is expected that a realization from the conditional distribution Fc of the blue cell
will be larger because its conditioning values are larger. This is illustrated in Figure
4.6. The same random number w = 0.5 leads to a higher CDF value u1 for the left
cell. By conditioning on four coarse scale neighbors, the general spatial pattern of
the coarse scale field is taken into account, whereas conditioning on only the closest
neighbor (uc = 0.90) would result in identical conditional CDFs for the two fine cells.

Figure 4.6: Conditional CDF of the two fine scale cells given their four
conditioning values in the artificial example.



78 Chapter 4. Copula-based spatial downscaling of RCM precipitation

4.4 Calibration of the stochastic copula-based downscaling
model

The calibration was carried out for the year 1971 even though fine scale RCM simula-
tions were available for the period 1971-2000. With the derived statistics, stochastic
simulations for the evaluation period 1972 to 2000 were performed. This approach
was chosen because the method was developed to provide a surrogate for fine scale
RCM precipitation which can only be simulated for a limited time period.

Fitting the stochastic model consists of four subsequent steps:

1. Estimating the parameters of cumulative distribution functions (CDFs) F(x)
for all fine and coarse scale cells,

2. Transforming precipitation amounts via the fitted CDFs to ranks u = F−1(x),

3. Calculating empirical correlograms ρ∗ using the CDF values u of precipitation
for pairs of points of different separation distances, and

4. Fitting parametric correlogram functions ρ̂ to the empirical correlograms ρ∗ in
order to obtain estimates of the correlation matrix of arbitrary sets of points in
space.

4.4.1 Distribution functions

Following the approach by Bárdossy and Pegram (2012), the precipitation values were
separated into one branch for dry values which obtain half the dry probability p0
and one branch for positive values which were fitted with a CDF F(x). This makes it
possible to transform dry and wet values x to CDF values u with a single truncated
distribution.

u(x) =
{ p0

2 if x = 0
p0 + (1− p0)F(x) if x > 0

(4.5)

A parametric distribution function F(x) was selected by calculating the BIC (see
Chapter 2, 2.2.3) of nine CDF functions. Table 4.1 shows the average BIC values of
the tested distribution functions.

Distribution function RCM 7 km RCM 42 km
Exponential 1093.5 1129.0
Gamma 979.9 997.2
Generalized Extreme Value 1914.6 3641.8
Generalized Pareto 1007.9 1046.4
Logistic 1441.8 1490.6
Log-Logistic 997.1 1031.2
Log-Normal 996.8 1034.8
Rayleigh 2042.5 2121.0
Weibull 972.3 994.3

Table 4.1: Average BIC-value of nine tested parametric distribution
functions in the calibration period 1971.
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While the Weibull distribution resulted in slightly lower BIC-values than the
Gamma distribution, the Gamma distribution was selected as F(x) because a scaling
relation was employed to estimate the CDF parameters of the 30 year long time series
based on the parameters of the calibration period. In van den Berg et al. (2011) the
relation of the scale parameter to a change of the spatial scale was used to estimate the
scale parameter of fine scale cells. The Gamma distribution is a common choice for
modeling daily precipitation amounts and has been used in other studies to model
daily precipitation intensities of RCM simulations (Piani et al., 2010; Tschöke et al.,
2017; Wetterhall et al., 2012). Other distribution functions can be used for other mete-
orological variables because copulas are flexible and can use different CDF functions
as they measure the dependence of several variables separately from the univariate
marginal distributions.

The Gamma distribution uses the gamma function Γ and is defined by a shape
parameter k and a scale parameter θ. Its probability density function (PDF) f (x) is
defined as:

f (x) =
1

Γ(k)θk
xk−1e−

x
θ . (4.6)

Analyses by Prein et al. (2013) of WRF simulations in spatial resolutions of 36 km,
12 km and 4 km showed that the finer resolved models capture the higher precipi-
tation intensities better. As the distribution of precipitation amounts is dependent
on the spatial resolution, separate parameter sets (k,θ) for the coarse and fine scale
values are necessary. As an example, the empirical CDF of precipitation amounts for
the location (6.49◦ E, 47.57◦ N) is shown in Figure 4.7. The fine scale precipitation is
characterized by a slightly higher dry probability and higher extremes.
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Figure 4.7: Empirical CDF of daily precipitation in the calibration
period (1971) of one coarse scale cell and its central fine scale cell.
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Under the given premises, the fine scale simulations were assumed to be only
available for a very short period (1971). Instead of fitting the CDF parameters of the
coarse and fine simulations to a 30 year long time series, an estimation of the fine-scale
CDF parameters of the truncated Gamma distribution (p0, k,θ) of the complete period
1971-2000 was necessary. The dry probability p0 was calculated for each coarse and
fine scale cell using the precipitation information from the calibration period 1971.
In addition, the parameters k and θ were calculated for the calibration period 1971
by fitting the Gamma distribution to the positive precipitation amounts. For the
complete period, stationarity of the dry probability p0 and the shape parameter k
was assumed. The scale parameter θ of the Gamma distribution was fitted to the
coarse scale precipitation amounts of the complete period. On average, θ increased
by 15% if 30 years were considered instead of only one year (Figure 4.8 (a)). The
scaling behavior of the fine scale simulations was then assumed to be identical to the
coarse scale simulations. In the present case, this assumption can be investigated:
the scale parameter of the fine scale simulations increased by 18% (Figure 4.8 (b))
which is similar to the coarse scale simulations’ scaling behavior.
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Figure 4.8: Scaling behavior of θwith a fixed shape parameter k from
the 1-year calibration period to the complete 30-year period for the

coarse scale (a) and fine scale RCM precipitation amounts (b).

The scaling assumption may not hold in some cases but in order to downscale a
time series of coarse meteorological fields that is longer than the observation period
of the fine scale domain, an estimation of the CDF of the longer period is necessary.
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4.4.2 Spatial correlograms

The empirical correlation ρ∗ of precipitation was calculated for ten separation dis-
tances h to estimate a correlogram model ρ̂with Equation 2.30 as presented in Chapter
2, subsection 2.3. Precipitation time series were transformed to vectors of CDF values
u and v with Equation 4.5.
An exponential correlogram model ρ̂(h) with parameters r0 and λ was fitted to the
ten value pairs of the empirical correlogram by minimizing the squared differences
between ρ̂ and ρ∗:

ρ̂(h) = r0e−λh. (4.7)

The parameter r0 is the correlation for a separation distance of 0, while λ describes
how fast the correlation decays over distance. With this estimator of the correlation
as a function of the separation distance, it is possible to estimate the correlation ma-
trix of points that are separated by arbitrary distances.

The stochastic downscaling model requires correlation matrices Γ for point sets
with points from the coarse and fine scale simulations. A separate consideration of
pairs of values coming from different scales (coarse-coarse ρ̂cc, fine-coarse ρ̂ f c and
fine-fine ρ̂ f f ) is necessary because values from the same scale exhibit higher spatial
correlation. This effect is due to the fine scale precipitation being an output variable
of the RCM. Thus, the fine scale values are not directly governed by the coarse scale
values even though there is correlation present.
This behavior can be seen in Figure 4.9. The correlation of fine scale values and
coarse scale values with grid cell centers close to one another amounts to only about
0.83 (a), while the correlation for small separation distances converges towards 1 for
fine scale values (b).
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coarse scale RCM (a) and fine scale RCM to fine scale RCM (b).
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The CDF values of precipitation were obtained via the truncated Gamma distri-
bution. This approach is sometimes referred to as ’inference from margins’ (IFM).
Alternatively, the empirical ranks (’pseudo-observations’) could be employed. The
suitability of the IFM-method is discussed in Genest and Favre (2007) and it is stated
that it depends on the goodness of fit of the parametric CDF. A calculation of the
correlation coefficients ρ∗(h) with empirical ranks led to nearly identical values (not
shown). As the proposed method utilizes a parametric CDF for the simulation, the
IFM-method was employed.
Since daily precipitation exhibits temporal correlation, the influence of this auto-
correlation on the spatial correlograms was analyzed. The auto-correlation of daily
precipitation has decayed to zero after 10 days and the spatial correlation coefficients
ρ∗(h) were calculated from a reduced subset of the complete sample by only using
every tenth day. The resulting correlograms closely match the ones obtained from
using the complete sample and therefore the complete sample was used to calibrate
the model.

4.5 Evaluation of downscaled precipitation

As the coarse cells were downscaled stochastically, every simulated precipitation
field is different even though the coarse scale values remained constant. Therefore,
a statistical comparison is necessary to investigate the general behavior of the simu-
lated fields. In order to assess how well the stochastic simulation technique is able
to reproduce the physical fine scale simulations, the spatial correlations and distri-
bution functions of the stochastic simulations were investigated. In addition, the
simulation technique was evaluated by calculating the ratio of correctly simulated
wet and dry days, the explained variance of the amounts and Brier skill scores for
ten thresholds. Additionally, different alternative model structures were employed
to demonstrate the influence of model components.

4.5.1 Daily precipitation fields

A visual comparison of the generated precipitation fields for the day already shown
in Figure 4.2 is given to illustrate some of the general characteristics (Figure 4.10).
The areal mean precipitation of the downscaled region amounts to 9.24 mm d−1 in
the coarse scale simulation (a) and 10.27 mm d−1 in the fine scale simulation (b). The
areal mean of the 50 stochastic realizations was calculated and the ensemble member
with median areal mean precipitation (9.94 mm d−1) is shown in panel (c) to illus-
trate the general tendency of the stochastic simulations. To put the performance into
perspective, the coarse scale precipitation fields were interpolated to the fine scale
domain with Inverse Distance Weighting (IDW) from the four closest coarse scale
cells (d). This interpolated field is too smooth and the precipitation amounts can only
lie between the minimum and maximum of the coarse scale field. The copula-based
technique on the other hand utilizes the fine scale CDF to simulate precipitation and
larger values can be generated. In the presented case, the predictor and predictand
variables are both precipitation. With copulas, meteorological variables with differ-
ent distributions can be utilized easily since the dependence is modeled separately
from the distribution functions.
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Figure 4.10: Precipitation on November 17, 1972 - Original coarse
scale RCM (a), original fine scale RCM (b), stochastic simulation with
median areal mean precipitation (c) and IDW interpolation of coarse

scale precipitation (d).
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The stochastic downscaling produces an ensemble of different realizations from a
constant predictor field to address the uncertainty of the prediction shown in Figure
4.3. Figure 4.11 (a) shows the difference between the 90%-Quantile and the 10%-
Quantile of each fine scale cell to demonstrate the spread of the ensemble. In Figure
4.11 (b), the mean difference of all ensemble members to the fine scale RCM field of
this day is shown.

Figure 4.11: Stochastically simulated precipitation for November 17,
1972 - Spread of 10% and 90%-quantiles of stochastic simulations (a),
mean difference of fine scale RCM precipitation field and stochastic

simulations (b).

The differences are caused by the conditioning values, the estimated distribution
functions and geographical effects. The coarse scale simulations serve as the only
predictor. Because there is a positive precipitation amount in the northwest over the
North Sea, the downscaling technique tends to generate positive amounts for this
region as well. In the fine scale simulations this region is dry however. The largest
differences can be seen in the region around Luxembourg where the fine scale RCM
simulated high precipitation amounts.

In general, the stochastic precipitation fields show similarities to the RCM simula-
tions. In the RCM simulations, the fine scale precipitation amounts can differ greatly
from the coarse scale amounts (Figure 4.3) and this is reflected in the stochastic sim-
ulations. In the majority of other downscaling techniques, the statistical dependence
of a set of points in space is calculated for this specific set (i.e., the transfer function
between predictors and predictand for specific locations). In contrast, the presented
method models the dependence as a function of the separation distance. A feature
of the RCM simulations that cannot be captured exactly by an algorithm based on
geostatistical dependence is that clouds move along a certain trajectory and precip-
itation can thus exhibit anisotropic dependence in space and locally isolated high
amounts.
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4.5.2 Spatial correlation of stochastic simulations

An evaluation of the representation of the spatial dependence was performed by cal-
culating the correlograms of the dynamical and stochastic precipitation simulations
for the first year of the evaluation period 1972 (Figure 4.12). The stochastic simula-
tions’ correlation of the fine to the coarse scale is slightly underestimated compared
to the RCM simulations (a), whereas the fine scale correlation is overestimated (b).
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Figure 4.12: Correlograms of five stochastic ensemble members and
the dynamical simulations for the fine to coarse scale values (a) and

for the fine to fine scale values (b) in the year 1972.

This effect is due to a trade-off in the model structure. The maximum correlation
of fine and coarse scale precipitation amounts to 0.83 (Figure 4.9 (a)) for separation
distances close to zero. Thus, two neighboring fine scale cells can attain largely
differing amounts if the simulation is performed independently.
During the model development, other model structures were utilized. For instance,
an independent simulation of fine scale precipitation with only the closest coarse
scale CDF value as conditioning value like in van den Berg et al. (2011) was tested.
This approach resulted in noisy fine scale fields with visible jumps at the edges of
coarse scale cells. The fine scale correlogram dropped to approximately 0.73 for
adjacent cells with this approach (not shown). An extension to m = 4 conditioning
values improved the fine scale correlograms of the stochastic precipitation fields
slightly.
In order to strengthen the fine scale correlation of the predictands, the random
numbers w were simulated with a correlation matrix that was calculated from the
observed fine scale correlogram model. Further tuning of this generating matrix
could potentially be achieved by using the approach of Wilks (1999) or Brissette et al.
(2007), but as one correlogram is underestimated and the other one is overestimated,
further improvements may not be attainable in the presented case.
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4.5.3 Distribution of stochastic simulations

CDF-Parameters were estimated from fine and coarse scale simulations in the year
1971 and the CDF parameters of the evaluation period 1972-2000 were estimated
by multiplying θ by 1.15. Since fine scale RCM simulations are available for the
complete period, it was possible to investigate the influence of the calibration year.
The standardized anomalies of the total annual precipitation, the mean amount on
wet days and the rainfall probability are illustrated in Figure 4.13 for the coarse (a)
and fine (b) scale WRF simulations.
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Figure 4.13: Standardized anomalies of the total annual precipitation,
the mean amount on wet days and the rainfall probability for the

coarse (a) and fine (b) scale WRF simulations

The annual total of the calibration year 1971 was only slightly below the average.
The rainfall probability however was very high and the mean amount on wet days
was very low. The year 1982 exhibits low anomalies for both scales. To test the
robustness of the model, the downscaling model was also calibrated for the year
1982 and the remaining 29 years were downscaled.

The distribution of daily precipitation was evaluated by generating Quantile-
Quantile-Plots of the downscaled precipitation fields against the fine scale RCM
simulations. Because the simulated data set is very large (50 samples × 150 cells ×
150 cells× 10958 days result in 1.23 1010 values), each sample was sorted in ascending
order and 106 rank-equidistant values were extracted for each sample to make the
comparison manageable.
The QQ-Plot of the stochastic simulations with 1971 as the calibration year (Figure
4.14 a) shows that the distribution functions of the dynamical and stochastic fine
scale simulations are quite similar. However, the lower precipitation intensities
were overestimated and the extreme values were underestimated due to the fitted
parametric distribution but the majority of values lies relatively close to the bisecting
line. To investigate the influence of the calibration year on the stochastic simulations,
the calibration was performed with the less anomalous year 1982 but the QQ-Plot
does not differ by a lot (Figure 4.14 b).
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Figure 4.14: Quantile-Quantile-Plot of stochastic simulations with the
calibration year 1971 (a) and the calibration year 1982 (b). Crosses:
Average distribution of simulations, shaded area: spread of simulated

distributions.

The overestimation of the low values with the calibration year 1971 may be
related to the CDF parameter estimation technique because the expected value of a
gamma-distributed random variable is θk. As the mean of the wet day amount of
the calibration year was very low, the scaling factor became high which may have
contributed to the slightly stronger bias of the downscaled fields in comparison to the
simulations with the calibration year 1982. The underestimation of amounts above
200 mm d−1 is caused by the Gamma distribution. Volosciuk et al. (2017) pointed
out that very high precipitation intensities of the RCM cannot be modeled with the
Gamma distribution even though it was shown to perform better than most other
parametric CDFs (Table 4.1). Also, fitting a parametric distribution to heavy-tailed
distributed RCM precipitation is challenging in general (e.g. Gudmundsson et al.,
2012). Thus, it can be concluded that the model is robust and the influence of the
calibration year is not very high which indicates that the model can be used for the
application to fine scale simulations that are only available for a short period.
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4.5.4 Brier skill scores of daily stochastic simulations

The Brier skill score BSS (Wilks, 2011) was calculated for ten precipitation thresholds
(0 mm d−1, and nine quantiles of the dynamical simulations Q10, Q20, Q30, Q40, Q50,
Q60, Q70, Q80, Q90). The BSS is usually used in forecast verification to determine
the skill of a probabilistic forecast. Here it has been employed to measure how well
the stochastic downscaling can reproduce precipitation above or below a certain
threshold. Precipitation fields were transformed to binary indicator fields It. If the
precipitation on a day t is above a given threshold, It becomes 1 and 0 otherwise.
This calculation was performed for each grid cell and all nt time steps.
The Brier skill score BSS was calculated from the Brier scores of the stochastic simu-
lation BSsto and the Brier score of the RCM’s climatology BScl. For each day and grid
cell, the ratio psto,t of the 50 samples which exceed a certain threshold was calculated.
The Brier score of the stochastic simulations is given as:

BSsto =

∑nt
t=1(psto,t − It)2

nt
(4.8)

Likewise, the ratio ccl of days above a certain threshold in the complete time series
of the dynamical simulations was calculated for each grid cell.

BScl =

∑nt
t=1(ccl − It)2

nt
(4.9)

The BSS measures the skill of the stochastic simulations in comparison to the cli-
matology of the dynamical simulations for a given threshold. The BSS is defined
as:

BSS = 1−
BSsto

BScl
(4.10)

As an example, a map of the annual BSS with the median quantile Q50 ≈ 1.55 mm d−1

as threshold is shown in Figure 4.15.

Figure 4.15: Brier skill score of stochastic simulations for a threshold
of Q50 ≈ 1.55 mm d−1 in the period 1972-2000.
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A BSS of 1 indicates a perfect simulation and a BSS of 0 signifies that the stochastic
simulations are only as good as the climatology. Values below 0 indicate no skill.
The performance of the stochastic model differs depending on the chosen threshold
and the geographical location. In many regions, a high performance is obtained
with BSS values of more than 0.6. The best performance was attained in France and
Belgium with BSS values of approximately 0.7. Over the oceans, the performance
decreases (BSS ≈ 0.5) and in the Alpine region it is the worst with a minimum BSS
of 0.18. This behavior is due to the complexity of the precipitation formation in this
region and the different representation of physical processes and terrain elevation in
the dynamical simulations.

An overview of the performance for the ten different thresholds is given in the
violin plot in Figure 4.16. In general, a positive BSS was attained and the average
BSS amounts to 0.51. For a threshold of 0 mm d−1 and for the Q90 quantile, the
performance is slightly worse. The precipitation fields that were generated with the
IDW interpolation show a worse performance for all thresholds.

Figure 4.16: Violin plot of Brier skill scores of the proposed copula-
based method and IDW-fields for ten ascending quantile-based pre-

cipitation thresholds in the period 1972-2000.

That the performance of the copula-based downscaling is worse for the threshold
0 mm d−1 can be explained by the partially random generation of very low precipita-
tion intensities in RCMs (drizzle effect). For instance, Olsson et al. (2015) demonstrated
that the bias of sub-daily precipitation simulations increased with spatial resolution
and that it might be caused by the drizzle effect. Depending on the definition of a
wet time step, the bias even changed its sign in winter.
The performance for the higher intensities may be reduced because these intensities
are related to extreme events which can often exhibit anisotropic dependence (Niemi
et al., 2014). The correlation matrix however is modeled with an isotropic correlo-
gram function and thus two spatial conditioning points in the same distance from
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the target cell can have the same influence on the predictor even though one of the
points may be on the other side of a mountain range. The BSS for the Q90 threshold
is especially low in the Alpine Region where the precipitation amounts of the dy-
namical fine scale simulations exhibit large variation. Also, the Gamma distribution
resulted in an underestimation of the extreme values and the BSS is typically lower
for higher thresholds. Analyses of precipitation forecasts by Liechti et al. (2013) and
Bowler et al. (2006) also showed that the BSS decreased for larger thresholds.

4.5.5 Comparison of daily dynamical and stochastic simulations

The performance of the stochastically simulated precipitation fields was also eval-
uated by calculating the mean difference of daily precipitation. For the evaluation
period, the mean difference lies in the range of −1 to 1 mm d−1 for 78.3% of the
grid cells (Figure 4.17), even for many mountainous regions in Southern and East-
ern Germany. In the Alpine Region however, the differences are larger because the
downscaling method overestimated the daily precipitation amounts.

Figure 4.17: Mean difference of dynamical and stochastic daily pre-
cipitation (mean over 50 samples) - 1972-2000.
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As additional performance measures, the ratio of correctly simulated dry and
wet days and the correlation of wet day amounts were calculated to evaluate the
discrete-continuous character of the generated precipitation fields. The precipitation
amounts were considered as wet if they were larger than 1 mm d−1. For wet days,
the correlation of the amounts was squared to obtain the explained variance. These
performance measures were chosen because they were also utilized by Chen et al.
(2013) in a study with a similar objective but for another region. The results of this
analysis are given in Figure 4.18.

Figure 4.18: Performance of stochastic simulations - Reproduction
of dry days (a), reproduction of wet days (b), correlation of wet day
amounts (c) and explained variance of wet day amounts (d) - 1972-

2000.

Dry days were correctly simulated in 87.2% of the cases, with lower skill for
Alpine and maritime regions (a). Wet days were not simulated as well as dry days
(b) (71.4% correctly simulated wet days). The mean explained variance (squared
correlation) of wet day amounts is 25.2% (d). The worst performance can be seen
in regions with complex orography, i.e. the Alps, the Ore Mountains in the Czech
Republic and the Harz in Germany.
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4.6 Summary and outlook

A novel copula-based method to spatially downscale RCM precipitation fields has
been presented. The downscaling to the domain of the fine scale RCM simulations
was based on the corresponding coarse scale RCM precipitation simulations. No
auxiliary variables were used but only the precipitation amounts of the coarse scale
field served as predictors. The method has shown to reproduce the spatial depen-
dence of the original fine scale simulations well. The distribution parameters were
estimated from a short calibration period to mimic the common problem of limited
fine scale data availability in hydrological practice. Calibrating the model with a
different year did not alter the distribution of the simulations by a lot and in both
cases, extreme precipitation was underestimated. In general, RCM simulations of
precipitation exhibit a bias when compared with observed data and a bias correction
is necessary for further impact studies. This way, the stochastically generated precip-
itation fields can be regarded as a suitable surrogate for fine scale RCM simulations
because the spatial correlograms and distribution functions can be reproduced for
the most part even though the very high extreme values of RCM simulations were
not reproducible by the Gamma distribution. Running one year of the 7km-WRF
simulations required 48 CPUh on 96 nodes of a high performance cluster whereas
the presented stochastic algorithm takes approximately 24 CPUh on a single stan-
dard CPU to simulate 50 estimates of this time series based on the driving RCM in a
spatial resolution of 42 km. As the computation time is reduced by a factor of 200,
the stochastic method can be useful in the absence of computational power or time
to dynamically downscale precipitation.
A direct comparison of the daily precipitation amounts of the stochastic and dynam-
ical simulations has been conducted. Average Brier skill scores of 0.51 have been
attained. In comparison to the IDW interpolation, the skill scores are higher by 0.10 to
0.20 (42% on average) for all thresholds. Dry days were correctly simulated in 87.2%
of the cases and in 71.4% for wet days. The explained variance of wet day amounts
is 25.2%. These performance measures indicate that the copula-based downscaling
method performs rather well. Furthermore, the presented method is not limited
to model the dependence of precipitation in different spatial resolutions and can
be adapted to other downscaling problems as an alternative to e.g. MLR-methods.
Copula-based methods offer the advantage to be flexible as the marginal distribu-
tions are modeled separately from the spatial dependence. Therefore, predictors and
predictands that follow different distributions can be used. For instance, Yang et al.
(2017) found that near surface specific humidity from reanalysis data was the best
predictor for station-scale precipitation and mean temperature at 2 m height was the
best predictor for observed minimum and maximum daily temperature. In contrast
to most other downscaling techniques, this method estimates the dependence of
predictors and predictands based on the separation distance. Because it is not nec-
essary to fit an estimator function of the predictand for each location individually,
the downscaling can be performed for arbitrary target domains if the predictand’s
CDF is known or estimated. Additionally, not a single, deterministic result is ob-
tained but an ensemble of predictand fields which allows to address the uncertainty
of the downscaling process. In practice, a subset of the generated ensemble may
be employed if the computational demand of running an impact model with the
full ensemble is too high. To ensure that the spread of the predictor field is large
enough to cover the range of uncertainty, the ensemble members may be evaluated
by calculating statistics like the mean areal precipitation and by selecting only a few
downscaled fields.
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Further investigations may be conducted with other simulated or observed predic-
tors and predictands which may require different distribution functions, anisotropic
or location-specific correlograms, non-symmetric copulas or model statistics related
to different seasons or atmospheric circulation patterns. Additionally, the model
could be employed to downscale climate variables for future conditions. In that
case, it would however be necessary to investigate if the transfer function that is
defined by the correlograms and the univariate distribution functions can be con-
sidered stationary. Hertig et al. (2016) investigated temporal change points in the
predictor-predictand relationship when downscaling daily precipitation from atmo-
spheric predictors with two statistical downscaling techniques and found that 40%
of all stations showed robust change points in the model parameters.
Another proposed extension of the method is related to spatial disaggregation, i.e.
when the fine scale sub-fields within one coarse scale are required to add up to the
value of the coarse scale value. By selecting the simulated field which deviates the
least from the coarse cells’ values and rescaling the sub-fields, the method could be
used to disaggregate e.g. satellite-derived observations to the domain of an observed
fine scale field.
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Chapter 5

Copula-based temporal
disaggregation of RCM
precipitation

This chapter presents a novel stochastic disaggregation procedure that increases the
temporal resolution of RCM precipitation time series. As in Chapter 3, a bias cor-
rection was necessary as a first step. While Chapter 4 presented a stochastic method
to increase the spatial resolution of RCM precipitation, this chapter focuses on tem-
poral disaggregation. Currently, it is not feasible to operate an RCM in a resolution
of 5 minutes for long time periods but such a high temporal resolution is required
for applications in urban hydrology like the design of a quickly responding sewage
system. Urban hydrology is also often confronted with the problem of missing spa-
tially distributed observations for long time periods. To meet the demands of impact
modelers, a model was developed to bias correct hourly RCM precipitation and
then disaggregate it to the required resolution of 5 minutes. The model was applied
to a small, orographically complex region around Freiburg im Breisgau, Germany.
The developed technique utilizes the Gaussian Copula to model the spatio-temporal
dependence structure of precipitation.

5.1 Overview of time series and disaggregation models

Precipitation time series can be simulated with statistical or stochastic approaches. At
first, an introduction to models that simulate time series independently of a higher-
aggregated value are presented. These models can be used as Weather Generators
to extend time series or to simulate time series at an ungauged location. Some of
these models have been adapted for disaggregation purposes and those extensions
are mentioned in the respective paragraphs.
Models mainly developed for the disaggregation of precipitation are treated after-
wards. The existing disaggregation methods can be classified into statistical or
stochastic methods. A stochastic disaggregation does not generate identical time
series for the same input twice, so an ensemble of precipitation realizations can be
generated. Another distinguishing feature of disaggregation techniques is how they
treat the spatial dependence structure of the disaggregated time series of different
points in space.

5.1.1 Time series models

Markov Chain models have been used frequently to estimate if a day is wet given
the condition of the previous day (Katz and Zheng, 1999). A first order Markov Chain
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simulates the unknown state (wet or dry) conditional on the last state (the preceding
time step) but higher orders are possible. Also, a further classification of the states
is possible to divide the wet state into different intensity classes or the waiting time
between tips of a tipping bucket respectively (Sørup et al., 2012).
Point process models simulate the arrival time of individual rain pulses with a
random duration and depth that are then summed to generate a time series of
rainfall intensity. Rodriguez-Iturbe et al. (1987) presented two widely-used point pro-
cess models, namely the Neyman-Scott-Rectangular-Pulse-Model (NSRP) and the
Bartlett-Lewis-Rectangular-Pulse-Model (BLRP). Hershenhorn and Woolhiser (1987)
developed a model to simulate the number of pulses conditional on the daily rainfall
and then subsequently modeled the duration and amount of the individual pulses.
While these models have been used to simulate very finely resolved time series and
disaggregate to resolutions up to 1 minute (Kossieris et al., 2016), the parameter fitting
for a NSRP-model or BLRP-model is not straightforward as the required parameters
are not directly observable. Nevertheless, there are still comparatively new publica-
tions like the one by Evin and Favre (2008) who modeled the dependence of depth
and duration with copulas or Tarpanelli et al. (2012) who have extended the single-site
NSRP model to simulate spatially-correlated time series. An extensive description
of different point process models can be found in Beck (2013).
Bárdossy (1998) simulated precipitation values from a univariate distribution func-
tion and distributed them randomly in time over one year. Afterwards, the temporal
sequence was rearranged with Simulated Annealing to optimize the ACF, the statis-
tical moments on different aggregation levels and the ratio of the sum of different
time intervals to a prescribed total to respect the annual cycle. Brommundt (2008)
extended this model to include spatial correlation.
Another class of stochastic precipitation models are Alternating-Renewal-Models
(e.g. Haberlandt et al., 2008). They consist of an internal and an external structure.
The external structure models rainfall events: A time period is either a dry spell
period with a Weibull-distributed duration D or a wet spell period with a certain
intensity I and duration W. The dependence of I and W is modeled with the Frank
Copula. The internal structure is the profile model of wet spells, i.e. how the inten-
sity changes over the course of the wet spell. This is modeled with an exponential
function for the rise and decay. To introduce spatial dependence, the generated
events of single sites are resampled with Simulated Annealing with three optimiza-
tion criteria. An extended version (Callau Poduje and Haberlandt, 2017) models the
dependence of wet spell duration and amount with one copula and the dependence
of wet spell intensity and the maximum intensity within the wet spell with another
copula. Vernieuwe et al. (2015) proposed a copula-based model to simulate the pa-
rameters of the external structure, namely storm duration, volume, the dry period
and the fraction of dry values within a storm event with a mixture of Frank copulas.
The theoretical background of this multivariate dependence model is the concept of
Vine copulas (Joe, 1996; Aas et al., 2009) which model the joint probability sequentially
with bivariate copulas of pairs of CDF values. The internal structure of the model is
based on Huff Curves (Huff , 1967) to distribute rainfall intensities over the non-zero
time steps within the period of the simulated storm that sum up to the storm depth.
Wilks (1999) simulated precipitation for multiple sites simultaneously. In a first step
the occurrence of a wet day was simulated with a second order Markov Chain. A
day is wet if a random number is below the normalized transition probability to a
wet day. Spatial correlation was introduced by drawing this random number from
a multivariate Gaussian distribution whose correlation matrix is optimized in order
to reproduce the correlations of the observations. The intensity of wet days is then
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simulated from a mixed exponential distribution with the parameter depending on
the random number drawn for the occurrence model. This way, the simulated in-
tensities exhibit more spatial coherence than would be possible with a completely
random simulation from a distribution function of rainfall intensities. While the orig-
inal method by Wilks (1999) analyzed the relation of the correlation of the random
number for the occurrence model to the correlation of the observation and derived
the optimal correlation coefficients empirically, Brissette et al. (2007) optimized the
correlation matrix in an automated fashion.
Another model that generates spatially-correlated precipitation time series condi-
tional on the previous time step was presented by Serinaldi (2009). He used bivariate
Archimedean copulas to model the dependence of two consecutive wet values and
formulated a joint probability distribution as a mixture of the copula, univariate
distribution functions and the joint occurrence probabilities of two time steps that
are either wet or dry. From this equation, he derived a conditional distribution
and inverted it with spatially-correlated random numbers that reproduce the spatial
correlation of the observations.

5.1.2 Disaggregation techniques

Disaggregating observed data to a finer temporal scale has already been started sev-
eral decades ago. Yevjevich and Lane (1997, p. 421ff) gives an overview of the first
developed models and rates the model by Valencia and Schaake (1973) as the "first well-
accepted model". It was originally applied to the disaggregation of annual discharge
into monthly values and simulates monthly discharge based on the covariance to the
normalized annual discharge and a stochastic term.
Betson et al. (1980) presented a model called TVA-HYSIM to disaggregate monthly
precipitation into daily, hourly and even 5-minute values. They estimated the tran-
sition probability if a day is wet depending on the previous day as in a first state
Markov Chain model. For wet days, precipitation was simulated from a Weibull
distribution and the simulated monthly time series was multiplied by a factor to
preserve the monthly total.
In contrast to the aforementioned point process models, Random Cascade models are
a pure disaggregation technique and do not model time series of rainfall intensities
without a given higher aggregated value. Onof et al. (2005) presented such a model
for the disaggregation of hourly precipitation values to a resolution of 3.75 minutes
and compared their model to the STORMPAC disaggregation model developed by
Cowpertwait (1991). A Random Cascade typically disaggregates the precipitation in
a given time interval step-wise into two time intervals (in this case, 2 is the so called
branching number) of the same length and assigns each interval a cascade weight
that is multiplied with the coarser value. The weights are positive and sum up to 1
to ensure conservation of the precipitation amount. The model then proceeds until
the desired resolution is reached. Therefore the temporal resolution is not arbitrary
but a power of 2. Olsson (1998) also addressed this problem as he was using a fi-
nal resolution of 8 minutes which is neither a common time step of measurements
nor a number that can lead to common coarse scale resolutions like 60 minutes or
1440 minutes (daily resolution). There are, however, workarounds to overcome this
problem. Lisniak et al. (2013) used a branching number of 3 for the first cascade (24h
to 8h) and then the typical branching of 2 to obtain hourly precipitation intensities
which is a common temporal resolution. Müller and Haberlandt (2015) generated
spatially-correlated precipitation time series by resampling the disaggregated time
series of individual sites with Simulated Annealing. Thober et al. (2014) used cascades
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to disaggregate monthly into daily precipitation. The cascade weights were drawn
from a multivariate Gaussian distribution with a covariance matrix that is set up
with the observed covariance of the weights. Then, the weights are multiplied with
the coarse scale precipitation field to obtain a rainfall field.
Mascaro et al. (2013) applied a method developed earlier by Deidda et al. (1999) which
is based on the theory of multifractals. The model makes use of the scaling properties
of rainfall in space and time to disaggregate 6-hourly precipitation at a resolution
of 104x104km2 to a gridded data set with a resolution of 13 km and 45 minutes. A
comparison of disaggregation methods with point-process models, random cascades
and the method of fragments can be found in Pui et al. (2012).
Knoesen and Smithers (2009) have developed a disaggregation procedure of daily to
hourly rainfall for South Africa where a distinct diurnal cycle is observable. This
model is based on observed statistics of the fraction (sometimes also called frag-
ment in the literature) of each hour to the daily total. The distribution of the hour
of maximum precipitation is used to simulate the time of occurrence. To allow for
a clustering of the time series, the adjacent hours obtain a fraction that leads to a
good agreement of the fraction of the higher-aggregated (e.g. the average maximum
6-hourly rainfall fraction). Another method to disaggregate daily precipitation to
hourly values that follow the observed diurnal cycle was presented in Waichler and
Wigmosta (2003) where the authors used the average fraction of each hour’s value
to the daily total. Gyasi-Agyei (2012) used a copula to estimate the length of a storm
conditional on the total rainfall amount and disaggregated it with observed storm
profiles.
Oriani (2014) disaggregated rainfall by resampling the historical observations in a
random order. If the sum of a time slice is close enough to the value that needs to
be disaggregated, it is selected. Westra et al. (2013) resampled the observed rainfall
amounts in a resolution of 6 minutes based on similarity measures of atmospheric
variables to disaggregate daily precipitation amounts for projected future conditions
with a combination of a generalized additive model and the method of fragments.
Segond (2010) adapted the generalized linear model by Chandler and Wheater (2002)
to simulate the occurrence of daily gamma-distributed precipitation based on a set
of spatial and seasonal predictors for a single location which was coined "master
station". Hourly precipitation was simulated with the BLRP-Model and the most
suitable time slice was selected and multiplied by a factor such that the daily total
was maintained. The temporal distribution of the fractions of each hour to the daily
total was transfered from this master station to the other locations in the study area.
Koutsoyiannis et al. (2003) disaggregated daily to hourly precipitation. The model
simulates spatially-correlated time series with a multivariate autoregressive model.
A transformation function was developed to rescale the hourly time series such that
the daily total is matched while preserving the first two statistical moments.
Bárdossy and Pegram (2016) conditioned the simulation of hourly precipitation inten-
sities for locations where only daily measurements are available on the measured
daily amount and the hourly measurements of spatial neighbors. The chosen multi-
variate distribution is the Gaussian Copula and covariance in both time and space is
considered by formulating the total covariance as a product of spatial and temporal
covariance. Allard and Bourotte (2014) disaggregated daily precipitation values to
hourly values for two measurement stations in France. Zero and positive precipita-
tion was modeled as a truncated Gaussian variable and the auto correlation function
was fitted with MLM as described in Durban and Glasbey (2001). Hourly precipitation
was simulated from a bivariate Gaussian distribution conditioned on the previous
hourly value. A time slice of 24 simulated hourly precipitation was accepted if it
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agreed to a pre-defined threshold with the daily amount.
Allcroft and Glasbey (2003) showed how spatially aggregated radar-based precipi-
tation fields can be disaggregated back to the original resolution by transforming
precipitation to a Gaussian variable via quadratic transformation. The starting point
of the spatial downscaling is the coarse scale value uniformly distributed across all
corresponding fine scale cells. Those values are then updated with Gibbs Sampling.
Fine scale precipitation was simulated as a Gaussian Markov Random Field that was
conditioned on spatial and temporal neighbors until the fine scale values within a
coarse cell agreed to a prescribed threshold with the higher aggregated value.

5.2 Study region and data

The disaggregation model has been developed for a study region around the city of
Freiburg im Breisgau in the German federal state Baden-Würrtemberg with DWD
station data covering the period 1951-2013. 9 ungauged locations were selected to
perform a disaggregation of hourly precipitation to time series with a resolution of
5 minutes. The hourly precipitation time series were simulated with the regional
climate model WRF in a spatial resolution of 5 km for the period 1980-2009. A
description of the RCM simulations can be found in the technical report by Wagner
and Kunstmann (2016). Figure 5.1 shows the location of the nine target locations and
the 16 measurement stations that were used to calibrate the disaggregation model.

Observation Locations
Target Locations

Elevation (SRTM) [m]

0
1500

Legend

0 10 20 30 40 km

Figure 5.1: Location of the 16 measurement stations used for the
calibration of the disaggregation model and the 9 target locations
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5.3 Development of a copula-based disaggregation model

A regional climate model generates precipitation time series on a spatial grid. Since
rain gauges are irregularly distributed in space, a disaggregation model should offer
the possibility to estimate the model parameters for grid cells without observed data.
Many of the aforementioned methods disaggregate precipitation independently for
different locations. Introducing spatial correlation is one of the main problems, es-
pecially when no observed data is available for a target location.

NSRP and BLRP models are determined by non-observable parameters which
makes the estimation for ungauged locations difficult. Markov Chains require a lot
of data to calculate the transition probabilities and this can result in sparse tran-
sition matrices. The attainable temporal resolution of random cascade models is
determined by the branching number in each cascade step. For instance, in order to
disaggregate hourly values to a resolution of five minutes, the hourly value could
be disaggregated to two 30 minute values, then two 15 minute values and three 5
minute values. Alternatively, a branching number of 3 in the first step would lead
to 20 minute values which would then be disaggregated in two consecutive steps
with a branching number of 2. This leads to a rather complex model structure where
many different versions need to be evaluated. Also, the parameter estimation for
ungauged locations is not straightforward. Resampling or analogue methods require
long time series for all locations to sample from which impedes their applicability
for the presented case. Even if such data is available, there might not exist time slices
with sums similar to the higher-aggregated amount when disaggregating several
locations at once.

The advantage of copula-based methods is that the marginal distribution is
treated separately from the dependence structure. Therefore, the variable of in-
terest can be fitted with distribution functions in a separate step. The distribution
functions for precipitation are typically determined by two to four parameters, with
the rainfall probability being one of them. Precipitation in a fine temporal resolu-
tion like 5 minutes, exhibits auto correlation in time and cross correlation in space
which should be taken into account, so that subsequent impact models can be driven
by precipitation time series that reproduce this dependence structure. The model
presented in Serinaldi (2009), conditioned the simulation on only the previous time
step but it would be preferable to include more conditioning values for fine tem-
poral resolutions to more accurately model the temporal structure. The Gaussian
Copula can be used to simulate conditionally on several spatio-temporal neighbors
and it is determined by the correlation matrix which is easier interpretable than the
parameters of some of the aforementioned models. A method that disaggregates
the locations sequentially has been developed. Already disaggregated time slices
were used to condition the simulation of the current location. The proposed method
therefore has some similarities to the techniques presented in Bárdossy and Pegram
(2016) and Allcroft and Glasbey (2003).
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The disaggregation model presented in this section simulates spatio-temporally
correlated time series with the Gaussian Copula. The required statistics to set up the
model are:

1. Distribution parameters and dry probability to transform precipitation to CDF
values and vice versa,

2. A parametric function ρ̂A,τ to estimate the auto correlation of values separated
by a temporal lag τ for one location and

3. A parametric function ρ̂C,i j,τ to estimate the spatial cross correlation of two
points (i, j) with a temporal lag τ.

The disaggregation model simulates unknown CDF values u0 conditional on n
CDF values of preceding time steps of the same location (u0,τ1 , ..., u0,τn) and condi-
tional on the CDF values of m spatial neighbors of the same time step (u1,τ0 , ..., um,τ0).
The conditional PDF of the unknown CDF value u0 is:

fc(u0|u0,τ1 , ..., u0,τn , u1,τ0 , ..., um,τ0) =
c(u0, u0,τ1 , ..., u0,τn , u1,τ0 , ..., um,τ0)

c(u0,τ1 , ..., u0,τn , u1,τ0 , ..., um,τ0)
(5.1)

The constant denominator is dropped from the equation and the copula density
of the Gaussian copula is calculated to model c. The unknown and known CDF
values are denoted by u := (u0, u0,τ1 , ..., u0,τn , u1,τ0 , ..., um,τ0).

c(u) =
1

n+m+1∏
i=1

φ(Φ−1(ui))

1

(2Π)
n+m+1

2
√
|Γ|

e−0.5(Φ−1(u)T(Γ−1
−I)Φ−1(u)) (5.2)

The correlation matrix Γ is estimated with the correlogram models of the auto
correlation ρ̂A and spatial cross correlation ρ̂C:

Γ =



1 ρ̂A,τ1 ρ̂A,τ2 . . . ρ̂A,τn ρ̂C,01,τ0 ρ̂C,02,τ0 . . . ρ̂C,0m,τ0

ρ̂A,τ1 1 ρ̂A,τ1 . . . ρ̂A,τn−1 ρ̂C,01,τ1 ρ̂C,02,τ1 . . . ρ̂C,0m,τ1

ρ̂A,τ2 ρ̂A,τ1 1 . . . ρ̂A,τn−2 ρ̂C,01,τ2 ρ̂C,02,τ2 . . . ρ̂C,0m,τ2
...

...
...

. . .
...

...
...

...
...

ρ̂A,τn ρ̂A,τn−1 ρ̂A,τn−2 . . . 1 ρ̂C,01,τn ρ̂C,02,τn . . . ρ̂C,0m,τn

ρ̂C,01,τ0 ρ̂C,01,τ1 ρ̂C,01,τ2 . . . ρ̂C,01,τn 1 ρ̂C,12,τ0 . . . ρ̂C,1m,τ0

ρ̂C,02,τ0 ρ̂C,02,τ1 ρ̂C,02,τ2 . . . ρ̂C,02,τn ρ̂C,21,τ0 1 . . . ρ̂C,2m,τ0
...

...
... . . .

...
...

...
. . .

...
ρ̂C,0m,τ0 ρ̂C,0m,τ1 ρ̂C,03,τ2 . . . ρ̂C,0m,τn ρ̂C,m1,τ0 ρ̂C,m2,τ0 . . . 1


(5.3)

The unknown CDF value u0 is varied from 0 to 1 and the conditional PDF fc
is calculated for those values to obtain the complete conditional PDF. This function
is then numerically integrated and normed to obtain the CCDF Fc which is then
inverted with a uniformly distributed random number w to simulate a CDF value
u0.

u0 = F−1
c (w), w ∼ U(0, 1) (5.4)
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The simulated CDF value u0 is then transformed to precipitation via the truncated
CDF of the target location. As w is random, an ensemble of fine scale precipitation
time series xcand is simulated. Once the length of the simulated time series xcand in
the fine resolution equals the resolution of the precipitation amount xcoarse that is
being disaggregated (e.g. twelve 5-minute-values when hourly amounts are dis-
aggregated), all candidates xcand are evaluated. The rescaling factor frs = xcoarse∑

xcand
is

multiplied with each candidate time slice xcand, so that the sum of the rescaled can-
didate matches the coarse amount. The suitability of a candidate is evaluated by
the sum of differences to the power of 4 between the rescaled candidate and the
original candidate. The best-matching sample xsel, which minimizes the differences
to the power of 4, of all candidates xcand is selected. A power of 4 has been chosen to
penalize large deviations more strongly than e.g. absolute or squared differences.

xsel = arg min
xcand

( frsxcand − xcand)
4 (5.5)

The best sample xsel is then rescaled to xdis to match the coarse value xcoarse. Then,
xdis is fixed and transformed to CDF values, so that it can be used to condition the
simulation of further time steps or different locations. Simulated values of u0 were
set to p0 as in Bárdossy and Pegram (2016) because very low values of u were found to
generate too many dry events when simulating subsequent samples of xcand.

xdis = frsxsel (5.6)

The disaggregation is performed for one location at a time. For the first location,
the conditioning values are only from previous time steps of this location. For the
first time step and location of each month, the CDF values u0 are drawn from a
uniform distribution because no conditioning values exist. For the second location,
the conditioning values stem from previous time steps (if available) and the already
disaggregated values of the first location. The process of the selection of conditioning
values is depicted in Figure 5.2.

Neighbors on same
time step available?

Previous time steps available?

Neighbors on same
time step available?

Condition on up to n
previous time steps

and up to m neighbors
Condition on up to n
previous time steps

Condition on up to m
neighbors Random

Yes
No

Yes Yes NoNo

Figure 5.2: Flowchart of the selection of spatial and temporal condi-
tioning values to set up the conditional distribution function.
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5.4 Calibration of the copula-based disaggregation model

To disaggregate hourly precipitation simulated by an RCM to a resolution of 5 min-
utes, a two step procedure is necessary. First, hourly observations are utilized to
perform a bias correction for the ungauged target locations. For the calibration of the
disaggregation model, observed data in the target resolution of 5 minutes is required.

5.4.1 Bias corrected hourly input data

Observed precipitation data in a temporal resolution of 5 minutes from the German
meteorological service DWD was employed to perform the bias correction of the
hourly RCM simulations at the 9 ungauged locations. There are 129 precipitation
stations in a temporal resolution of 5 minutes in Baden-Würrtemberg. The measure-
ment period is 1951-2013 but only approximately 26 % of the measured time steps
are valid.
This data was aggregated to a temporal resolution of 60 minutes and the CDF pa-
rameters were kriged to the 9 ungauged locations to perform a Quantile Mapping
of the hourly precipitation intensities simulated by the WRF model. The bias cor-
rection technique is explained in more detail in Chapter 3. For this case study, not
a Double-Quantile-Mapping but a regular Quantile-Mapping was utilized because
the RCM simulations were performed for the historical period 1980-2009. The ob-
served hourly precipitation amounts were fitted with a log-normal distribution and
the parameters {ln x, sln x} were kriged to the nine target locations for four seasons
(DJF, MAM, JJA and SON).

5.4.2 Statistics of 5 minute data

For the calibration of the disaggregation model, 16 out of the 129 observation stations
with a resolution of 5 minutes were selected in the proximity of Freiburg. The
observed time series cover the range 1951-2013 but there are many gaps (Figure B.1
in Appendix B). However, no station has been active for more than 30 years. In
order to have enough data to fit the disaggregation model, stationarity was assumed
and the complete measurement period was utilized even though it is longer than the
period of RCM simulations (1980-2009). From this subset of gauge data, the CDF
parameters and the correlogram models were calculated for the same four seasons as
in the bias correction (DJF, MAM, JJA and SON). The parameters of the log-normal
distribution were interpolated to the 9 ungauged locations with IDW. The ACF model
ρ̂A,τ was fitted by pooling all data of the 16 gauges into one sample. The lagged CCF
ρ̂C,h,τ was fitted to the gauge data pairs in a spatial distance h and a temporal lag τ.
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Observed distribution functions

The 5 minute precipitation amounts were fitted with a log-normal distribution. In
contrast to the hourly data, the positive precipitation amounts were additionally
grouped into two classes (one part containing 99.5% of the low intensities and one
part for the remaining, highest 0.5% of the data). Fitting only one log-normal distri-
bution resulted in too low simulated extreme values because the parameter fitting
was dominated by the large set of comparatively low values. By selecting a splitting
CDF value of usplit = 0.995, the extremes are better represented but the trade-off
is that it introduces a stepped CDF at the location of the corresponding precipita-
tion intensity xsplit. An example is given for the measurement station in Freiburg
in the season JJA in Figure 5.3. For this station and season the splitting value is
xsplit = 2.24 mm 5min−1. Due to the importance of a correct representation of high
intensities, the stepped CDF was conceded because no single parametric CDF was ca-
pable of simulating precipitation intensities that resemble the observed distribution.
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Figure 5.3: QQ-Plot of observed and simulated 5-minute-precipitation
for Freiburg in the season JJA (1951-2013).
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Observed cross correlation

The cross correlation function ρ̂C,h,τ was calculated by optimizing the correlogram
parameters that maximize the likelihood of the three sets introduced in Chapter 2
section 2.3. The cross correlation was calculated for different temporal lags τ to set
up the spatio-temporal correlation matrix. The Matérn model was chosen as the
parametric correlogram model due to its flexibility. Restricting the correlograms to
just one model also facilitates the evaluation of the disaggregated series’ correlation
structures. As an example, the cross correlogram models of six temporal lags (τ0 =
0 min,..., τ5 = 25 min) in the summer season JJA is given in Figure 5.4. As expected,
the spatial cross correlation decreases slightly as the temporal lag increases.
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Figure 5.4: Fitted cross correlograms of observed 5 minute precipita-
tion in the region of Freiburg for different temporal lags in the season

JJA (1951-2013).
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Observed auto correlation

Likewise, the auto correlation function ρ̂A,τ was fitted by a Matérn correlogram for
the four seasons DJF, MAM, JJA and SON. All 16 stations were pooled into one
set to estimate how precipitation correlates with preceding time steps. Figure 5.5
shows the parametric ACFs for the four seasons. While the ACFs look very similar,
the auto correlation decays a bit faster for the summer months which indicates that
precipitation in summer shows less persistence than in the winter months.
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Figure 5.5: Fitted auto correlogram of observed 5 minute precipitation
in the region of Freiburg in the seasons DJF, MAM, JJA, and SON

(1951-2013).
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5.5 Evaluation of the copula-based disaggregation model

The disaggregation model has been applied to 30 years of hourly bias corrected
precipitation at 9 different locations. Different configurations were tested by varying
the number of spatial (m) and temporal (n) conditioning values. At first, an example
of the disaggregation of a heavy precipitation event is given to illustrate the influence
of spatial and temporal conditioning values. Afterwards, the distribution functions
and correlograms of the disaggregated time series are presented.

5.5.1 Example of spatio-temporal disaggregation for one event

An illustrative example of the disaggregation procedure is given for a precipitation
event on July 29, 2005 (2 pm). The hourly amounts to be disaggregated lie in the range
[3.84 mm h−1; 16.06 mm h−1]. The hourly amounts and the order of the disaggregation
is depicted in Figure 5.6.
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Figure 5.6: Order of disaggregation of bias-corrected hourly precipi-
tation for a heavy precipitation event on July 29, 2005 (2 pm) for the

first three locations.

The order of the locations is calculated on a monthly basis. The order is chosen
in such a way that the monthly sum of precipitation increases with every location.
In this example, the disaggregation procedure begins with the location with maxi-
mum hourly precipitation (1) but minimum monthly precipitation. Afterwards the
location with minimum hourly precipitation (2) is disaggregated and the procedure
continues with the location with the third lowest monthly sum of precipitation (3).
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For each location candidate time series xcand of varying sample sizes were cal-
culated. For the first location, 500 realizations of xcand were generated because the
hourly amount is high (16.06 mm h−1). 500 samples were chosen for hourly amounts
above 5 mm h−1, so that the sample size of xcand is large enough to provide a candidate
time slice that closely matches the hourly amount that needs to be disaggregated.
The hourly amount of the second location is 3.84 mm h−1 and only 50 candidates were
simulated.

The previous hour was dry at all locations. Therefore, all conditioning values
are p0 for the first location (1) since no spatial conditioning values are available.
Once xdis has been selected from xcand for the first location, the second location
is disaggregated. For this point, the simulation of candidates xcand is performed
conditionally on n = 5 previous 5 minute time steps and the m = 1 values of
the already disaggregated location (1). Thus, spatial conditioning values u ≥ p0
are available for the disaggregation of the second location. For the third location (3),
m = 2 spatial neighbors are available as conditioning values. Figure 5.7 demonstrates
the simulation and selection of candidate time slices for the disaggregation of the
first three locations. The first column shows the time series of candidates xcand and
the previous twelve 5-minute-time steps (which are all dry). In the second column,
the best fitting candidate xsel and the rescaling factor frs are given. The rescaled best
candidate xdis which serves as a spatial conditioning value for the next locations is
shown in the third column.
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Figure 5.7: Selection of disaggregated time slices for the first three
locations.
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To further illustrate the influence of the spatial and temporal conditioning values,
the mean precipitation amount of the twelve time steps of xcand is given in Figure 5.8.
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Figure 5.8: Mean precipitation of each time step of candidate time
series for the first three locations.

For the first location, only the preceding, dry temporal conditioning values were
available. The tendency of the mean simulated time series is thus that the first time
steps are lower because their simulation was conditioned on n = 5 CDF values
corresponding to 0 mm 5 min−1. The selected and rescaled time series xdis of this
location has its maximum at time step 18 (Figure 5.7). The mean precipitation
averaged over 500 samples for the second location also has maximum precipitation
at this time step because the already disaggregated time series has been used as
spatial conditioning values. The maximum in this location’s xdis occurs at time step
17 because the corresponding candidate had the smallest difference to the power of
4 after rescaling. For the third location, the mean precipitation of each time step is
mostly higher than for the second location because not only one but two non-zero
spatial conditioning values were utilized.
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5.5.2 Correlograms of disaggregated time series

The correlogram functions were fitted with the disaggregated time series to compare
them the to correlograms that were fitted to the observed data. Because the opti-
mization to fit the correlograms is computationally very intensive, only the first year
1980 was utilized. Tests during model development showed that longer time series
do not lead to substantially different correlograms.

Simulated cross correlation

Figure 5.9 shows the spatial cross correlograms of the four seasons for a temporal lag
of τ = 0 min. With the exception of the season JJA, cross correlation is overestimated
in the disaggregated series and the number of spatial conditioning values m has little
influence. The behavior is very similar for the other 5 lags τ and those plots are
therefore not shown here.
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Figure 5.9: Fitted cross correlograms of observed (1951-2013) and
disaggregated (1980-2009) 5 minute precipitation with a temporal lag
of τ = 0 min in the region of Freiburg in the seasons DJF (a), MAM

(b), JJA (c) and SON (d).
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Simulated auto correlation

For most seasons, the ACFs of the disaggregated time series are lower than the model
fitted to the observed data. The ACFs generally improve slightly as the number of
temporal conditioning values n increases (Figure 5.10). However, the results are
ambiguous as the ACFs in the season JJA are nearly identical (c). Also, in the season
SON, the ACF of the disaggregated time series is higher with n = 5, whereas n = 1
led to a very close agreement of the ACFs.
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Figure 5.10: Fitted auto correlograms of observed (1951-2013) and dis-
aggregated (1980-2009) 5 minute precipitation in the region of Freiburg

in the seasons DJF (a), MAM (b), JJA (c) and SON (d).
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Influence of bias corrected RCM on correlograms

It was found that the correlograms of the disaggregated time series remain nearly
constant with different numbers of conditioning values. This behavior was assumed
to be related to the high amount of dry time steps. To test this assumption, the
disaggregated time series with the setup m = 3, n = 5 was altered by reshuffling.
Since dry hours lead to 12 5-minute values that are zero, these values were left
untouched. The amounts within wet hours were shuffled randomly. This data
set is labeled as m = 0, n = 0 in the following. Fitting the lagged CCF (Figure
B.2 in Appendix B) and ACF (Figure B.3 in Appendix B) with these shuffled time
series revealed that the correlograms are very close to the ones shown above. This
indicates that the large amounts of zeros dominate the correlogram fitting and that
the influence of m and n on the correlograms is very weak. Another assumption that
occurred during the evaluation was that the different spatio-temporal correlations
that are introduced by the bias corrected hourly RCM time series contribute to the
systematic differences between the correlograms of the disaggregated and observed
time series. This was tested by calculating the ACFs and lagged CCFs of hourly
observations and of the bias corrected hourly RCM simulations. The fitted CCFs can
be found in Appendix B, Figure B.4. The fitted ACFs are presented in Appendix
B, Figure B.5. The fitted ACFs of the bias corrected hourly RMC precipitation are
relatively close to the observed ones but for the CCFs, larger differences exist and
these differences in the hourly statistics propagate into the disaggregated time series
as well.

5.5.3 Simulated distribution functions

Since the number of conditioning values only has a small influence on the temporal
correlograms, an indirect evaluation via the distribution of aggregated precipitation
was conceived. A comparison of the distribution of disaggregated precipitation to
the observed distribution in Freiburg was performed for aggregation levels of 5, 10,
15 and 30 minutes (Figure 5.11). Here, the results for only one location is shown.
The number of conditioning values are m = 3 and n = 5. For changing numbers of
m and n, similar QQ-Plots were obtained which indicates that the influence of these
parameters is rather small. The observed and simulated distributions are similar for
the different aggregation levels. This indicates that the auto-correlation is respected
in the simulations for the most part. However, as the aggregation level increases, the
performance decreases slightly as the very high amounts are underestimated.
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(a)                                                                   (b)

(c)                                                                     (d)

Figure 5.11: QQ-Plots of disaggregated (1980-2009) against oberseved
(1951-2013) precipitation in a temporal resolution of 5 (a), 10 (b), 15

(c), 30 (d) minutes in Freiburg.
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5.6 Summary and outlook

A novel copula-based technique that disaggregates hourly RCM precipitation to a
resolution of 5 minutes has been developed for nine ungauged locations around the
city of Freiburg im Breisgau, Germany. RCM precipitation was bias corrected with
the geostatistical method presented in Chapter 3. The disaggregation model is based
on the Gaussian Copula and the unknown parameters were estimated by spatial
interpolation (distribution parameters) and pooling of all observations into one sam-
ple (ACF). This approach was chosen, so that a disaggregation can be performed
for arbitrary, ungauged locations. Therefore, the model can be employed for other
regions as well.
The distribution functions and correlograms of the disaggregated time series were
shown to agree with the observed ones for the most part. However, larger differ-
ences were found in the correlograms of some seasons. This problem was partially
inherited from the dependence structure of the hourly RCM simulations. A possible
approach to reduce this problem would be the spatial recorrelation procedure pre-
sented by Bárdossy and Pegram (2012) but is unclear whether this technique would
adversely affect the temporal dependence structure of the hourly RCM precipitation.
If the model is not capable of matching the distribution functions of higher aggre-
gation levels sufficiently well, the v-transformed Gaussian Copula (Bárdossy and Li,
2008) could be incorporated to strengthen the clustering of extreme values. In the pre-
sented case, the influence of the number of spatial (m) and temporal (n) conditioning
values on the correlograms and distribution functions was very small. If the model
behaves differently for another region, m and n can be set to larger values. Models
that are based on the Gaussian Copula can be easily extended to higher dimensions
since the correlation matrices are calculated via correlograms. However, as the di-
mensionality increases, the correlation matrices may become non-valid which is a
common problem when dealing with large covariance and correlation matrices (e.g.
Higham et al., 2016). Also, while the presented disaggregation was easily manageable
within approximately two days, the application to a large domain with thousands
of locations, would not be particularly fast and could limit the applicability of the
proposed model.
Other extensions are similar to the ones discussed in Chapter 3: the inclusion of
anisotropy, circulation patterns or more seasons could improve the disaggregated
time series if enough observed data is available to estimate all model components.
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Chapter 6

Multivariate Vine Copula-based
Bias Correction

In this chapter, a short introduction to a post-processing technique for RCM simu-
lations of different meteorological variables is given. The method was developed
to meet the demands of a hydrological model for the Berchtesgaden National Park
which is a highly complex Alpine region. As the spatio-temporal resolution of
the chosen RCM is sufficiently high for the impact model, a spatial downscaling
or temporal disaggregation was not necessary but a new bias correction had to be
developed. In the previous Chapters 3 and 5 of this thesis, only precipitation has
been bias corrected for each location univariately. In the presented case, the physical
processes that control snow melt and discharge are influenced by several meteoro-
logical variables that need to exhibit a realistic spatial, temporal or inter-variable
dependence structure. To improve the inter-variable dependence structure of RCM
simulations, a Vine Copula model has been developed to simulate a meteorological
variable based on its dependence to other variables at the same location and time
step.

6.1 Overview of multivariate bias correction methods

In a study by Clark et al. (2004), the Schaake Shuffle was introduced to reorder down-
scaled station scale precipitation and temperature. The limitation of this approach is
that it requires historical data at all locations for the same time period as the simulated
time series which are re-ordered. This is rarely the case in practice and future periods
cannot be re-ordered in a straightforward manner. Furthermore, the Schaake Shuffle
would lead to a reproduction of the observed time series if the transfer function of the
univariate bias correction is perfect. These problems are partially addressed in Vrac
(2018) who presented a less restrictive method to rearrange the variables. One time
series was left unchanged and the remaining time series were bias corrected with an
adapted Schaake Shuffle. A coarse gridded data set of precipitation and temperature
was bias corrected independently at first to remove the bias of the distribution. Af-
terwards, the time series were rearranged with differing reference time series. The
target order was obtained from a fine scale gridded data set in the same region.
While the spatial correlation of the bias corrected time series was improved, the auto
correlation worsened. Also, as in the study by Clark et al. (2004), long continuous
time series of all variables are required at all locations. Piani and Haerter (2012) bias
corrected temperature first and precipitation subsequently. The copula density of
temperature and precipitation was utilized to correct the inter-variable dependence
of the corrected time series.



116 Chapter 6. Multivariate Vine Copula-based Bias Correction

6.2 Study region and data

The multivariate bias correction method presented in this chapter has been developed
for the Berchtesgaden National Park in the southeast of Germany. In Figure 6.1, the
22 meteorological measurement stations of the region are shown. A list of the station
names and coordiantes is given in Table C.1 in Appendix C.

Figure 6.1: Locations of the 22 meteorological stations in the Berchtes-
gaden National Park. Background map retrieved from GeoBasis-DE /

BKG (2019).

This alpine region exhibits very complex orography and accordingly the clima-
tology of nearby locations can differ drastically for short separation distances. In
addition to the high heterogeneity, a strong seasonality is present. Since the Bercht-
esgaden National Park is a climate sensitive region, it was investigated how the
discharge will most likely change in the future. In a previous study by Warscher et al.
(2013), the hydrological model WaSiM-ETH has been utilized to model the discharge
in this complex region. It was found that an enhanced description of snow accumu-
lation and redistribution processes improved the skill of the discharge simulations
because these processes influence the amount of water that is available for discharge.
For the follow-up study, the variables surface temperature (T), precipitation (P), rel-
ative humidity (H), wind speed (W) and shortwave downwelling radiation (SW)
were selected as necessary input variables for WaSiM. The present bias correction
method has been developed to provide meteorological time series with an improved
inter-variable dependence structure for the impact model WaSiM.

The five variables have been measured at 22 sites in the Berchtesgaden National
Park in the period 2001 to 2010. However, not all five variables were measured
at all sites for the complete period because the data was collected from different
meteorological services. Also, the permanent maintenance of a dense measurement
network is very challenging in this complex Alpine region and therefore many data
gaps exist. For instance, at 13 of the 22 stations not a single time step with all five
variables exists. Furthermore, some variables have not been measured at all. For
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example, no measurements of T exist at two stations and none for P at ten stations.
This data scarcity calls for an estimation of both the marginal distributions and the
dependence structure for locations without enough data.

Simulations with a regional climate model provide meteorological information
for all locations and time periods without observed data. For a complex and scarcely
gauged region like the Berchtesgaden National Park, RCM simulations therefore al-
low for a better process understanding and planning of how to adapt to the projected
climate impact. The RCM simulations were performed with WRF in a resolution of
5 km and 1 h. Three runs were performed: one run for the period 1980-2009 with
the ERA-Interim reanalysis data which was also utilized in Chapter 5 (Wagner and
Kunstmann, 2016) and two climate runs consisting of one control run (1980-2009)
and one scenario run with the RCP 4.5 scenario (2020-2049) (Warscher et al., 2019).
The driving model for the control and scenario runs was the Earth-System Model
MPI-ESM. For the 22 station locations, the closest grid cells were searched and the
time series of T, P, H, W and SW were extracted to serve as an input for the bias
correction routine.

6.3 Development of a new copula-based multivariate bias
correction model

The existing multivariate bias correction methods require long observation archives
of all required variables at all locations of interest which severely limits their applica-
bility for future periods and ungauged locations. In the following, a bias correction
approach which simulates one meteorological variable based on the dependence to
other variables is given. The method utilizes Vine Copulas to take the highly dif-
ferent dependence structures into account. The difference of the proposed model to
other bias correction techniques is that it requires less observed data and that one of
the variables was simulated with a stochastic model and not taken from the RCM.
As illustrated in section 6.2, an estimation of the marginal distribution is required
for several ungauged locations. With these estimated CDF parameters, a univariate
Quantile-Mapping (QM) was performed for all five variables simulated by the RCM
for all 22 stations. Because the physical processes that were to be studied with the
subsequent impact model WaSiM are determined by the interaction of several vari-
ables, the dependence measure Kendall’s τK of all variable pairs at was calculated
to evaluate how well the dependence structure of the variables was reproduced by
the univariately corrected RCM. This process is schematically illustrated in Figure 6.2.
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RCM simulations
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Select meteorological variables with
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Figure 6.2: Flowchart of the univariate bias correction with Quantile-
Mapping and selection of variable for post processing.

Once the variable, which contributes the most to the dependence bias, has been
identified, it was removed from the QM time series. As a replacement, this variable
was then simulated conditionally on the other univariately corrected QM values.
This model is labeled as QMV (Quantile Mapping + Vine Copula). More details on
the model selection and motivation can be found in sections 6.4 and 6.5.

The model is based on Vine Copulas which represent a multivariate copula as
a decomposition of several bivariate copulas (Aas et al., 2009). As was shown in
Chapter 2, section 2.5, a conditional PDF fc can be calculated from copula densities
c:

fc(u1|u2, ..., un) =
c(u1, ..., un)

c(u2, ..., un)
(6.1)

As with the Gaussian copula, the denominator was dropped from the calculation and
only the four dimensional copula density was employed to calculate fc. Numerical
integration and rescaling to values between 0 and 1 then yielded the conditional CDF
Fc. As in the previous chapters, Fc was inverted with a uniformly distributed number
w to simulate the CDF value of the problematic variable. In contrast to the previous
chapters, only one realization is provided. During model development a random
number w was employed at first and while this led to time series with an improved
dependence structure between the variables, the time series were very volatile and
unrealistic. Therefore, w was taken from the conditional distribution Fc of the RCM.
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The four-dimensional copula density c(u1, u2, u3, u4) was constructed as a C-Vine
for both observed and univariately bias corrected RCM time series.

c(u1, u2, u3, u4) = c12(F1(x1), F2(x2)) · c23(F2(x2), F3(x3)) · c34(F3(x3), F4(x4))

· c13|2(F(x1|x2), F(x3|x2)) · c24|3(F(x2|x3), F(x4|x3))

· c14|23(F(x1|x2, x3), F(x4|x2, x3))

(6.2)

The last term in this equation requires the values of the three-dimensional CDFs
F(x1|x2, x3) and F(x4|x2, x3) which were calculated from the corresponding three di-
mensional Vine Copula densities c(u1, u2, u3) and c(u4, u2, u3) respectively. For in-
stance, the first density c(u1, u2, u3) is given as:

c(u1, u2, u3) = c12(F1(x1), F2(x2)) · c23(F2(x2), F3(x3)) · c13|2(F(x1|x2), F(x3|x2)) (6.3)

In the above two equations, bivariate copula densities for a given third variable
are employed, e.g. c13|2. A simplifying assumption of a constant copula that is not
influenced by the value of the third variable has to be made almost always, especially
if the calibration data set is small. That this necessary assumption generally performs
well has been demonstrated by Haff et al. (2010).
The ordering of the variables of a Vine Copula is not straightforward. Also, the com-
putational demand to calculate one multivariate copula density and the number of
possible Vine structures increases drastically with the dimensionality of the copula.
Nagler et al. (2016) presented two algorithms to select the Vine structure based on τK
between variable pairs to reduce the number of computation steps.

Calculating the four dimensional copula density c(u1, u2, u3, u4) for each time step
can lead to high run times. The simulation routine has been written in Python and
conditional CDFs of sets of conditioning values were saved in dictionaries to reduce
computation time. The three conditioning values (u2, u3, u4) were varied between
0.0001 and 0.9999 with 101 equidistant steps, leading to 1013 = 1030301 combinations
of conditioning values for each season. During the simulation, the conditioning CDF
values were rounded to two digits to access the corresponding conditional CDF from
the dictionary. For instance, the conditioning values (u2 = 0.3251, u3 = 0.9813, u4 =
0.2510) get the key 0.33_0.98_0.25 to access the conditional CDF in the dictionary.
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6.4 Calibration of the copula-based multivariate bias correc-
tion model

The calibration was carried out for the time period 2001-2010 with four seasons (DJF,
MAM, JJA and SON). For each meteorological variables (T, P, H, W, SW), different
parametric distribution functions were fitted. For P, W and SW it was also necessary
to calculate the probability of a censored value (e.g. P = 0 mm/h or SW = 0 W/m2).
The best fitting CDF was chosen by calculating the squared differences between the
observed values and values that were simulated from the fitted CDFs. For ungauged
locations, the parameters were estimated based on the site’s elevation with linear
regression. The best fitting distributions are listed in Table 6.1.

Variable DJF MAM JJA SON
T Normal Normal Log-Normal Normal
P Weibull Weibull Weibull Weibull
H Beta Beta Beta Beta
W Weibull Weibull Weibull Weibull

SW Exponential Normal Exponential Exponential

Table 6.1: Selected CDFs for the five observed meteorological vari-
ables (2001-2010).

With the fitted distribution functions and probabilities of censored values, all ob-
served variables were transformed to CDF values in [0, 1] (see Chapter 2, subsection
2.2.4). The RCM simulations were fitted with a KDE-CDF.

In a next step, Kendall’s τK was calculated for the observed and univariately bias
corrected QM time series of the reanalysis run. To include censored values, a small
random noise was added to the CDF values as was done by Pham et al. (2015). It
should be noted that random noise that was added to remove the ties can lead to
slightly different values of τK with each run but these differences were found to be
usually less than 0.01 in the case study presented in this thesis.
In order to find the temporal lag at which the data can be regarded as independent
identically distributed (iid), the partial auto correlation function (PACF) of the nor-
malized time series was calculated. Details on the PACF are given in von Storch and
Zwiers (1999). It was found that the PACF after 30 hourly time steps is independent
for all variables, so only CDF value pairs of two variables that are at least separated
by 30 time steps were sampled. Due to the scarcity of the observation data set,
all CDF value pairs of the region were pooled into one set to estimate the average
observed dependence structure of the region. The absolute difference |∆τK| between
the observed and simulated values of τK were calculated to investigate how well the
QM series agree with the observed dependence structure. The values of τK and |∆τK|

are listed in Table 6.2. Note that the numbers have been rounded to two digits but
the calculations were performed with the actual values.
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T,P T,H T,W T,SW P,H P,W P,SW H,W H,SW W,SW
DJF

Observed 0.00 -0.26 0.10 0.10 0.09 0.04 0.01 -0.07 -0.10 0.02
Reanalysis-QM 0.02 -0.15 0.11 0.13 0.07 0.07 -0.01 -0.03 -0.04 -0.08

|∆τK| 0.02 0.11 0.01 0.03 0.01 0.03 0.02 0.04 0.06 0.09
MAM

Observed -0.06 -0.38 0.04 0.25 0.12 0.04 -0.06 -0.11 -0.26 0.05
Reanalysis-QM -0.02 -0.23 -0.07 0.24 0.07 0.02 -0.03 -0.10 -0.21 -0.04

|∆τK| 0.04 0.15 0.12 0.01 0.05 0.01 0.03 0.01 0.05 0.09
JJA

Observed -0.09 -0.50 0.01 0.30 0.13 0.05 -0.04 -0.08 -0.31 0.05
Reanalysis-QM -0.01 -0.37 -0.10 0.29 0.10 0.02 -0.01 -0.04 -0.29 0.04

|∆τK| 0.08 0.14 0.11 0.01 0.03 0.02 0.03 0.04 0.02 0.01
SON

Observed -0.07 -0.33 0.00 0.19 0.10 0.05 -0.01 -0.09 -0.19 0.04
Reanalysis-QM -0.03 -0.26 -0.02 0.21 0.11 0.03 -0.01 -0.08 -0.18 -0.03

|∆τK| 0.05 0.07 0.02 0.02 0.00 0.02 0.00 0.01 0.01 0.07

Table 6.2: Kendall’s τK of the ten meteorological variable pairs of the
observations and the univariately bias-corrected QM reanalysis run.

To investigate the strength of dependence of the individual variables to the other
variables at the same location and time step, the absolute values of τK were summed
up to Σ|τK| for each observed variables. As Table 6.3 shows, the wind speed W
has very low sums Σ|τK| across all seasons. Therefore, W was not utilized because
it offers very little explanatory value and because the complexity of Vine Copula
models increases heavily with more dimensions. In order to preserve a lean model
structure, W was dropped as a potential conditioning value and for further analyses
in the evaluation.

Variable DJF MAM JJA SON
T 0.466 0.734 0.913 0.597
P 0.134 0.274 0.310 0.243
H 0.521 0.873 1.021 0.711
W 0.224 0.234 0.186 0.183

SW 0.235 0.618 0.699 0.433

Table 6.3: Sum of absolute values of τk of the individual observed
variables.

The absolute differences of τK between observations and the QM series given in
Table 6.2 were summed up to Σ|∆τK| to identify the RCM variable which exhibits the
largest deviations from the observed dependence structure. The results are given in
Table 6.4. For the first two seasons DJF and MAM, H is the variable which shows the
largest deviations from the observed dependence structure. In the seasons JJA and
SON, T performs worst with H being the second worst variable regarding τK.
Thus, H was chosen as the variable to be simulated with the Vine Copula for the
seasons DJF and MAM. The conditional CDF Fc(H|T, SW, P) was built from the
copula density c(uH, uT, uSW, uP) of the four variables. For the seasons JJA and SON,
T was simulated conditional on P, H and SW.
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Variable DJF MAM JJA SON
T 0.158 0.205 0.230 0.140
P 0.059 0.120 0.140 0.051
H 0.185 0.249 0.189 0.087

SW 0.119 0.099 0.068 0.031

Table 6.4: Σ|∆τK| of the univariately bias corrected reanalysis run to
the observations for individual variables.

The copula parameters were calculated from Kendall’s τK (see Chapter 2, sec-
tion 2.5). The copula families that were fitted this way are the Ali-Mikhail-Haq
(AMH), Clayton (Cla), Frank (Fra), Farlie-Gumbel-Morgenstern (FGM) and the Gum-
bel (Gum) copulas. The best-fitting copula was selected by minimizing the squared
differences between the fitted and empirical copulas. A visual example of the copula
densities fitted to T, SW in the season SON was already given in Chapter 2.5, section
2.5. As was shown in Table 6.2, the sign of τK remains mostly identical across the four
seasons but the magnitude of dependence changes. For example, the dependence of
T and SW is much stronger in summer than in winter. The copula families are also
mostly identical across the four seasons (Table 6.5).

T,P T,H T,SW P,H P,SW H,SW
DJF

Observed FGM Fra Gum Cla AMH FGM
QM Cla FGM AMH Cla AMH FGM

MAM
Observed FGM Fra Gum Cla Fra Fra

QM FGM Fra Gum Cla FGM FGM
JJA

Observed Fra Fra Gum Cla Fra Fra
QM Fra Fra Gum Gum Fra Fra

SON
Observed FGM Fra Gum Cla Fra FGM

QM Fra Fra Gum Gum Fra FGM

Table 6.5: Selected copulas of the four variables T, P, H, SW in the
observed and QM time series.

To illustrate the model, eight different conditional CDFs Fc(H|T, SW, P) fitted to
the observed data are shown in Figure 6.3 for the season DJF. The three conditioning
values were set to either 0.05 or 0.95 to demonstrate the influence of low and high
conditioning values on the resulting conditional CDF. Blue corresponds to low tem-
perature and red to high temperature, low precipitation is plotted as a dotted line
and high precipitation as a solid line. Low values of short wave radiation are labeled
with a circle marker and high values with a plus sign.
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Figure 6.3: Conditional CDFs of relative humidity in the season DJF
for different conditioning values.

It can be seen that the conditional CDF of H is influenced by all three variables
to differing degrees. Low temperature (blue) leads to higher simulated values of H
than high temperature (red) since the dependence parameter is τK = −0.26. The
influence of SW is also negative (τK = −0.10), so low values of SW tend to result in
high values of H. Precipitation has a positive dependence parameter (τK = +0.09)
and accordingly, the density of the conditional CDF is shifted towards higher values
of H for high precipitation values.
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6.5 Evaluation of the copula-based multivariate bias correc-
tion model

The copulas of variable pairs and the corresponding Vine Copulas were calculated
for the observed time series. For the RCM simulations, the reanalysis and control
runs were utilized to build the copulas. As was shown in Table 6.2, the QM series
of the reanalysis run show deviations in τK to the observations. For the seasons DJF
and MAM, H deviates the most from the observed dependence structure (Table 6.4).
The QM time series of T, P, W and SW were not altered and H was simulated. For JJA
and SON, T deviates the most and the QM series of P, W, H and SW remain constant.
Thus, τK of these unchanged variables remains constant after the application of the
QMV model. For the seasons DJF and MAM, the values of τK of the variable pairs
(H, T), (H, P) and (H, SW) change. For JJA and SON, τK of (T, P), (T, H) and (T, SW)
change.

The performance of the Vine Copula model was evaluated by calculating Kendall’s
Σ|∆τK| for the univariately bias corrected (QM) and for the multivariately bias cor-
rected time series (QMV). The added value of QMV is demonstrated in Table 6.6.
The percental improvement was calculated by relating Σ|∆τK| of QMV to the one of
the univariate QM series.

DJF MAM JJA SON
Reanalysis 50.6% 40.0% 41.4% 66.0%

Control 47.6% 48.9% 22.8% 28.0%
Scenario 49.7% 50.9% 44.9% 1.9%

Table 6.6: Percental improvement of the absolute difference between
observed and simulated Kendall’s τK of QMV in comparison to QM.

A graphical demonstration of how QMV changes the values of τK is given in
Figure 6.4 for the scenario run. As nearly all values of τK are closer to the bisecting
line, it can be seen that the QMV approach leads to a more realistic dependence
structure than the standard QM method.
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Figure 6.4: Scatter plot of τK of QM and QMV applied to the scenario
run (2020-2049) against observations in the seasons DJF (a), MAM (b),

JJA (c) and SON (d).
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6.6 Summary and outlook

This chapter presented an approach that corrects the univariate bias and improves
the multivariate inter-variable dependence structure of four meteorological variables
simulated by an RCM. The method is based on Vine Copulas which decompose the
multivariate copula into pair copulas. A standard univariate Quantile Mapping
(QM) was performed as a baseline for the Vine Copula model (QMV). The meteoro-
logical variable with the largest dependence bias was simulated conditional on the
remaining univariately bias corrected QM-variables. These conditioning values re-
mained constant, while the problematic variable was simulated. For DJF and MAM,
hourly relative humidity was simulated conditional on univariately bias corrected
temperature, precipitation and short wave radiation. For JJA and SON, temperature
was simulated conditional on precipitation, relative humidity and short wave radi-
ation. It was shown that the dependence structure of the QMV time series generally
matches the observed one more closely than the univariately corrected QM series.
The sum of absolute differences of Kendall’s τK was reduced by up to 66.0%. There-
fore, Vine Copulas seem to be a promising method to model meteorological variables
with complex dependence structure. The application of this simulation technique is
of course not limited to post processing RCM simulations but it could be used for
example to estimate missing values in observation data sets conditional on available
variables.
The limitations of the presented method are discussed here since multivariate tech-
niques can adversely affect dependence structures which are not part of the model
structure as was shown in Chapter 3, section 3.1. In the presented case, the condi-
tioning values stem from physically-based RCM simulations which exhibit spatio-
temporal correlation. Thus, the spatio-temporal correlation of the conditioning val-
ues propagates into the simulated relative humidity to some extent. However, for
an independent simulation, e.g. as a Weather Generator, it would be necessary to
condition the simulation also on previous time steps and spatial neighbors. Gräler
(2014) presented a geostatistical approach to estimate the Vine Copula parameters
for the simulation of spatial fields which is already very complex. Adapting such an
approach for a conditional simulation that respects the spatial, temporal and inter-
variable dependence would increase the complexity tremendously. For instance,
conditioning on 3 variables (e.g. T, P, SW), 3 time steps and 3 spatial neighbors
would lead to a 10-dimensional Copula with unknown dependence parameters.
Also, the Vine structure would be unknown and the selection of the best one would
lead to huge computation times since a 10-dimensional Copula can be decomposed
in 1.811034 different ways (Nagler et al., 2016). Also, the storage demand would
increase significantly. As mentioned above, the conditional CDFs were saved in
Python dictionaries. For 4 seasons and a discretization step of 0.01, two dictionaries
of 3.5 Gb file size were obtained. For a 10-dimensional copula, the file size would be
approximately 3.51012 Gb. For these reasons, the simulation was restricted to only 3
conditioning values to keep the computational and storage demand and model com-
plexity manageable. An extended version of the model could include atmospheric
circulation patterns or separate statistics and conditional distributions for different
times of the day, e.g. night and day, if enough observed data is available to calibrate
all model components. As illustrated before, this would however also lead to a huge
increase of the computational and storage demand.
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Chapter 7

Summary and conclusions

In this thesis, four newly developed post-processing techniques for time series of
meteorological variables simulated by RCMs have been presented. Aside from the
bias correction technique in Chapter 3, the models are based on copulas. In the
following, the research questions, that were stated in Chapter 1, are addressed:

1. How can multivariate copulas be utilized to increase the spatio-temporal
distribution and to improve the dependence structure of RCM simulations?
Copulas constitute a flexible modeling approach due to the separation of the
marginal distributions from the dependence structure. This two step procedure
allows for an individual fitting of distribution functions to arbitrary meteoro-
logical variables in the first step. From the huge number of copula models,
the one which best represents the dependence structure, is selected in the sec-
ond step. However, extending regular, bivariate copulas to higher dimensions
reduces the number of available copula models. Two multivariate copula mod-
els were employed in this thesis to condition the simulation of an unknown
meteorological variable on more than one known value, namely the Gaussian
Copula (Bárdossy and Li (2008), Chapter 4 and Chapter 5) and Vine Copulas
(Aas et al. (2009), Chapter 6). All developed models take RCM simulations as
input variables. Additional data with a desired property was used to construct
copulas to model meteorological variables and to provide the post-processed
time series.
With the spatial downscaling model presented in Chapter 4, fine scale precip-
itation fields, that resemble physically downscaled precipitation fields, were
simulated. The Gaussian Copula was conditioned on coarse scale RCM precip-
itation fields and ensembles were simulated to address the uncertainty of the
physical downscaling. The motivation for this method was the high computa-
tional demand of physical downscaling and thus a faster, stochastic model was
developed to provide a surrogate for the fine scale RCM precipitation fields.
In Chapter 5, a temporal disaggregation model was presented. This model was
employed to simulate precipitation time series in a temporal resolution of 5
minutes that agree with the hourly amounts of a bias corrected RCM simula-
tion. In contrast to the spatial downscaling model, observed data was used to
calibrate the model, as the aim of this technique was the simulation of precipi-
tation time series in a finer temporal resolution than what was attainable with
the RCM. The spatio-temporal conditioning values are simulated precipitation
values in the target resolution of 5 minutes from spatial neighbors or at the
same location.
The other multivariate copula technique, that was employed in this thesis, is a
Vine Copula which constructs a multivariate copula from bivariate pair copu-
las. This copula was utilized in Chapter 6 to model the dependence structure
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of four meteorological variables at the same location. Univariately bias cor-
rected RCM simulations were evaluated regarding this dependence structure
and the variable which contributed most strongly to the dependence bias was
removed. Afterwards, it was simulated from a four-dimensional Vine Copula
so that the bias corrected time series respect the observed dependence structure
more closely. In this application, Vine Copulas were chosen to take the highly
differing dependence structures of variable pairs into account: for instance,
one variable pair may have a symmetrical negative copula while another pair
exhibits positive dependence with a strong clustering of extreme values.

2. How well do the stochastic simulations agree with observed univariate and
multivariate statistics?
The performance of the post-processing techniques was evaluated by ana-
lyzing both univariate (distribution functions in different aggregation levels)
and multivariate (dependence structure / spatio-temporal correlation) statis-
tics. The evaluation sections demonstrated that the developed models lead to
a refinement of the RCM simulations regarding the univariate distributions,
spatio-temporal resolution or inter-variable dependence structure.
For extreme events or locations that show a deviant behavior from neighbor-
ing locations, the common problems of all statistical estimation techniques and
parametric distribution functions remain. For instance, the highest daily RCM
precipitation amounts were not captured by the Gamma distribution (Chapter
4). Also, the kriged CDF parameters resulted in some distributions that did not
match the observed ones during cross validation (Chapter 3). Some discrepan-
cies can also be related to errors in the RCM simulations which propagate into
the results of the post-processing techniques. For instance, the 5 minute spatial
correlograms in Chapter 5 are dominated by the hourly spatial dependence
structure of the RCM. The disaggregated 5 minute precipitation time series
have similar distributions as in the observations but as they were aggregated
to longer time intervals, the high values decreased which shows that the sim-
ulated time series do not cluster as strongly as in reality. This problem may be
lessened by using a non-Gaussian multivariate copula like the V-transformed
copula (Bárdossy and Li, 2008) or Vine Copulas. However, those multivariate
copulas lead to an enormous increase of the model complexity.
As illustrated in Chapter 6, multivariate dependence can be related to spatial,
temporal or inter-variable dependence. Readjusting one property with a sta-
tistical technique often comes at a loss regarding another property and this
problem is not exclusive to copula models. For example, the spatial recor-
relation presented by Bárdossy and Pegram (2012) would presumably lead to
a change of the temporal structure. Vrac (2018) illustrated how the temporal
correlation suffers from a rearrangement which aimed at an improved spatial
dependence structure. The modeling strategy must therefore also be based
on the importance of different statistical aspects of the final product that is
required for impact studies.

3. What are the advantages of the developed models compared to other ap-
proaches and what are the limiting factors for extensions and applications to
other variables?
The hugest advantage of copulas over other stochastic approaches is the sepa-
ration of the univariate distribution functions and the multivariate dependence
structure. This way, it is possible to focus on one part at a time and to model
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arbitrary meteorological variables as long as the marginal distribution can be
fitted. In practice, the univariate distributions are modeled at first and then the
best fitting copula is selected. The Gaussian Copula is the most common mul-
tivariate copula and it has shown to perform well regarding most evaluated
statistics. Furthermore, it is comparatively simple as it is only determined by
a correlation matrix. Correlation coefficients are easier interpretable than for
example the parameters of a BLRP model. The selection of a suitable copula
family is commonly based on choosing the one which minimizes the differ-
ences to the empirical copula. This does however not automatically imply
that the selected copula is sufficiently good - especially for high resolution pre-
cipitation with many dry values. Censored variables like 0 mm precipitation
can be included into the Gaussian Copula with the MLM-based correlogram
estimation presented in Chapter 2 but for other copulas, workaround solutions
are typically employed, e.g. adding random noise as in Pham et al. (2015). If
such an approach results in a satisfactory representation of the observed distri-
butions and dependence structure needs to be evaluated for each application
individually.
For higher dimensions, less copula families are available, mainly the Gaus-
sian Copula, its V-transformed version and the Student Copula. In theory,
the dimensionality of the Gaussian Copula can be arbitrarily high but in prac-
tice, non-valid correlation matrices may occur as the number of dimensions
increases. Therefore, the number of conditioning values must be limited. In
spatial interpolation techniques, it is common to use only a few nearby stations
to estimate an unknown value and this is also advisable when using the Gaus-
sian Copula as was shown in Bárdossy and Li (2008). Another way to model
multivariate dependence structures are Vine Copulas. They are more flexible
in describing different forms of dependence than the Gaussian Copula but the
model structure is much more complex and not all possible decompositions can
be tested once a certain dimensionality has been reached (Nagler et al., 2016).
Furthermore, the calculation of conditional distributions of Vine Copulas of all
possible conditioning values can quickly lead to very high computation times
and storage demands as the dimensionality increases.

4. How can the model parameters be estimated for ungauged location in a study
region and what are the limitations?
The adaptation of the models to different study regions is possible but some
adjustments will be necessary depending on the case study: the sample size of
observed data, seasonality and the importance of different aspects of the de-
sired simulations must all be taken into account so that all model components
are robust. Parameter estimation strategies were conceived for the different
case studies. For instance, the individual elements of the correlation matrix
of the Gaussian Copula were calculated with spatial or temporal correlogram
models. This approach was chosen so that the correlation of ungauged lo-
cations can be estimated and to keep the correlation matrices invertible. As
the dependence structure and marginal distributions were described by very
few parameters, they can often be estimated rather well for arbitrary locations.
When more parameters are necessary to model the univariate distributions,
geostatistical estimation techniques may become unstable as was shown in
Chapter 3. Likewise, if a region is highly heterogeneous, the estimation of local
distribution functions and correlograms can become very uncertain for loca-
tions without nearby observed data. In Chapter 6, all available observed data
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was pooled into one sample to obtain an average inter-variable dependence
structure for the presented data-scarce region. This was deemed a justified
approach as the study region is rather small but transferring the dependence
structure to a completely different region may result in poor results. Therefore,
some observed data, that was measured somewhere in the vicinity of the target
locations, is always necessary. The decline of observation networks reported
in Lorenz and Kunstmann (2012) therefore poses a problem for the development
and application of both RCM simulations and the presented post-processing
techniques, especially in complex terrains. Also, extreme values and statisti-
cal trends in observed time series provide valuable information for modeling
purposes and climate change projections.

To conclude, several novel computationally efficient statistical and stochastic
methods have been developed and applied to case studies in different regions of
the world. The techniques are transferable to other regions as they employ observ-
able statistical measures like correlation. The bias correction technique in Chapter
3 aimed at the generation of a surrogate distribution to estimate the unknown local
climatology. In other cases of limited data availability, data was pooled to derive
for example the average auto correlation of a given region (see Chapter 5) or the
inter-variable dependence structure (see Chapter 6).

Copulas were chosen as the mathematical basis of most models and their poten-
tial to successfully post-process RCM simulations was shown. The application of
copula-based post-processing models to RCM simulations is however not straight-
forward and involves a lot of trial and error and compromises as the quality of
the post-processed products is influenced by many factors: How well can the ob-
served distribution functions be fitted and estimated with the available data, are
the copulas capable of representing the actual dependence structures, are erroneous
spatio-temporal dependence structures inherited from the RCM simulations, what
is the required dimensionality and which statistical aspects are most important for
subsequent applications?
For the presented case studies, the techniques are sufficiently fast as most com-
putations were performed on a single computer within a few hours or days. A
comparison of the observed and simulated distribution functions showed that the
models are generally in close agreement to the theoretical or observed distribution
functions and that the dependence structure can be approximately reproduced for
different meteorological variables on different scales. Therefore, copulas can be re-
garded as a valuable tool to enhance the applicability of RCM simulations for very
diverse impact studies.
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Appendix to Chapter 3 -
Geostatistical bias correction of
RCM precipitation

Institute Driving Model RCM Beginning End
CCCMA CCCMA-CanESM2 CanRCM4 v4 1950-01-01 2005-12-31
CLMcom CNRM-CERFACS-CNRM-CM5 CCLM4-8-17 v1 1950-01-01 2005-12-31
CLMcom ICHEC-EC-EARTH CCLM4-8-17 v1 1949-12-01 2005-12-31
CLMcom MOHC-HadGEM2-ES CCLM4-8-17 v1 1949-12-01 2005-12-30
CLMcom MPI-ESM CCLM4-8-17 v1 1949-12-01 2005-12-31

DMI ICHEC-EC-EARTH HIRHAM5 v2 1951-01-01 2005-12-31
DMI NCC-NorESM1-M HIRHAM5 v1 1951-01-01 2005-12-31

KNMI ICHEC-EC-EARTH RACMO22T v1 1950-01-01 2005-12-31
KNMI MOHC-HadGEM2-ES RACMO22T v1 1950-01-01 2005-12-30

MPI-CSC ICHEC-EC-EARTH REMO2009 v1 1950-01-01 2005-12-31
MPI-CSC MPI-ESM REMO2009 v1 1950-01-01 2005-12-31

SMHI CCCMA-CanESM2 RCA4 v1 1951-01-01 2005-12-31
SMHI CNRM-CERFACS-CNRM-CM5 RCA4 v1 1951-01-01 2005-12-31
SMHI CSIRO-Mk3.6.0 RCA4 v1 1951-01-01 2005-12-31
SMHI ICHEC-EC-EARTH RCA4 v1 1951-01-01 2005-12-31
SMHI NOAA-GFDL-GFDL-ESM2M RCA4 v1 1951-01-01 2005-12-31
SMHI MOHC-HadGEM2-ES RCA4 v1 1951-01-01 2005-12-30
SMHI IPSL-CM5A-MR RCA4 v1 1951-01-01 2005-12-31
SMHI MIROC-MIROC5 RCA4 v1 1951-01-01 2005-12-31
SMHI MPI-ESM RCA4 v1 1951-01-01 2005-12-31
SMHI NCC-NorESM1-M RCA4 v1 1951-01-01 2005-12-31

UQAM CCCMA-CanESM2 CRCM5 v1 1950-01-01 2005-12-31
UQAM MPI-ESM CRCM5 v1 1949-01-01 2005-12-31

Table A.1: CORDEX-Africa RCMs that were bias-corrected for the
historical period (1950-2005).
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precipitation

Institute Driving Model RCM Beginning End
CCCMA CCCma-CanESM2 CanRCM4 v4 8.5: 2006-01-01 8.5: 2100-12-31
CLMcom CNRM-CERFACS-CNRM-CM5 CCLM4-8-17 v1 4.5: 2006-01-01 4.5: 2100-12-31

8.5: 2006-01-01 8.5: 2100-12-31
CLMcom ICHEC-EC-EARTH CCLM4-8-17 v1 4.5: 2006-01-01 4.5: 2100-12-31

8.5: 2006-01-01 8.5: 2100-12-31
CLMcom MOHC-HadGEM2-ES CCLM4-8-17 v1 4.5: 2006-01-01 4.5: 2099-11-30

8.5: 2006-01-01 8.5: 2099-11-30
CLMcom MPI-M-MPI-ESM-LR CCLM4-8-17 v1 4.5: 2006-01-01 4.5: 2100-12-31

8.5: 2006-01-01 8.5: 2100-12-31
DMI ICHEC-EC-EARTH HIRHAM5 v2 4.5: 2006-01-01 4.5: 2100-12-31

8.5: 2006-01-01 8.5: 2100-12-31
DMI NCC-NorESM1-M HIRHAM5 v1 4.5: 2006-01-01 4.5: 2100-12-31

8.5: 2006-01-01 8.5: 2100-12-31
KNMI ICHEC-EC-EARTH RACMO22T v1 4.5: 2006-01-01 4.5: 2100-12-31

8.5: 2006-01-01 8.5: 2100-12-31
KNMI MOHC-HadGEM2-ES RACMO22T v1 4.5: 2006-01-01 4.5: 2099-11-30

8.5: 2006-01-01 8.5: 2099-12-30
MPI-CSC ICHEC-EC-EARTH REMO2009 v1 2.6: 2006-01-02 2.6: 2100-12-31

4.5: 2006-01-01 4.5: 2100-12-31
8.5: 2006-01-01 8.5: 2100-12-31

MPI-CSC MPI-M-MPI-ESM-LR REMO2009 v1 2.6: 2006-01-01 2.6: 2100-12-31
4.5: 2006-01-01 4.5: 2100-12-31
8.5: 2006-01-01 8.5: 2100-12-31

SMHI CCCma-CanESM2 RCA4 v1 4.5: 2006-01-01 4.5: 2100-12-31
8.5: 2006-01-01 8.5: 2100-12-31

SMHI CNRM-CERFACS-CNRM-CM5 RCA4 v1 4.5: 2006-01-01 4.5: 2100-12-31
8.5: 2006-01-01 8.5: 2100-12-31

SMHI CSIRO-QCCCE-CSIRO-Mk3-6-0 RCA4 v1 4.5: 2006-01-01 4.5: 2100-12-31
8.5: 2006-01-01 8.5: 2100-12-31

SMHI ICHEC-EC-EARTH RCA4 v1 4.5: 2006-01-01 4.5: 2100-12-31
8.5: 2006-01-01 8.5: 2100-12-31

SMHI NOAA-GFDL-GFDL-ESM2M RCA4 v1 4.5: 2006-01-01 4.5: 2100-12-31
8.5: 2006-01-01 8.5: 2100-12-31

SMHI MOHC-HadGEM2-ES RCA4 v1 2.6: 2006-01-01 2.6: 2099-12-30
8.5: 2006-01-01 8.5: 2099-11-30
8.5: 2006-01-01 8.5: 2099-12-30

SMHI IPSL-IPSL-CM5A-MR RCA4 v1 4.5: 2006-01-01 4.5: 2100-12-31
8.5: 2006-01-01 8.5: 2100-12-31

SMHI MIROC-MIROC5 RCA4 v1 4.5: 2006-01-01 4.5: 2100-12-31
8.5: 2006-01-01 8.5: 2100-12-31

SMHI MPI-M-MPI-ESM-LR RCA4 v1 2.6: 2006-01-01 2.6: 2100-12-31
4.5: 2006-01-01 4.5: 2100-12-31
8.5: 2006-01-01 8.5: 2100-12-31

SMHI NCC-NorESM1-M RCA4 v1 4.5: 2006-01-01 4.5: 2100-12-31
8.5: 2006-01-01 8.5: 2100-12-31

UQAM CCCma-CanESM2 CRCM5 v1 4.5: 2006-01-01 4.5: 2100-12-30
UQAM MPI-M-MPI-ESM-LR CRCM5 v1 4.5: 2006-01-01 4.5: 2100-12-30

Table A.2: CORDEX-Africa RCMs that were bias-corrected for the
future period (2006-2100) - the simulation period can differ for the

different RCP scenarios RCP 2.6, 4.5 and 8.5.



Appendix A. Appendix to Chapter 3 - Geostatistical bias correction of RCM
precipitation

133

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec0

100

200

300

400

M
e
a
n
 m

o
n
th

ly
 p

re
ci

p
it

a
ti

o
n

 [
m

m
/m

o
n
]

(b)

Min(Ensemble of all RCMs - RCP2.6_BC)

Max(Ensemble of all RCMs - RCP2.6_BC)

Mean(Ensemble of all RCMs - RCP2.6_BC)

Q25% (Ensemble of all RCMs - RCP2.6_BC)

Q75% (Ensemble of all RCMs - RCP2.6_BC)

Nearest Obs

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec0

100

200

300

400

M
e
a
n
 m

o
n
th

ly
 p

re
ci

p
it

a
ti

o
n

 [
m

m
/m

o
n
]

(a)

Figure A.1: Mean monthly sum of precipitation averaged over 173
grid cells - bias-corrected RCP 2.6 scenario - a: near future (2020-

2050), b: far future (2070-2100).
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Figure A.2: Mean monthly sum of precipitation averaged over 173
grid cells - bias-corrected RCP 4.5 scenario - a: near future (2020-

2050), b: far future (2070-2100).
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Figure A.3: Model-averaged ∆DOY in the near future (2020-2050) for
RCP 2.6 (a), RCP 4.5 (b) and RCP 8.5 (c).
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Figure A.4: Model-averaged ∆DOY in the far future (2070-2100) for
RCP 2.6 (a), RCP 4.5 (b) and RCP 8.5 (c).
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Appendix to Chapter 5 -
Copula-based temporal
disaggregation of RCM
precipitation
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Figure B.1: Mean ratio of valid measurements of the 16 gauges in the
proximity of Freiburg (1951-2013).
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Figure B.2: Fitted cross correlograms of observed (1951-2013), disag-
gregated (1980-2009) and shuffled (1980-2009, n = 0, m = 0) 5 minute
precipitation with a temporal lag of τ = 0 min in the region of Freiburg

in the seasons DJF (a), MAM (b), JJA (c) and SON (d).
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Figure B.3: Fitted auto correlograms of observed (1951-2013), disag-
gregated (1980-2009) and shuffled (1980-2009, n = 0, m = 0) 5 minute
precipitation in the region of Freiburg in the seasons DJF (a), MAM

(b), JJA (c) and SON (d).
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Figure B.4: Fitted cross correlograms of observed (1951-2013) and
bias corrected (1980-2009) hourly precipitation with a temporal lag of
τ = 0 min in the region of Freiburg in the seasons DJF (a), MAM (b),

JJA (c) and SON (d).
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Figure B.5: Fitted auto correlograms of observed (1951-2013) and bias
corrected (1980-2009) hourly precipitation in the region of Freiburg in

the seasons DJF (a), MAM (b), JJA (c) and SON (d).
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Appendix to Chapter 6 -
Multivariate Vine Copula-based
Bias Correction

Station Number Name Longitude [◦] Latitude [◦] Elevation [m]
1 Reiteralm 1 12.81 47.65 1755
2 Reiteralm 2 12.81 47.65 1670
3 Reiteralm 3 12.81 47.65 1615
4 Schönau 12.98 47.61 617
5 Jenner 1 13.02 47.59 1200
6 Höllgraben 13.01 47.62 653
7 Kühroint 12.96 47.57 1407
8 Funtenseetauern 12.97 47.49 2445
9 Hinterberghorn 12.92 47.55 2002
10 Trischuebel 12.91 47.53 1764
11 Schlunghorn 13.04 47.55 2155
12 Steinernes Meer 12.92 47.50 1893
13 Watzmannhaus 12.93 47.57 1919
14 Blaueis 12.87 47.59 1651
15 Hinterseeau 12.83 47.59 840
16 Brunftbergtiefe 12.88 47.55 1238
17 Lofer 12.70 47.58 625
18 Loferer Alm 12.64 47.60 1623
19 Salzburg-Flughafen 13.00 47.80 430
20 Schmittenhöhe 12.74 47.33 1973
21 Golling 13.18 47.59 491
22 Saalbach 12.65 47.39 974

Table C.1: Locations of the 22 meteorological measurement stations
in the Berchtesgaden National Park.
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