898 research outputs found

    Learning to Map Natural Language to Executable Programs Over Databases

    Get PDF
    Natural language is a fundamental form of information and communication and is becoming the next frontier in computer interfaces. As the amount of data available online has increased exponentially, so has the need for Natural Language Interfaces (NLIs, which is not used for natural language inference in this thesis) to connect the data and the user by easily using natural language, significantly promoting the possibility and efficiency of information access for many users besides data experts. All consumer-facing software will one day have a dialogue interface, and this is the next vital leap in the evolution of search engines. Such intelligent dialogue systems should understand the meaning of language grounded in various contexts and generate effective language responses in different forms for information requests and human-computer communication.Developing these intelligent systems is challenging due to (1) limited benchmarks to drive advancements, (2) alignment mismatches between natural language and formal programs, (3) lack of trustworthiness and interpretability, (4) context dependencies in both human conversational interactions and the target programs, and (5) joint language understanding between dialog questions and NLI environments (e.g. databases and knowledge graphs). This dissertation presents several datasets, neural algorithms, and language models to address these challenges for developing deep learning technologies for conversational natural language interfaces (more specifically, NLIs to Databases or NLIDB). First, to drive advancements towards neural-based conversational NLIs, we design and propose several complex and cross-domain NLI benchmarks, along with introducing several datasets. These datasets enable training large, deep learning models. The evaluation is done on unseen databases. (e.g., about course arrangement). Systems must generalize well to not only new SQL queries but also to unseen database schemas to perform well on these tasks. Furthermore, in real-world applications, users often access information in a multi-turn interaction with the system by asking a sequence of related questions. The users may explicitly refer to or omit previously mentioned entities and constraints and may introduce refinements, additions, or substitutions to what has already been said. Therefore, some of them require systems to model dialog dynamics and generate natural language explanations for user verification. The full dialogue interaction with the system’s responses is also important as this supports clarifying ambiguous questions, verifying returned results, and notifying users of unanswerable or unrelated questions. A robust dialogue-based NLI system that can engage with users by forming its responses has thus become an increasingly necessary component for the query process. Moreover, this thesis presents the development of scalable algorithms designed to parse complex and sequential questions to formal programs (e.g., mapping questions to SQL queries that can execute against databases). We propose a novel neural model that utilizes type information from knowledge graphs to better understand rare entities and numbers in natural language questions. We also introduce a neural model based on syntax tree neural networks, which was the first methodology proposed for generating complex programs from language. Finally, language modeling creates contextualized vector representations of words by training a model to predict the next word given context words, which are the basis of deep learning for NLP. Recently, pre-trained language models such as BERT and RoBERTa achieve tremendous success in many natural language processing tasks such as text understanding and reading comprehension. However, most language models are pre-trained only on free-text such as Wikipedia articles and Books. Given that language in semantic parsing is usually related to some formal representations such as logic forms and SQL queries and has to be grounded in structural environments (e.g., databases), we propose better language models for NLIs by enforcing such compositional interpolation in them. To show they could better jointly understand dialog questions and NLI environments (e.g. databases and knowledge graphs), we show that these language models achieve new state-of-the-art results for seven representative tasks on semantic parsing, dialogue state tracking, and question answering. Also, our proposed pre-training method is much more effective than other prior work

    Automatically Documenting Software Artifacts

    Get PDF
    Software artifacts, such as database schema and unit test cases, constantly change during evolution and maintenance of software systems. Co-evolution of code and DB schemas in Database-Centric Applications (DCAs) often leads to two types of challenging scenarios for developers, where (i) changes to the DB schema need to be incorporated in the source code, and (ii) maintenance of a DCAs code requires understanding of how the features are implemented by relying on DB operations and corresponding schema constraints. On the other hand, the number of unit test cases often grows as new functionality is introduced into the system, and maintaining these unit tests is important to reduce the introduction of regression bugs due to outdated unit tests. Therefore, one critical artifact that developers need to be able to maintain during evolution and maintenance of software systems is up-to-date and complete documentation. In order to understand developer practices regarding documenting and maintaining these software artifacts, we designed two empirical studies both composed of (i) an online survey of contributors of open source projects and (ii) a mining-based analysis of method comments in these projects. We observed that documenting methods with database accesses and unit test cases is not a common practice. Further, motivated by the findings of the studies, we proposed three novel approaches: (i) DBScribe is an approach for automatically documenting database usages and schema constraints, (ii) UnitTestScribe is an approach for automatically documenting test cases, and (iii) TeStereo tags stereotypes for unit tests and generates html reports to improve the comprehension and browsing of unit tests in a large test suite. We evaluated our tools in the case studies with industrial developers and graduate students. In general, developers indicated that descriptions generated by the tools are complete, concise, and easy to read. The reports are useful for source code comprehension tasks as well as other tasks, such as code smell detection and source code navigation

    Simplifying syntactic and semantic parsing of NL-based queries in advanced application domains

    Get PDF
    The paper presents a high level query language (MDDQL) for databases, which relies on an ontology driven automaton. This is simulated by the human-computer interaction mode for the query construction process, which is driven by an inference engine operating upon a frames based ontology description. Therefore, given that the query construction process implicitly leads to the contemporary construction of high level query trees prior to submission of the query for transformation and execution to a semantic middle-ware, syntactic and semantic parsing of a query with conventional techniques, i.e., after completion of its formulation, becomes obsolete. To this extent, only, as meaningful as possible, queries can be constructed at a low typing, learning, syntactic and semantic parsing effort and regardless the preferred natural (sub)language. From a linguistics point o view, it turns out that the query construction mechanism can easily be adapted and work with families of natural languages, which underlie another type order such as Subject-Object-Verb as opposed to the typical Subject-Verb-Object type order, which underlie most European languages. The query construction mechanism has been proved as practical in advanced application domains, such as those provided by medical applications, with an advanced and hardly understood terminology for naive users and the public

    Creation and extension of ontologies for describing communications in the context of organizations

    Get PDF
    Thesis submitted to Faculdade de Ciências e Tecnologia of the Universidade Nova de Lisboa, in partial fulfillment of the requirements for the degree of Master in Computer ScienceThe use of ontologies is nowadays a sufficiently mature and solid field of work to be considered an efficient alternative in knowledge representation. With the crescent growth of the Semantic Web, it is expectable that this alternative tends to emerge even more in the near future. In the context of a collaboration established between FCT-UNL and the R&D department of a national software company, a new solution entitled ECC – Enterprise Communications Center was developed. This application provides a solution to manage the communications that enter, leave or are made within an organization, and includes intelligent classification of communications and conceptual search techniques in a communications repository. As specificity may be the key to obtain acceptable results with these processes, the use of ontologies becomes crucial to represent the existing knowledge about the specific domain of an organization. This work allowed us to guarantee a core set of ontologies that have the power of expressing the general context of the communications made in an organization, and of a methodology based upon a series of concrete steps that provides an effective capability of extending the ontologies to any business domain. By applying these steps, the minimization of the conceptualization and setup effort in new organizations and business domains is guaranteed. The adequacy of the core set of ontologies chosen and of the methodology specified is demonstrated in this thesis by its effective application to a real case-study, which allowed us to work with the different types of sources considered in the methodology and the activities that support its construction and evolution

    XML-based approaches for the integration of heterogeneous bio-molecular data

    Get PDF
    Background: The today's public database infrastructure spans a very large collection of heterogeneous biological data, opening new opportunities for molecular biology, bio-medical and bioinformatics research, but raising also new problems for their integration and computational processing. Results: In this paper we survey the most interesting and novel approaches for the representation, integration and management of different kinds of biological data by exploiting XML and the related recommendations and approaches. Moreover, we present new and interesting cutting edge approaches for the appropriate management of heterogeneous biological data represented through XML. Conclusion: XML has succeeded in the integration of heterogeneous biomolecular information, and has established itself as the syntactic glue for biological data sources. Nevertheless, a large variety of XML-based data formats have been proposed, thus resulting in a difficult effective integration of bioinformatics data schemes. The adoption of a few semantic-rich standard formats is urgent to achieve a seamless integration of the current biological resources. </p

    Model driven design and data integration in semantic web information systems

    Get PDF
    The Web is quickly evolving in many ways. It has evolved from a Web of documents into a Web of applications in which a growing number of designers offer new and interactive Web applications with people all over the world. However, application design and implementation remain complex, error-prone and laborious. In parallel there is also an evolution from a Web of documents into a Web of `knowledge' as a growing number of data owners are sharing their data sources with a growing audience. This brings the potential new applications for these data sources, including scenarios in which these datasets are reused and integrated with other existing and new data sources. However, the heterogeneity of these data sources in syntax, semantics and structure represents a great challenge for application designers. The Semantic Web is a collection of standards and technologies that offer solutions for at least the syntactic and some structural issues. If offers semantic freedom and flexibility, but this leaves the issue of semantic interoperability. In this thesis we present Hera-S, an evolution of the Model Driven Web Engineering (MDWE) method Hera. MDWEs allow designers to create data centric applications using models instead of programming. Hera-S especially targets Semantic Web sources and provides a flexible method for designing personalized adaptive Web applications. Hera-S defines several models that together define the target Web application. Moreover we implemented a framework called Hydragen, which is able to execute the Hera-S models to run the desired Web application. Hera-S' core is the Application Model (AM) in which the main logic of the application is defined, i.e. defining the groups of data elements that form logical units or subunits, the personalization conditions, and the relationships between the units. Hera-S also uses a so-called Domain Model (DM) that describes the content and its structure. However, this DM is not Hera-S specific, but instead allows any Semantic Web source representation as its DM, as long as its content can be queried by the standardized Semantic Web query language SPARQL. The same holds for the User Model (UM). The UM can be used for personalization conditions, but also as a source of user-related content if necessary. In fact, the difference between DM and UM is conceptual as their implementation within Hydragen is the same. Hera-S also defines a presentation model (PM) which defines presentation details of elements like order and style. In order to help designers with building their Web applications we have introduced a toolset, Hera Studio, which allows to build the different models graphically. Hera Studio also provides some additional functionality like model checking and deployment of the models in Hydragen. Both Hera-S and its implementation Hydragen are designed to be flexible regarding the user of models. In order to achieve this Hydragen is a stateless engine that queries for relevant information from the models at every page request. This allows the models and data to be changed in the datastore during runtime. We show that one way to exploit this flexibility is by applying aspect-orientation to the AM. Aspect-orientation allows us to dynamically inject functionality that pervades the entire application. Another way to exploit Hera-S' flexibility is in reusing specialized components, e.g. for presentation generation. We present a configuration of Hydragen in which we replace our native presentation generation functionality by the AMACONT engine. AMACONT provides more extensive multi-level presentation generation and adaptation capabilities as well aspect-orientation and a form of semantic based adaptation. Hera-S was designed to allow the (re-)use of any (Semantic) Web datasource. It even opens up the possibility for data integration at the back end, by using an extendible storage layer in our database of choice Sesame. However, even though theoretically possible it still leaves much of the actual data integration issue. As this is a recurring issue in many domains, a broader challenge than for Hera-S design only, we decided to look at this issue in isolation. We present a framework called Relco which provides a language to express data transformation operations as well as a collection of techniques that can be used to (semi-)automatically find relationships between concepts in different ontologies. This is done with a combination of syntactic, semantic and collaboration techniques, which together provide strong clues for which concepts are most likely related. In order to prove the applicability of Relco we explore five application scenarios in different domains for which data integration is a central aspect. This includes a cultural heritage portal, Explorer, for which data from several datasources was integrated and was made available by a mapview, a timeline and a graph view. Explorer also allows users to provide metadata for objects via a tagging mechanism. Another application is SenSee: an electronic TV-guide and recommender. TV-guide data was integrated and enriched with semantically structured data from several sources. Recommendations are computed by exploiting the underlying semantic structure. ViTa was a project in which several techniques for tagging and searching educational videos were evaluated. This includes scenarios in which user tags are related with an ontology, or other tags, using the Relco framework. The MobiLife project targeted the facilitation of a new generation of mobile applications that would use context-based personalization. This can be done using a context-based user profiling platform that can also be used for user model data exchange between mobile applications using technologies like Relco. The final application scenario that is shown is from the GRAPPLE project which targeted the integration of adaptive technology into current learning management systems. A large part of this integration is achieved by using a user modeling component framework in which any application can store user model information, but which can also be used for the exchange of user model data
    • …
    corecore