170 research outputs found

    Geometric Spanning Cycles in Bichromatic Point Sets

    Full text link
    Given a set of points in the plane each colored either red or blue, we find non-self-intersecting geometric spanning cycles of the red points and of the blue points such that each edge of the red spanning cycle is crossed at most three times by the blue spanning cycle and vice-versa

    Linear transformation distance for bichromatic matchings

    Full text link
    Let P=BRP=B\cup R be a set of 2n2n points in general position, where BB is a set of nn blue points and RR a set of nn red points. A \emph{BRBR-matching} is a plane geometric perfect matching on PP such that each edge has one red endpoint and one blue endpoint. Two BRBR-matchings are compatible if their union is also plane. The \emph{transformation graph of BRBR-matchings} contains one node for each BRBR-matching and an edge joining two such nodes if and only if the corresponding two BRBR-matchings are compatible. In SoCG 2013 it has been shown by Aloupis, Barba, Langerman, and Souvaine that this transformation graph is always connected, but its diameter remained an open question. In this paper we provide an alternative proof for the connectivity of the transformation graph and prove an upper bound of 2n2n for its diameter, which is asymptotically tight

    Flip Distance to some Plane Configurations

    Get PDF
    We study an old geometric optimization problem in the plane. Given a perfect matching M on a set of n points in the plane, we can transform it to a non-crossing perfect matching by a finite sequence of flip operations. The flip operation removes two crossing edges from M and adds two non-crossing edges. Let f(M) and F(M) denote the minimum and maximum lengths of a flip sequence on M, respectively. It has been proved by Bonnet and Miltzow (2016) that f(M)=O(n^2) and by van Leeuwen and Schoone (1980) that F(M)=O(n^3). We prove that f(M)=O(n Delta) where Delta is the spread of the point set, which is defined as the ratio between the longest and the shortest pairwise distances. This improves the previous bound for point sets with sublinear spread. For a matching M on n points in convex position we prove that f(M)=n/2-1 and F(M)={{n/2} choose 2}; these bounds are tight. Any bound on F(*) carries over to the bichromatic setting, while this is not necessarily true for f(*). Let M\u27 be a bichromatic matching. The best known upper bound for f(M\u27) is the same as for F(M\u27), which is essentially O(n^3). We prove that f(M\u27)<=slant n-2 for points in convex position, and f(M\u27)= O(n^2) for semi-collinear points. The flip operation can also be defined on spanning trees. For a spanning tree T on a convex point set we show that f(T)=O(n log n)

    The alternating path problem revisited

    Get PDF
    It is well known that, given n red points and n blue points on a circle, it is not always possible to find a plane geometric Hamiltonian alternating path. In this work we prove that if we relax the constraint on the path from being plane to being 1-plane, then the problem always has a solution, and even a Hamiltonian alternating cycle can be obtained on all instances. We also extend this kind of result to other configurations and provide remarks on similar problems.Ministerio de Economía y CompetitividadGeneralitat de CatalunyaEuropean Science FoundationMinisterio de Ciencia e InnovaciónJunta de Andalucía (Consejería de Innovación, Ciencia y Empresa

    Disjoint compatibility graph of non-crossing matchings of points in convex position

    Get PDF
    Let X2kX_{2k} be a set of 2k2k labeled points in convex position in the plane. We consider geometric non-intersecting straight-line perfect matchings of X2kX_{2k}. Two such matchings, MM and MM', are disjoint compatible if they do not have common edges, and no edge of MM crosses an edge of MM'. Denote by DCMk\mathrm{DCM}_k the graph whose vertices correspond to such matchings, and two vertices are adjacent if and only if the corresponding matchings are disjoint compatible. We show that for each k9k \geq 9, the connected components of DCMk\mathrm{DCM}_k form exactly three isomorphism classes -- namely, there is a certain number of isomorphic small components, a certain number of isomorphic medium components, and one big component. The number and the structure of small and medium components is determined precisely.Comment: 46 pages, 30 figure

    Geometric Planar Networks on Bichromatic Points

    Get PDF
    We study four classical graph problems – Hamiltonian path, Traveling salesman, Minimum spanning tree, and Minimum perfect matching on geometric graphs induced by bichromatic ( Open image in new window and Open image in new window ) points. These problems have been widely studied for points in the Euclidean plane, and many of them are NP -hard. In this work, we consider these problems in two restricted settings: (i) collinear points and (ii) equidistant points on a circle. We show that almost all of these problems can be solved in linear time in these constrained, yet non-trivial settings.acceptedVersio

    Height representation of XOR-Ising loops via bipartite dimers

    Get PDF
    The XOR-Ising model on a graph consists of random spin configurations on vertices of the graph obtained by taking the product at each vertex of the spins of two independent Ising models. In this paper, we explicitly relate loop configurations of the XOR-Ising model and those of a dimer model living on a decorated, bipartite version of the Ising graph. This result is proved for graphs embedded in compact surfaces of genus g. Using this fact, we then prove that XOR-Ising loops have the same law as level lines of the height function of this bipartite dimer model. At criticality, the height function is known to converge weakly in distribution to a Gaussian free field. As a consequence, results of this paper shed a light on the occurrence of the Gaussian free field in the XOR-Ising model. In particular, they prove a discrete analogue of Wilson's conjecture, stating that the scaling limit of XOR-Ising loops are "contour lines" of the Gaussian free field.Comment: 41 pages, 10 figure

    Algorithmic and Combinatorial Results in Selection and Computational Geometry

    Get PDF
    This dissertation investigates two sets of algorithmic and combinatorial problems. Thefirst part focuses on the selection problem under the pairwise comparison model. For the classic “median of medians” scheme, contrary to the popular belief that smaller group sizes cause superlinear behavior, several new linear time algorithms that utilize small groups are introduced. Then the exact number of comparisons needed for an optimal selection algorithm is studied. In particular, the implications of a long standing conjecture known as Yao’s hypothesis are explored. For the multiparty model, we designed low communication complexity protocols for selecting an exact or an approximate median of data that is distributed among multiple players. In the second part, three computational geometry problems are studied. For the longestspanning tree with neighborhoods, approximation algorithms are provided. For the stretch factor of polygonal chains, upper bounds are proved and almost matching lower bound constructions in \mathbb{R}^2 and higher dimensions are developed. For the piercing number τ and independence number ν of a family of axis-parallel rectangles in the plane, a lower bound construction for ν = 4 that matches Wegner’s conjecture is analyzed. The previous matching construction for ν = 3, due to Wegner himself, dates back to 1968
    corecore