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—— Abstract

We study an old geometric optimization problem in the plane. Given a perfect matching M
on a set of n points in the plane, we can transform it to a non-crossing perfect matching by a
finite sequence of flip operations. The flip operation removes two crossing edges from M and
adds two non-crossing edges. Let f(M) and F(M) denote the minimum and maximum lengths
of a flip sequence on M, respectively. It has been proved by Bonnet and Miltzow (2016) that
f(M) = O(n?) and by van Leeuwen and Schoone (1980) that F(M) = O(n®). We prove that
f(M) = O(nA) where A is the spread of the point set, which is defined as the ratio between the
longest and the shortest pairwise distances. This improves the previous bound for point sets with
sublinear spread. For a matching M on n points in convex position we prove that f(M) =n/2—1
and F(M) = ("42); these bounds are tight.

Any bound on F(-) carries over to the bichromatic setting, while this is not necessarily true
for f(-). Let M’ be a bichromatic matching. The best known upper bound for f(M’) is the same
as for F(M'), which is essentially O(n®). We prove that f(M’) < n — 2 for points in convex
position, and f(M’) = O(n?) for semi-collinear points.

The flip operation can also be defined on spanning trees. For a spanning tree T on a convex
point set we show that f(T) = O(nlogn).

2012 ACM Subject Classification Theory of computation — Computational geometry, Math-
ematics of computing — Discrete mathematics

Keywords and phrases flip distance, non-crossing edges, perfect matchings, spanning trees

Digital Object Identifier 10.4230/LIPIcs.SWAT.2018.11

1 Introduction

A geometric graph is a graph whose vertices are points in the plane, and whose edges are
straight-line segments connecting the points. All graphs that we consider in this paper are
geometric. A graph is plane if no pair of its edges cross each other. Let n > 2 be an even
integer, and let P be a set of n points in the plane that is in general position (no three points
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(c) (d)

Figure 1 (a) Two ways to flip a crossing in a monochromatic matching. (b) The only way to flip
a crossing in a bichromatic matching. (c) One way to flip a crossing in a monochromatic tree. (d)
No way to flip a crossing in a bichromatic Hamiltonian cycle.

on a line). For two points a and b in the plane, we denote by ab the segment with endpoints
a and b. Let M be a perfect matching on P. If two edges in M cross each other, we can
remove this crossing by a flip operation. The flip operation (or flip for short) removes two
crossing edges and adds two non-crossing edges to obtain a new perfect matching. In other
words, if two segments ab and cd cross, then a flip removes ab and cd from the matching, and
adds either ac and bd, or ad and bc to the matching; see Figure 1(a). Every flip decreases
the total length of the edges of M, and thus, after a finite sequence of flips, M can be
transformed to a plane perfect matching. This process of transforming a crossing matching
to a plane matching is referred to as uncrossing or untangling a matching. Motivated by this
old folklore result, we investigate the minimum and the maximum lengths of a sequence of
flips to reach a plane matching.

To uncross a perfect matching M, we say that the sequence (M=My, My, ..., M) is a
valid flip sequence if M, is obtained from M; by a single flip, and Mj, is plane. The number
k denotes the length of this flip sequence. We define f(M) to be the minimum length of any
valid flip sequence to uncross M, that is, the minimum number of flips required to transform
M to a plane perfect matching. We define F(M) to be the maximum length of any valid flip
sequence. As for F(M), one can imagine that an adversary imposes which of the two flips to
apply on which of the crossings.

In the bichromatic setting, we are given n/2 red and n/2 blue points and a bichromatic
matching, that is a perfect matching in which the two endpoints of every segment have
distinct colors. Contrary to the monochromatic setting, there is only one way to flip two
crossing bichromatic edges; see Figure 1(b). In the bichromatic setting the adversary can only
impose the crossing to flip. Thus, any upper bound on F(M) for monochromatic matchings
carries over to bichromatic matchings; this statement is not necessarily true for f(M).

The flip operation can be defined for a spanning tree (resp. a Hamiltonian cycle) analog-
ously, that is, we remove a pair of crossing edges and add two other edges so that the graph
remains a spanning tree (resp. a Hamiltonian cycle) after this operation. We define f(-) and
F(-) for spanning trees and Hamiltonian cycles, analogously. As shown in Figure 1(c), there
is only one way to flip a crossing in a spanning tree (resp. a Hamiltonian cycle). Contrary
to the bichromatic matching, it is not always possible to flip a crossing in a bichromatic
spanning tree nor in a bichromatic Hamiltonian cycle; see Figure 1(d).
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1.1 Related Work

The most relevant works are by van Leeuwen and Schoone [21], and Oda and Watanabe [17]
for Hamiltonian cycles, and by Bonnet and Miltzow [7] for matchings. They proved, with
elegant arguments, the following results.

» Theorem 1 (van Leeuwen and Schoone, 1981 [21]). For every Hamiltonian cycle H on n
points in the plane we have that F(H) = O(n?).

» Theorem 2 (Oda and Watanabe, 2007 [17]). For every Hamiltonian cycle H on n points
in the plane in convex position we have that f(H) < 2n —17.

As for a lower bound, they presented a Hamiltonian cycle H on n > 7 points in the plane
in convex position for which f(H) > n — 2.

» Theorem 3 (Bonnet and Miltzow, 2016 [7]). For every perfect matching M on a set of n
points in the plane in general position we have that f(M) = O(n?).

The O(n?) upper bound of Theorem 1 carries over to perfect matchings. As for lower
bounds, Bonnet and Miltzow [7] presented two matchings M; and M; such that f(M;) = Q(n)
and F (M) = Q(n?). The bound F(M) = O(n?®) holds even if M is a bichromatic matching,
while the proof of f(M) = O(n?) does not generalize for the bichromatic setting.

An alternate definition of an edge flip in a graph is the operation of removing one edge

and inserting a different edge such that the resulting graph remains in the same graph class.

The edge flip operation has been studied for many different graph classes, in particular,
for two given graphs with an equal number of vertices and edges, the number of edge flips
required to transform one into another. See the survey by Bose and Hurtado [8] on edge flips
in planar graphs both in the combinatorial and the geometric settings, and see [3, 9, 14, 16]
for edge flips in triangulations.

A related problem is the compatible matching problem in which we are given two perfect
matchings on the same point set and the goal is to transform one to another by a sequence
of compatible matchings (two perfect matchings, on the same point set, are said to be
compatible if they are edge disjoint and their union is non-crossing). See [1, 2, 4, 15] for
recent work on compatible matchings, and [18] for its extension to compatible trees.

1.2 QOur Contribution

In this paper we decrease the gap between lower and upper bounds for f(-) and F(-) for
some input configurations. In Section 2 we show that for every perfect matching M, on a set
P of n points in the plane, we have f(M) = O(nA) where A is the spread of P.

Assume that P is in convex position. In Section 3 we show that for every perfect matching
M on P we have that f(M) < n/2—1and F(M) < ("42) These bounds are tight as Bonnet
and Miltzow [7] showed the existence of two perfect matchings M; and M, on n points in
convex position such that f(M7) > n/2—1and F(Ms) > ("42) We also prove that for every
spanning tree 7' on P we have that f(T) = O(nlogn).

In Section 4 we study bichromatic matchings on special point sets. Assume that the
points of P are colored red and blue. We prove that, if P is in convex position, then for
every perfect bichromatic matching M on P we have that f(M) < n — 2. Also, we prove
that, if P is semi-collinear, i.e., the blue points are on a straight line, then for every perfect

bichromatic matching M on P we have that f(M) = O(n?). Table 1 summarizes the results.
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Table 1 Upper bounds on the minimum and maximum number of flips (A is the spread).

minimum # of flips | f(-)-general position f(-)-convex position

matchings o) 7] n/2—1 Theorem 11
O(nA)  Theorem 4

bichromatic matchings | O(n®) [21] n—2 Theorem 15

trees O(n?) [21] O(nlogn) Theorem 14

Hamiltonian cycles O(n?) [21] 2n -7 [17]

bichromatic matching on semi-collinear points f(-) = O(n?)  Theorem 17 ‘

maximum # of flips | F(-)-general position F(-)-convex position
matchings/trees/cycles | O(n®) [21] ("42) Theorem 11

1.3 Preliminaries

Let a and b be two points in the plane. We denote by ab the straight line-segment between a
and b, and by ab the line through a and b. Let P be a set of points in the plane in convex
position. For two points p and ¢ in P we define the depth of the segment pg as the minimum
number of points of P\ {p, ¢} on either side of pg. A boundary edge is a segment of depth
zero, i.e., an edge of the convex hull of P. An edge e in a graph G is said to be free if e is
not crossed by other edges of G.

2  Minimum Number of Flips

The spread A of a set of points (also called the distance ratio [11]) is the ratio between the
largest and the smallest interpoint distances. It is well known that the spread of a set of n
points in the plane is Q(y/n) (see e.g., [19]). In this section, we prove an upper bound on
the minimum length of a flip sequence in terms of n and A. In fact we prove the following
theorem.

» Theorem 4. For every perfect matching M on a set of n points in the plane in general
position we have that f(M) = O(nA), where A is the spread of the point set.

For point sets with spread o(n), the upper bound of Theorem 4 is better than the O(n?)
upper bound of Theorem 3. For example, for dense point sets, which have spread O(y/n),
Theorem 4 gives an upper bound of O(n+/n) on the number of flips. According to [13], dense
point sets commonly appear in nature, and they have applications in computer graphics.
Valtr and others [13, 19, 20] have established several combinatorial bounds for dense point
sets that improve corresponding bounds for arbitrary point sets.

Let P be a set of n points in the plane with spread A. Let M be a perfect matching on
P. We prove that M can be untangled by O(nA) flips, i.e., f(M) = O(nA). The main idea
of our proof is as follows. Let px be the minimum distance between any pair of points in P.
Let |pg| denote the Euclidean distance between two points p,q € P. Since P has spread A,
we have |pg| < pA. For the matching M we define its weight, w(M), to be the total length
of its edges. Since M has n/2 edges,

w(M) =" |pg| = O(npA). (1)
pgeM

Recall that a pair of crossing segments can be flipped in two different ways as depicted in
Figure 1(a). In the remainder of this section we show that one of these two flip operations
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(a) (b)

Figure 2 Illustrations of the proofs of (a) Lemma 7 and (b) Lemma 6.

reduces w(M) by at least tu, for some constant ¢ > 0. Combining this with Equality (1)
implies the existence of a flip sequence of length O(nA) that uncrosses M.

Take any two crossing edges pg and rs in M, and let o be their intersection point. We
flip pg and s to ps and rq, if Zrog < 7/2, and to pr and g¢s, otherwise. In other words, we
flip pq and rs to the two edges that face the two smaller angles at 0. In Lemma 7 we prove
that this flip reduces the length of edges by at least tu', for some constant ¢ > 0, where u’ is
the minimum distance between any pair of points in {p, ¢,r, s}. Since the minimum distance
between pairs in {p, q,r, s} is at least the minimum distance between pairs in P, our result
follows. We use the following two lemmas in the proof of Lemma 7; we prove these two
lemmas later.

» Lemma 5. Let ab and cd be two crossing segments, and let o be their intersection point.
Let 1" be the minimum distance between any pair of points in {a,b,c,d}. If Zcob < /3,
then

(lab| + |ed]) — (lad| + |cb]) > u".

» Lemma 6. Let ab and cd be two perpendicular segments that cross each other. Let p"
be the minimum distance between any pair of points in {a,b,c,d}. Then for any constant
t' < (2 —+/2)/2 it holds that

(lab| + |ed]) — (lad] + |cb]) > t'n".

» Lemma 7. Let pg and rs be two crossing segments, and let o be their intersection point.
Let i be the minimum distance between any pair of points in {p,q,r,s}. If Zroq < 7/2, then
for some constant t it holds that

(Ipgl +Irsl) — (Ips| + |rql) > tu'.

Proof. If Zrog < w/3, then our claim follows, with ¢ = 1, from Lemma 5 where p, ¢, r, s play
the roles of a, b, ¢, d, respectively. Assume that Zroq > m/3. Observe that Zroq = Zpos.
After a suitable rotation and/or a horizontal reflection and/or relabeling assume that
Ipg| = |rs|, pq is horizontal, p is to the left of ¢, and r lies above pg. Rotate rs counterclockwise
about o, while keeping o on this segment, until rs is vertical. See Figure 2(a). After this
rotation, let 7’ and s’ denote the two points that correspond to r and s, respectively.

» Claim 8. |r'p| > |rp|/2 and |gs’| > |gs|/2.

We prove only the first inequality of this claim; the proof of the second inequality is
analogous. Since r'p is the hypotenuse of the right triangle Ar’op, we have |r'o| < |r'p|.

11:5
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Since Ar'or is isosceles and Zr'or < /6, we have |rr'| < |r'o|, and thus, |r7'| < |r'p|. By
the triangle inequality we have |rp| < |rr/| + |#'p| < 2|r'p|, which implies |r'p| > |rp|/2. This
proves Claim 8.

Observe that |r'q| > |rql, |ps’| = |ps|, |r's’| = |rs|, and by Claim 8, |r'p| > |rp|/2 and
lgs’| = |gs|/2. Thus, the minimum distance u”” between any pair of points in {p, ¢,r’,s'} is
not smaller than half the minimum distance between any pair of points in {p, q,r, s}, i.e.,
W > p'/2. Lemma 6 implies that (|pg| + |'s'|) — (|ps’| + |7'q]) = t'p”’, for some constant
t' > 0, where p,q,r’,s play the roles of a,b,c,d, respectively. We will see in the proof of
Lemma 6 that this inequality is valid for any positive constant ¢’ < (2 — v/2)/2. Combining
these inequalities, we get

(Ipal + Irsl) = (Ips| + Iral) = (lpal + |r's"]) = (Ips'[ + Ir'al)

22 242
>z

Therefore, the claimed inequality in the statement of this lemma is valid for any positive
constant t < (2 — v/2)/4. <

» Note 9. The constants t' = (2 —/2)/2 and t = (2 — \/2)/4 in the proofs of Lemmas 6
and 7 are not optimized. To keep our proofs short and simple, we avoid optimizing these
constants.

» Note 10. The angle constraint in the statement of Lemma 7 cannot be dropped; the figure
to the right shows two crossing segments pq and rs for which (|pq| + |rs|) — (|ps| + |rq|) tends
to zero as Zroq tends to .

Proof of Lemma 5. We recall the simple fact that the largest side of every triangle always
faces the largest angle of the triangle. Since Zcob < m/3, we have that Zcbo > /3 or
Zbco > 7/3. Without loss of generality assume that Zbco > 7/3, and thus, Zbco > Zcob.
This implies that |ob| > |cb|. By a similar reasoning, we get that |oa| > |ad| or |od| > |ad|. If
loa| = |ad|, then

|abl + |cd| — (lad| + |cbl) = (loal + |obl) + |ed| — (lad| + |eb]) > |ed| > p",

and if |od| > |ad|, then

"

Jab|+ led| — (Jad] +|cbl) = (Joa| + |ob]) + (Joc| + lod]) — (|ad| +|cb]) > |oa| +|oc| > |ac| > 4. <

Proof of Lemma 6. Refer to Figure 2(b) for an illustration of the proof. Let o be the
intersection point of ab and cd. Let o' be the intersection point between cb and the line
that is perpendicular to ¢b. Without loss of generality assume that ob is longer than oc,
ie., |ob] = |oc|. Then Zocb > Zobe, and thus, Zocb > w/4. Since Zoo'c = /2 and
Zoco' = ZLoch = /4, we get that Zcoo' is the smallest angle in the triangle Aoco’, and thus,
o'c is its smallest side. By doing some simple algebra we get that |o'c| < |oc|/v/2.

Let o” be the intersection point between ad and the line that is perpendicular to ad. We
consider two cases depending on which of oa and od is longer.
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loa| > |od|: By a similar reasoning as for ob and oc we get that |o”d| < |od|/+/2. Observe
that |ob] > |0o'b| and |oa| > |0”a|. By combining these inequalities we get

(lab] + |ed]) — (Jad| + |cb]) = (loal + [0bl) + (loc| + |od|) — (0" a| +[o"d]) — (Jo'c| +[o'b])

d
> Joc| + lod| — |o"d| - |o'e| > [oc| + Jod| — 1241 _ lod

V2 V2
1 2 -2 2-v2 ,
= (1—\/§> (loc| + lod]) = 5 [

d| >

loa| < |od|: Again, by a similar reasoning as for ob and oc we get that |o”a| < |oal/v/2.

Also, by a similar reasoning as in the previous case we get

loal |oc|
ab| + |cd|) — (|ad| + |cb|) = |oc| + |oa| — —= — —
2-2 2—-v2 "

=g el >

Therefore, the claimed inequality in the statement of this lemma is valid for any positive
constant ¢’ < (2 — \@)/2 <

3 Points in Convex Position

In this section we study the problem of uncrossing perfect matchings and spanning trees
on points in convex position. For perfect matchings, Bonnet and Miltzow [7] exhibited
two perfect matchings M; and M, on n points in the plane in convex position such that
f(My) 2 n/2 =1 and F(My) > ("42) The following theorem provides matching upper
bounds for f(-) and F(-).

» Theorem 11. For every perfect matching M on a set of n points in the plane in conver
position we have f(M) < § —1 and F(M) < (”42)

Proof. The matching M contains n/2 edges. First we prove that F(M) < (néz) Notice
that the number of crossings between the edges of M is at most ("52) We show that any
flip reduces this number by at least one, and thus, our claim follows. Take any pair ab and
cd of crossing edges of M. Flip this crossing, and let ac and bd be the new edges, after a
suitable relabeling. After this flip operation, the crossing between ab and cd disappears.
Moreover, any edge of M that crosses ac (or bd) used to cross ab or cd, and any edge of M
that crosses both ac and bd used to cross both ab and cd. Therefore, the total number of
crossings reduces by at least one, and thus, our claim follows.

Now, we prove, by induction on n, that f(M) < n/2 — 1. If n = 2, then M has only one
edge, and thus, f(M) = 0. Assume that n > 4. First, we show how to transform M, by at
most one flip, to a perfect matching M’ containing a boundary edge, i.e., an edge of the
boundary of the convex hull. Let p1,...,p, be the points in clockwise order. Let p;p; be an
edge of M with minimum depth m. If m = 0, then M’ = M is a matching in which p;p; is
a boundary edge. Suppose that m > 1. Without loss of generality assume that i = 1 and
j =m+2. Let p; be the point that is matched to ps by M. Because of the minimality of m,
the edge papi crosses p1Pm4o. By flipping popr and p1pm12 to p1pe and pp,1opk We obtain
M’ in which pyps is a boundary edge. Let M’ be the matching on n — 2 points obtaining
from M’ by removing a boundary edge. By the induction hypothesis, it holds that

f(M)<1+f(M")<1+(";2—1>:Z-L <

11:7
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(b)

Figure 3 (a) Ilustration of the proof of Lemma 12: Flipping pi1pm+2 and pm+t1prs t0 p1pm+1
and pmy2pys, and then flipping p1pm+1 and papr to p1p2 and prpm+1. (b) Mlustration of the proof
of Lemma 13: vv’ is the first counterclockwise edge incident on v that is crossed by some edges
incident on u, and uu’ is the first counterclockwise edge incident on u that crosses vv'.

In the rest of this section we study spanning trees. The argument of [21] for Hamiltonian
cycles also extends to spanning trees, that is, if 73 is a spanning tree on n points in the plane,
then F(T;) = O(n®). Also, by an argument similar to the one in the proof of Theorem 11,
it can easily be shown that for every spanning tree 7" on n points in the plane in convex
position we have that F(T) = O(n?). In this section we prove that f(T) = O(nlogn). Recall
that a boundary edge is an edge of the boundary of the convex hull.

» Lemma 12. Any spanning tree on a point set in convex position can be transformed, by at
most two flips, into a spanning tree containing a boundary edge.

Proof. Let T be a spanning tree on n points in the plane in convex position, and let p1,...,p,
be the points in clockwise order. Let p;p; be an edge of T with minimum depth m (recall
the definition of depth from Section 1.3). If m = 0, then p;p; is a boundary edge. Suppose
that m > 1. Without loss of generality assume that ¢ = 1 and j = m + 2. Because of the
minimality of m, all edges of T that are incident on pa, ..., Pmy1 Cross P1Pmt2. We consider
two cases with m =1 and m > 1.
m = 1. In this case p;,,+1 = p2 and p,,+2 = p3. Let & be the path between ps to ps in T
and let pi be the vertex that is adjacent to po in §. If § contains py, then we flip p1p3 and
popr to p1p2 and pspg; this gives a spanning tree in which pips is a boundary edge. If §
does not contain p;, then we flip p1p3 and popy to paps and pipg; this gives a spanning
tree in which pops is a boundary edge.
m > 1. Let § be the path between py to py,+2 in T', and let p; be the vertex that is
adjacent to pg in 0. If 0 contains p;, then we flip p1pm+2 and papr to p1p2 and ppy2pk;
this gives the a spanning tree in which p;ps is a boundary edge. Assume that § does not
contain p;. Let ¢’ be the path between p,,11 to p1 in T, and let pys be the vertex that is
adjacent to pp,o1 in ¢'; it may be that &' = k. If §’ contains p,,12, then we flip p1pmao
and pm+1Pk 10 Pmt1Pm2 and pipys; this gives a spanning tree in which p,4+1pm+2 is
a boundary edge. Assume that §’ does not contain p,,+2. See Figure 3(a). In this case
we have that k' # k, because otherwise T would have a cycle. First we flip p1pm12 and
Pm41Pk’ t0 P1Dmy1 and Py yopi, then we flip p1py, 11 and papy to p1p2 and prpy,41; this
gives a spanning tree in which p;ps is a boundary edge. |

For the following lemma we do not need the vertices to be in convex position.

» Lemma 13. Let T be a spanning tree containing an edge uwv such that every other edge is
incident on either u orv. Then f(T) < min(deg (u),deg (v)) — 1, and this bound is tight.
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Proof. After a suitable rotation and/or a horizontal reflection and/or relabeling assume that
v is horizontal, u is to the left of v, and that deg (v) < deg (u). The edges that are incident
on points above uv do not cross the edges incident on points below wv. Thus, the crossings
above wv can be handled independently of the ones below uv. Because of symmetry, we
describe how to handle the crossings above wo. See Figure 3(b). We show how to increase, by
one flip, the number of free edges that are incident on v. By repeating this process, our claim
follows. To that end, let v’ be the first vertex, in counterclockwise order, that is adjacent
to v, and such that vv’ is crossed by at least one edge incident on u. Let u’ be the first
vertex, in counterclockwise order, that is adjacent to u, and such that uu’ crosses vv'; see
Figure 3(b). Flip this crossing to obtain new edges vu’ and wv’. The edge vu’ is free, because
otherwise uu’ cannot be the first counterclockwise edge that crosses vv’. Moreover, any edge
that is crossed by uv’ used to be crossed by uu’. Thus, the number of free edges that are
incident on v increases by at least one. By repeating this process, after at most deg (v) — 1
iterations, all incident edges on v become free (notice that the edge uv is already free); this
transforms 7T to a plane spanning tree. This proves the first statement of the lemma.
Recall that the statement of this lemma is not restricted to points in convex position,
and thus, the vertices of our tight example do not need to be in convex position. To verify
the tightness of the bound, consider a tree in which every edge incident on v (except uv) is
crossed by exactly one of the edges incident on u, and every edge incident on u crosses at most
one of the edges incident on v. This tree needs exactly deg (v) — 1 flips to be transformed to
a plane tree. |

» Theorem 14. For every spanning tree T on n points in the plane in convex position we
have that f(T) = O(nlogn).

Proof. We present a recursive algorithm that uncrosses T by O(nlogn) flips. As for the
base case, if n < 3, then T is plane, and thus, no flip is needed. Assume that n > 4. By
Lemma 12, by at most two flips, we can transform T to a tree T’ containing a boundary
edge uv. Contract the edge wv and denote the resulting tree with n — 1 vertices by T"; this
can be done by removing the vertex u together with its incident edges, and then connecting
its neighbors, by straight-line edges, to v. We call every such new edge a u-edge. Recursively
uncross 7" with f(T") flips. During the uncrossing process of 7", whenever we flip/remove
a u-edge, we call the new edge that gets connected to v a u-edge. After uncrossing 7" we
return the vertex u back and connect it to v. Then we remove every u-edge vv’, which is
incident on v, and connect v’ to u. In the resulting tree, every crossing is between an edge
that is incident on u and an edge that is incident on v. Thus, after at most 2+ f(T") flips, T
can be transformed into a tree in which any two crossing edges are incident on u and v. Then
by Lemma 13, we can obtain a plane tree by performing at most min(deg(u),deg(v)) — 1
more flips. Notice that the flip operation does not change the degree of vertices, and thus,
every vertex in the resulting tree has the same degree as in T'. Therefore, we have that

J(T) <2+ F(T") + min(deg (u), deg (v)) - 1
— 1+ min(deg (u), deg (v)) + £(T").

It remains to show that f(7') = O(nlogn). To that end, we interpret the above recursion
by a union-find data structure with the linked-list representation and the weighted-union
heuristic [12, Chapter 21]. The number of flips in the above recursion can be interpreted
as the total time for union operations as follows: each time that we contract an edge uv
and recurse on a smaller tree we perform at most 1 4+ min(deg (u), deg (v)) flips. Consider
every vertex z of T as a set with deg (x) elements. Also, assume that all the elements of
these sets are pairwise distinct. Thus, we have n disjoint sets of total size 2(n — 1); this is
coming from the fact that 7" has n — 1 edges and its total vertex degree is 2(n — 1). The
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Pk a

Figure 4 Illustration of the proof of Theorem 15. Flipping bb’ and pipm+2 to b'pmie and bp,
and then flipping bp1 and aa’ to pi1a’ and ab.

contraction of an edge uv can be interpreted as a union operation of the sets u and v whose
cost (number of flips) is at most 1 4+ min(|ul, |v|), where |z| denotes the size of the set x.
From the union-find data structure we have that the cost of a sequence of s operations on
m elements is O(s + mlogm). In our case, the number m of elements is 2(n — 1), and the
number s of union operations (edge contractions) is n — 3 (no contraction is needed when
we hit the base case). Thus, it follows that the total cost (the total number of flips) is
O(nlogn). <

4 Bichromatic Matchings

In this section we study the problem of uncrossing perfect bichromatic matchings for points
in convex position and for semi-collinear points. Let n > 2 be an even integer, and let P be a
set of n points in the plane, /2 of which are colored red and n/2 are colored blue. If P is in
general position, then for any bichromatic matching M on P, the best known upper bound
for both f(M) and F(M) is the O(n?) bound that has been proved in [7, 21]. If P is in
convex position, the n/2 — 1 and (”42) lower bounds that are shown in [7] for f(-) and F'(-),
respectively, in the monochromatic setting, also hold in the bichromatic setting. Theorem 11
implies that the (”42) bound for F(-) is tight. The following theorem gives an upper bound
on f(-) for points in convex position.

» Theorem 15. For every perfect bichromatic matching M on n points in the plane in
convex position we have that f(M) <n— 2.

Proof. Our proof is by induction on n. If n = 2, then f(M) = 0. Assume that n > 4. First
we show how to transform M, by at most two flips, to a perfect bichromatic matching M’
containing a boundary edge. Let p1,...,p, be the points in clockwise order. Let p;p; be an
edge of M with minimum depth m. If m = 0, then M’ = M is a matching in which p;p;
is a boundary edge. Suppose that m > 1. Without loss of generality assume that i = 1,
j=m+ 2, py is red, and p,,4+2 is blue as in Figure 4. Let p; and pps be the points that
are matched to py and p,,+1, respectively; it may be that m + 1 =2 and k' = k. Because
of the minimality of m, all edges that are incident on points ps, ..., pm+1 Cross p1pmia. If
p2 is blue, then by flipping p1pma2 and popr to pips and pp,ropr we obtain M’ in which
p1p2 is a boundary edge. Assume that pg is red. If p,,41 is red, then by flipping pipm+o
and Py11Pk $0 Prt1Pm+2 and piprr we obtain M’ in which p,,4+1Pm+2 is a boundary edge.
Assume that p,,+1 is blue. See Figure 4. To this end, ps and p,,+1 have different colors, and
thus, m+ 1 # 2 and k" # k.
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Figure 5 Reappearance of the crossing between br and b'r’.

For an illustration of the rest of the proof, follow Figure 4. The sequence po, ..., Pm+1
starts with a red point and ends with a blue point. Thus, in this sequence there are two
points of distinct colors, say a and b, that are consecutive. Let b be the first blue point after
p1. Let @’ and b’ be the two points that are matched to a and b respectively. By flipping bb’
and p1pmao t0 b'ppao and bpy, and then flipping bp; and aa’ to p1a’ and ab we obtain M’
in which ab is a boundary edge.

Let M” be the bichromatic matching on n — 2 points obtaining from M’ by removing a
boundary edge. By the induction hypothesis, it holds that

FM) <2+ f(M")<2+((n—2)—2)=n—2. <

In the rest of this section we study the case where P is semi-collinear, i.e., its blue
points are on a straight line and its red points are in general position. Semi-collinear points
have been studied in may problems related to plane matchings (see e.g., [5, 6, 10]). We

prove that for every perfect bichromatic matching M on P, it holds that f(M) = O(n?).

Before we prove this upper bound, observe that similar to the general position setting, in
the semi-collinear setting the total number of crossings might increase after a flip. Also,
it is possible that a crossing, that has disappeared after a flip, reappears after some more
flips (see the crossing between br and b7’ in Figure 5). The O(n?) upper bound given in [7]
for f(-) on uncolored points, which is obtained by connecting the two leftmost points of a
crossing, does not apply to our semi-collinear bichromatic setting, because in this setting the
two leftmost points might have the same color. These observations imply that there is no
straightforward way of getting a good upper bound.

Let ¢ be the line that contains all the blue points of P. By a suitable rotation we assume
that ¢ is horizontal. For every perfect bichromatic matching M on P, the edges of M, that
are above £, do not cross the ones that are below £. Thus, we can handle these two sets of
edges independently of each other. Therefore, in the rest of this section we assume that the
red points of P lie above £. Recall that P contains n/2 blue points and n/2 red points.

» Lemma 16. Let M be a perfect bichromatic matching on P in which the rightmost blue
point b is matched to the topmost red point r. If M\ {br} is plane, then f(M) < 5 —1, and
this bound is tight.

Proof. See Figure 6(a) for an illustration of the statement of this lemma; notice that if we
remove br from M, then we get a plane matching. Our proof is by induction on n. If n = 2,
then M has one edge which is plane, and thus, f(M) = 0. Assume that n > 4. If br does not
intersect any other edge, then M is plane and f(M) = 0. Suppose that br intersects some

edges of M \ {br}, and let R’ be the set of the red endpoints of those edges; see Figure 6(a).

Let 7’ be the first red point in the counterclockwise order of the red points around b; observe
that " belongs to R’. Let b’ be the blue point that is matched to r’. Flip br and b'r’ to br’
and b'r as in Figure 6(b), and let M’ be the resulting matching. The edge br’ does not cross
any other edge of M’, because of our choice of r’, but the edge b’'r may cross some edges of
M'. Let M" be the subset of edges of M’ that are to the left of b'7/; see Figure 6(b). Notice
that br’ ¢ M", and thus M" is a matching on at most n — 2 points.
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(a) (b)

Figure 6 Illustration of the proof of Lemma 16.

b1 bl bj

Figure 7 Illustration of the proof of Theorem 17.

Because of the planarity of M \ {br} and since r is the topmost red point, we have that
M’ \ M" is plane. Moreover, M" and M’ \ M" are separated by b'r’. Observe that V' is the
rightmost blue point in M” that is matched to the topmost red point r, moreover, M" \ {b'r}
is plane. Therefore, we can repeat the above process on M", which is a smaller instance of
the initial problem. By the induction hypothesis, it holds that

-2
f(M)1+f(M”)<1+(n2 1> :gfl.
To verify the tightness, Figure 6(c) shows a matching example for which we need exactly
n/2—1 flips to transform it to a plane matching. Each time there exists exactly one crossing,
and after flipping that crossing, only one other crossing appears (except for the last flip). <«

» Theorem 17. For every perfect bichromatic matching M on P we have f(M) < %2 + 7.
Proof. We present an iterative algorithm that uncrosses M by O(n?) flips. Let by, ...,b, /2
be the blue points from left to right. By a suitable relabeling assume that M = {byrq, ...,
bn2mns2}. To simplify the description of the proof, we add, to M, a dummy edge boro such
that by is a blue point on ¢ that is to the left of all the blue points, 7y is a red point that is
higher than all the red points, and all points of P are to the right of boro.

We describe one iteration of our algorithm. If M is plane, then the algorithm terminates.
Assume that M is not plane. Let ¢ € {1,...,n/2} be the smallest index such that b;r;
intersects some edges of M see Figure 7-left. To simplify the rest of our description, we refer
to the current iteration as iteration i. Notice that the blue endpoint of every non-free edge is
strictly to the right of b;_;. Let r; be the first red point that we meet in the following walk
along the edges of M. Starting from b;, we walk along b;r; until we see the first edge e that
crosses b;r;. Then we turn left on e and keep walking until we see a red point or another
crossing edge. If we see a red point, then we call it 7; and finish the walk. If we see a crossing
edge €', then we turn left on ¢’ and keep walking until we see a red point, namely r;, or we
see another crossing edge. In the latter case we repeat this process and stop as soon as we
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see the first red point, which we call it r;. Let b; be the blue point that is matched to r;.
Let w denote the convex polygonal path that we traversed from b; to r;.

Flip b;r; and b;r; to byr; and b;r;, and let M’ denote the resulting matching. See
Figure 7-right. Shoot a horizontal ray, from r;, to the left, and stop as soon as it hits an edge
byry in M'. Let M"” be the subset of the edges of M’ that are incident on byy1,...,b;, that
is, M"" = {bgi17241, ..., bi—17i—1,b;7;}. By the way that we picked r;, the edges of M" are
in a convex region whose interior is disjoint from the edges of M’ \ M"; this convex region is
bounded by ¢, b,r,, w, and the ray from r;, as depicted in Figure 7-right. The matching M"
has ¢« — x edges. Observe that, in M", we have that b; is the rightmost blue point that is
matched to the topmost red point r;, and M" \ {b;r;} is plane. Thus, by Lemma 16 we can
uncross M" by at most ¢ —x — 1 flips. To this end, we have transformed M to a matching in
which the edges that are incident on by, ..., b; are free. The total number of flips performed
in iteration ¢ is at most 14+ (i —x — 1) =i —x < 4.

In the next iteration, the smallest index 4, for which b; 7 is not free, is larger than i.
Thus, this smallest index moves at least one step to the right after each iteration. This means
that the number of free edges, that are connected to the blue points of lower indices, increases.
Therefore, after at most n/2 iterations our algorithm terminates. The total number of flips is

n
T

5 Conclusions

We investigated the number of flips that are necessary and sufficient to reach a non-crossing
perfect matching on n points in the plane. It is known that the minimum and the maximum
lengths of a flip sequence are O(n?) and O(n?), respectively. We proved, with a new approach,
that the minimum length of a flip sequence is O(nA) where A is the spread of the points
set; this improves the bound for point sets with sublinear spread. A natural open problem
is to improve any of these bounds. Another open problem is to improve our O(nlogn)
upper bound on the number of sufficient flips to reach a plane spanning tree on points in
convex position, or to show that this bound is tight. One potential way to do this, is that in
Theorem 14, we get a boundary edge wv such that one of u or v has a constant degree.

It is worth mentioning that the number of flips, in a flip sequence, is highly dependent
on the order in which we choose crossings to flip, and the type of a flip that we perform
(among the two possible types). This dependency can be used to improve the bounds on the
minimum number of flips. In Theorems 11, 14, 15, and 17 we used the order and proved
some upper bounds, while in Theorem 4 we used the flip type. One may think of using the
order and the flip type together to improve the current bounds. Notice that for bichromatic
matchings, spanning trees, and Hamiltonian cycles only one type of flip is possible, and thus,
only the order can be used for further improvements. Also, notice that none of the order and
the flip type can be used to improve the bounds on the maximum number of flips, because,
in this case, an adversary chooses the order and the type.
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