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Height representation of XOR-Ising loops
via bipartite dimers
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Abstract

The XOR-Ising model on a graph consists of random spin configurations on vertices
of the graph obtained by taking the product at each vertex of the spins of two inde-
pendent Ising models. In this paper, we explicitly relate loop configurations of the
XOR-Ising model and those of a dimer model living on a decorated, bipartite version
of the Ising graph. This result is proved for graphs embedded in compact surfaces
of genus g. Using this fact, we then prove that XOR-Ising loops have the same law
as level lines of the height function of this bipartite dimer model. At criticality, the
height function is known to converge weakly in distribution to 1√

π
a Gaussian free

field [dT07b]. As a consequence, results of this paper shed a light on the occurrence
of the Gaussian free field in the XOR-Ising model. In particular, they prove a discrete
analogue of Wilson’s conjecture [Wil11], stating that the scaling limit of XOR-Ising
loops are “contour lines” of the Gaussian free field.
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1 Introduction

The double Ising model consists of two Ising models, living on the same graph. It
is related [KW71, Wu71, Fan72, Weg72] to other models of statistical mechanics, as
the 8-vertex model [Sut70, FW70] and the Ashkin–Teller model [AT43]. In general, the
two models may be interacting. However, in this paper, we consider the case of two
non-interacting Ising models, defined on the dual G∗ = (V ∗, E∗) of a graph G = (V,E),
having the same coupling constants (Je∗)e∗∈E∗ , where the graph G is embedded either
in a compact, orientable, boundaryless surface Σ of genus g ≥ 0, or in the plane.

We are interested in the polarization of the model [KB79], also referred to as the
XOR-Ising model [Wil11] by Wilson. It is defined as follows: given a pair of spin config-
urations (σ, σ′) ∈ {−1, 1}V ∗×{−1, 1}V ∗ , the XOR-spin configuration belongs to {−1, 1}V ∗
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Height representation of XOR-Ising loops via bipartite dimers

and is obtained by taking, at every vertex, the product of the spins. The interface be-
tween ±1 spin configurations of the XOR-configuration is a loop configuration of the
graph G. Using extensive simulations, Wilson [Wil11] finds that, when G is a specific
simply connected domain of the plane, and when both Ising models are critical, XOR
loop configurations seem to have the same limiting behavior as “contour lines” of the
Gaussian free field, with heights of the contours spaced

√
2 times as far apart as they

should be for the double dimer model on the square lattice. Similar conjectures involv-
ing SLE rather than the Gaussian free field, are obtained through conformal field theory
[IR11, PS11]. Results of this paper explain the occurrence of the Gaussian free field in
the XOR-Ising model and prove a discrete analogue of Wilson’s conjecture.

The first part of this paper concentrates on finite graphs embedded in surfaces.
We explicitly relate XOR loop configurations to loop configurations in a bipartite dimer
model, implying in particular that both loop configurations have the same probability
distribution. In the second part, we prove that this correspondence still holds for a
large class of infinite planar graphs, the so-called isoradial graphs [Ken02, KS05], at
criticality, and make the connection with Wilson’s conjecture. Here is an outline.

Outline

Section 2. One of the tools required is a version of Kramers and Wannier’s low/high-
temperature duality [KW41a, KW41b] in the case of graphs embedded in surfaces of
genus g, with boundary. In the literature, we did find versions of this duality for graphs
embedded in surfaces of genus g [LG94], but we could not find versions taking into
account boundaries. This is the subject of Propositions 2.1 and 2.2, it involves relative
homology theory and the Poincaré–Lefschetz duality.

Sections 3 and 4 consist of the extension to general graphs embedded in a surface of
genus g of an expansion due to Nienhuis [Nie84], which can be summarized as follows.
Consider the low-temperature expansion of the double Ising model, i.e., consider pairs
of polygon configurations separating clusters of ±1 spins of each spin configuration.
Drawing both polygon configurations on G yields an edge configuration consisting of
monochromatic edges, that is edges covered by exactly one of the two polygon config-
urations, and bichromatic edges, that is edges covered by both polygon configurations.
Monochromatic edge configurations exactly correspond to XOR loop configurations, and
separate the surface Σ into connected components Σ1, . . . ,ΣN . Inside each connected
component, the law of bichromatic edge configurations is that of the low-temperature
expansion of an Ising model with coupling constants that are doubled. As a conse-
quence, the partition function of the double Ising model can be rewritten using XOR
loop configurations and bichromatic edge configurations, see Proposition 3.3.

Fixing a monochromatic edge configuration, and applying low/high-temperature du-
ality to the single Ising model corresponding to bichromatic edges, yields a rewriting of
the double Ising partition function, as a sum over pairs of non-intersecting polygon con-
figurations of the primal and dual graph, where primal polygon configurations exactly
correspond to XOR loop configurations, see Proposition 4.2 and Corollary 4.3. Note that
there are quite a few difficulties in the proofs, due to the fact that we work on a surface
of genus g.

Proposition 1.1.
The double Ising partition function for a graph embedded on a surface of genus g can
be rewritten as:

Zd-Ising(G∗, J) = CI
∑

{(P,P∗)∈P0(G)×P0(G∗):
P∩P∗=∅}

(∏
e∈P

2e−2Je∗

1 + e−4Je∗

)( ∏
e∗∈P∗

1− e−4Je∗

1 + e−4Je∗

)
,
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where primal polygon configurations of P0(G) are the XOR loop configurations, and
CI = 2|V

∗|+2g+1
(∏

e∈E cosh(2Je∗)
)
.

Section 5. In Section 5.1, we define the 6-vertex model on the medial graph GM con-
structed from G. Reformulating an argument of Nienhuis [Nie84], we prove that the
6-vertex partition function can be written as a sum over non-intersecting pairs of poly-
gon configurations of the primal and dual graphs.

In Section 5.2, we define the dimer model on the decorated, bipartite graph GQ

constructed from G. Then, we present the mapping between dimer configurations of
GQ and free-fermionic 6-vertex configurations of GM [WL75, Dub11b]. Using both map-
pings, one assigns to every dimer configurationM a pair Poly(M) = (Poly1(M),Poly2(M))

of non-intersecting primal and dual polygon configurations. The weights of the 6-vertex
model chosen to match those of edges in the mixed contour expansion of the double
Ising model satisfy the free-fermionic condition. As a consequence, we then obtain, see
also Proposition 5.4:

Proposition 1.2. The dimer model partition function Z0
dimer(G

Q, J) can be rewritten
as:

Z0
dimer(G

Q, J) = 2
∑

{(P,P∗)∈P0(G)×P0(G∗):
P∩P∗=∅}

(∏
e∈P

2e−2Je∗

1 + e−4Je∗

)( ∏
e∗∈P∗

1− e−4Je∗

1 + e−4Je∗

)
,

where primal and dual polygon configurations of P0(G) × P0(G∗) are the Poly configu-
rations.

Combining Proposition 1.1 and Proposition 1.2 yields the following, see also Theo-
rem 5.5:

Theorem 1.3. XOR loop configurations of the double Ising model on G∗ have the same
law as Poly1 configurations of the corresponding dimer model on the bipartite graph
GQ:

∀P ∈ P0(G), Pd-Ising[XOR = P ] = P0
Q[Poly1 = P ].

Remark 1.4. In the paper [Dub11b], Dubédat relates a version of the double Ising
model and the same bipartite dimer model in two ways. The first approach uses explicit
mappings, most of which are present in the physics literature, and goes as follows.
Consider a slightly different version of the double Ising model, with one model living
on the primal graph G and the second on the dual graph G∗. This double Ising model
can be mapped to an 8-vertex model [KW71, Wu71] on the medial graph. Using Fan and
Wu’s abelian duality, this 8-vertex model [FW70] can be mapped to a second 8-vertex on
the same graph. When coupling constants of the two Ising models satisfy Kramers and
Wannier’s duality, the second 8-vertex model is in fact a free-fermionic 6-vertex model.
The free-fermionic 6-vertex model can in turn be mapped to a bipartite dimer model,
a result due to [WL75] in the case of the square lattice, and extended by [Dub11b] in
the general lattice case. It can also be seen as a specific case of the mapping of the
free-fermionic 8-vertex model to a non-bipartite dimer model of [FW70]. Note that this
bipartite dimer model is the model of quadri-tilings studied by the second author in
[dT07a] and [dT07b].

When performing the different steps of the mapping, Dubédat keeps track of or-
der/disorder variables, in the vein of [KC71]. Using results of a previous paper of his
[Dub11a], this allows him to compute critical correlators in the plane. For simply con-
nected regions, this result has independently been obtained by Chelkak, Hongler and
Izyurov [CHI12].
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Our goal here is different, since we aim at keeping track of XOR-configurations. This
information is not directly available in the above approach. Indeed Fan and Wu’s abelian
duality for the 8-vertex model can be compared to a high-temperature expansion, where
configurations cannot be interpreted using the initial model. Note that expanding and
recombining the identities of [Dub11b] involving correlators, one can recover the iden-
tity in law of Theorem 1.3; this proves the existence of a coupling between the two
models, which we explicitly provide in this paper.

The second approach uses transformations on matrices. The partition function of
the double Ising model can be expressed using the determinant of the Kasteleyn matrix
of the Fisher graph [Fis66]; whereas the partition function of the bipartite dimer model
can be expressed using the Kasteleyn matrix of the graph GQ. Dubédat shows that
the two matrices are related through transformations not affecting the determinant.
Using the fact that the partition function of the double Ising model is also related to
the determinant of the Kac–Ward matrix [KW52], Cimasoni and Duminil-Copin use the
same approach to relate the Kac–Ward matrix to the matrix of the same bipartite dimer
model [CDC13]. Their purpose is to identify the critical point of general bi-periodic
Ising models, see also Li [Li10, Li12] for the case of the square lattice with arbitrary
fundamental domain.

However, the above transformations on matrices are not easily interpreted in terms
of transformations on configurations, and the relation to XOR-configurations is not
straightforward.

Using Nienhuis’ mapping [Nie84], the main contribution of this paper is to pro-
vide a coupling between the double Ising model and the bipartite dimer model, which
keeps track of XOR loop configurations, and is valid for graphs embedded in surfaces
of genus g.

Section 6. Suppose now that the two Ising models are critical and defined on the dual
of an infinite isoradial graph G filling the whole plane, see Section 6.1 for definitions.
Then, the dimer model on the corresponding graphGQ is also critical in the dimer sense.
Using the locality property of both probability measures on Ising [BdT11], and dimer
configurations [dT07b] on isoradial graphs at criticality, we prove that the equality in
law stated in Theorem 1.3 still holds in this infinite context. See Theorem 6.2.

Section 7. The graph GQ being bipartite, using a height function denoted h, dimer
configurations can naturally be interpreted as discrete random interfaces. Our second
theorem, see also Theorem 7.5, proves the following

Theorem 1.5. XOR loop configurations of the double Ising model defined on G∗ have
the same law as level lines of the restriction of the height function h to vertices of the
dual graph G∗.

Theorem 1.5 can be interpreted as a proof of Wilson’s conjecture mentioned above
(see Section 7.2 for a precise statement) in the discrete setting, since it is known that
the height function h, seen as a random distribution, converges in law in the scaling
limit to 1√

π
times the Gaussian free field in the plane [dT07b]. In particular, we explain

the special value of the spacing. It would yield a complete proof of the conjecture if we
could overcome the same technical obstacles as those of the proof of the convergence
of double dimer loops to CLE4.

Acknowledgments: We would like to warmly thank Thierry Lévy for very helpful
discussions on relative homology. We are also grateful to both referees for their useful
comments.
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2 Ising model on graphs embedded in surfaces

In this section, we letG be a graph embedded in a compact, orientable, boundaryless
surface of genus g (g ≥ 0), and G∗ be its dual graph. The embedding of G∗ is chosen
such that dual vertices are in the interior of the corresponding faces.

Fix some integer p ≥ 0, and suppose first that p ≥ 1. For every i ∈ {0, . . . , p− 1}, let
Bi be a union of closed faces of G homeomorphic to a disc, such that ∀i 6= j, Bi∩Bj = ∅.
Denote by Σ the surface of genus g from which the union of the interiors of Bi’s is
removed. Then Σ is a compact, orientable surface of genus g, with boundary ∂Σ =

∂B0 ∪ · · · ∂Bp−1. When p = 0, then Σ is the compact, orientable, boundaryless surface
of genus g in which the graph G is embedded.

Let GΣ = (VΣ, EΣ) be the subgraph of G defined as follows: VΣ consists of vertices
of V ∩Σ; and EΣ consists of edges of E joining vertices of VΣ, from which edges on the
boundary ∂Σ are removed. Let G∗Σ = (V ∗Σ , E

∗
Σ) be the subgraph of G∗ whose vertices are

vertices of V ∗∩Σ, and whose edges are edges of G∗ joining vertices of V ∗Σ ; see Figure 1
for an example. Note that the graph G∗Σ contains all edges dual to edges of GΣ, i.e.,
there is a bijection between primal edges of GΣ and dual edges of G∗Σ. Note that when
p = 0, GΣ = G and G∗Σ = G∗.

B
1

B
0

B
2

γ

γ

γ

3

1

2

γ
4

Figure 1: The graph G is a piece of Z2 embedded in the torus. The union of faces
(Bi)i∈{0,1,2} is pictured in light grey. The graph GΣ consists of black plain lines, and the
dual graph G∗Σ of black dotted lines. The paths (γi)

4
i=1 defining defects of Section 2.1

are drawn in thick black lines.

Fix a collection of positive constants (Je∗)e∗∈E∗ attached to edges of G∗, referred
to as coupling constants. The Ising model on G∗Σ with free boundary conditions and
coupling constants (Je∗) is defined as follows. A spin configuration σ of G∗Σ is a function
of the vertices of V ∗Σ with values in {−1,+1}. The probability of occurrence of a spin
configuration σ is given by the Ising Boltzmann measure, denoted PIsing, and defined
by:

∀σ ∈ {−1, 1}V
∗
Σ , PIsing(σ) =

1

ZIsing(G∗Σ, J)
exp

 ∑
e∗=u∗v∗∈E∗Σ

Je∗σu∗σv∗

 ,

where ZIsing(G∗Σ, J) =
∑

σ∈{−1,+1}V
∗
Σ

exp

 ∑
e∗=u∗v∗∈E∗Σ

Je∗σu∗σv∗

 is the Ising partition func-
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tion. Note that to simplify notation, the inverse temperature is included in the coupling
constants.

2.1 Ising model with defect lines

When p ≥ 1, let N = 2g + p − 1, and when p = 0, let N = 2g. We now define 2N

versions of the original Ising model. Let γ
1
, · · · , γ

N
be N unoriented paths consisting of

edges of the primal graph GΣ; see Figure 1 for an example, where

• for every i ∈ {1, . . . , g}, the paths γ
2i−1

, γ
2i

wind around the i-th handle in two
transverse directions,

• when p ≥ 2, for every i ∈ {1, . . . , p− 1}, the path γ
2g+i

joins ∂B0 and ∂Bi.

The paths γi’s are thought as sets of edges. Let ε be one of the 2N possible “unions”
of paths ∪̂i∈Iγi, where I ⊂ {1, . . . , N} and ∪̂ means that an edge with multiplicity k is
present iff k ≡ 1 mod 2. Then, we change the sign of coupling constants of dual edges
intersecting with ε. Spin configurations are defined as above, and so is the probability
measure on spin configurations. This defines the Ising model with coupling constants
(Je∗) and defect condition ε.

In fact, the appropriate framework for defining the Ising model with defects, is rel-
ative homology theory, see Appendices A.2, A.3, and A.4. The first homology group of
Σ relative to its boundary ∂Σ is denoted by H1(Σ, ∂Σ;Z/2Z). The collection of paths
(γ

1
, . . . , γ

N
) defined above, is a representative of a basis Γ = (γ1, . . . , γN ) of the first rel-

ative homology group H1(Σ, ∂Σ;Z/2Z) seen as a Z/2Z-vector space. In the case where
p = 0, ∂Σ = ∅ and the first homology group of Σ relative to its boundary is simply the
first homology group.

Let ε denote the relative homology class of ε in H1(Σ, ∂Σ;Z/2Z). Then, it will be
clear from the low-temperature expansion of Section 2.2 that the partition function
is independent of the choice of basis and of the choice of representative of ε. As a
consequence, we refer to this model as the Ising model with coupling constants (Je∗)

and defect condition ε, and denote by ZεIsing(G∗Σ, J) the corresponding partition func-
tion. Nevertheless, since we want the change of signs of coupling constants to be well
defined throughout the paper, we fix representatives of relative homology classes in
H1(Σ, ∂Σ;Z/2Z), using the collection of paths γ

1
, . . . , γ

N
defined above. Note that the

original Ising model introduced has defect condition ε = 0 and ε is empty. Note also
that this treatment is completely equivalent to considering the connected components
of the boundary as the boundary of marked faces, and allowing insertion of disorder op-
erators on these marked faces. However, the formulation in terms of defect conditions
is natural in our context: the graphs on which the Ising model with defect conditions
live, arise from the surgery of a larger graph embedded in a surface, and as such, their
boundary have a real geometric meaning.

2.2 Low- and high-temperature expansion

Proposition 2.1 below extends the low-temperature expansion of Kramers and Wan-
nier [KW41a, KW41b] to the case of graphs embedded on a compact, orientable surface
with boundary. It consists of rewriting the Ising partition function as a sum over poly-
gon configurations of the graph GΣ, “separating” clusters of ±1 spins; see Figure 2
(left) for an example.

A polygon configuration of GΣ is a subset of edges of GΣ, such that vertices not on
the boundary ∂Σ are incident to an even number of edges. There is no restriction for
vertices on the boundary ∂Σ. Let us denote by P(GΣ) the set of polygon configurations
of GΣ.
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Figure 2: Left: polygon configuration of GΣ corresponding to a spin configuration of
the Ising model with defect condition ε = γ4. Right: polygon configuration of G∗Σ.

Let ε be an element of H1(Σ, ∂Σ;Z/2Z), and let Pε(GΣ) denote the set of polygon
configurations of GΣ whose relative homology class in H1(Σ, ∂Σ;Z/2Z) is ε, meaning in
particular that, for every i, the number of edges on ∂Bi has the same parity as ε2g+i.

This defines a partition of P(GΣ):

P(GΣ) =
⋃

ε∈H1(Σ,∂Σ;Z/2Z)

Pε(GΣ).

Proposition 2.1 (Low-temperature expansion).
For every relative homology class ε ∈ H1(Σ, ∂Σ;Z/2Z),

ZεIsing(G∗Σ, J) = 2
( ∏
e∈EΣ

eJe∗
) ∑
P∈Pε(GΣ)

∏
e∈P

e−2J∗e . (2.1)

Proof. Suppose for the moment that ε is the class 0 ∈ H1(Σ, ∂Σ;Z/2Z), so that we
deal with the usual Ising model. Using the identity (2.2) below, one can rewrite the
partition function as a statistical sum over polygon configurations separating clusters
of ±1 spins: if σu∗ and σv∗ are two neighboring spins of an edge e∗ = u∗v∗, then

eJe∗σu∗σv∗ = eJe∗
(
δ{σu∗=σv∗} + e−2Je∗ δ{σu∗ 6=σv∗}

)
. (2.2)

When injecting the right hand side in the expression of the Ising partition function,
the product over dual edges e∗ of eJe∗ can be factored out. Since primal and dual
edges are in bijection, this can also be written as a product over primal edges. Then,
expanding the product, we get a product of contributions for all edges separating two
neighboring spins with opposite signs. These edges form a polygon configuration P 0 of
GΣ separating clusters of ±1 spins. As a consequence P 0 has homology class 0, i.e., P 0

belongs to P0(GΣ).
Conversely, any polygon configuration of P0(GΣ) is the boundary of exactly two spin

configurations, one obtained from the other by negating all spins, which explains the
factor 2 on the right hand side of (2.1).

Suppose now that ε 6= 0. In the Ising model with defect condition ε, coupling con-
stants of edges crossing paths of the representative ε are negated. For these edges, the
relation (2.2) should be replaced by the following:

e−Je∗σu∗σv∗ = eJe∗
(
δ{σu∗ 6=σv∗} + e−2Je∗ δ{σu∗=σv∗}

)
.
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Note that, when comparing to (2.2), the two Kronecker symbols have been ex-
changed. As a consequence, the construction of polygon configurations as above is
slightly modified: the edge configuration, denoted by P , constructed from a spin con-
figuration is obtained from P 0 by switching the state of every edge e in ε; see Figure 2
(left). Then, the relative homology class of P in H1(Σ, ∂Σ;Z/2Z) is:

[P ] = [P 0] + [ε] = 0 + ε = ε.

As a consequence P belongs to Pε(GΣ) and this, independently of the choice of repre-
sentative of ε. Conversely, any element of Pε(GΣ) is obtained twice in this way.

For the sequel, it is useful to introduce a symbol for the sum over polygon configu-
rations of the low-temperature expansion. For ε ∈ H1(Σ, ∂Σ;Z/2Z), define

ZεLT(GΣ, J) =
∑

P∈Pε(GΣ)

(∏
e∈P

e−2Je∗
)
.

The partition function of the Ising model with defect condition ε can thus be rewritten
as:

ZεIsing(G∗Σ, J) = 2
( ∏
e∈EΣ

eJe∗
)
ZεLT(GΣ, J).

Proposition 2.2 below extends the high-temperature expansion [KW41a, KW41b,
Wan45] to the case of graphs embedded in a compact, orientable surface with boundary.
It consists of rewriting the Ising partition function as a sum over polygon configurations
of the graph G∗Σ, this time. In this case, polygon configurations do not have a simple
interpretation in terms of spin configurations.

A polygon configuration of G∗Σ (or simply dual polygon configuration) is a subset of
edges such that each vertex of G∗Σ is incident to an even number of edges, see Figure 2
(right) for an example. It is thus a union of closed cycles on G∗Σ. Let us denote by P(G∗Σ)

the set of polygon configurations of G∗Σ.
Let H1(Σ;Z/2Z) be the first homology group of Σ, see Appendices A.1, A.3 and A.4.

Then, to each dual polygon configuration is assigned its homology class in H1(Σ;Z/2Z).
For every τ ∈ H1(Σ;Z/2Z), we let Pτ (G∗Σ) denote the set of dual polygon configurations
restricted to having homology class τ in H1(Σ;Z/2Z). This defines a partition of P(G∗Σ):

P(G∗Σ) =
⋃

τ∈H1(Σ;Z/2Z)

Pτ (G∗Σ).

Proposition 2.2 (High-temperature expansion).
For every relative homology class ε ∈ H1(Σ, ∂Σ;Z/2Z),

ZεIsing(G∗Σ, J) = 2|V
∗
Σ |
( ∏
e∈EΣ

cosh(Je∗)
)
·

∑
τ∈H1(Σ;Z/2Z)

[
(−1)(τ |ε)

∑
P∗∈Pτ (G∗Σ)

( ∏
e∗∈P∗

tanh(Je∗)
)]
,

(2.3)
where (τ |ε) is the intersection form evaluated at τ and ε: it is the parity of the number
of intersections of any representative of τ and any representative of ε.

For details on the intersection form, see Appendix A.5.

Proof. This result is based on yet another way of rewriting the quantity e±Je∗σu∗σv∗ for
a dual edge e∗ = u∗v∗ of E∗Σ.

e±Je∗σu∗σv∗ = cosh Je∗ ± σu∗σv∗ sinh Je∗

= cosh Je∗ (1± σu∗σv∗ tanh Je∗) . (2.4)
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The partition function is expanded into a sum of monomials in (σu∗)u∗∈V ∗Σ . In the ex-
pansion, the spin variables come by pairs of neighbors σu∗σv∗ and thus can be formally
identified with the dual edge connecting u∗ and v∗, associated with a weight ± tanh Je∗ .
Each monomial is then interpreted as a subgraph of G∗Σ, the degree of σu∗ being the de-
gree of u∗ in the corresponding edge configuration. Because of the symmetry σ ↔ −σ,
when re-summing over spin configurations σ, only terms having even degree in each
variable remain, giving a factor 2 per dual vertex, and other contributions cancel. As
a consequence, the contributing monomials correspond to even subgraphs i.e., polygon
configurations of P(G∗Σ).

We now determine the sign of dual polygon configurations. Fix τ ∈ H1(Σ;Z/2Z)

and a dual polygon configuration P ∗ ∈ Pτ (G∗Σ). Then, edges of P ∗ carrying a negative
weight are exactly those crossing edges of ε. As a consequence, the sign of the contri-
bution of P ∗ corresponds to (−1) to the parity of the number of edges of P ∗ intersecting
with ε, this is exactly given by (τ |ε). The dual polygon configuration P ∗ thus has sign
(−1)(τ |ε).

As in the case of the low-temperature expansion, it is useful to introduce a notation
for the sum over dual polygon configurations of the high-temperature expansion. For
τ ∈ H1(Σ;Z/2Z), define:

ZτHT(G∗Σ, J) =
∑

P∗∈Pτ (G∗Σ)

( ∏
e∗∈P∗

tanh(Je∗)
)
.

The relation between (2.1) and (2.3) can then be rewritten in the following compact
form. For every relative homology class ε ∈ H1(Σ, ∂Σ;Z/2Z):

ZεLT(GΣ, J) = 2|V
∗
Σ |−1

( ∏
e∈EΣ

cosh(Je∗)

eJe∗

) ∑
τ∈H1(Σ;Z/2Z)

[
(−1)(τ |ε)ZτHT(G∗Σ, J)

]
. (2.5)

Remark 2.3. Relation (2.5) can be inverted using the orthogonality identity:∑
ε∈H1(Σ,∂Σ;Z/2Z)

(−1)(τ |ε)(−1)(τ ′|ε) = 2Nδτ,τ ′ , (2.6)

where N = 2g + p − 1 when p ≥ 1, and N = 2g when p = 0. This orthogonality relation
is proved as follows. The summand can be rewritten as (−1)(τ−τ ′|ε). The application
ε 7→ (−1)(τ−τ ′|ε) is a group homomorphism from H1(Σ, ∂Σ;Z/2Z) to Z/2Z. When τ = τ ′,
this application is constant, equal to 1, all terms in the sum (2.6) equal 1, and the
total sum equals 2N . Otherwise, since the intersection pairing is non-degenerate (see
Appendix A.5), the application ε 7→ (−1)(τ−τ ′|ε) takes the values 1 and -1 the same
number of times, and the sum (2.6) is zero. Using this identity, we obtain the inverted
version of relation (2.5):

ZτHT(G∗Σ, J) = 2−N−|V
∗
Σ |+1

( ∏
e∈EΣ

eJe∗

cosh(Je∗)

) ∑
ε∈H1(Σ,∂Σ;Z/2Z)

[
(−1)(τ |ε)ZεLT(GΣ, J)

]
.

3 Double Ising model on a boundaryless surface of genus g

In this section, we letG be a graph embedded in a compact, orientable, boundaryless
surface Σ of genus g, and G∗ denote its dual graph. Since Σ has no boundary, the first
homology group H1(Σ, ∂Σ;Z/2Z) of Σ relative to its boundary is identified with the first
homology group H1(Σ,Z/2Z).

Instead of one Ising model on G∗, we now consider two copies of the Ising model,
say a red one and a blue one, with the same coupling constants (Je∗). These two models
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are not taken to be completely independent: we require that they have the same defect
conditions, i.e., we ask that polygon configurations coming from the low-temperature
expansion of both spin configurations have the same homology class.

More precisely, from the point of view of the low-temperature expansion, we are
interested in the probability measure Pd-Ising, on P :=

⋃
ε∈H1(Σ;Z/2Z) Pε(G) × Pε(G),

defined by, for every (Pred, Pblue) ∈ P:

Pd-Ising(Pred, Pblue) =
C
(∏

e∈Pred
e−2Je∗

)(∏
e∈Pblue

e−2Je∗
)

Zd-Ising(G∗, J)
,

where C =
(
2
∏
e∈E e

Je∗
)2

, and the partition function Zd-Ising(G∗, J) is given by:

Zd-Ising(G∗, J) =
∑

ε∈H1(Σ;Z/2Z)

∑
(Pred,Pblue)∈Pε(G)×Pε(G)

C
( ∏
e∈Pred

e−2Je∗
)( ∏

e∈Pblue

e−2Je∗
)

=
∑

ε∈H1(Σ;Z/2Z)

(ZεIsing(J))2.

Given a pair (Pred, Pblue) ∈ P, and looking at the superimposition Pred ∪ Pblue on G,
one defines two new edge configurations:

• Mono(Pred, Pblue): consisting of monochromatic edges of the superimposition Pred∪
Pblue, i.e., edges covered by exactly one of the polygon configuration;

• Bi(Pred, Pblue): consisting of bichromatic edges of the superimposition, i.e., edges
covered by both polygon configurations.

Edges which are not in the two configurations above are covered neither by Pblue nor
by Pred. In Sections 3.1 and 3.2 below, we characterize these two sets of edges.

3.1 Monochromatic edges

Let ε ∈ H1(Σ;Z/2Z), and consider a pair of polygon configurations (Pred, Pblue) in
Pε(G) × Pε(G). Then, it can be realized as four pairs of Ising spin configurations
(±σ,±σ′), each with defect type ε, where coupling constants are negated along the
representative ε of ε, chosen in Section 2.1.

Following Wilson [Wil11], to each of the four pairs of spin configurations, one as-
signs an XOR-spin configuration defined as follows: at every vertex, the XOR-spin is the
product of the Ising-spins at that same vertex.

Note that the four pairs of spin configurations yield two distinct XOR-spin configura-
tions, one being obtained from the other by negating all spins. As a consequence, both
XOR-spin configurations have the same polygon configuration separating clusters of ±1

spins, meaning that this polygon configuration is independent of the choice of (±σ,±σ′)
realizing (Pred, Pblue), let us denote it by XOR(Pred, Pblue). Note also, that although the
definition of σ and σ′ depends on the particular choice of representative ε, the XOR
polygon configuration does not: it is defined intrinsically from (Pred, Pblue).

Lemma 3.1. For every pair of polygon configurations (Pred, Pblue) ∈ P, the monochro-
matic edge configuration Mono(Pred, Pblue) is exactly the XOR loop configuration
XOR(Pred, Pblue). In particular, it is a polygon configuration of P0(G).

Proof. Fix a pair of red and blue polygon configurations(Pred, Pblue) ∈ P ε(G)×Pε(G) for
some ε ∈ H1(Σ;Z/2Z). Let (σ, σ′) be one of the four pairs of spin configurations whose
low-temperature expansion is (Pred, Pblue). We need to show that, for every edge e of G,
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e is monochromatic, if and only if XOR-spins at vertices u∗, v∗ of the dual edge e∗ are
distinct. Suppose that e does not belong to ε. Then,

- the edge e is red only⇔ σu∗ 6= σv∗ and σ′u∗ = σ′v∗ ,

- the edge e is blue only⇔ σu∗ = σv∗ and σ′u∗ 6= σ′v∗ .

If e belongs to ε, the two above conditions hold with colors exchanged. In all cases, e is
monochromatic if and only if XOR spins at vertices u∗ and v∗ are distinct.

Being the boundary of some domain, the set of monochromatic edges must be a
polygon configuration of G, with homology class 0.

3.2 Bichromatic edge configurations

Before describing features of bichromatic edge configurations, we recall some gen-
eral facts. A polygon configuration P of the graph G separates the surface Σ into nP
connected components Σ1, . . . ,ΣnP , where nP ≥ 1. For every i ∈ {1, . . . , nP }, Σi is a
surface of genus gi with boundary ∂Σi. The boundary is either empty or consists of
cycles of Σ.

As in Section 2, GΣi denotes the subgraph of G, whose vertex set VΣi is V ∩ Σi, and
whose edge set EΣi consists of edges of E joining vertices of VΣi , from which edges on
the boundary ∂Σi are removed. The dual graph is denoted by G∗Σi .

Recall that H1(Σi, ∂Σi;Z/2Z) denotes the first homology group of Σi relative to its
boundary. Consider the morphism Πi = ΠΣ,Σi , from H1(Σ;Z/2Z) to H1(Σi, ∂Σi;Z/2Z)

defined as follows: for every ε ∈ H1(Σ;Z/2Z), Πi(ε) is the homology class in
H1(Σi, ∂Σi;Z/2Z) of the restriction of any representative ε of ε to Σi, see Appendix A.6
for details.

The following lemma characterizes bichromatic edge configurations.

Lemma 3.2. Fix ε ∈ H1(Σ;Z/2Z), and let P ∈ P0(G) be a polygon configuration,
separating the surface Σ into connected components Σ1, . . . ,ΣnP .

• If there exists a pair of polygon configurations (Pred, Pblue) ∈ Pε(G) × Pε(G) such
that Mono(Pred, Pblue) = P ; then, for every i ∈ {1, . . . , nP }, the restriction of bichro-
matic edges to GΣi is the low-temperature expansion of an Ising configuration on
G∗Σi , with coupling constants (2Je∗) and defect condition Πi(ε). As a consequence,

it is a polygon configuration in PΠi(ε)(GΣi).

• Given, for every i ∈ {1, . . . , nP }, a polygon configuration Pi ∈ PΠi(ε)(GΣi), there
are 2nP−1 pairs (Pred, Pblue) ∈ Pε(G) × Pε(G) such that Mono(Pred, Pblue) = P and
such that, for every i ∈ {1, . . . , nP }, the restriction of bichromatic edges to GΣi

is Pi.

Proof.

• Suppose that there exists a pair of polygon configurations (Pred, Pblue) of Pε(G) ×
Pε(G) such that Mono(Pred, Pblue) = P . Then, for every i ∈ {1, . . . , nP }, the restric-
tion of bichromatic edges to GΣi exactly consists of the restriction to GΣi of one of
two original polygon configurations. Since this polygon configuration has homol-
ogy ε in Σ, the homology class in H1(Σi, ∂Σi;Z/2Z) of the restriction to Σi is Πi(ε)

by definition. As a consequence, the bichromatic edge configuration on Σi is a
polygon configuration of PΠi(ε)(GΣi). Moreover, since all edges in the bichromatic
configuration are present twice, and since the weight of pairs of polygon configu-
rations is the product of the edge-weights contained in the pair of configurations,
the effective weight of a bichromatic edge e is squared and becomes:(

e−2Je∗
)2

= e−2(2Je∗ ),
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which corresponds to a doubling of the coupling constants.

• There are two spin configurations, denoted by ±ξ, whose low-temperature expan-
sion is P . Suppose that there exists a pair of spin configurations (σ, σ′) whose
low-temperature expansion has P as monochromatic edges, then σσ′ = ±ξ. Let us
assume σσ′ = ξ, the argument being similar in the other case, this has the effect
of adding a global factor 2 when speaking of spin configurations. The relation
σσ′ = ξ implies that there is freedom of choice for exactly one spin configuration,
say σ, the other being determined by their product ξ.

Consider a connected component Σi, and a polygon configuration Pi ∈ PΠi(ε)(GΣi).
We want Pi to consist of doubled edges, so that in particular, it must contain all
red edges. There are thus two choices for the first spin configuration of G∗Σi ,
denoted by ±σi. This holds for every i ∈ {1, . . . , nP } and thus defines 2nP spin
configurations (±σ1, . . . ,±σnP ) of G∗. Recall that in each of the 2nP cases, the
second spin configuration is determined by the condition σσ′ = ξ. Since on each
connected component Σi, ξ is identically equal to ±1, we deduce that (σ′)i = ±σi.
As a consequence, the low-temperature expansion of σ′ exactly consists of edges
of Pi, i.e., Pi consists of red and blue edges. Summarizing, there are 2 · 2nP

pairs of spin configurations, or 2nP−1 pairs of polygon configurations (Pred, Pblue),
such that monochromatic edges are those of P and bichromatic edges those of Pi,
i ∈ {1, . . . , nP }. Note that by construction (choice of σi’s), each polygon configu-
ration Pred, Pblue is in Pε(G).

Consider a polygon configuration P ∈ P0(G), and let ε ∈ H1(Σ,Z/2Z). Denote by
Wε

d-Ising[Mono = P ] the contribution of the set

{(Pred, Pblue) ∈ Pε(G)× Pε(G) : Mono(Pred, Pblue) = P},

to the partition function (ZεIsing(J))2, and by

Wd-Ising[Mono = P ] =
∑

ε∈H1(Σ;Z/2Z)

Wε
d-Ising[Mono = P ].

By the low-temperature expansion of the Ising partition function, the weight of each
polygon configuration Pred, Pblue is the product of edge-weights contained in the con-
figuration. As a consequence, the contribution of (Pred, Pblue) can be decomposed as a
product over monochromatic edges, and bichromatic edges of each of the components.
Using Lemmas 3.1 and 3.2, this yields

Proposition 3.3. For every polygon configuration P ∈ P0(G) and every ε ∈ H1(Σ,Z/2Z),

Wε
d-Ising[Mono = P ] = 2−1C

(∏
e∈P

e−2Je∗
)(nP∏
i=1

2Z
Πi(ε)
LT (GΣi , 2J)

)
, (3.1)

where C =
(
2
∏
e∈E e

Je∗
)2

. Moreover, the double Ising partition function can be rewrit-
ten as:

Zd-Ising(J) =
∑

P∈P0(G)

Wd-Ising[Mono = P ],

and the probability measure Pd-Ising induces a probability measure on polygon configu-
rations of P0(G), given by:

∀P ∈ P0(G), Pd-Ising[Mono = P ] =
Wd-Ising[Mono = P ]

Zd-Ising(J)
. (3.2)
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4 Mixed contour expansion

In [Nie84], Nienhuis rewrites the partition function of the Ashkin–Teller model on
the square lattice as a statistical sum over polygon families on G and G∗ which do not
intersect. We apply the same approach to the double Ising model on Σ but some care is
required to keep track of the homology class of the polygon configurations involved.

We fix ε ∈ H1(Σ;Z/2Z) and a polygon configuration P ∈ P0(G). In Proposition 4.1,

we apply the low/high-temperature duality to each of the terms ZΠi(ε)
LT (GΣi , 2J) involved

in the expression of Wε
d-Ising[Mono = P ] of Equation (3.1). This has the effect of trans-

forming bichromatic polygon configurations of GΣi into dual polygon configurations of
G∗Σi . Then, in Proposition 4.3, we sum over ε ∈ H1(Σ;Z/2Z), and show that the out-
come simplifies to a sum over dual polygon configurations of the dual graph, having 0
homology class in H1(Σ;Z/2Z), and not intersecting P .

Proposition 4.1. For every polygon configuration P ∈ P0(G) and every ε ∈ H1(Σ,Z/2Z),

Wε
d-Ising[Mono = P ] = C′

(∏
e∈P

2e−2Je∗

1 + e−4Je∗

)
×

×
nP∏
i=1

[ ∑
τ i∈H1(Σi,Z/2Z)

(−1)(τ i|Πi(ε))
∑

P∗i ∈Pτ
i (G∗Σi

)

( ∏
e∗∈P∗i

1− e−4Je∗

1 + e−4Je∗

)]
,

where, C′ = 2|V
∗|+1

(∏
e∈E cosh(2Je∗)

)
.

Proof. The expression forWε
d-Ising[Mono = P ] of Equation (3.1) can be rewritten as:

Wε
d-Ising[Mono = P ] = 2nP−1C

(∏
e∈P

e−2Je∗
)(nP∏
i=1

Z
Πi(ε)
LT (GΣi , 2J)

)
.

For every i ∈ {1, . . . , nP }, the contribution, ZΠi(ε)
LT (GΣi , 2J) is the low-temperature

expansion of an Ising model on vertices of V ∗Σi with coupling constants 2Je∗ and de-
fect condition Πi(ε). Using the relation between Kramers and Wannier’s low and high-
temperature expansions of (2.5), it can be expressed as:

Z
Πi(ε)
LT (GΣi , 2J) = Ai ×

∑
τ i∈H1(Σi;Z/2Z)

(−1)(τ i|Πi(ε))Zτ
i

HT(GΣi , 2J),

where

Ai = 2|V
∗
Σi
|−1

∏
e∈EΣi

cosh(2Je∗)

e2Je∗
.

Let us first compute the part which is independent of ε. Observing that the collection of
sets of dual vertices (V ∗Σi)

nP
i=1 is a partition of V ∗, one writes:

2nP−1C
(∏
e∈P

e−2Je∗
)(nP∏
i=1

Ai
)

= 2nP−122
(∏
e∈E

e2Je∗
)(∏
e∈P

e−2Je∗
)
2|V

∗|−nP
( ∏
e∈EΣi

cosh(2Je∗)

e2Je∗

)
.

Noticing that the collection of edges in the Σi’s is exactly the set of edges of G not in P ,
we have:

2nP−1C
(∏
e∈P

e−2Je∗
)(nP∏
i=1

Ai
)

= 2|V
∗|+1

(∏
e∈E

cosh(2Je∗)
)(∏
e∈P

cosh(2Je∗)
−1
)
.
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Define the constant C′ = 2|V
∗|+1

(∏
e∈E cosh(2Je∗)

)
, then by definition of Zτ

i

HT(GΣi , 2J),
one deduces thatWε

d-Ising[Mono = P ] equals:

C′
(∏
e∈P

cosh(2Je∗)
−1
) nP∏
i=1

[ ∑
τ i∈H1(Σi,Z/2Z)

(−1)(τ i|Πi(ε))
∑

P∗i ∈Pτ
i (G∗Σi

)

( ∏
e∗∈P∗i

tanh(2Je∗)
)]
.

The proof of Proposition 4.1 is concluded by observing that

cosh(2Je∗)
−1 =

2e−2Je∗

1 + e−4Je∗
, and tanh(2Je∗) =

1− e−4Je∗

1 + e−4Je∗
.

In order to have an explicit expression for the contribution of P to the partition
function Zd-Ising(J), we need to sum the quantitiesWε

d-Ising[Mono = P ] of Proposition 4.1
over ε ∈ H1(Σ;Z/2Z). This is the object of the next proposition.

Proposition 4.2. For every polygon configuration P ∈ P0(G),

Wd-Ising[Mono = P ] = CI
(∏
e∈P

2e−2Je∗

1 + e−4Je∗

) ∑
{P∗∈P0(G∗):P∩P∗=∅}

( ∏
e∗∈P∗

1− e−4Je∗

1 + e−4Je∗

)
.

where CI = 22gC′ = 2|V
∗|+2g+1

(∏
e∈E cosh(2Je∗)

)
.

Proof. To simplify notation, let us write the product of weights of edges in polygon
configurations as follows:

Θ(P ) =
∏
e∈P

2e−2Je∗

1 + e−4Je∗
, Θ∗(P ∗i ) =

∏
e∗∈P∗i

1− e−4Je∗

1 + e−4Je∗
, for i ∈ {1, . . . , nP }.

Then,

Wd-Ising[Mono = P ] = C′Θ(P )
∑

ε∈H1(Σ;Z/2Z)

nP∏
i=1

[ ∑
τ i∈H1(Σi,Z/2Z)

(−1)(τ i|Πi(ε))
∑

P∗i ∈Pτ
i (G∗Σi

)

Θ∗(P ∗i )
]
.

Expanding the product over i ∈ {1, . . . , nP } and exchanging the summation over ε and
(τ1, . . . , τnP ), one obtains thatWd-Ising[Mono = P ] is equal to:

C′Θ(P )
∑

(τ1,...,τnP )∈
∏nP
i=1 H1(Σi,Z/2Z)

( ∑
ε∈H1(Σ;Z/2Z)

(−1)
∑nP
i=1(τ i|Πi(ε))

) nP∏
i=1

( ∑
P∗i ∈Pτ

i (G∗Σi
)

Θ∗(P ∗i )
)
.

The evaluation of the intersection form (τ i|Πi(ε)) on H1(Σi;Z/2Z) ×H1(Σi, ∂Σi;Z/2Z)

is equal to (πi(τ
i)|ε) on H1(Σ;Z/2Z) ×H1(Σ;Z/2Z), where πi = πΣ,Σi is the projection

induced by the inclusion Σi ⊂ Σ, see Appendix A.6. Indeed, take a representative τ i of
τ i in Σi. Counting intersections with the restriction of a representative ε of ε to Σi is
the same as counting intersections with the whole ε, since τ i is confined to Σi and thus
has no intersection with ε outside of Σi. Therefore,

nP∑
i=1

(τ i|Πi(ε)) =
( nP∑
i=1

πi(τ
i)
∣∣∣ε).

An application of the orthogonality relation (2.6) in the special case where ∂Σ = ∅ gives
that the sum over ε is 0 unless

∑nP
i=1 πi(τ

i) = 0 ∈ H1(Σ;Z/2Z), i.e., the homology class
on the surface Σ of the whole dual polygon configuration P ∗ = P ∗1 ∪ · · · ∪ P ∗nP is zero,
i.e., P ∗ ∈ P0(G∗), and that in this case, the sum over ε equals 22g.
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As an interesting corollary, we obtain a mixed contour expansion for the partition
function of the double Ising model, and the corresponding expression for the double
Ising probability measure of monochromatic polygon configurations which, by Lemma
3.1, are the XOR polygon configurations.

Corollary 4.3.

• The double Ising partition function can be rewritten as:

Zd-Ising(G∗, J) = CI
∑

{(P,P∗)∈P0(G)×P0(G∗):P∩P∗=∅}

(∏
e∈P

2e−2Je∗

1 + e−4Je∗

)( ∏
e∗∈P∗

1− e−4Je∗

1 + e−4Je∗

)
,

where CI = 2|V
∗|+2g+1

(∏
e∈E cosh(2Je∗)

)
.

• For every dual polygon configuration P ∈ P0(G):

Pd-Ising[XOR = P ] =

(∏
e∈P

2e−2Je∗

1 + e−4Je∗

) ∑
{P∗∈P0(G∗):P∩P∗=∅}

( ∏
e∗∈P∗

1− e−4Je∗

1 + e−4Je∗

)
∑

{(P,P∗)∈P0(G)×P0(G∗):P∩P∗=∅}

(∏
e∈P

2e−2Je∗

1 + e−4Je∗

)( ∏
e∗∈P∗

1− e−4Je∗

1 + e−4Je∗

) .

Note that one can see Kramers and Wannier’s duality on this expression: the duality
relation between coupling constant

tanh J∗ = e−2J

exchanges the expression for an edge of P and a dual edge of P ∗.

5 Quadri-tilings and polygon configurations

In this section, we letG be a graph embedded in a compact, orientable, boundaryless
surface Σ of genus g, and G∗ denote its dual graph. For the moment, we forget about
the double Ising model. The goal of this section is to explicitly construct pairs of non-
intersecting polygon configurations of G and G∗, from a dimer model on a decorated,
bipartite version GQ of G, called quadri-tilings [dT07a].

This construction is done in two steps. The first step uses a mapping of Nienhuis
[Nie84], which constructs pairs of non-intersecting primal and dual polygon configura-
tions, from 6-vertex configurations of the medial graph; this is the subject of Section 5.1.
The second step consists of using Wu–Lin/Dubédat’s mapping [WL75, Dub11b] from the
6-vertex model of the medial graph to the bipartite dimer model on the decorated graph
GQ. This is the subject of Section 5.2.

Using the above results and those of Section 4, Theorem 5.5 proves that XOR loops
of the double Ising model have the same law as primal polygon configurations of the
bipartite dimer model.

5.1 6-vertex model and polygon configurations

The medial graph GM of the graph G is defined as follows. Vertices of GM corre-
spond to edges of G. Two vertices of the medial graph are joined by an edge if the
corresponding edges in the primal graph are incident. Observe that GM is also the me-
dial graph of the dual graph G∗, and that vertices of the medial graph all have degree
four. Figure 3 represents the medial graph of a subset of Z2.

A 6V-configuration or an ice-type configuration is an orientation of edges of GM,
such that every vertex has exactly two incoming edges [Lie67]. An equivalent way of
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e

e*

Figure 3: The medial graph of Z2: plain lines represent Z2, dotted lines represent the
dual graph Z2, and thick plain lines represent the medial graph (Z2)M . Grey (resp.
white) faces of the medial graph correspond to primal (resp. dual) vertices of the initial
graph.

defining 6-vertex configurations uses edge configurations instead of orientations, as
represented in Figure 4. This approach is more useful in our context, so that we define
a 6-vertex configuration to be an edge configuration, such that around every vertex of
GM, there is an even number of consecutive present edges.

=1

v v v v v v

vvvvvv

A B Cv v v

Figure 4: The six possible local configurations around a vertex v of the 6-vertex model,
and their respective weights: arrow representation (top), and the even degree subgraph
representation (bottom).

In order to make the 6-vertex model a model of statistical mechanics, weights are
associated to local configurations around a vertex, and the probability of a 6-vertex
configuration is taken to be proportional to the product of its local weights. In absence
of external field, the weights of complementary local configurations are taken to be
equal: there are thus three parameters for each vertex v of the medial graph GM,
denoted by Av, Bv and Cv. Since multiplying these three parameters by the same
positive constant does not change the measure, we set Cv = 1, see also Figure 4. Let
us denote by Z6-vertex(GM, (A,B)) the partition function of this model.

Mapping I [Nie84]. Consider the following combinatorial mapping from 6-vertex
configurations to edge configurations of the primal and dual graphs: whenever a vertex
of GM has two neighboring edges in the 6 vertex configuration, put the edge of G or
G∗ separating the present and the absent edges; see Figure 5. The following lemma
characterizes this mapping, see also [Nie84].

Lemma 5.1.
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Figure 5: Mapping on the local level (top), and on the global level (bottom).

• Mapping I associates to a 6-vertex configuration a pair of polygon configurations
(P, P ∗), which do not intersect and such that the homology class of P ∪ P ∗ in
H1(Σ;Z/2Z) is 0.

• Given a pair of polygon configurations (P, P ∗) as above, there are exactly two
6-vertex configurations which are mapped to (P, P ∗).

Proof. A 6-vertex configuration consists of clusters of present/absent edges, see Fig-
ure 5. The primal/dual edge configuration assigned by the mapping consists of the
boundary of those clusters. It is thus a polygon configuration with 0 homology class. A
primal and the corresponding dual edge cannot intersect, since that would correspond
to a configuration on GM where around a vertex there is alternatively one edge present,
one edge absent, then again one present, one absent, which is a forbidden local config-
uration for the 6-vertex model.

Conversely suppose we are given a pair of polygon configurations (P, P ∗) as above.
The fact that the homology class of P ∪ P ∗ in H1(Σ;Z/2Z) is 0, exactly means that it
is the boundary of domains that can be painted alternatively in two colors consistently.
Put all edges of GM in domains of one color, and remove all edges in domains of the
other color. In this way, one exactly obtains two valid configurations of the 6-vertex
model, one being the complement of the other, depending on which color is used to
represent present edges, see also Figure 5.

Let us denote by P0(G ∪ G∗) the set of pairs (P, P ∗) of polygon configurations of G
and G∗ respectively, such that the union P ∪ P ∗ has 0 homology class in H1(Σ;Z/2Z).

Recall that to every edge e of the primal graph (resp. e∗ of the dual graph), corre-
sponds a vertex v of the medial graph, which we denote by v(e) (resp. v(e∗)). Using this
fact, one can naturally define a weight function on edges of G and G∗:

∀e ∈ G, ae := Av(e); ∀e∗ ∈ G∗, be∗ := Bv(e∗).

With this choice of weights and using Lemma 5.1, we obtain the following.

Lemma 5.2.

Z6-vertex(GM, (A,B)) = 2
∑

{(P,P∗)∈P0(G∪G∗):P∩P∗=∅}

∏
e∈P

ae
∏

e∗∈P∗
be∗ .
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5.2 Quadri-tilings and 6-vertex model

Let us define yet another graph built from the graph G. The quadri-tiling graph of
G, denoted by GQ, is the decorated graph obtained from GM by replacing every vertex
by a decoration which is a quadrangle. The graph GQ is bipartite and can be drawn on
the same surface as G. Edges shared by GQ and GM are referred to as external edges,
and those inside the decorations as internal.

be*

ae

be*

ae

e*

e

1

11

1

Figure 6: Decoration of a vertex of the medial graph GM (left) to obtain a piece of the
quadri-tiling graph GQ (right).

A dimer configuration of GQ, also known as a perfect matching is a spanning sub-
graph of GQ where every vertex has degree exactly one. Let us denote by M(GQ) the
set of dimer configurations of the graph GQ. In a particular decoration of GQ, a dimer
configuration of G looks like one of the seven possibilities represented in Figure 7 (top).

Assigning positive weights (we)e∈EQ to edges of GQ, the dimer Boltzmann measure,
denoted PQ, is defined by:

∀M ∈M(GQ), PQ(M) =

∏
e∈M we

Zdimer(GQ, w)
,

where Zdimer(G
Q, w) =

∑
M∈M(GQ)

∏
e∈M we is the dimer partition function. This defines

a model of statistical mechanics, called the dimer model on GQ.

Mapping II [WL75, Dub11b]. Requiring exterior edges to match yields a map-
ping from dimer configurations of GQ to 6-vertex configurations of GM; see Figure 7.
This mapping between local configurations is one-to-one except in the empty edge case
where this mapping is two-to-one.

Figure 7: The local configurations of a quadri-tiling and the corresponding local 6-
vertex configurations.

We now choose weights of edges in a specific way. Let A and B be positive functions
on vertices of the medial graph GM, defining weights of local 6-vertex configuration;
and let a and b be the induced weight functions on edges of G and G∗ respectively. The
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weight function wa,b on edges of GQ is defined as follows, see also Figure 6:

wa,be =


1 if e is an external edge

aē if e is an interior edge, parallel to a primal edge ē

bē∗ if e is an interior edge, parallel to a dual edge ē∗.

Let us denote by Zdimer(G
Q, (A,B)) the corresponding partition function. From now on,

we suppose that local weights of the 6-vertex model satisfy the relation:

∀v ∈ V (GM), A2
v +B2

v = 1.

This implies that, ∀v ∈ V (GM), ∆v =
A2
v+B2

v−C
2
v

2AvBv
= 0, i.e., the model is free-fermionic.

Using the weight functions a and b, the free-fermionic condition can be rewritten as:

∀e ∈ E, a2
e + b2e∗ = 1. (5.1)

With this choice of weight, we thus obtain the following.

Lemma 5.3. When local weights of the 6-vertex model satisfy the free-fermionic rela-
tion, Mapping II is weight preserving and,

Zdimer(G
Q, (A,B)) = Z6-vertex(GM, (A,B)).

Let us now choose weights of edges of GQ to depend on coupling constants (Je∗) of
the double Ising model:

∀e ∈ E, ae =
2e−2Je∗

1 + e−4Je∗
, and ∀e∗ ∈ E∗, be∗ =

1− e−4Je∗

1 + e−4Je∗
. (5.2)

Then, it is straightforward to check that a and b satisfy the free-fermionic condition (5.1):

∀e ∈ E, a2
e + b2e∗ =

4e−4Je∗ + (1− e−4Je∗ )2

(1 + e−4Je∗ )2
= 1.

It should be noted that in the more general case of the Ashkin–Teller model, when
spins of the two Ising models interact, the mapping with the 6-vertex model still holds
[Nie84, Sal87], but the model is not free-fermionic anymore.

Since weights a and b depend on coupling constants (Je∗), we set J as argument for
the corresponding dimer model partition function.

Recall that the mixed contour expansion of the double Ising partition function, see
Corollary 4.3, involves pairs of non-intersecting primal and dual polygon configurations,
each of which has 0 homology class in H1(Σ;Z/2Z). We want to take the same restric-
tion here.

Consider a dimer configuration M of the graph GQ, then Mapping II assigns to M

a 6-vertex configuration, and Mapping I assigns to this 6-vertex configuration a pair
of non-intersecting polygon configuration of P0(G ∪ G∗). Let us denote this pair by
Poly(M) = (Poly1(M),Poly2(M)).

We restrict ourselves to dimer configurations M such that Poly1(M) has 0 homology
class, and denote byM0(GQ) this set. Note that since the superimposition Poly1(M) ∪
Poly2(M) has 0 homology class, this automatically implies that Poly2(M) also has 0

homology. Let P0
Q be the corresponding dimer Boltzmann-measure, and Z0

dimer(G
Q, J)

be the corresponding partition function.
Let (P, P ∗) ∈ P0(G) × P0(G∗) such that P ∩ P ∗ = ∅. Denote by WQ[Poly = (P, P ∗)]

the contribution of the set:

{M ∈M(GQ) : Poly(M) = (P, P ∗)} ⊂ M0(G),

to the partition function Z0
dimer(G

Q, J). Then, as a consequence of Lemmas 5.2 and 5.3,
we have:
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Proposition 5.4. When weights assigned to edges of the graph GQ are chosen as in
Equation (5.2), we have for all (P, P ∗) ∈ P0(G)× P0(G∗), such that P ∩ P ∗ = ∅:

WQ[Poly = (P, P ∗)] = 2
(∏
e∈P

2e−2Je∗

1 + e−4Je∗

)( ∏
e∗∈P∗

1− e−4Je∗

1 + e−4Je∗

)
,

Moreover, the dimer model partition function can be written as:

Z0
dimer(G

Q, J) = 2
∑

{(P,P∗)∈P0(G)×P0(G∗):P∩P∗=∅}

(∏
e∈P

2e−2Je∗

1 + e−4Je∗

)( ∏
e∗∈P∗

1− e−4Je∗

1 + e−4Je∗

)
and the probability measure P0

Q induces a probability measure on polygon configura-
tions of P0(G), given by:

P0
Q[Poly1 = P ] =

(∏
e∈P

2e−2Je∗

1+e−4Je∗

) ∑
{P∗∈P0(G∗):P∩P∗=∅}

(∏
e∗∈P∗

1−e−4Je∗

1+e−4Je∗

)
∑

{(P,P∗)∈P0(G)×P0(G∗):P∩P∗=∅}

(∏
e∈P

2e−2Je∗

1+e−4Je∗

)(∏
e∗∈P∗

1−e−4Je∗

1+e−4Je∗

) .
Combining Corollary 4.3 and Proposition 5.4 yields the following.

Theorem 5.5.

• The double Ising partition function and the dimer model partition function are
equal up to an explicit constant:

Zd-Ising(G∗, J) = 2|V
∗|+2g

(∏
e∈E

cosh(2Je∗)
)
Z0

dimer(G
Q, J).

• XOR-polygon configurations of the double Ising model on G∗ have the same law as
Poly1 configurations of the corresponding dimer model on the bipartite graph GQ:

∀P ∈ P0(G), Pd-Ising[XOR = P ] = P0
Q[Poly1 = P ].

Note that the first part of Theorem 5.5 can also be deduced from the results of
[Dub11b] and [CDC13].

Since the quadri-tiling model is a bipartite dimer model, it can be studied in great
detail using the tools of Kasteleyn theory, of which we recall some elements of in the
next subsection. These tools can be used to study the distribution of the XOR Ising
configurations.

5.3 Kasteleyn theory

We now recall some elements of the Kasteleyn theory for bipartite dimer models and
apply it to the dimer model on GQ. This simplified version for bipartite graphs of the
more general theory developed by Temperley and Fisher, Kasteleyn [TF61, Kas67] is
due to Percus [Per69]. The main tool is the Kasteleyn matrix, defined as follows in the
bipartite case:

• rows (resp. columns) are indexed by white (resp. black) vertices;

• the absolute value of an entry is 0 if the corresponding white and black vertices
are not adjacent, and is the dimer weight of the edge formed by these vertices
when they are adjacent;

• signs of the entries are chosen in such a way that around all (bounded) faces, the
number of minus signs around a face has the same parity as half of the degree of
the face, minus 1.
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If the graph GQ is planar, the partition function of the model is, up to a global sign,
the determinant of the Kasteleyn matrix. Indeed, when expanding the determinant of
K as a sum over permutations, the only non-zero terms are those corresponding to
dimer configurations, and their absolute value is the correct weight (see for example
[Ken04] p.3). The third condition about signs is here to compensate the signatures of
the permutations, so that all the terms exactly have the same sign. Kasteleyn showed
[Kas61, Kas67] that such a choice of signs exists and is essentially unique: changing the
sign of each edge around a particular vertex still yields a choice of signs satisfying the
third condition, and one can pass from one valid choice to another by a succession of
such operations. In order to get the right global sign, one can choose a reference dimer
configuration M0, giving a bijection between white and black vertices, agree that the
order chosen for rows and columns of K is compatible with this bijection, and choose
signs so that all entries of K corresponding to dimers of the reference configuration
have sign +.

If the graph GQ is embedded in a surface Σ of genus g > 0, the Kasteleyn theory
is more complicated. There is a topological obstruction for the existence of a sign
distribution on edges giving every dimer configuration a + sign in the determinant
expansion of a Kasteleyn matrix. There still exist choices of signs satisfying the third
condition for a Kasteleyn matrix, but there is not just one, as in the planar case, but 22g

classes of choices of signs, yielding 22g non-equivalent Kasteleyn matrices. From one of
them, denoted by K(0), one can construct the other non-equivalent matrices denoted by
K(ε), ε ∈ H1(Σ;Z/2Z), by multiplying the sign of each edge crossing a representative of
ε by −1.

In the expansion of the determinant of each of the 22g matrices, there are terms with
different signs. The sign of a dimer configuration M is determined as follows. Let M0 be
a reference dimer configuration of GQ. Consider the superimposition M0∪M of M0 and
of the dimer configuration M of GQ. Each vertex of GQ is incident to exactly two edges
of the superimposition, so that we obtain a family of non-intersecting loops and doubled
edges covering all vertices of GQ. Loops of the superimposition also live on the surface
Σ and may have non-trivial homology in H1(Σ;Z/2Z). Given ε ∈ H1(Σ;Z/2Z), the sign
of the dimer configuration M in the expansion of the determinant of K(ε) depends on
ε and the homology class in Z/2Z of the loops of the superimposition M0 ∪ M . The
determinant of the Kasteleyn matrix K(ε) has thus the following form:

detK(ε) =
∑

α∈H1(Σ;Z/2Z)

sα,εZ
(α)
dimer,

where Z
(α)
dimer is the partition function restricted to dimer configurations whose super-

imposition with M0 has homology class α, and sα,ε is a sign depending only on ε and
α.

The remarkable fact is that the linear relations between detK(ε) and Z
(α)
dimer can be

inverted explicitly and that each Z
(α)
dimer can be written as a linear combination of the

22g determinants of Kasteleyn matrices [DZM+96, GL99, Tes00, CR07, CR08]. Building
on this result, Kenyon [Ken97] obtains an explicit expression for the dimer Boltzmann
measure on dimer configurations of Z(α)

dimer involving the 22g Kasteleyn matrices and
their inverses.

Let us return to the purpose of this paper. We are looking for an explicit expression
for the law of XOR-polygon configurations of the double Ising model. By Theorem 5.5,
this amounts to finding the law of dimer configurations M of GQ such that Poly1(M) has
0 homology class. The next lemma proves that by choosing the reference dimer con-
figuration M0 appropriately, the homology class of Poly1(M) is equal to the homology
class of the superimposition M0 ∪M .
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Lemma 5.6. Let M0 be the dimer configuration covering all internal edges of decora-
tions parallel to dual edges of G∗, and let M be a dimer configuration of GQ. Then, the
homology classes of M0 ∪M and Poly1(M) in H1(Σ;Z/2Z) are equal.

Proof. In order to prove that the homology classes are the same, it suffices to prove that
they give the same result when computing the intersection form against any homology
class τ ∈ H1(Σ;Z/2Z).

Let us fix such a class τ ∈ H1(Σ;Z/2Z). Let τ be a representative of the class τ ,
realized as a path on G∗. We now show that the parity of the number of intersections
between Poly1(M) and τ , is equal to the number of intersections between M ∪M0 and
τ . All intersections occur in the interior of dual edge used by τ .

Fix e∗ a dual edge used by τ . From the mappings above, the edge e belongs to
Poly1(M) if and only if the number of interior edges parallel to e in the corresponding
rhombus covered by dimers in M is odd (see Figures 5 and 7). Since edges of M0 are
parallel to e∗, the parity of the number of intersections with e∗ will be the same for
Poly1(M) as for M ∪M0. Since this holds for every dual edge belonging to τ , it holds
for τ . Therefore, the homology classes for Poly1(M) and M ∪M0 are the same.

By Lemma 5.6, the restricted partition function Z
(α)
dimer is also the partition function

restricted to dimer configurations M such that Poly1(M) has homology class α, this is
in particular true for α = 0. As a consequence, the Kasteleyn theory for dimer models
defined on graphs embedded in surfaces of genus g > 0 described above, yields an
explicit expression for the partition function and for the probability measure of XOR-
polygon configurations of the double Ising model.

Note that classically, when studying dimer models one is interested in the full parti-
tion function Zdimer =

∑
α∈H1(Σ;Z/2Z) Z

(α)
dimer, which from the above discussion is a linear

combination of the determinants of the 22g Kasteleyn matrices. Since considering the
restricted model where the homology class of dimer configurations is fixed is just a mat-
ter of considering another linear combination of determinants, results for the restricted
model are readily obtained from those on the full model. This fact is used in the proof
of Theorem 6.2.

This discussion of the relation of signs and homology considerations is not specific to
the dimer model on GQ but applies to any dimer model where the more general Kaste-
leyn theory applies, using full Kasteleyn matrices with rows and columns indexed by
all vertices of the graph, and Pfaffians instead of determinants. We refer the reader to
[CR07] for an intrinsic geometric interpretation of coefficients in the linear combination
in this general context. The low-temperature polygon configurations of the Ising model
can be mapped via Fisher’s correspondence [Fis66] to a non-bipartite dimer model. Re-
stricting the homology class of the polygon configurations can also be obtained on the
dimer side with an appropriate linear combination of Pfaffians of Kasteleyn matrices.

6 The double Ising model at criticality on the whole plane

After having discussed in much generality the case of finite surfaces of genus g,
we now want to consider the case of infinite planar graphs. From now on, we restrict
ourselves to a special kind of graphs, the so-called isoradial graphs, with specific values
of the coupling constants for the Ising model.

6.1 Isoradial graphs

Definition 6.1. An isoradial graph [Duf68, Mer01, Ken02, KS05] is a planar graph
G together with a proper embedding having the property that every bounded face is
inscribed in a circle of fixed radius, which can be taken equal to 1.
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The regular square, triangular and hexagonal lattices with their standard embedding
are isoradial. A fancier example is given in Figure 8 (left).

θe

e

Figure 8: Left: an example of an isoradial graph. Middle: the corresponding rhombus
graph. Right: the half-rhombus angle θe associated to an edge e.

The center of the circumscribing circle of a face can be identified with the corre-
sponding dual vertex, implying that the dual of an isoradial graph is also isoradial.

The dual of the medial graph GM, called the diamond graph of G and denoted by
G�, has as set of vertices the union of those of G and G∗. There is an edge between
v ∈ V and f∗ ∈ V ∗ if and only if v is on the boundary of the face f corresponding to
the dual vertex f∗; see Figure 8 (middle) for an example. Faces of G� are rhombi with
edge-length 1, diagonals of which correspond to an edge of G and its dual edge. To
each edge e of G we can therefore associate a geometric angle θe ∈ (0, π/2), which is
the half-angle of the rhombus containing e, measured between e and the edge of the
rhombus; see Figure 8 (right). The family (θe) encodes the geometry of the embedding
of the isoradial graph.

6.2 Statistical mechanics on isoradial graphs

When defining a statistical mechanical model on an isoradial graph, it is natural to
relate statistical weights to the geometry of the embedding, and thus to choose the pa-
rameters attached to an edge (coupling constants for Ising, probability to be open for
percolation, weight of an edge for dimer models, conductances for spanning trees or
random walk,. . . ) to be functions of the half-angle of that edge. For the Ising model,
using discrete integrability considerations (invariance under star-triangle transforma-
tions), self-duality, the following expression for the interacting constants can be derived,
see [Bax89]:

Je = J(θe) =
1

2
log

(
1 + sin θe

cos θe

)
.

These are also known as Yang–Baxter’s coupling constants.
This expression for Je, when θe = π

4 , π
3 and π

6 , coincides with the critical value of
the square, hexagonal and triangular lattices respectively [KW41a, KW41b]. The Ising
model with these coupling constants has been proved to be critical when the isora-
dial graph is bi-periodic [Li12, CDC13], we therefore refer to these values as critical
coupling constants.

We suppose that the isoradial graph G is infinite, in the sense that the union of all
rhombi of the diamond graph of G covers the whole plane.

Consider the corresponding bipartite dimer model on the infinite decorated quadri-
tiling graph GQ. Then, the correspondence for the weights described in Section 5.2,
Equation (5.2) yields in this particular context:

∀e ∈ E, ae = a(θe) = cos θe, ∀e∗ ∈ E∗, be∗ = b(θe∗) = cos θe∗ = sin θe.
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Notice that with a particular embedding of the decoration, namely when external
edges have length 0, and a and b edges form rectangles joining the mid-points of edges
of each rhombus, the quadri-tiling graph GQ is itself an isoradial graph with rhombi
of edge-length 1

2 , and that weights (up to a global multiplicative factor of 1
2 ) are those

introduced by Kenyon [Ken02] to define critical dimer models on isoradial graphs.
It turns out that for the Ising and dimer models on infinite isoradial graphs with

critical weights indicated above, it is possible to construct Gibbs probability measures
[dT07a, BdT11], extending the Boltzmann probability measures in the DLR sense: con-
ditional on the configuration of the model outside a given bounded region of the graph,
the probability measure of a configuration inside the region is given by the Boltzmann
probability measure defined by the weights above (and the proper boundary conditions).
These measures have the wonderful property of locality: the probability of a local event
only depends on the geometry of a neighborhood of the region where the event takes
place, otherwise stated changing the isoradial graph outside of this region does not
affect the probability.

We can therefore consider the critical Ising model (resp. dimer, in particular quadri-
tilings models) on a general infinite isoradial graph, as being that particular Gibbs prob-
ability measures on Ising configurations (resp. dimers configurations) of that infinite
graph.

We now work with a fixed infinite isoradial graphG. We denote by P∞Ising the measure
on configurations of the critical Ising model on G∗. By taking two independent copies
of the critical Ising model on G∗, we get the Gibbs measure for the critical double Ising
model P∞d-Ising = P∞Ising ⊗ P∞Ising, from which XOR contours can be constructed, as in the
finite case. We denote by P∞Q the Gibbs measure on dimer configurations of the infinite
graph GQ.

6.3 Loops of the critical XOR Ising model on isoradial graphs

It turns out that the identity in law between polygon configurations of the critical
XOR Ising model on G∗ and those of the corresponding bipartite dimer model on GQ

remains true in the context of infinite isoradial graphs at criticality:

Theorem 6.2. Let G be an infinite isoradial graph. The measure induced on polygon
configurations of the critical XOR Ising model on G∗, and the measure induced on pri-
mal contours of the corresponding critical bipartite dimer model on GQ have the same
law: for any finite subset of edges E = {e1, . . . , en},

P∞d-Ising[E ⊂ XOR] = P∞Q [E ⊂ Poly1]. (6.1)

Proof. Suppose first that the graph G is infinite and bi-periodic, invariant under the
translation lattice Λ. Then the graph GQ is also infinite and bi-periodic. The infinite
volume Gibbs measure P∞Q on dimer configurations of the bipartite graph GQ is con-
structed in [KOS06] as the weak limit of the Boltzmann measures on the natural toroidal
exhaustion GQ

n = GQ/nΛ of the infinite bi-periodic graph GQ. The infinite volume Gibbs
measure P∞Ising on low temperature Ising polygon configurations of G is constructed in
[BdT10]. It uses Fisher’s correspondence relating the low temperature expansion of
the Ising model and the dimer model on a non-bipartite decorated version of the graph
G. The construction then also consists in taking the weak limit of the dimer Boltzmann
measures but, since the dimer graph is non-bipartite, more care is required in the proof
of the convergence.

If we apply Theorem 5.5 to the specific case of the double Ising model on a toroidal,
isoradial graph G∗n with critical coupling constants, we know that on Gn, XOR polygon
configurations have the same law as primal polygon configurations of the corresponding
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bipartite dimer model on GQ
n . The laws involved are the Boltzmann measures on config-

urations having restricted homology. But from Section 5.3, we know that restricting the
homology amounts to taking other linear combinations of the Kasteleyn matrices and
their inverses. This does neither change the proof of the convergence of the Boltzmann
measures, nor the limit. Having equality in law for every n thus implies equality in the
weak limit.

Suppose now that the graph G is infinite but not necessarily periodic. The infinite
volume Gibbs measure P∞Q of the critical dimer model on the bipartite graph GQ is
constructed in [dT07a]. The construction has two main ingredients: the locality prop-
erty meaning that the probability of a local event only depends on the geometry of the
embedding of GQ in a bounded domain containing edges involved in the event, and
Theorem 5 of [dT07a] which states that any simply connected subgraph of an infinite
rhombus graph can be embedded in a periodic rhombus graph. The infinite volume
Gibbs measure P∞Ising of the low temperature representation of the critical Ising model
on G is constructed in [BdT11] using the same argument. This implies that one can
identify the probability of local events on a non-periodic graph G with the one of a
periodic graph having a fundamental domain coinciding with G on a ball sufficiently
large to contain a neighborhood of the region of the graph involved in the event. As a
consequence, equality in law still holds in the non-periodic case.

7 Height function on quadri-tilings

Dimer configurations of the quadri-tiling graph GQ, like all bipartite planar dimer
models, can be interpreted as random surfaces, via a height function. It is the main
ingredient to relate the previous results connecting XOR loops and dimers with Wilson’s
conjecture.

7.1 Definition and properties of the height function

Let us now recall the definition of height function, used in [dT07a]. A dimer config-
uration M of a planar bipartite graph can be interpreted as a unit flow αM , flowing by
1 along each matched edge of M , from the white vertex to the black one. It is a func-
tion on edges having divergence +1 at each white vertex and −1 at each black vertex.
Subtracting from αM another flow with the same divergence at every vertex, yields a
divergence-free flow, whose dual is the differential of a function on faces of this graph.

There is a natural candidate for this unit reference flow: since in a dimer configura-
tion there is exactly one dimer incident to every vertex, the sum over all edges incident
to any given vertex of the probability that this edge is covered by a dimer, is equal to 1.
This means that the flow α0, flowing by P∞Q (e)1 from the white vertex to the black one
along each edge e of the graph, is a flow with divergence +1 (resp. −1) at every white
(resp. black) vertex.

The height function h on quadri-tilings is defined as follows. For every dimer config-
urationM ofGQ, hM is a function on faces ofGQ, such that for every pair of neighboring
faces f and f ′ of GQ sharing an edge e, with the additional property that when travers-
ing e from f to f ′, the black vertex of e is on the left:

hM (f ′)− hM (f) = αM (e)− α0(e).

When faces f and f ′ are not incident, choose a path f = f0, f1, . . . , fn = f ′ in the

1The graph GQ is isoradial and infinite, and the weights for the quadri-tilings are critical. So in this
particular context, we know [Ken02] that the probability of an edge is given by θ/π, where θ is the half-angle
of the rhombus containing that edge.
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dual graph joining f and f ′, then:

hM (f ′)− hM (f) =

n−1∑
i=0

(hM (fi+1)− hM (fi)).

This definition is consistent, i.e., independent of the choice of path from f to f ′, because
the flow αM − α0 is divergence free; it determines hM up to a global additive constant,
which can be fixed by saying that the height at a particular given face of GQ is 0.
Faces of GQ are split into three distinct subsets, those corresponding to: vertices of G,
vertices of the dual G∗ and edges of G (or G∗). We suppose for the sake of definiteness
that the face where the height is fixed at 0 corresponds to some particular vertex of G.

Denote by hMV (resp. hMV ∗) the restriction of hM to vertices of G (resp. to vertices of
G∗).

The next lemma describes possible height changes between pairs of vertices of the
primal (resp. dual) graph, incident in the primal (resp. dual) graph. To simplify the
picture, we consider primal and dual vertices to be around a rhombus of the diamond
graph; see Figure 9.
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Figure 9: Height changes for the dimer model in a rhombus of the diamond graph.

Lemma 7.1.

• The function hMV (resp. hMV ∗) takes values in Z (resp. Z+ 1
2 ).

• The increment of hMV (resp. hMV ∗) between two neighboring vertices of G (resp. of
G∗) is −1, 0, or 1.

• The increment of hMV (resp. hMV ∗) is non-zero if and only if the two vertices are
separated by an edge of Poly2(M) (resp. Poly1(M)).

Proof. Let e1, e2 be two interior edges of GQ, parallel to an edge of G, as in Figure
9. Then, the reference flow α0 has the same value but opposite direction on these two
edges. As a consequence, using the definition of the height function,

hM (v∗2)− hM (v∗1) = Ie1(M)− P∞Q (e1)− Ie2(M) + P∞Q (e1) = Ie1(M)− Ie2(M).

A similar expression holds for hM (v2) − hM (v1). This proves that the increment of hM

between two neighboring vertices of G (resp. G∗) is equal to −1, 0, or 1. Because of
our convention for the base point, this implies that hM takes integer values on G. To
see that hM takes half-integer values on G∗, one just has to notice that the reference
flow α0 separating two vertices v (on G) and v∗ (on G∗) which are neighbors on G� is
π/2
π = 1

2 since the corresponding rhombus in the isoradial graph GQ is flat.
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Remark 7.2. Note that another choice of reference unit flow is the one coming from
the reference dimer configuration M0, where a white-to-black unit is flowing along all
interior edges parallel to edges of G∗. This produces a random height function whose
restriction to vertices of G, resp. of G∗, coincides with hV , resp. hV ∗ (up to an additive
constant).

Remark 7.3. The height function hM on V ∪ V ∗ can be defined directly from the 6-
vertex dimer configuration, using the representation in terms of orientations depicted
in Figure 4. Since the number of incoming and outgoing edges is the same at each
vertex, the set of edges in the 6-vertex configuration can be partitioned into oriented
contours. These contours are the level lines of the restriction of hM to V ∪V ∗ separating
two successive half-integer values, and can thus be used to reconstruct hM .

The level lines of hV (resp. hV ∗) are the set of closed contours on G∗ (on resp G)
separating clusters of vertices of G (resp. of G∗) where hV (resp. hV ∗) takes the same
value.

Returning to the definition of the pair of polygon configurations Poly(M) assigned
to a quadri-tiling M , we immediately obtain the following:

Lemma 7.4. Let M be a dimer configuration of GQ, then level lines of hMV , respectively
hMV ∗ , exactly correspond to the polygon configuration Poly1(M), respectively Poly2(M).

Note that due to the fact that Poly1(M) and Poly2(M) do not cross, the increments
of hM along two diagonals of a rhombus cannot be both non-zero. As a consequence,
on contour lines of hMV , hMV ∗ is constant.

Combining Lemma 7.4 with Theorem 6.2 stating that monochromatic polygon con-
figurations of the XOR Ising model have the same distribution as primal polygon con-
figurations of dimer configurations of GQ, we obtain one of the main theorems of this
paper:

Theorem 7.5. Monochromatic polygon configurations of the critical XOR-Ising model
have the same distribution as level lines of the restriction to primal vertices of the
height function of dimer configurations of GQ.

7.2 Wilson’s conjecture

In [Wil11], Wilson presented extensive numerical simulations on loops of the critical
XOR Ising model on the honeycomb lattice, on the base of which he conjectured the
following:

Conjecture 7.6 (Wilson [Wil11]). The scaling limit of the family of loops of the critical
XOR Ising model are the level lines of the Gaussian free field corresponding to levels
that are odd multiples of

√
π

2 .

The Gaussian free field is a wild object: it is a random generalized function, and not
a function, and as such, there is no direct way to define what its level lines are. The
level lines of the Gaussian free field are understood here as the scaling limit when the
mesh goes to zero of the level lines of the discrete Gaussian free field on a triangulation
of the domain, which separate domains where the field is above or below a certain
level [SS09].

The level lines of the Gaussian free field corresponding to levels that are odd mul-
tiples of λ =

√
π
8 form a CLE4 [SS09, MS]. The contour lines of the XOR Ising models

are thus conjectured to have the same limiting behavior as the CLE4, except that there
are a factor of

√
2 times fewer loops in the XOR Ising picture. This conjecture is in

agreement with predictions of conformal field theory [IR11, PS11].
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Theorem 7.5 can be interpreted as a proof of a version of Wilson’s conjecture in a
discrete setting, before passing to the scaling limit, and brings some elements for the
complete proof of this conjecture. In particular, it explains the link with the Gaussian
free field and the factor

√
2, as we will now show.

For ε > 0, denote by GQ
ε the embedding of GQ in the plane where rhombi of GQ have

side length ε. For every dual vertex v in GQ∗, define vε the vertex in GQ
ε
∗

corresponding
to the dual vertex v.

The random height function h can be interpreted on GQ
ε as a random distribution

[GV77], i.e., a continuous random linear form on the set C∞0,c(R2) of compactly supported
smooth, zero mean functions, denoted by Hε: for every ϕ ∈ C∞0,c(R2),

Hε(ϕ) =
∑

v∈GQ∗

area(vε)h(v)ϕ(vε),

where area(vε) = ε2area(v) is the area of the face of GQ
ε associated to vε.

In [dT07b], the second author proved the following convergence result for the height
function of the dimer model on GQ:

Theorem 7.7 ([dT07b]). As ε goes to 0, the height function on the critical quadri-tilings,
as a random distribution, converges in law to 1√

π
times the Gaussian free field.

The result also holds for the restriction of h to G (resp. to G∗) as soon as area(v) is
replaced by the area of the corresponding face of G (resp. G∗).

As contour lines of the restriction of h to G separate integer values, they can be
understood as discrete level lines corresponding to half-integer values. Therefore, it is
natural to expect that these contour lines converge to the contour lines of the limiting
object, i.e., to level lines for the Gaussian free field with levels (k + 1

2 )
√
π, k ∈ Z, which

would prove Wilson’s conjecture. Unfortunately, the result for the convergence result
of the height function to the Gaussian free field is too weak to ensure convergence of
contour lines.

The convergence result in the paper [dT07b] applies not only to critical quadri-
tilings, but to all bipartite planar dimer models on isoradial graphs with critical weights.
It is conjectured that the family of loops obtained by superimposing two independent
critical dimer configurations converges to CLE4. This is supported by the fact that each
of the dimer configurations can be described by a height function, converging in the
scaling limit to 1/

√
π times the Gaussian Free Field, the two fields being independent.

Dimer loops are the half integer level lines of the difference, which by independence
converges (in a weak sense) to

√
2/π times the Gaussian free field, and it is known that

level lines (k + 1/2)
√

π
2 of the Gaussian free field are a CLE4.

Therefore, the factor
√

2 in Wilson’s conjecture corresponds to the fact that contours
in the XOR Ising model have to do with contour lines of only one dimer height function,
as opposed to two for dimer loops.

A Some elements of homology theory on surfaces

Here are some general facts about homology theory on surfaces which are useful in
the context of this paper. More details can be found in the references [Ful95, Mau96,
Mas91]. We consider Σ to be a compact, orientable surface of genus g with boundary
∂Σ consisting of p components. The boundary may be empty, in which case p = 0.

We are interested in the first homology group H1, and in the case where the target
abelian group isZ/2Z. The other non-trivial homology groupsH0 andH2 are isomorphic
to Z/2Z, when Σ is connected.
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A.1 1-chains and first homology group

A 1-chain is a formal linear combination of 1-dimensional submanifolds of Σ. The
coefficients here will be taken to be in Z/2Z. The space of 1-chains with coefficients in
Z/2Z is a Z/2Z-vector space. Note that since the target group is Z/2Z, we do not need
to care about orientations of 1-chains, and the sum is the same as the difference. If two
1-chains are the sums of pairwise disjoint submanifolds

γ =
∑
c∈A

c, γ′ =
∑
c∈A′

c,

with c 6= c′ ⇒ c ∩ c′ = ∅, then

γ + γ′ =
∑

c∈A∪A′
c,

so that we can think morally of the addition as the union for disjoint 1-chains.
The boundary of a 1-chain is the formal linear combination of the end points of the

1-dimensional submanifolds it consists of. A 1-chain is a cycle if its boundary is empty.
An equivalence relation on the space of cycles is defined as follows: two cycles γ and γ′

are equivalent if their sum is the boundary of a 2-dimensional submanifold of Σ. Note
that a connected component of the boundary of a 2-dimensional submanifold of Σ may
be not itself the whole boundary of a submanifold, and as such may not be equivalent
to the empty chain for the relation above. The first homology group H1(Σ;Z/2Z) is
the set of equivalence classes for this relation. It has a structure of Z/2Z-vector space
inherited from the one of the space of 1-chains.

A.2 Relative homology

If A is a closed subset of Σ, then one can also consider homology relative to A.
As above, one defines a notion of cycle and boundary, relative to A this time: a relative
cycle is a 1-chain whose boundary is in A. A relative boundary is a 1-chain in Σ for which
there exists a 1-chain in A, such that the sum of the two is a boundary in Σ. Associated
to this concept is an equivalence relation on relative cycles: two relative cycles are
equivalent if their sum is a relative boundary. Then, the first homology group relative
to A, denoted by H1(Σ, A;Z/2Z), is the Z/2Z-vector space generated by relative cycles,
quotiented by this equivalence relation.

A particular example of interest is when A = ∂Σ. Representatives of equivalence
classes of H1(Σ, ∂Σ;Z/2Z) are finite unions of cycles and paths attached to components
of the boundary.

Note that when ∂Σ is empty, the homology of Σ relative to its boundary coincides
with the usual homology.

A.3 Explicit bases of homology

The two homology groups H1(Σ;Z/2Z) and H1(Σ, ∂Σ;Z/2Z) turn out to have the
same dimension

N =

{
2g if p = 0 or 1,

2g + p− 1 otherwise.

For each of the groups, a basis can be explicitly given. Label the handles of Σ from 1 to
g, and the p components of the boundary from C0 to Cp−1. For H1(Σ;Z/2Z), choose N
cycles (λi)

N
i=1 on Σ, as follows:

• for i ∈ {1, . . . , g}, take λ2i−1 and λ2i to be winding around the i-th handle in two
transverse directions,
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• for i ∈ {1, . . . , N − 2g}, take λ2g+i to be winding around Ci, without crossing
λ1, . . . , λ2g.

Denote by λi the homology class of λi. Then, the collection (λi)
N
i=1 is a basis ofH1(Σ;Z/2Z):

any 1-chain on Σ has the same homology class as a sum of λi’s. The first homology group
H1(Σ;Z/2Z) is isomorphic to (Z/2Z)N : for every i ∈ {1, . . . , N}, the basis element λi is
mapped to the basis element of (Z/2Z)N consisting of 0’s and a 1 at position i.

For H1(Σ, ∂Σ;Z/2Z), choose N cycles (γ
i
)Ni=1 on Σ, as follows:

• for i ∈ {1, . . . , g}, take γ
2i−1

= λ2i, and γ
2i

= λ2i−1,

• for i ∈ {1, . . . , N − 2g}, take γ
2g+i

to be a path from C0 to Ci.

Denote by γi the relative homology class of γ
i
. Then, the collection (γi)

N
i=1 is a basis for

H1(Σ, ∂Σ;Z/2Z). The group H1(Σ, ∂Σ;Z/2Z) is also isomorphic to (Z/2Z)N . The two
bases (λi)

N
i=1 and (γi)

N
i=1 are dual to each other as explained in Appendix A.5.

A.4 Representatives of homology classes on graphs

Consider a cellular decomposition of the surface Σ by a graph GΣ, as in Section 2.
The embedding of GΣ on Σ defines a notion of dual graph for GΣ, denoted by G∗Σ. Then
representatives of any homology class of H1(Σ;Z/2Z) (resp. any relative homology
class ofH1(Σ, ∂Σ;Z/2Z)) can be realized as combinatorial paths onG∗ (resp. G). Figure
10 provides an example of representatives of the bases (λi)

N
i=1 and (γi)

N
i=1 defined in

Section A.3.
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Figure 10: Representatives of a basis (λi)
4
i=1 of H1(Σ;Z/2Z) (dotted lines), and of a

basis (γi)
4
i=1 of H1(Σ, ∂Σ;Z/2Z) (plain lines).

A.5 Intersection form

There is a natural pairing between H1(Σ;Z/2Z) and H1(Σ, ∂Σ;Z/2Z), called the
intersection form:

(·|·) : H1(Σ;Z/2Z)×H1(Σ, ∂Σ;Z/2Z) −→ Z/2Z,

defined as follows. Let τ ∈ H1(Σ;Z/2Z) and ε ∈ H1(Σ, ∂Σ;Z/2Z) be two homology
classes. Take representatives τ and ε for two classes τ and ε respectively. Then (τ |ε) is
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defined as the parity of the number of intersections of τ and ε. This definition does not
depend on the choice of representatives.

In the explicit bases of H1(Σ;Z/2Z) and H1(Σ, ∂Σ;Z/2Z) chosen in Appendix A.3,
the matrix of the intersection form is the identity. The pairing is thus non-degenerate
and defines an isomorphism between H1(Σ;Z/2Z) and H1(Σ, ∂Σ;Z/2Z). This is an
explicit realization of the Poincaré–Lefschetz duality; see Theorem 5.4.13 and Corol-
lary 5.2.12 in [Mau96].

A.6 Inclusion, excision and morphisms for homology

Suppose that there exists a larger surface Σ̃ containing Σ. Then a 1-chain in Σ is
in particular a chain in Σ̃, and a boundary in Σ is in particular a boundary in Σ̃. This
implies that the inclusion Σ ⊂ Σ̃ induces a morphism

πΣ̃,Σ : H1(Σ;Z/2Z) −→ H1(Σ̃;Z/2Z).

The inclusion also induces morphisms for relative homology groups: if the subset
A ⊂ Σ is included in a subset B ⊂ Σ̃, then any relative chain (resp. cycle) in Σ relative
to A is in particular a relative chain (resp. cycle) in Σ̃ relative to B (just by forgetting
what is in B \A). Therefore, this induces a morphism

H1(Σ, A;Z/2Z) −→ H1(Σ̃, B;Z/2Z),

giving the homology class in Σ̃ relative to B of the restriction to Σ̃ \B of any represen-
tative of an element of H1(Σ, A;Z/2Z). In the special case when Σ = Σ̃ and A is empty,
we get the application ιΣ̃,B:

ιΣ̃,B = H1(Σ̃;Z/2Z) −→ H1(Σ̃, B;Z/2Z).

Moreover, the excision theorem ([Mau96], Theorem 8.2.1) states that if we cut out an
open set U from both Σ̃ and B, the relative homology groups H1(Σ̃, B;Z/2Z) and H1(Σ̃\
U,B \U ;Z/2Z) are isomorphic. In particular, when U = Σc = Σ̃ \Σ and B = U , then the
excision theorem states that H1(Σ̃,Σc;Z/2Z) and H1(Σ, ∂Σ;Z/2Z) are isomorphic. Let
eΣ̃,Σ the isomorphism from the former space to latter. The composition ΠΣ̃,Σ = eΣ̃,Σ◦ιΣ̃,B
defines a morphism from H1(Σ̃;Z/2Z) to H1(Σ, ∂Σ;Z/2Z).

To construct a representative of ΠΣ̃,Σ(ε) for a homology class ε ∈ H1(Σ̃;Z/2Z), con-

sider ε a cycle representing ε in Σ̃. A representative of ΠΣ̃,Σ(ε) is then simply obtained
by taking the intersection of ε with Σ, which is a relative 1-chain of Σ relative to its
boundary ∂Σ.
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