
Geometric Planar Networks
on Bichromatic Points?

Sayan Bandyapadhyay1, Aritra Banik2, Sujoy Bhore3, and Martin Nöllenburg3

1 Department of Informatics, University of Bergen, Norway
{sayan.bandyapadhyay}@gmail.com

2 School of Computer Sciences, NISER, Bhubaneswar, India
{aritrabanik}@gmail.com

3 Algorithms and Complexity Group, Technische Universität Wien, Austria
{sujoy,noellenburg}@ac.tuwien.ac.at

Abstract. We study four classical graph problems – Hamiltonian path,
Traveling salesman, Minimum spanning tree, and -Minimum perfect match-
ing on geometric graphs induced by bichromatic (red and blue) points.
These problems have been widely studied for points in the Euclidean
plane, and many of them are NP-hard. In this work, we consider these
problems in two restricted settings: (i) collinear points and (ii) equidis-
tant points on a circle. We show that almost all of these problems can
be solved in linear time in these constrained, yet non-trivial settings.

1 Introduction

In this article, we study four classical graph problems on geometric graphs in-
duced by bichromatic (red and blue) points. Suppose, we are given a set R of
n red points and a set B of m blue points in the Euclidean plane. Consider the
complete bipartite graph G(R,B,E) on R∪B, where the set E of edges contains
all bichromatic edges between the red points and the blue points. Also, suppose
the graph G(R,B,E) is embedded in the plane: the points are the vertices and
each edge is represented by the segment between the two corresponding end-
points. We denote these edges as bichromatic segments, where each bichromatic
segment connects a red point with a blue point. A subgraph of G(R,B,E) (or
equivalently a subset of edges of E) is called non-crossing (or planar) if no pair
of the edges of the subgraph cross each other. Next, we discuss the four graph
problems on the bipartite graph G(R,B,E) induced by R ∪B.

In the Bichromatic Hamiltonian path problem, the objective is to find
a path in G(R,B,E) that spans all the red and blue points. Equivalently, one
would like to find a polygonal chain that connects all the red points and the
blue points alternately through bichromatic segments. It is not hard to see that
a Hamiltonian path exists in G(R,B,E) if and only if m − 1 ≤ n ≤ m +
1, and if there exists one, it can be computed efficiently, as G(R,B,E) is a

? Research of Sujoy Bhore and Martin Nöllenburg is supported by the Austrian Science
Fund (FWF) grant P 31119.

ar
X

iv
:1

91
1.

08
92

4v
1

 [
cs

.C
G

]
 2

0
N

ov
 2

01
9

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Bergen

https://core.ac.uk/display/479095943?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Bandyapadhyay et al.

(b)(a)

Fig. 1: Two instances without a non-crossing Hamiltonian path. Figure (a) is not in
general position, Figure (b) (borrowed from [12]) is in general position.

complete bipartite graph. A more interesting problem is the Non-crossing
bichromatic Hamiltonian path problem where the objective is to find a non-
crossing Hamiltonian path. Note that one can construct instances with m− 1 ≤
n ≤ m + 1, where it is not possible to find any non-crossing Hamiltonian path.
In Figure 1, we demonstrate two such instances.4 Figure 1(a) has eight points
where four of them lie on a horizontal line L and the remaining four lie on a
line parallel to L. Notice that, there must be one red and one blue point with
degree 1. One can verify by enumerating all possible paths that there is no non-
crossing Hamiltonian path that spans these points. The example in Figure 1(b)
has thirteen points in general position, i.e., no pair of the points are collinear,
and also does not admit a non-crossing Hamiltonian path. Indeed, if 2 ≤ n ≤ 12,
then for any given bn/2c red (resp. blue) points and dn/2e blue (resp. red)
points in general position, there exists a non-crossing Hamiltonian path [13].
Due to the uncertainty of the existence of non-crossing Hamiltonian paths in
the general case, researchers have also considered the problem of finding a non-
crossing alternating path of length as large as possible [11,15].

A related problem is the Bichromatic traveling salesman path (Bichro-
matic TSP) problem where one would like to find a minimum weight Hamil-
tonian path in G(R,B,E). The weight of each edge is the (Euclidean) length of
the corresponding segment. The weight of a path is the sum of the weights of
the edges along the path. For simplicity, we assume n = m. A straightforward
reduction from the (monochromatic) Euclidean TSP [4] (replace each point by
a bichromatic pair that is small distance apart) shows that Bichromatic TSP is
also NP-hard. One simple, but powerful fact is that an optimum Euclidean TSP
is always non-crossing. This helps to obtain a PTAS [4] for the problem. How-
ever, an optimum Bichromatic TSP is not necessarily non-crossing which makes
its computation much harder compared to Euclidean TSP. The best known ap-
proximation factor for the Bichromatic TSP problem is 2 due to Frank et al. [10]
who improved the 2.5-approximation of Anily et al. [3]. For a set of collinear
points, Evans et al. [9] gave a quadratic time algorithm for computing an op-

4 In all the figures throughout the paper, we show red (resp. blue) points by squares
(resp. disks).

Geometric Planar Networks on Bichromatic Points 3

timum non-crossing TSP, every edge of which is a poly-line with at most two
bends.

Next, we consider the Bichromatic spanning tree problem where the
objective is to compute a minimum weight spanning tree of G(R,B,E). Note
that this problem can be solved efficiently by any standard minimum spanning
tree algorithm. A more interesting problem is the Non-crossing bichromatic
spanning tree problem where additionally the computed tree must be planar
(non-crossing). Borgelt et al. [8] showed that this problem is NP-hard. For points
in general position, they gave a near-linear time O(

√
n)-approximation. On the

other hand, for points in convex position, they gave an exact cubic-time algo-
rithm. Another line of work that received much attention is where the task is to
find a degree-bounded non-crossing spanning tree [7].

Finally, we consider the Bichromatic matching problem. Again assume
that n = m for simplicity. We would like to find a minimum weight perfect
matching in G(R,B,E). The weight of an edge is the Euclidean distance be-
tween its corresponding points. It is a well-known fact that a minimum weight
bichromatic matching (for points in general position) in the plane is always non-
crossing, which follows from the observation that the sum of the diagonals of a
convex quadrilateral is strictly larger than the sum of any pair of opposite sides.
This implies that using any standard bipartite matching algorithm one can solve
Bichromatic matching exactly. But, algorithms with better running time have
been designed by exploiting the underlying geometry of the plane. Recently,
Kaplan et al. [14] designed an O(n2 poly(log n)) algorithm for the problem im-
proving the O(n2+ε) algorithm due to Agarwal et al. [2], where poly(.) is a
polynomial function. Abu-Affash et al. [1] and Biniaz et al. [6] studied variants
of the bichromatic matching problem.

In this article, we consider the above mentioned problems in two restricted
settings: (i) for collinear points and (ii) for equidistant points on a circle. For
all problems, we assume that n = m for simplicity. We note that the case of
non-crossing graphs on collinear points is closely related to topological 1-page
or 2-page book embeddings [5], which have all vertices placed on a line (called
the spine) and the edges drawn without crossings in one or two of the halfplanes
(but not in both) defined by the spine (called the pages). In our case we assume
that the edges are drawn as (circular) arcs or 1-bend polylines either above or
below the spine.5 We assume that their weight is given by the Euclidean distance
of their endpoints. If the arcs are drawn infinitesimally close to the spine, these
weights correspond to the lengths of the arcs.

Our Results. The main results obtained in this work are the following.

å Non-crossing Hamiltonian path for collinear points – We prove
that for any collinear configuration of the points, there always exists a non-
crossing Hamiltonian path. We give a linear-time algorithm for computing
such a path (Section 2).

5 For the sake of convenience, we draw edges as simple curves in all the figures.

4 Bandyapadhyay et al.

å Minimum spanning tree for collinear points – We give a linear-time
algorithm for computing a minimum weight spanning tree, and a quadratic-
time algorithm for computing a minimum weight non-crossing spanning tree
for collinear points and edges on a single page (Section 3).

å Minimum non-crossing matching for collinear points – We give a
linear-time algorithm that computes a minimum-weight non-crossing perfect
matching for collinear points and edges on a single page (Section 4).

å TS tour for chunked points on a circle – We give a linear-time
algorithm for computing an optimum traveling salesman tour for equidistant
points on a circle that form alternately colored and equally sized chunks
(Section 5).

The linear-time algorithms assume that the points are given in some sorted order.
We note that even in this simple one-dimensional case these problems become
sufficiently challenging if one is constrained to use only linear (or near-linear)
time. Throughout the paper we assume that there are no collocated points.

2 Non-crossing Hamiltonian Path for Collinear Points

If we would require for the collinear point set that each edge of a Hamiltonian
path is a straight-line segment the problem becomes trivial: an input instance
can have a non-crossing Hamiltonian path if and only if the colors of the points
alternate. Therefore, we consider the case where edges are represented by circular
arcs drawn in the halfplane either above or below the line.

Definition 1. Non-crossing Hamiltonian path for collinear points. Given
a set of n red points and a set of n blue points on the line H : y = 0, find a non-
crossing geometric path π in the plane such that π consists of circular arcs above
or below H, each of which connects a red and a blue point and π spans all the
input points.

Note that in the above definition if the path is allowed to use arcs only from
above (resp. below) H, then there might not exist such a Hamiltonian path (see
Figure 2).

First, we give a constructive proof for the existence of such a path for any
configuration of points. The construction itself takes polynomial time, hence giv-
ing a polynomial time algorithm for computation of such a path. In the following,
we describe the construction.

Fig. 2: Figure demonstrating a set of collinear points for which non-crossing Hamilto-
nian path does not exist if the arcs can be drawn only above the line.

Geometric Planar Networks on Bichromatic Points 5

2.1 The Construction

To construct the path, we start with any bichromatic matching (not necessarily
crossing free) of the points. Note that each matched edge is a segment on H.
We will connect these edges to obtain a Hamiltonian path. First, we form a
hierarchical structure of these matched edges. Informally, the matched edges are
hierarchical if any two edges are either disjoint or one is contained within the
other.

Definition 2. A set of matched edges M are hierarchical if for any two edges
(u, v), (w, x) ∈ M with u < v, w < x and u < w, either u < v < w < x
((u, v), (w, x) are uncrossed) or u < w < x < v ((u, v) contains (w, x)).

Given any matching M for R∪B, we can change it to a hierarchical matching
in the following way. If there are two edges (u, v), (w, x) ∈M with u < v, w < x,
u < w that are not disjoint and none of them contains the other, then it must
be the case that u < w < v < x. Now, there are two subcases, depending on
the colors of u and w. If u,w are red or u,w are blue, we replace the edges
(u, v), (w, x) by the two bichromatic edges (u, x), (w, v). Otherwise, either u is
red, w is blue or u is blue, w is red. In that case, we replace the edges (u, v), (w, x)
by the two bichromatic edges (u,w), (v, x). Note that in all the cases, the new
pair of edges do not violate the hierarchical structure. We repeat the process for
each pair of edges that violate the condition. Newly formed edges might violate
the condition with respect to other edges. However, it is easy to verify that if
an edge is removed, it is never added back, and thus the process will eventually
stop at some point when no pair of edges violate the condition.

Next, we associate levels with each matched edge of M in a recursive way. In
the base case, for each edge that does not span any other edge, set its level to
1. Now, suppose we have defined edges of level j for each j ≤ i− 1 for i ≥ 2. An
edge (u, v) has level i, if it contains a level i−1 edge, and for any level i−1 edge
(w, x) that it contains, there is no other edge that is contained in (u, v) that also
contains (w, x) (see Figure 3). Note that the level of each edge is unique. Let L
be the maximum level.

5

4
3

2
1 1 1

Fig. 3: Illustration showing the levels of the edges.

For any edge (u, v) of M with level j, call the points that lie between u and
v including u and v as a level j block. Thus, a level l block is a union of blocks
of levels at most l − 1 and two special points which are the first and last point
of the block. One can easily verify that a block contains the same number of

6 Bandyapadhyay et al.

red and blue points. We compute the Hamiltonian path for all the blocks in a
bottom up manner. The path of a level 1 block is the matched edge itself which
defines the block. Additionally, for each block, we compute a path for the block
that satisfies the following two invariants.

– The first point of the block is an endpoint of the path.
– If an endpoint p of the path is not an endpoint of the block, then the path

cannot contain two edges (u, v), (w, x) with u < v and w < x, such that
(u, v) lies above H, (w, x) lies below H, u < p < v, and w < p < x.

Informally, the second condition states that, the endpoint of the path that is
not an endpoint of the block should be available for connecting with an edge
at least from one side. Note that the paths for level 1 blocks trivially satisfy
the invariants. Now, assume that we have computed the paths for all the level
j blocks for j ≤ l − 1 and l ≥ 2 that satisfy the invariants. We show how to
compute the path for a level l block S that also satisfies the invariants. Let u, v
be the endpoints of the block. Also let S1, . . . , St be the blocks, sorted w.r.t the
index of the first point in increasing order, whose union with the set {u, v} forms
the block S. As Si has level at most l−1, we have already computed the path of
Si for all i. We show, by induction, how to construct the path T ′ for the points
in ∪ij=1Sj for all 2 ≤ i ≤ t. Then, we show how to join the edge (u, v) with T ′ to
obtain the path for the block S. For simplicity, we also refer to the set of points
∪ij=1Sj as a block. Now, we prove the following lemma.

Lemma 1. A non-crossing Hamiltonian path of ∪ij=1Sj can be computed for all
1 ≤ i ≤ t that satisfies the two invariants.

u1

v1
u2

v2

u1

v1 u2 v2

Fig. 4: Illustration showing Case 1 (upper) and Case 2 (lower) of Lemma 1.

Proof. We prove this using induction on the values of i. In the base case, for
i = 1, we know how to compute the path of ∪ij=1Sj = S1 that satisfies the two
invariants. Now, consider any i ≥ 2. Suppose we have already computed the
path Ti−1 of ∪i−1j=1Sj that satisfies the two invariants. Let Πi be the path of Si
that also satisfies the two invariants. Let u1, v1 (resp. u2, v2) be the endpoints
of the path Ti−1 (resp. Πi) with u1 < v1 (resp. u2 < v2). As ∪i−1j=1Sj (resp. Si)
contains the same number of red and blue points, the color of u1 (resp. u2) will
be different from the color of v1 (resp. v2). Now, there are two cases.

Geometric Planar Networks on Bichromatic Points 7

u1

v1
u v u1

v1
u v

(a) (b)

Fig. 5: (a) Illustration showing Case 1 of Lemma 2. (b) Illustration showing Case 2 of
Lemma 2.

1. u1 and u2 have the same color. We add the edge (v1, u2) with Ti−1 ∪Πi to
get the path Ti for ∪ij=1Sj (see Figure 4). To make sure (v1, u2) does not cross
the other edges, we can make use of the second invariant. From the invariant it
follows that, for v1, all the edges of Ti−1 whose endpoints are on both sides of
v1 must lie on the same side of H. Thus, if those edges lie above, we draw the
edge (v1, u2) below H. Otherwise, we draw (v1, u2) above H. Note that u1 is an
endpoint of Ti which is the first point of ∪ij=1Sj . Also v1 < u2 < v2. Thus, the
other endpoint v2, still satisfies the second invariant as before by induction.

2. u1 and u2 have different colors. We add the edge (v1, v2) with Ti−1∪Πi to get
the path Ti for ∪ij=1Sj (see Figure 4). Note that we need to ensure that the edges
of Ti−1 and Πi whose endpoints are on both sides of v1 and v2, respectively, lie
on the same side of H. Note that if this is not true, the edges of Πi that lie
below H can be redrawn above H, and the edges of Πi that lie above H can
be redrawn below H. This does not violate any invariant. Hence, (v1, v2) can be
drawn without crossing any edge of Ti−1 ∪ Πi. Note that u1 is an endpoint of
Ti which is the first point of ∪ij=1Sj . The other endpoint u2 was an endpoint of
the block Si. Thus, even after the drawing of (v1, v2) one side of u2 still remains
available. Hence, the second invariant is also satisfied. ut

The next lemma completes the induction step for showing the construction
of the path for the level l block.

Lemma 2. A non-crossing Hamiltonian path for the level l block S can be com-
puted that satisfies the two invariants.

Proof. First, we compute the path Tt for the points in ∪tj=1Sj using the con-
struction in Lemma 1. Let u1, v1 be the endpoints of Tt such that u1 < v1. Note
that as mentioned before S = (∪tj=1Sj) ∪ {u, v}. WLOG, assume the color of
u and v is red and blue, respectively. The other case can be handled similarly.
Now, there can be two cases.

1. u1 is red and v1 is blue. We add the edge (u1, v) with Tt ∪ {(u, v)} to get the
path for S (see Figure 5(a)). From the second invariant for Tt it follows that, for
v1, all the edges of Tt whose endpoints are on both sides of v1 must lie on the

8 Bandyapadhyay et al.

same side of H. Thus, if those edges lie above, we draw the edges (u1, v), (u, v)
above H. Otherwise, we draw (u1, v), (u, v) below H. Thus, the second invariant
is satisfied. Also, note that u is an endpoint of the new path which is the first
point of S. Hence, both the invariants are satisfied.

2. u1 is blue and v1 is red. We add the edge (v1, v) with Tt ∪ {(u, v)} to get the
path for S (see Figure 5(b)). From the second invariant for Tt it follows that, for
v1, all the edges of Tt whose endpoints are on both sides of v1 must lie on the
same side of H. Thus, if those edges lie above, we draw the edge (v1, v) below
H. Otherwise, we draw (v1, v) above H. As u1, an endpoint of the new path, is
the second point of S, irrespective of how we draw (u, v), the second invariant
is satisfied. Also u is an endpoint of the new path which is the first point of S.
Hence, both the invariants are satisfied in this case as well. ut

To compute the path of all the points in R∪B one can note that R∪B is a
union of a set of blocks having levels at most the maximum level L. By Lemma
2, we can compute the paths for all such blocks that satisfy the invariants. Then
we can merge those paths using the construction in Lemma 1 to get the path
for the points in R ∪B. It is easy to verify that the overall construction can be
done in polynomial time. Thus, we get the following theorem.

Theorem 1. For any set R of red points and B of blue points on y = 0 with
|R| = |B|, there always exists a non-crossing Hamiltonian path whose edges are
circular arcs that lie above or below y = 0. Moreover, such a path can be computed
in polynomial time.

2.2 A Linear Time Algorithm for Non-Crossing Hamiltonian Path

Recall that all the input points lie on H : y = 0. We assume that the points
are given in sorted order w.r.t their x coordinates. For a point p (except the
last one), let S(p) be the point which is the successor of p in this order. We
use the following algorithm to compute a non-crossing Hamiltonian path. The
algorithm processes the points from left to right and extends the Hamiltonian
path constructed so far by connecting the current point with an appropriately
chosen point. In particular, in every iteration, we consider a point p and connect
it by adding one or more edges. Initially, p is the leftmost point, and all points
are active. We store the constructed path in a set of edges Π, which is initially
empty.

– Let l(r) and l(b) be the rightmost (or last in the order) red and blue points,
respectively, which are active.

– If the color of p is different from the color of S(p), we simply add a small
arc (p, S(p)) to Π that lie above H. Make p inactive.

– Otherwise, there are two cases.
(i). If p is red, add two edges (p, l(b)) and (l(b), S(p)) to Π. These two edges

are drawn above H as circular arcs. Make p and l(b) inactive.

Geometric Planar Networks on Bichromatic Points 9

(ii). If p is blue, add two edges (p, l(r)) and (l(r), S(p)) to Π. These two edges
are drawn below H as circular arcs. Make p and l(r) inactive.

– If S(p) is active, assign S(p) to p (i.e., p ← S(p)) and repeat all the steps.
Otherwise, terminate the algorithm.

The different iterations of the above algorithm are shown in an example in
Figure 6. Now we discuss the correctness of the algorithm. First, we have the
following observation.

(iii) (iv)

(v) (vi)

(vii) (viii)

(i) (ii)

Fig. 6: Figure showing the execution of the Hamiltonian path computation algorithm
on an example point set.

Observation 3 Consider any iteration of the algorithm. Then, any red point on
the right of l(r) (if any) is inactive and has degree 2. Similarly, any blue point

10 Bandyapadhyay et al.

on the right of l(b) (if any) is inactive and has degree 2. Moreover, any point on
the left of p (if any) is inactive and except the first point all of them have degree
2.

Lemma 4. The algorithm correctly computes a bichromatic Hamiltonian path.

Proof. Note that when the algorithm terminates, S(p) is inactive. Thus, its de-
gree must be 2. If S(p) is red (resp. blue), then it had become l(r) (resp. l(b)) at
some point and its degree is 2. By Observation 3, all the points whose colors are
same as the color of S(p) and lie on the right of S(p) have degree 2. Also, the
degree of all the points on the left of p except the first point is 2. It is easy to
see that the degree of p and the first point is 1. As the number of red and blue
points are same, all the points that lie on the right of S(p) must have degree 2.
Thus, Π is a valid bichromatic Hamiltonian path. ut

Next, we argue that the computed Hamiltonian path is non-crossing. It is
easy to see that the small arcs added in the second step do not cross any other
drawn edges. Also, the edges drawn above H do not cross any edges drawn below
H. Moreover, the edges (p, l(r)) and (l(r), S(p)) (or (p, l(b)) and (l(b), S(p)))
drawn in the same iteration do not cross each other. The following observation
completes the claim.

Observation 5 Consider two edges (u, v) and (u′, v′) which are drawn as cir-
cular arcs above (resp. below) H and added to Π in different iterations. Then,
either u, v lie in between u′ and v′, or u′, v′ lie in between u and v.

The algorithm can be implemented to run in linear time. This is because,
one can use three pointers to keep track of p, l(r) and l(b), and these pointers
move in one direction – either from left to right or from right to left.

Theorem 2. For any set R of red points and B of blue points on y = 0 with
|R| = |B|, a non-crossing Hamiltonian path can be computed in linear time whose
edges are circular arcs that lie above or below y = 0.

3 Minimum Spanning Tree for Collinear Points

Definition 3. Spanning tree for collinear points. Given a set of n red
points and a set of n blue points all of which lie on the line y = 0, find a minimum
weight geometric tree T in the plane such that each edge of T is represented by a
circular arc that lies above y = 0, each arc connects a red and a blue point, and T
spans all the input points. The weight of an arc is given by the Euclidean distance
of its endpoints. In the non-crossing version of the problem, one would like to
compute such a tree so that the corresponding circular arcs are non-crossing.

First, we discuss a greedy linear time algorithm for computing an optimum,
i.e., minimum-weight spanning tree, which potentially has crossings.

Geometric Planar Networks on Bichromatic Points 11

3.1 Spanning Tree with Crossing

Let p1, . . . , p2n be the input points sorted in increasing order of their values. We
assume that the points are given in this order. Our algorithm has two steps.
In the first step, we traverse the points in the sorted order and connect each
point with its nearest opposite color point using an arc. This gives us a set
of components {C1, . . . , Cm} for m ∈ [n], where each component contains at
least one edge. For any component Ci,∀i ∈ [m], let l(Ci) and r(Ci) be the
leftmost and the rightmost point, respectively. In the second step, we traverse
the components from left to right. Consider the first two components C1 and C2.
If col(r(C1)) 6= col(l(C1)), join C1 and C2 by an arc (r(C1), l(C2)). Otherwise,
check the distance between r(C1) and its nearest opposite color point in C2, and
the same for l(C2) and its nearest opposite color point in C1. Choose the shorter
one to join C1, and C2. We repeat the same process for each consecutive pair of
the remaining components.

Fig. 7: Figure demonstrating the execution of the algorithm on an example. The dashed
arcs are added in the second step.

Note that after the first step each component Ci is a tree. In the second step,
we add exactly one edge between a consecutive pair of components. Hence, the
selected arcs form a valid spanning tree. The optimality of the solution follows
from the next observation which is not hard to verify.

Observation 6 Cut property: Any edge (or arc) added by the algorithm is a
minimum weight bichromatic cut edge for some cut.

We note that our algorithm does not require the assumption |R| = |B|.

Theorem 3. For any set R of red points and B of blue points on y = 0, an
optimum spanning tree can be computed in linear time.

Next, we discuss the algorithm for the non-crossing case.

3.2 Non-crossing Spanning Tree

Let P1, P2, . . . , Pm be the alternating monochromatic chunks of points ordered
from left to right for m ∈ [n]. Thus, the color of the points in Pi is different from
the color of the points in Pi+1 for all 1 ≤ i ≤ m− 1. We start with the following
observation.

Observation 7 Consider a point p ∈ Pi. If an arc (p, q) is contained in a
minimum spanning tree, then either q ∈ Pi−1 or q ∈ Pi+1.

12 Bandyapadhyay et al.

The observation follows from the idea that if a point is connected to a point that
belongs to a non-consecutive chunk, then one can find a cheaper spanning tree
by replacing the connecting arc with another arc having lower weight. As the
spanning tree we want to compute is non-crossing, by the above observation, it
follows that all the arcs between two consecutive chunks are nested.

Observation 8 Consider any two arcs (p1, q1) and (p2, q2) in a minimum non-
crossing spanning tree such that p1, p2 ∈ Pi and q1, q2 ∈ Pi+1. Then, either
p1 < p2 < q2 < q1 or p2 < p1 < q1 < q2.

The above observation implies that the outermost arcs between consecutive
chunks form a path (an umbrella) between the first and the last point and all the
other arcs lie inside this umbrella (see Figure 8). Next, we give a simple algorithm
to compute an optimum spanning tree inside such an outermost arc. Suppose
p0, p1, . . . , pl, . . . , pk+1 be points in sorted order such that {p0, p1, . . . , pl} ⊆ Pi
and {pl+1, . . . , pk+1} ⊆ Pi+1. We would like to construct an optimum spanning
tree of the points p0, p1, . . . , pl, . . . , pk+1 which contains the arc (p0, pk+1). Our
algorithm is based on the following observation.

Fig. 8: Figure showing a spanning tree with the umbrella shown by dashed arcs.

Observation 9 Any optimum spanning tree that contains (p0, pk+1) must also
contain either (p0, pk) or (p1, pk+1) whichever has lower weight.

In our algorithm, we select the shorter arc among (p0, pk) and (p1, pk+1).
Then, we recursively solve the problem inside the selected arc by treating it as
an outermost arc. It is easy to see that this problem can be solved in linear time.
Next, we give an algorithm for deciding which outermost arcs to choose.

Let p1, p2, . . . be the input points. Our algorithm incrementally computes a
non-crossing spanning tree starting from the left and by connecting a new point
in each step. Let P1 = {p1, . . . , pl} and P2 = {pl+1, . . . , pk}. To initialize, for each
l+1 ≤ j ≤ k, we compute the cost of optimum spanning tree of {p1, . . . , pj} that
contains the outermost arc (p1, pj) using the above algorithm. Now, suppose we
want to connect a new point pi ∈ Pt+1 for t ≥ 2. We have already computed the
cost of an optimum spanning tree of {p1, . . . , pq} with any valid outermost arc
(r, s), where r ∈ Pt−1 and s ∈ Pt. In the new spanning tree, pi must be connected
to a point s of Pt. For each such s, we compute the cost of the spanning tree that
contains the arc (s, pi). In particular, the total cost is the sum of three costs:
(i) the cost of (s, pi), (ii) the cost of connecting the points inside (s, pi) and (iii)
the cost of the optimum spanning tree of p1, . . . , s that contains (r, s) for some
r ∈ Pt−1. We select the arc (r, s) in our spanning tree that minimizes the total
cost.

Geometric Planar Networks on Bichromatic Points 13

Note that each step of this dynamic programming based algorithm takes
linear time. Thus, the optimum spanning tree can be computed in quadratic
time.

Theorem 4. For any set R of red points and B of blue points on y = 0, an
optimum non-crossing spanning tree can be computed in quadratic time.

4 Minimum Non-crossing Matching for Collinear Points

Note that the fact that a minimum weight bichromatic matching for points in
general position is always non-crossing might not hold in the case of collinear
points. Indeed, there are point sets for which no non-crossing matching exists
if the edges are represented by segments. However, one can show that there is
always a non-crossing matching of collinear points such that each matched edge
is a circular arc drawn above the line. Again the weight of an arc is the Euclidean
distance between its endpoints.

Definition 4. Non-crossing matching for collinear points. Given a set
of n red points and a set of n blue points all of which lie on the line y = 0, find
a set of n non-crossing circular arcs in the plane of minimum total weight such
that the arcs lie above y = 0, each arc connects a red and a blue point, and the
arcs span all the input points.

Using the bipartite matching algorithm due to Kaplan et al. [14] along with
a simple postprocessing (already described in the introduction), one can imme-
diately solve this problem in O(n2 poly(log n)) time. Here we design a simple
algorithm with improved O(n) time complexity.

Let p1, p2, . . . , p2n be the input points sorted from left to right based on their
x coordinates. We assume that the points are given in this order. For any point
pi ∈ P , let col(pi) denote the color of pi. A subset of points Pi ⊆ P is called
color-balanced if it contains an equal number of red and blue points. We traverse
the points from left to right and seek for the first balanced subset (denoted by
P1). In order to obtain P1 we use a simple method. We start with the leftmost
point p1 and maintain a counter C which is used to find the balanced subset
and is initialized to 0 at the beginning. If col(p1) = red, we increase the value
of C by 1, and decrease by 1, otherwise. Observe that we will get a balanced
subset when the value of C becomes 0. Let P1 ⊆ P be the first balanced subset
containing 2m (for some m ∈ [n]) points. The remaining points P \P1 also form
a balanced subset since P contains exactly n red and n blue points. We prove
the following lemma.

Lemma 10. Let P1 ⊆ P be the first color-balanced subset of P and |P1| = 2m.
Then col(p1) 6= col(p2m), and any minimum non-crossing perfect matching MP

of P contains the edge (p1, p2m).

Proof. The first part of the lemma is clearly true, otherwise the value of the
counter would not be 0 at p2m, which is the termination criteria to obtain the

14 Bandyapadhyay et al.

P1 P2m

(a)

P1 P2mPx

(b)

Fig. 9: Figure demonstrating the two situations in the case when both p1 and p2m are
matched with points from P \ P1.

first balanced subset. Now, let us assume that MP does not contain the edge
(p1, p2m). Then one of the following two situations can happen: 1) p1 and p2m
are matched with two intermediate points from P1; 2) one or both of p1 and p2m
are matched with points from P \ P1.

Case 1: p1 and p2m are matched with two intermediate points pk and p`, respec-
tively. Note ` > k, otherwise the matched edges cross each other. We know that
{p1, . . . , pk} is not a balanced subset since P1 is the first balanced subset. There-
fore, there exists at least one point pr (where 1 < r < k) that is matched with
a point ps (where s > k). In that case, the edge (pr, ps) will intersect (p1, pk).
Hence, we get a contradiction.

Case 2: Suppose both of p1 and p2m are matched with points from P \ P1 and
no other point from {p2, . . . , p2m−1} is matched with any point from P \ P1.
Then we can construct a new matching by adding the edge (p1, p2m) and by
matching the two points in P \ P1. The new matching has lesser cost and is
non-crossing; see Figure 9(a). If any other point in {p2, . . . , p2m−1} (say px) is
also matched with a point in P \ P1, then we know it must be of opposite color
of either p1 or p2m, since col(p1) 6= col(p2m). Hence, we can either give the
edge (p1, px) or (px, p2m) and this reduces the total cost; see Figure 9 (b). The
new matching might not be non-crossing. But, using similar argument one can
remove all the crossings without increasing the cost. Thus, at the end we get a
cheaper non-crossing matching, which contradicts the optimality of MP .

Now, if only one of p1 or p2m is matched (WLOG, assume it is p1) with a
point from P \ P1, then we know there must be at least one other point (say
px ∈ P1) that is also matched with a point from P \ P1, and col(p1) 6= col(px).
We can apply similar arguments as above to get a contradiction, which concludes
the proof of the lemma. ut

Now, we use Lemma 10 to proceed with the algorithm. First, we obtain the
balanced subset P1, and match the points p1 and p2m by an arc and include
the edge (p1, p2m) in MP . This edge partitions the point set into subsets, i.e.,
P2 = P \ P1 and P ′1 = P1 \ {p1, p2m}. On each of these subsets we recursively
perform the same procedure. This process is repeated until each point of P is
matched.

Geometric Planar Networks on Bichromatic Points 15

Due to Lemma 10, we know that every edge we choose in our algorithm must
be part of the optimum solution, and no two edges cross each other. It is not
hard to see that all the balanced subsets can be computed in linear time in
advance, as they are corresponding to matched parentheses and are at most n
in number6. Thus, we conclude with the following theorem.

Theorem 5. For any set R of red points and B of blue points on y = 0 with
|R| = |B|, an optimum non-crossing matching can be computed in linear time.

5 TS Tour for Chunked Points on a Circle

Finally, we study the Traveling Salesman problem on the following special point
configuration on a circle.

Definition 5. TS tour for chunked points on a circle. We are given a
set of n red points and a set of n blue points all of which lie on a fixed circle.
All points are distributed equidistantly on the circle. Further, the input points
are divided into alternately-colored chunks, where each chunk contains exactly
k consecutive points of the same color. The goal is to find a geometric (closed)
tour π in the plane of minimum total length such that π consists of segments
each of which connects a red and a blue point and π spans all the input points.

Fig. 10: Figure demonstrating the point configuration we consider for TS tour, where
n = 8 and k = 4.

Note that by definition, n/k is an integer. The total number of chunks is
L = 2n/k of which n/k contain only red points and n/k contain only blue
points. The configuration of the points mentioned in the above definition is
shown in Figure 10 with an example. For any arc between two points u and v

6 This algorithm can be easily implemented in the following manner. Consider the
points in left to right order, and insert the leftmost point (p1) into a stack. Now,
if the next point p2 is of same color as p1 then insert p2 into the stack, otherwise
match p1, p2 and remove p1 from the stack. Repeat this process until all points are
considered.

16 Bandyapadhyay et al.

on the circle C, we denote the arc by c(uv) (resp. a(uv)) if it is the clock (resp.
anticlock) -wise traversal from u to v along C. As any two consecutive points
are a fixed distance apart we measure the length of any bichromatic edge (a
straight line segment) uv by the minimum of the number of points on the arcs
c(uv) and a(uv), respectively (including u and v). Next, we design an algorithm
for computing a TS tour for the input points. We consider two cases: (i) k is
even and (ii) k is odd.

(i) k is Even. The algorithm in this case is as follows.

1. Let 2p = k. Partition each chunk into two subchunks each containing p
consecutive points. Merge all consecutive subchunks of different colors to form
groups. Note that each group contains p red and p blue points. We still preserve
the geometry of the points of each group and identify the two peripheral red
and blue points of each group as special points. We first compute a bichromatic
path between the two special points for each group and later connect the special
points of different groups to construct a TS tour for all the points.

2. For each group, we compute the TS tour in the following way. Consider the
ordering of the groups w.r.t clockwise traversal of the points and consider the
ith group in this order. WLOG, assume that the red points are visited before
the blue points while traversing the points of the group in clockwise order. Let
ri1, r

i
2, . . . , r

i
p, b

i
p, b

i
p−1, . . . , b

i
1 be the points in this order. Join rip with bip and bip−1

using two edges. For each p− 1 ≥ j ≥ 2, join rij with bij+1 and bij−1. Finally, join

ri1 with bi2 (see Figure 11). Note that each of the points in the group except ri1
and bi1 is connected to two points. ri1 and bi1 are connected to only one point.

3. Next, we connect the special points of different groups. Recall that L is the
total number of groups. Let for the first group the red points are visited before
the blue points while traversing the points of the group in clockwise order. Note
that the special points are r11, b

1
1, b

2
1, r

2
1, r

3
1, b

3
1, . . . , b

L
1 , r

L
1 . For 1 ≤ i ≤ L − 1, we

connect ri1 to bi+1
1 . We also connect rL1 to b11 (see Figure 11).

It is not hard to see that the set of selected edges form a valid traveling
salesman tour. This is because each of the points is connected to exactly two
other points of opposite color. Now, we give a bound on the length of the tour.

Lemma 11. The length of the computed tour is n(k + 2 + 2/k).

Proof. Note that we have added two types of edges (1) between points of same
group, and (2) between the special points. The length of an edge of the second
type is exactly k + 1, and the number of those edges is L. For each group, we
have k − 1 type 1 edges whose total length is,

2 + (3 + 3) + (5 + 5) + . . .+ (k − 1 + k − 1)

=2 · (1 + 3 + . . .+ k − 1)

=2 · (k2/4) = k2/2

Geometric Planar Networks on Bichromatic Points 17

r11

r41

b31

b21

b11

r31

r21b41

Fig. 11: An example of the tour computation for the even case. The edges between
points of same (resp. different) groups are shown using regular (resp. dashed) segments.

Thus, for all the groups, the total length of the type 1 edges is Lk2/2. Hence,
the total length of all edges is L((k2 + 2k + 2)/2) = n(k + 2 + 2/k). ut

The algorithm for the odd case is as follows.

1. Let 2p + 1 = k. Partition each chunk without the middle point into two
subchunks each containing p − 1 consecutive points. Add the middle point
to both subchunks. Merge all consecutive subchunks of different colors to
form groups. Note that each group contains p red and p blue points. We still
preserve the geometry of the points of each group and identify the two pe-
ripheral red and blue points as special points. For each group, We compute
a bichromatic path between the two special points. As each pair of consec-
utive groups share a special point, the union of the paths corresponding to
the groups form a valid tour.

2. For each group, we compute the TS tour exactly in the same way as in the
k is even case.

r11 = r41 b11 = b21

r21 = r31b31 = b41

Fig. 12: An example of the tour computation for the odd case.

18 Bandyapadhyay et al.

Now, we give a bound on the length of the tour.

Lemma 12. The length of the computed tour is n(k + 2 + 1/k).

Proof. For each group, we have k edges whose total length is,

2 + (3 + 3) + (5 + 5) + . . .+ (k + k)

=2 · (1 + 3 + . . .+ k)

=(k + 1)2/2

Thus, for all the groups, the total length of the edges is (2n/k)·((k2+2k+1)/2) =
n(k + 2 + 1/k). ut

Note that the algorithm can be easily implemented in linear time assuming the
points are given in clockwise or anticlockwise order.

5.1 Lower Bound

Lemma 13. The length of any bichromatic traveling salesman tour for the con-
figuration of the points on the circle is at least n(k + 2 + 2/k) if k is even and
at least n(k + 2 + 1/k) if k is odd.

Proofsketch. Assume k is even. The odd case can be handled in a similar way.
We will show that the weight of the edges adjacent to each red chunk is at least
k2 + 2k + 2 in any tour. As the edges adjacent to two distinct red chunks are
disjoint, and the number of red chunks is n/k the lemma follows. Consider a fixed
red chunk. The k red points in the chunk must be connected to blue points with
2k distinct edges. WLOG, we assume that the only blue points with which these k
points are connected are the 2k blue points of the two adjacent chunks. Partition
the red chunk into two subchunks each containing k/2 consecutive points. Again
WLOG, we can assume that the points of a subchunk are only connected to the
blue points of the adjacent chunk. Now, consider a fixed subchunk. Note that
the k/2 points should have a total of degree k which will come from the k blue
points. Also each blue point can be connected to only two red points. If the
degree k come from only k/2 blue points, then the subtour involving the k/2 red
and k/2 blue points form a cycle. Hence, the k/2 red points connect to at least
k/2 + 1 blue points. Also it is beneficial to connect the red points to the closest
k/2 + 1 blue points among the points of the blue chunk. Moreover, to satisfy
a total degree k from these k/2 + 1 blue points, it is always beneficial to have
only one degree from the farthest and the second farthest blue points, and two
degree from each of the remaining k/2− 1 points.

Now, there cannot be the case that the first red point r1 (adjacent to the
blue chunk) gets connected to the farthest and the second farthest blue points.
Otherwise, the remaining k/2− 1 red and k/2− 1 blue points will form a cycle.
Thus, at most one among the farthest and the second farthest blue points gets
connected to r1. The cost to connect the farthest blue point is at least k/2 + 2.
The edges that connect the remaining k/2 blue points and k/2 red points form a

Geometric Planar Networks on Bichromatic Points 19

path between the second farthest blue point and a red point. The idea is to prove
that the cost to connect these points is at least (k2 + k − 2)/2. Thus, the total
cost is at least (k2 + 2k + 2)/2 for one red subchunk. For both red subchunks
the cost is k2 + 2k + 2, and thus the lemma follows. ut

Theorem 6. For any set R of red points and B of blue points on a circle with
|R| = |B|, an optimum non-crossing TS tour can be computed in linear time.

6 Conclusion and Open Problems

In this paper, we have studied four classical graph problems on geometric graphs
induced by bichromatic points in two restricted settings: (i) collinear points
and (ii) equidistant points on a circle. We have shown that almost all of these
problems can be solved in linear time in these settings. For the case of collinear
points, the results are obtained for graphs whose edges can be drawn as circular
arcs. We note that the results for collinear points and circular-arc edges trivially
extend to other types of edges drawn topologically equivalent within the same
halfplane, e.g, 1-bend polylines. One problem that is left open by our work is to
decide the complexity of Bichromatic TSP for collinear points. Also, it would be
nice to extend our result for chunked points to any configuration of points on a
circle.

References

1. A. K. Abu-Affash, A. Biniaz, P. Carmi, A. Maheshwari, and M. H. M. Smid.
Approximating the bottleneck plane perfect matching of a point set. Comput.
Geom., 48(9):718–731, 2015.

2. P. K. Agarwal, A. Efrat, and M. Sharir. Vertical decomposition of shallow levels
in 3-dimensional arrangements and its applications. SIAM J. Comput., 29(3):912–
953, 1999.

3. S. Anily and R. Hassin. The swapping problem. Networks, 22(4):419–433, 1992.
4. S. Arora. Polynomial time approximation schemes for Euclidean traveling salesman

and other geometric problems. J. ACM, 45(5):753–782, 1998.
5. F. Bernhart and P. C. Kainen. The book thickness of a graph. J. Combinatorial

Theory, Series B, 27(3):320–331, 1979.
6. A. Biniaz, P. Bose, A. Maheshwari, and M. H. M. Smid. Plane geodesic spanning

trees, Hamiltonian cycles, and perfect matchings in a simple polygon. Comput.
Geom., 57:27–39, 2016.

7. A. Biniaz, P. Bose, A. Maheshwari, and M. H. M. Smid. Plane bichromatic trees
of low degree. Discrete & Computational Geometry, 59(4):864–885, 2018.

8. M. G. Borgelt, M. J. van Kreveld, M. Löffler, J. Luo, D. Merrick, R. I. Silveira, and
M. Vahedi. Planar bichromatic minimum spanning trees. J. Discrete Algorithms,
7(4):469–478, 2009.

9. W. S. Evans, G. Liotta, H. Meijer, and S. K. Wismath. Alternating paths and
cycles of minimum length. Comput. Geom., 58:124–135, 2016.

10. A. Frank, E. Triesch, B. Korte, and J. Vygen. On the bipartite travelling salesman
problem. 1998.

20 Bandyapadhyay et al.

11. A. Kaneko and M. Kano. Straight-line embeddings of two rooted trees in the plane.
Discrete & Computational Geometry, 21(4):603–613, 1999.

12. A. Kaneko and M. Kano. Discrete geometry on red and blue points in the planea
survey. In Discrete and computational geometry, pages 551–570. Springer, 2003.

13. A. Kaneko, M. Kano, and K. Suzuki. Balanced partitions and path covering of
two sets of points in the plane. preprint.

14. H. Kaplan, W. Mulzer, L. Roditty, P. Seiferth, and M. Sharir. Dynamic planar
Voronoi diagrams for general distance functions and their algorithmic applications.
In Symposium on Discrete Algorithms, SODA 2017, pages 2495–2504, 2017.

15. J. Kyncl, J. Pach, and G. Tóth. Long alternating paths in bicolored point sets.
Discrete Mathematics, 308(19):4315–4321, 2008.

	Geometric Planar Networks on Bichromatic Points

