
W&M ScholarWorks W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

Summer 2017

Automatically Documenting Software Artifacts Automatically Documenting Software Artifacts

Boyang Li
College of William and Mary - Arts & Sciences, bli01@email.wm.edu

Follow this and additional works at: https://scholarworks.wm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Li, Boyang, "Automatically Documenting Software Artifacts" (2017). Dissertations, Theses, and Masters
Projects. Paper 1530192342.
http://dx.doi.org/10.21220/s2-ss5q-gj87

This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M
ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized
administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by College of William & Mary: W&M Publish

https://core.ac.uk/display/235399066?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.wm.edu/
https://scholarworks.wm.edu/etd
https://scholarworks.wm.edu/etds
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1530192342&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1530192342&utm_medium=PDF&utm_campaign=PDFCoverPages
http://dx.doi.org/10.21220/s2-ss5q-gj87
mailto:scholarworks@wm.edu

Automatically Documenting Software Artifacts

Boyang Li

Jinan, Shandong, China

Master of Science, Miami University, 2011
Bachelor of Science, Shandong Normal University, 2007

A Dissertation presented to the Graduate Faculty
of The College of William & Mary in Candidacy for the Degree of

Doctor of Philosophy

Department of Computer Science

College of William & Mary
January 2018

© Copyright by Boyang Li 2017

COMPLIANCE PAGE

Research approved by

Protection of Human Subject Committee

Protocol number(s): PHSC-2014-12-04-9995-dposhyvanyk

Date(s) of approval: 12/15/2014

ABSTRACT

Software artifacts, such as database schema and unit test cases, constantly
change during evolution and maintenance of software systems. Co-evolution
of code and DB schemas in Database-Centric Applications (DCAs) often leads
to two types of challenging scenarios for developers, where (i) changes to the
DB schema need to be incorporated in the source code, and (ii) maintenance
of a DCAs code requires understanding of how the features are implemented
by relying on DB operations and corresponding schema constraints. On the
other hand, the number of unit test cases often grows as new functionality is
introduced into the system, and maintaining these unit tests is important to
reduce the introduction of regression bugs due to outdated unit tests.
Therefore, one critical artifact that developers need to be able to maintain
during evolution and maintenance of software systems is up-to-date and
complete documentation.

In order to understand developer practices regarding documenting and
maintaining these software artifacts, we designed two empirical studies both
composed of (i) an online survey of contributors of open source projects and
(ii) a mining-based analysis of method comments in these projects. We
observed that documenting methods with database accesses and unit test
cases is not a common practice. Further, motivated by the findings of the
studies, we proposed three novel approaches: (i) DBScribe is an approach for
automatically documenting database usages and schema constraints, (ii)
UnitTestScribe is an approach for automatically documenting test cases, and
(iii) TeStereo tags stereotypes for unit tests and generates html reports to
improve the comprehension and browsing of unit tests in a large test suite. We
evaluated our tools in the case studies with industrial developers and graduate
students. In general, developers indicated that descriptions generated by the
tools are complete, concise, and easy to read. The reports are useful for
source code comprehension tasks as well as other tasks, such as code smell
detection and source code navigation.

TABLE OF CONTENTS

Acknowledgments vi

Dedication vii

List of Tables viii

List of Figures x

1 Introduction 2

1.1 Contribution 2

1.2 Dissertation Overview 3

2 Documenting Database-Centric Applications 7

2.1 An Empirical Study on Documenting DCAs 10

2.1.1 Research Questions 10

2.1.2 Data Collection 12

2.1.3 Results 14

2.1.4 Discussion 20

2.1.5 Threats to Validity 22

i

2.2 DBScribe: Documenting Database Usages and

Schema Constraints 22

2.2.1 Detecting SQL-Statements 26

2.2.2 Propagating Constraints and SQL-Statements

through the Call Graph 29

2.2.3 Generating Contextualized Natural Language

Descriptions 31

2.3 DBScribe: Empirical Study Design 32

2.3.1 Research Questions: 34

2.3.2 Data Collection 34

2.3.3 Threats to Validity 37

2.4 DBScribe: Empirical Study Results 38

2.5 Related Works on Documenting DCAs 46

2.5.1 Studies on Co-evolution of Schema and Code 46

2.5.2 Extracting Database Information 47

2.5.3 On Documenting Software Artifacts 47

2.6 Conclusion 49

2.7 Bibliographical Notes 50

3 Documenting Unit Test Cases 51

3.1 An Empirical Study on Documenting Unit Tests 54

ii

3.1.1 Research Questions 54

3.1.2 Data Collection 55

3.1.3 Results 58

3.1.4 Threats to Validity 64

3.2 UnitTestScribe: Documenting Unit Tests 65

3.2.1 UnitTestScribe Architecture 68

3.2.2 Unit Test Detector 70

3.2.3 Method Stereotype Analyzer 70

3.2.4 Focal Method Detector 72

3.2.5 General Description Extractor 73

3.2.6 Slicing Path Analyzer 74

3.2.7 Description Generator 74

3.3 UnitTestScribe: Empirical Study Design 76

3.3.1 Data Collection 76

3.3.2 Research Questions 78

3.3.3 Analysis Method 79

3.3.4 Threats to Validity 80

3.4 UnitTestScribe: Empirical Study Results 80

3.4.1 Demographic Background 82

3.4.2 Completeness (RQ4) 83

3.4.3 Conciseness (RQ5) 84

iii

3.4.4 Expressiveness (RQ6) 85

3.4.5 User Preferences (RQ7 - RQ8) 85

3.4.6 Participants’ Feedback 87

3.5 Related Works on Documenting Unit Tests 88

3.5.1 Approaches and studies on unit test cases 88

3.5.2 Studies on classifying stereotypes 89

3.6 Conclusion 89

3.7 Bibliographical Notes 90

4 Stereotype-based Tagging of Unit Test Cases 92

4.1 Unit Test Case Stereotypes 95

4.1.1 JUnit API-based Stereotypes 99

4.1.2 Data-/Control-flow Based Stereotypes 101

4.2 Documenting Unit Test Cases with TeStereo 102

4.3 Empirical Study 104

4.3.1 Research Questions 105

4.3.2 Context Selection 107

4.3.3 Experimental Design 112

4.4 Empirical Results 114

4.4.1 What is accuracy for identifying stereotypes? 115

iv

4.4.2 Do the proposed stereotypes improve

test units)? 117

4.4.3 What are the developers perspectives of the

they contributed? 121

4.4.4 Threats to Validity 127

4.5 Related Work 128

4.5.1 Stereotypes Definition and Detection 128

 129 4.5.2 Utilizing Stereotypes for Automatic Documentation

4.5.3 Automatic Documentation of Unit Test Cases 130

4.6 Conclusion 130

4.7 Bibliographical Notes 131

5 Conclusion 132

v

 comprehension of tests cases (i.e., methods in

 TeStereo-based reports for systems in which

ACKNOWLEDGEMENTS

First of all, I would like to express my deepest gratitude to my advisor, Denys
Poshyvanyk. Thank you, Denys, for your excellent guidance, patience, and
trust. You not only teach me how to do good research but also give me
unconditional help when it is needed. I truly feel lucky to be your student.

In addition, I would also like to thank my committee members, Weizhen
Mao, Xu Liu, Peter Kemper, and Nicholas Kraft. Thank you for your input,
valuable discussions and accessibility.

I was staying at ABB USCRC for about one-third of my Ph.D. period. I would
like to thank my colleagues. Thank you, David Shepherd, Nicholas Kraft,
Patrick Francis, Andrew Cordes, and James Russell, for your support and
collaboration. I learned a lot from you that I would never learn in school.

I want to thank two mentors, Isil Dillig and Mark Grechanik, in the early stage
of my Ph.D. period. Thank you, Isil and Mark. I really patriciate your support
and guidance.

I also want to thank all SEMERU members that I collaborated with or I had
great interactions. Thank you, Bogdan Dit, Mario Linares Vasquez, Qi Luo,
Christopher Vendome, Kevin Moran, Michele Tufano, and Carlos Eduardo
Bernal Cardenas. We have a lot of memories as friends or collaborators.

Finally, I would like to thank my parents for their continuous encouragement.
Thank you for allowing me to realize my own potential. I would also like to
thank my wife, Yingzi Pan, for her unconditional love and support. Thank you
for going through the hard time with me these years. I would not be where I
am today without you.

vi

To my family

vii

LIST OF TABLES

2.1 Developer survey questions and results 13

2.2 Subset of Templates used by DBSCRIBE to generate the

28database-related descriptions at method level.

2.3 Systems’ statistics: Lines Of Code, TaBles in the DB schema, # of

35

2.4 Study questions and answers 39

2.5 Answers to “What software engineering tasks will you use this type of

summary for?” 43

3.1 Developer Survey Questions and Results 57

3.2 Taxonomy of method stereotypes proposed by Dragan et al.[63] with our

proposed modifications 67

3.3 A subset of placeholder templates with examples 71

3.4 Leaf level placeholders 74

3.5 Subject systems: number of Files (NF), number of methods (MD),

cases (TS), Running Time (RT) 79
3.6 Study questions and answers 81

viii

JDBC API calls nvolving SQL-statements, # of SQL statements that

DBScribe was Not able to Parse, # of Methods declaring SQL statements

Locally (ML), via Delegation (MD), Locally + Delegation (MLD), execution

Time in sec

number of classes (CLS), number of namespaces (NS), number of test

3.7 “What SE tasks would you use UnitTestScribe descriptions for?” 87

4.1 JUnit API-Based Stereotypes for Methods in Unit Test Cases. 96

4.2 C/D-Flow Based Stereotypes for Methods in Unit Test Cases 97

4.3 Accuracy Metrics for Stereotype Detection. The table lists the

(in bold) after solving inconsistencies 115

4.4 Questions used for RQ2 and the # of answers provided by the

(SW+T eStereo) access to stereotypes 119

ix

results for the first round of manual annotation, and second round

participants for the summaries written without (SW−T eStereo) and with

LIST OF FIGURES

2.1 Frequency of methods grouped by the ratio between the

changes in methods invoking SQL queries/statements 18

2.2 DBScribe components and workflow 24

2.3 Sets of methods in a DCA. M is the set of all the methods in

executing at least one SQL-statement by means of delegation 24

2.4 Iterative propagation of database usage information over the

ordered sets defined by the paths in the partial call graph 27

2.5 Iterative propagation of database usage information over the

ordered sets defined by the paths in the partial call graph 33

3.1 Developer programming experience 58

3.2 Highest level of education achieved by the developers 58

3.3 Developer industry or open source experience 59

3.4 CoOccurrenceMatrixTests.AddWordsSeveralTimes unit test

method of the Sando system 66

3.5 AcronymExpanderTests.ExpandMoreLetters unit test method of

the Sando system 68

x

the DCA, SQLL is the set of methods executing at least

one SQL-statement locally, and SQLD is the set of methods

number of changes to the header comment and number of method

3.6 UnitTestScribe Architecture. The solid arrows denote the flow of

data. Numbers denote the sequence of operations 69

3.7 An example of UnitTestScribe Description for Sando’s method

CoOccurrenceMatrixTests.AddWordsSeveralTimes 75

4.1 Test Cleaner and Empty Tester method from

SessionTrackerCheckTest unit test in Zookeeper 99

4.2 Test initializer method (from TestWebappClassLoaderWeaving unit

99test in Tomcat) with other stereotypes detected by TeStereo

4.3 Source code of the existingConfigurationReturned unit test

100method in the Apache-accumulo

4.4 Source code of the testConstructorMixedStyle unit test method

102

in the Apache-ant system 101

4.5 Source code of the testRead unit test method in the ode system

4.6 TeStereo Architecture. The solid arrows denote the flow of data.

108

xi

Numbers denote the sequence of operations 103

4.7 Diversity of the 261 Apache projects used in the study. The

figure includes: a) size of methods in unit tests; b) distribution of

method stereotypes per system; c) histogram of method

stereotypes identified by TeStereo; and d) histogram of

number of methods organized by the number of stereotypes

detected on individual method 107

4.8 Diversity of the 261 Apache projects used in the study. The

figure includes: c) histogram of method stereotypes identified by

TeStereo; and d) histogram of number of methods organized by the

number of stereotypes detected on individual methods

123

4.9 Logger missed by TeStereo

4.10 TeStereo documentation for a test case in the Tomcat project

4.11 InternalCallVerifier missed by TeStereo 125

xii

116

Automatically Documenting Software Artifacts

Chapter 1

Introduction

1.1 Contribution

Software artifacts, such as database schema and unit test cases, constantly

change during evolution and maintenance of software systems.

Previous work extensively studied the co-evolution of source code and DB

schemas demonstrating that: (i) schemas evolve frequently, (ii) the co-evolution

often happens asynchronously (i.e., code and schema evolve collaterally)

[127, 49], and (iii) schema changes have significant impact on DCAs’ code [49].

Therefore, co-evolution of code and DB schemas in DCAs often leads to two

types of challenging scenarios for developers, where (i) changes to the DB

schema need to be incorporated in the source code, and (ii) maintenance of a

DCA’s code requires understanding of how the features are implemented by

relying on DB operations and corresponding schema constraints. Both scenarios

demand detailed and up-to-date knowledge of the DB schema.

The number of unit test cases often grows as new functionalities are

introduced into the system. Maintaining these unit tests is important to reduce

the introduction of regression bugs due to outdated unit tests (i.e., unit test

2

CHAPTER 1. INTRODUCTION 3

cases that were not updated simultaneously with the update of the particular

functionality that it intends to test).

Source code comments are a source of documentation that could help

developers understand database usages and unit test cases. However, recent

studies on the co-evolution of comments and code showed that the comments

are rarely maintained or updated when the respective source code is changed

[66, 67]. In order to support developers in maintaining documentation for

database schema usage and unit test cases, we propose novel approaches,

DBScribe and UnitTestScribe. We evaluated our tools by means of an online

survey with industrial developers and graduate students. In general, participants

indicated that descriptions generated by our tools are complete, concise, and

easy to read.

1.2 Dissertation Overview

Chapter 2: Documenting Database-Centric Applications

Database-centric applications (DCAs) usually contain a large number of

tables, attributes, and constraints describing the underlying data model.

Understanding how database tables and attributes are used in the source code

along with the constraints related to these usages is an important component of

DCA maintenance. However, documenting database-related operations and

their constraints in the source code is neither easy nor common in practice.

In Chapter 2, we first present a two-fold empirical study aimed at identifying

how developers document database usages at source code method level. Then,

CHAPTER 1. INTRODUCTION 4

we present a novel approach, namely DBScribe, aimed at automatically

generating always up-to-date natural language descriptions of database

operations and schema constraints in source code methods. DBScribe statically

analyzes the code and database schema to detect database usages and then

propagates these usages and schema constraints through the call-chains

implementing database-related features. Finally, each method in these

call-chains is automatically documented based on the underlying database

usages and constraints.

We evaluated DBScribe in a survey with 52 participants analyzing generated

documentation for database-related methods in five open-source DCAs.

Additionally, we evaluated the descriptions generated by DBScribe on two

commercial DCAs involving original developers. The results for the studies

involving open-source and commercial DCAs demonstrate that generated

descriptions are accurate and useful while understanding database usages and

constraints, in particular during maintenance tasks. DBScribe was originally

published in the 25th ACM International Symposium on Software Testing and

Analysis (ISSTA’16) [100].

Chapter 3: Documenting Unit Test Cases

Maintaining unit test cases is important during the maintenance and

evolution of a software system. In particular, automatically documenting these

unit test cases can ameliorate the burden on developers maintaining them. For

instance, by relying on up-to-date documentation, developers can more easily

identify test cases that relate to some new or modified functionality of the

system. We surveyed 212 developers (both industrial and open-source) to

CHAPTER 1. INTRODUCTION 5

understand their perspective towards writing, maintaining, and documenting unit

test cases. In addition, we mined change histories of C# software systems and

empirically found that unit test methods seldom had preceding comments and

infrequently had inner comments, and both were rarely modified as those

methods were modified.

In order to support developers in maintaining unit test cases, we propose a

novel approach, UnitTestScribe, that combines static analysis, natural

language processing, backward slicing, and code summarization techniques to

automatically generate natural language documentation of unit test cases. To

validate UnitTestScribe, we conducted a study with two groups of participants.

In the study, we evaluated three quality attributes: completeness, conciseness,

and expressiveness. The results of the study showed that UnitTestScribe

descriptions are useful for understanding test cases. UnitTestScribe was

originally published in the 9th IEEE International Conference on Software

Testing, Verification and Validation (ICST’16) [95].

Chapter 4: Stereotype-based Tagging of Unit Test Cases

Techniques to automatically identify the stereotypes of different software

artifacts (e.g., classes, methods, commits) were previously presented. Those

approaches utilized the techniques to support comprehension of software

artifacts, but those stereotype-based approaches were not designed to consider

the structure and purpose of unit tests, which are widely used in software

development to increase the quality of source code. Moreover, unit tests are

different than production code, since they are designed and written by following

different principles and workflows.

CHAPTER 1. INTRODUCTION 6

In this chapter, we present a novel approach, called TeStereo, for automated

tagging of methods in unit tests. The tagging is based on an original catalog of

stereotypes that we have designed to improve the comprehension and

navigation of unit tests in a large test suite. The stereotype tags are

automatically selected by using static control-flow, data-flow, and API call based

analyses. To evaluate the benefits of the stereotypes and the tagging reports,

we conducted a study with 46 students and another survey with 25 Apache

developers to (i) validate the accuracy of the inferred stereotypes, (ii) measure

the usefulness of the stereotypes when writing/understanding unit tests, and (iii)

collect feedback on the usefulness of the generated tagging reports.

Chapter 2

Documenting Database-Centric

Applications

Database-centric applications (DCAs) are software systems that rely on

databases to persist records using database objects such as tables, columns,

constraints, among the others. These database objects represent the underlying

application model, including business rules and terms. Also, developers can

create queries and views as a mechanism to traverse or search over the

persisted data by following the semantics defined by the database objects. DCA

architectures are commonly used for different types of systems ranging from

large enterprise systems to small mobile applications. It is not uncommon for

many modern DCAs to contain databases comprised of many tables and

attributes [128, 35, 29].

The source code and database schemas of DCAs are constantly evolving,

oftentimes asynchronously [127]. This makes it particularly challenging for

developers who need to understand both how the database is used in the source

code and how the model is described by a schema [51].

In addition, database administrators who are in charge of database schemas

7

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 8

may not necessarily be in charge of related source code changes [51] or be able

to effectively communicate to developers the modifications to the database

schemas. Therefore, complete and up-to-date documentation of the database,

the schema, and any constraints is an important artifact to support software

evolution. Some existing artifacts designed to capture database schemas are

data dictionaries describing all the database objects in a given schema or

diagrams (conceptual and physical) depicting tables, attributes, and their

relationships. However, navigating and understanding such artifacts can be

tedious and time consuming tasks, in particular for large databases.

Source code comments are another source of documentation that can help

developers understand nuances of the data model and database usages in the

source code. However, recent studies on co-evolution of comments and code

showed that the comments are rarely maintained or updated, when the

respective source code is changed [66, 67]. Another study by Kajko-Mattsson

showed that none of the organizations for eighteen enterprise systems have fully

matched all their documentation requirements [83]. To understand if and how

database-related statements are commented in source code, we mined Java

applications in GitHub that use JDBC for the data access layer, and we found

that 77% of 33K+ source code methods do not have header comments; in the

case of existing comments, they rarely got updated when related source code

was modified. To complement the mining-based analysis, we conducted a

survey with 147 open-source developers (Section 2.1). As it turns out,

developers rarely write comments detailing database schema constraints (e.g.,

unique values, non-null keys, varchar lengths) to which developers should

adhere in the source code nor document changes in source code dealing with

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 9

databases. However, despite the preference of developers for using database

documentation or schemas when understanding data models, 65.99% of the

surveyed developers consider that tracing schema constraints along call chains

in source code is not a “very easy” nor “easy” task. Therefore, there is a clear

opportunity for researchers to propose approaches that support automated

documentation of source code involving database operations.

In section 2.2, we proposed a novel approach, DBScribe, aimed at

automatically generating always up-to-date documentation describing

database-related operations and schema constraints that need to be fulfilled by

developers during software maintenance tasks. DBScribe statically analyzes the

source code and database schema of a given DCA in order to generate method

level descriptions of the SQL-statements related to methods’ execution, and the

schema constraints imposed over these statements. The descriptions are

generated for source methods executing SQL-statements locally as well as for

methods invoking the statements via delegation, which supports developers

maintaining different layers or modules of a DCA (e.g., data access or GUI). To

the best of our knowledge, this is the first work that proposes a compete solution

for automatically documenting source code methods containing SQL operations

embedded in a DCA’s code and the corresponding schema constraints.

We validated DBScribe’s descriptions in a study involving 52 participants,

who were asked to analyze those in terms of completeness, expressiveness,

and conciseness (Section 2.4) for five open source DCAs. In addition, we

validated DBScribe by interviewing the original developers of two commercial

web-based DCAs from a Colombian company (Section 2.4). The results show

that descriptions generated by DBScribe are considered to be complete,

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 10

concise, readable, and useful while understanding database usages and

constraints for a given DCA, in most of the cases. Moreover, participants

consider that this type of summary is useful mostly for maintenance tasks such

as program comprehension, debugging, and documentation.

2.1 An Empirical Study on Documenting DCAs

In order to understand developer practices regarding documenting database

usages in source code, we designed an empirical study composed of (i) an

online survey with contributors of open source Java projects at GitHub and (ii) a

mining-based analysis of method comments in these projects. In particular, the

goal of this study is to understand how developers document or comment

methods in source code that invoke database queries or statements. As for the

context, we analyzed 3,113 open source Java projects at GitHub (with JDBC API

calls executing SQL queries/statements) and the complete change history of

264 of those projects; we also surveyed 147 developers contributing to these

projects.

2.1.1 Research Questions:

Commenting database related operations and schema constraints in source

code is not a common practice, because comments in source code are mostly

promoted as a way to describe the purpose of a code entity (e.g., class,

method). Also, there is the assumption of the existence of artifacts covering

database documentation (i.e., external documentation). However, this is not

always the case, because (i) external documentation can be outdated, and (ii)

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 11

understanding large database schemas is a time consuming task. Also despite

of the existence of database documentation, it is possible that some database

models are more clear for developers when the database objects are described

in the context of features implemented in the source code.

One hypothesis that we started to explore in this chapter is that inferring

database schema constraints from the source code is not an easy task, and less

information about the database can be inferred from the source code methods at

higher levels of the call-chains. Therefore, the source code methods that are

closer to the user interaction (i.e., the GUI layer) are closer to high-level actions

and decoupled from the internal details about the database usages and schema

constraints. As an initial effort to explore our hypothesis, in this chapter we

aimed at answering the following research questions:

RQ1 Do developers comment methods in source code that locally execute SQL

queries and statements?

RQ2 Do developers update comments of database-related methods during the

evolution of a system?

RQ3 How difficult is it for developers to understand propagated schema

constraints along call-chains?

RQ1 examines the extent that methods in which SQL queries/statements

occur are commented and developers’ motivation for commenting (or not) the

methods. We consider both responses by developers and a mining-based

analysis of source code. RQ2 investigates whether comments in headers of

methods related to database accesses are likely to be outdated or are modified

prior to new releases of the DCA. In RQ2, similarly to RQ1, we compare the

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 12

responses from developers to an analysis of the source code at release

granularity. While the co-evolution of comments and code have been studied

before [66, 67], our study is the first one to investigate co-evolution of database

related source code and comments. RQ3 investigates whether tracing schema

constraints in source code methods that are involved in database-related

call-chains is a difficult task.

2.1.2 Data Collection

In order to answer our research questions, we identified a list of 381,161 Java

projects on GitHub. We used GitHub’s public API [4] to extract all Java projects

and locally clone them. We then applied a keyword search to all of the files in

each repository with the .java extension. In order to identify the projects using

SQL queries, we used the following keywords import java.sql, jdbc:mysql, or

DriverManager.getConnection. This resulted in 18,828 Java projects using

JDBC. We further refined this list by removing projects that were a fork and did

not have at least one star or watcher (this filtering aims to avoid projects that are

duplicates or abandoned projects). In the end, we had 3,113 projects in our

dataset. We extracted the developers of each project and filtered their emails

down to 12,887 by removing emails containing @(none) and @localhost as well

as using a regular expression to enforce proper email formatting

(ˆ[a-zA-Z0-9 .+-]+@[a-zA-Z0-9-]+.[a-zA-Z0-9-.]+$). Due to a limitation of the

survey platform, we invited 10,000 developers to participate in our survey hosted

on Qualtrics [15].

The survey consisted of five questions (Q1 - Q5) to understand the extent to

which developers document database interactions in source code and their

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 13

Question/Answer Respondents
Q1. Do you add/write documentation comments to methods in the source
code? (i.e., comments in the header of the method declaration)
Yes 122 82.99%
No 25 17.01%
Q2. Do you write source code comments detailing database schema
constraints (e.g., unique values, non-null keys, varchar lengths) that should
be adhered by the developers in the source code?
Yes 32 21.77%
No 115 78.23%
Q3. How often do you find outdated comments in source code?
Never 1 0.68%
Rarely 28 19.05%
Sometimes 80 54.42%
Fairly Often 35 23.81%
Always 3 2.04%
Q4. When you make changes to database related methods, how often do
you comment the changes (or update existing comment) in the methods,
the callers, and all the methods in the call-chains that include the changed
methods?
Never 37 25.17%
Rarely 34 23.13%
Sometimes 45 30.61%
Fairly Often 14 9.52%
Always 17 11.56%
Q5. How difficult is it to trace the schema constraints (e.g., foreign key
violations) from the methods with SQL statements to top-level method
callers?
Very Easy 14 9.52%
Easy 36 24.49%
Moderate 66 44.90%
Hard 23 15.65%
Very Hard 8 5.44%

Table 2.1: Developer survey questions and results.

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 14

experience with maintaining this documentation. The questions are listed in

Table 2.1. In the table, we define “top-level method callers” as methods in a

public interface that start a call-chain that trigger methods with SQL

queries/statements. Concerning the mapping between the research questions

and the survey questions: Q1 and Q2 relate to RQ1; Q3 and Q4 relate to RQ2;

and Q5 relates to RQ3;

In addition to the survey, for RQ1, we counted the number of source code

methods with header-comments in the 3,113 projects. We analyzed the latest

snapshot of each project by extracting the project’s abstract syntax tree (AST).

Then, we automatically detected the methods with database queries/statements

to extract the package, class, method name, number of parameters, and method

comments when available. We focused on JDBC API calls executing SQL queries

or statements. We performed the same analysis at release-level for 264 of the

projects and compared the comments for each release to understand whether

developers update the comments during the project’s evolution, in part answering

RQ2.

2.1.3 Results

RQ1: It is worth noting that for RQ1 we were interested in answers concerning

the general usage of documentation as a practice instead of the frequency.

Therefore, Q1 and Q2 are dichotomous questions, and the participants had the

chance of complementing the answer with a open field explaining their rationale.

Regarding the results, developers mostly recognize the importance of

commenting source code methods as a way to increase program

comprehension during evolution and maintenance. For instance, 122 developers

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 15

answered “Yes” to Q1 and augmented the response with rationale like:

“Helps explain to others what the method is doing and how to use it, as well

as remind the original developer (me) what was the intention of the code”

“Comments make it easier to remember what things do. They are super

helpful when returning to old code and when sharing your code with others.

I’ve programmed without comments in the past and learned the hard way that

comments are, more often then not, indispensable”

From the 17.01% of participants answering “No” to Q1, we found typical rationale

claiming that methods should be self-documented/self-explanatory.

Despite the high rate of participants recognizing the practice of commenting

source code methods, the answers for Q2 predominantly indicate that the

developers do not comment database schema constraints with 78.23% of the

respondents answering “No” to Q2. This contrast demonstrates that

database-related information is not likely contained in the method declarations,

because method comments are mostly for describing the purpose of the method

instead of implementation details, and the documentation of database objects is

an obligation of an external document or the database schema. Some

responses from participants supporting the preference for external

documentation are the following:

“The database schema and documentation takes care of that. I can always

look at the table definition very easily.”

“I use [database-engine] and the constraints can be checked typing a sql

consult or even using a Tool.”

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 16

“Although I strongly believe comments are important, database comments are

the gray area. Comments related to the database schema and its constraints I

consider to be irrelevant to the code using it. The schema, its details, and any

quirks about it should be outlined in a separate document.”

“The comments should be stored in the database itself - which is not

supported by most databases I know. Writing in the source code means

duplicate effort - need to keep the source code synchronized with the

schema. Also, the database is sometimes accessed by programs written in

different languages - maintaining the comments up-to-date in ALL the source

codes would be impossible.”

Another prominent reason for not documenting database usages and constraints

in method headers is the usage of Java Annotations in ORM frameworks, which

explicitly declare in the code the schema constraints:

“This can be mostly handled through proper design. If using an ORM we

can specify field lengths in attributes, that can provide validation as well as

documenting if for developers. ”

“ORM initialization makes it clear what the scheme constraints are”

“The schema is already described in ORM code.”

Results from the mining study confirm developers preferences. In the

analyzed source code (i.e., 3,113 projects), we identified a total of 33,045

methods invoking SQL queries/statements. Of these methods, 25,450 did not

have any comment, while 7,595 methods were commented. These numbers

reinforce the result of Q2 since 23% of the methods with database access were

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 17

documented and 21.77% of developers indicated that they do in fact document

such database interactions.

Summary for RQ1. While developers indicated that they documented

methods, we found 77% of methods with database access were completely

undocumented. In fact, 115 out of 147 (78.23%) surveyed developers consider

that documentation of schema constraints should not be included in the source

code and it is a responsibility of the schema or external documentation.

RQ2: In order to understand whether developers update comments relating

to database queries/statements, we sought to understand the prevalence of

outdated comments (Q3). Combining “Never” and “Rarely,” 19.73% of developers

suggest that comments are regularly updated in the systems that they

implement or utilize. The remaining 80.27% of developers find outdated

comments. Of those 80.27% of developers, 25.85% indicated a relative high

frequency of encountering outdated comments. These results suggest that

outdated comments are relatively prevalent (i.e., they are not a rare occurrence),

which confirms that the comments are rarely maintained or updated, when the

respective source code is change [66, 67].

When we consider the prevalence of developers updating their own

comments regarding changes to database-related methods (Q4), we found

50.3% of respondents rarely or never updated the comments. Only 21.08% of

respondents updated comments with a relatively high frequency (i.e., fairly often

or always). The remaining 28.62% indicated it was neither a rare nor frequent

occurrence. Therefore, the survey results suggest that it would fairly probable for

such comments to be outdated. These results reinforce the problems that we

observed with RQ1. Not only are methods with database queries undocumented,

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 18

(0%,10%]

(10%,20%]

(20%,30%]

(30%,40%]

(40%,50%]

(50%,60%]

(60%,70%]

(70%,80%]

(80%,90%]

(90%,100%]

0 10 20 30 40 50

1

1

3

14

21

4

0

4

2

56

Figure 2.1: Frequency of methods grouped by the ratio between the number
of changes to the header comment and number of method changes in methods
invoking SQL queries/statements.

but in the case of commented methods they are also likely to be outdated.

We also analyzed RQ2 by relying on open source systems. We mined 264

projects that had explicit releases in GitHub to identify whether methods invoking

database queries/statements updated their comments. Overall, developers did

not update the comments when the methods were changed. We found 2,662

methods that invoke SQL queries/statements in the 264 projects. Of these 2,662

methods, 618 methods were updated during the history of these projects and

experienced a total of 1,878 changes. 512 out of the 618 methods that changed

did not have changes to their comments. The 512 method experienced on

average 2.5 changes (min = 1, Q1 = 1, Q2 = 2, Q3 = 2, max = 199) during their

entire history. The rest of 106 methods (17.15%) were changed 597 times and

experienced on average 5.63 changes (min = 1, Q1 = 2, Q2 = 3, Q3 = 5.75,

max = 198). In those 106 methods, we found 459 out of 597 method changes

also experienced an update to the method comment. Finally, we computed the

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 19

ratio between changes to header comments and methods changes; a 100%

ratio means that every time a method was changed, the header comments was

also changed. Figure 2.1 depicts the ratio of changes between header

comments and source code for the 106 methods that experienced changes. For

instance, we only found 66 methods in which more than 50% of the method

changes were accompanied by a change to the header comment.

Summary for RQ2. While approximately half of the developers indicated

that they “rarely” or “never” update method comments for database-related

methods, we empirically observed that only 17.15% of methods that were

changed in 3,113 open source projects also had their comments updated at

least once between releases. Thus, we empirically found database-related

methods are far less frequently commented during evolution.

RQ3: Answers to Q5 show a different perspective. Despite most of the

developers thinking database documentation and schema are enough to

understand schema constraints and they do not document database-related

methods, answers to Q5 show that only 34.01% of respondents indicated that it

was “easy” or “very easy” to trace database constraints along the call-chain to

the top-level caller methods. The remaining 65.99% found it at least moderately

difficult, with 21.09% indicating it was “hard” or “very hard.” These responses

indicate that tracing database constraints along call-chains is a non-trivial task.

A call-chain represents the implementation of a feature in source code. This

suggest that, even if external documentation or database schema is available,

maintaining or implementing a new feature of a system involving database

operations may be a non-trivial task, because of the effort required to trace

schema constraints across the call chains. However, more empirical validation is

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 20

required to support this claim.

Summary for RQ3. Surveyed developers prefer to rely on external database

documentation and two-thirds of developers indicated tracing constraints along

the call-chain was a “moderate” challenge or a “very hard” challenge. This

opens the discussion about whether external database documentation is

enough for supporting source code evolution and maintenance tasks.

2.1.4 Discussion

This preliminary study suggests that (i) documenting database usages and

constraints is not a common practice in source code methods, (ii) developers do

not update comments when changes are done to database-related methods,

and (iii) tracing schema constraints through call-chains in the call graph is not an

easy task in most of the cases. While results for RQ1 and RQ2 describe

developers rationale for not documenting database related operations in source

code, the findings in RQ3 present a different perspective in terms of whether

current practices for documenting databases are enough or useful for supporting

developers. Schemas and database documentation have the purpose of

describing the physical data model supporting a system. However, it is still

unclear if this type of documentation is effective and efficient when maintaining

software systems supported on large databases. Another aspect is the quality of

the documentation; when the schema is complicated or hard to access,

documentation is the last line of defense for understanding/querying the

schema. However, there is also always the problem of outdated documentation.

In addition, understanding/querying updated documentation can be a

time-consuming task, when it is not designed to support easy browsing or a

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 21

specific task. For instance, let’s assume a scenario in which a maintainer wants

to identify the schema constraints that are involved in a feature implemented in

the source code. A feature may involve different operations on several database

objects, and database documentation and schemas are not intended to describe

constraints and relationships at the feature-implementation level. Therefore, the

maintainer has to identify the constraints by exploring the code and

understanding the available documentations. Moreover, current approaches for

automated documentation aim at describing the purpose of a code entity (e.g.,

class, method), but neither target specific evolution/maintenance tasks nor

describe the entity as part of an architecture (i.e., the description of a code entity

in the GUI layer should not follow the structure of a description for an entity in the

data access layer).

In summary, future work should be devoted to providing developers with tools

for automatic documentation that support specific tasks, in particular for

evolution and maintenance of DCAs. Our results suggest that automatic

generation of database-related documentation is required to support

evolution/maintenance tasks. Using the results in RQ1 as a reference,

developers working on features involving the 25,450 undocumented

database-related methods — from the 3,113 analyzed projects — might find

benefit in an automated approach that assures the methods are properly

documented and updated. Also, the automated approach might benefit the

65.99% of the surveyed developers that did not consider tracing schema

constraints along call chains as a “very easy” nor “easy” task.

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 22

2.1.5 Threats to Validity

The construct threat to validity relates to the observations from the developer

survey and results of mining the database usage. In terms of our survey, we did

not infer behavior from the survey and only reported the experience as indicated

by developers and we do no provide rationale for the observations. Since we

relied on projects on GitHub, it is possible that project histories are incomplete due

to the relative young age of the forge or that releases were not properly tagged.

In terms of internal threats to validity, it is possible that the developers responding

to the survey had more difficulty with database-related documentation. However,

the results of the survey suggest that participants had a range of experience

and no single response was overly represented, which would indicate a clear

bias. The external threats to validity relate to generalizing the results. We do not

assert that the results apply to all developers or developers using other database

models (e.g., ORM). Our results represent a subset of Java projects on GitHub,

and other languages or forges may produce a different findings. However, GitHub

is the most popular forge and our approach applies to Java projects using JDBC

only.

2.2 DBScribe: Documenting Database Usages and

Schema Constraints

DBScribe provides developers with updated documentation describing

database-related operations and the schema constraints imposed on those

operations. The documentation is contextualized for specific source code

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 23

methods; the documentation is generated considering the local context of the

methods and the operations delegated through inter-procedural calls and the

subsequent call-chains that involve at least one SQL-statement. Our

method-level documentation can provide developers with descriptions that work

at different layers for a given DCA. This type of documentation is useful for (i)

understanding how features are implemented using SQL operations, and (ii)

understanding schema constraints that need to be satisfied in both specific

methods of the source code and all the operations involved. Also, DBScribe is

suitable for on-demand execution by developers that require up-to-date

documentation. For instance, Table 2.3 lists the execution time in seconds of

DBScribe when running on a MacBookPro laptop with a 2.4GHz Intel Core 2

Duo processor and 4GB of DDR3 RAM.

The architecture of DBScribe is depicted in Figure 2.2. DBScribe’s workflow

is composed of five phases: 1 SQL-statements and the methods executing

them are detected in the source code statically; 2 a partial call graph with only

the call-chains including the methods executing SQL-statements are extracted

from the source code statically; 3 database schema constraints are extracted

by querying the master schema of the database engine that has an instance of

the database supporting the DCA under analysis; 4 the constraints and

SQL-statements are propagated through the partial call graph from the bottom of

the paths to the root; and 5 the local and propagated constraints and

SQL-statements (at method-level) are used to generate natural language based

descriptions. One current limitation of DBScribe’s implementation is that it

currently covers only SQL-statements invoked by means of JDBC API calls.

Future work will support ORM frameworks such as JPA, Hibernate, and iBATIS

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 24

Database
server

Application
source code

Queries/Statements
detection

JSql
Parser

JDT AST
parser

1

JDT AST
parser

Call graphs
extractor
JDT AST

parser

2

DB SChema
constraints
extractor

3

DB usage
and

constraints
information
propagator

4

Descriptions
generator

5

Descriptions

Templates

Figure 2.2: DBScribe components and workflow.

M SQLL SQLDSQLLD

Figure 2.3: Sets of methods in a DCA. M is the set of all the methods in the
DCA, SQLL is the set of methods executing at least one SQL-statement locally,
and SQLD is the set of methods executing at least one SQL-statement by means
of delegation.

(similarly to [114]).

Each phase in DBScribe’s workflow is described in the following subsections,

however, we first provide formal definitions that are required to understand the

proposed model:

• M is the set of all the source code methods/functions in a DCA, and m is a

method in M ;

• SQLL is the set of methods m ∈M that execute at least one SQL-statement

locally (Figure 2.3);

• SQLD is the set of methodsm ∈M that execute at least one SQL-statement

by means of delegation through a path of the DCA call graph (Figure 2.3);

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 25

• G is the call graph of a DCA involving all the methodsm ∈M , andGSQL ⊂ G

is the call graph including only the methods in SQLL ∪SQLD. It means that

GSQL is a call graph of all the methods in M that execute at least one SQL-

statement locally or by delegation;

• P is the set of paths p (a.k.a., call-chains) starting at any method mi ∈ GSQL

and finishing at any method mj ∈ SQLL. It is possible that the number of

methods in some p’s is equals to 1 (i.e., |pi| = 1); those cases represent

unused methods, or methods in a upper layer of the DCA invoking SQL-

statements. It is worth noting that P can be a disconnected graph;

• The methods in a path p are an ordered set defined by the binary

relationships (represented with the symbol <) between a callee and a

caller. For instance, given a method mi ∈ SQLL, mj a caller of mi, mk a

caller of mj, and so on, until all the methods in the path p are exhausted,

the ordered set is mi < mj < mk < ... < ms. The position in the ordered

set, is the attribute l, which represents the “level” of the method in the path

p, and is in the range [0, |p| − 1]. In the example, the l value for mi is zero,

and the l value for mk is two. Conversely to the level, the depth d of a

method in a path is the position in the ordered set but in the direction of

callers or callees; for instance, the level l of mi in our example is zero, but

the depth d is |p| − 1.

• QSm is the set of tuples qs = 〈literal, T, A, type〉 representing the SQL-

statements executed locally in method m. Each tuple qs has a SQL string

literal, tables (T) and attributes (A) from the database schema referenced

in the literal, and the SQL-statement type.

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 26

•
−→
Cm is the set of methods called by method m (i.e., callees), and

←−
Cm is the

set of methods calling method m (i.e., callers).

2.2.1 Detecting SQL-Statements

All the methods in M are analyzed by first identifying JDBC API calls that

execute SQL-statements; using this approach we avoid SQL-statements that are

declared as strings but never executed. In order to identify these JDBC API

calls, we traverse the AST of each method in M ; during the traversal we keep a

working map SV with all the String and StringBuffer variables instantiated in

the method as well as the current values. We update the variables in SV after a

new initialization or after a concatenation operation with the plus (+) operator or

the StringBuffer.append method.

During the traversal, we also keep track of invocations to JDBC methods that

execute or prepare SQL-statements: Statement.execute,

Statement.executeQuery, Statement.executeUpdate, and

Connection.prepareStatement. If the String argument in the API call is a literal,

we add the literal to the list of SQL-statements QSm declared in the method m; if

the string argument is an infix expression or a variable name, we infer the value

of the argument by resolving the expression/variable state with the values in the

map SV . The literals and inferred variable values are parsed by using the

JSqlParser [8] to identify the statement type, and the tables and attributes

involved in the SQL-statement (this information is required to generate the

textual descriptions as described in Section 2.2.3). Then, we add the resolved

SQL-statement (i.e., literal, tables, attributes, and type) to the list QSm. One

limitation in this procedure is that we do not perform inter-procedural analysis;

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 27

m1

m4 m5

m2

m6

m3

m7

l = 0 l = 1 l = 2 l = 3

Database usage propagation

{QSm1,Cm1}

{QSm4,Cm4}

{QSm2 U QSm1 U QSm4,

Cm2 U Cm1 U Cm4}
{QSm2 U QSm1 U QSm4,

Cm2 U Cm1 U Cm4}

{QSm4,Cm4}

Figure 2.4: Iterative propagation of database usage information over the ordered
sets defined by the paths in the partial call graph

thus, we do not resolve values that are returned by inter-procedural calls or

values passed as arguments to the analyzed method (future work will be

devoted to inferring the SQL queries/statements by using symbolic execution).

This leads to cases in which some literals and variable values are not parsed by

JSqlParser. For instance, Table 2.3 lists in column “NP” those cases in which

DBScribe was not able to parse the SQL-statements in seven DCAs that we

analyzed, and column “S” lists the number of JDBC API calls that execute

SQL-statements. More details about DBScribe’s evaluation are provided in

Section 2.4.

The
−→
Cm and

←−
Cm sets for each m ∈ M are also collected during the traversal

to avoid a second pass on the DCA code. Both sets are used to generate the

GSQL graph required to propagate SQL-statements and constraints.

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 28

S
ec

tio
n:

Lo
ca

lS
Q

L-
st

at
em

en
ts

Ty
pe

Te
m

pl
at

e
E

xa
m

pl
e

H
ea

de
r

Th
is

m
et

ho
d

im
pl

em
en

ts
th

e
fo

llo
w

in
g

db
-r

el
at

ed
op

er
at

io
ns

:
Th

is
m

et
ho

d
im

pl
em

en
ts

th
e

fo
llo

w
in

g
db

-r
el

at
ed

op
er

at
io

ns
:

In
se

rt
It

in
se

rt
s

th
e
〈a

ttr
〉

at
tr

ib
ut

es
in

to
ta

bl
e

〈ta
bl

e〉
It

in
se

rt
s

th
e

U
se

rn
am

e,
P

as
sw

d
at

tr
ib

ut
es

in
to

ta
bl

e
lo

gi
nd

et
ai

ls

U
pd

at
e

It
up

da
te

s
th

e
〈a

ttr
〉a

ttr
ib

ut
e(

s)
in

ta
bl

e
〈ta

bl
e〉

It
up

da
te

s
th

e
Is

C
ur

re
nt

at
tr

ib
ut

e(
s)

in
ta

bl
e

se
m

es
te

r

S
ec

tio
n:

D
el

eg
at

ed
S

Q
L-

st
at

em
en

ts

H
ea

de
r

Th
is

m
et

ho
d

in
vo

ke
s

db
-r

el
at

ed
op

er
at

io
ns

by
m

ea
ns

of
de

le
ga

tio
n:

Th
is

m
et

ho
d

in
vo

ke
s

db
-r

el
at

ed
op

er
at

io
ns

by
m

ea
ns

of
de

le
ga

tio
n:

Q
ue

ry
It

qu
er

ie
s

th
e

ta
bl

e(
s)
〈ta

bl
e〉

vi
a

〈m
et

ho
d〉

It
qu

er
ie

s
th

e
ta

bl
e(

s)
P

eo
pl

e
vi

a
th

e
ca

ll-
ch

ai
n

Jo
bA

pp
lic

at
io

n.
ad

dA
pp

lic
at

io
nD

et
ai

ls
→

S
tu

de
nt

.c
he

ck
IfS

tu
de

nt

D
el

et
e

It
de

le
te

s
ro

w
s

fro
m

ta
bl

e(
s)
〈ta

bl
e〉

vi
a

〈m
et

ho
d〉

It
de

le
te

s
ro

w
s

fro
m

ta
bl

e(
s)

gr
ad

in
gs

ys
te

m
vi

a
a

ca
ll

to
th

e
G

ra
de

S
ys

te
m

.d
el

et
eG

ra
de

m
et

ho
d

S
ec

tio
n:

S
ch

em
a

co
ns

tr
ai

nt
s

H
ea

de
r

S
om

e
co

ns
tra

in
ts

th
at

sh
ou

ld
be

ta
ke

n
in

to
th

e
ac

co
un

ta
re

th
e

fo
llo

w
in

g:
S

om
e

co
ns

tra
in

ts
th

at
sh

ou
ld

be
ta

ke
n

in
to

th
e

ac
co

un
ta

re
th

e
fo

llo
w

in
g:

Va
rc

ha
r

M
ak

e
su

re
th

e
st

rin
gs

to
be

st
or

ed
in
〈ta

bl
e〉

do
no

t
ov

er
flo

w
th

e
va

rc
ha

r
lim

its
:
〈li

m
its
〉

M
ak

e
su

re
th

e
st

rin
gs

to
be

st
or

ed
in

em
pl

oy
ee

do
no

to
ve

rfl
ow

th
e

va
rc

ha
r

lim
its

:
2

(G
ra

de
,L

ev
el

),
10

0
(F

ile
Lo

ca
tio

n,
Fi

le
N

am
e)

N
on

-
nu

ll
M

ak
e

su
re

th
e

va
lu

es
in
〈ta

bl
e〉

.〈a
ttr
〉

ar
e

no
tn

ul
l

M
ak

e
su

re
th

e
va

lu
es

in
em

pl
oy

ee
.S

al
ar

y
ar

e
no

tn
ul

l

Table 2.2: Subset of Templates used by DBSCRIBE to generate the database-
related descriptions at method level. Examples from the systems used in the
study are also provided

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 29

2.2.2 Propagating Constraints and SQL-Statem-ents through

the Call Graph

The DB schema contains a set of constraints that need to be fulfilled when

realizing insertions, updates, or deletions on the DB. For instance,

changing/deleting the value of a column that serves as a foreign key in other

tables cannot be performed when there are references from other tables to that

column. As mentioned before, this type of constraints cannot be inferred easily

from the source code, and the constraints provide useful information that can

help in understanding source code methods in abstract layers that are not close

to the DB (e.g., m7 in Figure 2.4). Therefore, in addition to linking source code

methods to SQL-statements, we extract from the DB schema — by querying the

master schema in the DB server— the constraints that are defined on the

attributes and tables in the sets QSm, ∀m ∈ SQLL, i.e., the constraints that apply

to all the attributes and tables involved in SQL-statements executed by the

methods in the application. In particular, we extract the following constraints: (i)

auto-numeric columns, (ii) non-null columns, (iii) foreign keys, (iv) varchar limits,

and (v) columns that should contain unique values. Consequently, each method

m in SQLL has a list Xm of schema constraints that apply to the SQL-statements

executed locally by m.

Both QSm and Xm sets contain information for all of the methods in SQLL;

however, the methods in SQLL are not the only methods that can benefit from

documentation describing DB usages and schema constraints. Developers

inspecting, using, or updating methods that execute SQL-statements by means

of delegation (see SQLD in Figure 2.3), could require documentation describing

DB usages and constraints across all methods involved in the DB-related

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 30

call-chains. Thus, we propagate the information in the QSm and Xm lists to all

the methods in SQLD. Notably methods in the intersection of SQLL and SQLD

have at least one local execution of an SQL-statement and at least one by

delegation.

To describe the propagation algorithm, we use Figure 2.4 as a reference. The

figure depicts a partial call graph with nodes representing source code methods

and directed edges going from a caller to a callee. The background color of the

nodes (the colors are the same from Figure 2.3) represents the set to which each

method belongs. For instance, light purple is for methods in SQLL, light blue for

methods in SQLLD, and cyan for methods in SQLD. Only the methods in SQLL

(including SQLLD) execute SQL-statements locally.

The propagation is done iteratively by using the node level l (see definition at

the beginning of Section 2.2) as the iteration index, until the maximum l in the

call graph is reached. This iterative execution over l assures that the values from

methods with a lower level l are computed before the methods with a level l + 1.

This step is required because one method can have more than one callee in the

graph GSQL. The nodes (i.e., methods) with l = 0 are methods belonging to

SQLL; thus, the lists QSm and Xm for those methods were computed previously.

However, the lists of queries/statements and constraints that concern the

methods with l > 0 are the unions of the local QSm and Xm lists (if any) and the

lists propagated from the callees. For example, the node m2 calls m1 and m4,

and belongs to SQLLD, which means that m2 executes at least one

SQL-statement locally and at least two by means of delegation in m1 and m4.

Therefore, the complete sets of SQL-statements and constraints that concern

m2 are {QSm2 ∪ QSm1 ∪ QSm4} and {Xm2 ∪Xm1 ∪Xm4}, respectively. The case

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 31

for the methods in cyan is different, because they do not execute

SQL-statements locally; consequently, the set of SQL-statements that concerns

a method m in SQLD is the union of SQL-statements and constraints from its

callees, and the set of constraints that concerns the method is the union of the

constraints from its callees. For example, m5 does not execute SQL-statements

locally. Hence, the SQL-statements and constraints that concerns m5 are the

same from its single callee m4.

2.2.3 Generating Contextualized Natural Language

Descriptions

The final phase in DBScribe is to generate contextualized natural language

descriptions by using predefined templates. In general, a description for a

method m in GSQL consists of three parts: (i) a block (i.e., a header plus a list of

sentences) describing SQL-statements executed locally, (ii) a block describing

SQL-statements executed by means of delegation and the path in the call graph

to the execution, and (iii) a block describing the constraints that should be taken

into account as a result of the SQL-statements that are executed locally or by

delegation. DBScribe only generates descriptions for methods that are related to

database operations.

A subset of DBScribe templates is listed in Table 3.3, while the complete list

is provided in our online appendix [2]. Each template has tokens identified with

〈...〉, which are replaced with values from the sets of SQL-statements and

constraints that concern a method m. In the case of execution by delegation, the

templates include the token 〈method〉; this token is replaced by a single method

call (see template Delegation-Delete), or by a call-chain that goes over a path

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 32

from m to the method, where the corresponding SQL-statement is executed.

The sentences in the constraints paragraph are generated based on the

SQL-statements concerning the method m. For instance, the sentences

generated with constraints-related templates in Table 3.3 are only included if the

method executes insertions/updates locally or by delegation. Our current

implementation of DBScribe generates the descriptions as HTML pages that

have hyperlinks to the methods mentioned in the summary (as in the

delegation-related sentences); this allows for easy browsing and navigation of

the methods in the call-chain. Our decision for generating external

documentation instead of source code comments was mainly driven by the

results of our preliminary study to also cover preferences of developers that

value external documentation over comments in source code.

2.3 DBScribe: Empirical Study Design

We conducted a user study to evaluate the usefulness of DBScribe at generating

descriptions for source code methods that execute SQL-statements locally, by

means of delegation, and the combination of both. The goal of this study is to

measure the quality of the descriptions generated by DBScribe as perceived by

developers. As for the context, we used seven DCAs listed in Table 2.3. The

first five systems are open source DCAs hosted at GitHub and SourceForge. The

last two DCAs are industrial web Java applications developed by a Colombian

company (LIMINAL ltda). It is worth noting that LOC reported in Table 2.3 only

include .java files; for instance, web side files like JSP, HTML and CSS were

not included. Also the numbers in columns “ML”,“MD”, and “MLD” are the ones

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 33

Figure 2.5: Iterative propagation of database usage information over the ordered
sets defined by the paths in the partial call graph

reported by DBScribe.

We selected subject systems with the following constraints in mind: (i) the

systems should rely on JDBC and MySQL for the data access layer, since the

current version of DBScribe was designed to detect SQL-statements from JDBC

API calls and extract schema constraints from MySQL DBs, and (ii) the systems

should pervasively use SQL-statements. Figure 2.5 depicts distribution of size of

descriptions in different applications.

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 34

2.3.1 Research Questions:

In the context of our study, we formulated the following five research questions

(RQ):

RQ1 How complete are the database usage descriptions generated by

DBScribe?

RQ2 How concise are the database usage descriptions?

RQ3 How expressive are the database usage descriptions?

RQ4 How well can DBScribe help developers in understanding database related

source code methods?

RQ5 Would developers of DCAs use DBScribe descriptions?

RQ1 to RQ3 aim at measuring the quality of the descriptions as perceived by

developers that have explored the source code and the database schema. RQ4

aims at identifying whether the descriptions are useful for developers and the

software development tasks that can take advantage of this type of description.

RQ5 is for exploring the potential usefulness of DBScribe for supporting DCAs

and potential adoption by industrial DCA developers and maintainers.

2.3.2 Data Collection

We used descriptions generated by DBScribe for methods of the open-source

DCAs in an open survey with students, faculty, and developers. We randomly

selected six methods from each system (30 descriptions in total from five

open-source DCAs); in particular, we selected two methods from the GUI layer

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 35

System LOC TB S NP ML MD MLD T

UMAS[23] 32K 122 211 4 125 431 67 29.53

Riskit rev.96[16] 12.7K 13 111 2 35 9 44 15.02

FINA 3.4.2[3] 139.5K 52 710 26 312 118 99 130.78

Xinco rev.700[26] 25.6K 23 76 15 26 22 21 31.41

OpenEmm 6.0[14] 102.4K 68 200 110 73 12 1 104.78

System 1* 73.2K 53 398 27 262 660 24 71.07

System 2* 28.4K 24 164 8 106 247 44 40.13

Table 2.3: Systems’ statistics: Lines Of Code, TaBles in the DB schema,
of JDBC API calls involving SQL-statements, # of SQL statements that
DBScribe was Not able to Parse, # of Methods declaring SQL-statements Locally
(ML), via Delegation (MD), Locally + Delegation (MLD), execution Time in sec.

that are at the root of method call-chains invoking SQL-statements, two methods

that are leaves of the call-chains (i.e., declare SQL-statements, but do not

delegate declaration/execution to other methods), and two methods in the

middle of the call-chains. This selection was aimed at evaluating DBScribe’s

descriptions at different layers of DCAs’ architectures. Also, we limited the

survey to six summaries per system to make sure our survey could be

completed in one hour to avoid an early survey drop-out. For the evaluation, we

relied on the same framework previously used for assessing automatically

generated documentation [142, 110, 50]. Therefore, the descriptions were

evaluated in terms of completeness, conciseness, and expressiveness. In

addition, we sought to understand the preferences of the participants concerning

DBScribe’s descriptions.

We designed and distributed the survey using the Qualtrics [15] tool. We

asked participants to evaluate DBScribe’s descriptions by following a two-phase

procedure. In the first phase, we asked developers to manually write a summary

documenting the SQL-statements executed (locally and by means of delegation)

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 36

as part of a call to a given source code method and the constraints that should

be considered by developers when understanding that method. In particular,

each developer was provided with the source code of the DCA, an

entity-relationship diagram, and six source code methods to document; we also

provided the SQL script to create the database schema as an optional artifact

that can be used during the task. We decided to use only six methods per DCA,

because writing each summary requires detailed inspection of the source code

and the databases. This phase was designed to make sure that the participants

understood the source code before evaluating DBScribe’s descriptions.

In the second phase, we asked participants to compare their own (manual)

summaries to DBScribe’s descriptions. For each DBScribe description, the

participants rated the three quality criteria (i.e., completeness, conciseness,

expressiveness) with the options listed in Table 2.4. In addition, we asked them

to provide a rationale for their choices; the evaluation criteria and the rationale

provided the answers to RQ1 to RQ3. For RQ4, we included two questions

regarding the usefulness of the descriptions in the survey. To measure the

programming experience of the participants, we included

background/demographic questions [65].

For the case of the industrial systems (i.e., RQ5), two original developers of

System 1 and System 2 from LIMINAL ltda [10] were interviewed. We provided

them with a complete DBScribe report (i.e., an HTML page with descriptions for

all the methods with hyperlinks) and asked to read the report and analyze the

code. The report also organizes the methods in the three groups in Figure 2.3

to enable easier browsing. While all the reports for the open source DCAs are

provided in our online appendix, we were not allowed to publicize the reports for

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 37

the industrial DCAs.

During the interview, in addition to the questions from the open survey, we

asked the following: (i) Only focusing on the content of the document without

considering the way it has been presented, do you think all the database-related

methods are listed in the document?; (ii) Is the document useful for understanding

the database usages in the system?, (iii) How could we improve the document?;

(iv) What kind of information would you like to include/remove?

2.3.3 Threats to Validity

In order to reduce the threats to internal validity and maximize the reliability of

the results of evaluation, we confirmed that the participants explored and

understood the source code before evaluating the summaries generated by

DBScribe. In terms of evaluation, we used a well-known framework that has

been applied previously to evaluate the quality of natural language summaries of

software artifacts. Also, in order to avoid any type of bias because of the

expectations of the participants during the study, we informed the participants

that they had to evaluate generated descriptions only after completing the phase

in which they needed to write their own summaries. Concerning the threats to

external validity, we do not assert that the results in the second study apply to all

developers or developers using other database models (e.g., ORM frameworks).

However, the set of participants is diverse in terms of academic/industry

experience, and 42.3 percent of the participants have more than five years of

experience in Java. Although the study was done on only five open-source and

two industrial DCAs, when designing the study we selected a diverse set of

source code methods belonging to different layers of the systems’ architecture,

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 38

which means that we evaluated methods executing SQL queries/statements

locally, through delegation, and a combination of both. In addition, we do not

perform branch analysis of source code in DBScribe. We catch as many

branches as possible, likely overestimating the results. In the future, we will rely

on static analysis techniques to improve the precision of our approach [45].

2.4 DBScribe: Empirical Study Results

We obtained responses from 52 participants: 15 responses for both UMAS and

Riskit, eight responses for Xinco, and seven responses for the other two open

source DCAs, Openemm and Fina. In terms of background, we had the following

distribution of the participants: three undergraduates and 35 graduate students

(M.S/Ph.D), two post-docs, seven developers/industry researchers, and five

faculty members. Three participants participated in the study twice (voluntarily),

i.e., they analyzed the descriptions for two different systems. 24 of our

participants (46.1%) asserted that they had past experience in industry.

Concerning the programming experience in Java, 22 of participants (42.3%) had

at least five years of experience; the mean value is four years of experience.

We evaluated the quality of DBScribe generated descriptions by considering

three attributes: completeness, conciseness, and expressiveness. For

completeness, we aimed at assessing whether the descriptions cover all the

important information (RQ1). For conciseness, we aimed at evaluating whether

the descriptions contain useless information (RQ2). For expressiveness, we

aimed at checking whether the summaries are easy to understand (RQ3). Since

we asked participants to evaluate three attributes for six descriptions for each

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 39

Completeness: Only focusing on the content of the description
without considering the way it has been presented, do you think
the message is complete?

Rating

• The description does not miss any important information 205(65.7%)

• The description misses some important information to understand
the unit test case

91(29.2%)

• The description misses the majority of the important information to
understand the unit test case

16(5.1%)

Conciseness: Only focusing on the content of the description
without considering the way it has been presented, do you think
the message is concise?

Rating

• The description contains no redundant/useless information 221(70.8%)

• The description contains some redundant/useless information 77(24.7%)

• The description contains a lot of redundant/useless information 14(4.5%)

Expressiveness: Only focusing on the content of the description
without considering the completeness and conciseness, do you
think the description is expressive?

Rating

• The description is easy to read and understand 241(77.3%)

• The description is somewhat readable and understandable 60(19.2%)

• The description is hard to read and understand 11(3.5%)

Table 2.4: Study questions and answers.

DCA, we had a total of 312 answers for each attribute (6×52). Table 2.4 reports

both raw counts and percentages of answers provided by the participants; the

detailed results are also publicly available in our online appendix [2].

RQ1 (Completeness): The results show that 65.71% answers agreed that

DBScribe’s descriptions do not miss any important information, while only 5.13%

answers indicated the documents missed the most important information. In other

words, our approach is able to generate DB-related descriptions for source code

methods that cover all essential information in most of the cases (RQ1). We

also examined answers with the lowest ratings. One comment mentioned: “The

description does not make it clear that the time-slot is not always added to the

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 40

table.” The reason for this comment is that we did not apply branch analysis when

generating descriptions (see Section 2.3.3). However, this would not influence

the completeness of summaries, since we chose to over-approximate in order to

catch important information.

When comparing the summaries written by participants to DBScribe’s

descriptions we found that only 24 out of 312 human-written descriptions include

specific information about the schema constraints. Most of the human-written

descriptions (i.e., 5 out of 7 for RiskIt) detailing constraints correspond to the

methods at the lowest level of the call-chains (i.e., the methods executing

statements locally). These findings corroborate our hypothesis that the methods

in the higher levels in the call-chains may be more difficult to understand with

respect to relevant DB operations and the schema constraints. Therefore,

DBScribe descriptions are not only useful for methods that are architecturally

close to the DB, but also for source code methods in layers that are more close

to the end-user (e.g., GUI layer).

RQ2 (Conciseness): 70.83% of the answers asserted that DBScribe’s

descriptions do not contain redundant information and only 4.49% answers

indicated that the descriptions contain a lot of redundant information.

Again we examined the answers with the lowest ratings. Participants’

comments included the following: “too much detail and in the end these kinds of

errors are less likely to occur”; “This data feels too low level.” We closely

checked our generated documents for those methods. Our observation is that

DBScribe’s documentation sometimes contains unnecessary information for the

task we assigned. The extra information is unavoidable because the

documentation is produced without taking into account a particular task on

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 41

which a developer may be working. In addition, since we provided call-chains in

the documentation, the descriptions for methods in the top level of the call

hierarchy may appear rather verbose. For example, most of low ratings (10 out

of 14) were for the descriptions of methods situated in the middle or higher levels

of call-chains.

RQ3 (Expressiveness): in 77.24% of the answers, DBScribe’s descriptions

were evaluated as easy to read, while only 3.53% answers indicated that the

descriptions were hard to read. We analyzed the user feedback from the

participants who provided the lowest ratings for expressiveness. Those

participants who thought some comments were hard to read also claimed that

the contents of documents are complicated. Similar to Conciseness, our

descriptions are attempting to capture more important information, which may

come at the expense of expressiveness. We also observed that there were only

two out of 11 responses with the lowest rating for the methods situated in the

lowest level of call-chains over all systems. Thus, descriptions for methods only

invoking SQL-statements locally, methods that are the easiest to read.

The following comments illustrate some of the reasons why participants

evaluated DBScribe’s descriptions mostly positively (completeness, conciseness,

and expressiveness):

“It is useful when we need to know all the entities (i.e. tables, constraints,

indexes, etc) involved in a database operation. This information helps a lot if

someone needs to modify/extend the code.”

“This description definitely outperformed the description that I just made. The

details shown by this description really help to understand all the entities

involved in the creation of a new user, and this information is helpful when

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 42

someone tries to modify/extend the source code.”

“It summarizes the database accesses efficiently that might be spread over

many different methods. Even if all related database operations are contained

in the respective method directly, the summary is much easier to read than

finding the specific statements in the code.”

“The generated summaries are useful because they show all related db

operations and also show another information related with the constraints,

data types. With the constraints and validations allows to developer to

understand any business logic restrictions.”

RQ4 (User preferences): 48 participants (92.3%) claimed that

DBScribe generated descriptions would be useful for understanding the

database usages in source code methods. When looking into the details for

each system, we found that 100% of the answers were positive for UMAS, Xinco,

and Openemm; we have three negative responses for RiskIt and one negative

response for Fina. Although we do not have enough evidence to claim a

relationship between uses preferences and the type of DCA system for which

descriptions are generated, the results suggest that DBScribe is more helpful

specifically for DCAs with larger DBs and more complex chain-calls. In our case,

Riskit has less complicated call hierarchy and database design than others

(see Table 2.3).

We also asked the participants for which software engineering tasks they

would use these descriptions. We categorized the answers in Table 2.5. The

most answered tasks are related to incremental change, such as program

comprehension, implementing new features, and impact analysis. The second

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 43

Category Subcategories

Incremental change (21) Program comprehension (11), Add new features
(4), Impact analysis (4), Concept location (1),
Change database schema (1)

Bugs (10) Debugging (6), Bug fixing (4)

Maintenance (10) Refactoring (2), Re-modularization (2), Re-
engineering (2), Maintenance (4)

Others (15) Documentation (9), Systems integration (1), Test
cases design (2) Change db-related code (3)

Table 2.5: Answers to “What software engineering tasks will you use this type of
summary for?”

most reported category is “Bugs”, where participants mentioned debugging six

times, and bug fixing four times. Examples of the answers are:

“This information can be useful when:-I need add a new feature, I can

understand the related db actions of any existing method.-To fix a bug. To

build a business process.”

“Understanding the code in general. I could also imagine that it is particularly

helpful for debugging database-related errors (wrong updates, wrong

implications drawn from the data) as well as performance problems due to

unnecessary database queries.”

“Bug fixing (to find out useful information possibly related with the bug) and

refactoring/remodularization (in order to make sure that modification will not

invalidate some constraints)”

RQ5 (Usefulness and Adoption for maintenance of real DCAs): Two

practitioners from LIMINAL ltda analyzed the reports generated by DBScribe for

two industrial DCAs. Both systems were developed using a multi-tier web

architecture and MySQL as the database engine. The database schemas use

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 44

referential integrity. System 1 uses JSP, CSS and Javascript for the presentation

tier; a set of servlets operates as controllers between the web components and

a tier of business entities that implement the logic and persistence operations.

System 2 uses Java Server Faces for the presentation tier; JSF beans and a

JSF Front Controller are used as controllers between the GUI and application

services (i.e., business tier); the application services invoke database operations

by means of a persistence tier implemented with JDBC Data Access Objects;

Value Objects are used to transfer data over all the tiers. System 1 has been in

production for about ten years, and System 2 has been in production for over

seven years. Both systems are currently maintained by LIMINAL ltda.

Concerning the practitioners, their current positions are project managers,

but they were also the original developers of both systems. They have ten years

of industrial experience developing Java web applications. One of the

practitioners asked us to anonymize his name; thus, we refer to him as

Practitioner 1. The second practitioner is Néstor Romero, who also was the

developer in charge of System 2 maintenance for one year. We asked both

practitioners to indicate the architectural layer(s) in which they are more

proficient: Practitioner 1 responded “Business Layer, Data Access, and Utilities”,

Néstor responded “GUI and Business Layer”.

Both practitioners ranked completeness, conciseness, and expressiveness

for the two reports, giving them the highest values (i.e., does not miss any

important info, contains no redundant info, is easy to read). Also, both agreed

positively on the usefulness of the reports. For instance, Néstor noted “Based on

the descriptions you can be aware all dependencies a table could have. It would

let you estimate in a better way the impact due to future changes.”; “The text

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 45

provided helps to create a basic understanding of the functionality”. With respect

to the software engineering tasks, they would use the reports for program

understanding, impact analysis, and technical documentation. In particular, they

mentioned: “It helps you create a quick vision of the system with the basic

method and code structure without looking at actual source code” ; “Creating a

data - dictionary for a system”.

Finally, both practitioners agreed on features for improving navigation features

in the reports. For instance, Participant 1 claimed “It would be useful to search a

table name in order to see what dependencies it has”, and Néstor claimed “The

link system for call-chains works only in one way, one could get lost navigating

a complex system as there is no visual or textual reference of my location within

the entire document. A navigation tree might be useful in this case.” Practitioner

1 augmented the response with some desirable features: “you should extend the

approach to include JPA”, and “it would be better to have it in the IDE, something

like right click, then generate”.

Summary of the results: The DBScribe’s descriptions are complete, concise

and readable, in most of the cases. The participants consider the descriptions

to be useful for understanding the DB usages in DCAs. Moreover, this type of

descriptions is useful for understanding DB related source code. Concerning

software engineering tasks, the participants consider that the summaries can be

mostly useful for incremental change-related tasks, debugging, and bug fixing.

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 46

2.5 Related Works on Documenting DCAs

Despite recent studies showing that there is a strong evolutionary coupling

between database schema and source code [127, 74, 139, 102], as of today, no

approach has been proposed to automatically document/comment database

usages in source code. Some approaches have been proposed to extract

information directly from the schema, but without considering the source code

[125, 124, 30, 29, 90]. There is also some previous work for automated

comment generation of software artifacts

[45, 142, 110, 113, 50, 115, 123, 80, 48, 46, 111, 103]; however, none of the

existing approaches focus on generating database-related documentation for

supporting evolution and maintenance of source code.

2.5.1 Studies on Co-evolution of Schema and Code

Maule et al. [102] use program slicing and dataflow-based analysis to identify

the impact of database schema changes. Qiu et al. [127] conducted an

empirical study into co-evolution between database schemas and source code,

and the authors demonstrated that database schemas frequently evolve with

many different types of changes at play. Sjøberg [139] presents a technique for

measuring the changes of database schemas and performed a study on health

management systems over several years, where additions and deletions are

found to be the most frequent operations. Recently, Li et al. [94] proposed a

novel recommendation system to detect potential integrity violations in DCAs.

These studies and findings serve as our main motivation for developing

DBScribe to help developers understand evolving DB usages and schema

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 47

constraints.

2.5.2 Extracting Database Information

Several studies focus on extracting database-related information [125, 124]. The

approach proposed by Petit et al. first extracts the database table names and

attributes from the database schema [125]. Then, the approach builds semantic

relations between the entities by investigating set operations and join operations.

Alhajj et al. presented an algorithm to identify candidate and foreign keys of all

relations from an existing legacy database [30].

Another group of studies focused on analyzing data in the database and

extracting associative constraints [29, 90]. The associative rule mining problem

was first introduced by Agrawal et al. [29], where the associative rule mining

algorithm is able to generate a set of implications A → B based on the given

relational table. Au et al. [90] applied a fuzzy association rule mining technique

to a bank database system and identified some hidden patterns in the data. Li et

al. [93] used association rule mining technique to correct the semantic errors in

generated data. These approaches represent an extension opportunity for

DBScribe, since the relationships between DB objects can be inferred even

when schemas lack referential integrity. We will extend DBScribe to

automatically infer such relationships as part of the future work.

2.5.3 On Documenting Software Artifacts

Buse and Weimer [45] present an approach for generating human-readable

documentation of exceptions in Java. More specifically, they use a method call

graph and symbolic execution techniques to extract the conditions of exceptions.

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 48

Then, they use a predefined template to generate natural language comments.

Sridhara et al. present an approach for automatically generating summary

comments for Java methods [142]. The authors demonstrate how to identify

different kinds of important lines of code based on various characteristics of the

code. Once these important lines are identified, the technique converts them

into natural language phrases within their method bodies. Moreno et al. later

extended the scope of the comment generation to class level granularity

[110, 113]. Their description is based on superclass, stereotypes of the class,

and behaviors of blocks. McBurney and McMillan [103] uses contextual

information (i.e., most important method in the context of a target method) to

generate method summaries that include natural language descriptions of how

to use the method and the purpose of the method as a part of a codebase.

Differently from the previous work, a number of papers focused on

summarizing differences between program versions

[50, 97, 115, 123, 80, 48, 46, 111, 82]. Linares-Vásquez et al. implemented a

tool, ChangeScribe, for automatically generating commit messages [50, 97].

They extracted changes between two adjacent versions of a project and

identified involved change types in addition to performing commit level

stereotype analysis. Moreno et al. [111] introduced an approach, ARENA, for

automatic generation of release notes of Java systems. Jackson and Ladd [80]

present a tool named SematicDiff, which uses a program analysis technique to

summarize the semantic differences between two versions of a project. Canfora

et al. [48] present Ldiff to find line-based differences between two versions.

More specifically, Ldiff is able to track lines moved away from the original

position by comparing all combinations of diff fragments. Buse and Weimer [46]

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 49

present an approach for generating human readable documentation for program

differences based on symbolic execution. Automatic summarization techniques

have also been applied to exceptions [45], bug reports [130], crash reports [108],

developer discussions [121, 152, 157], loops [153] and code examples

[161, 162]. However, none of the existing approaches focus on generating

DB-related descriptions; DBScribe is the first to analyze source code and DB

schemas for generating method-level documentation to support DCA

maintenance.

2.6 Conclusion

In this chapter, we presented DBScribe a novel approach for generating

automatically natural language summaries at source code method level that

describe database usages and constraints for a given system. The summaries

are generated by detecting methods executing local SQL queries/statements,

and then propagating the schema constraints through all the methods that

execute the queries/statements by means of delegation. DBScribe is motivated

in a preliminary study in which we found that 77% of 33K+ methods in 3.6K+

open-source Java projects with database accesses were completely

undocumented.

To validate DBScribe, we conducted a second study with 52 participants, in

which we asked them (i) to rate the completeness, conciseness, and

expressiveness of the summaries, and (ii) to describe the usefulness of the

summaries. The results of the second study shows that DBScribe summaries

are useful for understanding database usages and constraints across a given

CHAPTER 2. DOCUMENTING DATABASE-CENTRIC APPLICATIONS 50

system, and the summaries can be used for debugging/profiling/understanding

database related source code. All in all, DBScribe provides solution to a

challenging and common problem by relying on static analysis of source code

and database schemas, and summarization techniques.

2.7 Bibliographical Notes

The papers supporting the content described in this Chapter were written in

collaboration with the members of the SEMERU group at William and Mary:

• Linares-Vásquez, M., Li, B., Vendome, C., and Poshyvanyk, D. “How do

Developers Document Database Usages in Source Code?.” in

Proceedings of the 30th IEEE/ACM International Conference on

Automated Software Engineering (ASE), pp. 36-41. IEEE, 2015.

• Linares-Vásquez, M., Li, B., Vendome, C., and Poshyvanyk, D.

“Documenting database usages and schema constraints in

database-centric applications.” in Proceedings of the 25th International

Symposium on Software Testing and Analysis (ISSTA), pp. 270-281. ACM,

2016.

• Li, B. “Automatically Documenting Software Artifacts.” in Proceedings of

32nd International Conference on Software Maintenance and Evolution

(ICSME), pp. 631-635. IEEE, 2016

Chapter 3

Documenting Unit Test Cases

During evolution and maintenance of software systems, the number of unit test

cases often grows as new functionality is introduced into the system. Maintaining

these unit tests is important to reduce the introduction of regression bugs due to

outdated unit tests (i.e., unit test cases that were not updated simultaneously with

the update of the particular functionality that it intends to test). For instance, Test

Driven Development (TDD) [41] has been employed by a myriad of developers

and organizations to create and expand software systems [43, 42]. TDD requires

unit test cases to be written prior to development after which developers write

code to build the particular functionality that is required to pass those existing test

cases.

In a survey (Section 3.1) with 212 open-source and industrial developers, we

found that 89.15% of the developers acknowledged that is it very important to

maintain unit tests cases. In particular, developers acknowledged that unit test

cases benefit maintenance of legacy code, reduce the burden of understanding

on new members of a project, and provide confidence in the quality of new code

added to an existing system, among other reasons. Moreover, developers

reported that they do not frequently update comments pertaining to unit test

51

CHAPTER 3. DOCUMENTING UNIT TEST CASES 52

cases despite the fact that they consider maintaining unit test cases an

important task. While some developers suggested that comments were not

necessary for unit tests, we observed that a majority of developers found

understanding of unit test cases to be at least moderately difficult.

We also performed an empirical study on the change histories of 1,414

software systems to understand the prevalence of unit test case comments and

whether developers update such comments between releases of the system.

We found that approximately 3.56% of unit test cases had preceding comments

and 14.02% of unit test cases had inner comments out of a total of 53,735 unit

test cases. We observed that these comments rarely got updated during the

development of these systems (1.54% of the unit test method changes for

preceding comments and 15.23% of the unit test method changes for inner

comments).

The results from the survey and the mining-based study highlight that (i)

developers consider having up-to-date documentation and comments within

source code regarding the unit test cases to be useful, but (ii) commenting unit

test cases is not a widely used practice (in-the-wild). In order to effectively

maintain test cases, it is important that developers understand the impact of

each unit test case and the particular functionality that it aims to test. Prior

studies demonstrated that developers seldom update comments in source code

when they modify those regions of code to which the comments

relate [67, 99, 163].

Consequently, in this chapter, we present an approach, called

UnitTestScribe, to automatically generate natural language (NL)

documentation of unit test cases. Our approach aims to ameliorate the burden of

CHAPTER 3. DOCUMENTING UNIT TEST CASES 53

maintaining unit test cases for developers and ideally help developers rapidly

identify outdated unit test cases to avoid regressions in their systems.

UnitTestScribe is a novel combination of static analysis, natural language

processing, backward slicing, and code summarization techniques to generate

descriptions at unit test method level. UnitTestScribe generates the

descriptions by detecting focal methods [72], assertions, and data dependencies

in unit test methods.

To validate the quality of the descriptions generated by UnitTestScribe, we

conducted a study with both open source and industrial systems, and followed a

widely used framework for evaluating automatically generated documentation

[50, 110, 142]. We asked the participants (i) to evaluate the completeness,

conciseness, and expressiveness of the generated descriptions, and (ii) to

describe the usefulness of the description and the techniques.

This work is the first to investigate documentation practices of unit test cases.

In addition, this chapter makes the following contributions:

• an empirical study to understand whether developers comment and update

comments of unit test cases, which have been modified, from a large

dataset of C# projects;

• a survey of both open-source and industrial developers to understand their

perspective and practices with respect to documenting unit test cases;

• an approach for automatically documenting test cases that generates NL

descriptions for unit test methods depicting focal methods, assertions, and

data dependencies.

CHAPTER 3. DOCUMENTING UNIT TEST CASES 54

3.1 An Empirical Study on Documenting Unit Tests

To the best of our knowledge, no study has been performed to identify practices

of developers when documenting test cases. Co-evolution of comments and

source code have been investigated previously [66, 67, 99]; however, this work is

the first to investigate evolution of comments and unit test cases. Hence, we

performed a study aimed at identifying specific requirements for an approach to

automatically document unit test methods. In particular, the preliminary study

had two parts: i) an online survey with open-source C# developers and industrial

practitioners (all of whom are Visual Studio users) and ii) a mining-based study

that investigates the prevalence of comments in open-source C# systems from

GitHub. The goal of this study was to determine the extent that developers write

and update comments for unit test cases during evolution and maintenance of

software systems. Additionally, we were interested in the answers from both

open source and industrial developers with respect to documenting unit test

cases. The context of the study was 1,414 open source C# projects hosted on

GitHub and the complete revision history of 246 of these projects. The survey

was completed by 212 developers that either contributed to these projects or

worked in industry. The perspective is that of researchers interested in

identifying developers’ practices for documenting unit tests.

3.1.1 Research Questions

We investigated the following research questions (RQs):

RQ1 To what extent do unit test cases contain comments? This RQ aims to

address the prevalence of both a preceding comment and inner comments

CHAPTER 3. DOCUMENTING UNIT TEST CASES 55

for the unit test cases.

RQ2 To what extent do developers update unit test case comments? This RQ

investigates how often developers modify and update the unit test case

comments (both preceding and inner) during software evolution.

RQ3 To what extent, do developers have difficulty understanding unit test

cases? This RQ investigates whether there are obstacles in understanding

unit tests cases and the need by developers for support in this task.

The RQs (RQ1-RQ3) were answered by combining the results from an online

survey and a mining-based analysis. The rationale for this combined approach is

that we aimed to gather answers directly from practitioners, and also to leverage

empirical evidence from change histories of a large dataset of open source

projects.

3.1.2 Data Collection

We identified all of the C# projects on GitHub through GitHub’s public API [4].

We first extracted a comprehensive list of all hosted projects and extracted all of

the projects identified as C#. We applied a filter to the projects to ensure the

projects were not a fork and contained at least one star, watcher, or were forked.

We avoided forks to prevent data duplication and we used the other three criteria

as a way to remove abandoned projects. Our filtered dataset contained 2,209

projects that we locally cloned. We identified the developers of each project and

sorted the unique email addresses that followed a regex format validation

ˆ[a-zA-Z0-9 .+-]+@[a-zA-Z0-9-]+.[a-zA-Z0-9-.]+$), which sought to remove

invalid email addresses, as well as remove email addresses with the patterns

CHAPTER 3. DOCUMENTING UNIT TEST CASES 56

@(none) and @localhost. We had 4,115 email addresses from open-source

developers. Additionally, we contacted 565 industrial developers from ABB. The

survey was distributed to the potential participants via email and the survey was

hosted on Qualtrics [15].

The survey included three questions with demographic purposes (D1 - D3)

and six questions (Q1 - Q6) that investigated whether developers document and

maintain unit test cases. Table 3.1 lists Q1 to Q6. Respondents were also given

an opportunity to describe their rationale in a free response field after each

question. Q1 and Q2 relate to RQ1; Q3 and Q4 relate to RQ2; Q5 and Q6 relate to

RQ3 and serve to directly motivate our proposed approach for documenting unit

test methods (Section 3.2). In addition to the survey, for RQ1, we analyzed the

latest snapshot of 1,414 projects randomly selected out of the 2,209 projects,

and counted the number of unit test methods that were documented in source

code; the random sampling is justified because of limitations on computation

time.

Concerning the source code pre-processing, we split the inner and preceding

comments in our analysis. We extracted the unit test methods with srcML [19] by

identifying the annotations [Test], [TestMethod], [TestCase] - these annotations

are used by NUnit [13] and Microsoft unit testing frameworks [12]. We also

included some special annotations for other frameworks such as [Fact] and

[Theory]. We automatically extracted the data and subsequently ran the analysis

at release-level for the 246 projects with tagged releases and compared both the

inner and preceding comments (as in RQ1, we split this analysis) in order to

determine the extent that developers are modifying comments when the unit test

method is modified during the project’s development (RQ2).

CHAPTER 3. DOCUMENTING UNIT TEST CASES 57

Question/Answer

Q1. How often do you write unit test cases for your project(s)?

Never: 13 (6.13%), Rarely: 23 (10.85%), Sometimes: 62 (29.24%),

Fairly Often: 67 (31.60%), Always: 47 (22.17%)

Q2. How often do you add/write documentation comments to unit test cases?

(i.e., comments preceding the unit test method declaration)

Never: 41 (19.34%), Rarely: 71 (33.49%), Sometimes: 38 (17.92%),

Fairly Often: 39 (18.40%), Always: 23 (10.85%)

Q3. How often do you find outdated comments (at method level)

in unit test cases?

Never: 37 (17.45%), Rarely: 64 (30.19%), Sometimes: 74 (34.90%),

Fairly Often: 32 (15.09%), Always: 5 (2.36%)

Q4. When you make changes to the unit tests,

how often do you comment the changes (or update existing comments)?

Never: 46 (21.70%), Rarely: 49 (23.11%), Sometimes: 48 (23.64%),

Fairly Often: 37 (17.45%), Always: 32 (15.09%)

Q5. Maintaining good unit test cases and documentations is important

to the quality of a system.

Strongly Disagree: 3 (1.41%), Disagree: 2 (0,94%), Neutral: 18 (8.49%),

Agree: 89 (41.98%, Strongly Agree: 100 (47.17%)

Q6. How difficult is it to understand a unit test? I.e., identifying focal methods

under test (F-MUT) in unit test, where the F-MUTs are responsible for

system state changes that are verified through assertions in the unit test.

Very Easy: 22 (10.38%), Easy: 62 (29.24%), Moderate: 106 (50.00%),

Hard: 17 (8.02%), Very Hard: 5 (2.36%)

Table 3.1: Developer Survey Questions and Results.

CHAPTER 3. DOCUMENTING UNIT TEST CASES 58

3.1.3 Results

The survey questions and the results from 212 developers are summarized in

Table 3.1 and the developer demographics information shows in Figure 3.1,

Figure 3.2, and Figure 3.3.

Figure 3.1: Developer programming experience

Figure 3.2: Highest level of education achieved by the developers

CHAPTER 3. DOCUMENTING UNIT TEST CASES 59

Figure 3.3: Developer industry or open source experience

RQ1: Our primary interest in answering RQ1 is to understand whether

developers comment unit test methods - as preceding comments or as

comments inside the method. To this end, we first asked Q1 to understand how

often developers employ unit test cases in their systems. We observed that only

16.98% “rarely” or “never” write unit test cases, while 53.77% “fairly often” or

“always” write unit test cases (or 83.01% of developers if we also consider

“sometimes” respondents, since this does suggest a mid-level usage). Hence,

more than half of the surveyed developers relatively frequently rely on unit tests.

The following comments demonstrate their rationale:

“I wish I could do it Always, but most of the time my employer doesn’t want

to pay the price of it, OR, the practice is not well-perceived by other team

members, therefore abandoned. sadly.”

“When quality is required and time/budget allows”

“Always for commercial software. Only occasionally for personal projects.”

CHAPTER 3. DOCUMENTING UNIT TEST CASES 60

Q3 demonstrates that developers are less prone to writing comments for the

unit tests. We observe that 52.83% of developers “rarely” or “never” write

comments and 17.92% “sometimes” write comments. This observation indicates

that while a majority of developers utilize unit testing, typically developers are not

writing comments for unit tests. Some of the rationale provided by the

participants is:

“Comments need to be maintained which adds complexity to the task.”

“I use very verbose naming of tests to be the documentation, along with

meaningful naming of methods and variables used in the test”

“I do, unless the test is really obvious”

Thus, we observed that in many cases developers find unit test cases to be

simple enough for comprehension or try to encode the meaning in the naming.

However, some developers also indicated documentation is necessary to

understand the intent or importance of the unit test cases.

The mining-based study contradicts the developers’ preferences in that most

of the projects do not have unit test methods and these methods are

predominantly not documented with comments. In the analyzed source code

(i.e., 1,414 projects), we identified that 395 projects (27.93%) had unit test

classes and extracted a total of 53,735 unit test methods from these projects. In

total, 51,821 unit test methods did not have outer comments (96.44%) and

46,201 did not have inner comments (85.98%). These results contradict our

observations from Q1 and Q2, since we observe that the vast majority of unit test

methods do not have preceding or inner comments. The contradictory results

can be explained as an artifact of the sample analyzed in the mining-based

CHAPTER 3. DOCUMENTING UNIT TEST CASES 61

study, and the diversity of projects; it is worth noting that GitHub also hosts

personal projects that might not require unit testing. However, the diverse set of

projects in GitHub provide us with a general view of developer practices.

Summary for RQ1. Although 47.17% of the developers indicated that they

document unit test cases in comments, we observed that 96.44% of the

projects lacked preceding comments and 85.98% lacked inner comments to

document the unit tests. We also observed that 27.93% projects contained

test cases despite 53.77% of developers indicating that they “fairly often” or

“always” write test cases (83.01% if we consider the response “sometimes”).

RQ2: In addition to the prevalence of comments for unit test methods, we

were interested in whether developers update these comments or find outdated

comments related to unit test methods. In terms of outdated comments, 47.64%

of the developers indicated that they “rarely” or “never” find outdated comments

in Q3. This observation demonstrates that outdated comments are relatively

common since 52.36% of developers find them at least “sometimes” to “always.”

However, the results do indicate that only 17.45% of developers find the problem

to be pervasive. The following are some offered explanations:

“Comments very quickly get out of sync. As code evolves the comments

almost never get updated.”

“Because I don’t write comments for tests.”

These responses indicate that developers usually do not consider comments and

assume them to be outdated. The latter assumption seems to be validated for

database-related methods, since only 17% of these methods that were modified

had preceding comments that were also updated at least once between releases

CHAPTER 3. DOCUMENTING UNIT TEST CASES 62

for a dataset including 3,113 systems [99]. Similarly, the developer feedback

suggests that the “never” and “rarely” categories are over-represented in that

developers do not find outdated comments because the code lacks comments.

Following these observations, answers to Q4 suggest that only 32.54% of

developers frequently (“fairly often” and “always”) update comments when

making changes to unit test cases. A plurality, 44.81%, either “rarely” or “never”

update comments. These results somewhat contradict the former observation

from Q3 in that more developers indicate that they do not update unit test

comments than the developers that indicated finding outdated comments. It

suggests that more of those comments are likely to be outdated than it may

seem. For instance, we got the following rationale from the participants:

“I usually remove comments when I find them”

“There aren’t any since tests should be self documenting.”

“When I feel a need to comment on “why” I made the changes I prefer to add

them as commit comments”

Interestingly, the developers indicated that many of the “updates” are the

removal of comments. Additionally, developers indicated that such

documentation of changes are logged in the commit messages. We also

observe that the lack of comments impacts the results of Q4 (i.e., developers that

do not comment unit test cases also will not update these non-existing

comments). However, 32.54% of developers acknowledged that existing

comments were updated frequently.

The mining study at release-level opposes the developer survey results in that

it demonstrates unit test methods are not typically updated. For the 246 projects

CHAPTER 3. DOCUMENTING UNIT TEST CASES 63

with releases, we identified 101 projects that utilized unit test cases. From those

101 projects, we identified 1,075,076 unit test method changes from 3,160 total

methods (aggregated numbers). In 16,561 of those test method changes, we

observed the preceding comment was modified (1.54%), while 163,737 unit test

method changes had inner comments that were modified (15.23%). These results

contradict our observations from Q3 and Q4, since we observe far fewer updates

to unit test methods than expected from the developer survey.

Summary for RQ2. Despite 44.81% of developers indicated that they “rarely”

or “never” update unit test comments, we found that 1.54% of the preceding

comments and 15.23% of the inner comments in 101 projects were changed

at least once between releases when the unit test method was also modified.

RQ3: Finally, we were interested in understanding whether developers had

difficulty understanding unit test cases because of the comments, and the

perceived importance of maintaining unit test cases. Overwhelmingly,

developers indicated that maintaining unit test cases is important with 89.15% of

developers responding “agree” or “strongly agree” to Q5. Thus, developers

acknowledged that maintenance is important, but we also observe that

understanding unit test cases is not trivial. 60.38% of developers indicated a

“moderate” to “very hard” difficulty with respect to understanding. Thus, the unit

test cases are important, but they are commonly not easy to understand. We

found the following potential causes for this lack of understanding:

“This depends primarily on your level of immersion in the project, which if high

makes understanding easier than if you are less immersed.”

“Depends on the complexity of the unit and the setup/fixtures required it can

CHAPTER 3. DOCUMENTING UNIT TEST CASES 64

be hard”

“It depends of how well you know the system and how the system is build”

While 39.62% of respondents indicated that they should be easy to

understand, we observed that project familiarity and complexity of what is tested

to be common causes of difficulty. 31.91% of the respondent providing rationale

Q6 indicated unit test cases should be simple or should follow the “Arrange, Act,

Assert” paradigm [24], which also aids in understandability.

Summary for RQ3. More than half of the developers indicated a difficulty of

“moderate” to “very hard” in terms of understanding unit tests. Emphasizing

this importance, we observed that 89.15% of developers “agree” or strongly

agree” that maintaining test cases impacts the quality of the system. This

suggests that developers could benefit from tools that support them in

maintaining unit test cases during software evolution and maintenance.

3.1.4 Threats to Validity

The construct threat to validity relates to bias in our observations from the two

perspectives of analysis (survey and mining of unit test cases). We do not offer

rationale beyond the rationale provided by participants avoid inaccurate

inferences. Additionally, the projects on GitHub may not contain the complete

history of the projects due to the maturity differential of the sampled projects and

GitHub. It is also possible developers did not tag all of the releases for the

projects. However, these limitations are inherent to any mining study utilizing

GitHub [84]. Threats to internal validity relate to response bias by developers

that either had more difficulty or did not have problems while understanding or

maintaining unit test cases. Based on the results of the survey, we observed that

CHAPTER 3. DOCUMENTING UNIT TEST CASES 65

responses were not dominantly distributed to extremes that indicates that these

developers were particularly biased based on such difficulty. The external

threats to validity relate to generalizing the conclusions from this work. In our

conclusions, we state that these results are based on open-source developers

from GitHub and industrial developers, but do not claim that these results

generalize to all developers in other industrial companies, contributing to other

forges, and developing systems in other languages. We do present demographic

information in our online appendix [25] that suggests that we have a diverse

sample of open-source and industrial C# developers.

3.2 UnitTestScribe: Documenting Unit Tests

Based on the findings from the study (Section 3.1), it is clearly important to have

an approach to support developers in maintaining unit test case documentation.

Therefore, we designed and implemented an approach, called UnitTestScribe,

to support unit test cases documentation. UnitTestScribe is a novel approach

that combines static analysis, natural language processing, backward slicing,

and code summarization techniques in order to automatically generate

expressive NL descriptions concisely documenting the purpose of unit test

methods (i.e., methods in unit tests). The main conjecture of UnitTestScribe’s

approach is that the purpose of a unit test method can be described by

identifying (i) general descriptions of the test case method, (ii) focal methods, (iii)

assertions in the test case method, and (iv) internal data dependencies for the

variables in assertions. A focal method is a method from the system under test,

which is invoked in a unit test case, and is responsible for system state changes

CHAPTER 3. DOCUMENTING UNIT TEST CASES 66

1public AddWordsSeveralTimes(){

2int listLength = 20;

3int coocurrenceCount = 3;

4var words = GenerateRandomWordList(listLength);

5for(int i = 0; i < coocurrenceCount; i ++){

6matrix.HandleCoOcurrentWordsSync(words);

7}

8for(int i = 0; i < listLength - 1; i ++){

9var word1 = words.ElementAt(i);

10var word2 = words.ElementAt(i + 1);

11var count =

12matrix.GetCoOccurrenceCount(word1,word2);

13Assert.IsTrue(count > 0);

14}

15}

Figure 3.4: CoOccurrenceMatrixTests.AddWordsSeveralTimes unit test method
of the Sando system

that are examined through assertions in unit tests [72]. We recognized focal

methods as an important piece of information to be included in the resulting

summary. In addition, results from our second study (Section 3.3) showed that

identifying and highlighting focal methods would help developers better

understand respective unit test cases (see Table 3.6).

Assertions are a key programming mechanism that is often used in unit test

cases for comparing expected results to actual results after executing one (or

more) method(s) from the software system under test. In addition, assertions

are often related to focal methods in test methods. Therefore, the description of

a focal method can be augmented with those assertions related to a focal

method. Let us consider the CoOccurrenceMatrixTests.AddWordsSeveralTimes

test method in the Sando [17] system (Fig. 3.4). The assertion in line 13 validates

that the variable count is greater than zero after calling the focal method

matrix.getCoOccurrenceCount. Thus, describing the focal methods in the test

method and the assertions related to those methods by data dependencies

might be useful for understanding the purpose of unit test methods.

CHAPTER 3. DOCUMENTING UNIT TEST CASES 67

Ty
pe

C
at

eg
or

y
D

es
cr

ip
tio

n
M

od
ifi

ed
ru

le
s

G
et

te
r

A
cc

es
so

r
R

et
ur

ns
th

e
va

lu
e

of
a

da
ta

m
em

be
r

N
o

cl
as

s
fie

ld
is

ch
an

ge
d
&
&

R
et

ur
n

ty
pe

is
no

tv
oi

d
&
&

O
nl

y
re

tu
rn

on
e

cl
as

s
fie

ld
.

P
re

di
ca

te
A

cc
es

so
r

R
et

ur
ns

a
B

oo
le

an
re

su
lt

ba
se

d
on

a
da

ta
m

em
be

r(
s)

N
o

da
ta

m
em

be
r

is
ch

an
ge

d
&
&

R
et

ur
n

ty
pe

is
bo

ol
&
&

D
o

no
t

di
re

ct
ly

re
tu

rn
an

y
da

ta
m

em
be

r

P
ro

pe
rt

y
A

cc
es

so
r

R
et

ur
ns

in
fo

rm
at

io
n

ab
ou

t
a

da
ta

m
em

be
r

N
o

da
ta

m
em

be
r

is
ch

an
ge

d
&
&

R
et

ur
n

ty
pe

is
no

t
bo

ol
or

no
t

vo
id

.
&
&

D
o

no
t

di
re

ct
ly

re
tu

rn
an

y
da

ta
m

em
be

r

S
et

te
r

M
ut

at
or

C
ha

ng
es

th
e

va
lu

e
of

a
da

ta
m

em
be

r
O

nl
y

1
da

ta
m

em
be

r
is

ch
an

ge
d&

&
R

et
ur

n
ty

pe
is

vo
id

or
0/

1

C
om

m
an

d
M

ut
at

or
E

xe
cu

te
s

co
m

pl
ex

ch
an

ge
s

on
da

ta
m

em
be

rs
M

or
e

th
an

1
cl

as
s

fie
ld

is
ch

an
ge

d&
&
R

et
ur

n
ty

pe
is

vo
id

or
0/

1

C
ol

la
bo

ra
to

r
C

ol
la

bo
ra

to
rW

or
ks

on
ob

je
ct

s
of

cl
as

se
s

di
ffe

re
nt

fro
m

th
e

m
et

ho
d

A
t

le
as

t
on

e
of

th
e

m
et

ho
d’

s
pa

ra
m

et
er

s
or

lo
ca

l
va

ria
bl

es
is

an
ob

je
ct

|
|

In
vo

ke
s

ex
te

rn
al

m
et

ho
d(

s)

Fa
ct

or
y

C
re

at
or

C
re

at
es

an
ob

je
ct

an
d

re
tu

rn
s

it
N

ot
re

tu
rn

s
pr

im
iti

ve
ty

pe
Lo

ca
l&

&
(A

lo
ca

l
va

ria
bl

e
is

in
st

an
tia

te
d

an
d

re
tu

rn
ed

|
|

C
re

at
es

an
d

re
tu

rn
s

a
ne

w
ob

je
ct

di
re

ct
ly

)

Table 3.2: Taxonomy of method stereotypes proposed by Dragan et al.[63] with
our proposed modifications

CHAPTER 3. DOCUMENTING UNIT TEST CASES 68

1public ExpandMoreLetters(){

2var queries = expander.GetExpandedQueries("abfdsafafdc");

3Assert.IsNotNull(queries);

4queries = expander.GetExpandedQueries("bcfdasfdsad");

5Assert.IsNotNull(queries);

6queries = expander.GetExpandedQueries("defdasfdsaf");

7Assert.IsNotNull(queries);

8}

Figure 3.5: AcronymExpanderTests.ExpandMoreLetters unit test method of the
Sando system

The purpose of an assertion can be inferred and translated automatically into

NL sentences by analyzing the assertion signature (e.g., Assert.AreEqual and

Assert.AreSame methods in the C# API) and the arguments. For instance, the

assertion Assert.IsNotNull(queries) in the

AcronymExpanderTests.ExpandMoreLetters unit test method in the Sando

system (Fig. 3.5) can be translated into “Validate that the queries are not null”.

Additionally, arguments in focal methods and assertions have data

dependencies with variables defined in the test method. These data

dependencies can be described by slicing paths (analyzing data flows) ending at

a focal method or an assertion call. Consequently, the descriptions generated by

UnitTestScribe combine (i) general descriptions of the test case method, (ii)

focal methods, (iii) assertions in the test case method, and (iv) internal data

dependencies for the variables in assertions.

3.2.1 UnitTestScribe Architecture

The architecture of UnitTestScribe is depicted in Fig. 4.6. The starting point of

UnitTestScribe is the source code of the system, including source code of the

unit tests. UnitTestScribe analyzes the source code to identify all the unit test

cases 1 . Then, UnitTestScribe performs data-flow analysis to identify

CHAPTER 3. DOCUMENTING UNIT TEST CASES 69

Source Codes Unit Test Cases Unit Test Cases
Detector 1

Focal Method
Detector 3

Program Slicing
Analyzer 5

Focal Methods
Information

SWUM.NET
4

Stereotype
Analyzer 2

Variable Slicing
Information

SWUM.NET
Description

Templates

Description
Generator 6

Unit Test Case
Documentation

Figure 3.6: UnitTestScribe Architecture. The solid arrows denote the flow of data.
Numbers denote the sequence of operations.

stereotypes at method level [63] in the source code; the stereotypes detection is

necessary to identify the focal methods in the unit test methods 2 . After having

identified all the test cases and stereotypes, UnitTestScribe detects focal

methods for each unit test case 3 . UnitTestScribe also uses SWUM.NET to

generate a general NL description for each unit test case method. SWUM.NET

[21, 75] captures both linguistic and structural information about a program, and

then generates a sentence describing the purpose of a source code method 4 .

The data dependencies between focal methods, assertions, and variables in the

test method are detected by performing static backward slicing [81] 5 . Finally,

the extracted information (focal methods, assertions, slices, and SWUM

sentence) are structured in NL description by using predefined templates 6 .

The final descriptions for all the methods are organized in UnitTestScribe

documentation in HTML format. In the following subsections, we describe the

CHAPTER 3. DOCUMENTING UNIT TEST CASES 70

details behind each of the steps and components in UnitTestScribe.

3.2.2 Unit Test Detector

Our implementation focuses on systems that utilize NUnit [13] and Microsoft unit

testing frameworks [12] for unit testing (because of the systems that were

available for analysis and evaluation through our industrial collaboration). Unit

test methods designed by developers are annotated with [Test] and

[TestMethod] for NUnit and Microsoft testing frameworks respectively, which

was utilized by our detection algorithm (we also include [TestCase], [Fact], and

[Theory] for some special cases or new frameworks).

3.2.3 Method Stereotype Analyzer

Method stereotypes are labels/categories that indicate the intent and the role of

a method in a class [63], e.g., getter, setter, collaborator. We modified the rules

proposed by Dragan et al. [63] for C++ to have the corresponding stereotypes

for C#. The Method Stereotype Analyzer in UnitTestCribe analyzes data flows

provided by SrcML.NET [20], and then detects the stereotypes with the rules listed

in Table 3.2. In order to collect all information for identifying method stereotypes

for each method, we track all the changes to local variables and data members

by examining statements that may cause a variable to change. We also analyze

the call graph of a given project to record internal and external function calls for a

given method. The main goal behind method stereotype analyzer is to accurately

classify the method’s intent, which is later used in the algorithm for identifying the

focal methods.

CHAPTER 3. DOCUMENTING UNIT TEST CASES 71

P
la

ce
ho

ld
er

Te
m

pl
at

e
E

xa
m

pl
e

〈P
a
r
t
1
〉

Th
is

un
it

te
st

ca
se

m
et

ho
d

is
to
〈A
c
t
i
o
n
〉

〈T
h
e
m
e
〉〈

P
r
e
p
o
s
i
t
i
o
n
〉〈

S
e
c
o
n
d
a
r
y
A
r
g
〉

Th
is

un
it

te
st

ca
se

m
et

ho
d

is
to

te
st

cl
as

s
w

ith
de

cl
ar

ed
va

ri
ab

le
.

〈P
a
r
t
2
〉

Th
is

un
it

te
st

ca
se

in
cl

ud
es

fo
llo

w
in

g
fo

ca
lm

et
ho

ds
:
{〈
F
o
c
a
l
M
d
〉}

Th
is

un
it

te
st

ca
se

in
cl

ud
es

fo
llo

w
in

g
fo

ca
l

m
et

ho
ds

:
..

.

〈P
a
r
t
3
〉

Th
is

un
it

te
st

ca
se

va
lid

at
es

th
at

:
{〈
V
a
l
i
d
a
t
n
〉}

Th
is

un
it

te
st

ca
se

va
lid

at
es

th
at

:
..

.

〈F
o
c
a
l
M
d
〉

〈S
t
a
t
e
m
e
n
t
〉

Th
is

fo
ca

l
m

et
ho

d
is

re
la

te
d

w
ith

as
se

rt
io

ns
at
〈L
i
n
e
N
u
m
b
e
r
〉

c
o
l
.
A
d
d
(
"
b
l
a
c
k
"
,
"
h
o
l
e
"
)
;
(
@
l
i
n
e

4
9
)

Th
is

fo
ca

lm
et

ho
d

is
re

la
te

d
to

as
se

rt
io

ns
at

lin
e

50

〈V
a
l
i
d
a
t
n
〉

〈A
s
r
t
D
e
s
c
〉.
{〈
V
a
r
i
a
b
l
e
〉

is
ob

ta
in

ed
fro

m
va

ria
bl

e
〈V
a
r
i
a
b
l
e
〉t

hr
ou

gh
sl

ic
in

g
pa

th
〈P
a
t
h
〉}

.

g
l
o
b
a
l
S
c
o
p
e
.
I
s
G
l
o
b
a
l

i
s

t
r
u
e
.

g
l
o
b
a
l
S
c
o
p
e

is
ob

ta
in

ed
fro

m
va

ria
bl

e
x
m
l

th
ro

ug
h

sl
ic

in
g

pa
th

x
m
l

>
>
>

g
l
o
b
a
l
S
c
o
p
e
.

〈P
a
t
h
〉

{〈
V
a
r
i
a
b
l
e
〉>

>
>
}

x
m
l

>
>
>

x
m
l
E
l
e
m
e
n
t

>
>
>

g
l
o
b
a
l
S
c
o
p
e

>
>
>

a
c
t
u
a
l

Table 3.3: A subset of placeholder templates with examples

CHAPTER 3. DOCUMENTING UNIT TEST CASES 72

Algorithm 1: An Algorithm for Focal Method Detection
Input: MethodDefinition m, AssertionStatement assert
Output: Set<FunctionCall> fmSet

1 begin
2 fmSet← new Set<FunctionCall>()

3 v ←GetEvaluatedVariable (assert)
4 queue.Push(v)
5 while queue.Size > 0 do
6 v ← queue.Pop()
7 decl stmt v ←FindDeclaration (m, v)
8 b← IsExternalObject (decl stmt v)
9 if b == true then

10 vSet←GetRelatedVariables (m, v)
11 queue.PushAll(vSet)

12 else
13 call← FindTheLastMutatorCall (m, v)
14 fmSet.Add(call)

15 return fmSet

3.2.4 Focal Method Detector

Because a test unit can have more than one assertion, we consider each call to

an assert method as a testing sub-goal of the test method. Focal methods are

responsible for application state changes that are verified through assertions in

the unit test [72]. If there is a focal method associated with an assertion, then

the focal method is the “core” of the corresponding testing sub-goal.

UnitTestScribe identifies the focal methods by following the approach proposed

by Ghafari et al. [72]. Unlike Ghafari et al.’s implementation, which only works

with Java, our implementation works across the main modern object oriented

programming languages, i.e., C#, Java, and C++, since we rely on a

multi-language parsing tool, srcML, for generating XML files for source code and

then analyzing them.

For each assertion, the Focal Method Detector in UnitTestScribe applies

the following steps to find its focal methods; the procedure is listed in Algorithm

1. First, we identify the variables and literals used as arguments in the assertion

call and distinguish the expected values from the actual values according to the

CHAPTER 3. DOCUMENTING UNIT TEST CASES 73

API documentation. For example, in the assertion statement

Assert.AreEqual(1, parts.Count), the value of parts.Count is the actual

value and the integer literal 1 is the expected value. We push the variable of

actual value to the analysis queue queue (line 3-4). Then, we check whether

queue is empty since queue contains all the variables which potentially invoke

focal methods (line 5). If queue has element(s), we pop up a variable, v, from

queue (line 6). Next, we find the declaration statement decl stmt v of the

assertion argument by using static backward slicing and analyze the type of v

(line 7-8). If the type of v is an external class to the system (e.g libraries, build-in

types), we then find a variable set vSet containing all of the variables that

initialized v or are called by v as parameters (line 10); for each variable v new in

vSet, we push v new to queue for further analysis (line 11). Otherwise, i.e., if the

type of v belongs to the project code, v is marked as a focal variable for the

current sub-goal and one of the focal methods for the current sub-scenario is

defined to be the last mutator/collaborator function that the focal variable v calls

before the assertion (line 13-14). The algorithm returns a set of detected focal

methods when queue is empty (line 15).

3.2.5 General Description Extractor

Class/method/argument signatures usually contain verb phrases, noun phrases,

and preposition phrases that are useful when constructing NL descriptions of

code units [142, 76]. In addition, programmers do not arbitrarily select names

and tend to choose descriptive and meaningful names for code units [96].

UnitTestScribe relies on the SWUM approach by Hill et al. [76], in particular

the SWUM.NET tool implemented by ABB in C# [21], to extract natural language

CHAPTER 3. DOCUMENTING UNIT TEST CASES 74

Placeholder Explanation

〈Action〉 Action phrase from SWUM.NET for the entity

〈Theme〉 Theme phrase from SWUM.NET for the entity

〈Preposition〉 Preposition from SWUM.NET for the entity

〈SecondaryArg〉 The second object phrase from SWUM.NET

〈Statement〉 A source code statement

〈LineNumber〉 An integer value indicating the line number

〈AsrtDesc〉 NL description for an assertion statement

〈Variable〉 A source code variable
Table 3.4: Leaf level placeholders

phrases that are used in composing general descriptions for unit test methods.

3.2.6 Slicing Path Analyzer

UnitTestScribe performs over-approximate analysis for each variable v in an

assertion statement to compute all potential paths that may influence the value

of v by using backward slicing [81]. Although UnitTestScribe does not track any

branch conditions in the method (some paths may not be executed with a certain

input), the over-approximate approach guarantees that potential slices are not

missed in the description of the unit test case.

3.2.7 Description Generator

The Description Generator in UnitTestScribe uses the collected information from

the previous steps and the predefined templates to generate NL descriptions for

test methods. A description of a test unit method contains three parts:

• 〈Part1〉: General sentence describing the purpose of a test method (based

on class, method, and argument signatures) generated with SWUM.NET;

CHAPTER 3. DOCUMENTING UNIT TEST CASES 75

3

1

2

4

Figure 3.7: An example of UnitTestScribe Description for Sando’s method
CoOccurrenceMatrixTests.AddWordsSeveralTimes

• 〈Part2〉: Descriptions of focal methods;

• 〈Part3〉: Description of assertions in the unit test method, including slicing

paths of the variables validated with an assertion.

The templates are listed in Table 3.3 . The placeholders 〈...〉 in the templates

mark tokens to be replaced (the placeholders are described in Table 3.4) by the

Description Generator. We provide a complete list of templates, placeholders,

and report examples in our online appendix [25]. A description for the method

in Fig. 3.4 generated by UnitTestScribe is shown in Fig. 3.7. The 1 marker

indicates the general sentence describing the purpose of the test method; 2

indicates the focal method of the unit test method; 3 highlights the assertions

in the test method; and 4 indicates the variable’s slicing path when users hover

over the hyper link.

CHAPTER 3. DOCUMENTING UNIT TEST CASES 76

3.3 UnitTestScribe: Empirical Study Design

We conducted a user study in which the descriptions generated by

UnitTestScribe were evaluated by developers at ABB, computer science

students, and researchers from different universities. The goal of this study was

to measure the quality of UnitTestScribe descriptions as perceived by users

according to a well-established framework for evaluating automatically

generated documentation [50, 110, 142]. The context consisted of four C# open

source software systems that use either NUnit or Microsoft unit testing

frameworks, and 20 descriptions of unit test methods generated by

UnitTestScribe (five methods for each system). The perspective was of

researchers interested in evaluating the quality of a method for automated

documentation generation. The quality focus was on the three attributes in the

evaluation framework: completeness, conciseness, and expressiveness.

3.3.1 Data Collection

The list of analyzed systems included two open-source systems from ABB

Corporate Research Center and two popular C# systems hosted on Github.

Those subject applications are: 1) the SrcML.NET framework [20] used by ABB

Corporate Research for program transformation and source code analysis; 2)

the Sando [17] system developed by ABB Corporate Research, which is a Visual

Studio Extension for searching C, C++, and C# projects; 3) Glimpse [5], which is a

open-source diagnostics platform for inspecting web requests; and 4) the

Google-api-dotnet library [6] for accessing Google services such as Drive,

YouTube, Calendar in .NET applications.

CHAPTER 3. DOCUMENTING UNIT TEST CASES 77

We selected these four subject systems according to the following criteria: 1)

the system should be a C# project and use either NUnit or Microsoft unit testing

framework; 2) the system should be mature and under active maintenance. At

the time that we selected the systems, Glimpse had 149 watches and 1,484 stars

on Github, while Google-api-dotnet had 27 watches and 102 stars. Detailed

information about the systems are shown in Table 3.5. Note that the lines of code

for the test cases is in the range between 3 and 44 (average = 8.3, median = 7).

For the evaluation we ran UnitTestScribe on each subject system using an

Intel Core i7-4700MQ CPU2.4GHZ machine with 16GB RAM. We randomly

selected five descriptions for each software system while covering the following

criteria: 1) the selected method should have at least one assertion and 5 LOC

(We define LOC as the lines of codes including method signature and brackets

belong to the method in the unit test case file); 2) two descriptions must contain

at most 4 assertions (simple cases); 3) three descriptions must have more than

four assertions (complex cases). Our decision for including only five methods

per system was based on the fact that analyzing the descriptions require

inspection and navigation of the source code; on average it may take 4-5

minutes to investigate each test case and we had to restrict the study to 45 mins

to avoid early-drop. After the study, we also randomly interviewed some

participants to collect their opinions on limitations, usefulness, and suggestions

for improvement.

We did not generate descriptions for test methods with less than five lines

of code, since we assume developers should be able to quickly read those test

cases and understand them without additional analysis. In other words, given

the results of our empirical study, it was clear that developers prefer test case

CHAPTER 3. DOCUMENTING UNIT TEST CASES 78

documentation for more complex test cases. We computed the ratio of comments

in test cases of our subject systems. We found that 28% of test cases with more

than or equal to 5 LOC had comments, while only 13% of test cases with fewer

than 5 LOC had comments. The observation suggests that larger unit test cases

are commented more than smaller unit test cases, and unit test cases in our

subject systems are rarely commented. Based on all the above, we claim that

(i) developers need more help on complex test cases rather than simple ones;

(ii) the test cases are rarely documented, which is consistent with our motivation

study in Section 3.1.

3.3.2 Research Questions

The RQs aimed at evaluating the three quality attributes in the evaluation

framework [50, 110, 142] (i.e., completeness, conciseness, and

expressiveness); in addition, we evaluated whether focal methods are useful for

describing the purpose of test methods, and whether the descriptions are useful

for understanding test methods. Consequently, in the context of our study, we

defined the following research questions:

RQ4 How complete are the unit test case descriptions generated by

UnitTestScribe?

RQ5 How concise are the unit test case descriptions generated by

UnitTestScribe?

RQ6 How expressive are the unit test case descriptions generated by

UnitTestScribe?

CHAPTER 3. DOCUMENTING UNIT TEST CASES 79

System NF MD CLS NS TS RT

SrcML.NET 332 2,867 306 42 410 546s

Sando 505 6,566 946 93 313 466s

Glimpse 909 6,503 1,045 153 943 1,281s

Google-api-dotnet 189 1,448 246 44 166 229s

Table 3.5: Subject systems: number of Files (NF), number of methods (MD),
number of classes (CLS), number of namespaces (NS), number of test cases
(TS), Running Time (RT).

RQ7 How important are focal methods and program slicing for understanding unit

test cases?

RQ8 How well can UnitTestScribe help developers understand unit test cases?

3.3.3 Analysis Method

To answer the RQs, we organized the participants in two groups:

developers/researchers from ABB, and academic researchers/students. The

former group evaluated the descriptions generated by UnitTestScribe for

SrcML.NET and Sando, and the latter group evaluated the descriptions for

Glimpse and Google-api-dotnet. For each group, we created an on-line survey

using the Qualtrics tool [15]. The survey included (i) demographic background

questions, and (ii) questions aimed at answering the RQs (Table 3.6 lists the

questions and possible answers). For each method, we also asked the

participants to provide the rationale for their answers. We analyzed the collected

results based on participants’ choices on each question as well as free-text

answers. For more detail, we analyzed the collected data based on the

distributions of responses in diverse combinations (ABB vs. academic group,

CHAPTER 3. DOCUMENTING UNIT TEST CASES 80

simple methods vs. complex methods). We also checked the free-text

responses in depth to understand the rationale behind the choices.

3.3.4 Threats to Validity

One threat to internal validity is that participants may not be familiar with the test

case methods and subject systems. In order to reduce this threat, we let

participants first understand each selected method and then answer questions

about the method. Since we also provided source code for each system,

participants could navigate the context related to the method. In addition, to

avoid any type of bias, we did not tell the participants whether the documentation

was automatically generated or not. One threat to external validity is that our

current implementation only focuses on NUnit or Microsoft frameworks, however,

UnitTestScribe can be easily extended to other testing frameworks. The other

threat to external validity is that we only had limited number of methods in our

user study. However, we selected a diverse set of methods to cover both simple

and complex test cases. One more threat to external validity is that only C# unit

tests and projects are analyzed in the study. However, since C# is a standard

OOP language and we may consider that the results would be approximately the

same with other standard OOP languages such as Java.

3.4 UnitTestScribe: Empirical Study Results

We collected 26 valid responses from the participants in two groups. In

particular, the valid results contain responses from 7 developers/researchers

from ABB (group 1) and 19 responses from students/researchers (group 2). It

CHAPTER 3. DOCUMENTING UNIT TEST CASES 81

Completeness: Only focusing on the content of the
description without considering the way it has been
presented, do you think the message is complete?

Group 1 Group 2

• The description does not miss any important information 33(47.14%) 132(69.47%)

• The description misses some important information to
understand the unit test case

28(40.00%) 50(26.32%)

• The description misses the majority of the important
information to understand the unit test case

9(12.86%) 8(4.21%)

Conciseness: Only focusing on the content of the
description without considering the way it has been
presented, do you think the message is concise?

Group 1 Group 2

• The description contains no redundant information 36(51.43%) 100(52.63%)

• The description contains some redundant information 25(35.71%) 77(40.53%)

• The description contains a lot of redundant information 9(12.86%) 13(6.84%)

Expressiveness: Only focusing on the content of
the description without considering the completeness
and conciseness, do you think the description is
expressive?

Group 1 Group 2

• The description is easy to read and understand 43(61.43%) 114(60.00%)

• The description is somewhat readable and
understandable

16(22.86%) 53(27.89%)

• The description is hard to read and understand 11(15.71%) 23(12.11%)

Preferences: Identifying of focal methods would help
developers to understand the unit test case

Group 1 Group 2

• Yes 7(100%) 17(89%)

• No 0(0%) 2(11%)

Preferences: Identifying of slicing path would help
developers to understand the unit test case

Group 1 Group 2

• Yes 6(86%) 13(68%)

• No 1(14%) 6(32%)

Preferences: Are our generated description useful for
understanding the unit test cases in the system?

Group 1 Group 2

• Yes 4(57%) 17(89%)

• No 3(43%) 2(11%)

Table 3.6: Study questions and answers.

CHAPTER 3. DOCUMENTING UNIT TEST CASES 82

should be noted that participants from group 1 were/are developers of the Sando

and SrcML.NET projects. Therefore, we assume that participants in group 1 have

better understanding on the unit test cases in the subject projects. Conversely,

we consider participants in group 2 as newcomers since they did not have prior

experience with those systems.

RQ4 - RQ6 focus on three quality attributes: completeness, conciseness, and

expressiveness. For completeness, we examined whether the descriptions of

UnitTestScribe contain all important information (RQ4). For conciseness, we

evaluated whether the descriptions of UnitTestScribe contain redundant

information (RQ5). For expressiveness, the focus was whether the descriptions

of UnitTestScribe are easy to read (RQ6). Since we asked participants to

evaluate these three attributes for five test case methods in each application, the

total number of answers that we collected for each attribute by group 1 is

5 × 2 × 7 = 70 answers, while the collected answers for each attribute by the

group 2 is 5 × 2 × 19 = 190 answers. In addition, we answered RQ7 and RQ8

based on the results shown in the preferences criteria in Table 3.6. Generated

descriptions and anonymized study results from open-source developers are

publicly available at our online appendix [25].

3.4.1 Demographic Background

The participants had on average 13.5 years (median = 15 years) of

programming experience for group 1, and 7.1 years (median = 7) for group 2.

When considering only industrial/open source experience, the participants in

group 1 had on average 9 years (median = 5), and the participants in group 2

had on average 1.2 years (median = 0.5). Regarding the highest academic

CHAPTER 3. DOCUMENTING UNIT TEST CASES 83

degree achieved, group 1 had 4 participants with MS and 3 participants with

PhDs, and group 2 had 8 participants with BS, 10 participants with MS, and 1

participant with PhD.

3.4.2 Completeness (RQ4)

For group 1, 47.14% of the answers indicate that UnitTestScribe descriptions

do not miss any important information, while only 12.86% of the answers indicate

that the descriptions miss some important information to understand the unit test

case. For group 2, 69.47% of the answers indicate that the descriptions do not

miss any important information, while only 4.21% of the answers indicate that the

descriptions miss important information. If we only focus on the first two options,

we have 89% and 96% answers indicating that some or no important information

is missing. More importantly, this demonstrates that only a very few answers

indicated that some key information was missing.

We also observed that UnitTestScribe was evaluated more positively on

complex methods rather than simple methods. For example, most of the

answers (66.7%, 6 out of 9) with the lowest ratings by group 1 came from the

first two methods in two systems (based on our study design, the first two

methods in each system had fewer assertions and statements than the other

methods). We also examined the comments with lower ratings. Participants’

comments included the following: “The main problem is that

DataAssert.StatementsAreEqual is not recognized as an assert.” This comment

is due to the fact that “DataAssert.StatementsAreEqual” was not included in any

standard unit test framework assertions that we used for detecting. We

mentioned this in Section 4.4.4.

CHAPTER 3. DOCUMENTING UNIT TEST CASES 84

Summary for RQ4. Overall, the results suggest that UnitTestScribe is able to

generate descriptions for test case methods that cover all essential information

in most of the cases.

3.4.3 Conciseness (RQ5)

For group 1, 51.43% of the answers indicate that UnitTestScribe descriptions

contain no redundant/useless information, while only 12.86% of the answers

indicate the description contain significant amount of redundant/useless

information. For group 2, 52.63% of the answers indicate the descriptions

contain no redundant/useless information, while only 6.84% of the answers

indicates otherwise. Most of the responses with lower scores were from test

case methods with the number of assertions greater than four (based on our

study design, the last three methods in each system had more statements and

assertions than the other two). For example, for the lowest rating in group 2,

84.6 % (11 out of 13) came from complex test case methods. One

corresponding comment included the following: “As the same variable is

updated and used multiple times, this unit test description is very redundant.”

Our explanation is that the descriptions for larger test case methods may appear

rather verbose, since we provided more descriptions for each assertion and

slicing. The descriptions are trying to cover all important information that could

also come at the expense of expressiveness. To overcome the redundancy,

UnitTestScribe does not describe the assertions that are already described in

the focal methods when the assertions include the focal methods.

CHAPTER 3. DOCUMENTING UNIT TEST CASES 85

Summary for RQ5. Overall, the results support our claim that our designed

templates for the UnitTestScribe generate descriptions with less redundant

information.

3.4.4 Expressiveness (RQ6)

For group 1, 61.43% of the answers indicate that UnitTestScribe descriptions

were easy to read and understand, while only 15.71% of the answers indicated

the descriptions were hard to read and understand. In group 2, we observed

60% of the answers indicating that UnitTestScribe descriptions were easy to

read and understand, while only 12.11% of the answers indicated otherwise.

The distribution of ratings with the lowest rank is similar to the conciseness

question where descriptions for simple test case methods were evaluated more

positively than the complex test case methods. Similar to conciseness, the

reason is that UnitTestScribe are attempting to cover all important information

for expressiveness. Hence, the conclusion is supported by the following

comment from our participants: “Again, I think that for long unit test methods, the

description becomes difficult to read, perhaps summarizing the assertions for

longer methods to give at a glance information.”.

Summary for RQ6. Overall, the results support that UnitTestScribe

descriptions are easy to read and understand.

3.4.5 User Preferences (RQ7 - RQ8)

Seven participants (out of 7) in group 1 and 17 participants (out of 19) in group

2 answered that focal methods were important to understand test case methods.

In case of usefulness of slices, 6 out of 7 answers in group 1, and 13 out of 19

CHAPTER 3. DOCUMENTING UNIT TEST CASES 86

answers in group 2 indicated that slices were useful for understanding the test

case methods.

In the study, we also asked whether the generated descriptions are useful for

understanding the unit test cases. For group 1, 4 out of 7 participants answered

“Yes”, while 17 out of 19 participants also answered “Yes” in group 2. Based on

the participants’ responses, we also suggest that the UnitTestScribe

descriptions can be more useful for developers who are not familiar with the

source/test code (89% of participants in group 2 agreed on that generated

descriptions were useful for understanding the unit test cases). Participants’

comments with this rationale included the following: “Once I see the SrcML.NET

system, I know what’s going on. Its usefulness drops off if you’re talking to

someone experienced with the code base, though. So I suppose this depends

on who this is aimed at.” from a participant in group 1 and “It is useful if I am not

familiar with an application.” from a participant in group 2.

In addition, we collected following comments that illustrate some reasons why

participants evaluated UnitTestScribe descriptions positively in usefulness:

“I saw these as being good from the perspective of trying to figure out if this

method is of any real interest before investigating further to see what the

method actually does. So if I were fixing a bug and wanted to know some

quick information about this method, sure, I could see these as being helpful.”

“If I was quickly trying to understand what the code was doing on a high level,

then I could delve into the source code with more understanding.”

“I think these types of descriptions would be really useful in understand unit

tests for the purpose of writing/rewriting them for maintenance purposes as

code evolves over time.”

CHAPTER 3. DOCUMENTING UNIT TEST CASES 87

Category Subcategories

Bugs Bug reporting(1), Bug detection(1)

Software
maintenance

Program comprehension (7), Maintenance (4),
Code reviews (1)

Testing Test case changes (4), test case generation (3)

Others Commenting (2), Learning a library (2)

Table 3.7: “What SE tasks would you use UnitTestScribe descriptions for?”

Summary for RQ7 and RQ8. Overall, participants agreed on that focal

methods and program slicing for understanding unit test cases are important.

UnitTestScribe is useful for understanding unit test methods.

3.4.6 Participants’ Feedback

In the interviews after the study, we also asked the participants to indicate for

which SE tasks they would use UnitTestScribe. The answers and the categories

are listed in Table 3.7. Participants also pointed out some limitations of our current

implementation, which include the following:

“mock-style tests are not well described.”

“The description didn’t describe that the focal method or assertions are inside

a loop or not”

“slicing path is showing only the name of the variables and not their types.”

We also collected suggestions from participants, which include the following:

“Providing more context of the method would be helpful”

“Unit test can contain API usage examples. Perhaps this approach can serve

a purpose in showing relevant examples of how to use some API”

CHAPTER 3. DOCUMENTING UNIT TEST CASES 88

These are examples of very useful comments that we are planning on

incorporating in our future work.

3.5 Related Works on Documenting Unit Tests

3.5.1 Approaches and studies on unit test cases

Kamimura and Murphy [85] presented an approach for automatically

summarizing JUnit test cases. The approach identified the focal method based

on how many times the test method invokes the function. The least occurring

invocations are the most unique function calls for the test case. Xuan and

Monperrus [159] split existing test cases into multiple fractions for improving fault

localization. Their test case slicing approach has also influence on code

readability. Recently, Pham et al. [126] presented an approach for automatically

recommending test code examples when programmers make changes in the

code. Panichella et al. [122] presented an approach for automatically generating

test case summaries for JUnit test cases. Runeson [136] conducted a survey to

understand how unit testing is perceived in companies. Some researchers

focused on other aspects of testing, which include unit test case minimization

[91, 92], prioritization [135, 56], automatic test case generation [69, 64, 52], test

templates [164], data generation [101, 93]. However, none of the existing

approaches focuses on generating unit test case documentation as NL

summaries. Our approach, UnitTestScribe, is the first to describe unit test

cases by combining different description granularities: i) general description in

NL, and ii) detailed descriptions by highlighting focal methods and showing

relevant program slices.

CHAPTER 3. DOCUMENTING UNIT TEST CASES 89

3.5.2 Studies on classifying stereotypes

A program entity (method or class) stereotype reflects a high level description of

the role of the program entity [63, 61]. Dragan et al. [63] first conducted an

in-depth study of stereotypes at method level. They presented a well-defined

taxonomy of method stereotypes. Then, Dragan et al. [61] extended the

stereotype classification to class level granularity. A class stereotype is

computed based on method stereotypes in the class by considering frequency

and distribution of the method stereotypes. Later, Dragan et al. [60] presented

commit level stereotypes based on the types of the changing methods/classes in

the commits. Moreno and Marcus [112] implemented a tool, JStereoCode, for

automatically identifying method and class stereotypes in Java systems.

A group of techniques apply stereotype identification for other goals. Dragan

et al. [62] showed that method stereotypes could be an indicator of a system’s

design. Moreno et al. [110, 113] utilized class stereotypes to summarize the

responsibilities of classes. Linares-Vásquez et al. [50, 97] relied on commit

stereotypes for generating commit messages. Abid et al. [28] presented an

approach that automatically generates NL documentation summaries for C++

methods based on stereotypes. Overall, none of the existing approaches (but

UnitTestScribe) apply stereotype identification for generating unit test case

documentation.

3.6 Conclusion

We presented a novel approach UnitTestScribe that combines static analysis,

natural language processing, backward slicing, and code summarization

CHAPTER 3. DOCUMENTING UNIT TEST CASES 90

techniques in order to automatically generate expressive NL descriptions

concisely documenting the purpose of unit test methods. UnitTestScribe is

motivated by a study in which we surveyed 212 developers to understand their

perspective towards unit test cases. We found that developers believe that

maintaining good unit test cases is important for the quality of a software

system. We also mined changes of 1,414 open-source projects and found that

3.56% of unit test cases had preceding comments and 14.02% of those had

inner comments and both were not frequently updated between the releases.

To validate UnitTestScribe, we conducted a second study with two groups

of participants (the original developers on two industrial and graduate students

on the other two open-source systems). In the study, we evaluated three quality

attributes: completeness, conciseness, and expressiveness. The results of the

second study showed that UnitTestScribe descriptions are useful for

understanding test cases. In general, developers determined that our approach

generated descriptions that did not miss important information (87% and 96%),

did not contain redundant information (87% and 93%), and were both readable

and understandable (84% and 88%).

3.7 Bibliographical Notes

The papers supporting the content described in this Chapter were written in

collaboration with the members of the SEMERU group at William and Mary and

researchers from the ABB Corporate Research Center:

• Li, B., Vendome, C., Linares-Vásquez, M., Poshyvanyk, D. and Kraft, A. N.

“Automatically Documenting Unit Test Cases.” in Proceedings of 9th IEEE

CHAPTER 3. DOCUMENTING UNIT TEST CASES 91

International Conference on Software Testing, Verification and Validation

(ICST), pp. 341-352, IEEE, 2016.

• Li, B. “Automatically Documenting Software Artifacts.” in Proceedings of

32nd International Conference on Software Maintenance and Evolution

(ICSME), pp. 631-635. IEEE, 2016

Chapter 4

Stereotype-based Tagging of Unit

Test Cases

Unit testing is considered to be one of the most popular automated techniques to

detect bugs in software, perform regression testing, and, in general, to write better

code [78, 104]. In fact, unit testing is (i) the foundation for approaches such as

Test First Development (TFD) [42] and Test-Driven Development (TDD) [41, 34],

(ii) one of the required practices in agile methods such as XP [42], and (iii) has

inspired other approaches such as Behavior-Driven Development (BDD) [116]. In

general, unit testing requires writing “test code” by relying on APIs such as the

XUnit family [9, 13, 44] or Mock-based APIs such as Mockito [11] and JMockit [7].

Besides the usage of specific APIs for testing purposes, unit test code

includes calls to the system under test, underlying APIs (e.g., the Java API), and

programming structures (e.g., loops and conditionals), similarly to production

code (i.e., non-test code). Therefore, unit test code can also exhibit issues such

as bad smells [40, 151, 119, 118, 148, 147], poor readability, and

textual/syntactic characteristics that impact program understanding [137, 138].

In addition, despite the existence of tools for automatic generation of unit test

92

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 93

code [36, 69, 70, 71, 117, 133], automatically generated test cases (i.e., unit

tests) are difficult to understand and maintain [122]. As a response to the

aforementioned issues, several guidelines for writing and refactoring unit tests

have been proposed [78, 104, 151].

To bridge this gap, this work proposes a novel automated catalog of

stereotypes for methods in unit tests; the catalog was designed with the goal of

improving the comprehension of unit tests and navigability of large test suites.

The approach is a complementary technique to the existing

approaches [122, 95, 85], which generate detailed summaries for each test

method without considering method stereotypes at the test suite level.

While code stereotypes reflect high-level descriptions of the roles of a code

unit (e.g., a class or a method) and have been defined before for production

code [62, 28, 61], our catalog is first to capture unit test case specific

stereotypes. Based on the catalog, this chapter also presents an approach,

coined as TeStereo, for automatically tagging methods in unit tests according to

the stereotypes to which they belong. TeStereo generates a browsable

documentation for a test suite (e.g., an html-based report), which includes

navigation features, source code, and the unit tests tags. TeStereo generates

the stereotypes at unit test method level by identifying (i) any API call or

references to the JUnit API (i.e., assertions, assumptions, fails, annotations), (ii)

inter-procedural calls to the methods in the same unit test and external methods

(i.e., internal methods or external APIs), and (iii) control/data-flows related to any

method call.

To validate the accuracy and usefulness of test case stereotypes and

TeStereo’s reports, we designed and conducted three experiments based on

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 94

231 Apache projects as well as 210 test case methods, which were selected

from the Apache projects by using a sampling procedure aimed at getting a

diverse set of methods in terms of size, number, and type of stereotypes

detected in the methods (Section 4.3.2). In these projects, TeStereo detected

an average of 1,577 unit test stereotypes per system, which had an average of

5.90 unit test methods per test class (total of 168,987 unit test methods from

28,644 unit test classes). When considering the total dataset, the prevalence of

any single stereotype ranged from 482 to 67,474 instance of the stereotype. In

addition, we surveyed 25 Apache developers regarding their impressions and

feedback on TeStereo ’s reports. Our experimental results show that (i)

TeStereo achieves very high precision and recall for detecting the proposed unit

test stereotypes; (ii) the proposed stereotypes improve comprehension of unit

test cases during maintenance tasks; and (iii) most of the developers agreed

that stereotypes and reports are useful for test case comprehension.

In summary, this chapter makes the following contributions: (i) a catalog of 21

stereotypes for methods in unit tests that extensively consider the JUnit API,

external/internal inter-procedure calls, and control/data-flows in unit test

methods; (ii) a static analysis-based approach for identifying unit test

stereotypes; (iii) an open source tool that implements the proposed approach

and generates stereotype-based reports documenting test suites; and (iv) an

extensive online appendix [22] that includes test-case related statistics of the

analyzed Apache projects, the TeStereo reports of the 231 Apache projects,

and the detailed data collected during the studies.

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 95

4.1 Unit Test Case Stereotypes

In this section, we provide some background on stereotypes and describe the

catalog of stereotypes that we have designed for unit tests methods.

Code stereotypes reflect roles of program entities (e.g., a class or a method)

in a system, and those roles can be used for maintenance tasks such as design

recovery [38, 39], feature location [59, 58, 131, 57], program comprehension,

and pattern/anti-pattern detection [63, 61, 31, 98]. Although detecting

stereotypes is a task that can be done manually, it is prohibitively

time-consuming in the case of a large software system [63, 61]. Therefore,

automated approaches have been proposed to detect stereotypes for entities

such as classes, methods, and commits [63, 61, 60]. However, while the

previously proposed catalog of stereotypes were not designed to consider the

structure and purpose of unit tests; Unit test cases are different than other

artifacts, since unit tests are designed by following different principles and

workflow than non-test code [53, 78, 104].

Consequently, we designed a catalog of 21 stereotypes for unit test methods

(Table 4.1 and Table 4.2), under the hypothesis that stereotypes could help

developers/testers to understand the responsibilities of unit tests within a test

suite. Also, stereotypes may reflect a high-level description of the role of a unit

test case. For instance, stereotypes such as “Exception verifier”, “Iterative

verifier”, and “Empty test” are descriptive “tags” that can help developers to (i)

identify the general purpose of the methods without exploring the source code,

and (ii) navigate large test suites. Therefore, the stereotypes can be used as

“tags” that annotate the unit test directly in the IDE, or in external documentation

(e.g., an html report). The tags can be assist navigation/classification of test

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 96

Ty
pe

D
es

cr
ip

tio
n

R
ul

es
B

oo
le

an
ve

rifi
er

Ve
rifi

es
bo

ol
ea

n
co

nd
iti

on
s

C
on

ta
in

s
a
s
s
e
r
t
T
r
u
e
|
|

C
on

ta
in

s
a
s
s
e
r
t
F
a
l
s
e

N
ul

lv
er

ifi
er

Ve
rifi

es
w

he
th

er
ob

je
ct

s
ar

e
nu

ll
C

on
ta

in
s
a
s
s
e
r
t
N
u
l
l
|
|

C
on

ta
in

s
a
s
s
e
r
t
N
o
t
N
u
l
l

E
qu

al
ity

ve
rifi

er
Ve

rifi
es

w
he

th
er

ob
je

ct
s/

va
ria

bl
es

ar
e

eq
ua

lt
o

an
ex

pe
ct

ed
va

lu
e

C
on

ta
in

s
a
s
s
e
r
t
E
q
u
a
l
s

|
|

C
on

ta
in

s
a
s
s
e
r
t
A
r
r
a
y
E
q
u
a
l
s
|
|

C
on

ta
in

s
a
s
s
e
r
t
N
o
t
E
q
u
a
l
s

Id
en

tit
y

ve
rifi

er
Ve

rifi
es

w
he

th
er

tw
o

ob
je

ct
s/

va
ria

bl
es

re
fe

rt
o

th
e

sa
m

e
ob

je
ct

/v
ar

ia
bl

e
C

on
ta

in
s
a
s
s
e
r
t
S
a
m
e
|
|

C
on

ta
in

s
a
s
s
e
r
t
N
o
t
S
a
m
e

U
til

ity
ve

rifi
er

Ve
rifi

es
(u

n)
su

cc
es

sf
ul

ex
ec

ut
io

n
of

th
e

te
st

ca
se

by
re

po
rt

in
g

ex
pl

ic
itl

y
a

fa
ilu

re
C

on
ta

in
s
f
a
i
l

E
xc

ep
tio

n
ve

rifi
er

Ve
rifi

es
th

at
ex

ce
pt

io
ns

ar
e

th
ro

w
n

du
rin

g
th

e
te

st
ca

se
ex

ec
ut

io
n

H
as

E
x
p
e
c
t
e
d

at
tr

ib
ut

e
w

ith
th

e
va

lu
e

cl
as

s
E
x
c
e
p
t
i
o
n

or
cl

as
se

s
in

he
rit

ed
fro

m
E
x
c
e
p
t
i
o
n

C
on

di
tio

n
M

at
ch

er
Ve

rifi
es

lo
gi

c
ru

le
s

us
in

g
m

at
ch

er
-s

ty
le

st
at

em
en

ts
C

on
ta

in
s
a
s
s
e
r
t
T
h
a
t

A
ss

um
pt

io
n

se
tte

r
S

et
s

im
pl

ic
it

as
su

m
pt

io
ns

C
on

ta
in

s
a
s
s
u
m
e
T
h
a
t
|
|

C
on

ta
in

s
a
s
s
u
m
e
T
r
u
e

Te
st

in
iti

al
iz

er
A

llo
ca

te
s

re
so

ur
ce

s
be

fo
re

th
e

ex
ec

ut
io

n
of

th
e

te
st

ca
se

s
H

as
an

no
ta

tio
n

@
B
e
f
o
r
e

|
|

H
as

an
no

ta
tio

n
@
B
e
f
o
r
e
C
l
a
s
s

Te
st

cl
ea

ne
r

R
el

ea
se

s
re

so
ur

ce
s

us
ed

by
th

e
te

st
ca

se
s

H
as

an
no

ta
tio

n
@
A
f
t
e
r

|
|

H
as

an
no

ta
tio

n
@
A
f
t
e
r
C
l
a
s
s

Lo
gg

er
In

vo
ke

s
lo

gg
in

g
op

er
at

io
ns

C
al

ls
fu

nc
tio

ns
in
P
r
i
n
t
S
t
r
e
a
m

cl
as

s
|
|

C
al

ls
fu

nc
tio

ns
in

L
o
g
g
e
r

cl
as

s
Ig

no
re

d
m

et
ho

d
Is

no
te

xe
cu

te
d

w
ith

th
e

te
st

su
ite

H
as

an
no

ta
tio

n
@
I
g
n
o
r
e

H
yb

rid
ve

rifi
er

C
on

ta
in

s
m

or
e

th
an

on
e

JU
ni

t-b
as

ed
st

er
eo

ty
pe

N
um

be
ro

fm
at

ch
ed

JU
ni

t-b
as

ed
st

er
eo

ty
pe

>
1

U
nc

la
ss

ifi
ed

Is
no

t
ca

te
go

riz
ed

by
an

y
of

th
e

av
ai

la
bl

e
ta

gs
N

um
be

ro
fm

at
ch

ed
JU

ni
t-b

as
ed

st
er

eo
ty

pe
=
=

0

Table 4.1: JUnit API-Based Stereotypes for Methods in Unit Test Cases.

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 97

Ty
pe

D
es

cr
ip

tio
n

R
ul

es
B

ra
nc

h
ve

rifi
er

Ve
rifi

es
as

se
rt

io
ns

in
si

de
br

an
ch

co
nd

iti
on

s
N

um
be

ro
fa

ss
er

tio
ns

w
ith

in
br

an
ch

co
nd

iti
on

s
>

0

Ite
ra

tiv
e

ve
rifi

er
Ve

rifi
es

as
se

rt
io

ns
in

ite
ra

tio
ns

N
um

be
ro

fa
ss

er
tio

ns
w

ith
in

ite
ra

tio
ns

>
0

P
ub

lic
fie

ld
ve

rifi
er

Ve
rifi

es
va

lu
es

re
la

te
d

to
pu

bl
ic

fie
ld

s
A

ct
ua

l
va

lu
es

in
as

se
rt

io
ns

ar
e

fro
m

pu
bl

ic
fie

ld
ac

ce
ss

es
A

P
I

ut
ili

ty
ve

rifi
er

Ve
rifi

es
va

lu
es

of
va

ria
bl

es
re

la
te

d
to

A
P

I
ca

lls
(E

xt
er

na
ll

ib
ra

rie
s)

A
ct

ua
l

va
lu

es
in

as
se

rt
io

ns
ar

e
va

lu
es

of
ob

je
ct

s/
va

ria
bl

es
re

la
te

d
to

A
P

Ic
al

ls
In

te
rn

al
ca

ll
ve

rifi
er

Ve
rifi

es
va

lu
es

of
va

ria
bl

es
re

la
te

d
to

AU
T

ca
lls

A
ct

ua
l

va
lu

es
in

as
se

rt
io

ns
ar

e
va

lu
es

of
ob

je
ct

s/
va

ria
bl

es
re

la
te

d
to

AU
T

ca
lls

E
xe

cu
tio

n
te

st
er

E
xe

cu
te

s/
in

vo
ke

m
et

ho
ds

bu
t

no
as

se
rt

io
ns

ar
e

ve
rifi

ed
N

um
be

ro
fa

ss
er

tio
ns

==
0

&
&

nu
m

be
ro

ff
un

ct
io

n
ca

lls
>

0
E

m
pt

y
te

st
er

Is
an

em
pt

y
te

st
ca

se
N

um
be

ro
fl

in
es

of
co

de
s

in
m

et
ho

d
bo

dy
=
=

0

Table 4.2: C/D-Flow Based Stereotypes for Methods in Unit Test Cases.

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 98

methods in large test suites. For example, it is time-consuming to manually

identify test initializers that are also verifiers in a project like Openejb with 317

test classes and 1641 test method tags.

Note that the catalog we propose in this chapter focuses on unit tests relying

on the JUnit API; we based this decision on the fact that in a sample of 381,161

open source systems from GitHub that we analyzed — by relying on a mining-

based study— , only 134 of the systems used a mock-style-only APIs while 8,556

systems used JUnit-only APIs.

The full list of stereotypes are described with their explanations in the following

subsections and in Table 4.1 and Table 4.2, where we list the stereotypes, a

brief description, and the rules used for their detection. The stereotypes were

defined by considering how values or objects are verified in a unit test case,

the responsibilities of the test case, and the data/control-flows in the unit test

case. Therefore, we categorized the stereotypes in two categories that reflect

the usage of the JUnit API, and the data/control-flows in the methods. Note that

the categories and stereotypes are not mutually exclusive, because our goal is

to provide developers/testers with a mechanism to navigate large test suites or

identify unit test methods with multiple purposes. For example, the method in

Figure 4.1 is an “Empty tester” and “Test Cleaner” ; assuming that the methods

are annotated (in someway) with the tags (i.e., stereotypes), developers/testers

can locate all unimplemented methods in the test suite (i.e., the empty testers),

which will also be executed the last during the test unit execution (i.e., the test

cleaners). Another example of potential usage of the tags, is detecting strange or

potentially smelly methods, such as the “Test initializer” (i.e., a method with the

@Before annotation) method depicted in Figure 4.2, which has other tags such

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 99

@After public void tearDown() throws Exception { }

Figure 4.1: Test Cleaner and Empty Tester method from
SessionTrackerCheckTest unit test in Zookeeper.

@Before @Override public void setUp() throws Exception {

super.setUp();

this.tomcat=getTomcatInstance();

this.context=this.tomcat.addContext("/weaving",WEBAPP_DOC_BASE);

this.tomcat.start();

ClassLoader loader=this.context.getLoader().getClassLoader();

assertNotNull("The class loader should not be null.",loader);

assertSame("The class loader is not

correct.",WebappClassLoader.class,loader.getClass());

this.loader=(WebappClassLoader)loader;}

Figure 4.2: Test initializer method (from TestWebappClassLoaderWeaving unit
test in Tomcat) with other stereotypes detected by TeStereo.

as “Internal Call Verifier”, and “Null Verifier” ; we think this is a smelly methods

because test initializer are not supposed to have assertions.

4.1.1 JUnit API-based Stereotypes

Assertions in the JUnit API have well-defined semantics that can be used to

automatically infer or document the purpose of a test case [95, 122]. However,

besides assertions for validating logical conditions between expected and real

results (e.g., assertEquals(int,int)), JUnit provides other APIs for defining

assumptions, expected exceptions, matching conditions, explicit declaration of

failures, fixture setters, and cleaners, which have not been considered in prior

work in automatic generation of documentation. Our catalog includes

stereotypes for each one of those cases, because those APIs can reflect

different purposes and responsibilities of the methods using the unit testing

APIs.

The stereotypes in this category are detected by (i) building an Abstract

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 100

1@Test public void existingConfigurationReturned(){

2Configuration conf=new Configuration(false);

3conf.set("foo","bar");

4Configuration conf2=CredentialProviderFactoryShim

5.getConfiguration(conf,"jceks:///file/accumulo.jceks");

6Assert.assertSame(conf,conf2);

7Assert.assertEquals("bar",conf.get("foo"));}

Figure 4.3: Source code of the existingConfigurationReturned unit test
method in the Apache-accumulo.

Syntax Tree (AST) for each method, (ii) looking for invocations to methods and

annotations with the same signature from the JUnit API, and (iii) using the set of

rules listed in Table 4.1. For instance, Figure 4.3 is an example of Identity verifier

and Equality verifier. The difference between those two stereotypes is that the

former focuses on testing whether two objects are the same reference, while the

latter focuses on verifying that the objects are the same (by using the equals

method). In Figure 4.3, the assertion (in line 6) is an identity assert, since the

function call assertSame asserts that conf2 should be the same object reference

as conf (indicated as Identity verifier). In line 7, assertEquals asserts that the

returned string, by calling conf.get("foo"), is equal to "bar" (indicated as

Equality verifier).

In addition to the API-based stereotypes, we also defined two stereotypes for

cases in which a unit test case contains more than one JUnit-based stereotype

(i.e., Hybrid verifier), and cases where TeStereo was not able to detect any of

the stereotypes (i.e., Unclassified). Because of space limitations, we do not show

examples for all the stereotypes; however, more examples can be found in our

online appendix [22].

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 101

1@Test public void testConstructorMixedStyle(){

2Path p = new Path(project, "\\a;\\b:/c");

3String[] l = p.list();

4assertEquals("three items, mixed style", 3, l.length);

5if (isUnixStyle) {

6assertEquals("/a", l[0]);

7assertEquals("/b", l[1]);

8assertEquals("/c", l[2]);

9} else if (isNetWare) {

10assertEquals("\\a", l[0]);

11assertEquals("\\b", l[1]);

12assertEquals("\\c", l[2]);

13} else { ... }

14}

Figure 4.4: Source code of the testConstructorMixedStyle unit test method in
the Apache-ant system.

4.1.2 Data-/Control-flow Based Stereotypes

The API-based stereotypes (Section 4.1.1) describe the purpose of the API

invocations; however, those stereotypes neither describe how the unit test cases

use the APIs nor from where the examined data (i.e., arguments to the API

methods) originates. Therefore, we extended the list of stereotypes with a

second category based on data/control-flow analyses, because these analyses

can capture the information missing in API-based stereotypes.

Using control-flow information, we defined two stereotypes for reporting

whether the JUnit API methods are invoked inside a loop (i.e., an Iterative

Verifier) or inside conditional branches (i.e., a Branch Verifier). For example, the

unit test case in Figure 4.4 is a Branch Verifier, which verifies that the

constructor of class Path is able to handle mixed system path styles (i.e., Unix,

NetWare, etc.).

Using data-flow information, we defined stereotypes that describe when the

arguments to the JUnit API calls are from (i) accesses to public fields (Public

Field Verifier), (ii) API calls different to JUnit (API Utility Verifier), or (iii) calls to

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 102

1@Test public void testRead() throws Exception {

2testConfigure();

3Locator locator=new Locator("evar1",_pid,_iid);

4Value value=new Value(locator,_el1,null);

5value=_engine.writeValue(_varType,value);

6Value readVal=_engine.readValue(_varType,value.locator);

7assertEquals(_iid,readVal.locator.iid);

8assertEquals(_pid,readVal.locator.pid);

9assertEquals(2,DOMUtils.countKids((Element)

10readVal.locator.reference,Node.ELEMENT_NODE));

11}

Figure 4.5: Source code of the testRead unit test method in the ode system.

the application under test (AUT) (Internal Call Verifier). For example, the unit

test case in Figure 4.5 is a Public Field Verifier, which verifies the attributes in

readVal.locator have the expected values. The data flow is from line 4 where

the value object is created, to line 6 where the public field value.locator is

accessed and used as an argument for a method invocation that is assigned to

readVal. There is also a stereotype for methods in unit tests that do not verify

assertions but invoke internal or external methods (Execution Tester). Finally,

we included a stereotype that describes empty methods (Empty tester);

developers/testers can use this type of stereotype to easily locate

unimplemented methods in the test suite. Our online appendix [22] contains

more examples of each stereotype.

4.2 Documenting Unit Test Cases with TeStereo

TeStereo is an approach for automatically documenting unit test suites that (i)

tags methods in test cases by using the stereotypes and rules defined in

Section 4.1, and (ii) builds an html-formatted report that includes the tags,

source code, and navigation features, such as filters and navigation trees. In

addition, for each method in a unit test, TeStereo generates a summary based

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 103

on the descriptions of each stereotype. TeStereo is a novel approach that

combines static analysis and code summarization techniques in order to

automatically generate tags and natural language-based descriptions aiming at

concisely documenting the purpose of test cases.

Source Codes Unit Test Cases JUnit Test
Cases Detector

1

Data/Control
Flow Analyzer 3

Assertion
Analyzer 2

Stereotype
Analyzer 4

Data/Control
Information

Assertion
Information

Templates

Report
Generator 5

Stereotype
Reports

Stereotype
Information

Figure 4.6: TeStereo Architecture. The solid arrows denote the flow of data.
Numbers denote the sequence of operations.

The architecture of TeStereo is depicted in Fig. 4.6. TeStereo can be

summarized in the following workflow:

1. Test case detection. The starting point of TeStereo is the source code of

the system (including the test cases). TeStereo first analyzes the source code

to identify all the unit test cases by detecting the methods in the source code

that are annotated with @Test,@Before, @BeforeClass, @After, @Afterclass and

@Ignore;

2. JUnit API call detection. The source code methods identified as test

cases are then analyzed statically by scanning and detecting invocations to

annotations and methods from the JUnit API;

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 104

3. Data/Control-flow analyses. Data-flow dependencies between the JUnit

API calls and the variables defined in the analyzed method are identified by

performing static backward slicing [81]; in addition, the collected references to

the API calls are augmented with boolean flags reporting whether the calls are

made inside loops or conditional branches. TeStereo performs a lightweight

over-approximate analysis for each argument v in an JUnit API call to compute

all potential paths (including internal function calls, Java API calls, and public

field accesses) that may influence the value of v by using backward slicing [81].

Although TeStereo does not track any branch conditions in the unit test case

(some paths may not be executed with certain inputs), the over-approximation

guarantees that potential slices are not missed in the backward slicing

relationships;

4. Stereotype detection. TeStereo uses the data collected in the previous

steps, and then applies the rules listed in Table 4.1 and Table 4.2 to classify the

unit tests into defined stereotype categories;

5. Report generation. Finally, each method is documented (as in

Figure 4.10) and all the method level documents are organized in an html-based

report. We encourage an interested reader to see the reports generated for 231

Apache projects in our online appendix [22].

4.3 Empirical Study

We conducted an empirical study aimed at (i) validating the accuracy of

TeStereo-generated test case stereotypes, and (ii) the usefulness of the

stereotypes and the reports for supporting evolution and maintenance of unit

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 105

tests. We relied on CS students, researchers, and the original developers of

Apache projects to perform the study. In particular, the context of the study

encompasses 210 methods randomly selected from unit tests in 231 Apache

projects, 231 TeStereo reports, 420 manually generated summaries, 25 Apache

developers, and 46 students and researchers. The perspective is of researchers

interested in techniques and tools for improving program comprehension and

automatic documentation of unit tests.

4.3.1 Research Questions

In the context of our study, we investigated the following three research questions

(RQs):

RQ1: What is TeStereo’s accuracy for identifying unit test stereotypes? Before

using the stereotypes in experiments with students, researchers, and

practitioners, we wanted to measure TeStereo’s accuracy in terms of

precision and recall. The rules used for stereotype identification are based

on static detection of API calls and data/control flow analyses. Therefore,

with RQ1, we aim at identifying whether TeStereo generates false

positives or false negatives and the reasons behind them.

RQ2: Do the proposed stereotypes improve comprehension of tests cases (i.e.,

methods in test units)? The main goal of method stereotypes is to describe

the general purposes of the test cases in a unit test. Our hypothesis is that

the proposed stereotypes should help developers in evolution and

maintenance tasks that require program comprehension of unit tests. RQ2

aims at validating the hypothesis, in particular, when using the task of

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 106

manually generating summaries/descriptions for methods in unit tests (with

and without stereotypes) as a reference.

RQ3: What are the developers’ perspectives of the TeStereo-based reports for

systems in which they contributed? TeStereo not only identifies test

stereotypes at method level, but also generates html reports (i.e.,

documentation) that includes source code, stereotypes, short

stereotype-based summaries, and navigation features. Thus, RQ3 aims at

validating with practitioners (i) if the stereotypes and reports are useful for

software-related tasks, (ii) what features in the reports are the most useful,

and (iii) what improvements should be done to the reports if any.

The three RQs are complementary for TeStereo’s evaluation. RQ1 focuses

on the quality of stereotype identification; we asked graduate CS students from a

research university to manually identify the stereotypes on a sample of methods

from unit tests; then, we computed micro and macro precision and recall metrics

[140] between the gold-set generated by the students and the stereotypes

identified by TeStereo on the same sample. With RQ1, we also manually

checked the cases in which TeStereo was not able to correctly identify the

stereotypes, and then improved our implementation. RQ2 focuses on the

usefulness of method stereotypes in unit tests; thus, we first asked students and

researchers to write summaries of the methods (when reading the code with and

without stereotypes). Then, giving the source code and manually written

summaries, we asked another group of students and researchers to evaluate the

summaries in terms of completeness, conciseness, and expressiveness

[110, 50, 142, 95]. Note that there is no overlap among the participants assigned

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 107

to RQ1 and RQ2. Finally, RQ3 focuses on the usefulness of stereotypes and

reports from the practitioners’ perspective.

●●●●●● ●●●● ●●● ●● ●●● ●●●● ●● ●● ● ● ●●●●● ●●● ●●●●●●● ●●●●●● ●●●●●●●●● ●●●●●● ●●●●●●●● ●●●● ●●● ●●● ●●●● ● ●●●● ●● ● ●●● ●●●● ●●●●●● ●● ●●●●● ●● ●●● ●● ●●●●●● ●●●●●●●●● ●● ●●●●● ●● ● ●●●●●●●●●● ● ●●●●●●● ●● ●●●●●●●●●● ●●●●● ●● ●● ●●● ●●●● ●●●●●●●● ●●● ●● ●●● ●●● ● ●● ●● ● ●●●● ●●● ●● ●● ●●● ● ●● ●●● ● ●● ●●●●● ●●●● ●● ●●●●● ●●● ●● ●●●●●●● ●●●● ●● ●●●●● ● ●●●●●●●●●●● ●● ●● ●● ●● ●●● ●●●● ● ●●●●● ●● ●● ●●●● ●●●●●●●●● ●●●● ●●●●●●●●● ●●●● ●●●●● ●●●● ●●●●●●● ●●●● ●●● ●● ●●● ●●● ●● ●●●● ●● ● ●● ●●●●● ● ●●● ● ●● ●●● ●●●●● ●● ●●●●● ●●●●●●●●●●●●● ●●●●●●●●●● ● ●●●●●●●● ●● ●● ●●●●● ●● ● ●●● ●●●●●●●●● ●●● ●●●●●●● ●● ●●● ●● ●●● ●●● ●● ●● ●●●● ●●●●●●●● ●●●●● ●●● ● ●● ● ●●●●● ●● ● ●●●●●● ● ●●●● ●●●●● ●●●● ●● ●●●●●●●●● ●● ●●●●●● ●●●●● ●●●● ●●●●●● ● ●●● ●●●●● ●●●●● ●● ●●●● ●●●●● ●●●●●●●●●● ●● ●●● ●●●●● ●● ●●● ●●●● ●●●● ●●●● ● ●● ●● ● ●●●● ●●●● ●●●●●●●● ●●● ● ●●● ●● ●● ●●● ●● ●●●● ●● ●●●●●● ●● ●● ●●●● ●●●●●●● ●●●● ●●●● ●●●●● ●●● ●●● ●●●●●● ●● ●●●●● ●●●●●●● ●●●●● ●●●●●● ●● ● ●●●●● ●●●●●●● ●●●● ●● ●●●●● ●●● ●●●●●● ● ●●●● ● ●● ●●●● ● ●●●●● ●● ● ●●●●● ●●●●●●●● ●●●●●●●●● ●●●●●●●● ●●●● ●●●●●●●●●● ●●●● ●●● ●●● ● ●●●●●● ●●●●●●● ●●● ●●● ●●●● ●●● ●●●●● ●●● ●●● ●●● ●●●● ●●● ●●●●●● ●●●●●●●●●●●● ●● ●●● ●● ●●● ●●● ●● ●●●● ●● ●●● ●● ●●●● ●●● ●●●●● ●●● ●● ●●● ●●● ●●● ●●●●●● ●●●● ●●●● ● ●●●●●● ● ●●●● ●●●●●● ●●●●● ●●● ●●● ●●● ●●●●● ●●●● ●●●●● ●●●●●●●● ● ●●● ●● ●●● ●●● ●● ●●●● ●● ●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●● ●●●● ●●●●● ●●●●●●●●●● ●● ●●●●●● ●● ●●●●● ●●● ●●●●●●●●●●●●● ● ● ●● ●●●●●● ● ●●●●● ●●● ●● ●● ● ●●●●●●●●● ●●●● ● ●●● ●●● ●●●● ●●● ●●● ●●● ●●●●●● ●●●● ●●●●●● ●●● ●●●●●●●●● ●● ●● ●●●●●●●● ●●●●●●●●●●●● ●●● ●●● ● ●●●● ●●●●●●●●● ●● ●●● ●● ●● ●●●●●●●●●●●●● ●●●●●●● ●●●●●●● ●●● ●●●●●●●●●● ●●● ●●●●●●●● ●●●●● ●●● ●● ●●● ●● ●●●●●●● ●●●● ● ●●●● ●● ●●●● ●●● ●● ●●●● ●●●●● ●●●●●●●●●●●●●● ●●● ●●● ●●● ● ●●●●●● ●●● ●●● ● ●●●● ●●● ●● ●● ●●● ●●●●●● ●●●● ●●● ●●●●● ●●●● ●●● ● ●●●● ●● ●●● ●●●● ●●●● ●●●●● ●●●●●●● ●●● ●●●● ●●● ●●● ●●●● ●● ●●●● ●●●● ●●●● ●●●●●●● ●● ●● ●●●●● ● ●● ●●●●●●●●●●● ●●●● ●● ●●● ●●●●● ● ●● ●●●●●●●●● ●●● ● ● ●●●● ●● ●●● ●● ●●●●●● ●●●●●● ●●● ●●●●● ●●● ●●●● ●●●●●●●●●●●●●●● ●●● ●●●●●●●● ●●●●● ●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●● ●●● ●●● ●●●● ●● ●●●●●● ●● ● ●●● ●● ●●●●● ●● ●●●●●●●●●●● ●●●●●●●●●●●●● ●●● ●●●●● ●●●● ●●●● ●● ●●●●●●● ●●●●● ●● ●● ●● ●●● ●●●●●● ●●●●● ●● ●●● ●●●●●●● ●● ● ●●●●●●●● ●●●●●● ●●● ●● ●●● ●●● ●●● ●●● ●● ●●●● ●●●● ●● ●●●●●●●● ●●●●●●●●● ●● ●● ●●●●● ● ●● ●●● ●● ●●● ●●●● ●●●● ●●●●●● ●● ●●●●●● ● ●●● ●● ●●●● ●●● ● ●●● ●●●●●● ●●●● ●●●● ●●● ●●●● ●●● ● ●●●●●● ●● ● ●●● ●●● ●●●●● ●●●●● ●●● ●● ●●●●●●●● ●●●● ●●● ● ●●●●●●●● ●●● ●●●●●●● ●● ●●●●●●●●●●● ●●●● ●●●● ●●●●●● ●●● ●●●● ●●● ●●●● ●● ●●●●●●● ●●●●● ●●●● ●● ●●● ●● ●● ●●●●●●●● ●●● ● ●● ●●●●●●●●●●● ●●● ●●●●● ●●●●● ●●●●●●●●●● ●● ●● ●●●●●● ●●●●● ●●●● ●●●● ●●●● ●●● ●●●● ●●●●● ●●●●● ●●● ●●●●●●● ●● ●● ●●● ●● ●●●●●●● ●●●●● ●●● ● ●●●●●● ●●● ●●●●●●●●● ●●● ●● ●●● ●●●●●●●● ● ●●●●● ●●● ●● ●●● ●● ●●●●●●●●●●●● ●●●● ●●● ●● ●● ●●● ●● ●●● ●●●●● ●●● ●●● ●● ●●● ●●●●●●●● ●● ●●● ●●●● ●● ●●●● ●● ●●●●●●●● ●●●●●● ●●● ●●● ●●●●●● ●● ●●●● ●●● ●●● ●●●●●●● ●●●●●●●●● ●●● ●●●●●●●● ●●●● ● ●●● ●●● ●● ●●●●●● ●●●●●●● ●●●● ●●●●● ●●● ●●●●● ●●●● ●● ●●●● ● ●●●● ●●●● ●●●●● ●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●● ●●●●● ●●●● ●●●●●●● ●● ●● ●●● ●●●● ●●●●●●●●●● ●●●●●●●●● ●● ●●●● ●●● ●● ●●●● ●● ●● ●●● ●● ●●●●●●●●●●● ●● ●● ●●●● ● ●● ●●●●●● ●●●● ●●● ●● ●●●●●●●● ●●●●● ●●●●●●● ●●●● ●● ●●● ● ●●●● ●●●● ●● ●● ● ●●●● ●●● ●●●●●●● ●●●●●●●●●● ●●● ●●● ● ●● ●●●●● ● ●●● ●●● ●●●● ●●● ●●●●●● ●● ● ●●● ●●●●●●● ●●● ●● ● ●●●●● ●●●●●●●● ●●●●● ●● ●● ●● ●● ●●●●●● ●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●● ● ●●●● ●●●●●●● ●●●●● ●●●●●● ●●●●● ●● ●●●●●● ●●●● ●● ●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●●●● ●●●● ●● ●●●●● ●●● ●● ●●●●●● ●●●● ●● ●●● ●●●●●●●● ● ●●●● ●●●●● ●●● ●●●● ●●●●●● ●●●●● ●●●●● ●● ●●●●●●●● ●●● ● ●●●● ●● ●●● ●● ●● ●●●●●●●●●●●●●● ● ●●●●●● ●●● ●● ●●●●●●● ●●●● ●●●●●●● ●●● ●●●●●● ●●● ●●●●● ●●● ●●●● ●● ● ●● ●●●●●●●● ●●● ●●●● ●●●●●●● ●● ● ●●●● ●●● ● ●● ●●● ●●●●●●●● ●●● ●●●● ● ●●●●●●● ●●●●●●●●●● ●● ●●●●● ● ●●●●● ●●●● ●●●●●● ●●● ●● ● ●●●● ●●●●●●● ●●● ●●●● ●●●●● ●●● ●●● ●● ●●●●●●●●●● ●● ●● ●●●●● ●● ●●● ● ●● ●●● ●●● ●●●●● ●●●●●● ● ●● ●●●● ●●●●●● ●● ●●● ● ●● ●● ●●●● ●●● ●●● ●●● ●●●●●●●● ●●●● ●●● ●●● ●●●● ●●●●●●●●● ● ●● ●●●●● ●● ●●●●●●● ●●●● ● ●● ● ●● ●●●● ●●● ●●●● ● ●●● ●●●●●●● ●●●● ● ●●●● ●●●● ● ●●●●●●●● ●●●●●●●● ●● ●●●●● ●● ●●●●● ●●●● ●●● ●●● ●●●●●●●● ●● ●●● ●●● ●●● ● ●●● ●●●●●●●●●●● ●●●●●●●●●● ●●●●● ●●●●●● ●●●● ●●●●● ●● ●●●●● ●●●● ● ●●●● ●●●● ●●●● ●● ●●●● ●●●●●●● ●●●● ●● ● ●●● ●●●●●●●●●● ●● ●● ●●●●● ●● ● ●●●●● ●●●●●● ● ●● ● ●● ● ●●● ●●●●●●●● ●●●● ●● ●●● ●● ●●●●● ●●● ●●●● ●●●●●●●● ●●●● ●●●●●●● ●●● ● ●●●● ●● ●● ●● ●●●●● ●●●●●●●●●●● ●●●●● ●●●● ●● ●●● ●●●● ●●● ●● ●●●● ●● ●●●●●●● ●●● ●●● ●● ●● ●● ●●● ●●● ●●●●● ●● ●●●●●● ●●●● ●●●●●● ●●●●● ●●● ●●●●●● ●● ● ●●●●●●● ●● ●●●● ●● ●●●●●●●●● ●●●●●●●● ●●●●●●●●● ●● ●●●●●●●●● ●●●●●● ●●● ●● ●●●● ●●●● ●● ●● ●●●● ●●●●● ●● ●● ●●●● ●● ●●●●● ●●●●●●●● ●●● ●●●●● ● ●●●●●●●●● ●●●● ●●●● ●● ●●● ●●● ●●● ●● ●●●● ● ●●●●●●●● ●●●●●●●●●●● ● ●●●●●● ● ●●●●● ●● ●●●●●●●●●●●●●●● ●● ●● ●● ●●●● ●●●●●●● ●●●● ●●●●● ●● ●●● ●●●● ● ●●● ●● ●●●● ●●●● ●●●● ●●●● ●●●●● ●●●●●●●●●●●●●● ●●●● ● ●●●● ●●● ●●●●●●● ●●●●● ●● ●● ●●●● ●●●●●●●● ●● ●●●●● ●●●● ●●●●● ●● ● ●●●●●●●●●● ●●●● ●● ●●● ●● ●●●● ●●● ●● ● ●●● ●●● ●● ●●●●●● ●●●● ●●●● ●●●●●●●●●●● ●● ●●●● ●●●●●● ●●●●●●●● ●●●●● ●●●●●● ●●● ●●●●●●●●●●●● ●●●● ●●●●●●●●●●●● ●●●●● ●●● ●●● ●●● ●●●●●●● ●● ●● ●●● ●●● ●●●●● ●●●●● ●●● ●●●● ●●●●● ●●●● ●● ●●● ●●●●●●●● ●● ●●●●● ●● ●●●● ●●●● ●●●●●● ●●● ●● ● ●●●●● ●●●● ●●● ●●●●●● ●●●●● ●●●●●●●●● ●●●● ●●● ●●● ●●●● ●● ●●● ●● ●●● ●●●●●●●●●●●●●●●● ●● ●● ●●●●● ●●●●● ● ●● ●●● ●● ●● ●●●●●● ●●● ●●● ●●●●●●●●● ●● ●●● ●●●●●● ●● ●●●●●●●●● ●● ●●●●● ●● ●● ●●●● ●●●●●● ●● ● ●●●●● ●● ●●●●●●●●●●●● ●● ●● ●●●● ●●●● ●●● ●●● ●●● ●●● ●● ●● ●●●●● ●●● ●●●●●●● ●●●● ●●●●●●● ●●●●●●● ●●●●●● ●●●● ●●●●● ●● ●●●●●● ●●●●● ●●● ●●●●●● ●●● ●● ●●●●●●●● ●●●●●● ●●●●●● ●● ●●● ●●●●● ●● ●●● ●● ●● ●● ●●●● ●● ●●●●● ●●●● ●●● ● ●● ●●●● ●●●● ● ●● ●●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●● ●●●● ●●●●● ●●● ● ●●●●● ●●●●●●●●●● ●●●● ●●● ●●●●● ●●● ●●●●●●●●● ●●●● ● ●●● ● ● ●●●● ●●●●● ●●●●●●●●●●●●●●● ● ●●●●● ●●● ●●● ●●●●● ●● ●●●●●● ●● ●●● ●● ●● ●●● ● ●●●●●●● ●● ●●●● ●● ●●●●●●● ● ●● ● ●●● ●●●● ●●●● ●●●● ●● ●● ●●●●● ●●● ●●●● ●●●●● ●●● ●●●●● ●●● ●●●●●● ●●●●● ●● ●●●● ●●●●●●● ●● ●●●●●● ●● ●●●●●●●●●●●●●●●●●●●● ● ●●● ●●●●● ●● ●●●●● ●● ●●●● ●●●●● ● ●● ●● ●●● ●● ●●● ●●●● ●●● ●●●●●●● ●● ●●●● ●●● ●●●●●● ●●●●● ●●●●● ●●●●●●●● ●●●● ●●●●● ● ●●●●●● ●●●●●● ●●●●●● ●● ●●●●● ●●●●●● ●●●● ●● ●●●● ●● ●●●●● ● ●●●● ●●●●● ●●●● ●● ●●●●● ●●● ●●● ●●● ● ●●●●●● ●●● ●● ●● ●●●●●● ●●●●●● ● ●●●●● ● ●●●● ●●●●●● ● ●● ●●● ● ●●● ●● ●●●●●● ●●●● ●● ●●● ●●● ●●●●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●● ●●● ●●●●● ●●●●●●●● ● ●●●●●●●● ●●●●● ●●●●●●●● ●●●●●●●●● ●●● ●●●●●●●● ● ●● ● ●● ●● ●●● ●●●● ●● ●●●● ●● ● ●● ●● ●● ●●● ●● ●●●●●●●● ●●●●● ●●●●● ●●● ●●●●●● ●● ●●●●●● ●● ●●● ●●●●●●●●●● ●●●●●●● ● ●● ●●●●● ●●●●● ●●●●● ●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●● ●●●●●●● ●● ●●●● ●●●● ●●●●●● ●● ● ●●●●●● ●● ●●● ●●●● ●●●●●● ●●●● ●●●●●●● ●●●●●●●●●● ●● ●●●●●● ●●●● ●●● ●● ●●●● ●●● ● ●● ●● ●●● ●●●●● ● ●●● ●●●●● ●● ●●●● ●●●●●●●●●●●●● ●●●●●●● ●●●●●● ●●●●●●●● ●●●●●●●●● ●●● ●●●●●● ●●●●●●● ●●●●●●●●● ●● ●●●●● ●●●● ●●●●●● ●● ●●● ●● ●●●●●●●● ●●●●●●●●●●●● ●● ●●●●●●●●●●●●●● ●●● ●●●● ●●●●● ● ●●●● ● ●● ●●●●● ●● ●●●●● ●●● ●● ●● ●●●●●● ● ●● ●●● ●● ●●●● ●●●●● ●●●●● ●●●●● ●●●● ●●●●●● ●●●●●●●● ●●● ●● ● ●●●●●●●●●●● ● ●● ●● ●●●●● ●●● ●●●●●●● ●● ●●● ● ●●● ●●●● ●● ● ●●●●● ●●●●● ●● ●●●●● ●●● ●●●● ●● ●●● ●●●●●● ● ●●●● ● ●●●● ●● ● ●● ●● ●●●●● ●● ●●●● ● ●●●●● ●●●●●●●●●●● ●●●●● ●●●●●● ●●●●● ●● ●●●● ●● ●●●●●●●●● ●●● ●● ●● ●●●●● ●● ●●●●● ●●● ●● ●●●● ●● ● ●●●●●● ●● ●●●●●●●●● ●● ●● ●●●●●●●● ●●●●●●● ●● ●●● ●●●● ●● ●●●● ●●●●● ●●●● ● ●●●●●●●●● ● ●●●● ●●●●●● ●●●●●●● ●●●●● ●●●● ●● ● ●● ●●●●● ●● ●●● ●●●● ●●● ●●●● ●●●●●●●●●● ●● ●●●● ●● ●●● ●●●●●●●●●● ●●●●● ●●●● ●●●● ●● ●●●●● ●●●●●●● ●● ● ●●●● ●●●● ●●●●● ● ●●● ●●● ●●●● ●●●● ●● ●● ●● ●● ●●●●●● ●●● ●●●● ●●● ●●●●●● ●●●●●●●●● ●●● ● ●●●●●●●●●●●●●●● ●●●●● ● ●●●●●●● ●●● ●●●● ●●●●● ●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●● ●●● ●●● ●● ●●● ●● ●●● ●● ●● ●●●●●●●●●●●●●●●● ●●● ● ●●●●●●● ●● ●● ●●●●● ● ●●●●● ●●●●●●●●● ●●●● ●●●●● ●● ●●● ●●● ●●●● ●● ●●●●●●● ● ●●● ●●● ●●●● ●●● ●● ●●●●●●●●●● ●●●●● ●●● ●●●●●●●●●●● ●●●● ● ●●●● ●● ●● ●●●●● ●● ●●●● ●● ●●●●● ●●● ●●●●● ●●●●●●●●●● ● ●●●●●●●●●●●●●● ●● ●●●● ●●●●● ●●●●● ●●●●● ●●●● ●● ●●●●● ●● ●●● ●● ●●●●● ●● ●●●●●● ● ●●● ●●●●●●●●● ●●●●●●●●●● ●●●● ●●●● ●●●●●●● ●●●●● ● ●●●●●●●●●●●●●●● ●● ●●● ●●●●●●●●●●● ●●●●●●● ●● ●● ● ●●●● ●● ●● ●●●●●● ●●●●●●● ●●●● ●● ●●●●●●●●●●● ●●●●●●●● ●●●●● ● ●●●●●●●●● ●●●●● ●●● ●● ●●●●●●● ●●● ●● ●●●●● ● ●● ●● ●●● ●●●●●●●●● ●●●●● ●● ●●●●●●●●●●● ●●●●●● ●●● ●●●●●●● ●●●●●● ●● ● ●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●● ●●● ●●●●● ●● ●●●●●●●●● ●● ●●●●●●●●● ●●● ●●●●● ●● ●●●● ● ●● ●● ●●●● ●●●● ●●● ●● ●●●● ●●●● ●● ●●●●●● ● ●●●●●● ● ●● ● ●●● ●●●● ●●● ●● ●●●●●●●● ●●●●● ● ●● ●●●● ●● ●●●●●●● ●● ●●● ●● ●●● ●●● ●● ●●●●●● ●● ●● ●●● ●● ●●●● ● ●●● ●●●●●● ●●●● ●● ● ●●●●● ●●● ●●●● ●● ● ●●● ●● ●● ●●● ●● ●● ●●●●● ●●● ●●● ●●●●● ●●● ●● ●●●● ●●●● ●● ●●●●●● ●● ●●● ●●●● ●●● ●● ●● ●● ●● ●●●●●●●● ●●●● ●●● ● ●●● ●●●●●●● ●● ●● ●●●●●● ●●●●●● ●● ●●●●●●● ●●● ●● ●●●●● ●●●●●●●● ●● ●● ●● ●●● ●●●●●●●● ●●●●●● ●●● ●●●● ●● ●●●● ●● ●● ●●●●●● ●●●●● ●●●● ●●●●●●●● ●●●●●● ●●● ●●● ●● ●●●●●● ●●●●●●●●●●●●● ●●● ●● ●●●● ●● ● ●● ●●●●●●● ●● ●●●●● ●●● ●● ●●●●● ●● ●●●●●●●● ●●●●●●●●●●●●●●● ●●● ●●● ●●●●●● ●●●● ● ●●● ●●●●● ●● ●● ●●● ●●●●● ●●●●●●●●● ●●●●● ● ●● ●● ●● ●● ●●●● ●●●●● ●● ●●● ●● ● ●●●● ●●● ●● ●●● ●●●●●●●●●●● ●●●● ●●●● ●● ●●● ●●●● ●●● ●● ● ●● ●●●●●●●● ●●●●●●●●● ●●● ●●●● ● ●● ● ●●●●●● ●●● ●●●●●●●●●●●●●●● ●●●● ●●● ●● ●●● ●●●●●●● ●●●●● ●● ●●●●●●●●●●●●● ●●● ●●● ●●●●●● ●● ●●●●●● ●● ●●●●●●● ● ●●●●●●●● ●● ●●●●●●● ●● ●●●●●●●● ● ●●●●●●●●●●●● ● ●●●●●●● ●● ●●●● ●●●● ●●●●●●●●●●●● ●● ●● ●●●● ●●●●●●●●● ●●●● ●●●● ●●● ●●●●● ●●●●●●●●● ●●●● ● ●●●●●●●● ●●● ●●●●●● ●● ●●●●●●●●●●●●●●●● ● ●● ●●●●●●● ●●●●● ●●●●●●● ●●●●●● ●● ● ●●●● ●●● ● ●● ●●●● ●●●●●●●● ●●● ● ●●●●●● ●●●● ●●●● ●● ●●● ●● ● ●●●●●●●●●● ●● ●●● ●●●●● ●●● ●● ●●●●●●● ●●●●● ●● ●●●●● ●● ●●●●●●● ●●●●●● ●● ●●●● ●●●●●●● ●●● ●●●● ●●●●●● ●● ●●●●●●● ●●● ●● ●●● ●● ●●●●●● ●●●● ●●●●●● ●● ●●●●●●● ● ●●● ●● ●● ●●●●●● ● ●● ●●●●● ● ●●●●●●●●● ●●●●●●●● ●●●● ●●●●●● ●●●● ●●●● ●●●● ●● ●● ●●● ●●●●●●● ●● ●●●●● ●●●● ●● ●●●● ●●●● ●●●● ● ●●● ●● ●●●●● ●●●●●● ●●● ●● ●●●●●●●●●●●● ●●●●●●●●●● ●●● ●●●● ●● ● ●●●●●●● ●●●●●● ●●● ●●● ●●● ●●●● ●●● ●●●● ●● ●● ●●● ●● ●●●●● ●● ●●● ●●● ●●●●● ●●● ● ●●● ●●●●●●●●●●●●●● ● ●● ●●●● ●●● ●●●● ●●● ●●●●●●●●●● ●●● ●●●●●●●●●●● ●●● ●●●●●●●● ●●● ●●●●● ●●● ●●● ● ●● ●●●●● ●● ●●● ●●●●● ●●● ●● ●● ●●●●● ●●●●●● ●●●●●●● ●● ●● ●●●●●●● ●●● ●●●●●● ●● ●● ●● ●●●●●● ●●●●● ●● ●●●● ●●●● ●● ●●●●●●●● ●●● ●●●●●●●● ● ●●●●●●●●●●●●● ●●●●●● ●●●●● ●●●●●●●●●●●●●● ●● ●●●● ●● ●●●●●●●●● ●●●● ●●● ●● ●●●●● ●●●●●●● ●●●● ●● ● ●●●●●●●●●●● ●●●●●● ● ●● ●●●●●● ●●●● ●● ●●●● ●●● ●●● ●● ●●●●●● ●●● ●●● ●●●● ●● ●●●● ●●●● ●●●● ● ●● ●●●●● ●●●● ●●●●●●●●●●● ●●● ●● ● ●●● ●●●● ●●●●●●● ●● ●●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●●● ●● ●●●●●●● ●●●●●●● ●●●●●●●● ●●●●●●● ●●● ●● ●●●● ●● ●●● ●●● ●●●● ●●●●●●●●●●●● ●●● ●●●●● ●●●●● ●●●●● ●●●●● ●●● ● ●●●● ●●● ●●● ●●●● ●●●●● ●●●●● ●●● ●●●●●●● ●●● ●●● ●●●● ●●●●●● ●● ●●●●● ●●●●●●●●●●●●●●●● ●● ●●● ●●●●● ●● ●● ●●●● ●● ●● ●● ●● ●●●●● ●●●●●●●● ●●●● ●●●●● ●● ●● ●● ●●●●●●●● ●●●●●● ●●●● ● ●●●●●●●● ●●●● ●●●● ● ●●● ●● ●●● ●● ● ●●●●●●●●●●●● ●●● ●●●●●●● ●●●● ●●●●● ●●●● ●●●● ●●● ●●●● ●●● ●● ●●● ●●●●●●●● ●●●●●●●●●●●● ●● ●●●●● ●●●●●●●●●● ●●● ●●●●●● ●●●●● ●●●● ●●●●●● ●● ●● ●●●●● ●●● ●●● ●●●●●● ● ● ●●●●● ●● ● ●●●● ●● ●●●● ●●●●●● ●●● ●●● ●●●●● ●● ●● ●●●● ●●●●●●●● ●●●● ●●● ●●●●●●●● ●● ●●●●●● ●●●●● ●●●●●●● ●●● ●●●●●●● ●●● ●●●● ●●● ●●●●●●●●●● ●● ●●●●● ●● ●●● ● ●● ●● ● ●●● ● ●● ●● ●● ●●●●●●●●●●●●●● ●●●●●●●●● ●● ●●●●●●● ●● ●●● ●●●● ●● ● ●●● ●●●●●●● ●●●●● ●●●● ●●● ●● ●●●● ●●●● ●●●● ●●●●● ● ●● ●●●●●●● ●● ●● ●●● ●●● ●● ●●● ●●●● ●●●●● ●●● ●●●●●● ●●●●●● ●● ●● ●● ●● ●●●●●●●●●● ●●●●● ●●●●●●●● ●●●●●●● ●●● ●●●●●●● ● ●●●● ●● ●●●● ●● ●●● ●●●● ●●● ●●●●● ●● ●● ●● ●●●● ●●●● ●●●●● ●●● ●● ●●●● ●● ● ●●●●● ● ●●●●● ●●● ●●●● ●●●●● ●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●● ●● ● ●● ●●●●●●●●●●●●●●●●● ●● ●●●●●●● ●●● ●●●●●● ●●● ●●●●●●●● ●●●● ●● ●● ●●●●● ●●● ●●● ●●●●●●● ●● ●●● ●● ●●●●●●● ●● ●●●● ●● ●●●●● ●●●● ● ●●● ●●●●●● ●● ●● ●● ●● ●●●●●●● ●●●●● ●● ●●●● ●● ●●● ●● ●●● ●●● ●●● ●●●●●●●● ●● ● ●●● ●●●●●● ●●●● ●●●●● ●●●●●●●● ●●● ●●● ●●●●●●● ●●● ●●●●● ●● ●●● ●●● ●●● ●●●●● ●●●●●●●● ● ●●●●●●● ●● ●●●●●●●●●●●●●● ●●● ●●● ●●●● ●● ●●●●● ●●●● ●● ●●●●● ●●●● ●● ●● ●●●●●● ● ●●● ●●●● ●● ●● ●●● ●●● ●●● ●●●● ●●● ●●●●●● ● ●●●●●●● ●●●●●● ●●●● ●●●●● ●● ●● ●●●●●● ●● ●●● ●●● ●●● ●●●●●● ●●●●●●●● ●● ●●●●●●●●● ●● ● ●●●●● ●● ●●●●●●●● ●●●● ●● ● ●● ●●● ●●●● ●●● ●● ●● ● ●● ●●●● ●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●● ● ●●●● ●● ●●●● ●● ●●● ●● ● ●●●●●●●●●●●●●● ●● ●●●●●●●● ●●●● ●●●● ●●●● ●● ●●● ●●●● ●● ●●●●●●●● ●●●● ●●●●●●●●● ● ●●●●●●●●●●● ●● ●●●● ●●● ● ●● ●●●●●● ●● ●● ●● ● ●● ●●●●● ●●●●●● ●● ●●●●● ●● ● ●●●● ●●●● ● ●●●●●●●●●●●● ●●●●●●● ●●●● ●●●●●●●●●●●● ●●●●●●● ●●●● ● ●●●●● ● ●●●●

0 200 400 600 800

a) Distribution of LOC (method level)

● ●●● ●●●●● ●●● ● ● ●●● ● ● ● ●●● ● ● ●●●

0 5000 10000 15000

b) Total of stereotypes per system

Figure 4.7: Diversity of the 261 Apache projects used in the study. The figure
includes: a) size of methods in unit tests; b) distribution of method stereotypes
per system; c) histogram of method stereotypes identified by TeStereo; and
d) histogram of number of methods organized by the number of stereotypes
detected on individual methods.

4.3.2 Context Selection

For the three RQs, we used the population of unit tests included in 231 Apache

projects with source code available at GitHub. The list of projects is provided

in our online appendix [22]. Our preference for Apache projects is motivated

by the fact that they have been widely used in previous studies performed by

the research community [107, 37, 132], and unit tests in these projects are highly

diverse in terms of method stereotypes, methods size (i.e., LOC), and the number

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 108

E
qu

al
ity

V
er

ifi
er

In
te

rn
al

C
al

lV
er

ifi
er

E
xe

cu
tio

nT
es

te
r

B
oo

le
an

V
er

ifi
er

H
yb

rid
V

er
ifi

er

A
P

IU
til

ity
V

er
ifi

er

N
ul

lV
er

ifi
er

U
til

ity
V

er
ifi

er

E
xc

ep
tio

nV
er

ifi
er

Te
st

In
iti

al
iz

er

Te
st

C
le

an
er

C
on

di
tio

nM
at

ch
er

Ite
ra

tiv
eV

er
ifi

er

Id
en

tit
yV

er
ifi

er

B
ra

nc
hV

er
ifi

er

Ig
no

re
dM

et
ho

d

E
m

pt
yT

es
te

r

P
ub

lic
F

ie
ld

V
er

ifi
er

A
ss

um
pt

io
nS

et
te

r

Lo
gg

er

U
nc

la
ss

ifi
ed

c) Stereotypes distribution (Frequency)

0

10000

20000

30000

40000

50000

60000

67474

64161

41058
39440 38716

29055

22693

13599

8784 8433
6140 5690 5006

3728 3368
1653 1479 1407 1033 794 482

1 2 3 4 5 6 7 8 9

d) Number of methods by number of stereotypes

0

10000

20000

30000

40000

50000

60000

70000

73906

40297

16332 16330

11574

4473

1111 258 92

Figure 4.8: Diversity of the 261 Apache projects used in the study. The
figure includes: c) histogram of method stereotypes identified by TeStereo; and
d) histogram of number of methods organized by the number of stereotypes
detected on individual methods.

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 109

of stereotypes. In the 231 projects, we detected a total of 27,923 unit tests, which

account for 164,373 methods. Figures describing the diversity of the unit tests

in 231 projects are in our online appendix [22]. On average, the methods have

14.67 LOC (median=10), the first quartile Q1 is 6 LOC, and the third quartile

Q3 is 18 LOC. Concerning the number of stereotypes per system, on average,

TeStereo identified 1,577 stereotypes in the unit tests (median=489). All 231

Apache projects exhibited at least 482 instances of each stereotype in the unit

test methods, having EqualityVerifier as the most frequent method stereotype

(64,474 instances). Finally, most of the methods (i.e., 73,906) have only one

stereotype; however, there are cases with more than one stereotype, having a

limit of 92 methods with 9 stereotypes each. In summary, the sample of Apache

projects is diverse in terms of size of methods in the unit tests and the identified

stereotypes (all 21 stereotypes were widely identified). Hereinafter, we will refer

to the set of all the unit tests in 231 Apache projects as UTApache.

Because of the large set of unit test methods in UTApache (i.e., 164,373

methods), we sampled a smaller set of methods that could be evaluated during

our experiments; we call this set Msample, which is composed of 210 methods

systematically sampled from the methods in UTApache. The reason for choosing

210 methods is that we wanted to have in the sample at least 10 methods

representative of each stereotype (21 stereotypes ×10 methods = 210).

Subsequently, given the target size for the sample, we designed a systematic

sampling process looking for diversity in terms of not only stereotypes and the

number of stereotypes per method but also selecting methods with a

“representative” size (by “representative” we mean that the size is defined by the

50% of the original population). Therefore, we selected methods with LOC

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 110

between Q1 = 6 and Q3 = 18. Consequently, after selecting only the methods

with LOC ∈ [Q1, Q3], we sampled them in buckets indexed by the stereotype

(B〈stereotype〉), and buckets indexed by the number of stereotypes identified in the

methods and the stereotypes (B〈n,stereotype〉); for instance, B〈NullV erifier〉 is the set

of methods with the stereotype NullVerifier, and the set B〈2,Logger〉 has all the

methods with two stereotypes and one of the stereotypes is Logger. Note that a

method may appear in different buckets B〈n,stereotype〉 for a given n, because a

method can exhibit one or more stereotypes. We also built a second group of

buckets indexed by stereotype (B(2)
〈stereotype〉), but with the methods with LOC in

(Q3, 30].

The complete procedure for generating MSample from the buckets B〈stereotype〉,

B
(2)
〈stereotype〉, and B〈n,stereotype〉 is depicted in Algorithm 1. The first part of the

Algorithm (i.e., lines 5 to 10) is to assure that MSample has a least one method for

each combination 〈n, stereotype〉; then, the second part (i.e., lines 11 to 25) is to

balance the selection across different methods exhibiting all the stereotypes.

Note that we use a work list to assure sampling without replacement. When we

were not able to find methods in B〈stereotype〉, we sampled the methods from

B
(2)
〈stereotype〉 . To verify the diversity of the MSample we computed the same

statistics in Fig. 4.7 and Fig. 4.8.

Regarding the human subjects involved in the study, for the manual

identification of stereotypes required for RQ1, we selected four members of the

authors’ research lab that did not have any knowledge about the system

selection or TeStereo internals to avoid bias that could be introduced by the

authors, and had multiple years of object-oriented development experience;

hereinafter, we will refer to this group of participants as the Taggers. For the

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 111

Algorithm 2: Sampling procedure of methods from the whole set of unit test
in the 231 Apache projects.

Input: B〈stereotype〉, B
(2)
〈stereotype〉, B〈n,stereotype〉

Output: Msample

1 begin
2 N = [1..9], ST = [“Logger”...“Unclassified”];
3 Msample = ∅, workList = ∅;
4 Counter〈stereotype〉 = ∅;
5 foreach 〈n, stereotype〉 ∈ N × ST do
6 m = pickRandomFrom(B〈n,stereotype〉);
7 if m /∈ worklist then
8 workList.add(m);
9 Msample.add(m);

10 Counter〈stereotype〉 ++;

11 while |Msample| < 210 do
12 foreach stereotype ∈ ST do
13 if Counter〈stereotype〉 < 10 then
14 selected = FALSE;
15 m = pickRandomFrom(B〈stereotype〉);
16 if m /∈ worklist then
17 selected = TRUE;

18 if !selected then
19 m = pickRandomFrom(B

(2)
〈stereotype〉);

20 if m /∈ worklist then
21 selected = TRUE;

22 if !selected then
23 workList.add(m);
24 Msample.add(m);
25 Counter〈stereotype〉 ++;

tasks required with RQ2 (i.e., writing or evaluating summaries), we contacted

(via email) students from the SE classes at the authors’ university and external

students and researchers. From the participants that accepted the invitation, we

selected three groups that we will refer to as SW−TeStereo, SW+TeStereo, and SR,

which stand for summary writers without access to the stereotypes, summary

writers with access to the stereotypes, and summary readers, respectively; note

that there was no overlap of participants between the three groups. For the

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 112

evaluation in RQ3, we mined the list of contributors of the 231 Apache projects;

we call this group of participants as AD (Apache Developers). We identified the

contributors of the projects and contacted them by email to participate in the

study. We sent out e-mails listing only the links to the projects to which

developers actually contributed (i.e., developers were not contacted multiple

times for each project). In the end, we collected 25 completed responses from

Apache developers.

4.3.3 Experimental Design

To answer RQ1, we randomly split MSample into two groups, and then we

conducted a user study in which we asked four Taggers to manually identify the

proposed stereotypes from the methods in both groups (i.e., each Tagger read

105 methods). Before the study, one of the authors met with the Taggers and

explained the stereotypes to them; Taggers were also provided with a list, which

included the stereotypes and rules listed in Table 4.1 and Table 4.2. During the

study, the methods were displayed to the Taggers in an html-based format using

syntax highlighting. After the tagging, we asked the Taggers to review their

answers and solve disagreements (if any) after a follow-up meeting. In this

meeting, we did not correct the taggers, rather we explained stereotypes that

were completely omitted (without presenting the methods from the sample) in

order to clarify them; subsequently, the Taggers were able to amend the original

tags or keep them the same as they saw fit (we did not urge them to alter any

tags). In the end, they provided us with a list of stereotypes for the analyzed

methods. We compared the stereotypes identified by TeStereo to the

stereotypes provided by the Taggers. Because of the multi-label classification

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 113

nature of the process, we measured the accuracy of TeStereo by using four

metrics widely used with multi-class/label problems [140]: micro-averaging recall

(µRC), micro-averaging precision (µPC), macro-averaging recall (MRC), and

macro-averaging precision (MPC). The rationale for using micro and macro

versions of precision and recall was to measure the accuracy globally (i.e.,

micro) and at stereotype level (i.e., macro). We discuss the results of RQ1 in

Section 4.4.1.

To answer RQ2, for each method in MSample, we automatically built two html

versions (with syntax highlighting) of the source code: with and without

stereotype tags. The version with tags was assigned to participants in group

SW+TeStereo, and the version without tags was assigned to participants in

SW−TeStereo. Each group of participants had 14 people; therefore, each

participant was asked to (i) read 15 methods randomly selected (without

replacement) from MSample, and (ii) write a summary for each method. Note that

the participants in SW−TeStereo had no prior knowledge of our proposed

stereotypes. In the end, we obtained two summaries for each method of the 210

methods mi (14 × 15 = 210 methods): one based only on source code

(ci−TeStereo), and one based on source code and stereotypes (ci+TeStereo). After

collecting the summaries, each of the 14 participants in the group SR (i.e.,

summary readers) were asked to read 15 methods and evaluate the quality of

the two summaries written previously for each method. The readers did not

know from where the summaries came from, and they got to see the summaries

in pairs with the test code at the same time. The quality was evaluated by

following a similar procedure and using quality attributes as done in previous

studies for automatic generation of documentation [110, 50, 142, 95]. The

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 114

summaries were evaluated by the participants in terms of completeness,

conciseness, and expressiveness. Section 4.4.2 discusses the results for RQ2.

Finally, to answer RQ3, we distributed a survey to Apache developers in

which we asked them to evaluate the usefulness of TeStereo reports and

stereotypes. The developers were contacted via email; each developer was

provided with (i) a TeStereo html report that was generated for one Apache

project to which the developer contributes, and (ii) a link to the survey. For

developers who contributed to multiple Apache projects, we randomly assigned

one report (from the contributions). The survey consisted of two parts of

questions: background and questions related to TeStereo reports and the

stereotypes. Section 4.4.3 lists the questions in the second part. The answers

were analyzed using descriptive statistics for the single/multiple choice

questions; and, in the case of open questions, the authors manually analyzed

the free text responses using open coding [73]. More specifically, we analyzed

the collected data based on the distributions of choices and also checked the

free-text responses in depth to understand the rationale behind the choices. The

results for RQ3 are discussed in Section 4.4.3.

4.4 Empirical Results

In this section, we discuss the results for each research question.

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 115

4.4.1 What is accuracy for identifying stereotypes?

Group µPC µRC MPC MRC

G1 0.87 (0.98) 0.82 (0.89) 0.82 (0.99) 0.77 (0.92)

G2 0.80 (0.95) 0.89 (0.94) 0.80 (0.94) 0.84 (0.94)

Table 4.3: Accuracy Metrics for Stereotype Detection. The table lists the results
for the first round of manual annotation, and second round (in bold) after solving
inconsistencies.

Four annotators manually identified stereotypes from 210 unit methods inMsample.

Note that the annotators worked independently in two groups, and each group

worked with 105 methods. The accuracy of TeStereo measured against the set

of stereotypes reported by the annotators is listed in Table 4.3. In summary, there

was a total of 102 (2.31%) false negatives (i.e., TeStereo missed the stereotype)

and 118 (2.68%) false positives (i.e., the Taggers missed the stereotype) in both

groups.

We manually checked the false negatives and false positives in order to

understand why TeStereo failed to identify a stereotype or misidentified a

stereotype. TeStereo did not detect some stereotypes (i.e., false negatives) in

which the purpose is defined by inter-procedural calls, in particular Logger,

APIUtilityVerifier and InternalCallVerifier. For instance, the stereotype Logger is

for unit tests methods performing logging operations by calling the Java

PrintStream and Logger APIs; however, there are cases in which the test cases

invoke custom logging methods or loggers from other APIs (e.g., XmlLogger from

Apache ant). The unit test case in Figure 4.9 illustrates the issue; while it was

tagged as a Logger by the Taggers, it was not tagged by TeStereo because

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 116

XmlLogger is different than the standard Java logging. Few cases of the false

negatives were implementation issues; therefore, we used the false positives to

improve the stereotypes detection.

1@Test public void test() throws Throwable {

2final XmlLogger logger = new XmlLogger();

3final Cvs task = new Cvs();

4final BuildEvent event = new BuildEvent(task);

5logger.buildStarted(event);

6logger.buildFinished(event);}

Figure 4.9: Logger missed by TeStereo.

Because the Taggers were not able to properly detect some stereotypes (i.e.,

false positives), we re-explained to them the missed stereotypes (using the

name and rules and without showing methods from the sample); in some cases,

participants did not tag methods with the “Test Initializer” stereotype,

because they did not notice the custom annotation @Before. Afterward, we

generated a new version of the sample (same methods but with improved

stereotypes detection), and then we asked the Taggers to perform a second

round of tagging. We only asked the annotators to re-tag the methods in the

false positive and false negative sets. Finally, we recomputed the metrics, and

the results for the second round are shown in bold in Table 4.3. The results from

the second round showed that TeStereo’s accuracy improved and the

inconsistencies were reduced to 64 (1.45%) false negatives and 25 (0.57%)

false positives. The future work will be devoted to improving the data flow

analysis and fixing the false negatives.

Summary for RQ1. TeStereo is able to detect stereotypes with high accuracy

(precision and recall), even detecting cases in which human annotators fail.

However, it has some limitations due to the current implementation of the data-

flow based analysis.

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 117

4.4.2 Do the proposed stereotypes improve comprehension

of tests cases (i.e., methods in test units)?

To identify whether the stereotypes improve comprehension of methods in unit

tests, we measured how good the manually written summaries are when the test

cases include (or not) the TeStereo stereotypes. We first collected manually

generated summaries from the two participant groups SW+TeStereo and

SW−TeStereo as described in Section 4.3. Then, the summaries were evaluated

by a different group of participants who read and evaluated the summaries.

During the “writing” phase we asked the participants to indicate with “N/A”

when they were not able to write a summary because of lack of either context

or information or they were not able to understand the method under analysis.

In 78 out of 420 cases, we got “N/A” as a response from the summary writers;

55 cases were from the participants using only the source code and 23 cases

were from participants using the source code and the stereotypes. In total, 64

methods had only one version of the summary available (7 methods had two

“N/A”); therefore, the summary readers only evaluated the summaries for 139

(210 − 64 − 7) methods in which both versions of the summary were available.

Consequently, during the reading phase, 278 summaries were evaluated by 14

participants. It is worth noting that according to the design of the experiment each

participant had to evaluate the summaries for 15 methods; however, because of

the discarded methods, some of the participants were assigned with fewer than

15 methods. The results for completeness, conciseness, and expressiveness are

summarized in Table 4.4.

Completeness. This attribute is intended to measure whether the summary

writers were able to include important information in the summary, which

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 118

represents a high level of understanding of the code under analysis [110]. In

terms of completeness, there is a clear difference between the summaries

written by participants that had the TeStereo stereotypes and those that did not

have stereotypes; while 80 summaries from SW+TeStereo were ranked as not

missing any information, 46 from SW−TeStereo were ranked in the same category.

On the other side of the scale, only 12 summaries from SW+TeStereo were

considered to miss the majority of the important info, compared to 30 summaries

from SW−TeStereo. Thus, the writers assisted with TeStereo stereotypes were

able to provide better summaries (in terms of completeness), which suggests

that the stereotypes helped them to comprehend the test cases better.

Something interesting to highlight here is the fact that some of the writers (from

SW+TeStereo) included in their summary information based on the stereotypes:

“This is a test initializer.”, “initialize an empty test case”, “This method checks

whether ‘slingId’ is null and ‘equals’ equals to expected.”, “This is an empty test

that does nothing.” , “This is an ignored test method which validates if the fixture

is installed.”, and “this setup will be run before the unit test is run and it may

throw exception”.

Conciseness. This attribute evaluates if the summaries contain redundant

information. Surprisingly, the results are the same for both types of summaries

(Table 4.4); 95 summaries from each group (SW+TeStereo and SW−TeStereo) were

evaluated as not containing redundant information, and only nine summaries from

each group were ranked as including significant amount of redundant information.

This is surprising coincidence for which we can not have a clear explanation.

However, examples of summaries ranked with a low conciseness show the usage

of extra but unrelated information added by the writer: “Not sure what is going on

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 119

Do you think the message is complete? SW−TeStereo SW+TeStereo

• Does not miss any imp. info. 46(33.1%) 80(57.6%)

• Misses some important info. 63(45.3%) 47(33.8%)

• Misses the majority of imp. info. 30(21.6%) 12(8.6%)

Do you think the message is concise? SW−TeStereo SW+TeStereo

• Contains no redundant info. 95(68.3%) 95(68.3%)

• Contains some redundant info. 35(25.1%) 35(25.1%)

• Contains a lot of redundant info. 9(6.4%) 9(6.4%)

Do you think the description is expressive? SW−TeStereo SW+TeStereo

• Is easy to read and understand 90(64.7%) 78(56.1%)

• Is somewhat readable 35(25.2%) 42(30.2%)

• Is hard to read and understand 14(10.1%) 19(13.7%)

Table 4.4: Questions used for RQ2 and the # of answers provided by
the participants for the summaries written without (SW−TeStereo) and with
(SW+TeStereo) access to stereotypes.

here, but the end results is checking if r7 == ‘ABB: Hello A from BBB’.”, “Maybe

it’s testing to see if a certain language is comparable to another, but I can’t tell”,

and “this one has an ignore annotation will run like a normal method which is to

test the serialize and deserialize performance by timing it.”.

Expressiveness. This attribute aims at evaluating whether the summaries

are easy to read. 90 summaries written without having access to the stereotypes

were considered as easy to read compared to 78 summaries from the writers

with access to the stereotypes. However, when considering the answers for the

summaries ranked as easy-to-read or somewhat-readable, both SW+TeStereo and

SW−TeStereo account for 86%-90% of the summaries, which are very close. One

possible explanation for the slight difference in favor of SW−TeStereo might be that

the extra TeStereo tag information could increase the complexity of the

summaries. For example, the summary “This is an ‘ignored’ test which also does

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 120

nothing so it makes sure that the program can handle nothing w/o blowing up (it

throws an exception not just the stack trace).” is hard to read although it contains

the keyword “ignore”. Another example is “setup the current object by assigning

values to the tomcat, context, and loader fields.”

Rationale. We also analyzed the free-text answers provided by the summary

readers when supporting their preferences for summaries from SW−TeStereo or

SW+TeStereo. Overall, 72 explanations claimed that the choice was based on the

completeness of the summary. Examples include: ‘The summary allows for a

deeper understanding of what the program is doing and what it is using to make

itself work”, “I prefer this summary because it is more detailed than the other.”,

and “I like this one because it gives you enough information without going

overboard”. 52 out of the 72 explanations were for answers in favor of

summaries from SW+TeStereo. Thus, the rationale provided by the readers

reinforces our findings that TeStereo helped developers to comprehend the test

cases and write better test summaries that include important info.

26 explanations mentioned the expressiveness as the main attribute for

making their choice: “This summary is very easy for programmers to

understand.” and “Easier to read, while I can hardly understand what Summary1

is trying to say.”. In this case, 12 explanations are for readers in favor of

summaries from SW+TeStereo. Finally, 4 decisions were made based on the

conciseness of the summaries: “Slightly more concise”, “Concise”, “This

concisely explains what is going on with no extra material but it could use a little

more information.”, and “Too much extra stuff in Summary 1”.

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 121

Summary for RQ2. The evaluation of the scenario of writing and reading

summaries for unit test methods suggests that the proposed unit test

stereotypes improve the comprehension of tests cases. The results showed

that manually written summaries with assistance from TeStereo tags covered

more important information than the summaries written without it. In addition,

by comparing the evaluation between summaries with and without using

TeStereo tags, the results indicated that TeStereo tags did not introduce

redundant information or make the summaries hard to read.

4.4.3 What are the developers perspectives of the TeStereo-

based reports for systems in which they contributed?

We received completed surveys from 25 developers of the Apache projects.

While the number of participants is not very high, participation is an inherent

uncontrollable difficulty when conducting a user study with open source

developers. In terms of the highest academic degree obtained by participants,

we had the following distribution: one with a high school degree (4%), seven with

a Bachelor’s degree (28%), sixteen with a Master’s degree (64%), and one with

Ph.D. (4%). Concerning the programming experience, the mean value is 20.8

years of experience and the median value is 20 years. More specifically,

participants had on average 12.9 years of industrial/open-source experience

(the median was 14 years). The questions related to RQ3 and the answers

provided by the practitioners are as the following:

SQ1. Which of the following tasks do you think the tags are useful for?

(Multiple-choice and Optional). 48% selected “Test case

comprehension/understanding”, 44 % selected “Generating summary of unit test

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 122

case”, 40% vote for the option “Unit test case maintenance”, and only 8%

checked the option “Debugging unit test cases”.

SQ2. Which of the following tasks do you think the reports are useful

for? (Multiple-choice and Optional). 60% selected “Test case

comprehension/understanding”, 48 % selected “Generating summary of unit test

case”, 40% vote for the option “Unit test case maintenance”, and only 8%

checked the option “Debugging unit test cases”.

SQ3. What tasks(s) do you think the tags/report might be useful for?

(Open question) To complement the first two SQs, SQ3 aims at examining if

the stereotypes and reports are useful from a practitioner’s perspective for other

software-related tasks. We categorized the responses into the following groups:

• Unit test quality evaluation: The participants mentioned the following uses

like “evaluate the quality of the unit tests”, “a rough categorization [of unit

tests] by runtime, e.g. ‘fast’ and ‘slow’”, and “quality/complexity metrics”.

• Bad test detection: two participants suggested that the technique could be

used for detecting bad tests. The responses include “Fixing a system with

a lot of bad tests” & “probably verifying if there’s good ‘failure’ message”.

• Code navigation: One response suggested that the TeStereo report is “a

good way to jump into the source code”. This response demonstrates that

users can comprehend the test code easier by looking at the

TeStereo report.

SQ4. Is the summary displayed when hovering over the gray balloon

icon useful for you? (Binary-choice). TeStereo ’s reports include a speech

balloon (Figure 4.10) icon that displays a summary automatically generated by

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 123

Figure 4.10: TeStereo documentation for a test case in the Tomcat project.

aggregating the descriptions of the stereotypes1. We wanted to evaluate

usefulness of this feature, and we obtained 14 positive and 11 negative

responses. The positive answers were augmented with rationale such as ‘It

gives the purpose of unit test case glimpsly ”, “Was hard to find, but yes, this

makes it easier to grok what you’re looking at”, and “It is clear ”. As for the

negative answers, the rationale described compatibility issues with mobile

devices (“I am viewing this on an iPad. I can’t hover ”, “hovers don’t seem to

work ”). Yet, some participants found the summary redundant since the info was

in the tags.

SQ5. What are the elements that you like the most in the report?

(Multiple-choice). Most of the practitioners selected source code box (14

answers, 56%) and test case tags (11 answers, 44%). This suggests that the

surveyed practitioners recognize the benefit of the stereotype tags, and are

more likely to use the combination of tags and source code boxes. We received

5 answers (20%) for “gray balloon icon & summary ”, 3 (12%) for “navigation
1Note that TeStereo’s reports (including the balloon and summary features) were only available

for the Apache developers.

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 124

box”, and 4 (16%) for “filter ”.

SQ6. Please provide an example of the method that you think the tags

are especially useful for unit test case comprehension (Open question).

For SQ6, we collected nine responses in total, and this is related to the open

question nature in which some participants filled blank spaces or other

characters. One participant mentioned the testForkModeAlways method in

project maven and explained his choice with the following rationale: “This method

is tagged ’BranchVerifier’, and arguably it cyclomatic complexity is to great for a

test.” This explanation shows that the stereotype tags (i.e, BranchVerifier and

IterativeVerifier) help developers identify test code that should not include

branches/loops. Another response mentions the

testLogIDGenerationWithLowestID method in project Ace; the method was

tagged as Logger by TeStereo and the practitioner augmented his answer with

the following: “Logging in unit tests is usually a code smell, just by looking at this

method I realize what event.toRepresentation() returns is not compared with

an expected value.” This example shows that stereotype tags are also useful for

other software maintenance tasks such as code smell detection. Another

example is the method testLogfilePlacement in Ant, and the developer

claimed that this is a very good example because the tags helped him to identify

that the test case is an internal call verifier. Some responses did not provide the

signature of the method, but their comments are useful (e.g., “TestCleaner is

useful to show complexity (hopefully unneeded) of test cases” and “I believe they

would be useful to check if developers are only developing shallow test cases”).

SQ7. Please provide an example of the method that you think the tags

are NOT useful for unit test case comprehension (open question). For SQ7,

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 125

1@Test public void testSingleElementRange(){

2final int start=1;

3final int max=1;

4final int step=-1;

5final List seq=new ArrayList();

6final IntegerSequence.Range

r=IntegerSequence.range(start,max,step);

7for (Integer i : r) {seq.add(i);}

8Assert.assertEquals(1,seq.size());

9Assert.assertEquals(seq.size(),r.size());

10Assert.assertEquals(start,seq.get(0).intValue());

11}

Figure 4.11: InternalCallVerifier missed by TeStereo.

we collected nine valid responses. One example highlights the need for

improving the limitations mentioned in Section 4.4.1, in particular the method

nonExistentHost() with the following comment from a developer: “it’s about

‘verifies (un)successful execution’, but it’s about expected exception in particular

case.” This issue is due to the fact that TeStereo performs over-approximation

during static analysis. Although TeStereo does not track any branch conditions

in the method (some paths may not be executed with a certain input), the

over-approximate approach guarantees that potential paths are not missed

when TeStereo tags the unit test case.

SQ8. What are the elements that you think need improvement in the

report? (Open question). For SQ8, we collected 13 valid responses. Some

practitioners suggested augmenting the reports with summaries describing the

method, for example: “If it can explain about the function, it would be great” and

“It’d be nicer if the tags conveyed more semantics concepts, rather than mere

syntactic properties”. Also, some comments asked for improvement of the user

experience in the reports: ‘the report should highlight in red the test methods

which do contain any assertions” and “Being able to collapse the code blocks to

make it easier to see summaries”.

SQ9. What additional information would you find helpful if it were

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 126

included in the reports? (Open question). These are some sample answers:

• Test suite quality: some participants suggested that we need to create a

new stereotype to identify redundant test cases, include test coverage info,

show evolution of the tags per commits, and indicate size of the method

which can be an indicator of methods that need refactoring;

• Integration: some practitioners also suggested that we add a link to the full

source code on GitHub, so that the code can be seen in its larger context.

They also suggested that we integrate TeStereo into SonarQube;

• Detailed description: these suggestions are more related to personal

preferences; for example, “highlighting the aspect in the code”, “I would be

interested in being able to find which tests check which accessors or

methods and vice versa.”, and “specify what is verified by this method”.

The last comment is aligned with the purpose of other summarization

approaches such as TestDescriber [122] and UnitTestScribe [95], which

generate natural language descriptions of the assertions and focal

methods.

Summary for RQ3. Overall, we obtained 25 responses from active

Apache developers, who provided us with useful feedback for improving the

stereotypes and the reports. Concerning the usefulness of the stereotypes

and the reports, most of the surveyed developers believed that TeStereo ’s

tags and reports are useful for test case comprehension tasks. Other tasks

reported by the developers, in which the tags and the reports might be useful,

are code smell detection and source code navigation.

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 127

4.4.4 Threats to Validity

Threats to internal validity relate to response bias by participants that either had

more difficulty or did not have problems while understanding unit test cases or

writing summaries. Based on the results of the study and the large number of

the participants, we observed that responses were not dominantly distributed to

extremes, which would indicate that these developers were particularly biased

based on such difficulty.

The external threats to validity relate to generalizing the conclusions from the

study. In our study, we state that these results are based on our sample of unit

test cases and participants, but do not claim that these results generalize to all

developing systems in other languages and other developers. However, we do

present the sampling procedure of unit tests from the whole set of unit test in the

231 Apache projects, which aims to minimize the threat. The selected methods

are highly diverse in terms of methods size, method stereotypes, and the

number of stereotypes. In addition, we present demographic information of the

participants that suggests that we have a diverse sample of developers.

Another threat to validity is that TeStereo has some limitations due to the

current implementation of the data-flow based analysis. For example,

TeStereo cannot interpret the variable assignment relations since those require

inter-procedural analysis, which leads to false negatives. For example, the unit

test case in Figure 4.11 was annotated as InternalCallVerifier by the

taggers since the method has a slicing path from variable r to seq, and

IntegerSequence.range(start,max,step) at line 6 is an internal method call.

However, TeStereo cannot interpret the variable assignment relations in the

for-loop (line 7), since it needs to understand the assignment relations in “Integer

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 128

i:r ” and “seq.add(i)”. Due to this limitation, TeStereo loses the backward

tracking to the internal function call.

4.5 Related Work

There are some related techniques for studying unit test cases, which include

unit test case minimization [92, 91], prioritization [56, 135, 143], test case

descriptions [85, 122, 95, 165], code quality [33], test coverage [79], data

generation [93, 101], unit test smells [40, 151, 104, 150, 149], fault localization

[159], automatic test case generation [52, 64, 69, 145, 160, 155, 91], and

automatic recommendation of test examples [126]. TeStereo is also related to

(i) techniques for generating documentation for software artifacts

[80, 63, 100, 97, 111], and (ii) other approaches for supporting code

comprehension provided by difference tools [122, 95, 110, 113, 68]. Compared

to the existing approaches, TeStereo is novel in that it considers stereotypes at

the test suite level.

4.5.1 Stereotypes Definition and Detection

Several studies [63, 61, 60] focused on classifying software entities, such as

methods, classes, and repository commits. Generally, the studies classify

software entities as different stereotypes based on static analysis techniques

and predefined rules [63, 61]. Dragan et al. first presented and defined

taxonomy of method stereotypes [63]. The authors implemented a tool, namely

StereoCode, which automatically identifies method stereotypes for all methods in

a system. Later, Dragan et al. extended the classification of stereotypes to class

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 129

level granularity by considering frequency and composition of the method

stereotypes in one class [61]. The results showed that 95% of the classes were

stereotyped by their approach. Dragan et al. further refined stereotypes at the

commit level [60]. The categorization of a commit is based on the stereotype of

the methods that are added/deleted in the commit. Different from Dragan et al.’s

implementation that works on C++, Moreno and Marcus [112] implemented a

classification tool, named JStereoCode, for automatically identifying method and

class stereotypes in Java systems. Andras et al. measured runtime behavior of

methods and method calls to reflect method stereotypes [32]. Their observation

showed that most methods behave as expected based on the stereotypes.

Overall, none of the existing studies focus on stereotype classification of unit test

cases. Our approach is the first one to define and classify unit test case

stereotypes by (i) analyzing unit test API calls and (ii) performing static analysis

on data/control flows.

4.5.2 Utilizing Stereotypes for Automatic Documentation

A group of approaches and studies utilize stereotype identification for other

goals. Linares-Vásquez et al. [97, 50] implemented a tool, namely

ChangeScribe, for automatically generating commit messages. ChangeScribe

extracts changes between two adjacent versions of a project and identifies

involved change types in addition to performing commit level stereotype

analysis. Dragan et al. showed that the distribution of method stereotypes could

be an indicator of system architecture/design [62]. In addition, their technique

could be utilized in clustering systems with similar architecture/design. Moreno

et al. [110, 113] and Abid et al. [28] utilized class stereotypes to summarize the

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 130

responsibilities of classes in different programming languages (Java and C++)

respectively. Ghafari et al. [72] used stereotypes to detect focal methods

(methods responsible for system state changes examined through assertions in

unit tests) in a unit test case. Overall, our work is first to improve unit test

comprehension and test suite navigation by using unit test stereotypes.

4.5.3 Automatic Documentation of Unit Test Cases

Kamimura and Murphy presented an approach for automatically summarizing

JUnit test cases [85]. Their approach identified the focal method based on the

number of invocations of the method. Panichella et al. [122] presented an

approach, TestDescriber, for generating test case summaries on automatically

generated JUnit test cases. The summary contains three different levels of

granularity: class, method, and test level (i.e., branch coverage). Furthermore, Li

et al. [95] proposed UnitTestScribe that combines static analysis, natural

language processing, and backward slicing techniques to automatically generate

detailed method-level summarization for unit test cases. Zhang et al. [164, 165]

presented a natural language-based approach that extracts the descriptive

nature of test names to generate test templates. Overall, none of the existing

techniques for documenting unit test cases focuses on unit test case

stereotypes, besides our approach.

4.6 Conclusion

In this chapter, we first presented a novel catalog of stereotypes for methods in

unit tests to categorize JUnit test cases into 21 stereotypes; the catalog aims

CHAPTER 4. STEREOTYPE-BASED TAGGING OF UNIT TEST CASES 131

at improving program comprehension of unit test, when the unit test methods

are annotated with the stereotypes. We propose an approach, TeStereo, for

automatically tagging stereotypes for unit tests by performing control-flow, data-

flow, and API call based static analyses on the source code of a unit test suite.

TeStereo also generates html reports that include the stereotype tags, source

code, and navigation features to improve the comprehension and browsing of

unit tests in a large test suite.

To validate TeStereo, we conducted empirical studies based on 231 Apache

projects, 46 students and researchers and a survey with 25 Apache developers.

Also, we evaluated 420 manually generated summaries and 210 unit test

methods with and without stereotype annotations. Our results show that (i)

TeStereo achieves very high precision and recall (0.99 & 0.94) in terms of

annotating unit test stereotypes, (ii) the proposed stereotypes improve

comprehension of unit test cases in software maintenance tasks, and (iii) most

of the developers agreed that TeStereo stereotypes and reports are useful. Our

results demonstrate that TeStereo’s tags are useful for test case comprehension

tasks as well as other tasks, such as code smell detection and source code

navigation.

4.7 Bibliographical Notes

The paper supporting the content described in this Chapter was written in

collaboration with the members of the SEMERU group at William and Mary :

• Li, B., Vendome, C., Linares-Vásquez, M., and Poshyvanyk, D. “Stereotype-

based Tagging of Unit Test Cases.” , under submission.

Chapter 5

Conclusion

The proposed dissertation makes several research contributions: (i) empirical

studies on documenting software artifacts in practice (e.g., database usage and

constraints, unit test cases), (ii) a novel practical approach for documenting

database usages, and (iii) a novel approach for documenting unit test cases.

In Chapters 2 and 3, the proposed works are first motivated by studies in

which we surveyed open source/professional developers to understand their

perspective of database operations and unit test cases. We found that

developers believe maintaining good documentations is important for the quality

of a software system. We also mined changes of a large amount of open source

projects to show that in practice the projects lack related comments. Motivated

by the findings of the studies, we proposed two novel approaches. DBScribe is a

novel approach for automatically generating natural language (NL)

documentation at the source code method level that describes database usages

and constraints for a given DCA. In addition, we presented a novel approach

UnitTestScribe that combines static analysis, natural language processing,

backward slicing and code summarization techniques in order to automatically

generate expressive NL descriptions that concisely document the purpose of

132

CHAPTER 5. CONCLUSION 133

unit test methods. To evaluate our tools (DBScribe and UnitTestScribe), we

conducted online surveys with industrial developers and graduate students. In

general, participants indicated that descriptions generated by our tools are

complete, concise, and easy to read.

In chapter 4, we first presented a novel catalog of stereotypes for methods

in unit tests to categorize JUnit test cases into 21 stereotypes; the catalog aims

at improving program comprehension of unit test, when the unit test methods

are annotated with the stereotypes. We propose an approach, TeStereo, for

automatically tagging stereotypes for unit tests by performing control-flow, data-

flow, and API call based static analyses on the source code of a unit test suite.

TeStereo also generates html reports that include the stereotype tags, source

code, and navigation features to improve the comprehension and browsing of

unit tests in a large test suite. Our results demonstrate that TeStereo’s tags are

useful for test case comprehension tasks as well as other tasks, such as code

smell detection and source code navigation.

Bibliography

[1] Apache software foundation. http://www.apache.org/.

[2] Dbscribe online appendix. http://www.cs.wm.edu/semeru/data/

ISSTA16-DBScribe.

[3] Fina http://sourceforge.net/projects/fina/.

[4] GitHub API. https://developer.github.com/v3/. Last accessed:

2015/01/15.

[5] Glimpse. https://github.com/Glimpse/Glimpse/.

[6] Google-api-dotnet. https://github.com/google/

google-api-dotnet-client/.

[7] Jmockit. an automated testing tooltik for java. http://jmockit.org/.

[8] Jsqlparser. http://jsqlparser.sourceforge.net/.

[9] Junit. http://junit.org/.

[10] Liminal ltda http://www.liminal-it.com/.

[11] Mockito. http://mockito.org/.

[12] Msdn. https://msdn.microsoft.com/.

 134

BIBLIOGRAPHY 135

[13] Nunit. http://www.nunit.org/.

[14] Openemm e-mail & marketing automation http://sourceforge.net/

projects/openemm/files/OpenEMM%20software/OpenEMM%206.0/.

[15] Qualtrics. http://www.qualtrics.com/.

[16] Risk it repository. https://riskitinsurance.svn.sourceforge.net/.

[17] Sando. https://github.com/abb-iss/Sando/.

[18] Sonarqube http://www.sonarqube.org/.

[19] Srcml. http://www.srcml.org/.

[20] Srcml.net. https://github.com/abb-iss/SrcML.NET/.

[21] Swum.net. https://github.com/abb-iss/Swum.NET/.

[22] TeStereo Online appendix. https://sites.google.com/site/

testereoonline/.

[23] Umas. https://github.com/University-Management-And-Scheduling.

[24] Unit Test Basics. https://msdn.microsoft.com/en-us/library/

hh694602.aspx#BKMK_Writing_your_tests. Last accessed: 2015/10/15.

[25] Unittestscribe online appendix. http://www.cs.wm.edu/semeru/data/

ICST16-UnitTestScribe/.

[26] Xinco rev 700 http://sourceforge.net/p/xinco/code/700/tree/trunk/.

[27] xunitpatterns. http://xunitpatterns.com/.

BIBLIOGRAPHY 136

[28] NAHLA J. ABID, NATALIA DRAGAN, MICHAEL L. COLLARD, AND

JONATHAN I. MALETIC. Using stereotypes in the automatic generation of

natural language summaries for c++ methods. In Proc. ICSME, pages 561–

565. IEEE, 2015.

[29] RAKESH AGRAWAL, TOMASZ IMIELIŃSKI, AND ARUN SWAMI. Mining

association rules between sets of items in large databases. In ACM

SIGMOD Record, volume 22, pages 207–216. ACM.

[30] REDA ALHAJJ. Extracting the extended entity-relationship model from a

legacy relational database. Information Systems, 28(6):597–618, 2003.

[31] NOUH ALHINDAWI, NATALIA DRAGAN, MICHAEL L. COLLARD, AND

JONATHAN I. MALETIC. Improving feature location by enhancing source

code with stereotypes. 2013.

[32] PETER ANDRAS, ANJAN PAKHIRA, LAURA MORENO, AND ANDRIAN

MARCUS. A measure to assess the behavior of method stereotypes in

object-oriented software. In WETSoM 2013. IEEE.

[33] MAURICIO F ANICHE, GUSTAVO A OLIVA, AND MARCO A GEROSA. What

do the asserts in a unit test tell us about code quality? a study on open

source and industrial projects. In CSMR’13, pages 111–120. IEEE, 2013.

[34] DAVID ASTELS. Test-Driven Development: A Practical Guide: A Practical

Guide. Prentice Hall PTR, 2003.

[35] KAPIL BAKSHI. Considerations for big data: Architecture and approach. In

IEEE Aerospace Conference, pages 1–7, 2012.

BIBLIOGRAPHY 137

[36] LUCIANO BARESI AND MATTEO MIRAZ. Testful: Automatic unit-test

generation for java classes. In Proceedings of ICSE10, pages 281–284,

New York, NY, USA, 2010. ACM.

[37] GABRIELE BAVOTA, GERARDO CANFORA, MASSIMILIANO DI PENTA,

ROCCO OLIVETO, AND SEBASTIANO PANICHELLA. The evolution of project

inter-dependencies in a software ecosystem: The case of apache. In ICSM,

pages 280–289. IEEE, 2013.

[38] GABRIELE BAVOTA, MALCOM GETHERS, ROCCO OLIVETO, DENYS

POSHYVANYK, AND ANDREA DE LUCIA. Improving software modularization

via automated analysis of latent topics and dependencies. ACM

Transactions on Software Engineering and Methodology (TOSEM), 23(1):4,

2014.

[39] GABRIELE BAVOTA, ROCCO OLIVETO, MALCOM GETHERS, DENYS

POSHYVANYK, AND ANDREA DE LUCIA. Methodbook: Recommending

move method refactorings via relational topic models. IEEE Transactions

on Software Engineering, 40(7):671–694, 2014.

[40] GABRIELE BAVOTA, ABDALLAH QUSEF, ROCCO OLIVETO, ANDREA

DE LUCIA, AND DAVID BINKLEY. An empirical analysis of the distribution

of unit test smells and their impact on software maintenance. In ICSM’12

28th, pages 56–65. IEEE, 2012.

[41] KENT BECK. Test Driven Development: By Example. Addison-Wesley

Professional, 2002.

BIBLIOGRAPHY 138

[42] KENT BECK AND CYNTHIA ANDRES. Extreme Programming Explained:

Embrace Change. Addison-Wesley, 2nd edition, 2004.

[43] KENT BECK AND ERICH GAMMA. Test infected: Programmers love writing

tests. Java Report, 3(7):37–50, 1998.

[44] SEBASTIAN BERGMANN. Phpunit. https://phpunit.de.

[45] RAYMOND PL BUSE AND WESTLEY R WEIMER. Automatic documentation

inference for exceptions. In 2008 ISSTA.

[46] RAYMOND PL BUSE AND WESTLEY R WEIMER. Automatically documenting

program changes. In Proceedings of the IEEE/ACM ASE, pages 33–42,

2010.

[47] RAYMOND PL BUSE AND THOMAS ZIMMERMANN. Information needs for

software development analytics. In ICSE’12, pages 987–996. IEEE Press,

2012.

[48] GERARDO CANFORA, LUIGI CERULO, AND MASSIMILIANO DI PENTA. Ldiff:

An enhanced line differencing tool. In Proceedings of the 31st International

Conference on Software Engineering, pages 595–598. IEEE Computer

Society, 2009.

[49] ANTHONY CLEVE, MAXIME GOBERT, LOUP MEURICE, JEROME MAES, AND

JENS WEBER. Understanding database schema evolution: A case study.

Science of Computer Programming, 97.

[50] LUIS FERNANDO CORTÉS-COY, MARIO LINARES-VÁSQUEZ, JAIRO

APONTE, AND DENYS POSHYVANYK. On automatically generating commit

BIBLIOGRAPHY 139

messages via summarization of source code changes. In SCAM’14, pages

275–284. IEEE, 2014.

[51] BILL CURTIS, HERB KRASNER, AND NEIL ISCOE. A field study of the

software design process for large systems. Communications of the ACM,

31(11):1268–1287, 1988.

[52] ERMIRA DAKA, JOSÉ CAMPOS, GORDON FRASER, JONATHAN DORN,

AND WESTLEY WEIMER. Modeling readability to improve unit tests. In

Proceedings of the 2015 10th Joint Meeting on FSE, 2015.

[53] ERMIRA DAKA AND GORDON FRASER. A survey on unit testing practices

and problems. In ISSRE’14, pages 201–211, 2014.

[54] SERGIO COZZETTI B DE SOUZA, NICOLAS ANQUETIL, AND KÁTHIA M

DE OLIVEIRA. A study of the documentation essential to software

maintenance. In Proceedings of the 23rd annual international conference

on Design of communication: documenting & designing for pervasive

information, pages 68–75, 2005.

[55] A. VAN DEURSEN, L. MOONEN, A. VAN DEN BERGH, AND G. KOK.

Refactoring test code. In Proceedings of the 2nd International Conference

on Extreme Programming and Flexible Processes (XP2001), M. Marchesi,

editor, pages 92–95. University of Cagliari, 2001.

[56] DANIEL DI NARDO, NADIA ALSHAHWAN, LIONEL BRIAND, AND YVAN

LABICHE. Coverage-based test case prioritisation: An industrial case study.

In ICST’13, pages 302–311. IEEE, 2013.

BIBLIOGRAPHY 140

[57] BOGDAN DIT, EVAN MORITZ, MARIO LINARES-VÁSQUEZ, DENYS

POSHYVANYK, AND JANE CLELAND-HUANG. Supporting and accelerating

reproducible empirical research in software evolution and maintenance

using tracelab component library. Empirical Software Engineering,

20(5):1198–1236, 2015.

[58] BOGDAN DIT, MEGHAN REVELLE, MALCOM GETHERS, AND DENYS

POSHYVANYK. Feature location in source code: a taxonomy and survey.

Journal of software: Evolution and Process, 25(1):53–95, 2013.

[59] BOGDAN DIT, MEGHAN REVELLE, AND DENYS POSHYVANYK. Integrating

information retrieval, execution and link analysis algorithms to improve

feature location in software. Empirical Software Engineering, 18(2):277–

309, 2013.

[60] NATALIA DRAGAN, MICHAEL L COLLARD, MAEN HAMMAD, AND JONATHAN

MALETIC. Using stereotypes to help characterize commits. In ICSM 2011,

pages 520–523. IEEE, 2011.

[61] NATALIA DRAGAN, MICHAEL L COLLARD, AND JONATHAN MALETIC.

Automatic identification of class stereotypes. In ICSM 2010, pages 1–10.

IEEE.

[62] NATALIA DRAGAN, MICHAEL L COLLARD, AND JONATHAN MALETIC. Using

method stereotype distribution as a signature descriptor for software

systems. In ICSM 2009, pages 567–570.

[63] NATALIA DRAGAN, MICHAEL L COLLARD, AND JONATHAN MALETIC.

Reverse engineering method stereotypes. In ICSM’06, pages 24–34, 2006.

BIBLIOGRAPHY 141

[64] FAEZEH ENSAN, EBRAHIM BAGHERI, AND DRAGAN GAŠEVIĆ. Evolutionary

search-based test generation for software product line feature models. In

Advanced Information Systems Engineering, pages 613–628. Springer,

2012.

[65] JANET FEIGENSPAN, CHRISTIAN KÄSTNER, JÖRG LIEBIG, SVEN APEL,

AND STEFAN HANENBERG. Measuring programming experience. In

Program Comprehension (ICPC), 2012 IEEE 20th International Conference

on, pages 73–82. IEEE, 2012.

[66] BEAT FLURI, MICHAEL WURSCH, AND HARALD C GALL. Do code and

comments co-evolve? on the relation between source code and comment

changes. In WCRE 2007., pages 70–79, Oct.

[67] BEAT FLURI, MICHAEL WÜRSCH, EMANUEL GIGER, AND HARALD C GALL.

Analyzing the co-evolution of comments and source code. Software Quality

Journal, 17(4):367–394, 2009.

[68] J. FOWKES, P. CHANTHIRASEGARAN, R. RANCA, M. ALLAMANIS,

M. LAPATA, AND C. SUTTON. IEEE Transactions on Software Engineering,

2017.

[69] GORDON FRASER AND ANDREA ARCURI. Evosuite: automatic test suite

generation for object-oriented software. In Proceedings of the 19th ACM

SIGSOFT symposium and the 13th European conference on Foundations

of software engineering, pages 416–419. ACM, 2011.

[70] GORDON FRASER AND ANDREA ARCURI. Whole test suite generation.

IEEE Trans. Softw. Eng., 39(2):276–291, February 2013.

BIBLIOGRAPHY 142

[71] JUAN PABLO GALEOTTI, GORDON FRASER, AND ANDREA ARCURI.

Extending a search-based test generator with adaptive dynamic symbolic

execution. In Proceedings of the 2014 ISSTA, ISSTA 2014, pages 421–424.

ACM, 2014.

[72] MOHAMMAD GHAFARI, CARLO GHEZZI, AND KONSTANTIN RUBINOV.

Automatically identifying focal methods under test in unit test cases.

In Source Code Analysis and Manipulation (SCAM), 2015 IEEE 15th

International Working Conference on, pages 61–70. IEEE, 2015.

[73] BARNEY G. GLASER AND ANSELM L. STRAUSS. The Discovery of

Grounded Theory: Strategies for Qualitative Research. Aldine de Gruyter,

1967.

[74] MATHIEU GOEMINNE, ALEXANDRE DECAN, AND TOM MENS. Co-evolving

code-related and database-related changes in a data-intensive software

system. In CSMR-WCRE 2014.

[75] EMILY HILL. Integrating natural language and program structure information

to improve software search and exploration. University of Delaware, 2010.

[76] EMILY HILL, LORI POLLOCK, AND K VIJAY-SHANKER. Automatically

capturing source code context of nl-queries for software maintenance and

reuse. In Proceedings of the 31st International Conference on Software

Engineering, pages 232–242. IEEE Computer Society, 2009.

[77] MATTHEW J HOWARD, SAMIR GUPTA, LORI POLLOCK, AND K VIJAY-

SHANKER. Automatically mining software-based, semantically-similar

words from comment-code mappings. In MSR’13, pages 377–386, 2013.

BIBLIOGRAPHY 143

[78] ANDY HUNT AND DAVE THOMAS. Pragmatic Unit Testing in Java with JUnit.

The Pragmatic Programmers, 2003.

[79] CHEN HUO AND JAMES CLAUSE. Interpreting coverage information using

direct and indirect coverage. In 2016 IEEE International Conference on

Software Testing, Verification and Validation (ICST), pages 234–243. IEEE,

2016.

[80] DANIEL JACKSON AND DAVID A LADD. Semantic diff: A tool for

summarizing the effects of modifications. In ICSM’94, pages 243–252,

1994.

[81] RANJIT JHALA AND RUPAK MAJUMDAR. Path slicing. In ACM SIGPLAN

Notices, volume 40. ACM, 2005.

[82] SIYUAN JIANG, AMEER ARMALY, AND COLLIN MCMILLAN. Automatically

generating commit messages from diffs using neural machine translation.

In in Proc. of the 32nd IEEE/ACM International Conference on Automated

Software Engineering (ASE’17).

[83] MIRA KAJKO-MATTSSON. A survey of documentation practice within

corrective maintenance. Empirical Software Engineering, 10(1):31–55,

2005.

[84] EIRINI KALLIAMVAKOU, GEORGIOS GOUSIOS, KELLY BLINCOE, LEIF

SINGER, DANIEL M. GERMAN, AND DANIELA DAMIAN. The promises and

perils of mining github. In Proceedings of the 11th Working Conference on

Mining Software Repositories, MSR 2014, pages 92–101, New York, NY,

USA, 2014. ACM.

BIBLIOGRAPHY 144

[85] MANABU KAMIMURA AND GAIL C MURPHY. Towards generating human-

oriented summaries of unit test cases. In ICPC’13, pages 215–218. IEEE,

2013.

[86] GREGORY M KAPFHAMMER AND MARY LOU SOFFA. A family of test

adequacy criteria for database-driven applications. ACM SIGSOFT

Software Engineering Notes, 28(5):98–107, 2003.

[87] MIRYUNG KIM AND DAVID NOTKIN. Discovering and representing

systematic code changes. In Proceedings of the 31st International

Conference on Software Engineering, pages 309–319. IEEE Computer

Society, 2009.

[88] MIRYUNG KIM, DAVID NOTKIN, DAN GROSSMAN, AND GARY WILSON JR.

Identifying and summarizing systematic code changes via rule inference.

Software Engineering, IEEE Transactions on, 39(1):45–62, 2013.

[89] ANDREW J KO, BRAD A MYERS, MICHAEL J COBLENZ, AND HTET HTET

AUNG. An exploratory study of how developers seek, relate, and collect

relevant information during software maintenance tasks. IEEE Transactions

on Software Engineering, 32(12):971–987, 2006.

[90] CHAN MAN KUOK, ADA FU, AND MAN HON WONG. Mining fuzzy

association rules in databases. ACM Sigmod Record, 27(1):41–46, 1998.

[91] YONG LEI AND JAMES H ANDREWS. Minimization of randomized unit test

cases. In Software Reliability Engineering, 2005. IEEE, 2005.

[92] ANDREAS LEITNER, MANUEL ORIOL, ANDREAS ZELLER, ILINCA CIUPA,

AND BERTRAND MEYER. Efficient unit test case minimization. In ASE 2007.

BIBLIOGRAPHY 145

[93] BOYANG LI, MARK GRECHANIK, AND DENYS POSHYVANYK. Sanitizing and

minimizing databases for software application test outsourcing. In ICST

2014, pages 233–242. IEEE, 2014.

[94] BOYANG LI, DENYS POSHYVANYK, AND MARK GRECHANIK. Automatically

detecting integrity violations in database-centric applications. In

Proceedings of the 25th International Conference on Program

Comprehension, pages 251–262. IEEE Press, 2017.

[95] BOYANG LI, CHRISTOPHER VENDOME, MARIO LINARES-VÁSQUEZ, DENYS

POSHYVANYK, AND NICHOLAS A KRAFT. Automatically documenting unit

test cases. In Proceedings of ICST’16, April 2016.

[96] BEN LIBLIT, ANDREW BEGEL, AND EVE SWEETSER. Cognitive perspectives

on the role of naming in computer programs. In Proceedings of the 18th

annual psychology of programming workshop, 2006.

[97] MARIO LINARES-VÁSQUEZ, LUIS FERNANDO CORTÉS-COY, JAIRO

APONTE, AND DENYS POSHYVANYK. Changescribe: A tool for

automatically generating commit messages. In Proceedings of the 37th

International Conference on Software Engineering-Volume 2, pages 709–

712. IEEE Press, 2015.

[98] MARIO LINARES-VÁSQUEZ, SAM KLOCK, COLLIN MCMILLAN, AMINATA

SABANÉ, DENYS POSHYVANYK, AND YANN-GAËL GUÉHÉNEUC. Domain

matters: bringing further evidence of the relationships among anti-

patterns, application domains, and quality-related metrics in java mobile

apps. In Proceedings of the 22nd International Conference on Program

Comprehension, pages 232–243. ACM, 2014.

BIBLIOGRAPHY 146

[99] MARIO LINARES-VÁSQUEZ, BOYANG LI, CHRISTOPHER VENDOME, AND

DENYS POSHYVANYK. How do developers document database usages in

source code? In ASE’15 - New Ideas Track, pages 36–41, 2015.

[100] MARIO LINARES-VÁSQUEZ, BOYANG LI, CHRISTOPHER VENDOME, AND

DENYS POSHYVANYK. Documenting database usages and schema

constraints in database-centric applications. In Proceedings of the 25th

International Symposium on Software Testing and Analysis, pages 270–

281. ACM, 2016.

[101] RUCHIKA MALHOTRA AND MOHIT GARG. An adequacy based test data

generation technique using genetic algorithms. Journal of information

processing systems, 7(2), 2011.

[102] ANDY MAULE, WOLFGANG EMMERICH, AND DAVID S ROSENBLUM. Impact

analysis of database schema changes. In ICPC 2008.

[103] PAUL W MCBURNEY AND COLLIN MCMILLAN. Automatic documentation

generation via source code summarization of method context. In ICPC

2014, pages 279–290. ACM.

[104] GERARD MESZAROS. xUnit test patterns: Refactoring test code. Pearson

Education, 2007.

[105] LOUP MEURICE, CSABA NAGY, AND ANTHONY CLEVE. Detecting and

preventing program inconsistencies under database schema evolution. In

Software Quality, Reliability and Security (QRS), 2016 IEEE International

Conference on, pages 262–273. IEEE, 2016.

BIBLIOGRAPHY 147

[106] LOUP MEURICE, CSABA NAGY, AND ANTHONY CLEVE. Static analysis

of dynamic database usage in java systems. In International Conference

on Advanced Information Systems Engineering, pages 491–506. Springer,

2016.

[107] AUDRIS MOCKUS, ROY T FIELDING, AND JAMES D HERBSLEB. Two case

studies of open source software development: Apache and mozilla. ACM

TOSEM, 11(3):309–346, 2002.

[108] KEVIN MORAN, MARIO LINARES-VÁSQUEZ, CARLOS BERNAL-CÁRDENAS,

CHRISTOPHER VENDOME, AND DENYS POSHYVANYK. Automatically

discovering, reporting and reproducing android application crashes.

In Software Testing, Verification and Validation (ICST), 2016 IEEE

International Conference on, pages 33–44. IEEE, 2016.

[109] L. MORENO, G. BAVOTA, M. DI PENTA, R. OLIVETO, A. MARCUS, AND

G. CANFORA. Arena: An approach for the automated generation of release

notes. TSE, PP(99):1–1, 2016.

[110] LAURA MORENO, JAIRO APONTE, GIRIPRASAD SRIDHARA, ANDRIAN

MARCUS, LORI POLLOCK, AND K VIJAY-SHANKER. Automatic generation of

natural language summaries for java classes. In ICPC 2013, pages 23–32.

IEEE.

[111] LAURA MORENO, GABRIELE BAVOTA, MASSIMILIANO DI PENTA, ROCCO

OLIVETO, ANDRIAN MARCUS, AND GERARDO CANFORA. Automatic

generation of release notes. In Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering, pages

484–495. ACM, 2014.

BIBLIOGRAPHY 148

[112] LAURA MORENO AND ANDRIAN MARCUS. Jstereocode: automatically

identifying method and class stereotypes in java code. In Proceedings

of the 27th IEEE/ACM International Conference on Automated Software

Engineering, pages 358–361. ACM, 2012.

[113] LAURA MORENO, ANDRIAN MARCUS, LORI POLLOCK, AND K VIJAY-

SHANKER. Jsummarizer: An automatic generator of natural language

summaries for java classes. In ICPC 2013.

[114] C. NAGY, L. MEURICE, AND A. CLEVE. Where was this sql query executed?

a static concept location approach. In SANER 2015, pages 580–584,

March 2015.

[115] HOAN ANH NGUYEN, TUNG THANH NGUYEN, HUNG VIET NGUYEN,

AND TIEN N NGUYEN. idiff: Interaction-based program differencing

tool. In Automated Software Engineering (ASE), 2011 26th IEEE/ACM

International Conference on, pages 572–575. IEEE, 2011.

[116] D. NORTH. Introducing bdd. http://dannorth.net/introducing-bdd.

[117] CARLOS PACHECO, SHUVENDU K. LAHIRI, MICHAEL D. ERNST, AND

THOMAS BALL. Feedback-directed random test generation. ICSE ’07. IEEE

Computer Society, 2007.

[118] FABIO PALOMBA, GABRIELE BAVOTA, MASSIMILIANO DI PENTA, ROCCO

OLIVETO, ANDREA DE LUCIA, AND DENYS POSHYVANYK. Detecting bad

smells in source code using change history information. In Automated

software engineering (ASE), 2013 IEEE/ACM 28th international conference

on, pages 268–278. IEEE, 2013.

BIBLIOGRAPHY 149

[119] FABIO PALOMBA, GABRIELE BAVOTA, MASSIMILIANO DI PENTA, ROCCO

OLIVETO, DENYS POSHYVANYK, AND ANDREA DE LUCIA. Mining version

histories for detecting code smells. IEEE Transactions on Software

Engineering, 41(5):462–489, 2015.

[120] KAI PAN, XINTAO WU, AND TAO XIE. Generating program inputs for

database application testing. In ASE’11, pages 73–82, 2011.

[121] SEBASTIANO PANICHELLA, JAIRO APONTE, MASSIMILIANO DI PENTA,

ANDRIAN MARCUS, AND GERARDO CANFORA. Mining source code

descriptions from developer communications. In Program Comprehension

(ICPC), 2012 IEEE 20th International Conference on, pages 63–72. IEEE,

2012.

[122] SEBASTIANO PANICHELLA, ANNIBALE PANICHELLA, MORITZ BELLER,

ANDY ZAIDMAN, AND HARALD GALL. The impact of test case summaries

on bug fixing performance: An empirical investigation. In Proceedings of

the 38th ICSE, 2016.

[123] CHRIS PARNIN AND CARSTEN GÖRG. Improving change descriptions

with change contexts. In Proceedings of the 2008 international working

conference on Mining software repositories, pages 51–60. ACM, 2008.

[124] J-M PETIT, JACQUES KOULOUMDJIAN, J-F BOULICAUT, AND FAROUK

TOUMANI. Using queries to improve database reverse engineering.

In Entity-Relationship Approach—ER’94 Business Modelling and Re-

Engineering, pages 369–386. Springer, 1994.

BIBLIOGRAPHY 150

[125] J-M PETIT, FAROUK TOUMANI, J-F BOULICAUT, AND JACQUES

KOULOUMDJIAN. Towards the reverse engineering of renormalized

relational databases. In Data Engineering, 1996. Proceedings of the

Twelfth International Conference on, pages 218–227. IEEE, 1996.

[126] RAPHAEL PHAM, YAUHENI STOLIAR, AND KURT SCHNEIDER. Automatically

recommending test code examples to inexperienced developers. In

FSE’15, pages 890–893. ACM.

[127] DONG QIU, BIXIN LI, AND ZHENDONG SU. An empirical analysis of the

co-evolution of schema and code in database applications. In Proceedings

of the FSE 2013.

[128] FOYZUR RAHMAN, DARYL POSNETT, ISRAEL HERRAIZ, AND PREMKUMAR

DEVANBU. Sample size vs. bias in defect prediction. In FSE’13, pages

147–157, 2013.

[129] SARAH RASTKAR, GAIL C MURPHY, AND GABRIEL MURRAY. Summarizing

software artifacts: a case study of bug reports. In Proceedings of the 32nd

ACM/IEEE International Conference on Software Engineering-Volume 1,

pages 505–514. ACM, 2010.

[130] SARAH RASTKAR, GAIL C MURPHY, AND GLEN MURRAY. Automatic

summarization of bug reports. Software Engineering, IEEE Transactions

on, 40(4):366–380, 2014.

[131] MEGHAN REVELLE, BOGDAN DIT, AND DENYS POSHYVANYK. Using data

fusion and web mining to support feature location in software. In Program

BIBLIOGRAPHY 151

Comprehension (ICPC), 2010 IEEE 18th International Conference on,

pages 14–23. IEEE, 2010.

[132] PETER C RIGBY, DANIEL M GERMAN, AND MARGARET-ANNE STOREY.

Open source software peer review practices: a case study of the apache

server. In Proceedings of the 30th ICSE, pages 541–550. ACM, 2008.

[133] JOSÉ MIGUEL ROJAS, JOSÉ CAMPOS, MATTIA VIVANTI, GORDON FRASER,

AND ANDREA ARCURI. Combining multiple coverage criteria in search-

based unit test generation. In International Symposium on Search Based

Software Engineering, pages 93–108. Springer, 2015.

[134] JOSÉ MIGUEL ROJAS, JOSÉ CAMPOS, MATTIA VIVANTI, GORDON FRASER,

AND ANDREA ARCURI. SSBSE 2015. Springer International Publishing,

Cham, 2015.

[135] GREGG ROTHERMEL, ROLAND H UNTCH, CHENGYUN CHU, AND

MARY JEAN HARROLD. Prioritizing test cases for regression testing.

Software Engineering, IEEE Transactions on, 27, 2001.

[136] PER RUNESON. A survey of unit testing practices. Software, IEEE,

23(4):22–29, 2006.

[137] SIMONE SCALABRINO, GABRIELE BAVOTA, CHRISTOPHER VENDOME,

MARIO LINARES-VASQUEZ, DENYS POSHYVANYK, AND ROCCO OLIVETO.

Automatically assessing code understandability: How far are we? In 32nd

IEEE/ACM International Conference on Automated Software Engineering,

2017.

BIBLIOGRAPHY 152

[138] SIMONE SCALABRINO, MARIO LINARES-VÁSQUEZ, DENYS POSHYVANYK,

AND ROCCO OLIVETO. Improving code readability models with textual

features. In Program Comprehension (ICPC), 2016 IEEE 24th International

Conference on, pages 1–10. IEEE, 2016.

[139] DAG SJØBERG. Quantifying schema evolution. Information and Software

Technology, 35(1):35–44, 1993.

[140] MARINA SOKOLOVA AND GUY LAPALME. A systematic analysis of

performance measures for classification tasks. Information Processing &

Management, 45(4):427–437, 2009.

[141] MARIA JOAO C SOUSA AND HELENA MENDES MOREIRA. A survey on the

software maintenance process. In ICSM’98, pages 265–274, 1998.

[142] GIRIPRASAD SRIDHARA, EMILY HILL, DIVYA MUPPANENI, LORI POLLOCK,

AND K VIJAY-SHANKER. Towards automatically generating summary

comments for java methods. In ASE, 2010.

[143] PANAGIOTIS STRATIS AND AJITHA RAJAN. Test case permutation to

improve execution time. In 31th IEEE/ACM International Conference on

Automated Software Engineering (ASE), 2016.

[144] KUNAL TANEJA, YI ZHANG, AND TAO XIE. Moda: Automated test

generation for database applications via mock objects. In ASE’10, pages

289–292, 2010.

[145] HONGYIN TANG, GUOQUAN WU, JUN WEI, AND HUA ZHONG. Generating

test cases to expose concurrency bugs in android applications. In

BIBLIOGRAPHY 153

Proceedings of the 31st IEEE/ACM International Conference on Automated

Software Engineering, pages 648–653. ACM, 2016.

[146] FRANK TIP. A survey of program slicing techniques. Journal of

programming languages, 3(3):121–189, 1995.

[147] MICHELE TUFANO, FABIO PALOMBA, GABRIELE BAVOTA, ROCCO OLIVETO,

MASSIMILIANO DI PENTA, ANDREA DE LUCIA, AND DENYS POSHYVANYK.

When and why your code starts to smell bad (and whether the smells go

away). In IEEE Transactions on Software Engineering (TSE).

[148] MICHELE TUFANO, FABIO PALOMBA, GABRIELE BAVOTA, ROCCO OLIVETO,

MASSIMILIANO DI PENTA, ANDREA DE LUCIA, AND DENYS POSHYVANYK.

When and why your code starts to smell bad. In Proceedings of the 37th

International Conference on Software Engineering-Volume 1, pages 403–

414. IEEE Press, 2015.

[149] MICHELE TUFANO, FABIO PALOMBA, GABRIELE BAVOTA, MASSIMILIANO

PENTA, ROCCO OLIVETO, ANDREA LUCIA, AND DENYS POSHYVANYK. An

empirical investigation into the nature of test smells. In ASE’16, 2016.

[150] ARIE VAN DEURSEN AND LEON MOONEN. The video store revisited–

thoughts on refactoring and testing. In Proc. 3rd Int’l Conf. eXtreme

Programming and Flexible Processes in Software Engineering, pages 71–

76. Citeseer, 2002.

[151] ARIE VAN DEURSEN, LEON MOONEN, ALEX VAN DEN BERGH, AND

GERARD KOK. Refactoring test code. CWI, 2001.

BIBLIOGRAPHY 154

[152] CARMINE VASSALLO, SEBASTIANO PANICHELLA, MASSIMILIANO

DI PENTA, AND GERARDO CANFORA. Codes: mining source code

descriptions from developers discussions. In Proceedings of the 22nd

International Conference on Program Comprehension, pages 106–109.

ACM, 2014.

[153] XIAORAN WANG, LORI POLLOCK, AND K. VIJAY-SHANKER. Developing

a model of loop actions by mining loop characteristics from a large code

corpus. In ICSME. IEEE, Sep 2015.

[154] MATIAS WATERLOO, SUZETTE PERSON, AND SEBASTIAN G. ELBAUM. Test

analysis: Searching for faults in tests (N). In ASE 2015, pages 149–154,

2015.

[155] WESTLEY WEIMER. Generating readable unit tests for guava. In SSBSE

2015, Bergamo, Italy, September 5-7, 2015, volume 9275, page 235.

Springer, 2015.

[156] MARK WEISER. Program slicing. In Proceedings of the 5th international

conference on Software engineering, pages 439–449. IEEE Press, 1981.

[157] ELAINE WONG, JINQIU YANG, AND LIN TAN. Autocomment: Mining

question and answer sites for automatic comment generation. In ASE 2013

IEEE/ACM 28th International Conference on, pages 562–567. IEEE, 2013.

[158] BAOWEN XU, JU QIAN, XIAOFANG ZHANG, ZHONGQIANG WU, AND LIN

CHEN. A brief survey of program slicing. ACM SIGSOFT Software

Engineering Notes, 30(2):1–36, 2005.

BIBLIOGRAPHY 155

[159] JIFENG XUAN AND MARTIN MONPERRUS. Test case purification for

improving fault localization. In FSE 2014. ACM.

[160] AKIHISA YAMADA, TAKASHI KITAMURA, CYRILLE ARTHO, EUN-HYE CHOI,

AND ARMIN BIERE. Greedy combinatorial test case generation using

unsatisfiable cores. In ASE’16, 2016.

[161] ANNIE TT YING AND MARTIN P ROBILLARD. Code fragment

summarization. In Proceedings of the 2013 9th Joint Meeting on

Foundations of Software Engineering, pages 655–658. ACM, 2013.

[162] ANNIE TT YING AND MARTIN P ROBILLARD. Selection and presentation

practices for code example summarization. In FSE, pages 460–471. ACM,

2014.

[163] ANDY ZAIDMAN, BART VAN ROMPAEY, SERGE DEMEYER, AND ARIE

VAN DEURSEN. Mining software repositories to study co-evolution of

production & test code. In Software Testing, Verification, and Validation,

2008 1st International Conference on, pages 220–229. IEEE, 2008.

[164] BENWEN ZHANG, EMILY HILL, AND JAMES CLAUSE. Automatically

generating test templates from test names. In ASE 2015.

[165] BENWEN ZHANG, EMILY HILL, AND JAMES CLAUSE. Towards automatically

generating descriptive names for unit tests. In ASE’16, 2016.

	Automatically Documenting Software Artifacts
	Recommended Citation

	tmp.1530195850.pdf.4_g2k

