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Abstract

It is well known that, given n red points and n blue
points on a circle, it is not always possible to �nd a
plane geometric Hamiltonian alternating path. In this
work we prove that if we relax the constraint on the
path from being plane to being 1-plane, then the prob-
lem always has a solution, and even a Hamiltonian al-
ternating cycle can be obtained on all instances. We
also extend this kind of result to other con�gurations
and provide remarks on similar problems.

Introduction

A geometric graph is a graph drawn in the plane
whose vertex set is a set of points and whose edges
are straight-line segments connecting pairs of vertices.
Two edges of a geometric graph cross if they have
an intersection point lying in the relative interior of
both edges. A plane geometric graph is a geometric
graph without any edge crossings. A 1-plane geomet-
ric graph is a geometric graph in which every edge
has at most one crossing. Notice that the terms plane
graph and 1-plane graph refer to a geometric object,
while to be planar or 1-planar are properties of the
underlying abstract graph. We use here standard no-
tation for geometric graphs as in [3] and [12].
Let P be a set of points in the plane in general

position (i.e., no three points are collinear), and let
CH(P ) denote its convex hull. A geometric spanning
tree on P , generically denoted by tree(P ), is any span-
ning tree on P whose edges are straight-line segments
connecting two points on P . Observe that if |P | = 1,
the tree on P is a single vertex. When the tree is
a path, we write path(P ). The geometric complete
graph K(P ) on P is the complete geometric graph
with vertex set P . Notice that tree(P ) is a spanning
tree of K(P ).
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Let R and B be two disjoint sets of red and blue
points in the plane such that no three points of R∪B
lie on the same line. The geometric complete bipartite
graph K(R,B) is the graph with vertex set R∪B and
whose edges are all the straight-line segments connect-
ing any point in R and any point in B. A line segment
de�ned by two red points is a red segment, and one de-
�ned by two blue points is a blue segment. More gen-
erally, an edge is said to be monochromatic when the
two endpoints have the same color, and bichromatic
otherwise. The intersections between red segments
and blue segments are called bichromatic crossings,
and those between segments having the same color
are called monochromatic crossings.
Problems on adding edges to a given graph to ob-

tain a new graph with some desirable properties are,
in general, called augmentation problems. Among
these, plane augmentation considers an initial plane
graph G = (V,E) (possibly empty, i.e., only the point
set V is given) that has to be augmented to another
plane supergraph G′ = (V,E ∪E′) by adding a set E′

of edges to G, see the survey [7].
In this work we focus on problems in which the ini-

tial point set is a bicolored set R ∪ B. This family
of problems has attracted a substantial amount of re-
search, see for instance the surveys [8, 7].
We �rst consider alternating graphs, i.e., those in

which every edge is bichromatic. A well known fact
[2, 1, 10, 11] is that given n red points and n blue
points on a circle (equivalently, in convex position),
one cannot always obtain a plane geometric Hamilto-
nian alternating path. In this paper we prove that, if
we relax the constrain on the geometric Hamiltonian
alternating path from being plane to being 1-plane,
then a solution always exists, even yielding stronger
properties. We also show that the same result holds
for some other con�gurations. These results appear
in Section 1.
Regarding monochromatic graphs, i.e, graphs in

which every edge is monochromatic, it is easy to
see that one cannot always construct a plane perfect
matching in K(R)∪K(B). A trivial example is given
by the vertices of a convex quadrilateral in which two
opposite vertices are colored red and the other two are
colored blue. The same example shows that it is not
always possible to obtain two geometric monochro-
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matic spanning trees, tree(R) and tree(B), such that
their union is plane.

The proven nonexistence of plane con�gurations
had already suggested to researchers to allow some
relaxation in the constraint, but the focus was put
on constructing geometric graphs having globally few
crossings [9, 13]. However, one of the constructions in
[13] is in fact a 1-plane graph. We include some re-
marks on that particular result and its consequences
in Section 2.

We conclude in Section 3 with some additional com-
ments.

1 Alternating graphs: paths and

cycles

In this section we study geometric alternating span-
ning graphs on R ∪ B, i.e., spanning subgraphs of
K(R,B). We focus on geometric Hamiltonian alter-
nating paths and cycles, which visit red points and
blue points alternately. Notice that when there are no
crossings at all, geometric Hamiltonian paths and cy-
cles are also called simple polygonals and simple poly-
gons, respectively.

1.1 Convex position

The problem of restricting the bicolored point set to
lay on a circle has attracted a lot of attention. It is
easy to see that there are sets R and B with the same
number of points, say n, such that R∪B is in convex
position, and a plane geometric Hamiltonian alter-
nating path on R ∪ B cannot exist. Erd®s (see [10])
proposed in 1989 to study the value ℓ(n) such that
no matter how the colors are distributed a plane geo-
metric alternating path of length at least ℓ(n) always
exists. About the same time, Akiyama and Urrutia [2]
considered independently the same problem: they
proved a necessary and su�cient condition for the ex-
istence of a plane geometric Hamiltonian alternating
path and derived an O(n2) time algorithm to �nd one,
if it exists. Abellanas et al. [1], and independently
Kyn£l et al. [10], proved that ℓ(n) ≤ 4

3n + O(
√
n),

and Cibulka et al. [4] showed that ℓ(n) ≥ n+Ω(
√
n).

These bounds are the best to date. Remind that the
total number of points is 2n. Also, notice that we
slightly abuse the notation by using inequalities, and
that the two bounds have to be read together, not
independently. For more information and details, see
Mészáros' PhD Thesis [11].

We next show that if R ∪ B is in convex position
then a 1-plane geometric Hamiltonian alternating cy-
cle �not only a path� can always be drawn. The fol-
lowing lemma is the key tool.

Lemma 1 Let R and B be two disjoint sets of red
and blue points in the plane such that R ∪ B is in
convex position, and |R| = |B| = n ≥ 2. Let S be a
set of disjoint bichromatic segments on the boundary
of the convex hull of R ∪ B, and |S| = s ≥ 2. Then,
there exists a 1-plane geometric Hamiltonian alternat-
ing cycle on R ∪ B that contains each segment of S
as an edge.

If R ∪ B is in convex position and |R| = |B| =
n ≥ 2 then there are at least two disjoint bichromatic
segments on the boundary of CH(R ∪ B), say s1, s2.
Let S = {s1, s2}. By Lemma 1, one can draw a 1-
plane geometric Hamiltonian alternating cycle on R∪
B that contains each segment of S as an edge. This
argument proves our main result in this section.

Theorem 2 Let R and B be two disjoint sets of red
and blue points in the plane such that R∪B is in con-
vex position, and |R| = |B| = n ≥ 2. Then, there ex-
ists a 1-plane geometric Hamiltonian alternating cycle
on R ∪B.

1.2 Double chain

We next consider the problem of drawing a 1-plane
geometric Hamiltonian alternating cycle on a double
chain whose points are colored red and blue.

The double chain (formally de�ned below) is
a con�guration that has been intensively stud-
ied since it admits many triangulations, many
polygonizations, many crossing-free matchings, etc.,
and for several families of graphs yields the
maximum number known to date of such pos-
sible con�gurations among point sets with the
same cardinality (see http://www.cs.tau.ac.il/ shef-
fera/counting/PlaneGraphs.html).

A double chain (C1, C2) consists of two opposite
convex chains C1 and C2, facing each other, such that
the convex hull of C1∪C2 is a quadrilateral, each point
of C2 lies strictly below every line determined by two
points of C1, and each point of C1 lies strictly above
every line determined by two points of C2. When the
points of (C1, C2) are colored red and blue, (C1, C2)
is said to be a bicolored double chain (see Figure 1),
and ri, bi denote the number of red and blue points,
respectively, of Ci for i = 1, 2. Note that the sizes of
C1 and C2 may be di�erent.

1C

2
C

Figure 1: A bicolored double chain (C1, C2).
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Cibulka et al. [4] proved the following theorem:

Theorem 3 [4] (i) If |Ci| ≥ 1
5 (|C1| + |C2|) for i =

1, 2, then there exists a non-crossing geometric Hamil-
tonian alternating path on (C1, C2); (ii) there exist bi-
colored double chains in which one of the chains con-
tains at most 1/29 of all the points, which do not ad-
mit a non-crossing geometric Hamiltonian alternating
path.

Theorem 4 below states that when r1+r2 = b1+b2,
allowing at most one crossing per edge is strong
enough to let us always draw a geometric Hamilto-
nian alternating cycle on (C1, C2). The main idea to
obtain this cycle is to use Theorem 2 to construct
two 1-plane geometric alternating cycles Λ1 and Λ2

in CH(C1) and CH(C2), respectively, and to connect
them drawing another 1-plane geometric alternating
cycle Λ in the exterior of CH(C1) and CH(C2). This
process is described next.
Let Ei, i = 1, 2, be the set of edges in CH(Ci) that

connect consecutive points of Ci. Suppose �rst that
3 ≤ b1 + 1 < r1 and 3 ≤ r2 + 1 < b2. Then there
exist at least two monochromatic edges in E1 ∪E2: a
red edge rr′ ∈ E1 and a blue edge bb′ ∈ E2. Contract
them obtaining a red point r′′ and a blue point b′′.
By Theorem 2, we can draw a cycle Λ1 on the point
set formed by the b1 blue points of C1, the red point
r′′, and b1 − 1 red points of C1 \ {r, r′}. Analogously,
Λ2 is constructed on the point set formed by the r2
red points of C2, the blue point b′′, and r2 − 1 blue
points of C2 \ {b, b′}. Finally, the cycle Λ is drawn, as
in Figure 2, on the remaining r1 − b1 − 1 red points
of C1, the remaining b2 − r2 − 1 = r1 − b1 − 1 blue
points of C2, and the points r′′ and b′′. Observe that
r′′ and b′′ connect Λ with Λ1 and Λ2, respectively.
By reversing the contraction and deleting the edges
rr′ and bb′, we "open" the three cycles obtaining the
desired cycle on (C1, C2).
Note that the preceding argument can easily be

adapted for b1 or r2 equal to zero or one. Observe
also that if all the edges in E1 (analogous for E2) are
bichromatic then either r1 = b1 (and so r2 = b2) or
r1 = b1 + 1 (and b2 = r2 + 1). For these values, even
if there are monochromatic edges in E1, we need to
use slightly di�erent arguments which are omitted for
the sake of brevity.

Theorem 4 Let R and B be the sets of red and
blue points of a bicolored double chain (C1, C2), and
|R| = |B| ≥ 2. Then, there exists a 1-plane geometric
Hamiltonian alternating cycle on (C1, C2).

1.3 General position

The positive results for convex position and for the
double chain make one wonder whether a similar re-
sult holds for any set of points in general position:

Question 1 Let R and B be any two disjoint sets
of red and blue points in the plane such that no three
points of R∪B lie on the same line, and |B| = |R| ≥ 2.
Does there always exist a 1-plane geometric Hamilto-
nian alternating cycle on R ∪B?

We do not know the answer to the preceding ques-
tion. Geometric Hamiltonian cycles with few cross-
ings were obtained by Kaneko et al. [9], who gave
a tight upper bound of |R| − 1 for the number of
crossings of a geometric Hamiltonian alternating cy-
cle. Figure 2 illustrates a con�guration R ∪ B for
which this upper bound is best possible.

Figure 2: A 1-plane geometric Hamiltonian alternat-
ing cycle, on a point set R∪B, with |R|−1 crossings.

To be precise, Kaneko et al. [9] proved the following
result.

Theorem 5 [9] Let R and B be two disjoint sets of
points in the plane such that |R| = |B| and no three
points of R ∪ B are on the same line. Then we can
draw a geometric Hamiltonian alternating cycle on
R ∪ B which has at most |R| − 1 crossings. More-
over there exist con�gurations R ∪ B for which this
upper bound |R| − 1 is the best possible.

To prove this theorem, the authors use several lem-
mas that we have carefully examined to see whether
it is possible to adapt their proof to obtain a 1-plane
graph. However, as far as we can see, there are cases
in which the connection of the paths that exist by
induction is not necessarily 1-plane.

It is unclear to us which is the right answer to Ques-
tion 1, yet our study leads us to believe that it is
negative in general, yet positive if only a Hamiltonian
path is required, which we state as a conjecture:

Conjecture 1 Let R and B be two disjoint sets of red
and blue points in the plane such that no three points
of R∪B lie on the same line, and |B| ≤ |R| ≤ |B|+1.
There always exists a 1-plane geometric Hamiltonian
alternating path on R ∪B.

Let us mention that this is ongoing research, cur-
rently focusing on the preceding conjecture, which we
hope to answer in the next version of this paper.
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2 A remark on monochromatic

graphs

In this section we would like to remark that a result
obtained by Tokunaga in 1996 can be rephrased in
terms of 1-plane graphs, hence giving support to the
idea that exploring this relaxation may be worth the
e�ort for more problems.
On one hand, it is not always possible to construct

a non-crossing perfect matching in K(R) ∪ K(B) as
proved by Dumitrescu and Steiger [6]. The original
result was improved by Dumitrescu and Kaye [5], who
proved that for given R and B, with |R| + |B| = n,
there always exists a non-crossing matching inK(R)∪
K(B) which covers at least 0.8571 · n points of R ∪
B, while for some con�gurations every non-crossing
matching in K(R) ∪ K(B) covers at most 0.9871 · n
points of R∪B. On the other hand, drawing plane red
and blue geometric spanning trees on R and B that
avoid bichromatic crossings is not always possible, and
Tokunaga [13] characterized their existence in terms
of the bichromatic edges on CH(R ∪B).
One may wonder whether using 1-plane graphs

would always yield a positive solution to the above
problems. The answer is a�rmative: Tokunaga [13]
also proved that for given R and B, there exists a pair
(path(R), path(B)) of red and blue geometric simple
Hamiltonian paths such that each edge of path(R) in-
tersects at most one edge of path(B) and vice versa.
Having the red and blue geometric simple Hamilto-
nian paths from that result, with at most one bichro-
matic crossing per edge, we already have got 1-plane
spanning trees, and taking in each path one segment
out of any two consecutive we get a 1-plane perfect
matching with no monochromatic crossings. This 1-
plane matching can also be obtained by using the
Ham-sandwich theorem and induction on |R ∪B|.
We include this remark because the focus in [13] was

to get few crossings rather than achieving the 1-plane
character, but the consequences show that pursuing
the latter line of research may be of interest.

3 Conclusion

We have proved that several problems on bicolored
point sets asking for the construction of a plane geo-
metric graph with some requisites, and that have in
general negative answer, turn out to have a solution if
the requirement of the graphs being plane is relaxed
to being 1-plane.
As mentioned in a previous section, this is ongoing

research and answering Conjecture 1 is our priority.
On the other hand, we are also studying the same
relaxation for other problems in which 1-plane graphs
may provide a solution where plane graphs are not
su�cient.
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