

Model driven design and data integration in semantic web
information systems
Citation for published version (APA):
Sluijs, van der, K. A. M. (2012). Model driven design and data integration in semantic web information systems.
[Phd Thesis 1 (Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische
Universiteit Eindhoven. https://doi.org/10.6100/IR732193

DOI:
10.6100/IR732193

Document status and date:
Published: 01/01/2012

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR732193
https://doi.org/10.6100/IR732193
https://research.tue.nl/en/publications/d0deddec-beee-4f92-a695-1d72ab74cd6e

Model Driven Design and Data
Integration in Semantic Web

Information Systems

Kees van der Sluijs

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

van der Sluijs, Kees

Model Driven Design and Data Integration in Semantic Web Information Systems /
by Kees van der Sluijs.
Eindhoven: Technische Universiteit Eindhoven, 2012. Proefschrift.

A catalogue record is available from the Eindhoven University of Technology Library
ISBN: 978-90-386-3134-9
NUR: 980
Keywords: Interoperability / Heterogeneous Databases / Information networks / Multime-
dia Information Systems / Hypertext/Hypermedia
C.R. Subject Classification (1998): D.2.12, H2.5, H3.4c, H5.1, H5.4

SIKS Dissertation Series No. 2012-12
The research reported in this dissertation has been carried out under the auspices of SIKS,
the Dutch Research School for Information and Knowledge Systems.

Cover design: Ilse Weisfelt
Printed by University Press Facilities, Eindhoven, the Netherlands.

Copyright c© 2012 by Kees van der Sluijs, Eindhoven, the Netherlands.

All rights reserved. No part of this thesis publication may be reproduced, stored in retrieval
systems, or transmitted in any form by any means, mechanical, photocopying, recording,
or otherwise, without written consent of the author.

Model Driven Design and Data Integration
in Semantic Web Information Systems

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de

rector magnificus, prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen
op dinsdag 15 mei 2012 om 16.00 uur

door

Kornelis Antonius Martinus van der Sluijs

geboren te Maasdriel

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. G.J.P.M. Houben
en
prof.dr. P.M.E. De Bra

Contents

Preface ix

1 Introduction 1

1.1 Motivation . 1

1.2 Problems and Research Goals . 2

1.3 Outline of the Dissertation . 3

2 Related Work 5

2.1 Web Development . 5

2.2 Semantic Web . 7

2.2.1 Languages of the Semantic Web . 9

2.2.2 XML . 9

2.2.3 RDF(S) . 10

2.2.4 OWL . 13

2.2.5 SPARQL . 15

2.2.6 Rules . 15

2.2.7 Linked Open Data . 16

2.2.8 Tagging . 18

2.3 Web Information Systems . 19

2.3.1 WebML . 20

2.3.2 OOHDM . 21

2.3.3 UWE . 22

2.3.4 OOWS . 23

2.3.5 Related Fields . 24

2.4 Summary . 24

3 Hera-S 25

3.1 Introduction . 25

3.2 Method . 27

3.3 Data Modeling . 29

3.4 Application Model . 32

3.4.1 Units, Attributes and Relationships 32

3.4.2 Adaptation Examples . 36

3.4.3 Other constructs . 37

3.5 Presentation Model . 40

3.6 Implementation . 42

3.7 Summary . 44

vi CONTENTS

4 Extending Hera-S 45

4.1 Introduction . 45

4.2 Data Integration in Hera-S . 45

4.3 Model Builders . 47

4.4 Modeling Aspects in Hera-S . 50

4.4.1 Introduction . 50

4.4.2 Related work . 51

4.4.3 Aspect-Oriented Adaptation Engineering 52

4.4.4 Implementation . 59

4.5 Presentation Generation . 59

4.5.1 Aspect-Orientation in AMACONT 62

4.5.2 Semantics-Based Adaptation . 64

4.6 Summary . 67

5 Data Integration Using SW-based Techniques 69

5.1 Introduction . 69

5.2 Data Coupling . 70

5.3 Vocabularies . 73

5.4 Data Transformation . 76

5.4.1 Data exchange . 76

5.4.2 Transformation scenario . 77

5.4.3 Transformation using SWRL . 77

5.4.4 Transformation using customized SPARQL queries 79

5.5 Automating Relation Discovery . 82

5.5.1 String Matching Techniques . 83

5.5.2 Utilizing Helper Ontologies . 85

5.5.3 Using Context for Disambiguation 86

5.5.4 Using User Feedback . 87

5.5.5 Implementation and Performance 89

5.6 Summary . 91

6 Applications of Data Integration 93

6.1 χ Explorer . 93

6.1.1 Semantic Integration . 94

6.1.2 Navigation and Visualization . 96

6.1.3 User-generated Metadata . 100

6.1.4 Evaluation . 102

6.1.5 Related Work . 107

6.2 The SenSee TV-Recommender . 107

6.2.1 SenSee Architecture . 108

6.2.2 Semantic Integration . 110

6.2.3 Inference, Query Expansion and Recommendation 113

6.2.4 Related Work . 115

6.3 The ViTa Educational Videos . 116

6.3.1 Semantic Integration of User Tags 116

6.3.2 Evaluation . 118

6.4 Summary . 119

CONTENTS vii

7 Exchanging User Models 121
7.1 Introduction . 121

7.1.1 User Model Context . 122
7.1.2 Semantic Heterogeneity . 123

7.2 MobiLife . 126
7.2.1 General architecture . 126
7.2.2 User Model Context . 128
7.2.3 Applications . 131

7.3 Grapple . 133
7.3.1 GALE . 134
7.3.2 Overall Architecture . 137
7.3.3 GUMF . 139

7.4 GAL . 142
7.4.1 Extending GAL . 142
7.4.2 Types of Adaptation . 143
7.4.3 Formal Specification . 147

7.5 Summary . 153

8 Conclusions and Future Work 155
8.1 Conclusions . 155
8.2 Contributions . 160
8.3 Future Work . 161

8.3.1 Hera . 162
8.3.2 Relco . 162
8.3.3 Cultural Heritage . 163
8.3.4 SenSee . 163
8.3.5 GRAPPLE . 164

Bibliography 165

List of Publications 177

Abbreviations 181

Summary 183

Samenvatting 185

Curriculum Vitae 187

CONTENTS ix

Acknowledgements
My life as a PhD-student started in 2004. I was motivated by my Master’s graduation

project which had been a great experience and a wonderful time. Together with my
fascination for science this lead me to ask my supervisor professor Geert-Jan Houben if
becoming a PhD-student would be a possibility. Geert-Jan offered me this opportunity for
which I am still grateful. It was not a disappointing experience, I generally liked most of
the tasks that come with the job and I was especially happy with the amount of variation it
offered; projects, papers, teaching, conferences. The experience has been very educational
and it helped shaping my way of thinking.

During my fourth year as a PhD-student professor Paul De Bra offered me a three
year job as the overall project manager of the European GRAPPLE project, based on a
recommendation from Geert-Jan. Obviously, I seized this great opportunity and accepted.
The job offered a lot of variation, which was again very different from my work as a PhD-
student and brought many new experiences and insights. The project ended successfully
and left me with a mostly positive feeling.

Unluckily, I didn’t finish my PhD-thesis during the project. I clearly preferred working
on the project with its many deadlines and the excitement this new research gave me.
This did not compare to the relative boredom of working at the seemingly endless task of
compiling all my published work into one book. Without any hard deadlines it was easier
to postpone and store away the urgency of completing it somewhere in the back of my
head.

At the end of the GRAPPLE-project I was confronted with a number of radical changes
in my life, which brought me to rethink my future in many aspects including my work. I
decided to leave academia and try something else. This didn’t mean I wanted to abandon
my PhD-thesis, but working on it proved more challenging than I thought. Part of this
was caused by the energy cost of turning my life around, but it was also caused by a lack
of positive motivation. The PhD-thesis is famous for being the one type of book for which
the effort to write it is more than the combined effort of all its readers that will ever read
it. And of course the fact that my work was ageing didn’t help either. My main motivation
was a negative one, I cannot stand quitting something that I started and intended to finish.
However, postponing work is also not quitting and it seemed to work well for some time.
This vicious circle was finally broken when, with help of some peer pressure, I realized
this was going nowhere. I finally understood that the only way to finish this work was by
cutting off all distractions and completely focus myself on this thesis. And that is what I
did. This book is the end result. I feel proud, and relieved, for not quitting but finally
finishing what I should have done long ago. I learned my lesson that postponing work I
don’t like is useless. If you want something done, do it now!

This preface cannot be concluded without thanking the many people that have helped
in making this work possible. Special thanks goes out to Geert-Jan and Paul - I cannot
thank you enough for making the entire process possible and the fact that you have never
let me down. I also have to thank everyone I have worked with, all my co-authors, and
especially Pieter Bellekens, my room mate with whom I shared most of my lunches for
years and with whom I share a love for scientific and political news and humor. I also

x CONTENTS

would like to thank all the students I have tutored during their master thesis - it was an
enjoyable experience and your work has been invaluable to me. Furthermore, I want to
thank our secretary Riet and her always warm personal interest. I want to wish her all
the best with her own hardships. Of course, I cannot leave out Ine, our other secretary,
who just always enthusiastically does what needs to be done. Finally, I want to thank my
entire PhD committee for their time and effort in reading, providing feedback, and being
my opponents at my defense.

Personally, I want to thank all of my family and friends who have always supported
me. I will not name you all, but you all know who you are. I couldn’t have done this
without you. I do need to especially thank Christiaan Tempelman, with whom I’ve had
many interesting discussions and laughs for many years in the train and of course the fun
I’ve had with him during years of fitness, running, festivals and when just having a drink -
or two. I hope you’ll finish your PhD thesis on heterogenous catalysis quicker than I did
mine.

Chapter 1

Introduction

Nowadays the World Wide Web has become an integral part of our lives. The Web satisfies
almost every information need one can think of and is available on an ever growing amount
of devices. As a technology, the Web has been strongly evolving ever since its inception.
Where previously the Web was about interconnected documents, this has now changed into
an interactive Web in which users don’t only consume but also actively produce content.
The Web is now a vast network of interactive Web applications that allows interaction
and exchange of data.

This thesis is based on technology that is envisioned as the next step in the evolution
of the Web: the Semantic Web [Berners-Lee et al., 2001]. Its vision is that the Web is no
longer a Web of data, or a solely a Web of applications. It is a Web of interlinked knowledge.
It is envisioned that the Semantic Web enables exchange and coupling of heterogenous
data on a Web scale. This opens up many new possibilities for Web applications, as it
allows using local application specific data and combine and enrich it with external data.

The Semantic Web was envisioned as a part of the answer for data interoperability, i.e.
most applications cannot exchange data because they model and use their own internal
data structures with their own syntax, structure and meaning. However, Semantic Web
languages have also deliberately been kept simple and generic. They are minimally
prescribing in how to model your data and it allows authors of semantic web models and
data semantically a large degree of freedom. This freedom was seen as a major condition
for the Semantic Web to be successful by its designers. It was recognized that there is
no universal schema or ontology that the entire world can agree on. Many applications
do exist in the world that have a set of requirements for its underlying datamodel that is
incompatible with that of others. Therefore instead of enforcing one particularly view on the
world, the basic viewpoint in the Semantic Web world is to only provide a generic flexible
datamodel and a way to express semantic and leave the actual model and vocabulary up
to the developers. This datamodel, basically a directed graph, does provide a standardized
solution for syntactic interoperability using one particular model.

In the rest of this introduction the motivation and research goals for this thesis will be
discussed. Note that it will refer to concepts which will only be explained in details in
Chapter 2.

1.1 Motivation

This thesis has two focal points. The first focal point is extending an existing data driven
Model-Driven Web Engineering (MDWE) approach called Hera. This approach is based on
the common design pattern that given a data source one wants to create a Web applications

2 Introduction

around it. However, instead of looking at the traditional approach in Hera, i.e. creating
rather static monolithic Web applications around a datasource with a static schema, we
rather looked at the problem of creating a framework for dynamic Web applications that
integrates evolving datasources that might have changing schemas. The old versions of
Hera were not able to do adapt to those requirements. Therefore, we aimed for a complete
redesign of Hera that would fit those requirements. The resulting framework is called
Hera-S, where the ‘S’ stands for Semantic. It aims to improve flexibility in terms of reuse
of data and functionality. This can be achieved by exploiting Semantic Web languages like
RDF(S) or OWL.

The second focal point is data integration. Hera-S should not only provide reuse of
singular monolithic datasources, but also the flexibility to integrate several data sources.
The power to couple and mix data sources offers many opportunity of new and interesting
applications. However, achieving data integration still leave semantic interoperability issues
that need to be dealt with, i.e./ many sources are modeled differently and apply (often
implicit) semantics to data values. We recognized that dealing semantic interoperability
is a task that is applicable in a much broader sense than Hera-S alone. Therefore, next
to investigating this issue in the Hera-S sense we also take a broader perspective and
investigate how our solutions might be applicable in a wider range of Web applications.
Therefore in a large second part of this thesis we will aim at developing a toolset for dealing
with semantic interoperability and see if we can apply this toolset in a broad range of Web
applications. If we are able to do this, we should also be able to show how interoperability
improves on the possibilities of these Web applications.

1.2 Problems and Research Goals

In this dissertation we present a completely reworked MDWE method especially tailored
towards Semantic Web techniques and interoperability of data, while maintaining its
strengths in personalization, adaptation and simplicity. Moreover, we also present an
approach for coupling semantic heterogenous Resource Description Framework (RDF)
data sources and shows how this and other Semantic Web techniques can be applied to
improve existing Web Information Systems (WIS) by enabling simpler reuse of external
information and provide richer data retrieval by combining information sources.

For this purpose several questions have to be answered.

Question 1: How do MDWE-architectures have to be adapted to enable flexi-
ble and dynamic Semantic Web data integration?
We will first look at the literature on MDWE and identify their main features. We then look
specifically at Hera-S as a MDWE and present a complete redesign of Hera-S, including a
formal basis of the central part of Hera-S: the application model (see Chapter 3). The
redesign is flexible in multiple ways. Data models can plugged in or changed during runtime
while the same holds for the application model. Also, its design is modular, i.e. the data
integration component is separate from the application component and the application
component is separate from the presentation component. This allows exchanging any of
these components for other specialized components and frameworks.

Question 2: How can MDWE benefit from data integration techniques?
Given the redesigned Hera-S we look how we can make data integration work, both on the
data input side as on the user model side where data integration allows us to learn about the

1.3 Outline of the Dissertation 3

user from external applications. Furthermore we look at applications of Hera-S’ flexibility.
For example, we see how we can apply aspect-orientation techniques to make designing and
implementing additional cross-cutting features into existing Hera-S applications simpler.
We also look if we can indeed put an specialized presentation generation component in
front of the Hera-S application model component.

Question 3: How to Integrate semantic heterogenous RDF data?
We want to able to create Web applications in Hera-S over integrated set of RDF data-
sources. As data integration is a broader issue than in Hera-S alone we look at the generic
issue at hand: how to integrate semantic heterogenous RDF data. Our central goal is in
creating a generic toolset which provides several matching and mapping techniques for
designers who want to integrate two specific data sources. We look both at pure syntactic
techniques and semantic techniques using external datasources. Another potential source
for this task is utilizing human computation. The resulting toolset is aimed to be useful
for integration of structured semantic datasources and structureless elements like tags with
structured semantic datasources.

Question 4: How can we apply data integration in Web applications in various
domains?
Given the toolset that is the projected result of question 3, we see if and how we can utilize
this toolset to achieve data integration in Semantic Web applications in different domains.
We explore the particular needs and requirements for the applications in the various
domains and see how our toolset can be used in solving their specific data integration
needs.

Question 5: How can domain specific Web applications benefit from data
integration?
Given that we achieve data integration in the various Web applications, we investigate
how these applications can exploit that integrated data and achieve additional unique
features. We look at various needs that exist for these Web applications and look for
specific solutions. For these solutions we always try to keep in mind that many problems
are shared across domains and where possible we try to find generally applicable solutions.

1.3 Outline of the Dissertation

First, in chapter 2 we discuss the background technologies that are relevant for this thesis
and related work. Next to the evolution of the Web and developments like tagging, we
discuss in more detail the Semantic Web, some languages associated with it and the
evolution of linked data. We also describe the need for WIS and MDWE methods and
describe some of the related methods next to Hera. In chapter 3 we present a complete
redesign of the Hera framework, called Hera-S. Next to its architectural design we provide
a formal definition of the application model and discuss some of the implementation details
of the Hera-S engine which is called Hydragen. Then in chapter 4, as part of answering
Question 2, we take a look at how a data integration engine can be put in front of Hera-S.
In that chapter we also look at the flexibility of the Hera-S method as we explore an
extension of Hera-S which allows the implementation of application cross-cutting features
using aspect-orientation. Next to that we also look at using the external presentation
engine AMACONT as the presentation engine together with Hydragen. The actual data

4 Introduction

integration toolset called Relco is proposed in chapter 5 as an answer for question 3.
Part of Relco is a mapping language to describe and execute data transformation of data
instances between schemas. This mapping language is an extension of the SPARQL query
language. Next to this mapping language Relco contains a set of matching techniques that
can work together to help a designer find probable mapping candidates. Relco syntactically
uses string matching technologies, semantically it allows exploiting external knowledge
sources like word, and finally it enhances ordering the best matches by using context
disambiguation and user feedback. Finally, in chapter 6 and 7 we look at a number of real
world applications that were built using the Relco toolbox. There we answer question 4
by showing how data integration was achieved for those particular scenarios using Relco.
In that same chapter we answer question 5 by exploring several advances that can be
made using data integration in these applications as well as looking at particular issues we
encountered and solved for those particular instances where we tried to learn generalized
lessons for these issues where possible.

Chapter 2

Related Work

In this chapter we discuss the technologies that form the background for this
thesis. First we discuss the development of the Web from its early stages
into the current Web 2.0 and then the next step in its evolution, namely
the Semantic Web. Following the Semantic Web Stack we review the main
technologies and languages involved in the Semantic Web, like XML, RDF(S),
OWL, SPARQL. We also look at developments like Linked Data and Tagging.
Besides the Semantic Web we look at evolution of Web Information Systems
and the development of Model Driven Web Engineering for structured Web
application development. We look at some of the most important methods that
have been created to date, namely WebML, OOHDM, UWE and OOWS.

2.1 Web Development

Since its original inception in 1991 [Berners-Lee et al., 1994], the World Wide Web has come
a long way in its evolution. It first grew into a web of handcrafted text documents that
were connected via links. When the Web became more popular and some organizations
recognized its potential the first Web applications started to appear that generated the
content of the Web pages from data that was stored in databases [Berners-Lee and Fischetti,
1999].

It took several years of maturing in which search technology radically improved and
broadband internet connections were introduced, when the Web made a large step in its
evolution. Web applications slowly turned from a consumption-only relation with its users
into a producer-consumer relationship. Via the technological introduction of forums, blogs
(e.g. Wordpress, Twitter) and wikis (e.g. Wikipedia), content sharing websites like Youtube
and Flickr to explicitly social Web applications (e.g. MySpace, Facebook, LinkedIn) and
the parallel development and views on openness in software development, the Web evolved
into Web 2.0 [Millard and Ross, 2006]. Web 2.0 stands for interactive Web applications. So
Web pages are no longer static entities that have to be loaded one by one. Instead browsers
are now used as a cross-browser platform in which interactions will lead to instant changes
within a page. Also a first notion of mashups and reuse of data has been introduced: RSS
feeds allow making personalized news portals, Youtube movies and Flickr photos can be
easily embedded in other Web application and the functionality of for example Google
and Yahoo maps can be easily reused and integrated in your own application logic.

Web 2.0 is a great success and access to the Web is considered to be a fundamental need
for everyone. Of course, Web technologies are also under continuous development. One

6 Related Work

important development is the growing number of devices that are capable of using the Web.
Mobile Internet-capable devices for example seem to have reached the maturity required
for commercial success. This is due to two key ingredients: increased bandwidth, closing
up the gap with common broadband Internet speeds, and widespread availability, mainly
achieved by rapid deployment and price-drop of new and superior standards by mobile
telecom operators (e.g. UMTS). Not coincidentally, advances in the capabilities of handheld
and portable devices (e.g. mobile and smart phones, PDA’s, portable game-consoles) have
been equally large. More economical power-usage, increased graphical capabilities and
heightened processing power have turned these devices into full-fledged Web clients. A
similar development can be seen in the living room. An increasing number of people
have a Web-capable game console. Also the television is nowadays hooked up to the
Web, either via a set-top box, an HD media player or directly via its increasing network
capabilities. The different capabilities of these devices force Web developers to rethink
their Web application architecture.

A parallel software evolution in the World Wide Web has been the emergence of the
Semantic Web [Berners-Lee et al., 2001]. The regular Web contains linked documents,
which themselves are not machine-interpretable. This has a number of limitations. As
most Web documents are generated from data in private databases and the data is not in a
machine-processable form it is hard to find specific information. This can be partially solved
by search engines that index the text documents and create indexes based on keyword
occurrences. However, especially metadata, i.e. data about data, is missing. Consider for
example the information need of a student for planning the cheapest acceptable trip for a
scientific conference. The current manual way to do this is typically something like:

• Finding the location of the conference on the conference website.

• Finding cheap hotels in the conference’s neighborhood.

• Looking for trusted reviews of that hotel on several hotel reviewing Websites for
checking hotel’s acceptability.

• Finding the airports closest to that conference site.

• Visit several airline companies that have an acceptable service for evaluating the
cost and quality of all connection options from local airports to one of the closest
target airports.

• Calculate costs for several (public) transportation options from and to the airports
and the hotel.

This can be a very long and laborious process that is hardly automatable without
semantic technology that enables the exchange of knowledge and logic. Automated
answering of such a question includes coupling datasets from heterogenous Web applications
that usually have very incompatible data formats. It also includes taking the user into
account as the question ‘what is acceptable’ is a very personal one.

Another limitation is the lack of metadata. Instead of offering only the pure data in
the form of Web pages and multimedia documents, also consider the need for data like
‘who is the author of this data’, ‘when was this data created’, ‘what do others think of this
data’, ‘what is the technical quality of this data?’, etc. The regular Web does not contain
the mechanisms for expressing this metadata.

2.2 Semantic Web 7

2.2 Semantic Web

The Semantic Web does offer the mechanisms to solve these issues and therefore is a next
step in the evolution of the Web.

The Web, as it is, is human-readable. It is machine-processable in the sense that
machines can render pages, follow links and index pages based on word occurrence.
However, it is not machine-interpretable in the sense that the text itself can be truly
understood by machines. Semantic relationships of pages with others are not obvious for
the machine. Furthermore, the context of documents is not clear either. This issue can be
tackled by using the Semantic Web, because the Semantic Web is “an extension of the
current web in which information is given well-defined meaning, better enabling computers
and people to work in cooperation.” [Berners-Lee et al., 2001].

Figure 2.1 is a regularly used example that illustrates this issue. Suppose this is a
web page about a disease in the Chinese language. For non-Chinese speakers the symbols
themselves are meaningless, just like the text on every page will be meaningless to a
computer. We can observe the markup but not the semantic interpretation. We could
use semantic marking, for instance to indicate that the top element of the page is the
name of the disease, and subsequent markings indicate the symptoms and the treatment
of the disease. Further semantics relationships can indicate that administration of a drug
is a disease treatment and that treatment alleviates symptoms. This would already give
some semantic interpretation capabilities even though we still do not interpret the symbols
themselves. For example, it allows for instance categorization of treatments, i.e. if other
pages contain different forms of treatment.

Figure 2.1: Meta-data illustrationa(1)

ahttp://www.slideshare.net/Frank.van.Harmelen/rdf-briefing

Note that current semantic web standards do not allow to express the true meaning
of words as illustrated by 2.1. It for instance does not offer a standardized way to
discuss diseases, symptoms or drugs, etc. However it does allow to express and structure
information we do agree on. The standardized semantic web languages focus on expressing
relationships like the ‘IS-A’ and class and subclass structuring of data. This can be
used as a semantic basis that allows basic semantic reasoning using the meaning of these
relationships. The semantic web languages can be used for defining vocabularies, e.g.

http://www.slideshare.net/Frank.van.Harmelen/rdf-briefing

8 Related Work

medicinal vocabularies that do express concepts like disease, symptom and treatment. It
allows to express the concepts and the semantic relationship between these concepts but
without expressing there explicit meaning.

For another illustration of the metadata issue, consider Figure 2.2. This is an image of
a famous painting by Escher. However, this image cannot be automatically processed and
interpreted. And even if it could, this would not reveal who the painter is of this work,
what its title is, what the technical specifics are, how it relates to other works or what
other people think about this picture. Next to the Escher painting you can see an example
of metadata that one could want to record about this image.

Figure 2.2: Meta-data illustration (2)

The usefulness of metadata becomes obvious as one sees how one can construct richer
queries in the semantic web. In the regular Web one can use a keyword based search
that works by matching the search string with term occurrences in textual Web pages.
Structured metadata makes more complex queries possible. It allows answering queries like
“which optical illusions in the late career of Escher get an average user rating of at least 8?”.
It allows for an enhanced browsing experience. One could for instance browse for “similar
works” using external knowledge sources, which could be works with the same subjects, of
the same artist, from the same time period or which are equally popular. Or for “more
information about this artist” based on the author’s full name. This is made possible
without manual inclusion of links to other similar works, but by (semi-)automatically
combining pieces of knowledge that are connected via links. For example, if two images of
paintings have metadata that attribute the work to Escher and refer to an art thesaurus
which describes Esher, these images are semantically linked.

The Semantic Web provides the technological foundation for structuring metadata and
should eventually allow expressive query power on a Web scale as outlined in the previous
paragraphs. This process is far from trivial [Shadbolt et al., 2006]. Making this technology
a success on a Web scale means an ongoing effort in the standardization of the languages,
adoption of the languages and ongoing process in supporting technologies. However, that
this technology works is shown via running example applications as shown in Section 6.

2.2 Semantic Web 9

2.2.1 Languages of the Semantic Web

The set of Semantic Web languages is organized in a hierarchical stack structure as shown
in Figure 2.3 [Berners-Lee, 2003; Horrocks et al., 2005]. The technology of every layer of
the stack builds upon the layer(s) below it.

Figure 2.3: The Semantic Web Stack

The bottom layer contains the technology for writing text and resource identification.
Unicode1 is a standard for consistent text representation. Unicode has a clear multilingual
focus, e.g. its character encoding allows the representation of over 100,000 characters.

A Uniform Resource Identifier (URI) uniquely identifies abstract or physical resources
on the Web. The Uniform Resource Locator (URL) is a subset of the set of URIs, where a
URL is a resource indication that also includes location details of how this resource can
be looked up on the Web.

2.2.2 XML

The next layer in the Stack is syntactical. The most used format is Extensible Markup
Language (XML)2, however alternatives do exist and will be used in this thesis.

XML is a simple text-based data storage format. XML documents consist of a number
of entities, which consist of nested element tags, which in turn can have attributes. The
structure of an XML document can be formally defined using a DTD or an XML Schema3.
URIs are used for the identification of documents and entities: each document and each
entity has a unique URI which is normally built up with a namespace part (itself a URI)
and a local name. Entities that have the same namespace URI are said to be in the same
namespace.

XML is the most widely used serialization language in the Semantic Web. However, it
is not the only syntax used for serialization. XML is a generic syntax that can be used for

1cf. http://www.unicode.org/
2http://www.w3.org/XML/
3cf. http://www.w3.org/TR/xmlschema-0/

http://www.unicode.org/
http://www.w3.org/XML/
 http://www.w3.org/TR/xmlschema-0/

10 Related Work

encoding arbitrary datastructures, but especially the RDF/XML syntax is criticized for
being verbose and hard to read by humans. Therefore a number of additional serialization
syntaxes have been introduced that are especially tailored to RDF. The most often used
XML alternative is N34, which as a number of derivatives, namely Turtle5 (more on turtle
in Section 2.2.3) , Ntriples6, and Trig7. However note that these syntaxes are specifically
used as a RDF serialization, while this does not apply to XML.

2.2.3 RDF(S)

Originally designed as a metadata representation language, RDF grew into the data
interchange format that it is today in the Semantic Web Stack. RDF is a modeling
approach for defining data using triples which have a subject, predicate and object. A
collection of RDF statements represents a labeled directed graph that (possibly) has
multiple edges and loops (i.e. a multigraph).

The main entity in RDF is called a resource. Resources can be anything, from Web pages
and other online documents to physical entities and even abstract concepts. Therefore,
RDF uses the URI mechanism to uniquely identify these resources, and the RDF language
consists of statements that are made about the resources. Each statement consists of:

1. A subject: the resource about which the statement is made.

2. A predicate: an attribute or characteristic of the subject. In RDF, predicates are
special forms of resources and thus also have URIs.

3. An object: the value of the predicate. An object can either be a resource or a literal
value like a string or integer. RDF uses XML Schema data types to denote the type
of these literal values.

Figure 2.4 is an example RDF graph describing my homepage. In RDF/Turtle syntax
this is written as:

Figure 2.4: RDF Graph example

4cf. http://www.w3.org/DesignIssues/Notation3
5cf. http://www.w3.org/TeamSubmission/turtle/
6cf. http://www.w3.org/TR/rdf-testcases/#ntriples
7cf. http://www4.wiwiss.fu-berlin.de/bizer/TriG/

http://www.w3.org/DesignIssues/Notation3
http://www.w3.org/TeamSubmission/turtle/
 http://www.w3.org/TR/rdf-testcases/#ntriples
http://www4.wiwiss.fu-berlin.de/bizer/TriG/

2.2 Semantic Web 11

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix ex: <http://www.example.com/>.

<http://wwwis.win.tue.nl/~ksluijs/>
rdf:type ex:Webpage;
ex:WebsiteAbout ex:Me .

ex:Me ex:FullName "Kees van der Sluijs";
ex:Email <mailto:k.a.m.sluijs@tue.nl> .

In addition to these basic constructs, RDF also supports more advanced constructs:

• Blank nodes Blank nodes are anonymous subjects or objects. Blank nodes can be
either used for resources without URI identifier or for intermediate values, e.g. used
for multi-values.

• Typed literals Literal values can have a datatype. RDF relies on the rich XML
datatype [Biron et al., 2004] mechanism for this.

• Containers and Collections RDF allows grouping resources using several con-
structs.

• Reification With reification it is possible to describe properties of RDF triples.

While XML can have locally defined attributes, every RDF triple is a globally defined
statement. But note that even though RDF uses URIs for global identification, this doesn’t
mean that every URI is HTTP accessible and can be looked up for more information. For
example, the URIs in Figure 2.4 from the example.com domain are not HTTP accessible
(the example.com domain is actually reserved for documentation).

For more specific information about RDF refer to [Manola and Miller, 2004].
Resource Description Framework Schema (RDFS) is a semantic extension of RDF

that provides a structure for grouping and relating resources and their properties. RDFS
provides a class hierarchy structure. Classes are resources themselves and classes can be
defined as subclasses of other classes. Resources can also be defined as members (named
instances) of a class. Semantically the class hierarchy defines the class extension of a class
as the set of the instances of that class, where all instances of a class are recursively also
instances of its superclass.

RDFS also defines a property hierarchy structure. The property hierarchy is a similar
structure as the class-hierarchy, except for that property instances are typically used as
predicates in triples. Furthermore, properties have the basic RDFS facilities rdfs:domain
and rdfs:range for defining their domain and range. Domains are used to state that any
resource that has a given property is an instance of one or more classes. Ranges are used
to state that the values of a property are instances of one or more classes.

For both hierarchies the rdf:type is used to state that a resource is an instance of either
a class or a property.

Other often used utility properties defined by RDFS are rdfs:label for defining human
readable names for resources, rdfs:comment for human readable descriptions of resources
and rdf:value that has no formal semantics, but is typically used to describe the main
value (if there is one) of a structured value.

Figure 2.5 is an example of a graph containing RDFS. It builds upon Figure 2.4, but
now with RDFS structure. It is stated ‘me’ is an instance of the class ‘man’, which on its

12 Related Work

Figure 2.5: RDFS Graph example

turn is a subclass of ‘person’, as is ‘woman’. It also shows that ‘email’ is a subproperty of
‘contact’. Moreover, ‘email’ is a property that has ‘person’ as its domain class and ‘email
address’ as its range class.

Applying the class extension to Person leads to concluding that I am also a ‘Person’.
This can also be concluded based on the fact that the ‘Email’ property is used with ‘me’
as a subject, because ‘Email’ has domain ‘Person’. That ‘mailto:k.a.m.sluijs@tue.nl’ is
an instance of ‘EmailAddress’ could also have been concluded based on the range of the
‘Email’ property.

Note that the Semantic Web languages are descriptive and not prescriptive. We could
for example state that the university TU/e has the ‘Email’ address ‘mailto:info@tue.nl’,
even if the subject of the property as used in this way does not have the domain ‘Person’.
This does not make the Resource Description Framework (Schema) (RDF(S)) description
of the property ‘Email’ wrong, nor its usage in this case. Instead applying reasoning this
will infer that TU/e is a ‘Person’. If this is not desired we should not have described the
property ‘Email’ to have ‘Person’ as a domain class.

Also note that the RDFS schema definition and its RDF instances are typically mixed.
This is not usual in many data models, but for RDF it is.

For more information on RDFS refer to [Brickley and Guha, 2004].

Turtle

Terse RDF Triple Language (Turtle)[Beckett and Berners-Lee, 2011] is an RDF syntax
format designed to be compact, easy to use, and easy to understand by humans. Although
not an official standard, it is widely accepted and implemented in RDF toolkits.

In Turtle, each part of the triple is written down as a full URI or as a qualified name
(using namespace prefixes). In our examples, we will mostly use the latter form, for brevity.
For example,

2.2 Semantic Web 13

my:car rdf:type cars:Opel .

denotes the RDF statement “my car is of type Opel”. ‘my:’ and ‘cars:’ in this example
are namespace prefixes that denote the vocabulary/ontology from which the term originates.
Turtle also introduces the predicate ‘a’ as a shortcut for the ‘rdf:type’ relation.

my:car a cars:Opel .

denotes the same RDF statement as the first example. In order to list several properties
of one particular subject, we can use the semi-column to denote branching.

my:car a cars:Opel ;
my:color "White" .

denotes two statements about the car: that it is of type ‘Opel’, and that its color is
white (denoted by a string literal value in this example). When the value of a property is
itself an object with several properties, we can denote this by using square brackets (’[’
and ’]’). In RDF terms, such brackets denote a blank node (which can be thought of as an
existential qualifier). For example:

my:car a cars:Opel ;
my:hasSeat [

a my:ComfortableSeat ;
my:material "Cloth"

] .

This denotes that the car has a seat which is “something” (a blank node) which has as
its type ‘my:ComfortableSeat’ and has cloth as the material.

Next to graphical figures we will mostly us Turtle as the RDF syntax in this thesis,
because of its readability.

2.2.4 OWL

Web Ontology Language (OWL) is an RDF vocabulary that extends RDFS. It extends
RDFS by defining semantically well-defined relations that can be used for knowledge
representation. Using OWL one can define “ontologies”. An ontology is defined as “an
explicit specification of a conceptualization” [Gruber, 1993]. This basically means that an
ontology is a formal way of describing (some aspects of) the real world.

The OWL constructs are based on the formal foundation of description logics [Baader
et al., 2003]. The attractive property of description logic is that it ensures computable
decidability (i.e. all reasoning steps on DL data finish within finite time). There are three
distinct (so-called) species of OWL, namely OWL Lite, OWL DL and OWL Full. The
three species of OWL balance expressive power against the time complexity of reasoning:
OWL Full has more expressive power than OWL DL, which has in turn more expressive
power than OWL Lite, but reasoning over OWL Lite is considerably less time complex
than reasoning over OWL DL or OWL Full. Note that the different species of OWL are
proper subsets of each other in the sense that every OWL Lite ontology is a valid OWL
DL ontology, which is in turn a valid OWL Full ontology.

14 Related Work

• OWL Lite encompasses RDFS and contains the main (simple version) constructs of
OWL. The main OWL Lite language constructs are (in)equality (e.g. equivalentClass,
sameAs, differentFrom), property charasteristics (e.g. inverseOf, TransitiveProperty),
property restrictions (e.g. allValuesFrom, (0 or 1) cardinality) and versioning (e.g.
versionInfo, DeprecatedClass).

• OWL DL is the subset of OWL that corresponds to description logic. Besides the
OWL Lite constructs, OWL DL also contains class axioms (e.g. disjointWith, equiv-
alentClass), boolean class expressions (e.g. unionOf, complementOf) and arbitrary
cardinality. OWL DL restricts the use of its language constructs by requiring type
separation (properties cannot also be classes or individuals and classes cannot also
be individuals or properties). These restrictions are needed to ensure computable
decidability of the language.

• OWL Full has equivalent language constructs as OWL DL and only differs from
OWL DL by not having the type separation requirement. Removing this restriction
means that reasoning over OWL Full data might not be a decidable and therefore not
computable. However, it does simplify the use of OWL DL constructs for authors.

As an example, consider the following OWL/Turtle fragment that describes the class
of ‘Adult’. In the example ‘Adult’ is defined as the intersection of the Person class with
the set of resources that an age in the range of 18-65 years.

:Adult a owl:Class ;
owl:equivalentClass [rdf:type owl:Class ;

owl:intersectionOf (:Person
[a owl:Restriction ;
owl:onProperty :hasAge ;
owl:someValuesFrom [a rdfs:Datatype ;

owl:onDatatype xsd:integer ;
owl:withRestrictions (

[xsd:maxExclusive "65"^^xsd:integer]
[xsd:minExclusive "18"^^xsd:integer]
)

]
]

)
] .

Note that different definitions of ‘Adult’ are possible and that the definition is descriptive.
This means that a person without an hasAge attribute may still be labeled as an ‘Adult’
without problem. Even if the person does have an hasAge attribute with value 70 the
qualification ‘Adult’ is fine unless there is a functional restriction on the hasAge attribute
(i.e. defining that a person has exactly one age). In that case a reasoner will find a logical
error.

For more information on OWL refer to [Bechhofer et al., 2004]. Also note that OWL
is superseded by OWL 2, which extends OWL with additional features like keys, property
chains, richer datatypes, dataa ranges, etc, and it provides additional profiles. For more
information on OWL 2 refer to [Hitzler et al., 2009].

2.2 Semantic Web 15

2.2.5 SPARQL

The Web nature of RDF implies that its data is inherently of a distributed nature. A query
language in which data of different sources can be unambiguously queried is therefore
essential. SPARQL Protocol and RDF Query Language (SPARQL) is the W3C query
language recommendation for this purpose.

The SPARQL syntax is partly inspired by SQL by using a SELECT, FROM, WHERE
syntax, extended with a FILTER operator.

Consider the following example SPARQL query:

PREFIX ex: <http:/example.com/>
SELECT ?name, ?email
WHERE
{ ?x ex:FullName ?name .

?x ex:Email ?email .
FILTER regex(?name, "kees", "i")

}

This query returns a set of (name, email) pairs where the name contains the string
“kees”. The graph patterns are given with a Turtle syntax. The filter expression allows
regular expressions, indicated with the keyword ‘regex’. The regular expression “kees” will
for instance match with “Kees van der Sluijs”. The ‘i’ parameter indicates that the regular
expression matches are made case-insensitive.

The resultset of a SPARQL query contains every possible solution for the query pattern
in the RDF dataset. For SELECT queries the result set is a solution sequence that
contains bindings for all variables in the SELECT clause. This result is itself not RDF,
but in a dedicated XML format [Beckett and Broekstra, 2008] . An alternative is using
CONSTRUCT queries instead of SELECT queries. The CONSTRUCT clause contains an
RDF template with variables. The resultset of a CONSTRUCT query is an RDF graph
that is the union of the instantiation of the template for all query solutions.

The SPARQL query language contains numerous additional operators, modifiers and
query forms. For this and more information about SPARQL refer to [Prud’hommeaux and
Seaborne, 2008].

2.2.6 Rules

The current status of the rules-layer in Figure 2.3 is that there is a rule language proposal
called Semantic Web Rule Language (SWRL) [Horrocks et al., 2004a] from 2004. However,
current work is focused on development of Rule Interchange Format (RIF) [Kifer and
Boley, 2010].

SWRL is a specific rule language proposal that is based on RuleML [Hirtle et al., 2006],
which itself has a Datalog foundation. SWRL has a high-level abstract syntax for Horn-like
rules that consists of antecedent and consequents. The syntax is expressed in terms of
OWL. Specific example of SWRL rules can be found in 5.4.3.

RIF is not an actual rule language, but an intermediate language that allows the
exchange of rules. It was chosen as such because a multitude of rule languages exist.
Known rule languages fall in three broad categories, namely first-order, logic-programming
and action rules. Because of the extreme diversity between these categories RIF focused
on extendable dialects that allow to express a specific rule language in one of the dialect
languages. For more information on RIF refer to [Kifer and Boley, 2010].

16 Related Work

2.2.7 Linked Open Data

The goal of the Semantic Web is not only about providing a data format that enables
data exchange, but also about putting data on the Web that links to other data. This
interlinked Web of data is envisioned to be an incredibly large knowledge source.

In order to achieve this, the Linked Open Data initiative [Berners-Lee, 2006] has been
brought forward. RDF data is Linked Data if it fulfils four additional rules:

1. Use URIs as names for things.

2. Use HTTP URIs so that these things can be referred to and looked up.

3. When someone looks up a URI, provide useful information using the standards such
as RDF.

4. Include links to other related URIs in the exposed data for improving discovery of
other related information on the Web.

Using these rules the Semantic Web becomes a huge queryable knowledge source,
in effect breaking down the classical data silos. This opens up possibilities for cross
fertilization of data, which has several advantages. Combining knowledge for instance
allows for richer applications. Given RDF exposure of airline databases, hotel data, and
local (public) transport options, one could for example relatively simply build a total trip
planning service. Reconciling separate data silos would make this much more complex and
leaves the issue of making custom interfaces to connect the data.

For this vision to be meaningful and interesting for research, the Semantic Web of
linked data needs to have a critical mass, i.e. its usage needs to be of Web-like proportions
to be interesting. Therefore, the exposed datasets need to be big to have a considerable
amount of usable data and there need to be many datasets exposed and interconnected in
order to find meaningful cross fertilizations.

Figure 2.6: Linked Data cloud February 2008

2.2 Semantic Web 17

Current developments point towards the Web size of the Semantic Web linked data
becoming a reality. The number of datasets is growing quickly. This is illustrated by
graphs of the linked datasets. Figure 2.6 shows the graph of the linked open datasets in
February 2008, while Figure 2.7 shows the graphs of the linked open datasets in August
20118.

The datasets in the linked open datasets are in Web tradition about all sorts of domains
and vary in size between tens of thousands of triples and billions of triples.

Figure 2.7: Linked Data cloud August 2011

Consider the following examples of datasets that are in the linked open dataset, for
getting an idea of the diversity of the domains:

• Wordnet a popular English lexical database, has been available in RDF format9 for
some time now

• DBpedia10 is a dataset abstracted from Wikipedia that contains millions of concepts
in the RDF format.

• The Open Directory Project (DMOZ)11 database, one of the Web’s largest human-
edited Web directories, is also accessible in RDF12

• DBPL is a large data set that contains bibliographic information about almost one
million scientific papers and is also available in RDF13.

8Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http://lod-cloud.net/
9http://www.w3.org/2006/03/wn/wn20/

10http://dbpedia.org/
11The abbreviation is from directory.mozilla.org, its original domain name.
12http://rdf.dmoz.org/
13http://dblp.l3s.de/d2r/

http://lod-cloud.net/
http://www.w3.org/2006/03/wn/wn20/
http://dbpedia.org/
http://rdf.dmoz.org/
http://dblp.l3s.de/d2r/

18 Related Work

• Uniprot14 is a scientific database that stores protein sequences in RDF format.

• MusicBrainz is a large database that contains data about most artists and their
albums and is available in RDF15.

These are just a few examples that demonstrate the availability of many and large RDF
datasets, many more are available on the Web16. This increased availability of semantic
information leads to exciting new possibilities: semantics-based search engines , automated
agents crawling and extracting relevant information, complex querying, (automatically)
combining information from different sources, etc.

2.2.8 Tagging

Tagging is the process of a user assigning a simple keyword or a short sentence fragment to a
resource (e.g. a multimedia document) and is an often used facility in Web 2.0 applications.
It is therefore a special kind of annotation process. Tagging is used as a rudimentary
form of metadata that can be used for searching and navigation features like tag-clouds.
Even though tagging itself is not part of the Semantic Web, a part of its metadata goal is
similar. We will show ways to exploit tagging data and relate it to Semantic Web sources
in Chapter 6. Therefore, we will discuss tagging is some more detail here.

An inherent property of tagging is that it is schemaless. This means that the user
does not need any prior knowledge of the domain for annotating resources, in the sense
that the user does not need to know a given conceptual (knowledge) structure from which
a concept needs to be chosen to annotate the resource. This simplicity is what makes
tagging inherently easy to do for regular users.

Some popular systems that employ tagging mechanisms are for instance Del.icio.us
[Golder and Huberman, 2006], Flickr17 and Youtube18: these are systems that exploit
collaborative tagging for web bookmarks, photos and videos respectively. In [Golder and
Huberman, 2006] and [van Setten et al., 2006] it is observed that based on user behavior
different kinds of tags can be distinguished. Tags that identify what (or who) the content
is about are used the most by far. On the other hand, also tags that identify the kind
of content, the owner, qualities or characteristics (for example regarding the photos or
the cameras with which they were taken), and refinements are used. Moreover, users
sometimes use unique tags for their own bookmarking purposes. Also in the research
community tagging has received quite some attention. For example, in [Mika, 2005] a
formal basis for collaborative tagging systems is laid out and both [Mika, 2005] and [Choy
and Lui, 2006] describe how tagging can help in the search process. Another interesting
paper is [Ames and Naaman, 2007], which explores the motivation of people for tagging
photos. This paper provides evidence that the best incentive for users to using tagging
facilities is a combination of personal and social motivator.

Tagging is a simpler than RDF for end-users as it is schema- and structureless, i.e. it
doesn’t require users to have knowledge about a particular structured vocabulary, nor
forces them to design complex structures. However, the price for that simplicity is that
the semantics of tags are unknown, e.g.:

14http://dev.isb-sib.ch/projects/uniprot-rdf/
15http://dbtune.org/musicbrainz/
16e.g. refer to [Heath, 2010].
17http://www.flickr.com/
18http://www.youtube.com/

http://dev.isb-sib.ch/projects/uniprot-rdf/
http://dbtune.org/musicbrainz/
http://www.flickr.com/
http://www.youtube.com/

2.3 Web Information Systems 19

• The user’s intention of a specific tag is unknown.

• The context of the tag is unknown.

• The relationship between tags is unknown.

• Language ambiguity, e.g. homographs (words with different meanings), synonyms,
syntax errors and word morphisms make it hard to parse tags.

2.3 Web Information Systems

The Web is the platform for ubiquitously accessible information, but also developed into
an application platform with numerous applications of any kind [Gaedke and Meinecke,
2008]. However, even though the applications become increasingly complex, until recently
most of the development process remained ad-hoc. Mixing document markup languages
like HTML with server-side scripting languages like PHP, ASP and Java Servlets allow the
creation of the typical Web applications that you can find currently on the Web. However
a large gap remains between current ad-hoc programming and disciplined development
approaches that allow for a good separation of concerns, i.e. that can address the right
issues at the right level of abstraction. The Web poses unique requirements to applications
in terms of usability, personalization, reusability and maintainability. As a result, many of
the more complex web applications fail because of poor design and because its designers
simply were not aware of the requirements to make their applications be accepted by the
public. MDWE stands for a systematic approach for creating web applications, that allows
the designer to manage the complexity and diversity that is inherent in such a task.

In the research field of Web Engineering several MDWE methods have been proposed,
each with its own particular focus and its own strengths and weaknesses. Some of the
most prominent methods include the Web Modeling Language (WebML) (Section 2.3.1),
Object-Oriented Hypermedia Design Model (OOHDM) (Section 2.3.2), UML-based Web
Engineering approach (UWE) (Section 2.3.3), and the Object-Oriented Web Solutions
Approach (OOWS) (Section 2.3.4), which we will discuss more in detail in this section.
What these methods share is that they dissect and describe Web applications on the
following levels [Rossi et al., 2008]:

1. data/information, with issues relating to data representation.

2. navigation, with issues relating to navigation structure and behavior.

3. functionality, with issues relating to application functionality beyond navigation.

4. presentation/interface, with issues relating to interface and presentation design.

This extends traditional software engineering, which might typically place functionality
as the core aspect of an application.

The first important notion is that of the subject matter of the application, i.e. what data
or information is shown through the application. Most MDWE methods offer functionality
for designing the information space of their application, e.g. via E/R-modeling (e.g. for
data in relational databases), object-oriented approaches via UML or ORM, or using
Semantic Web technology with languages like RDF. The information space is considered
the basis of the application that is to be designed in most MDWE methods.

20 Related Work

Secondly, MDWE allows designers to create the navigation structure and behavior
of their application. In this context navigation is defined as a way to bring together
(pieces of) information that is ‘atomically’ consumed (e.g. on one page). Navigation is
typically expressed in terms of the underlying data of the application. It defines the
things being navigated and the structure of the navigation space. Designing the navigation
space is based on the user requirements. This means that the navigation space must
be tailored towards its user base, typically by differentiating between specific users with
their specific context and preferences by means of personalization. Most MDWE methods
support the navigation specification process by means of graphical tools. Moreover, the
use of well-defined models allows model checking techniques to detect logical errors in the
specification like dead-ends (pages with no outgoing links) or unreachable pages.

Functional issues are built on top of the navigation structure. Functional behavior is
basically all behavior that does not relate directly to the data navigation, even though it
might influence it. The MDWE methods vary greatly in functional capabilities. One part
of the application that is not about navigation is behavior within a navigation page. Since
Web 2.0, Web applications are no longer static pages where navigation is the only type of
behavior, but they also interact with the user. Other examples of functional behavior are
workflows and activities. Consider for instance a shopping cart where products can be
bought and checked out. This is clearly behavior that is beyond traditional navigation
over the information set. Also the use of Web services to get external information, or to
perform specific computations, is an example of the use of functional capabilities that a
MDWE method could support.

The Web application will finally present its information to its user. Therefore, the
MDWE method also has to describe how it is presented. One issue that some MDWE
methods address is platform adaptation. An application will be typically translated to
HTML, but also translations to for instance Wireless Markup Language (WML) and
Synchronized Multimedia Integration Language (SMIL) have been reported in literature
[Frasincar et al., 2006] as alternative platforms. Another issue is that of device adaptation.
There are quite some presentation related differences between an application for a regular
Web browser and one for a mobile phone or PDA. MDWE methods typically have an ab-
stract specification of the presentation. This allows applications to be browser independent
and forward compatible by using updates of the MDWE methods’ implementing engine.
It also allows designers to abstract from language-specific issues and allows designers to
design applications for specific devices and platforms without having knowledge of the
actual technologies and languages.

In chapter 3 we will discuss a MDWE method called Hera in detail. In this section
we will shortly discuss some of the other most well-known methods, namely WebML in
Section 2.3.1, OOHDM in Section 2.3.2, UWE in Section 2.3.3 and OOWS in Section 2.3.4.
This will give a general idea of the common ideas and methodologies used in MDWE
methods. We will also give short indications of how Hera differentiates from the other
methods.

For a more comprehensive comparison between methods, please refer to [Schwinger
et al., 2008].

2.3.1 WebML

WebML [Brambilla et al., 2008] is a mature web modeling language which has shown
that MDWE methods can be commercially successful via its commercial tool implementa-

2.3 Web Information Systems 21

tion named WebRatio19[Brambilla et al., 2010] which builds on the Eclipse framework20.
According to [Ceri et al., 2002], WebML is a visual language for specifying the content
structure of a Web application and the organization and presentation of such content in a
hypertext. The WebML development process follows a repetitive cycle of requirements
analysis, conceptual modeling of the application, implementation of the conceptual models
and a testing and evaluation phase. Based on the outcome of these cycles the web ap-
plication will finally be deployed and maintained. In the conceptual modeling phase the
abstract application is defined, which is done in two steps: Data Modeling and Hypertext
Modeling. The information space is specified in the data modeling phase of WebML. The
data is designed using well-known ER-modeling techniques. This is in contrast with Hera’s
use of semantic web languages. Both modeling choices are of course valid; it depends on
the specific situation and the wishes of the designer which approach is the most suitable
for a specific application.

In the hypertext modeling phase the conceptual application is defined. In WebML the
hypertext model defines the navigation structure between pages and page organization,
but also functional specifications of e.g. services and content management operations, as
well as presentation issues. WebML’s hypertext model is a customized and particularly
rich graphical language, which allows designers to add specific code bits on places where
necessary. Hera’s application model, in contrast, is written down in a RDF(S) vocabulary
just like its data. Hera also has graphical builders for its application model, but these are
not nearly as extensive as those of WebML. Where WebML is mostly focused on expressive
graphical modeling, Hera is mostly focused on personalization and data selection and data
reuse. WebML also does have an extension for context and user adaptation [Ceri et al.,
2005].

WebML is extendable via model plugins. Throughout the years plugins for covering
numerous issues have been added, e.g. with respect to context-awareness [Ceri et al.,
2007], services [Manolescu et al., 2005], workflows [Brambilla et al., 2006], semantic web
[Facca and Brambilla, 2007] as well as rich internet applications [Bozzon et al., 2006].

2.3.2 OOHDM

Object-Oriented Hypermedia Design Model (OOHDM) [Rossi and Schwabe, 2008] is one
of the earliest web modeling approaches. The OOHDM development process discerns 5
steps, namely requirements gathering, conceptual design, navigational design, abstract
interface design, and implementation.

In the requirements gathering phase the stakeholders of the applications are identified
and the tasks that they must perform. Based on this information, scenarios are collected
which describe the use cases in the form of User Interaction Diagrams (UID). The diagrams
represent the interaction of the user and the application during execution of a task.

In the conceptual design the information space of the application is specified. OOHDM
uses an extended version of UML to do that. The output of the requirements gathering
phase serves as input for the conceptual design phase, i.e. the UIDs are used to initially
derive a conceptual design (which can later be refined). Note that there is also a semantic
web approach of OOHDM called Semantic Hypermedia Design Method (SHDM) [Schwabe
et al., 2004] that, like Hera, is based on use of semantic web languages for the conceptual
design.

19http://www.webratio.com
20http://www.eclipse.org/

http://www.webratio.com
http://www.eclipse.org/

22 Related Work

The navigational design in OOHDM is considered to be a view on the conceptual
design. This means that the objects (items) that the user navigates are not actually
the conceptual objects, but other kinds of objects that are composed from one or more
conceptual objects. The navigation objects are initially derived from tasks specified in
the UIDs. Tasks in which a series of navigation objects needs to be visited are specified
within in a certain context. In this way the user can follow different context paths to
fulfill particular tasks and the same concept can end up in different navigational objects,
which are separately defined, such that the particular context determines how a concept is
presented in that context.

In the abstract interface design phase it is specified how the application is made
perceptible to the user. The abstract interface in OOHDM focuses on the various types
of functionality that can be played by interface elements with respect to the information
exchange between the user and the application. The vocabulary used to define the abstract
interface is established by an abstract widget ontology [de Moura and Schwabe, 2004]
and can amongst others show elements to the user, collect mouse clicks and other events,
and gather user information via form elements.

The final implementation phase in OOHDM is typically the rewriting of the models
obtained via the method, to corresponding code on some particular platform, so the models
only support the thinking process of the designer. However, for the SHDM part there is an
engine that can directly execute the models, which is called HyperDE[Nunes and Schwabe,
2006].

2.3.3 UWE

UML-based Web Engineering approach (UWE) [Koch et al., 2008] is a web engineering
approach completely based on UML. The UWE development process consists of phases
for requirements engineering, analysis, design, and implementation. It also discerns three
layers of an application, namely content, navigation and presentation.

In the requirements phase, UWE considers two levels of granularity. First, a rough
description of the functional behavior of the application is drawn up with UML use cases.
Second, a more detailed description of this use case is developed with UML activity
diagrams in which responsibilities and actions of the users of the system are modeled.

In the analysis phase first a content model is described. This content model, expressed
in a UML class diagram, captures the information space of the application. In a separate
model also the user model data is modeled. The navigation structure is specified in the
design phase, also specified in UML class-diagrams. In addition the navigation structure
contains business logic rules. The classes in the diagram can be annotated with special
semantic symbols to symbolize their function in the application, e.g. there are navigation
classes, menus, access primitives, and process classes. UWE provides a facility to derive a
first version of the navigation structure based on the content model, which can be later
refined. The presentation is defined in classes that are associated with navigation classes in
the navigation structure. Such a class is specified in terms of UI elements. The following UI
elements are available in UWE: text, anchor, button, image, form and anchored collection.

UWE uses aspect-orientation for adaptive link hiding, adaptive link annotation, and
adaptive link generation [Baumeister et al., 2005]. In order to use aspect-orientation the
designer needs to (manually) put pointcuts in the model, where they want to integrate
aspect considerations.

Current research in UWE is centered on rich internet application patterns[Koch et al.,
2009] and modeling secure navigation[Busch et al., 2011].

2.3 Web Information Systems 23

2.3.4 OOWS

Object-Oriented Web Solutions Approach (OOWS) [Fons et al., 2008] is based on Model-
Driven Architecture (MDA) as proposed by OMG21. OOWS is an extension of the OO-
method [Pastor et al., 2001], where the OO-method approaches web modeling as “classic”
software development. OO-methods provide a Platform-Independent Model (PIM) that
defines a structural model, a dynamic model and a functional model. The structural
model captures the system structure (its classes, operations, and attributes) and its
relationships in a class diagram. The dynamic model describes sequence diagrams that
express the communication between objects. And finally the functional model captures the
semantics of state changes. OOWS extends the OO-method by providing a PIM for the user
model, the navigation model and presentation model. Via automatic transformation these
PIMs are translated to Platform-Specific Models (PSM) and from PSMs to application
code. The application code is generated via a three-tier architectural style, namely the
presentational tier (containing user interface components), the application tier (which
contains functionality like business logic) and the persistence tier (that manages the data
stores used in the application).

OOWS extends the OO-method so that it can express complete web applications. It
does that by providing a PIM for the user model, the navigation model and the presentation
model. The user models describe the users in a hierarchical way. On the top level of this
hierarchy there are anonymous users, registered users and generic users. Navigation models
are associated with users in the hierarchy and via inheritance this determines which users
can access which part of the navigation. The navigation model specifies for each kind of
user defined in the user model the view over the system in terms of classes, class attributes,
class operations and class relationships. The presentation model depends on the links in
the navigation model between system components and user types. For every such link the
presentation is specified in terms of patterns. The basic patterns are information paging
(i.e. breaking instances into logical blocks), ordering criteria and information layout (e.g.
tabular or tree layouts). In the automatic transformation process these additional OOWS
PIMs are orthogonally translated with the OO-method’s PIMs to PSM and from PSMs to
the complete web application code.

The OOWS also includes some extensions to deal with issues commonly encountered in
modern web applications such as web requirements modeling. In this extension structural
and behavioral requirements have been extended with navigational requirements. This
can be achieved via a task taxonomy that specifies the tasks users should achieve when
interacting with the Web application, activity diagrams that describe these tasks in more
detail and information templates that describe information that is exchanged in each
interaction point. Another extension is business process modeling. OOWS allows the
designer to express the business processes that drive the web application. For this the
designer needs to specify graphical user interfaces to launch and complete process activities,
as well as the equivalent executable definition of the process. OOWS also implements
an interface extension that allows interaction with semantic web tools. This interface
is realized via two models. The first model specifies the system domain and the second
model describes how external entities/agents should use the system functionality exposed
in business settings.

21http://www.omg.org/mda

http://www.omg.org/mda

24 Related Work

2.3.5 Related Fields

In this section we discussed approaches in the MDWE field. The MDWE is not an
isolated field but is closely related to many other fields. In fact, many see MDWE as a
specific branch of the Model-driven engineering (MDE) concept which focuses on creating
applications by exploiting and reusing domain models. In this light many more related
approaches exist. Two similar approaches for example include WebComposition and
WSDM. WebComposition [Gellersen et al., 1997] is an object-oriented approach which
allows to compose Web applications from smaller components. Even though the method is
inherently object-oriented, there still are many similarities with MDWE fields in terms of
reuse of information, maintainability concerns and the use of Semantic Web data. A recent
evolution of WebComposition for example includes an subscribe-notification mechanism
based on a Web-services implementation [Meinecke et al., 2007]. Similar approaches include
portal-based approaches like [Trujillo et al., 2007] and [Bellas, 2004]. The Web Semantics
Design Method (WSDM) [De Troyer et al., 2008] is yet another approach which shares
many features with most MDWE approaches but differs in that it is based on an audience
driven design philosophy. Instead of creating Web applications for a given dataset it
centeres on modeling the specific target audience (and the resulting requirements) first.

Many other further related systems exist which share some origins have many related
concepts, for example in the Hypermedia field. AHA! [De Bra et al., 2006] is an Hypermedia
approach that allows adding adaptation and additional navigation primitives to existing
Web documents. Its approach in terms of design certainly has similarities with some
MDWE methods. AHA! will be discussed in more depth in Section 7.3. Related systems
include for example Brusilovsky’s Interbook [Brusilovsky, 2007], a goal driven approach
like KBS Hyperbook [Henze et al., 1999], narrative approaches based on pagelets like
APeLS [Hockemeyer et al., 2003].

Even though every mentioned approach has interesting relations with the MDWE field
we will not discuss them in more depth here.

2.4 Summary

In this chapter we gave an overview of the evolution of the Web. From a large linked set
of documents the Web grew into a large infrastructure for full fledged interactive Web
applications. The next step in the evolution of the Web may be into a Web of reusable and
open knowledge by using semantics to describe the meaning of data. For this the Semantic
Web was developed. In this chapter we shortly summarized its foundational languages
(XML, RDF and RDFS), extensional languages (OWL, rules and query language SPARQL)
and the evolution of linked data. We also described tagging as a simple user friendly form
of adding metadata to objects on the Web. Next to semantics we also described a parallel
evolution of MDWE as a structured approach for developing WIS. These methods allow
non programmers a method to simply design applications using models which is potentially
less error-prone and better reusable and maintainable. We also discussed a number of
existing MDWE methods that we can find in literature.

Chapter 3

Hera-S

This chapter presents the revision of an approach for designing adaptive Web
information systems, called Hera. In Hera we distinguish models for specifying
the domain, the navigation over the content from the domain, and the context
for navigation. Hera is characterized by the use of the Semantic Web language
RDF to express the models for the domain and context data and for the adaptive
navigation. We present a short history of Hera including its fundamental ideas.
Then, based on the experience with earlier Hera implementations we present
a revised and more focussed conceptual revision named Hera-S, including an
implementation called Hydragen and some additional tools for constructing and
executing its models. The running example is expressed in terms of Hera models
that use RDF query expressions to retrieve the data from RDF repositories for
content and context data.

3.1 Introduction

This chapter presents a complete reworked version of Hera, called Hera-S. Hera is a
MDWE method for Web information system design that found its origins in an approach
for hypermedia presentation generation. It was also this focus on hypermedia presentation
generation that gave the first engine complying with this method its name HPG [Fras-
incar, 2005]. The method distinguishes three main models that specify the generation
of hypermedia presentations over available content data. With a model that specifies
the content, a model that specifies grouping of content in pages and links between pages,
and a model that specifies presentation details, the method enables the creation of a
hypermedia-based view over the content. Originally, in the first generation of the method
and its toolset, the models specified a transformation from the content to the presentation.
The engine that was compliant with this definition was based on the EXtensible Stylesheet
Language (XSLT) [Clark, 1999] and is therefore known as HPG-XSLT.

One of the characteristic aspects that HPG-XSLT supported was adaptation. Adapta-
tion is as hypermedia-based systems exploit user information to adapt visible aspects of
the system for the user [Brusilovsky, 1996].

As an illustrative example, we show in Figure 3.1 how different presentations could be
produced by the engine out of a single design in which the “translation” to formats such
as HTML, SMIL, and WML was dealt with generically. Note that the models which are
mentioned in this figure will be explained in detail in the following sections.

Characteristic for the Hera models compared to other methods was not only their

26 Hera-S

Figure 3.1: Hera Models

focus on user- and context-adaptation support, but also the choice to base the models
on RDF and RDFS. For an overview of other MDWE methods see Section 2.2.3 and
for a detailed comparison between these methods please refer to [Schwinger et al., 2008],
especially table 48 in that paper. The use of Web standards such as RDF and RDFS as a
modeling paradigm facilitates easy deployment on very heterogeneous data sources: the
only assumption made is that a semi-structured description (in RDF) of the domain is
available for processing. Not only is such a representation less costly to develop than any
alternative, it also enables reuse of existing knowledge and flexible integration of several
separate data sources in a single hypermedia presentation.

During the further research into the development of the method, the support was
extended for more advanced dynamics. Where the first XSLT-based approach primarily
transformed the original content data into a hypermedia document, with which the user
could interact through following links with a Web browser, the subsequent engine version
allowed the inclusion of form processing, which led to the support of other kinds of
user-interaction, while retaining the hypermedia-based nature. Out of this effort, also a
Java-based version of the engine became available which used RDF-queries to specify the
data involved in the forms.

The experience out of these HPG-based versions and the aim for further exploitation
of the RDF-based nature of the models have led to a further refinement of the approach
in what is now termed Hera-S. The Hera-S-compliant models do combine the original
hypermedia-based spirit of the Hera models with more extensive use of RDF-querying
and storage. Realizing this RDF data processing using the Sesame framework [Broekstra
et al., 2002] and the SPARQL query language (Section 2.2.5) caters for extra flexibility
and interoperability.

We aim to exemplify also the characteristic elements included in Hera-S. As we
mentioned before there is the RDF-based nature of the models. There is certainly also
the focus on the support for adaptation in the different model elements. Adapting the
data processing to the individual user and the context that the user is in (in terms of
application, device etc.) is a fundamental element in WIS design and one that deserves the
right attention: managing the different design aspects and thus controlling the complexity
of the application design is crucial for an effective design and implementation.

In this chapter we first address the main characteristics of the method, before we

3.2 Method 27

explain the models, i.e. the main design artifacts. We present the implementation of the
hypermedia presentation generation process induced by the models. We also consider some
extensions to the basic approach that can help the design process in certain scenarios.

3.2 Method

The purpose of Hera is to support the design of applications that provide navigation-
based Web structures (hypermedia presentations) over semantically structured data in
a personalized and adapted way. The design approach centers on models that represent
the core aspects of the application design. Figure 3.2 gives an overview of these models.
With the aid of an engine for running those models (e.g. Hydragen, refer to 3.6) we can
serve the Web application, as depicted in this figure. Where Hera was originally a more
monolithic approach where all models and data were specifically designed and served
within its framework, Hera-S is more targeted on existing data and its models. Instead
Hera-S only needs to define the application model, which most importantly defines the
application logic. The actual data and presentation lie outside its core and are assumed as
is. This allows a good separation of concerns and the reuse of external data sources.

Thus the appropriate pipeline of models captures the entire application design, leaving
room for the designer to change or extend the implementation where desired. In this
section, we only give a short overview over the different models and associated modeling
steps, before each of them is presented in more detail in the subsequent sections.

Figure 3.2: Hera-S Framework

Before we can create a model to specify the core design of the application, we need
in Hera-S as a starting point a Domain Model (DM) that describes the structure of the
content data. The sole purpose of the DM is to define how the designer perceives the
semantical structure of the content data: it tells us what we need to know about the content
over which we want the application to work. Based on this DM, the designer creates an
Application Model (AM) that describes a hypermedia-based navigation structure over the
content. This navigation structure is devised for the sake of delivering and presenting the
content to the user in a way that allows for a (semantically) effective access to the content.

In turn, this effective access can imply the personalization or adaptation that is deemed
relevant. Hera-S allows dynamic personalization and adaptation of the content, which
means that user information will be gathered and stored during usage of the system and

28 Hera-S

the correct adaptation will be computed when a page is requested by the user based on
the knowledge about the user currently available in the system. For this purpose, context
data is maintained (under control of the application) in a so-called Context Model (CM).
This context data is typically updated based on the (inter)actions of the user as well as
possibly on external information, e.g. by importing user data from other applications.

So, on the basis of DM and CM the AM serves as a recipe that prescribes how the
content is transformed into a navigational structure. To be more precise, instantiating the
AM with concrete content results in an AM (instance) page (AMP). These AMP’s can be
thought of as pages that contain content to be displayed and navigation primitives (based
on underlying semantic relations from the DM) that can be used by the user to navigate to
other AMP’s and thus to semantically “move” to a different part of the content. An AMP
itself is not yet directly suitable for a browser, but can be transformed into a suitable
presentation by a presentation generator, i.e. an engine that executes a specification, for
example a Presentation Model (PM) of the concrete presentation design in terms of layout
and other (browser-specific) presentation details. In Section 4.5 we demonstrate that both
proprietary and external engines can be used for this task. For the Hera-S method this
presentation generation phase itself is not specific and it may be done in whatever way is
preferred. So, the AM specifies the (more conceptual or semantical) construction of the
navigational structure over the content, while the subsequent presentation phase, possibly
specified by a PM, is responsible for the transformation of this structure into elements
that fit the concrete browsing situation.

AMP creation is conceptually pull-based, meaning that a new AMP is only constructed
in the Hera pipeline at request (in contrast to constructing the whole instantiation of
the AM at once, which was done in for example the implementation by the HPG-XSLT
engine). Through navigation (link-following) and forms submission the user triggers the
Hera-S engine, which results in internally adapting (updating) the website navigation or
context data and the creation of a new AMP.

As indicated in the introduction, Hera models use RDFS to represent the relevant data
structures. In the next sections we will see this for the specification of the data in DM,
CM and AM. In the engines these RDFS descriptions are used to retrieve the appropriate
content and generate the appropriate navigation structures over that content. In HPG-
XSLT the actual retrieval was directly done by the engine itself, whereas in HPG-Java this
was done with the aid of expressions that are based on SeRQL queries [Broekstra, 2005].
In Hera-S the actual implementation exploits the fact that we have chosen to use RDFS
to represent the model data and allows to use native RDF querying to access data, for
example the content and context data. For this Hera-S allows the application to connect
to the content and context data through the Sesame RDF framework. This solution,
combining Hera’s navigation design and Sesame’s data processing by associating SPARQL
queries to all navigation elements, allows to effectively applying existing Semantic Web
technology and a range of its solutions that is becoming available. We can thus include
background knowledge (e.g. ontologies, external data sources), we can connect to third-
party software (e.g. for business logic), and connect to services through the RDF-based
specifications. We can also use the facilities in Sesame for specific adaptation to the
data processing and to provide more extensive interaction processing (e.g. client-side,
scripting). The dynamics and flexibility required in modern Web information systems
can thus be met by accommodating the requirements that evolve from an increasing
demand for personalization, feedback, and interaction mechanisms. Note that Hera-S
models in principle are query and repository independent. We only require a certain
type of functionality, and if a repository fulfils these requirements it can be used for

3.3 Data Modeling 29

implementation of Hera-S models.

3.3 Data Modeling

Before the application design can consider the personalized navigation over the domain
content, the relevant data needs to be specified. This can be an existing RDFS model of
some external data source. But of course we also might want to start from scratch and
design a completely new application. In this section we will look at this last scenario, so
that we can see what is needed to create an application using the Hera-S method. For
that we will look at creating an example application about movies using data from the
International Movie Database (IMDb)1.

As a necessary first step in the approach the data modeling step leads to the construction
of the data models for the domain content and the context of the user. The modeling of
the domain content uses RDFS and is primarily targeted towards capturing the semantical
structure of the domain content. With the Hera-S engine we also allow the model to be
an OWL ontology (without restrictions) as this is supported by the underlying Sesame
database.

Looking at our example, we first need an RDFS or OWL definition of the IMDb dataset.
In fact, several of these definitions can already be found in either RDF (e.g. [Taylor, 2008])
or in some other modeling paradigms like UML (e.g. [Koch et al., 2008]). For example,
consider the UML model of the IMDb domain in Figure 3.3 as it gives a good visual
overview of the domain. We can either reuse an existing RDF version, but can also choose
for many other paradigms like UML if these model would be better suited for some reason
as translations exist to convert those models to RDFS or OWL, e.g. for UML refer to
[Falkovych et al., 2003] or [Hillairet, 2007]. However, for sake of the example, instead of
reusing an existing source we can also create the model ourselves, e.g. by using the Protégé
ontology editor [Protégé, 2011].

Figure 3.4 contains a screenshot of an OWL model of the IMDb database in Protégé.
We divided the OWL model in four parts. One part, with the prefix ‘imdb’, contains
the “core” of the movie domain, describing the movies and the persons involved in those
movies. In another part, with the prefix ‘cin’, we extend the IMDb models with cinema
information that show the movies that are modeled in the ‘imdb’ part.

In this figure we also see prefixes starting with ‘cm’. They relate to the context modeling.
The CM is modeled and implemented in a similar way as the DM. The main difference
between the two is that the content data is meant to be presented to the user, while the
context data is meant to support the context-dependent adaptation of the application. So,
the content typically contains the information that in the end is to be shown to the user,
while the context data typically contains information used (internally) for personalization
and adaptation of content delivery. This distinction might not always be strict, but as it is
only a conceptual distinction in Hera-S, the designer may separate content and context in
whatever way he desires. As a consequence, we assume that context data is under direct
control of the engine, while the content often is not. In the IMDb example the context
model is modeled in the same way as the domain. We first maintain a model, with the
prefix ‘cm1’, that contains users and their comments on movies in the ‘imdb’ part. The
second part, with the prefix ‘cm2’, contains a description of tickets bought by the user for
a particular movie showing in a particular cinema.

1http://www.imdb.com/

http://www.imdb.com/

30 Hera-S

Figure 3.3: UML model of the IMDb domain

Considering the role and function of the context data, we can identify different aspects
of context. We will come back to context data later when we discuss adaptation in the
AM, but we now address the context data modeling. Even though the designer is free to
choose any kind of context data, we in general discern three types: session data, user data
and global data.

• Session data: Session data is data relevant to a certain session of a certain user. An
example of such data is the current browsing context, such as the device that is used
to access the Web application or the units browsed in the current session.

• User data: Data relevant to a certain user over multiple sessions (from initial user
data to data collected over more than one session). User (profile) data can be used for

3.3 Data Modeling 31

Figure 3.4: Protégé screenshot for the IMDb data modeling

personalization (even at the beginning of a new session). Note that for maintaining
this user data over time the application needs some authentication mechanism.

• Global data: Usage data relevant to all users over all sessions. Global data typically
consists of aggregated information that gives information about groups of people.
Examples include “most visited unit” or “people that liked item x, also browsed item
y”.

In Figure 3.5 we show part of an RDF graph representation of the domain data model
that we will use as a basis for the examples of this chapter. It shows the main classes and
a selection of relationships between those classes, while omitting their datatype properties.

Figure 3.5: RDF-graph representation of IMDb domain and context data

32 Hera-S

Both the DM and CM data are in Hera-S implemented using a Sesame repository. For
the CM which is under direct control of the application, this allows the application to
manage and update the context as it perceives this context. Next to this, it also provides
the means for other processes to use and update (parts of) this information. The context
data could for instance be manipulated by business logic software for the sake of adaptation,
or by external user profiling software.

By supporting unrestricted RDF, RDFS and OWL DM’s, Hera-S is particularly suited
to (re-)use existing domain ontologies. Moreover, many existing data sources that are not
yet available in RDFS or OWL format can be used via Semantic Web wrapping techniques
[Simile, 2008; Thiran et al., 2005]. In the latter case Sesame can be used as a mediator
between such a data source and Hera-S. As such, Sesame can be used as part of the data
integration layer which is further discussed in Section 4.2.

As we will see in detail in the next section, the access to the data from the DM or
CM is part of the application definition. It means that the access to the RDF data is
part of the model. In principle, we assume that the concepts from the DM and CM are
associated with concrete data elements in the data storage structure. As we use the Sesame
RDF Framework as our back-end repository, this data can be exploited and reasoned
upon. Accessing the content data in Hera-S will be done via explicit SeRQL queries and
by making them explicit in the models we support customizable access via customizable
SeRQL queries. Thus, the full potential of the SeRQL query language can later be used in
the AMP creation. For the purpose of defining the content and context, we can abstract
from the SeRQL queries, but for the support of different types of adaptation, we benefit
from making this SeRQL access explicit.

3.4 Application Model

Based on the domain definition, application modeling results in the AM that specifies
the navigational behavior of the Web application. The AM enables designers to specify
how the (navigational) access to the data (dynamically retrieved from the domain) is
structured by describing which data is shown to the user and what Web pages the user
can navigate to. At the same time, the AM allows this specification to be dynamic, such
that the navigational access to the data can be personalized to a user and adapted for a
specified context.

Please note that in the AM we use the Turtle (refer to 2.2.3) and SPARQL (refer to
2.2.5) syntaxes. The several AM constructs will be introduced using examples in our movie
domain. We will start with the basic core constructs in Section 3.4.1, adaptation in Section
3.4.2 and more advanced modeling primitives in Section 3.4.3

3.4.1 Units, Attributes and Relationships

Now we will discuss the constructs that we provide in our AM. We will start in this section
with the basic constructs that are sufficient to build basic Web applications and move on
afterwards to more complex constructs for realizing richer behavior.

The AM is specified by means of navigational units (shorthand: units) and relationships
between those units. The instantiation of units and relationships is defined by (query)
expressions that refer to the (content and context) data as explained in Section 3.3.

The unit can be used to represent a “page”. It is a primitive that (hierarchically) groups
elements that will together be shown to the user. Those elements shown to the user are
called attributes and so units build hierarchical structures of attributes.

3.4 Application Model 33

An attribute is a single piece of information that is shown to the user. This information
may be constant (i.e. predefined and not changing), but usually it is based on information
inside the domain data. If we have a unit for a concept c, then typically an attribute
contained in this unit is based on a literal value that is directly associated with c (for
example as a datatype property). Note that literals may not only denote a string type,
but also other media by referring to a URL. Furthermore, we offer a built-in media class
(denoted by ‘hera:Mime’) that can be used to specify an URL and the MIME-type of the
object that can be found at the URL. This can be used if the media type is important
during later processing.

Below we give an example of the definition of a simple unit, called ‘MovieUnit’, to
display information about a movie. We mention two elements in this definition:

• From the second until the seventh line, we define which data instantiates this unit.
This data is available as input (‘am:hasInput’) from the environment of this unit, e.g.
passed on as link parameter or available as global value. In this case we have one
variable ‘M’: the fourth line specifies the (literal) name of the variable, while the fifth
line indicates the type of the variable. In this case, a value from the ‘imdb:Movie’
class concept from the domain will instantiate this unit.

• In the eighth until the fourteenth line, starting with ‘am:hasAttribute’, we decide to
display an attribute of this movie, namely a title. We label this attribute with ‘Title’
(such that later we can refer to it), and we indicate (with ‘am:hasQuery’) how to
get its value from the data model. This query uses the ‘imdb:movieTitle’ (datatype)
property applied to the value of ‘M’. Note that in the query ‘$M’ indicates that ‘M’ is
a Hera-S variable, i.e. outside the scope of the SPARQL query itself. The output
of the SPARQL query result is bound to the Hera-S variable ‘T’ (implicitly derived
from the SELECT list).

In our RDF/Turtle syntax the definition looks as follows:

:MovieUnit a am:NavigationUnit ;
am:hasInput [

am:variable [
am:varName "M" ;
am:varType imdb:Movie

]
] ;
am:hasAttribute [

rdfs:label "Title" ;
am:hasQuery

"SELECT ?T
WHERE {$M a imdb:Movie;

imdb:movieTitle ?T .}"
] .

For the attribute value instead of the simple expression (for which we can even introduce
a shorthand abbreviation) we can use a more complicated query expression, as long as the
query provided in ‘am:hasQuery’ returns a datatype property value.

Relationships can be used to link units to each other. We can use relationships to
contain units within a unit, thus hierarchically building up the “page” (we call these

34 Hera-S

aggregation relationships), but we can also exploit these relationships for navigation to
other units (we call these navigation relationships).

As a basic example, we include in the unit for the movie not only its title but also a
(sub)unit with the name and photo of the lead-actor and a navigational relationship that
allows to navigate from the lead-actor information to the full bio-page (unit) for that actor.
Note that from now on we omit in our text namespaces when they appear to be obvious.

• We have separated here the definitions of ‘MovieUnit’ and ‘ActorUnit’ (which allows
later reuse of the ‘ActorUnit’), but we can also define subunits inside the unit that
contains them.

• In the definition of the ‘MovieUnit’ one can notice compared to the previous exam-
ple, that we have an additional subunit with its label ‘LeadActor’, with its type
‘ActorUnit’, and with the query that gives the value with which we can instantiate
the subunit.

• In the definition of the ‘ActorUnit’ one can notice its input variable, two attributes,
and a navigation relationship. This navigation relationship has a label ‘Actor-Bio’,
targets a ‘BioUnit’, and with the query based on the ‘imdb:actorBio’ property it de-
termines to which concrete ‘BioUnit’ this ‘ActorUnit’ offers a navigation relationship.
Note that in this case the variable ‘$B’ is passed on with the navigational relationship
(it is also possible to specify additional output variables that are passed on with the
relationship).

:MovieUnit a am:NavigationUnit ;
am:hasInput [am:variable [am:varName "M";

am:varType imdb:Movie]] ;
am:hasAttribute [rdfs:label "Title" ; ...] ;
am:hasUnit [

rdfs:label "LeadActor" ;
am:refersTo :ActorUnit ;
am:hasQuery

"SELECT ?L
WHERE {$M a imdb:Movie;

imdb:movieLeadActor ?L .
?L a imdb:Actor .}"

] .

:ActorUnit a am:NavigationUnit ;
am:hasInput [am:variable [am:varName "A" ;

am:varType imdb:Actor]] ;
am:hasAttribute [

rdfs:label "Name" ;
am:hasQuery

"SELECT ?N
WHERE {$A a imdb:Actor;

imdb:actor_name ?N .}"] ;
am:hasAttribute [

rdfs:label "Photo" ;
am:hasQuery

3.4 Application Model 35

"SELECT ?P
WHERE {$A a imdb:Actor;

imdb:actorPhoto ?P .}"] ;
am:hasNavigationRelationship [

rdfs:label "Actor-Bio" ;
am:refersTo :BioUnit ;
am:hasQuery

"SELECT ?B
WHERE {$A a imdb:Actor;

imdb:actorBio ?B .}"
] .

So, in these examples we see that each element contained in a unit, whether it is an
attribute, a subunit, or a navigational relationship, has a query expression (‘hasQuery’)
that determines the value used for retrieving (instantiating) the element.

Sometimes we know that in a unit we want to contain subunits for each of the elements
of a set. For example, in the ‘MovieUnit’ we might want to provide information for all
actors from the movie (and not just the lead actor). Below we show a different definition
for the ‘MovieUnit’ that includes a set-valued subunit element (‘am:hasSetUnit’). In its
definition, one can notice

• the label “Cast” for the set unit,

• the indication that the elements of the set unit are each an ‘ActorUnit’, and

• the query that determines the set of concrete actors for this movie to instantiate this
set unit, using the ‘imdb:movie actor’ object property.

:MovieUnit a am:NavigationUnit ;
am:hasInput [am:variable [am:varName "M" ;

am:varType imdb:Movie]] ;
am:hasAttribute [rdfs:label "Title" ; ...] ;
am:hasSetUnit [

rdfs:label "Cast";
am:refersTo ActorUnit ;
am:hasQuery

"SELECT ?A
WHERE {$M a imdb:Movie;

imdb:movieActor ?A .}"
] .

So, we see that a set unit is just like a regular unit, except that its query expression
will produce a set of results, and this will cause the application to arrange for displaying a
set of (in this example) ‘ActorUnits’.

Likewise, we can have set-valued query expressions in navigational relationships, and
with ‘am:tour’ and ‘am:index’ we can construct guided tours and indexes respectively.
With these the order of the query determines the order in the set and with the index an
additional query is used to obtain anchors for the index list.

36 Hera-S

3.4.2 Adaptation Examples

Adaptation and personalization are important aspects within the Hera methodology. For
this purpose the query expressions can be used to include conditions that provide control
over the instantiation of the unit. Typically, these conditions use data from the CM and
thus depend on the current user situation. For example, we can use ‘U’ as a (global)
variable that denotes the current (active) user for this browsing session (typically this gets
instantiated at the start of the session). Let us assume that in the CM for each ‘Actor’
there is a ‘cm:actorRating’ property that denotes ‘U’s rating of the actor (from 1 to 5 stars)
and that the user has indicated to be only interested in actors with more than 3 stars. We
could then use this rating in adapting the cast definition in the last example:

am:hasSetUnit [
rdfs:label "Cast";
am:refersTo ActorUnit ;
am:hasQuery

"SELECT ?A
WHERE {$U cm:actorRating _:rating cm:stars ?V;

cm:ratingOnActor ?A .
?A imdb:playsIn $M .
FILTER (?V > 3)}"

] .

Here we see how we can influence (personalize) the input to an element (in this case a
set) by considering the user context in the query that determines with which values the
element gets constructed. To be precise, in this example we state inside the movie unit
what actors of the cast this user will be provided with, i.e. which values we “pass on”.

Another user adaptation example would be that the user has indicated not to be
interested in photos from actors. We could then change the query for the photo attribute
accordingly:

:ActorUnit a am:NavigationUnit ;
am:hasInput [am:variable [am:varName "A" ;

am:varType imdb:Actor]] ;
...
am:hasAttribute [

rdfs:label "Photo" ;
am:hasConditionalQuery [

am:if "SELECT *
WHERE {$U cm:showElement _:el .

_:el cm:showAbout imdb:actorPhoto .}"

am:then "SELECT ?P
WHERE {$A imdb:actorPhoto ?P .}"

]
] ;
... .

Here we see that with ‘am:hasConditionalQuery’ the attribute becomes “conditional”,
i.e. the photo attribute is only shown when the condition (‘am:if’) query produces a

3.4 Application Model 37

non-empty result. We can also add an ‘am:else’ part here and for example display the
string “no photo displayed”.

Finally, we present a more complex example of adaptation. Consider again the
‘ActorUnit’ from the previous section, which showed an actor’s name, his picture, and a
link to his bio. Now imagine we would like to add the list of movies in which the actor
played. However, because some movies are age-restricted, we would like to restrict this
list so that adult-rated movies are only shown to registered users that are 18 or older. As
in the previous adaptation examples, this adaptation can be achieved by tweaking the
SPARQL query that computes the list of movies:

:ActorUnit a am:NavigationUnit ;
am:hasInput [am:variable [am:varName "A" ;

am:varType imdb:Actor]] ;
...

am:hasSetUnit [
rdfs:label "Movies Played In";
am:refersTo MovieUnit ;
am:hasConditionalQuery [
am:if "SELECT *

WHERE {$U cm:age ?G .
FILTER (?G > 17)}"

am:then "SELECT ?M
WHERE {$A imdb:actorMovie ?M .

?M a imdb:Movie .}"
am:else "SELECT ?M

WHERE {$A imdb:actorMovie ?M .
?M a imdb:Movie;

imdb:mpaaRating ?R .
FILTER (?R != ’NC-17’)}"

]] .

First of all, notice in the code-excerpt the ‘am:hasSetUnit’, which represents the list
of movies for the active actor (‘A’). This list is defined by a conditional query, in which
it is verified whether the active user (‘U’) is registered and his age is over 17 (‘am-if’). If
this condition holds (‘am:then’), all movies of the particular actor are computed. If the
condition does not hold (‘am:else’), the computed movie list is restricted to movies which
are not MPAA (Motion Picture Association of America)-rated as “NC-17” (No Children
Under 17 Admitted).

3.4.3 Other constructs

Before, the basic constructs were explained. In this section we will look at some additional
features of Hera-S that also allow designers to use some more advanced primitives in order
to construct richer applications.

Update Queries

For the sake of adaptation we need to maintain an up-to-date context model. In order
to do so, we need to perform updates to this data. For this, we have the functionality
to specify an ‘am:onLoad’ event update query and an ‘am:onExit’ update query within

38 Hera-S

every unit, that are executed on loading (navigating to) and exiting (navigating from) the
unit. Furthermore, we allow attaching an update query to a navigation relationship so
that the update query is executed when a link is followed. In all cases, the designer may
also specify more than one update query. In our example we could for instance maintain
the number of page views (visits) of a certain ‘movieUnit’, and update this information if
the ‘movieUnit’ is loaded using the ‘onLoad’ query:

:MovieUnit a am:NavigationUnit ;
...
am:onLoad [

am:updateQuery
"UPDATE {?V cm:amount (?views+1) .}
WHERE {$U a cm:RegisteredUser;

cm:userMovieViews ?V .
?V cm:amount ?views;

cm:viewsOfMovie $M .}"
];
... .

Frame-based Navigation

We explained earlier that units can contain other units. The root of such an aggregation
hierarchy is called a top-level unit. The default semantics of a navigational relationship
(that is defined somewhere inside the hierarchy of a top-level unit) is that the user navigates
from the top-level unit to the top-level unit that is the target of the relationship. In
practice this often means that in the browser the top-level unit is replaced by the target
unit. However, we also allow specifying that the navigation should only consider the
(lower-level) unit in which the relationship is explicitly specified, so that only that unit is
replaced while the rest of the top-level unit remains unchanged.

This behavior is similar to the frame construct from HTML. We specify this behavior
by explicitly indicating the source-unit for the relationship. Inspired by the HTML
frame construct we allow the special source-indications “ self” (the unit that contains the
relation), “ parent” (the unit that contains the unit with the relation) and “ top” (the
top-level unit - the default behavior). Alternatively, relations may also indicate another
containing unit by referring to the label of the contained unit. An example of a navigational
relationship with source indication looks like:

am:hasNavigationRelationship [
...
am:source am:_self ;
...]

Forms

Besides using relationships (links) for navigation, we also support applications that let the
user provide more specific feedback and interact. For this we provide the form unit. A
form unit extends a normal unit with a collection of input elements (that allow the user to
input data into the form) and an action that is executed when the form is submitted. In a
form a navigational relationship typically has a button that activates the submission.

3.4 Application Model 39

Below we give an example of a form that displays the text “Search Movie:” (line three)
with one text input-field (line five to eleven) to let the user enter the movie he wants to
browse to. If the user enters a value in this field, it is bound to the variable ‘movieName’
(line nine). After submitting the form via a button with the text “Go” (line fourteen and
fifteen), the user navigates to the ‘MovieUnit’ (line fourteen) that will display the movie
for which the name was entered in the input-field, which is specified in the query (starting
in line twenty) using the variable ‘movieName’.

:MovieSearchForm a am:FormUnit ;
am:hasAttribute [

am:hasValue "Search Movie: "
];
am:formElement [

rdfs:label "Search Input";
am:formType am:textInput;
am:binding[

am:variable [am:varName "movieName" ;
am:varType xsd:String]]

];
am:formElement [

rdfs:label "Submit Button";
am:formType am:button;
am:buttonText "Go";
am:hasNavigationRelationship [

rdfs:label "Search Form-Movie" ;
am:refersTo :MovieUnit ;
am:hasQuery

"SELECT ?M
WHERE {?M a imdb:Movie;

imdb:movieTitle ?X .
FILTER (?X = $movieName)}"

]
].

Scripting objects

Current Web applications offer users a wider range of client-side functionality by different
kinds of scripting objects, like Javascript and VBscript, stylesheets, HTML+TIME timing
objects etc. Even though WIS methods like Hera concentrate more on the creation of a
platform-independent hypermedia presentation over a data domain, and these scripts are
often (but not always) browser/platform specific, we still provide the designer a hook to
insert these kind of scripting objects.

The designer can specify within a scripting object whatever code he wants, as this
will be left untouched in generating the AMP’s out of the AM. Furthermore, the designer
can add an ‘am:hasTargetFormat’ property to specify one or more target-formats for
format-specific code, e.g. HTML or SMIL. This allows later in the process to filter out
certain format-specific elements if these are not wanted for the current presentation. The
scripting objects can use the variables that are defined within the scope of the units.
Scripting objects can be defined as an element within any other element (i.e. units and
attributes). Furthermore, it can be specified if the script should be an attribute of its

40 Hera-S

super-element or not (e.g. similar to elements in HTML that have attributes and a body).
The need to place some specific script on some specific place is of course decided by the
designer.

Service Objects

An application designer might want to use additional functionality that cannot be realized
by a client-side object, but which involves the invocation of external server-side functionality.
Therefore, we provide so-called service objects (‘am:serviceObject’) to support Web services
in the AM. The use of a service object and the reason to provide support for it is similar
to that of scripting objects. The designer is responsible for correctness and usefulness of
the service object.

Think of utilizing a Web service from a Web store selling DVDs in order to be able
to show on a movie page an advertisement for buying the movie’s DVD. A service object
needs three pieces of information:

• a URL of the Web service one wants to use,

• a SOAP message that contains the request to the Web service, and

• a definition of the result elements.

A service object declaration can be embedded as a part of every other element. If a
unit is navigated to (“created”), first the service objects will be executed. The results of
the service object will either be directly integrated into the AM and treated as such, or
the result can be bound to variables. Service objects can use unit variables in their calls.

3.5 Presentation Model

The PM is defined by means of so-called regions and relationships between regions. Regions
are abstractions for rectangular parts of the user display and thus they satisfy browsing
platform constraints. They group navigational units from the AM, and like navigation
units, regions can be defined recursively. They are further specified by a layout manager,
a style, and references to the navigational units that they aggregate. We note that the
usage of layout managers was inspired by the AMACONT project’s component-based
document format[Fiala et al., 2003], adopting its abstract layout manager concept in the
Hera-s PM. As will be explained later (Section 4.5), this enables to use AMACONT’s
flexible presentation capabilities for the generation of a Web presentation.

Figure 3.6 shows a visual excerpt of a PM for the running example, i.e. the regions
associated to the ‘MovieUnit’ navigational unit and its subregions.

The ‘MovieUnit’ navigational unit is associated with the region called ‘MovieRegionFull’.
It uses the layout manager ‘BoxLayout1’ for the arrangements of its subregions (‘MovieRe-
gionLeft’ and ‘MovieRegionRight’), and the style given by ‘DefaultStyle’. ‘BoxLayout1’ is
an instance of the layout manager class ‘BoxLayout’ that allows to lay out the subregions
of a region either vertically or (as in this case) horizontally. The style describes the font
characteristics (size, color), background (color), hyperlink colors etc. to be used in a region.
The definition of styles was inspired by Cascading Style Sheets (CSS) [Bos et al., 2011].
We chose to abstract the CSS formatting attributes because (1) not every browser supports
CSS at the current moment and (2) we would like to have a representation of the style
that can be customized based on user preferences.

3.5 Presentation Model 41

Figure 3.6: Presentation Model for the ’MovieUnit’ Navigational Unit

Both ‘MovieRegionLeft’ and ‘MovieRegionRight’ use ‘BoxLayout’s with a vertical
organization of their inner regions. For the ‘title’ and ‘year’ attributes ‘BoxLayout4’ is used,
which specifies a horizontal arrangement. For ‘photo’, ‘description’, the region containing
the names in the cast, ‘status’, ‘official site’ and ‘trailer’ it is used ‘BoxLayout5’ which
states a vertical arrangement. The names in the cast are organized using ‘GridLayout1’
(an instance of the layout manager class ‘GridLayout’), a grid with 4 columns and an
unspecified number of rows. The number of rows was left on purpose unspecified as one
does not know a priori (i.e. before the presentation is instantiated and generated) how
many names the cast of a movie will have. The regions that do not have a particular style
associated with them inherit the style of their container region. Note that in Figure 3.6 we
have omitted constant units (e.g., ‘(’, ‘)’, ‘Cast’, etc.) in order to simplify the explanation.

Besides the layout manager classes exemplified in Figure 3.6, the definition of PM
supports additional ones. ‘BorderLayout’ arranges subregions to fit in five directions:
north, south, east, west, and center. ‘OverlayLayout’ allows to present regions on top of
each other. ‘FlowLayout’ places the inner regions in the same way as words are placed on
a page: the first line is filled from left to right and the same is done for the second line
etc. ‘TimeLayout’ presents the contained regions as a slide show and can be used only on
browsers that support time sequences of items, e.g., HTML+TIME[Schmitz et al., 1998]
or SMIL[Bulterman et al., 2008]. Due to the flexibility of the approach, this list can be
extended with other layout managers that future applications might need.

The specification of regions allows defining the application’s presentation in an imple-
mentation-independent way. However, to cope with users’ different layout preferences
and client devices, Hera-S also supports different kinds of adaptation in presentation
design. As an example, based on the capabilities of the user’s client device (screen size,
supported document formats etc.), the spatial arrangement of regions can be adapted.
Another adaptation target is the corporate design (the “look-and-feel”) of the resulting
Web pages. According to the preferences and/or visual impairments of users, style elements
like background colors, fonts (size, color, type), or buttons can be varied. For a thorough
elaboration of presentation layer adaptation the reader is referred to [Fiala et al., 2004].

42 Hera-S

3.6 Implementation

Different from previous versions, the Hera-S implementation called Hydragen concentrates
on the application model level. For data management Hydragen mainly relies on Sesame.
On the front end, Hydragen provides a simple presentation generation module, but this
can be easily replaced by a specialized front end as will be shown in Chapter 4.

Figure 3.7: Hydragen Information Flow

Hydragen is composed of two main components: the HydragenCore and HydragenWeb.
HydragenCore encapsulates the core engine functionality. For each request of a Navigation-
alUnit it is able to generate a new AMP. HydragenWeb on the other hand is implemented
via a Java Servlet, which forwards requests to HydragenCore and transforms the generated
AMP by applying XSLT transformations into an HTML response, i.e. HydragenWeb acts as
the presentation generator of the Hydragen framework. In principle, the format of response
is decided by XSLT specification used for presentation generation. The information flow
between these components is depicted in Figure 3.7.

Figure 3.8 depicts the HydragenCore class diagram (abstracting away some of the
lesser important classes and methods). In the execution phase, the HydragenWeb servlet
receives an ‘HttpServletRequest’ everytime the user executes a navigation action (e.g.
click a link, submit a form etc). The request is in the form of a URI along with a set
of parameters. The parameters passed with the request are retrieved, and stored in an
internal data-structure (a TreeMap) along with their corresponding values. The URI of
the requested NavigationalUnit comes as value of a predetermined HttpServletRequest
parameter - URI. Since during generation of HTML response, some encoding is done for
URI’s that are generated as part of response, the parameters need to be decoded before
being stored and passed on to the CoreEngine for request handling. A typical example of
a URL request for a NavigationalUnit would appear as:

http://localhost:8080/herasWeb/HydragenWeb?
URI=http://wwwis.win.tue.nl/~hera/Hera-S/imdb_am.owl^LoginUnit

The ‘generateAMP()’ method from the CoreEngine class is responsible for processing the
request for a specific NavigationalUnit and generating the corresponding AMP in a session
specific file. The CoreEngine forwards the ‘generateAMP’ request to the ‘AMParser’
class which initializes query transactions with the AM, DM and Content repositories
before processing the request further. The AMParser then initializes the AMP output
file as an RDF file. Although a request is always for a specific NavigationalUnit, the
application meta-model allows a NavigationalUnit to contain more NavigationalUnits and
in order to distinguish between handling of the root NavigationalUnit and the internal
NavigationalUnits, the ‘handleRootUnit’ method is called. To give an idea of the unit
handling process consider the activity diagram in Figure 3.9.

3.6 Implementation 43

Figure 3.8: HydragenCore Class Diagram

Since Hydragen supports creating new nodes, deletion and update of statements,
the statements that are generated/modified during processing of a NavigationalUnit are
captured in a set of internal lists: an ‘add list’, ‘delete list’ and ‘amp list’. As a last step
before dumping the AMP to a file, these modifications are submitted. The addition and
deletions (from the add list and delete list) are submitted to Sesame, while the AMP
statements (from the amp list) are first stored locally in the session specific context of the
AMP repository for performance reasons. Afterwards the contents of that session context
of AMP repository are also sent to the Sesame server.

Hydragen does include some model checking facilities. Model checking can be used to
check things like if the content adhers to the its DM definition. But it can also be used to
check if the AM satisfies certain conditions, like that is has a starting unit, it lacks a cyclic
sub-unit structure, etc, to ensure that the AM produces a meaningful Web application.
Model checking is implemented by using Pellet[Sirin and Parsia, 2004]. Pellet is an open
source OWL DL reasoner in Java. It is flexible and has a reasonable performance and
can be easily configured and extended to do various static or run-time model checking
activities.

HydragenWeb is deployed as a Web application on a servlet container such as Apache
Tomcat. In addition, the Sesame server and Sesame Web-client also need to be installed
(though, possibly on a different machine). Sesame must then be configured to contain the
data definitions and (possibly remote) data. All paths to application, data and context
servers and initialization options can be configured by using the Hydragen Configuration
File. Sesame allows setting up of several properties of the repository such as use of inference
layer, type of storage, persistence, etc.

44 Hera-S

Figure 3.9: Activity Diagram for handling Units

3.7 Summary

In this chapter we discussed the revised version of the Hera methodology, called Hera-S.
Progress was made by making Hera-S more flexible than previous incarnations, by relying
on runtime querying of both models and data by using Sesame. Sesame can act as a
data mediator and query external data outside of Hera-S’ control and mix this with
locally updated data by Hera-S. The Hera-S engine, called Hydragen, has focussed its
attention to application modeling. Both back end (e.g. data integration) and front end
(e.g. presentation generation) processes can be plugged in by specialized engines, which
allows us to utilize their specific strengths.

Hera-S came with a new AM structure, which we described in detail. We described core
functionality like units, attributes and relations, we also described conditional adaptation
and additional constructs like forms, scripts, etcetera. We also described the Hera-S
presentation model, which we will discuss in more detail in the next chapter. Finally we
described some of the implementation details of Hydragen engine.

Chapter 4

Extending Hera-S

This chapter presents a number of extension points of Hera-S. We will discuss
the steps needed to allow for data integration in Hera-S, more of which we
shall see in the following chapters. Next are the Hera-S graphical builders
which support designers to (graphically) design domain, context and application
models. Similarly, we will look at maintainability and separation of concerns
by using aspect-orientation in Hera-S. We offer mechanisms that allow to
insert functionality that changes the entire application independently of the
application model, for example for adding application-wide adaptation to mobile
devices. After presenting a simple approach for Hera-S presentation model
before, in this chapter we present an implementation that uses the external and
specialised AMACONT engine to do the presentation generation phase.

4.1 Introduction

Chapter 3 described the core Hera-S framework. In this chapter we look at several natural
extension points, with which we also demonstrate the flexibility and extendibility of Hera-S.
First we discuss how data integration fits together with Hera-S in Section 4.2. Next, we
describe a graphical toolset for building DM and AM models in Hera-S in Section 4.3.
In Section 4.4, we discuss maintainability and how we implemented an aspect-oriented
approach for separately implementing pervasive features that influence the entire Web
application. Another important aspect is the actual presentation generation. In Section 3.5
we described the PM, while in Section 4.5 we discuss an implementation of the presentation
generation component that uses the specialised AMACONT framework, with an advanced
PM approach. This presentation generation component can also use aspect-orientation
and we describe the use of external semantic information for improving personalisation.

4.2 Data Integration in Hera-S

An interesting feature of Semantic Web languages is that it allows to interlink datasets
by using URIs as global identifiers. This allows people to point to elements in datasets
that they actually do not control by linking to these URIs. Because links are the only way
to relate concepts there is afterwards no real difference between links within a dataset or
links between datasets. These links thus allow applications over these domains to navigate
the combined dataset as one.

46 Extending Hera-S

Figure 4.1: Intersecting domains

As an example consider Figure 4.1. It is clear that different descriptions, e.g. one
that describes movies and one that describes cinemas, describe a lot of different things
but can have also some things in common. In this case the movie domain descriptions
describes a lot of information about movies, while the one for cinemas shows some of the
cinemas that show these movies. This is a clear example of overlapping domains. Consider
also the example in the same figure of overlap between cinemas and restaurants. They
mostly describe very different things, but can also share things such as information about
how they might be situated in the same geographical location. By combining these three
domains we can effectively start answering questions like ‘Which cinemas show ‘the Matrix’
this evening and are within 500 meters from a Greek restaurant?’.

Now, suppose we have a two or more related domain datasets, an important question
to answer is how do we integrate them using Semantic Web techniques. Generally, the
following steps have to be taken:

1. For the datasources that are not yet expressed in RDF, either convert them into
RDF, e.g. using one of many RDFizers1, some other converter, or use a wrapper that
allows SPARQL querying over, for instance if it is in a relational database [Thiran
et al., 2005].

2. Link overlapping knowledge concepts between sources and indicate which elements
in the different datasources are the same.

3. Provide a ‘seamless’ platform that allows to query the combined datasources in a
single query.

Many solutions already exist for the first of these steps. We will look at steps 2 and 3.
Let us first consider step 3. Suppose that we have a number of interlinked datasources.

How can we make them available to the user in one integrated view? The simplest
solution would be to retrieve all of these datasources as RDF files and put them in one
RDF-database like Sesame. Actually, any RDF-database is capable of storing all of these
RDF files. This solution is rather inflexible, however, especially if you consider that some
sources might not be controlled by the designer and change rapidly over time. Or consider
that you might actually want to store different sources separately, specially for performance
reasons.

Sesame2 does offer an answer for this issue. Figure 4.2 contains the layered architecture
of Sesame. The Sail API defines a set of interfaces for RDF stores and inferencers. It

1http://simile.mit.edu/wiki/RDFizers
2http://www.openrdf.org

http://www.openrdf.org

4.3 Model Builders 47

Figure 4.2: Sesame Architecturea

ahttp://www.openrdf.org/doc/sesame2/system/ch02.html

allows designers to write custom storage mechanisms by implementing an interface that
allows Sesame to send queries to it. This does not only allow for specialized local storage
mechanisms, but for example also for the possibility to define external datasources. Sail
also provides a custom inference mechanism via a specific Sesame rule language which
allows designers to express a set of axiomatic triples and inference rules.

The Sail layer expects querying and (optionally) storing and inferencing directives of
how to connect with a new datasource. It is left over to storage mechanism to take care of
creating search indexes for the data. This has a drawback in terms of speed, e.g. when
combining several datasources there is no overal index that knows which data is where.
This means that generally all queries will have to be sent to all underlying sources and the
results have to be retrieved and combined locally. This can introduce serious performance
issues when combining several large sources that are not solvable by Sesame. Therefore we
made a start at looking at strategies for using several datasources with the explicit purpose
of efficiency and improving performance [Bellekens et al., 2008; Verheijen, 2008]. In the
first of these papers we presented a specific solution for the SenSee TV-recommender (refer
to Section 6.2) where we also developed a number of general guidelines for speeding up
large intergrated RDF datasets. Verheijen’s Master thesis was an introductory study into
high performance for quering distributed RDF-databases, which would be an interesting
starting point for future work. To keep this PhD-thesis focused it was chosen to not go
into detail of these studies here.

Instead, this thesis focuses more on the second step, namely linking overlapping
knowledge concepts. We quickly found that this is not a Hera-S specific issue, but a
general issue that is relevant for a large domain of Semantic Web applications. Therefore,
in Chapter 5 we will specifically look at this generic issue and in the following chapters we
will show how our solution to this issue can be used to improve applications in various
domains.

4.3 Model Builders

In most RDF serializations it can become difficult to see which structures belong together
and what the general structure of the document is; especially if the documents get larger.
This also applies to the Hera-S models and has the consequence that manually creating

http://www.openrdf.org/doc/sesame2/system/ch02.html

48 Extending Hera-S

Figure 4.3: Hera Studio

them can become error-prone. It is therefore beneficial to offer the designer tool-support
for creating those models graphically. Figure 4.3 is a screenshot of Hera-S Studio. Hera-S
Studio contains a domain, context and application model editor in which the designer can
specify the models in a graphical way.

Figure 4.4: DM example

Note that Hera-S Studio is not a general purpose OWL or RDFS-editor like for instance
Protégé, rather a custom-made version specialized for Web applications designed through
Hera-S models. In the DM-editor (figure 4.4), designers can define classes and object
properties between those classes. For every class a number of datatype properties can be

4.3 Model Builders 49

given that have a specified media type (e.g. String, Image etc). Furthermore, inheritance
relations for classes and properties can be denoted. In addition, instances of the classes and
properties can be specified. Note that if more complex constructs are needed, the designer
could also use a general purpose OWL or RDFS editor like Protégé. The DM-editor can
also be used to create CM-models as these are identical from a representation point of
view.

The AM-editor provides a graphical way for specifying an AM (figure 4.5 gives an
example). It specifically allows organizing the units and the relationships between them.
Per unit, elements can be defined and displayed. Units and elements can be dragged
and dropped and connected with other units. Selected elements on the canvas can also
be copied and pasted. Detailed information in the models like queries is hidden in the
graphical view, and can be configured by double-clicking the elements. For the simpler
constructs, the editor provides direct help: for example when defining a datatype property,
the editor gives the designer a straightforward set if choices out of the (inherited) datatype
properties of the underlying context and domain models. However, for the more complex
constructs, the designer has the freedom to express his own queries and element properties.
In addition, the designer can control the level of detail of the model to get a better overview
of the complete model.

Figure 4.5: AM example

Hera-S Studio is a Java program. Its data is stored in an XML format that not
only stores the used elements, its properties, associated queries and conditions and the
connections between the elements, but also the size and position of the different elements.
Next to that, it maintains the connection between elements in AM and DM via the
simpler query constructs (i.e. constructs refering to single datatype properties). This
means that if a designer chooses to change the DM and deletes a property that is used in

50 Extending Hera-S

the AM he will be notified by the program. Hera-S Studio also has some modest model
checking capabilities using the Pellet [Sirin and Parsia, 2004] library that we also use
inside Hydragen. It can do some basic consistency checks and find logical errors in the
DM model. Next to that it checks for dead-ends and consistency in the AM. Resulting
DM, CM and AM models can be exported to their RDF(S) and OWL equivalents that
can be used in the Hydragen-engine. Next to that, it can be configured to directly contact
a Sesame server and remotely upload or update the models that are used by the Hydragen
engine.

4.4 Modeling Aspects in Hera-S

4.4.1 Introduction

Adaptation support in Hera-S, as detailed in Section 3.4.2, is based on conditional element
inclusion. The conditions can be either integrated using an ‘if-then-else’ construct or by
directly integrating the conditions in the SPARQL expressions underlying every element
of the Application Model, making the instantiation of the particular AM element dynamic.
If the condition references the CM (denoted by the “cm:” prefix), it thus expresses user- or
context-dependency, and so the resulting Web application becomes adaptive to the current
user or context. As an example, reconsider the ActorUnit from Section 3.4.2, and imagine
we don’t want to display the actor’s picture when the user is using a small-screen mobile
device that has a horizontal resolution of 800 pixels or less, and furthermore imagine the
desire that actor movies are only shown when the actor is in the user’s favorite actor list.
The ActorUnit would then look as follows (for clarity, the adaptation conditions that were
added are shown in bold; non-altered parts were omitted):

:ActorUnit a am:NavigationUnit ;
...
am:hasAttribute [

rdfs:label "Photo" ;
am:hasQuery "SELECT ?P

WHERE {$A imdb:actorPhoto ?P .}
{$U cm:userDevice ?device .
?device cm:hres ?horresolution .
FILTER (?horresolution > 800)}"

] ;
am:hasSetUnit [

rdfs:label "Movies Played In";
am:refersTo MovieUnit ;
am:hasQuery

"SELECT ?M
WHERE {?M a imdb:Movie;

imdb:movieActor $A .}
{$U cm:favActor $A .}"

] .
...

It shows that using SPARQL, arbitrary user or context conditions can thus be written
into any regular selection query present in the AM. While SPARQL is both versatile and

4.4 Modeling Aspects in Hera-S 51

expressive and therefore allows arbitrary and powerful personalization, inherently the way
in which adaptation is specified in the global Web application design suffers from some
drawbacks:

• Adaptation specification is localized : In the above example, we restricted the display of
pictures from actors. However, adaptation is typically not localized: for example, for
small-screen users it makes more sense to eliminate all pictures from their application
instead of only actor pictures. While certainly possible with the above approach, it
would require restricting all pictures, wherever their appearance is specified in the
AM. This forces the designer to (manually) identify all attributes of units in the AM
where pictures are shown, and subsequently alter the corresponding queries in all
these units.

• Adaptation specification is hard-coded : as mentioned in the example of the previous
bullet, the designer needs to identify (over the entire AM) which queries will return
pictures, and subsequently alter these queries. The adaptation specification is thus
hard-coded and not re-usable. Furthermore, when extending the AM later on (for
example, by adding songs or games to the Web site) and possibly introducing new
pictures, these pictures would still be shown to the user, unless adaptation conditions
are also (manually) added for these new parts of the AM.

• Semantic information is ignored : valuable semantic information, present in the
Domain Model, is ignored. For instance, in the previous example of omitting pictures
for small screen users, the semantic (type) information for media elements (present
in the DM) could be exploited to automatically select all pictures. Instead, it is left
to the designer to interpret which queries involve pictures.

• Global (structural) properties are not usable: because adaptation conditions are
limited to one particular element (i.e. integrated in a particular query), they cannot
express restrictions based on several elements or, more general, on global properties
of the AM. For example, expressing that pictures can be shown to small screen users,
but only on pages where no other pictures appear, is currently impossible.

The above problems leave room for human error, with possible inconsistencies in
the adaptation behavior as a result. Additionally, adaptation engineering is also totally
intertwined with the (classical) Web engineering (concerns), complicating the overall
design.

A more systematic and high-level approach, treating adaptation as a design concern in
its own right, is thus called for. We address this issue by presenting an aspect-oriented and
semantic-based approach for adaptation specification. Our approach effectively separates
adaptation engineering from (regular) Web engineering, and tackles the fact that adaptation
concerns are typically spread over the entire Web application. In order to add strength,
flexibility and robustness to the adaptation specification, we exploit the valuable semantic
information typically present in the underlying domain, in addition to (global) structural
properties of the Web application.

4.4.2 Related work

As mentioned, adaptation design is typically spread all over the Web application design.
A similar observation was made in the programming community. When studying certain
design concerns, it gradually became clear that some concerns cannot be localized to one

52 Extending Hera-S

particular function or module. A clear example is logging, the code of which is typically
spread over the entire application code. Such a concern is called cross-cutting. The
answer of the programming community to address such a concern while maintaining good
abstraction and modularization is aspect-orientation [Kiczales et al., 1997]: instead of
duplicating the required logging code in different places in the application code, it is
specified as an aspect. An aspect consists of a pointcut and an advice. The pointcut
performs a query over the programming code, selecting exactly those locations where the
cross-cutting concern comes into play. The advice consequently specifies which action
should be taken whenever this cross-cutting concern is detected (i.e. which piece of
code should be ‘injected’). Exactly the same paradigm can be applied for adaptation
specification: some (adaptation) action(s), i.e. the advice, is typically required to be in
multiple places in the Web application, i.e. the pointcut. The pointcut will thus consist of
a query over the AM, selecting exactly those elements which require an action to be taken
for adaptation. The action itself will typically consist of injecting adaptation-conditions to
particular places selected by the pointcut. However, we will not limit ourselves to only
adding adaptation-conditions. In fact, as we will see, an adaptive action will consist of
an arbitrary transformation applied to the AM elements selected in the poincut, and will
thus also allow adding, deleting or replacing elements, based on a certain (context- or
user-dependent) condition.

Some related work has also been done on aspect-orientation in other MDWE design
methods. In the context of UWE (refer to Section 2.3.3), aspect-orientation has been used
to specify some specific types of adaptive navigation [Baumeister et al., 2005], namely
adaptive link hiding, adaptive link annotation, and adaptive link generation. However,
our approach as will be described below, is on a different level of granularity. Instead of
very specific types of adaptation like link hiding, we will focus on more flexible arbitrary
transformations both influenced by design time and runtime information. Also, the
approach in [Baumeister et al., 2005] uses manual pointcut specifications, where we will
focus on an approach that is completely abstracted from the application model. Another
approach of aspect-orientation in MDWE was found in WebML. [Schauerhuber et al.,
2007] describes the extension of WebML with aspect-oriented techniques. That research
was initiated and performed independently and in parallel to our work as detailed below.
In order to extend WebML with aspect-orientation the orginal WebML language was
re-modeled (with some changes) in UML, so classical aspect-oriented tools and techniques
could be used. Much as in our approach adaptation specification was separated from the
regular design using aspect-orientation. However, this approach does not combine semantic
information with aspect-orientation, which, as we will show, provides additional strength
for our approach. Also, it is not able to taken into account global application properties
when selecting elements, which, as we will also show, can help to provide for more flexible,
robust and reusable adaptation aspects.

4.4.3 Aspect-Oriented Adaptation Engineering

As part of a collaborating effort [Casteleyn et al., 2009] we devised own our aspect language
named Semantics-based Aspect-Oriented Adaptation Language (SeAL), which is custom-
made to provide adaptation support in the context of Hera-S. Such languages, specifically
aimed at supporting certain tasks in a specific domain, are called domain-specific languages
[van Deursen et al., 2000]. Their advantages are well-documented, and clearly motivate
our choice for a newly designed language here, as opposed to using a general-purpose
language. Most important benefits are reduced complexity (constructs take into account

4.4 Modeling Aspects in Hera-S 53

the peculiarities of Hera-S models, and thus allow easy and quick access and handling
of these models) and ease of use (domain experts may readily understand and use our
domain-specific language, and do not need to learn a more complex general-purpose
language).

We will now describe the most important constructs in the SeAL language.

Pointcuts

Pointcut expressions select exactly those elements from the Application Model where
adaptation needs to be inserted. The basic pointcut statement selects all AM elements.
All subsequent language constructs restrict (condition) this selection in some way.

Using the type construct, selection of elements is restricted to those of a certain type.
The type can refer to every element of the AM metamodel, e.g.“NavigationUnit”, “subUnit”,
“Attribute”, “NavigationRelationship”, “Query”, etc. Elements of different types may be
selected by specifying all desired types, separated by a “,”. Typical examples include:

• ; (selects all AM elements)

• type NavigationUnit, subUnit; (selects all units and sub-units)

• type Attribute; (selects all attributes)

Next to restricting the element selection according to type, it may also be restricted
according to name, value (a property of an AM-element should have a certain value),
aggregation (an element contains another element, or is contained in another element),
or aggregate function (using a numerical condition on the amount of contained elements,
specified using count). The navigational structure of the AM can also be exploited to
restrict element selection: for relationships, restrictions on the target may be specified
(using refersTo), while units can also be selected based on the navigational relations
between them (besides refersTo and subUnit constructions also the inverse of these
relationships). Where appropriate, string pattern-matching is allowed when conditioning
values. Logical expressions may be negated or combined using logical conjunction or
disjunction; parentheses are used to alter default logical operator precedence. Typical
examples include:

• type NavigationUnit or type subUnit; (select all units and sub-units; this in fact is
equivalent to a previous example, namely “type unit, subUnit”)

• type NavigationUnit and hasAttribute “name”“movie*”; (selects all units that have a
name that starts with “movie”)

• type subUnit and contains (2 < count(type Attribute) < 5); (selects all sub-units
which have between 2 and 5 attributes specified)

• type Attribute and containedIn (type NavigationUnit and contains (type Attribute
and hasLabel “title”)); (selects all attributes contained in a unit, which has an
attribute labeled “title”; note that ‘contains’ and ‘containedIn’ are special aggregation
keywords)

• type NavigationRelationship and from (type NavigationUnit and contains (count(type
NavigationRelationship) > 3); (select all relations which originate from a unit
containing more than 3 relationships; note that ‘from’ is again a special keyword
indicating reverse links)

54 Extending Hera-S

• type NavigationUnit and refersTo (type NavigationUnit and contains (type tour));
(selects all units containing a relationschip that navigates to a unit containing a
guided tour)

• type NavigationUnit and from (type NavigationUnit and hasName “*movie*”); (selects
all units to which a(ny) relation points to, navigating from a unit with a name
containing “movie”)

SeAL also supports calls to the native underlying query language (SPARQL) to retrieve
AM elements. This support has been provided so that the expert user can still specify
intricate queries that exploit the full expressiveness of SPARQL (and of which the semantics
are not expressible in SeAL). Such queries can be specified by using the ‘< SPARQL >’
keyword at the beginning of a pointcut specification. A trivial example includes:

• < SPARQL > “SELECT ?A WHERE {?U am:hasAttribute ?A . ?A rdfs:label ?L .
FILTER (?L = ‘title’)}; (selects all attributes with a label “title”)

The < SPARQL > construct can also be used to query the DM. In this way semantic
information from the DM can be exploited to retrieve relevant elements from the AM,
using SPARQL as the native query language to access the DM. For example, to select
all subunits whose corresponding domain concept (e.g. person, movie) is connected via a
property to an age rating:

• type subUnit and hasInput in [< SPARQL > SELECT ?I WHERE {imdb:hasAgeRating
rdfs:domain ?I}];

This condition selects subunits with an input variable type that appears in the domain
of the imdb:hasAgeRating property. The square bracket notation is used to indicate a DM
query.

Note that this pointcut effectively exploits domain knowledge, and alleviates the burden
of the adaptation engineer to (manually) find out which domain concepts have an age
rating specified. Such a pointcut cannot be specified using AM information alone, unless
the designer explicitly made sure the AM rigorously “marks” the places to be selected in
the pointcut. Naming conventions such as adding a label named “age-rating” could for
example do this. In that case, the following pointcut would achieve the desired result:

• type subUnit and contains (type Attribute and hasLabel “age-rating”);

Advice

Advice specifies exactly what needs to be done to the element(s) selected in the pointcut.
SeAL supports adding conditions, as is commonly done in many approaches, yet also
allows arbitrary transformations of (elements of) the AM.

Conditioning elements is the common way of adapting. Conditions (condition expres-
sions) typically reference the context data to express a kind of context or user-dependency.
In analogy with Hera-S notational conventions (see chapter 3), referencing the user’s
context is done using the “cm:”-prefix; more specifically, the current user node is used as a
starting point to navigate through the context data. Analogously, referencing the domain
data is done using the namespace-prefix from the Domain Model (e.g. “imdb:”); in this
case, the domain resource(s) corresponding to the element(s) selected in the pointcut is
used as a starting point for navigation. Navigation through the data can be done using the

4.4 Modeling Aspects in Hera-S 55

“.”-operator: for example, imdb:hasAgeRating.minAllowedAge returns the minimum age of
a domain resource corresponding to an (AM) element that was selected in the pointcut.
Note that by just providing the CM namespace prefix (e.g. “cm”), the user (node) can be
referenced directly. Using “this” in the pointcut allows to explicitly reference the elements
selected in the pointcut. Both are illustrated in the third example below.

As usual, condition expressions can be combined using logical conjunction, disjunction
or negation, and can have parentheses altering the standard operator precedence. The
semantics are such that depending on the truth value of the condition, the particular
element is then shown or not. In adaptation engineering the most common practice is to
include (add) conditions when a new adaptation concern is considered. Typical examples
include:

• ADD CONDITION cm:age >= 18; (adds a condition to the elements selected in
the pointcut denoting that the age of the user should be 18 or above, i.e. user is not
a minor)

• ADD CONDITION imdb:hasAgeRating.minAllowedAge <= cm:age; (adds a con-
dition to the elements selected in the pointcut which specifies that the age of the
current user should be higher than the minimum allowed age for these elements).

Note that in the ‘ADD’-part of the above example, navigation starts from the elements
selected in the pointcut, while the actual condition specifies navigation in the context
data (denoted by the “cm:” prefix) for the current user. In some cases, this notation will
be insufficient. For example, consider the following case where we do not want to show
elements for which the current user has given a low rating. Using only the constructs
introduced above, this would result in:

• ADD CONDITION cm:givenRating.about != this or cm:givenRating.rating > 5;
(adds a condition to the elements selected in the pointcut, stating that either the
user has not yet given a rating to this resource, or that the user gave a rating over 5)

It can be seen that the above condition is flawed, because it states that the user either
never rated the resource or that a(ny) rating over five was given: the rating could belong
to a completely different resource. Therefore, it has to be checked whether the rating that
is being checked actually belongs to the resource in question (i.e. resource returned by
the query). In order to combine several checks in one navigational path, we use the ”;”
notation:

• ADD CONDITION not cm:givenRating.about = this; rating < 5; (this condition
states that in case the user has entered a rating for the resource, that rating should
not be below 5)

(New) elements can be added to the elements selected in the pointcut if a certain
condition is fulfilled, or existing elements selected in the pointcut can be deleted. When
adding elements, plain RDF(S) elements can be added (the designer is responsible for
validity), or it is possible to use ADD something statements where something is any of the
AM elements. Typical examples include:

• if (cm:age < 18) { DELETE }; (simply deletes the elements selected in the pointcut
if the current user is a minor, i.e. cm:age < 18)

56 Extending Hera-S

• if (cm:bandwith >= 1000) {ADD Attribute containing rdfs:label “Trailer”, hasQuery
“SELECT ?T WHERE {$var a imdb:Movie; imdb:movieTrailer ?T .}”; }; (adds,
to the element(s) selected in the pointcut (movies), an AM-attribute showing the
trailer, with the label “Trailer” and the corresponding query, if the user’s bandwidth
is above 1000 Kbps)

(Parts of) existing elements selected in the pointcut can also be replaced, if a certain
condition is fulfilled. Only the explicitly specified parts of the elements are replaced; parts
which do not appear in the replace-statement are simply copied. As with the pointcut
expressions, pattern matching symbols may be used to match (part of) the element to be
replaced (see the first example below). Typical examples include:

• if (cm:userDevice=“mobile”) { REPLACE refersTo :LargeUnit BY refersTo :Small-
Unit; }; (if the user uses a mobile phone, let relationships/subunits refer to a smaller
version of the unit)

• if (cm:userDevice = “mobile”) { REPLACE subUnit BY NavigationRelationship; };
(replaces the subunit elements by navigational relationships, i.e. part of the content
of a page is shown on a seperate page)

An arbitrary number of adaptation actions and conditions can be combined in a single
aspect advice, as to avoid having to specify multiple aspects with the same pointcut.

Some Examples

Given the description of pointcuts and advice in the previous sections we can now consider
some examples for our movie application. For each example, we will first state the
adaptation requirement, and subsequently formulate the adaptation aspect realizing this
requirement, followed by a small explanation. We will gradually show the strength of our
approach, and illustrate and motivate how we benefit from our aspect-oriented approach,
and how we exploit semantic information and structural properties of the AM when
specifying adaptation aspects.

We start off with a simple adaptation requirement, affecting only one particular element
in the design: “For users who specified that they do not want any spoilers, don’t show the
plot outline for a movie.”

POINTCUT: rdfs:label ‘‘Plot" and
containedIn (type NavigationUnit and hasName :MovieUnit);

ADVICE: ADD CONDITION cm:spoilerInfo = true;

The pointcut selects the AM-element (in our case an attribute) which is labeled “Plot”
and is contained in the “MovieUnit” unit. The advice adds the relevant condition to only
show this “plot” attribute if the user doesn’t mind spoilers (i.e. cm:spoilerInfo = true). This
first example is somewhat trivial, and corresponds to typical condition-based approaches:
the desired adaptive behavior is specified on one particular attribute from a specific unit.
If this is our only adaptation need we might as well integrate this in our original AM.
However, imagine there is another movie unit present in the AM (e.g. an elaborated
version), which also shows the plot. In this case, another aspect specification would be
required to also restrict visibility of this plot information, similar to typical condition-based
approaches which require manual specification of conditions on all affected elements. The
only advantage we have gained here is the fact that our adaptation specification is separated

4.4 Modeling Aspects in Hera-S 57

from the (regular) Web design; for the rest, the same drawbacks as for condition-based
approach exist.

The use of aspect-orientation becomes clearer if we look at more advanced examples.
For example, consider that we want to restrict the navigation for non-registered users to
top-level links.

POINTCUT: type NavigationRelationship
and from (type subUnit) and to (type NavigationUnit);

ADVICE: ADD CONDITION cm:isRegistered = true;

This pointcut selects all relationships, i.e. links, which originate from a subunit and
target a unit. The advice indicates to add to these relationships the condition that the
(current) user should be registered. Thus, the above adaptation aspect will present the
non-registered user with a restricted view on the Web application: only top-level links
(i.e. those appearing in units) will be shown, any link that originates from a sub-unit and
targets a top-level unit, and thus typically presents an elaborated view on the particular
concepts represented in the sub-unit, will be hidden. This adaptation concern is clearly
cross-cutting: it is not localized, yet spread over the entire AM. In our movie application
execution of the advice affected fifteen sub-units linking to top-level units. Note that this
adaptation aspect exploits the structural (i.e. navigational) properties of the AM, yet is
perfectly re-usable over (different) Web applications, as the adaptation is not specified in
an application-specific way.

The previous example basically hides links according to a specific property of the user
as stored in the Context Model. Many web applications use a slightly different pattern,
namely showing the link but clicking it will lead to a registration page instead of the
desired content. This adaptation requirement is depicted below.

POINTCUT: type NavigationRelationship and
from (type subUnit) and to (type NavigationUnit);

ADVICE: if (not cm:isRegistered) {
REPLACE refersTo * BY refersTo :RegistrationUnit;

};

The pointcut remains unchanged, selecting all relationships originating from a sub-
unit and targeting a unit. However, the advice doesn’t simply add a condition to the
selected relationships. The actual adaptation that is performed is thus not filtering, as is
typically done in condition-based approaches. Instead the advice replaces, if the user is not
registered, the value of the ‘refersTo’ attribute (whatever it was) to the “:RegistrationUnit”
unit, causing all selected relationships to be redirected to the registration unit. In this way,
the elements of the AM are actually (conditionally) altered, completely changing their
behavior.

The next example demonstrates exploitation of metadata present in the DM to perform
cross-cutting adaptation. Here we try to make sure that we do not show any age-restricted
information to minors.

POINTCUT: type subUnit and hasInput in
[SELECT ?node1 WHERE {?node1 imdb:hasAgeRating ?node2}]

ADVICE: ADD CONDITION imdb:hasAgeRating.minAllowedAge <= cm:age;

58 Extending Hera-S

The pointcut selects all sub-units that have as input a certain concept which has an
“imdb:hasAgeRating” property specified in the DM (the latter part is represented by the
native SPARQL expression). The advice adds a condition to these sub-units, denoting
that they should only be shown if the age of the user (specified in the context data) is
higher than the minimum allowed age (specified in the domain data) for that resource.
Note that in this example, no specific AM elements are specified in the pointcut. In
other words, at specification time, it is not known which elements will or will not have an
‘hasAgeRating’ property. Only at runtime it will be determined which elements correspond
to concepts that have an ‘hasAgeRating’ property specified in the DM and subsequently
the corresponding elements will be selected from the AM. This clearly illustrates that
the burden of identifying the place(s) in the AM where a certain adaptation needs to be
performed is alleviated from the application engineer. Instead, these places are specified
in a declarative way, using semantic meta-data present in the DM. This adaptation aspect
is rather robust. Even when new resources are added to the Web application (imagine for
example that we also add games to our application), and therefore adding new units and/or
sub-units describing these resources, the adaptation aspect will subsequently also identify
these new resources and their corresponding sub-units, and restrict their access/visibility
accordingly. This results in consistent adaptation throughout the application even when
the application changes.

Finally, in the last example we will perform some adaptation based on a complex,
global property of the AM and combine multiple advice actions and conditions in a single
aspect. It models that for users who use a mobile device we move content from pages that
are (too) large to dedicated pages and notify the user about this adaptation.

POINTCUT: type subUnit and contains (count (type Attribute) >= 10) ;
ADVICE: if (cm:userDevice.type = ‘‘mobile") {

REPLACE hasUnit BY hasNavigationRelationship;
ADD attribute containing label "Adjusted to device!",

query "SELECT ?L WHERE {?V a imdb:MobileImage;
imdb:imageURL ?L}";

if (cm:userDevice.screenSize < 250) {
REPLACE refersTo :LargeUnit BY refersTo :VerySmallUnit;

} else {
REPLACE refersTo :LargeUnit BY refersTo :SmallUnit;

}
};

The pointcut selects all subunits which have ten or more attributes (i.e. “large” sub-
units). Firstly, the advice replaces these sub-units (actually their in-page occurrence) by
relationships to the corresponding units, to avoid crowding small screens. In this way, users
will only see information directly relevant for the current page, and be presented with links
to related information instead of seeing it in-page. Secondly, the fact that adaptation to
the user’s device has occurred is indicated by adding an attribute that displays an image
of a mobile phone. Finally, the links of the relationships are replaced by links to smaller
versions of the target page. If the screen is very small even smaller versions will be served.

Note that this adaptation aspect exploits characteristics of the entire AM, not just one
single element, in this case the amount of attributes. We stress that this kind of behavior
cannot be reached by current approaches which simply rely on specifying adaptation
(conditions) to a single element. Furthermore note that the actual adaptation that is
performed is not filtering (as is commonly done), but instead alters AM elements.

4.5 Presentation Generation 59

4.4.4 Implementation

The parser for the pointcut part of the SeAL language was constructed using the JavaCC
parser generator3, while the Javacc JJTree tool was used to automatically generate AST
(Abstract Syntax Tree) classes. This tool also provides support for the Visitor design
pattern, which is used here to traverse the AST corresponding to a given pointcut expression.
Each pointcut condition is translated into a SPARQL query that extract the elements
from the AM that satisfy the pointcut conditions. The queries are sent to Sesame as
Sesame is used in the Hydragen implementation to store all the models. Aggregate
functions do not exist yet in the current SPARQL specification nor in Sesame’s current
SPARQL implementation. This also holds for subqueries. Therefore, SeAL generates
several SPARQL queries of wich the result were post-processed in Java objects. This
results in some possible performance penalties for pointcuts with big resultsets, which is
not typical however. The result of this process is a set of RDF subgraphs stored in Java
objects.

The implementation of the advice uses a similar approach: the JavaCC parser generator
and the JJTree tool were used to generate AST classes. These classes allows us to rewrite
the RDF graphs and the SPARQL queries (even though these are implemented as separte
packages). The result of an advice is an RDF graph. This graph is used to update the
pointcut result, i.e. the RDF subgraphs. This results in updated subgraphs that can be
stored back into Sesame. Given that SPARQL nor Sesame natively support update queries,
a proper update is done by first deleting the result subgraph and then storing the updated
subgraph. Luckily Sesame has a rudimentary support for transactions, which allows for
applying these updates atomically.

An important design decision had to be made concerning the execution time of the
aspects. We finally decided to apply all aspects during runtime. This has some advantages
and disadvantages. The advantage is that for aspects that use volatile information (e.g.
from the CM or DM) always the most recent information is used. Especially for aspects
that depend on the typically volatile CM, runtime evaluation is the only viable option.
Another point of concern tackled by runtime execution is reversibility. Only applying
aspects on runtime data and not the actual AM models allows to remove the aspects
without the issue of reversing all AM data in Sesame. Disadvantages are however a
performance penalty and the need to do some integration work to let Hydragen and
SeAL work together. The advantages do outweight the disadvantages, which is why we
chose runtime evaluation. Some of the disadvantages could be alleviated by optimization
techniques where aspects that influence only the AM are executed at compile time.

4.5 Presentation Generation

Hera-S’ main focus is on generating AMP’s (refer to Section 3.2). AMP’s contain a logical
structure of the data that is to be presented to the users, but does not contain actual
presentation details like ordering, style, etc. In Section 3.5 we presented a simple PM
model which allows us to model presentation details for our Web application. However,
Hera-S also allows other specialized components to take over this task. We chose to create
an implementation using the AMACONT presentation engine [Fiala et al., 2003].

This approach aims at implementing personalized ubiquitous Web applications by
aggregating and linking configurable document components. These are instances of an

3http://javacc.java.net/

http://javacc.java.net/

60 Extending Hera-S

XML grammar representing adaptable content on different abstraction levels. As Figure
4.6 shows, components in AMACONT can be classified into three different layers, with an
orthogonal fourth Hyperlink layer.

Figure 4.6: AMACONT Component Model

The most basic components stem from the bottom layer of Media Components. Exam-
ples of such elements are text fragments, images, CSS stylesheets and videos. Often there
are fragments that are closely related and typically used in conjunction, like an image
with a textual caption. By defining such semantic groups on the Content Unit layer of
AMACONT, authors can structure their applications. Finally, there is the Document
Component layer. It allows to structure a web application further by grouping Content
Units into larger components and further into web pages. AMACONT allows arbitrarily
complex subcomponents, so that authors have the freedom to organize their page structure
in any way they want. Note that web pages in AMACONT can be either modeled by
structuring one document accordingly or by splitting the definition up into a number of
documents, similar to HTML files. Orthogonal to these three layers, the Hyperlink layer
is spanned. Hyperlinks in AMACONT can reference components from all three levels.
Thereby, it is easy to create a link starting from a composed page element. Links can target
either an AMACONT file or an arbitrary component - or any custom URL. AMACONT
also has an Eclipse-based authoring tool, the AmaArchitect, which is a graphical editor
for creating presentation models.

Whereas the AMACONT document model provides different adaptation mechanisms,
here we focus on its presentation support. For this purpose it allows to attach XML-based
abstract layout descriptions (layout managers) to components. Document components with
such abstract layout descriptions can be automatically transformed to a Web presentation
in a given Web output format. The PM was specified by adopting AMACONT’s layout
manager concept to the model level. This enables the automatic translation of AMP’s to
a component-based Web presentation based on a PM specification. The corresponding
presentation generation pipeline is illustrated in Figure 4.7.

In a first transformation step (AMP to Component) the AMP’s are translated to
hierarchical AMACONT document component structures. Thereby, both the aggregation
hierarchy and the layout attributes of the created AMACONT components are configured

4.5 Presentation Generation 61

Figure 4.7: The AMACONT Presentation Generation Pipeline

according to the PM configuration. Beginning at top-level document components and
visiting their subcomponents recursively, the appropriate AMACONT layout descriptors
(with adaptation variants) are added to each document component. This transformation
can be performed in a straightforward way and was already described in detail in [Fiala
et al., 2004]. The automatically created AMACONT documents are then processed by
AMACONT’s document generation pipeline. In a first step, all adaptation variants are
resolved according to the current state of the context model. Second, a Web presentation
in a given Web output format, e.g. XHTML, XHTML Basic, cHTML or WML is created
and delivered to the client. For example, Figure 4.8 is a screenshot of the movie Unit
(example from Section 3.4.1) for the movie ‘The Matrix’.

Figure 4.8: AMACONT Presentation on a PC

The rules executed by AMACONT can also be parameterized by the adaptation
context data containing up-to-date information on both the user and his browser device
(client). AMACONT relies on CC/PP, an RDF grammar for describing device capabilities
and user preferences [Klyne et al., 2004a], and its related specification UAProf [Wireless
Application Protocol Forum, 2001]. Many devices send a URL containing a link to its
CC/PP or UAProf profile. This profile contains some device capability characteristics
that can be used for adaptation. Note that newer devices that have browsers that have
extensive scripting capabilities typically do not send these profile links anymore. Instead a
combination of Javascript and AJAX technologies could be used in the browser to obtain

62 Extending Hera-S

the same information.
In this way, by setting up the right rules, AMACONT allows for adapting to the user

context and associated preferences. For example the following code depicts an excerpt
from the adaptation context used in our example for a PDA. Figure 4.9 is the resulting
generated presentation for a PDA.

Figure 4.9: AMACONT Presentation on a PDA

<AdaptationContextData>
<Description ID="DeviceProfile">

...
<Description ID="BrowserUA">

...
<Description ID="Window">

...
<InnerSizeX>1024</InnerSizeX>
...

...
<Description ID="UnitVisited">
<Unit.movie.imdb_ID1>true</Unit.movie.imdb_ID1>
<Unit.movie.picture_ID3>true</Unit.movie.picture_ID3>

...
</AdaptationContextData>

4.5.1 Aspect-Orientation in AMACONT

AMACONT employs traditional AOP concepts: the base is a regular web application, that
is, typically without adaptivity. On top of such existing web applications, authors can
instantiate adaptation concerns (Figure 4.10) that group adaptation on a requirement-level.
Typical examples of adaptation concerns are device independence, location awareness,
internationalization or role-based access. Because concerns offer only a high level view,
adaptation is further subdivided into adaptation aspects. These are medium-sized adapta-
tion fragments that allow authors to impose an order on the weaving process, which is
needed for a predictable result, as the weaving order generally plays a decisive role in AOP
(e.g., see [Nagy et al., 2005]).

4.5 Presentation Generation 63

Figure 4.10: Aspect Model of AMACONT Adaptation

The smallest possible piece of adaptation is an advice. An advice describes how
to transform a given component within an AMACONT document. To this end, they
may instantiate adaptation patterns, i.e., reusable transformations that resemble typical
adaptation techniques like the ones identified by the hypermedia community [Brusilovsky,
2007]. The adaptation patterns available to the author differ, depending on the adaptation
concern he is working on. Several patterns have been implemented and are available for
AMACONT users, e.g. first sentence elision, image rescaling or layout change for instant
use. Still, authors are free to define their own patterns to achieve any adaptation effect they
want. An advice also contains an adaptation precondition that specifies the circumstances
under which to perform the transformation. Finally, an advice is connected to the web
application via the pointcut. The pointcut, expressed in XPath, is a reference to one or
more AMACONT components. Therefore, it is possible to easily apply one advice to an
arbitrary number of components. An adaptation model based on aspects can be stored
either for every AMACONT document or for the whole web application. The aspect
weaver then has the task to merge this model with the base application.

For weaving aspects, AMACONT offers two general choices: weaving at design time
and weaving at runtime. Design time weaving offers one obvious advantage: Because it is
a one-time process of generating alternative variants, it creates only negligible overhead.
Then, at run time the server only needs to decide which (pre-made) variant to choose
for a user. However, the greatest disadvantage of design time weaving is the inability to
cover dynamic adaptation. For example, it is not possible to insert a user’s name into the
document, because that data is not known at design time. In contrast, run time weaving
shows opposite characteristics: Working with dynamic data is no longer a problem, while
the downside is that it requires weaving at every request, thus reducing performance.
But weaving at run time offers some more advantages: depending on the server load, it
becomes possible to “deactivate” costly aspects temporarily. Moreover, it is possible to
create alternative aspect configurations that are chosen dynamically based on the context.
For example, authors could model three different levels of location awareness and base the
selection on whether the user is a paying customer. With aspect-oriented adaptation, web
engineers are able to nicely separate adaptation from the rest of the web application.

For aspect-orientation, the document generation pipeline was extended by adding
another transformation component before the adaptation transformer. This way adaptation
aspects can be weaved at runtime, while still allowing authors to use the more generic static
variants, which are then processed by the existing adaptation transformer. The aspect
weaver takes as input an AMACONT document together with an adaptation description.
It then tries to match the advice’s pointcuts as specified in the adaptation description
with the components in the input document. The following code snippet shows an extract

64 Extending Hera-S

from the aspect-oriented adaptation definition, resizing all images in the navigation bar if
the user accesses the application with his PDA.

<aspect id="RI1" concern="ResolutionIndependence">
<advice>

<pointcut>
<condition>

<adaptationclass>Device_PDA</adaptationclass>
</condition>
<target>

<xpath>//*[@id="nav"]/aco:AmaImageComponent</xpath>
</target>

</pointcut>
<pattern id="ReduceImageSizeByTranscoding">

<parameter id="ratio">0.5</parameter>
</pattern>

</advice>
</aspect>

If a match is found, the advice’s transformation is executed, modifying the affected
components. Every Advice is executed one after another, depending on the order specified
by the author.

4.5.2 Semantics-Based Adaptation

One useful way for improving and making adaptation more sophisticated is to incorporate
semantic web technology in AMACONT, allowing us to specify the meaning of the data
by using meta-data and ontologies, and define their relationship. This enables applications
to couple, exchange, and reuse data from different external data sources, including data
resources on the Web. Consequently, this is useful to reduce the knowledge load for
adaptation conditions, as well as to simplify queries, or even use knowledge that is not
available at design time. The semantic web technology also makes reasoning about the data
by applications possible, allowing the semantic gap between data to be bridged. Therefore,
by exploiting the semantic web technology, AMACONT is able to provide adaptation in a
richer and more flexible way (only somewhat related work we know of is [Krǐstofič and
Bieliková, 2005]).

To illustrate the power of semantic-based adaptation consider the following example.
Suppose we want to select the language in which we present pages in our application,
based on where a user lives. In this way we could choose to give someone who lives in the
Netherlands a Dutch version of the page, and other users the English version of the page.
However, suppose we have a user model that contains the following location information
about a user (in abbreviated Turtle syntax):

user:Kees :livesin _:cityX .
_:cityX a :city;

:cityname "Eindhoven" .

In other words, we only know in this case that user “Kees” lives in a city called
“Eindhoven”. The question is now where we get the knowledge from to understand that
Eindhoven is in the Netherlands so that we should give user “Kees” the Dutch version of

4.5 Presentation Generation 65

the page. One possible solution would be of course to extend the user model so that it
also contains the information that user “Kees” also lives in the country of Netherlands,
and ask the user for this information. However, this would bother the user with additional
questions while we could already deduce the country from the city if we would combine
knowledge. Even though it might still be possible to ask the user in this concrete example,
one can easily think of cases where this is not viable or even possible (e.g. if the information
is not known at design time). Another possibility would be to extend the adaptation query
with an enumeration of all Dutch cities, which obviously is also not really viable as it
would be extremely laborious to write such queries and their performance would suffer
dramatically. We take another approach by exploiting the knowledge of external ontologies
to solve our granularity problem. Many of such ontologies are freely available on the Web
and can be reused for our purposes. Consider the following aspect-oriented adaptation
rule in AMACONT:

<aspect id="ML1" concern="Internationalization">
<advice>

<pointcut>
<condition>

<aada:Sparql>
SELECT ?country
WHERE { $CurrentUser :livesin ?country .

?country a :country ;
:name "Netherlands" . }

</aada:Sparql>
</condition>
<target>

<xpath>//AmaTextComponent</xpath>
</target>

</pointcut>
<pattern id="ReplaceComponentByName">

<parameter id="replacePattern">nl/%name%</parameter>
</pattern>

</advice>
</aspect>

This aspect-oriented adaptation condition expresses that if the user is from the Nether-
lands (denoted by the SPARQL query to the user model), we want to replace all (English)
text elements by their Dutch translation (with path nl/%text%). If the user is not from
the Netherlands we just present the default English text (and thus do not adapt anything).
Please note here that $CurrentUser is an AMACONT variable (denoted by the $-sign)
that is substituted at run time with the actual identifier for the current user. We now
have to deal with the fact that the {geo:livesin ?country} pattern is not in our user
model. Therefore, we first select an appropriate ontology that allows making the semantic
connection we need, in our case between a city and the country it resides in. A good
candidate for this case is the GeoNames Ontology4. This ontology simply provides us with
additional knowledge:

geo:2756253 geo:Name "Eindhoven" ;
geo:inCountry geo:NL .

4http://www.geonames.org/ontology/documentation.html

http://www.geonames.org/ontology/documentation.html

66 Extending Hera-S

In plain English this means that we have an object with id “2756253”, which apparently
represents the city of Eindhoven and has a direct property which connects it to Netherlands
(“NL”) via the geo:inCountry property. This is a very fortunate simple example, as every
location within a country has this inCountry element. However, it could also be necessary
to follow more complex paths. If we need more information about the country ‘the
Netherlands’ (e.g. its population), we would have to follow the complete chain

Netherlands ← North Brabant ← Municipality Eindhoven ← Eindhoven

to find the Netherlands URL, namely geo:2750405.
Based on this ontology we can conclude that the user lives in Eindhoven, which is part

of the Netherlands, and therefore also lives in the Netherlands. In order to automatically
derive that fact, we of course need to do some configuration in AMACONT. We first need
to align the location name in our local ontology (e.g., “Eindhoven”) with the location
name in the geo ontology (e.g. also “Eindhoven” or “Municipality Eindhoven”). If these
concepts are identical (as in our example), then no further configuration is needed in
AMACONT. Otherwise, we can make a manual alignment for every user, or a (semi-)
automatic alignment. The last can be configured by specifying two SPARQL queries. We
then first specify the following construct in our AMACONT configuration to indicate an
alignment step:

:align [sourceConceptQuery "query1 details" ;
targetConceptQuery "query2 details" ;]

Now we fill in the query details. For the source concept we specify which concept in
the user model we want to connect with a target concept of our specialized ontology. In
simple cases we allow for simple declarations like for “query1” in this case:

?city a um:City

Here we specify that we want to select all concepts of type city of the user model
vocabulary, i.e., the only variable. For“query2”, the target concepts, we specify a (somewhat
simplified) SPARQL query of how to find the aligned city in the geo ontology. In this
query we can align the result by reusing it in query1 and refer to it with the variable $city.
The “query2” could then look like this:

PREFIX geo: <http://www.geonames.org/ontology#>
SELECT ?feature
WHERE {

?feature a geo:Feature ;
geo:featureCode geo:P.PPL ;
geo:name ?name ;
geo:population ?population .

FILTER (regex(?name, $city))
}
ORDER BY DESC(?population)

In this query we are looking for a “feature” (in GeoNames terminology) that has the
featureCode geo:P.PPL (code for city) and the name should contain the original city name
indicated by the AMACONT variable $city in the FILTER clause. Note that we assume
that the target location here contains the city name of the source as a substring (i.e., this

4.6 Summary 67

might be a limitation for more complex searches that cannot be expressed like this). We
also include “?population” in our search to solve ambiguity issues. Suppose that there are
more cities in the world that are called Eindhoven (in this example there are none, but
there are many examples of cities that have the same name), so we have to find a heuristic
to determine the most probable target concept. For our example, we use the heuristic that
the most populated city is the most probable one. We order the results by population and,
in the case of more than one result, we use the first result as the target concept.

We have now aligned concepts in our user model to concepts in our helper ontology.
After alignment we want to specify a reasoning rule that defines how knowledge in the
helping ontology extends the knowledge in our user model. In our case, we define an
entailment rule that specifies that if a user lives in a city, he also lives in the country in
which that city is located. This rule is basically of the form:

〈?X : livesin ?Y 〉
〈?Y a : city〉

〈?Y geo : inCountry ?Z >〉

⇒
{
〈?X : livesin ?Z〉
〈?Z a : country〉

This (syntactically simplified) inference rule specifies that if X lives in Y of type city,
then X also lives in the country in which Y is located. By applying this entailment rule,
we can deduce that user ‘Kees’ who lives in Eindhoven, also lives in the Netherlands and
thus should get the Dutch welcome page. With configurations like this, AMACONT can
now effectively use the external ontology to solve granularity issues in our user model.

4.6 Summary

In this chapter we discussed several extensions of the Hera-S toolset.
First, we investigated the issue of data integration. It was explained how well-suited

RDF is for data integration, and that datasets can be coupled by a number of simple
links. We showed that existing data sources can be integrated in a number of steps. First,
they have to be transformed into RDF, e.g. using one of the existing approaches for that.
Next, the overlapping knowledge needs to be linked together. This is a topic which we
will discuss in the coming chapters. And finally they have to be presented to the user
in an integrated way. Partially this can be achieved within Sesame, but for more robust
performance custom solutions have to be created.

We also presented the Hera-S model builders. These builders provide designers (partial)
graphical support to create the domain, context and application model. They also provide
some model checking facilities to make the process of creating these models a bit less error
prone.

Next we described an extension of Hera-S Web applications via aspect-orientation with
a domain-specific language called SeAL. Aspect-orientation provides a better separation of
concerns and better maintainability by plugging in functionaly by querying and adapting
the application model using pointcuts and advice. This method provides compacter and
better understandable AM code by separating the code for seperate functionality, like
adding device adaptation or shopping carts, which would otherwise would modify the
entire AM model. This functionality can be easily turned off or on, without disturbing the
rest of the application.

Finally we zoomed into presentation generation with AMACONT. AMACONT can
be plugged in together with Hydragen and works as a seperate functional component
that offers specialised presentation generation functionality. Also AMACONT can be

68 Extending Hera-S

extended with aspect-orientation similar to our AM aspect-orientation. Next to that we
presented how to use semantic based adaptation by combining user model data with
external knowledge sources.

Chapter 5

Data Integration Using Semantic
Web-based Techniques

One of the most interesting aspects of Semantic Web techniques is the power
to exploit connected data sources. Many existing data sources would get a
lot richer if coupled to others. In this chapter we look into various aspects
of coupling existing data sources. We look at creating links between similar
concepts in different datasets, as well as merging data sets together into one
data set. We also look at the process of transforming a data set which is an
instance of a certain schema to a data set which is an instance of another
schema, by using a transformation language. The expression for transforming
data between schemas can be generated semi-automatically by using schema
matching techniques. Therefore we apply schema matching techniques, as well
as more semantical techniques, and techniques that exploit the knowledge of a
user base. We also show that matching techniques can be applied in relating
user-generated data to semantically well structured datasets. User-generated
data is important to overcome cold start problems, i.e. the lack of metadata
of some systems that contain multimedia objects. A common characteristic of
user-generated data is that it is structureless which differs from structured data
found in e.g. relational databases.

5.1 Introduction

The power of the Semantic Web might not be the novelty of techniques used for data
modeling, but rather the most powerful feature of the World Wide Web applied to (semi-
)structured datasets: linking data. Traditionally, links between web pages are created
manually. A similar approach could be assumed for the Semantic Web for relationships
between concepts. However, the manual approach is problematically laborious for the
enormous amount of existing well-structured datasets that are currently available online.
These existing structured data sources can be quite large which makes that finding and
explicitly creating links between datasets is very laborious and in most cases unfeasible.
Therefore an automated approach would be very helpful in these cases.

The Semantic Web provides a generic data structure, which was especially designed
for expressing metadata. Many datasources however lack any (meaningful) metadata, like
many multimedia collections. One way to bridge this gap is by obtaining this metadata
from users who are interested in browsing through these collections. One cannot expect

70 Data Integration Using SW-based Techniques

well structured metadata from users though, nor even ask the lay users to use a graph-
based data modeling paradigm like RDF. In many situations these users would prefer
a mechanism like the well-known tagging facilities that are available in many web 2.0
applications to provide metadata. A characteristic of user tags is that they are structureless.
As many of the interesting Semantic Web applications exploit the semantic structure of
metadata it is interesting for this purpose to bring in (existing or specifically fabricated)
ontologies. The challenge here is to find the relation between user tags and the conepts in
these ontologies so that through these relations the underlying structure of the ontology
can be exploited on behalf of the underlying Web application.

In this chapter we explore ways to integrate data sources. First we look at various
integration strategies. In Section 5.2 we look at connecting two datasets by making
relations between concepts in the ontologies. Then, in Section 5.3 we look at coupling
datasets by using a standardized or common ontology between them. Finally, we look at a
transformation strategy that directly mappes data between two data schemas in Section
5.4. For this last strategy we define a data transformation language and in Section 5.5 we
present ways for semi-automatically deriving transformations.

5.2 Data Coupling

In this thesis we are interested in building (Semantic) Web applications. In these application
the main reason for using Semantic Web techniques to couple data sources is solving
the data integration issue: how to couple two or more data sources so that we can
exploit them as if they were one homogenous datasource. In this chapter we discuss three
data integration strategies, namely: coupling (this section), merging (Section 5.3) and
transformation.

The Semantic Web offers ways to connect concepts in different data sets via relationships
by using RDF statements. Consider the following code fragments:

<rdf:Description rdf:ID="m13541">
<movie:title>The Good, the Bad and the Ugly</movie:title>

</rdf:Description>

and

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:films="http://films.nl/prog/film/"
xml:base="http://films.nl/prog/film">
<rdf:Description rdf:ID="x234">
<films:film_properties rdf:parseType=’Resource’>
<films:original_name>Il buono, il brutto, il cattivo</films:original_name>
<films:aka_literal>The Good, the Ugly, the Bad</films:aka_literal>
<films:aka_us>The Good, the Bad and the Ugly</films:aka_us>
</films:film_properties>

</rdf:Description>
</rdf:RDF>

Even though both fragments refer to the same movie both the RDF structure and
the used syntax are completely different. The first source uses one simple title attribute
only, while the second source has a more complex structure in which original titles and
translated and international titles of movies are distinguished. If we want to exploit and

5.2 Data Coupling 71

combine the information from both data sources about this film we somehow have to know
that these code fragments denote the same concept. The most straightforward way to do
this reconciliation is using the mechanisms in the OWL language that support this. By
using the OWL sameAs property one can denote equality of individuals. If we would alter
the first code fragment as follows:

<rdf:Description rdf:ID="m13541">
<movie:title>The Good, the Bad and the Ugly</movie:title>
<owl:sameAs rdf:resource="&films;x234"/>

</rdf:Description>

we effectively coupled the two RDF movie fragments by claiming they are about the
same movie.

The biggest advantage of this approach is its simplicity. By adding just one triple
one can specify equality between concepts. A second advantage is that the triple can be
written down independent of the two original sources. This coupling-statement can be
written in a third RDF document independent from the first two sources, which might not
be under our control nor locally present. This for example allow us to couple datasources
which might not be under our control, similar as we are able to make our webpage in
which we claim or review other web resources.

A disadvantage of this approach is illustrated by Figure 5.1. When we explore the
three datasets (the two sources, plus the coupling statement) we find that there is one
concept which has two identifiers and which has two different ways of expressing a “title”
property, namely one direct datatype property, and a composite datastructure via the
“Film Properties” property and a blank node. So even though we have now expressed that
two concepts are identical, this still leaves graph structure differences in which similar
properties are expressed. In simple datatype property cases this can be overcome by also
specifying a ‘sameAs’ relationship between properties. However, this does not apply to our
example as the structures are different and moreover the properties ‘title’ and ‘Original
Name’ might even be semantically incompatible. This is a realistic issue that applies to
many independently developed datasources.

Figure 5.1: Integrated view over coupled dataset

In practice the mentioned structure incompatibility is even worse as available reasoners
will not perform inter related reasoning between datasets because of the distributed nature
of the data, but only within datasets. So the mentioned sameAs relationship between
movie:m13541 and films:x234 will only lead to the deducted node as shown 5.1 if all RDF

72 Data Integration Using SW-based Techniques

fragments are in one repository. In all other cases actual semantic integration of this data
still needs to be done by manually storing the data in one datastore.

These issues have consequences for querying datasources that are coupled in this way.
It means that in order to query for a certain property in our integrated dataset one needs to
know the schema descriptions of all original datasources and enumerate every possible path
to the property. Moreover, either the original datasources need to be queried separately
where the results for those queries still need to be integrated, or one combined query
expression needs to be written that searches and enumerates all possible structures and
returns an integrated result.

A SPARQL query that queries for all possible titles of a movie in our example is:

SELECT ?title
WHERE { { ?movie movie:title ?title } UNION

{ ?movie films:film_properties _:propnode1.
_:propnode1 films:original_name ?title } UNION

{ ?movie films:film_properties _:propnode2.
_:propnode2 films:aka_literal ?title } UNION

{ ?movie films:film_properties _:propnode3.
_:propnode3 films:aka_us ?title }

}

This query enumerates all possible paths from a movie concept to its title and integrates
the results. The answer to this query for our example RDF fragments is:

?title
”The Good, the Bad and the Ugly”
”Il buono, il brutto, il cattivo”
”The Good, the Ugly, the Bad”
”The Good, the Bad and the Ugly”

In the example the query is not overly complex and for simple examples and applications
using OWL relationships for data integration this solution is fine. But given an integration
of many sources the query can quickly get more complex and become inefficient both in
terms of query design and its performance. Especially for user applications of considerable
scale this will be unfeasible.

The biggest drawback of this approach is however that its lacks for ways of reconciling
semantical differences of literals in different sources. Literals usually have implicit semantics,
meaning and value ranges. Consider for example the following different RDF fragments
for a name property:

<rdf:Description rdf:ID="personX1">
<person:hasName>Kees van der Sluijs</person:hasName>

</rdf:Description>

and

<rdf:Description rdf:ID="personX1">
<person:firstName>Kees</person:firstName>
<person:lastName>van der Sluijs</person:lastName>

</rdf:Description>

5.3 Vocabularies 73

Both examples express the name of a person. However, they do it on a different level
of granularity. Where one source uses only the full name, the second distinguishes the
first and last name. For mapping the first name and last name to full name we need
a concatenation function. For the other way around we need a parsing function that
can correctly divide the full name into first and last name. Even though SPARQL does
have comparison operators in queries, both neither SPARQL nor OWL have operators
for literal manipulation. For complete integration and harmonization we will need string
based functions, number based operations, date operations, range mappings, and also data
aggregation.

5.3 Vocabularies

One way to deal with data heterogeneity and semantic mismatch between applications
is using a shared vocabulary. In some cases the application can directly use the shared
ontology. However, in general it is difficult to decide on a common world view and many
applications have their own specific needs. Another way to use a shared ontology is to use
it as an intermediate ontology. This means that every application has its own internal
way for representing and storing data, while for sharing data they use an intermediate
ontology as a common vocabulary. In this way, for every application a two-way mapping
needs to be created to and from the intermediate ontology (as depicted in Figure 5.2). In
terms of complexity this means 2N mappings for N applications. As a consequence, a new
application can be added to a swarm of n applications by adding two mappings, one to
and one from the shared ontology.

Figure 5.2: Shared-UM approach

Using a standardized ontology is a good solution in many cases, but it is not always a
viable possibility. There are actually not many domains for which everyone worldwide can
agree on one single vocabulary. This is even more evident for application specific data
structure, i.e. the structure that is maintained that represents the state of the application.
As every independently developed web application is unique, with unique requirements,
design and implementation, one cannot expect to find unique vocabularies that all these
applications can agree on. However, the Semantic Web has a major advantage: by design
it allows authors complete freedom when designing their own specific ontologies and offers
constructs to relate and connect them together with other ontologies. However, in some
cases consensus can be reached. There can be good reasons for that:

74 Data Integration Using SW-based Techniques

• Some vocabularies are generic and domain independent and are used to describe
often used properties and concepts that are not application specific. In these cases it
can be easier to use a standard vocabulary than to come up with one yourself.

• Standard vocabularies typically get developed by domain experts, which pretty much
guarantees a well defined structure and semantics.

• There are tools and search engines that interpret and use the fixed semantics of these
well-known vocabularies. If a developer chooses such a well-known vocabulary, this
tool support comes for free.

• It is easier to interoperate with other parties that use the same standards. Also for
domains that do not completely overlap.

• Semantic Web vocabularies are by definition easily extendible and can easily be
mixed with application specific vocabularies, i.e. choosing a standard vocabulary is
not a limitation for a designer.

Standardized vocabularies certainly offer benefits in terms of interoperability. Therefore
a number of standardized RDF vocabularies have been developed or are under development.
Commonly used vocabularies are e.g. SKOS, OWL Time, Dublin Core, FOAF and SIOC.
Other frequently used sources are the thesaurus WordNet, and the Getty Thesaurus of
Geographic Names.

SKOS
SKOS1 is a data model for knowledge organization systems. SKOS provides structural

primitives that can help to structure, in addition to OWL, a thesaurus or other structure
datasets. SKOS adds the notion of collections, but also properties like broader, narrower,
related, membership, alternative and preferred label, change note and history, etc. SKOS
is itself defined in an OWL Full ontology2. SKOS itself does not have a formal semantics
of its constructs, in the form of formal axioms or facts, only OWL relationships that define
their meaning partially. SKOS is currently a W3C Recommendation.

OWL Time
OWL Time3 is as its name implies a time vocabulary in OWL. It allows not only to

express dates, time instants and more imprecise notions like day of the week or day of the
year in RDF, but also intervals and duration of time. Besides, it also considers expressing
timezone information and using (partial) temporal ordening constructs like ‘before’, ‘after’,
‘inside’. Together this allows time based reasoning and conflict detections. A typical
example of OWL Time supported reasoning is given in the W3C OWL-time document,
namely “Suppose someone has a telecon scheduled for 6:00pm EST on November 5, 2006.
You would like to make an appointment with him for 2:00pm PST on the same day, and
expect the meeting to last 45 minutes. Will there be an overlap?”. The OWL Time
vocabulary is itself defined by a OWL DL specification4. OWL Time is a W3C Draft (and
is not intended to become a W3C Recommendation).

Dublin Core

1cf. http://www.w3.org/TR/skos-reference
2cf. http://www.w3.org/2009/08/skos-reference/skos.rdf
3http://www.w3.org/TR/owl-time/
4http://www.w3.org/2006/time

http://www.w3.org/TR/skos-reference
http://www.w3.org/2009/08/skos-reference/skos.rdf
http://www.w3.org/TR/owl-time/
http://www.w3.org/2006/time

5.3 Vocabularies 75

Dublin Core is a metadata vocabulary developed by the Dublin Core Metadata Initiative
(DCMI)5. It is targeted to provide an open set of vocabulary terms for which a consensus
can be found. The vocabulary is extensible, but also contains a basic vocabulary set,
also called the simple set. This contains basic constructs like ‘title’, ‘creator’, ‘subject’,
‘description’, ‘publisher’ and ‘date’.

FOAF

FOAF6 is an ontology that can be used for describing persons (e.g. name, title, age,
email), the relationships between them (e.g. knows, group membership) and the things
they create (document, images) and do (interest, projects, workplace). It allows people to
structurally describe who they are, what they do, and via relationships with other people
it results in a machine-interpretable web of people. This Web is created by people that
place their FOAF profiles on their websites and link to FOAF profiles of their friends and
colleagues. Exploiting the semantic structure of FOAF profiles enables queries like “find
recent publications by people I’ve co-authored documents with.”

SIOC

SIOC7 is an ontology that can be used for describing online community websites like
weblogs, message boards and wikis. It allows for the basic description of such a site and
the relationships between that site and other online community sites. It describes concepts
like ‘site’, ‘forum’, ‘post’, ‘user’, ‘role’, etc. The SIOC vocabulary can also be mixed with
for example FOAF data for describing the persons on the online community website. SIOC
exporters for many weblogging and other frameworks exist.

WordNet

WordNet8 is an English lexical database. WordNet groups sets of synonym word in
so called synsets that represent distinct concepts. These synsets are linked together via
semantic relationships like hyponyms (subclass), holonyms (part of), antonyms (opposite
meaning), polysemy (words with several senses), etc. WordNet is freely available, and is
considered useful for natural language analysis applications. There is also an RDF version
available of WordNet9. Besides the English variant, variants in other languages exist as
well10.

Getty Thesaurus of Geographic Names

The Getty Thesaurus of Geographic Names (TGN) is a vocabulary and ontology that
describes information about places and locations. For example, most cities in the world
are in the thesaurus and contains descriptions like coordinates, number of inhabitants, a
description, alternative names, etc. Moreover, it also contains hierarchical relationships
like province, country, continent, etc. There are two different views on places, a physical
and a political one. Politically, places are typed with concepts as capital, tourist center,
trade center, river port, etc. Geographically it defines location types like ocean, seas, rivers,
waterfalls, etc.

5cf. http://dublincore.org
6cf. http://www.foaf-project.org
7http://sioc-project.org/
8cf. http://wordnet.princeton.edu/
9cf. http://www.w3.org/2006/03/wn/wn20/

10for an overview of available languages in WordNet structure refer to http://www.globalwordnet.
org/gwa/wordnet_table.htm

http://dublincore.org
http://www.foaf-project.org
http://sioc-project.org/
http://wordnet.princeton.edu/
http://www.w3.org/2006/03/wn/wn20/
http://www.globalwordnet.org/gwa/wordnet_table.htm
http://www.globalwordnet.org/gwa/wordnet_table.htm

76 Data Integration Using SW-based Techniques

5.4 Data Transformation

5.4.1 Data exchange

In many cases applications are specialistic and have unique data modeling needs that
cannot be captured by a common vocabulary. In other cases applications with their own
internal models already exist, need to cooperate with other applications and a complete
remodeling of the original application is not feasible. Many times the data that needs to
be exchanged is user related. Think for instance about hospital applications that want
to exchange patient data to get a better understanding and more complete picture of a
patient and his disease. Another example is the learning domain, in which students use
several Web applications to understand the concepts of a course and in which the teacher
wants to gather the information from these application to assess the knowledge of his
students, e.g. so that he can adapt the lectures to focus on the student’s weak points. Also
in general exchanging knowledge is interesting. Think for instance of a television guide
application that wants to reuse the information of a movie database so that it can show
data about movies on television. Or an application for booking plane tickets that also
wants to show information about additional transportation to and from the airport from a
public transport application. In other words, many scenarios exist for which exchanging
data between applications is beneficial and data interoperability is a necessity.

When a common vocabulary for a group of applications is not feasible the scenario
as depicted in Figure 5.3 presents itself. This means that every application needs to
create a specific mapping for every other application it wants to share data with. This is
more costly than the shared vocabulary approach as it now takes n2 mapping steps for n
applications to share data. However, in most cases this solution will be used to solve a
specific data exchange need, which means that n is typically low.

Figure 5.3: Direct connection approach

The actual solution for specific scenarios is not necessarily a choice between either the
solution in Figure 5.2 or the one in Figure 5.3, but the solutions can be mixed. A set of
applications can find some common ground and develop a shared ontology for generic data,
but develop specific mappings for specific data translation between specific applications.
This means that for most cases in reality a custom implementation needs to be developed
based on the circumstances.

5.4 Data Transformation 77

5.4.2 Transformation scenario

In this scenario we look at applications that already have there own data models and for
which remodeling is unfeasible. As a data exchange format we choose to use the Semantic
Web languages RDF(S) and OWL. OWL allows a high expressivity, while also providing a
semantic structure to exploit relationships between concepts. The fact that we have chosen
to use such a language does not automatically mean a limitation for the data models of
the existing (Web) applications. Already many Semantic Web wrappers are out there11,
and for most data models such a wrapper can be produced rather easily.

Let’s look at the following two example OWL schemas between which we want to map
the instances.

The first schema is:

<owl:Class rdf:ID="User">
<owl:Class rdf:ID="Name"/>
<owl:ObjectProperty rdf:ID="hasName">

<rdf:type owl:FunctionalProperty"/>
<rdfs:domain rdf:resource="#User"/>
<rdfs:range rdf:resource="#Name"/>

</owl:ObjectProperty>
<owl:DatatypeProperty rdf:ID="firstName">

<rdfs:domain rdf:resource="#Name"/>
<rdfs:range rdf:resource="XMLSchema#string"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="infix">

<rdfs:domain rdf:resource="#Name"/>
<rdfs:range rdf:resource="XMLSchema#string"/>

</owl:DatatypeProperty>
<owl:DatatypeProperty rdf:ID="lastName">

<rdfs:domain rdf:resource="#Name"/>
<rdfs:range rdf:resource="XMLSchema#string"/>

</owl:DatatypeProperty>

In this schema a user’s name is built up from a first name, a middle name or name
prefix and a last name.

Also consider the following schema:

<owl:Class rdf:ID="User">
<owl:DatatypeProperty rdf:ID="hasFullName">

<rdfs:domain rdf:resource="#User"/>
<rdfs:range rdf:resource="XMLSchema#string"/>

</owl:DatatypeProperty>

We are looking for a language that allows to express and run a mapping between the
instances of these schemas. We will now look at several transformation languages that
allow us to do that.

5.4.3 Transformation using SWRL

One language that gives us expressive power we need for instance transformation is SWRL
[Horrocks et al., 2004b]. SWRL is a rule based proposed extension of OWL and RuleML12

11e.g. Refer for a collection of wrappers to http://simile.mit.edu/wiki/RDFizers .
12http://ruleml.org/

http://simile.mit.edu/wiki/RDFizers
http://ruleml.org/

78 Data Integration Using SW-based Techniques

that allow the expression of Horn-like rules. A SWRL rule consists of an antecedent and
consequent, which both are OWL patterns with variables. If the antecedent holds this
means that the consequent should also hold. We can use a SWRL engine in practice
such that if the pattern expressed in the antecedent exists in the instance data set, the
consequent pattern gets generated and added to the data set.

Consider the following abstract SWRL rule:

〈?user :hasName $n〉∧
〈$n : firstName $fn〉∧

〈$n : infix $in〉∧
〈$n : lastName $ln〉

⇒ 〈?user :hasFullname concat($fn,‘ ’, $in,‘ ’, $ln)〉

This abstract rule expresses that if there is a user who has a firstname, infix and
lastname, this implies that the user also has a fullname which is a concatenation of the
three elements.

In actual SWRL syntax13 this is written as14:

<ruleml:imp>
<ruleml:_rlab ruleml:href="#mapName"/>
<ruleml:_body>
<swrlx:individualPropertyAtom swrlx:property="hasName">

<ruleml:var>user</ruleml:var>
<ruleml:var>n</ruleml:var>

</swrlx:individualPropertyAtom>
<swrlx:individualPropertyAtom swrlx:property="firstName">

<ruleml:var>n</ruleml:var>
<ruleml:var>fn</ruleml:var>

</swrlx:individualPropertyAtom>
<swrlx:individualPropertyAtom swrlx:property="infix">

<ruleml:var>n</ruleml:var>
<ruleml:var>in</ruleml:var>

</swrlx:individualPropertyAtom>
<swrlx:individualPropertyAtom swrlx:property="lastName">

<ruleml:var>n</ruleml:var>
<ruleml:var>ln</ruleml:var>

</swrlx:individualPropertyAtom>
</ruleml:_body>
<ruleml:_head>
<swrlx:builtinAtom swrlx:builtin="&swrlb;#stringConcat">

<ruleml:var>fullName</ruleml:var>
<ruleml:var>fn</ruleml:var>
<ruleml:var>in</ruleml:var>
<ruleml:var>ln</ruleml:var>

</swrlx:builtinAtom>
<swrlx:individualPropertyAtom swrlx:property="hasFullName">

<ruleml:var>user</ruleml:var>
<ruleml:var>fullName</ruleml:var>

13refer to http://www.w3.org/Submission/SWRL/ for details on the SWRL syntax
14Note that the SWRL-code is a bit simplified, as the concatenation of adding spaces between name

elements is left out in this example, and the user identification is assumed to be the same in both
applications.

http://www.w3.org/Submission/SWRL/

5.4 Data Transformation 79

</swrlx:individualPropertyAtom>
</ruleml:_head>

</ruleml:imp>

This SWRL rule checks for the pattern first name, infix and last name in the source
data. If this pattern occurs, a new full name is generated that is a concatenation of the
three subparts, and an RDF triple is generated that has the user as a subject, has a
hasFullName property which was computed as a result of the concatenation operation.

The other way around, i.e. mapping instance data from the second schema to the first
is also possible, even though it is a bit more complex. Consider the following abstract
SWRL rule:

〈?user :hasFullname $fulln〉
}
⇒

tokenize([$fn, $in, $ln], $fulln,‘ ’)∧

〈?user :hasName n〉∧
〈 n : firstName $fn〉∧

〈 n : infix $in〉∧
〈 n : lastName $ln〉

Here we look at users with the hasFullname property. This full name is tokenized in a
first name, infix and lastname, using a space as the subelement separator. Note we used
the (simplified) assumption that every name consists of these three subelements and that
every subelement do not themselves contain spaces. Then a structure is built that is an
instance of the first schema, where n denotes a newly created blank node for a name
composite structure.

Typically in implementations of reasoning engines like SWRL newly computed triples
are inserted into the source dataset as derived facts. However, for our purposes we typically
want to communicate the mapped data to the target datasource. In our implementation
we used the Bossam15 reasoning engine. Bossam uses the source data and SWRL rules as
its input, and is then able to output all deduced facts. These facts are communicated with
and stored in the datastorage of the target data source.

5.4.4 Transformation using customized SPARQL queries

Given that the SWRL rule language was readily available and gave us the basic expressivity
we needed, it was our first approach for specifying mappings between schemas. However,
using this approach also lead to some practical problems, namely:

• Expressivity Even though SWRL is quite expressive using its built-in data operators,
more complex data operations cannot be performed. Consider our example for
tokenizing a full name into a first name, infix, last name, where we do want to
consider the possibility of a missing infix and multiple first or last names, based on
heuristics. This is not possible in SWRL.

• Syntax Even though SWRL is expressive, its syntax is rather verbose and complex
to understand. This makes developing these rules more time consuming and hard to
maintain.

• Implementation availability Several SWRL implementations are available. How-
ever, as of this writing there is no SWRL implementation that supports its full

15http://projects.semwebcentral.org/projects/bossam/

http://projects.semwebcentral.org/projects/bossam/

80 Data Integration Using SW-based Techniques

specification because of undecidability issues. Especially the data operations we are
after where not available during our research, e.g. Bossam has partial support for
textual and mathematical operators.

To overcome these issues, we constructed a new RDF transformation language based
on SPARQL that we call SPARQL Transformation Language (STL).

Language description

SPARQL allows pattern matching of an RDF graph with triple templates, variables and
filtering restrictions. It also allows ‘CONSTRUCT’ queries, meaning that the result of a
SPARQL query itself is an RDF graph, based on a RDF template in which the variables
have been substituted. Together, this forms a basis to map one RDF structure to another.
However, as SPARQL is a query language and not a transformation language, we found
that it lacks some functionality that we need for our goals, namely value transformation
and aggregate functions.

Therefore we implemented STL such that it extends the SPARQL CONSTRUCT,
FROM, WHERE syntax with the TRANSFORM operator. The TRANSFORM keyword
is followed by a piece of arbitrary JAVA-code encapsulated by an opening ‘${’ and a
closing ‘}$’. In the TRANSFORM one can refer to variables in the SPARQL WHERE
clause by using the ‘?’ sign. These variables will automatically be transformed to strings.
If one of the variable values is a URI this must be explicitly cast from String to URI
in the TRANSFORM clause. The TRANFORM clause can also generate variables by
using the ’$’ sign that can be referred to in the CONSTRUCT clause. In this way, value
transformation can be performed, only limited by the Java programming language.

The following Query constructs a user fullname based on its first name, infix and last
name parts.

CONSTRUCT {?user app2:hasFullName ?fullname .}
WHERE {?user app1:hasName ?nameN .

?nameN app1:firstName ?fn ;
app1:infix ?in ;
app1:lastName ?ln . }

TRANSFORM ${ if (?in.equals("")) $fullname = (?fn + " " + ?ln);
else $fullname (?fn + " " + ?in + " " + ?ln);

}$

This transformation differentiates betweens name that have an infix or not, and prevents
the extra space in case no extra infix exists. Note that neither references to variables in
the WHERE clause, nor the new variables that can be used in the CONSTRUCT clause
need to be specifically initialized.

The following transformation works the other way around and decomposes the full
name into its separate components.

CONSTRUCT {?user app1:hasName _nameN .
_nameN app1:firstName ?fn ;

app1:infix ?in ;
app1:lastName ?ln .}

WHERE {?user app2:hasFullName ?fullname .}
TRANSFORM ${

String[] decomp = ?fullname.split(" ");

5.4 Data Transformation 81

if (decomp.length>0) $fn=decomp[0];
if (decomp.length>1) $ln=decomp[decomp.length-1];
if (decomp.length>2) {

for (int i=1;i<decomp.length-2;i++){
if (i>1)$in+=" ";
$in+=decomp[i];

}
}

}$

In this illustrative example we assumed that if a full name contains no space it is only
the first name, if a full name has one space between components it contains a first name
and last name, and if a name has more components every component between the first
(first name) and the last (last name) is an infix. To cover more complex cases this can of
course be easily adapted.

Within the TRANSFORM JAVA code one can use the methods:

• SparqlQuery, which allows to query external datasources and use the results within
the query.

• CountSparqlQuery, is an aggregation function that counts the number of results for
some (sub)query

• MaxSparqlQuery, is an aggregation function that computes the maximum number of
a set of elements of a (sub)query (default value: -maxint, non-numbers are ignored)

• MinSparqlQuery, is an aggregation function that computes the minimum number of
a set of elements of a (sub)query (default: maxint, non-numbers are ignored)

• SumSparqlQuery, is an aggregation function that computes the numerical sum of a
set of elements of a (sub)query (default: 0, non-numbers are ignored)

These methods allow to query external data sources, and also provide a rudimentary
way for data aggregation.

For external repository queries an optional repository location can be passed to the
methods. The default repository is the repository that is queried in the FROM-WHERE
clause. But the repository parameter can also be used to indicate an helper dataset. For
instance, there is a direct relationship between postal code and a city, but it requires an
external datasource to make this relationship explicit. Given that we have such an external
datasource we could convert postal codes to city names, and vice versa we could convert a
city name to a range of postal codes.

This could lead to the following query:

CONSTRUCT {?user app2:livesInCity ?cname .}
WHERE {?user app1:hasPostalCode ?pcode .}
TRANSFORM ${

String Postalquery = "SELECT \?cityname
WHERE \?postalcode :stringRep ?pcode ;

:relatedTo \?city .
\?city :hasname \?cityname";

String[][] cityNames = SparqlQuery ("PostalRepos", Postalquery);
$cname = cityNames[0][0];

}$

82 Data Integration Using SW-based Techniques

Note that ‘Postalquery’ has two types of variables: Variables that have a local scope,
with respect to the query, are escaped with a ‘ \’, where variables that refer to a variable
in the WHERE clause are not escaped.

Implementation

STL is implemented and available as either a library or a Webservice. The Webservice is
configured with a set of repository names and URLs of the SPARQL endpoints of those
helper datasets. An incoming request contains a URL of the source SPARQL endpoint,
which can be queried for the data that needs to be mapped. It also contains a URL of
the target SPARQL endpoint, which will receive the transformed data. The request also
contains the transformation query needed.

An incoming query is parsed and separated in three parts, namely the CONSTRUCT
part, the FROM-WHERE part and the TRANSFORM part. First a SPARQL SELECT
query is built from the FROM-WHERE part of the query. This query is sent to the
SPARQL endpoint of the application for which we want to map its data. This query
returns a set of variable bindings as result.

Using this set of variable bindings the TRANSFORM is parsed. All variables in the
TRANSFORM section that refer to a variable in the WHERE section are substituted by the
variable binding from the result set. Moreover, al variable references in the TRANSFORM
section that refer to variables that need to be created for the CONSTRUCT part are
explicitly initialized. The resulting expression is dynamically compiled and executed
using the Apache Commons JCI16 component. This is repeated for every result in the
initial result set. The result is an extended result set, i.e. the result of the first query
to the SPARQL endpoint extended with the newly constructed variable bindings by the
TRANSFORM section.

The CONSTRUCT section is interpreted next. Every variable in the construct section
is substituted by its value in the extended result set. This is repeated for every row in
the extended result set. The result of this process is a long CONSTRUCT query without
the FROM-WHERE clause. This CONSTRUCT query is then interpreted by an internal
Sesame SPARQL endpoint and converted into an RDF graph which contains the resulting
translation that can be sent to the target SPARQL endpoint.

The transformation language based on the SPARQL query language is more powerful
than its SWRL variant. It can use arbitrary Java code for value transformation. It is
also less verbose than SWRL which improves on it syntax and readability. Moreover, it
is portable to different implementations and underlying databases as it can be simply
adapted to use every available SPARQL endpoint.

5.5 Automating Relation Discovery

Given that we now defined a query transformation language that we can use to construct
mappings between a source and target RDF datastore, the next step is to actually find
these mappings. As manually going through source and target ontologies and comparing
concepts can be quite laborious for mapping designers, we decided to build tool support
that helps the designer by finding possible relations between concepts in a source and
target ontology. We call these possible relations matches. We were inspired by various
ontology matching and mapping systems [Rahm and Bernstein, 2001; Euzenat and Shvaiko,

16refer to http://commons.apache.org/jci/

http://commons.apache.org/jci/

5.5 Automating Relation Discovery 83

2007], which for instance use machine learning strategies [Doan et al., 2002], but also
frameworks that use an interesting combinations of techniques like Coma [Algergawy et al.,
2011]. However, during our research no usable working software could be found that we
could use: either the software was not available at the time or the results of the software
were practically unusable. Therefore, we decided to create our own toolset which uses and
combines various effective techniques.

We implemented a component, which we call Relco, which offers a mapping-designer
tool support for finding matches and constructing STL mappings. Relco uses techniques to
find possible matches between an input concept and concepts in a target ontology. Figure
5.4 is an overview of Relco’s behavior.

Figure 5.4: Relco information flow

The ambition for Relco is to have a tool that brings together several existing techniques
from different fields that allow designers to find matches between concepts (or tags)
and target ontologies, which allows the designer to create mappings. Our ambition is
not to automatically construct the mappings as the complete background knowledge
needed for this is typically not made explicit in RDF ontologies, especially not on the
datatype level. For example, the knowledge needed for constructing a query that converts
a postal code to a city name is usually not explicitly specified in an application schema
describing someone’s personal details. Concrete values typically have implicit semantics in
applications, most of which is hidden in the application logic. Consider, for example, two
learning applications about computer science that keep track of their learners’ knowledge
of the concept ‘concurrency’ with a range between 0 and 100. These two applications might
assess a knowledge level of 50 of this concept completely different, e.g. for one application
it might be interpreted as knowing the basic idea behind concurrency, while the other
application might assume that the user has practical knowledge of the use of semaphores,
threads and threading pools. In other words, without complete explicit description on the
meaning and interpretation of data it is impossible to do automatic (correct) mapping
generation. Therefore, we instead chose for a solution in which we try to help the mapping
designer by providing matches of concepts between schemas that could be related, but
except for the trivial suggestions like value copying, it is up to the designer to make the
actual mappings between concept instances.

Relco matches a concept from some source ontology to the concepts in a target ontology.
Its result is an ordered list of matching concepts that might be related to the input. The
result is ordered based on how good a match is. A concept is a good match if it is
semantically related to the input concept. In order to compute matches, Relco compares
input and target concepts syntactically, semantically and it uses user input for finetuning
and sorting.

5.5.1 String Matching Techniques

The first step Relco takes is finding syntactic matches between concepts in the source and
target datasource. This is based on the assumption that concept that are labeled (almost)

84 Data Integration Using SW-based Techniques

equally are more likely to be related than differently labeled concepts. This results in a
promising set of target concepts. If we for example start with a concept that is labeled
as “lastname”, and we have a concept in the target ontology that is also labeled with
“lastname”, this seems to be a good candidate matching concept because of its syntactical
equality.

In order to find syntactical matches between concepts, first the textual representations
for our concepts in both the domain and target ontologies have to be determined. As
identifying the appropriate textual representation for concepts is ontology-dependent and
Relco is designed to be a generic tool, we made it possible for the tool to be configurable
for most practical situations.

Usually concepts contain a property like rdfs:label to denote the label for a given
concept. Sometimes, there are multiple candidate labels for a concept. For instance, the
Simple Knowledge Organization System (SKOS) vocabulary uses the skos:prefLabel and
skos:altLabel properties to distinguish preferred labels and alternative labels. Multilabels
also occur often in ontological sources that support multilinguality. We also see sources
that use a more complex naming schema with intermediate label nodes. Lastly, we also
consider labels that are encoded in URIs, usually as part of the fragment identifier. In its
configuration Relco supports each of these labeling scenarios via different constructs: for
the simple cases only the appropriate properties have to be specified, for the more complex
cases a modified SPARQL query can be used, and for URI-encoded labels the delimiter
characters have to be specified.

An example configuration could be:

Source.0.GraphPattern = {x}rdfs:label{y}
Source.0.ConceptVar = x
Source.0.LabelVar = y

The ‘Source’ keyword indicates we are specifying a source ontology, i.e. which will
provide the input concepts that are to be matched to some target ontology. As more than
one input source can be specified it is specified that this is the (in this case) 0th source
specification. This configuration specifies that every concept ‘x’ in the ontology is textually
represented by label ‘y’. This implies that if the string matching process matches the
textual representation of concept ‘c’ with a label ‘y’, we than consider ‘x’ as a conceptual
match with the concept represented by ‘c’.

After having thus obtained the labels for all the concepts in the source and target
ontology, we can match the input concepts via their labels. To do that, we first stem both
tags and labels17 to cater for morphological differences between words.

Given real world datasources, one encounters different spellings for the same words,
and spelling errors. In English, for example, spelling differences exist between the US and
British dictionary. Examples are “aeroplane” versus “airplane”, “centre” versus “center”,
“colour” versus “color” and “moustache” versus “mustache”. Also consider composite words,
i.e. sometimes words are written together as one word, or separate, for example “family
name”, versus “family-name” or “familyname”. Also, the open Web-like of the Semantic
Web implies that misspellings need to be taken into account, i.e. not all ontologies are
carefully crafted by groups of domain experts. This is especially important when we use
user tags as input instead of a source ontology, see Section 6.1.3.

Therefore, we use an algorithm for computing the similarity between strings. Many
similarity metrics are available. In Relco we use the open source Simmetrics library18 for

17using Snowball, cf. http://snowball.tartarus.org/
18cf. http://sourceforge.net/projects/simmetrics/

http://snowball.tartarus.org/
http://sourceforge.net/projects/simmetrics/

5.5 Automating Relation Discovery 85

our lexical matching needs, as it contains implementations for many of the well-known
string similarity algorithms.

In practice there are three algorithms that we use most often, namely Levenshtein
distance [Damerau, 1964], Jaro-Winkler distance [Jaro, 1989] and Soundex [Knuth, 1973].
Levenshtein is a well-known metric for calculating word distances. It calculates the
minimum number of edits to transform one word into another (the fewer edits the more
alike the words are). Jaro-Winkler is an alternative in which matching characters in two
words are compared based on the position of the character in the words. Words that share
many similar characters on similar positions in the word are considered more similar than
words that do not. The Soundex algorithm is based on the phonetics of words. Words are
considered more similar to each other the more they sound alike.

Relco can be configured to specify which matching algorithm to use. The algorithm
derives that two concept match if the word distance for their textual representations
calculated by the algorithm is equal or greater than a (configurable) threshold. The result
of this string matching step is a set of concept candidates that textually relate to the
input concept, each candidate with a certainty that reflects the calculated word distance
between the labels. The result of this string matching step is then input for the next steps
of the matching analysis.

5.5.2 Utilizing Helper Ontologies

The result of Relco’s first step is a set of conceptual matches based on syntactic relations
between the textual representations of concepts in a source and target ontology. In our
next step we want to exploit the semantic structure of the underlying ontologies as well as
helper ontologies to extend our set of matches. We base this technique on the observation
that an ontology connects semantically related concepts and that such related concepts
might be semantically equivalent for the matches we computed after step 1. Semantically
related suggestions might for example be convenient if the source and target ontologies
define their concepts on different levels of granularity, or use different but semantically
equivalent terms.

We can for instance think of exploiting the rdfs:subClassOf property. This property
can be used to find more specific concepts, more generic concepts or sibling concepts.
Suppose we have a source concept labeled “Java” that syntactically does not match with
any concept of the target ontology. The target ontology could still have semantically
related terms like ‘Object Oriented Programming Language’, which is semantically instead
of syntactically related. By using a helper ontology about programming language, we could
find this match. By following, for example, the rdfs:subClassOf relationship we can now
extend this initial result with the semantically related concepts in the target ontology like
“programming language” (more general) or “Standard Edition 6” (more specific). We could
even consider to follow a longer path in the graph instead of a single property, e.g. by also
considering the subclasses of “programming language” we would find “C++” or “Python”,
i.e. sibling concepts of “Java”. If these related concepts can be found in the target ontology
they might be good semantic related matches with the concept in the source ontology.

Which property or path of properties will be generally considered in the target or helper
ontology must be specified in the configuration for every ontology. In Relco we allow two
ways to define which path of properties to consider. One way, for path length 1, is to simply
specify the property. Good examples being the often used properties “rdfs:subClassOf”
and “skos:related”. It is also possible to specify in which direction the property should
be inspected, i.e. as they are directed edges on the RDF graph. For example, to find the

86 Data Integration Using SW-based Techniques

more general concept in an ontology that uses the rdfs:subClassOf property we need to
inspect it inversely. Sometimes this simple schema is too simple however, i.e. if we want to
take into account specific paths of properties (e.g. the sibling example we used earlier).
In case of our previous sibling example inspect two subsequent properties (the inverse
rdfs:subClassOf and then the regular rdfs:subClassOf). In reality, paths may also be longer
and more complex or require additional conditions. In those cases we specify semantic
expansion by an explicit query (using SPARQL), for example:

PREFIX ws: <http://www.w3.org/2006/03/wn/wn20/schema>
SELECT DISTINCT ?wordForm
WHERE { ?Synset ws:containsWordSense ?aWordSense .

?aWordSense ws:word ?aWord .
?aWord ws:lexicalForm {"%inputTerm%"@en-us} .
?Synset ws:containsWordSense ?bWordSense .
?bWordSense ws:word ?bWord .
?bWord ws:lexicalForm ?wordForm .
FILTER {?wordForm != "%inputTerm%"@en-us}
}

It is a SPARQL query that searches for all the synonyms of a given input term
(%inputTerm%) by using the WordNet lexicon as a helper ontology. The query defines the
search for the Synset that contains the input term from our source ontology. It then returns
all wordforms of that ‘Synset’ (i.e. the synonyms), except for the original input term.
The %inputTerm% variable is not a SPARQL construct, but something we introduced to
denote the substitution of the lexical forms of the output of the step we detailed in Section
5.5.1. Relco extracts the results, denoted by the bounded variables from the SELECT
clause, as semantic matches for the input terms.

The second, semantic expansion step thus moves from a set of concept matches to
an extended set of concept matches (each with a certainty value and a set of associated
concepts). This certainty value of the extended matches is lower than the original matches.
How much lower is configurable by a decreasing factor based on how relevant a specific
property path is judged to be semantically relevant. For our “Java” example the designer
could for instance specify a decrease value of 0.2 for the sibling query, meaning that if
the concept for “Java” was originally matched in Section 5.5.1 with a certainty of 0.9, the
certainty for sibling concept “Python” would be (1-0.2)*0.9=0.72.

5.5.3 Using Context for Disambiguation

In the third step in Relco we go for context disambiguation. There we exploit the structure
of both ontologies in Relco. The underlying assumption is that for a certain concept in
the ontology, the surrounding concepts in the graph can provide insights in what concepts
mean. The idea is, as illustrated by Figure 5.5, that if two or more concepts of a source
ontology have a match in the same neighborhood of a target ontology (defined by a
maximum distance in the length of the property path between concepts) then the chance
is higher that the matches are better. For example, suppose that in our example source
ontology there is a property “skos:related” between “java” and “programming”. This allows
us to consider matches for “java” like “Python” and “SE 6” more relevant than matches
like “island” or “coffee”, i.e. because we know that “Python” and “Se 6” are also related to
the “programming” concept and “island” and “coffee” are not.

We use the path length between the input concept and other input concepts in the
source ontology as a neighborhood indication. In our example, we have a path length of

5.5 Automating Relation Discovery 87

2 between java and c++ (both have a connection with ‘programming’) and therefor we
increase the certainty of “programming” being a good matching concept for “java”.

Figure 5.5: Two matches in one region of an ontology

Determining the path length between all concepts that are matched with a set of
input tags is very costly if this is determined during runtime only. To do this efficiently
we pre-compute the neighborhood of every concept in the target ontology once, i.e. we
compute for every concept all the concepts that are within the maximum path distance.
The path distance is the minimum number of properties that connect two concepts. The
chosen maximum for path distance is typically rather small, especially for well-connected
graphs as otherwise almost any concept in an ontology will be in the neighborhood of
every other concept, but a good value depends on the connectedness of the ontology.

The certainty-increase for tag suggestions that are found in the same region (in function
of the path length) is configurable, as is the maximum path length. We could for instance
configure to decrease uncertainty with a maximum factor of 0.8. If the matching concepts
have distance 1, as with our “java” and “programming” example, where “C++” has a path
distance of 2 from “java” and “programming” has an initial certainty of 0.7, then the new
certainty for “programming” would be ((1-0.7)*(0.8/2))+0.7=0.82. Initial matches “island”
(e.g. also initial certainty of 0.7) and “coffee” in this example would not get improved
certainties, as they are not in the same neighborhood as other input concepts.

How good the chosen value is for influencing the certainty value needs to be evaluated
and depends on the structure and language of the target ontology.

5.5.4 Using User Feedback

After the first three steps we have for an input concept obtained a set of matching
concept-certainty value pairs. We can now consider what how to use these matches.

One scenario is to now automatically use the set of matches and assume relationships
between the input concept of the source ontology and matching concepts in the target
ontology, provided that the certainty is above a threshold, and generate mappings on that
basis. However, in most cases things are not that simple. Usually the underlying datatypes
of the RDF literals differ and need to mapped. For example, different datasets might store
distances in different units and granularity, e.g. miles, kilometers, meter, etc. So ontologies
that define the size of objects can not be automatically mapped to each other without
regarding this possible type mismatch. Another example is that datasets can have relative
views, e.g. of user models. If two applications both model the knowledge of a user of the
same particular subject, that doesn’t mean they can have very different views on it. In one
application one is labeled as a Linux-expert if one can use the command prompt without
problems, while another application might only label programmers that contribute to the

88 Data Integration Using SW-based Techniques

Linux kernel to be Linux-experts. These granularity issues and viewpoint differences can
hardly be solved by automatic mapping mechanisms, as the information needed for this is
usually not part of the ontology and depends on the mapping context and designer.

To reduce this problem we involve users in the mapping process as well and we try to
make their mental view on the mapping explicit by validating our matches. We present
the user with our suggested matches and use their feedback to improve the matching
certainties.

To present these concept matches to the user in a user interface, we first need to choose
a good textual representation for the concepts, especially in the case a concept has more
then one textual representation. The issue is illustrated by Figure 5.6, where we see a
concept that has several textual representations.

Figure 5.6: Example of concept with multiple labels

Suppose we have a concept with several labels where we can discern between labels, e.g.
preferred labels and alternative labels. If the input of the source ontology matches with
an alternative label we might want to show the preferred label instead of the alternative
one. For instance suppose we have a concept with a preferred label “application” and an
alternative label “program”. Now if the textual representation of an input concept matches
with “program”, we might want to give the preferred label “application” anyway, instead of
the actual label “software” that lead to the match.

Relco provides three configuration options for choosing the best textual representation
of a concept for an ontology. One can choose to define a preferred label and present that
to the user. Another possibility is to present only the labels that were matched during
the string matching process in step 1. The third option is presenting the user all string
representations of a concept.

The user can now be presented with the best matching concepts for his input concept.
The former processes for finding concept matches for tags were user-independent. By
utilizing user feedback we want to improve the process of computing concept matches by
storing their choices and use that information to adapt the certainty values.

Relco has a feedback channel for both simple and extensive feedback input. In the
simple case, the user is presented with textual representation of matches and is asked if
one of them is a good alternative description for the input concept. If the user does select
one of the concept matches we consider this as implicit feedback that indicates that the
selected concept is a good match to the input concept. We then store this information
and use this information to increase the certainty of the chosen match, the next time the
same input is encountered. We also provide a more explicit feedback channel by allowing
the user to explicitly evaluate concept matches for the given input concepts.

We store the feedback using an RDF data format. Figure 5.7 represents the (simplified)

5.5 Automating Relation Discovery 89

schema for the feedback instances that we store in our datastore. We store the input
concept and the concept match that we computed. For every match we compute for an
inputtag we maintain the total number of users that gave a positive or negative rating
for that match. This results in a certainty which we store (such that we don’t have to
recompute). If the user is logged in, we record the individual judgements and with which
users they belong.

Figure 5.7: Feedback Data Model

The feedback information that we keep in the store is in the first place used to change
the certainty value, and make it more fitting with the user’s opinion. The first thing
Relco checks (before the start of string matching) is to see if the concept is already in the
feedback store. If so, we adapt the certainty of matches based on previous input of the
user.

Consider for instance the input concept “programming language”. Concept matches
for programming language might include “java”, “c++” and “python”. From previous user
feedback we might have recorded that “java” is chosen much more often as final concept for
the textual representation “programming language” than the other programming languages
(e.g. caused by the relative popularity of Java). The certainty of the “java” concept is then
promoted based on this user behavior as we find it more likely that “java” will be again
be chosen instead of the other alternative concepts. We use both personal information
for users and general aggregated information from all users. For example, if Java is most
popular it will increase the certainty of Java for programming language for all users.
However, if a specific user repeatedly chooses C++ this will lead to a higher certainty for
that specific user for C++.

5.5.5 Implementation and Performance

During implementation of Relco we found that a straightforward use of one of these
similarity metrics algorithms has one big drawback: it does not scale well. Every concept
in the source ontology has to be compared with every label in the ontology, and every
comparison operation is relatively expensive. Tests on a reasonably large representative
target ontology with about 3800 concepts showed us that it would take about 7 seconds
on standard hardware to match one input concept of some source ontology with the string
representations of those concepts. To avoid this and improve on this performance, Relco

90 Data Integration Using SW-based Techniques

Input Label Default Performance Lucene Performance
#results Performance(s) #results Performance(s)

Restaureer 9 7.344 9 0.688
Platteland 8 7.187 8 0.672
Emancipatie 13 7.766 11 0.688
Amsterdam 13 8.150 0 0.516
Zang 25 5.969 24 0.657
Koningshuis 6 7.453 4 0.676

Table 5.1: Relco Peformance Using the GTAA ontology

uses Apache Lucene19 to build a ‘fuzzy’ index. The principle behind this index is to
compute n-grams of words, meaning that strings are broken up into all subsequences
of length n. These subsequences are put in an inverted index. Using the heuristic that
two only slightly differing strings share many common subsequences, the n-grams of an
input term can be quickly compared with the labels in the ontology. The result of this
process is a set of matching labels with a similarity measure that represents the number of
matching n-grams between the input tag and the matching label. However, experiments
showed that the accuracy of this similarity measure is in general worse than that of the
previously discussed algorithms. Therefore, in our case Lucene is used with a relatively low
accuracy setting in order to quickly pre-select all candidate strings that might match; then
the string similarity algorithms from the Simmetrics library are used for higher-quality
string comparisons. With this method using the same test ontology with 3800 concepts
we were able to reduce computation time to less than a second. Table 5.1 illustrates
these performance differences for the Dutch GTAA ontology (see Section 6.3.1) and some
arbitrary input textual labels we produced just for testing.

Another possible performance bottleneck in Relco was during the disambiguation
process. The disambiguation process means that Relco has to compute the relation of all
neighboring concepts of the input concept and then compute the distance between the
target concepts. To speed up this last process we built an initial |C|x|C| distance matrix.
We then store that part of the matrix with distances smaller or equal to a constant n. This
n represent the longest path between that may exist between concepts that are still in
each other’s neighborhood. This n is typically rather small, especially for well-connected
graphs, but a good value depends on the structure of the ontology. So, when the input
concept and its neighboring concepts have target concepts in the same neighborhood this
is immediately retrievable from our matrix.

Relco is implemented in the Java programming language. It depends on the Sesame
RDF store library, the Simmetrics library (for string matching purposes) and as explained
in the previous paragraph: the Apache Lucene library. Relco can be deployed in two ways.
It can be deployed as a library. In this mode external applications can easily embed Relco.
This has the disadvantage that Relco has to initialize its datastores for every concept
matching process, which will give it a slight but perceivable slowdown. Relco can also
be deployed as a Web service. It then has to be deployed in a Java servlet container like
Apache Tomcat and can then be called by SOAP messages. Relco then only has to be
initialized once to be ready for operation. Its setup is slightly more complex, but it is faster
(especially when using the in-memory store) and can be used by more Web applications at
once.

Figure 5.8 is a simplified class diagram of Relco. The class RelcoProperties is used

19http://lucene.apache.org/

http://lucene.apache.org/

5.6 Summary 91

Figure 5.8: Simplified Relco Class diagram

by other classes to retrieve configuration elements. It can return individual properties or
a list of properties, for example all source files for a specific repository. The properties
are read from the configuration file. The classes Lucene and Sesame support the storage
of information. In this case Sesame stores ontologies in repositories and Lucene creates
indexes of labels, their related concepts and n-grams of the labels. An index is always
based on a repository. The class RelcoManager contains the method Execute(). This
method instantiates the models, invokes the algorithms and keeps track of the intermediate
tag and concept suggestions and eventually returns the suggestions. A StringTable and
ConceptTable object are instantiated to store the intermediate results and are updated
after the execution of each step in the process.

5.6 Summary

In this chapter we investigated various aspects of data integration for RDF data sources.

We investigated using different integration approaches. One approach was data coupling,
by connecting concepts in different sources with a relationship, e.g. owl:sameAs for identical
concepts. This is a simple approach, but not always usable, for example queries over
coupled datasources become more complex because they have to incorporate all possible
schema structure for their answer.

Another approach is to reach a common ground by defining a standard vocabulary that
all applications decide to use, or that is used as an exchange format. This solution has
some favorable characteristics as new applications can be easily connected and exchange
information with a set of other applications. However, this approach depends on the
possibility that a common vocabulary can be agreed on that incorporates all information
that is to be exchanged between all parties.

As in many cases this is not feasible we also considered the scenario in which every

92 Data Integration Using SW-based Techniques

pair of applications develop pair-wise mapping for their data. This scenario is necessary
for applications that are either very specific and only need to exchange that data with few
other applications or are in a domain in which there is no common ground.

Both the case of an intermediate ontology and the application-to-application scenario
require mapping data from one schema to another. This requires a formalism for expressing
the mapping of instance data between schemas. We investigated two methods for expressing
these mappings. One mapping is based on the SWRL rule language. It is based on rule
antecedents and consequents, i.e. when some condition holds ‘new facts’ are derived.
These ‘new facts’ is the actual translated instance data which in our implementation is
transported to the target datastore. Because of expressivity limitations in the SWRL
rule language as well as readability and verbosity issues, we decided to create another
solution based on the SPARQL language. SPARQL was in our implementation extended
with a ‘TRANSFORM’ operator, which provides additional value transformations as well
as some additional aggregation operators and operators to use background information.
The resulting extension, called STL, is more expressive, versatile and expressive than the
SWRL rule language.

We also introduced the Relco framework which can be used to automate relation
discovery, which is used as basis for mappings. Relco was designed to find candidate
relationships between an input concept and a target ontology. We used an approach
based on string matching, the utilization of helper ontologies, context disambiguation and
user feedback for finding a set of candidate concepts and a certainty value that expresses
the probability that the candidate concept is a good candidate for the input concept.
The Relco approach for relating concepts is inspired by work on ontology matching. It
follows the frequently used method in ontology matching [Aleksovski et al., 2006; Rahm
and Bernstein, 2001] of finding a set of concepts with the highest syntactic and semantic
certainty between the input and the target ontologies. However, Relco is targeted on more
flexible situations that are slightly different than with those systems, e.g. in Section 6.1.3
we deploy Relco for relating tags to concepts. Therefore, we focused on extending regular
techniques with techniques that exploit the data structures that we use and the users of
the system.

Chapter 6

Applications of Data Integration

We will now look at a number of Web applications that have data integration
requirements. Data integration in these Web application was based on the
techniques that were described in the previous chapter. Every application has
unique characteristics and challenges that asked for specific attention. Every
application also has unique opportunities in terms of capabilities derived from
data integration, which we will explore. In this chapter we will look at three
applications that (next to data integration issues) share that they disclose
multimedia datasets. However, the applications are in very different domains
and have very different purposes. First we will look at χ Explorer, a Web
application that was built for navigating cultural heritage collections. Its purpose
is to disclose cultural heritage collections to the general public, while at the
same time providing valuable metadata for professional archivists. Next we look
at SenSee, a television recommender system that exploits semantic relations.
Important for SenSee was providing efficient access to large RDF datasets and
adapting to a multi-device scenario. The third application we discuss is ViTa,
a video tagging application for tagging and searching educational videos via
user tags.

6.1 χ Explorer

We first look at the Web application called χ Explorer, which we built for Regionaal
Historisch Centrum Eindhoven (RHCe). RHCe is appointed by the region of Eindhoven to
govern all official city archives and the cultural historic information related to Eindhoven
and its surrounding municipalities. The archives contain millions of objects, including
official documents, pictures, videos, maps, newspapers, etc. These objects are organized in
collections based on their function and type.

One of RHCe’s missions is to disclose their collections to the general public. The current
practice is to physically retrieve the objects for interested visitors, based on handcrafted
metadata indices constructed by RHCe’s professional annotators. This is time-consuming
for visitors and RHCe staff. Many objects are also fragile and physical contact could be
damaging. So, RHCe has started a process of creating high-quality digital copies of their
source data as basis for information disclosure. They also envisioned Web disclosure of
their archives to reach a larger public and thus get a better idea of the evolving interests
and wishes of their visitors/users. An important element in this process is metadata:
RHCe employs professionals to correctly annotate objects. However, the amount of new

94 Applications of Data Integration

objects grows much faster than the annotators can keep up with, so the huge current
archives are only annotated for a small part at the moment. If one could get the users to
help in annotation, this burden could be greatly lessened.

In Section 6.1.1 we describe an overall metadata structure that intelligently defines a
semantically linked heterogeneous dataset. Based on this dataset we have been able to offer
a navigation structure over the archive objects, and study how to exploit the metadata
in the navigation, e.g. through presenting specialized user interfaces for various facets of
the data (Section 6.1.2). Since the involvement of the user groups was an important goal
in this process of obtaining structured metadata, we describe in Section 6.1.3 how we
used Relco (as described in chapter 5.5) to convert unstructured user-generated metadata
to well-structured ontology-based metadata ready for the professional annotators. Thus
we illustrate how intelligent techniques for metadata integration and user-participation
can be applied in the practice of small/medium cultural heritage institutions. These
techniques allow to reduce overhead costs of the metadata creation process and allow for
the continuous integration and expansion of collections.

6.1.1 Semantic Integration

A first challenge was integration. Previously, all metadata information was stored in
separate proprietary database applications. This had legacy reasons, e.g. mergers of
historic institutes, but RHCe also consciously chose for having separate applications
for different types of objects because of their different metadata. Photos for example
typically have properties like camera type and color capabilities, while birth certificates
have properties like person name and birth date. Most of these database applications are
closed in the sense that the data is only accessible via an application form or in some cases
an XML or SQL export.

The desire was to have one web application that allows the user to browse the RHCe
datasets as if it was one integrated homogeneous dataset. We therefore first needed
to create one integrated data model that describes all metadata fields of all metadata
databases. We were especially keen on identifying those metadata fields that the separate
collections have in common as RHCe saw great value in connecting objects in different
collections. For example consider the scenario that someone is interested in a marriage
certificate (e.g. of his grandparents) and then wants to see photos of the church of the
marriage from the time of the marriage.

It is important to point out that considerations like these were inspired on the added
value that the new interface could provide. That is also why we have presented these
aspects as part of the complete study. An advantage of the integrated dataset approach
is that it would allow us to create specialized visualization primitives for navigation (see
Section 6.1.2). Furthermore, it also allows us to use it as a format for user-generated
metadata (see Section 6.1.3).

In Section 6.1.2 we propose specialized faceted browsing visualizations. In order to
make this possible we utilize the structure of a specialized ontology for each of them:
a location ontology, a domain ontology and a time ontology. These ontologies are also
important in the user-generated metadata phase (Section 6.1.3). There we exploit the
labels and semantic structure of these ontologies.

When we constructed the overall metadata structure we chose RDF as its formalism
(see Section 2.2.3). Basic requirements were that it should be easily extendible and that it
should be possible to easily integrate or connect new data sources (more legacy sources
from mergers, but also connecting to data sources from other institutions). As we planned

6.1 χ Explorer 95

the navigation primitives for χ we also concluded we required a connection with external
knowledge sources. RDF fits all these requirements. Before making the translation from
the various databases to RDF we first designed a schema for our combined dataset. We
needed to combine here the given structure of the available sources (a heterogenous set of
relational databases) and the desired properties of the solution (a homogeneous integrated
dataset that is easily navigated).

We wanted to base our schema on open standards (i.e. vocabularies) where possible, as
this improves extendibility and reuse (as chances are higher that the standards are used in
other sources as well). When we created our schema we didn’t find a single open metadata
standard that allows describing all cultural objects in RHCe’s collection. We did find some
standards that focused on art objects, however these were not suitable for the larger part
of the collection. We did however identify a Dutch standard called GABOS for describing
topographic historic information (developed by VTHA, a collective of many local archives
and local cultural centers in the Netherlands1), which we could use as a basis. GABOS
however only provided a flat list of ‘descriptors’ with proper names to describe objects.
We mapped these content descriptor structure to RDF.

Both the location and domain ontology are based on data structures developed internally
in RHCe. The location ontology relies on a hierarchy of locations and their coordinates
(based on information provided by the city administration). Locations in the location
ontology have also been extended with time properties were appropriate, that can be used
in the historical perspective to support evolution in locations, e.g. with city restructurings.
The domain ontology was based on a classification hierarchy developed for structured
annotation in the various RHCe database applications. In both ontologies we reused
standardized relationships where possible, e.g. for hierarchical relationships the “broader”
and “narrower” relationships from the SKOS vocabulary [Miles and Bechhofer, 2009].

Figure 6.1: χ metadata structure

For the time dimension RHCe didn’t have a structured ontology yet, even though
different time notions are often used in their metadata databases. As time is an important
notion in cultural heritage applications we standardized its notation so that we can access

1http://www.vtha.nl/

http://www.vtha.nl/

96 Applications of Data Integration

homogenously time instances later on. We reused the OWL Time ontology and mapped
all time notations used in the metadata databases to instances of that ontology.

The next step was to make wrappers that can translate the metadata information
from the database applications in RHCe (that remain in use) into instances of our RDF
schema. We created unique URIs for objects based on their database-ID and translated
all metadata in the databases into terms of our metadata structure with relations to the
relevant ontologies. Mapping the actual data items to instances of our schema was a
relatively straightforward process, besides some restructuring issues. The time notations
could be easily translated to OWL Time notations. The link to the domain ontology
was also rather straightforward as long as the annotators correctly used the classification
hierarchy. We only considered the classifications that exactly matched the classification
hierarchy. For the location hierarchy we had to do some more elaborate matching and
mapping, for which we used the Relco framework that was described in Section 5.5.

Figure 6.1 gives an example of an instance (simplified) in our metadata structure. The
data describes the picture in Figure 6.2 of the Catharina church after its bombardment on
September 19, 1944. Note the links with the ontologies that we created.

Figure 6.2: Example picture from the RHCe dataset

6.1.2 Navigation and Visualization

Based on the integrated dataset we built the user interface of χ Explorer. We focused on
navigation and search.

The RHCe user base is typically interested in objects related to specific areas (Section
6.1.4 describes the user base in more detail). Consider our previous example in which a
user is interested in the location of his (grand)parents’ marriage. Therefore we added a
Map view, which should simplify navigating objects over their spatial relationships. We
used the Google Maps API (cf. http://code.google.com/apis/maps/) to visualize locations
of objects. See Figure 6.3 for a screenshot from the χ Explorer Map view. Here we
exploited the transformation of location annotations into links to our location ontology in
our integrated dataset. This ontology contains location coordinates which are translated
to Google Maps coordinates.

A search or browsing action can lead to the need to visualize a large set of objects
on a relatively small part of the map (most are within the city of Eindhoven). Our user

6.1 χ Explorer 97

study (see Section 6.1.4) showed that users struggled with large unordered set of objects.
Therefore, we incorporated a clustering algorithm which is based on the Hierarchical
Agglomerative Clustering Algorithm [Jain et al., 1999]. However, instead of just finding a
clustering for a group of points, we reduce the number of visualization points by clustering
until we have reached the maximum. The algorithm is as follows:

Figure 6.3: Map view χ Explorer

1. Define the maximum number of clusters that will be visualized on the
map.

2. Compute the proximity matrix containing the distance between each pair
of search results. Treat each search result as a cluster.

3. Find the closest pair of clusters using the proximity matrix. Merge
these two clusters into one cluster. Update the proximity matrix to
reflect this merge operation.

4. Stop when the number of clusters equals the maximum.

The clustered sets of objects are afterwards visualized in the Map view. When the user
selects a cluster the set of objects associated with that location is visualized. For every
object a thumbnail representation is shown together with a description. Within a cluster
of objects, the objects can optionally be grouped by creating subsets that have similar
properties in one of the other dimensions (i.e. time and domain concepts). In this way,
objects in an object set can be grouped either on the time periods or on the concepts for a
certain location, which makes browsing an object set more orderly.

Similarly, the user base is typically interested in objects from a specific time period.
Consider for example the scenario of a user who is interested in objects from the time
his (grand)parents married. Therefore we added a Timeline view in which objects can
be related by the time periods in which they have been created. See Figure 6.4 for a

98 Applications of Data Integration

screenshot of the timeline. We used the Simile Timeline component2 for that. Here we
exploited the fact that all date notations in our integrated dataset were translated into
OWL time instances. Thus we could generate dates and intervals as elements on the
timeline. Dates at different granularity levels can be recognized in the view by the different
sizes of the elements.

Figure 6.4: Timeline view χ Explorer

For objects on the timeline a similar problem of cluttering the timeline with too many
objects had to be faced (as with locations). Objects on the timeline with overlap in the
time period are arranged vertically. We had to make sure that the number of vertically
placed events fits the screen size. For this we use a slightly adapted version of the clustering
algorithm:

1. Determine the candidate timeframes with more results than the maximum.

2. Create a proximity matrix containing the time-distance between each pair
of search results in a candidate timeframe. Treat each search result
as a cluster.

a. The distance between timeframes is measured by adding the amount of
time necessary to add to both timeframes to come to a union of those
timeframes. For instance, given timeframes “1940-1945" and “May 5,
1943", the union of those timeframes is “1940-1945" and 0 time needs
to be added to the first timeframe and 5 years minus a day to the
second: the total distance between the two is 5 years minus a day.

3. Find the closest pair of clusters using the proximity matrix. Merge
these two clusters into one. Update the matrix to reflect this merge.

4. Stop when the number of clusters equals the maximum.

5. Repeat steps 3-5 for each candidate timeframe.

Like in the map facet, a visualization of the objects in an object set can be grouped in
the other dimensions (location and domain concepts).

2http://code.google.com/p/simile-widgets/

http://code.google.com/p/simile-widgets/

6.1 χ Explorer 99

The last visualization we considered was based on the desire of many users to quickly
navigate objects that relate to a specific theme or concept. In our example, the user could
be interested in objects that relate to the concept of church or marriage. The domain
ontology was in fact specifically designed to facilitate this thematic classification of objects,
which allows the user to navigate semantically related objects. To visualize the domain
ontology we used graph-based visualization, based on the GraphViz graph library3. Figure
6.5 is a screenshot of the graph-view in χ Explorer.

Figure 6.5: Graph view χ Explorer

We visualize the domain ontology, and use that our integrated dataset links data
objects to the concept in this ontology. To keep the Graph view simple, the user is shown
one central concept and all its related concepts. Different types of relationships have
different color codings, as can be seen for the example in Figure 6.5. The central concept
there is labeled with “De Wildeman & Gouden Leeuw”. This is the name of a business
that both contains a “restaurant” and a “hotel”, both denoted by the “omvat” relationship
(‘omvat’ is the Dutch word for ‘contains’). The other visual relationship is “wasVroeger”,
which is Dutch for ‘was formerly’. This relationship illustrates that this business was
formerly called “Gouden Leeuw” and “De Wildeman”, i.e. the business merged and retained
both names at first. However, eventually the business was again renamed to just “De
Wildeman”, which is denoted by the top “wasVroeger” relationship.

If a user selects one of the related concepts, that concept becomes the central concept
and its related concepts are then shown in the view. The user can also view the set of
objects that are annotated with the current concept. Like with the other visualizations,
objects can be further grouped in the other dimensions as well.

The χ Framework was built to facilitate the user interface we just described. Figure
6.6 contains an overview of the framework. At the bottom there are the RHCe back ends
(the proprietary databases) and the wrapper that transforms that data to instances of our
integrated structure. The χ Engine is the application back end that allows storing and
querying the data. Furthermore, it maintains a user model where user information can
be stored as well as user-generated input (see Section 6.1.3). Querying and storing RDF
data in the χ Engine is based on Sesame4. The χ Engine also uses Relco (as discussed in
5.5). Relco is used to provides suggestions for mappings between user tags and concepts in
the ontologies. The top part of the Figure contains the presentation logic, χ Explorer. χ
Explorer provides the specialized user interface (we described earlier) over the data from
χ Engine.

3http://www.graphviz.org/
4http://www.openrdf.org/

http://www.graphviz.org/
http://www.openrdf.org/

100 Applications of Data Integration

Figure 6.6: χ Framework Architecture

6.1.3 User-generated Metadata

The faceted navigation depends on the relations between our integrated dataset and the
ontologies. Given the lack of metadata for many objects we use the Relco component
to allow user-generated metadata, including links to the ontologies, which makes the
navigation via our visualizations possible.

RHCe has obtained with χ Explorer a web-based application that allows its visitors
to efficiently browse the archives based on structured annotations. However, the center
has currently only rich annotations available for a relatively small part of its continuously
growing archive. Therefore, as part of their new process for creating the metadata, it was
decided to attempt using the knowledge and involvement of the visitors to augment the
level of well-structured annotations.

Connecting Tags to Concepts

As is typical with this kind of user-participation, RHCe has to cope with the fact that the
targeted user group is not used to do professional annotation nor has explicit knowledge of
the given annotation data structures. To accommodate lay users, the annotation process
is kept simple by extending the system with a tag-based interface [Mika, 2005; Choy and
Lui, 2006; Specia and Motta, 2007]. Users can simply enter keywords or short strings of
text to give their description of the content, location or date of an object. To warrant
the quality of the metadata in the system, it was decided to maintain the current data
structures based on RHCe’s internal ontologies as the basis for navigating the archives,
also because of the known difficulties reported for using a tag-only approach [Choy and

6.1 χ Explorer 101

Lui, 2006]. Therefore we use Relco for relating user tags to the concepts in the ontologies.
We had to extend the original Relco with additional input capabilities for using it

to relate tags to concepts instead of concepts to concepts. Next to input concepts of
an ontology (refer to Figure 5.4), Relco now also accepts input tags. The input for the
component consists of an input tag and a set of contextual tags. In the χ Framework these
contextual tags are already existing tags for the object that is tagged - which is possibly
an empty set for newly tagged objects. For the rest, the Relco process is exactly the same
as described in Section 5.5.

χ Explorer uses Relco in two ways. First, when users enter a tag they get a list of
tag suggestions, based on string representation of concepts in the used ontologies. If the
users select one of the tag suggestions by the system this is not only stored as a tag, but
also a relationship with the concerning concept in the ontology. This relationship between
concept and object is weighted. If the relationship is added by one user this weight is
low. The more people recommend this relationship the higher this weight gets. Maximum
weight is assigned by assessment by RHCe professionals. This weight is used for ordering
objects during ontology based navigation and search.

Secondly, when the RHCe professionals visit an object page, they will see the user tags
and the set of recommended concepts based on those tags. This is used as a tool to assist
the professional annotators.

Figure 6.7: χ Explorer Feedback GUI

Figure 6.7 shows the χ Explorer front-end user interface for the Relco feedback mecha-
nism (refer to Section 5.5.4). Both users and professionals can assess the quality of concept
recommendations of tags. For every tag suggestion they can indicate if the suggestion is
good, neutral or bad. These indications are fed back into Relco for improving future tag
suggestions.

Tag quality assessment

Important in a use case like RHCe’s is quality control. Besides preserving the objects
themselves as good as possible, they have to guard the quality of the metadata describing
the objects (and used to enable the wide access). This is the main reason for professional
expert annotators. Annotation by end-users (tagging) is a great additional opportunity

102 Applications of Data Integration

to easily gather metadata and especially offers the possibility that specific information
is known within the laymen user group that the professional experts do not know (yet).
However, obtaining metadata from outsiders is also a vulnerability: despite all good
intentions the provided information might be sub-par, not relevant content wise, personal
bookmarks or even spam. RHCe considers ways to ensure the quality of user annotations
while at the same time not increasing the overhead and costs for the professional annotators.

Figure 6.8: Rating Form

In χ Explorer the users can either reinforce an already existing tag or vote for or
against tags of other users (screenshot figure 6.8), to express whether they think that a tag
accurately describes the content of an object. The assumption is obviously that if more
people favor a tag for an object, it is more likely to be correct. Additionally, χ aggregates
tagging and rating activity and presents this data to the RHCe administrators. They get
a ranked list of objects, ranked by the number of tagging and rating activity. In this way
they can quickly assess which objects are popular and which metadata is debated. This
allows professional metadata experts to provide these objects with the best annotations.

As a measure against abuse of the Chi Explorer facilities there is a report button for
all user-generated data that allows other users to report abuse quickly: this allows the
RHCe administrators to quickly remove abusive metadata entries and ban the respective
users if necessary.

User Reputation

Votes for tags are also used to compute the reputation of users. A vote for a tag is
interpreted as an indirect vote for the user that suggested that tag. A positive or negative
vote will increase or decrease the user reputation weighted by the voter’s reputation. So a
user’s reputation gets higher the more users with high reputation (indirectly) vote for that
user.

The users’ reputation value is also used during the tag quality assessment, as votes are
weighed by the user reputation. In a next version of the system it is planned to assign
additional rights to users with high reputation values. These trusted “power users” could
then be used to cost-effectively maintain the quality of the metadata content. Showing
leader boards of the most valuable users could even provide competition and in this way
motivation to voluntarily do this work for RHCe.

6.1.4 Evaluation

We did a small-scale user study for χ Explorer. We will first describe the distinct RHCe
user groups.

6.1 χ Explorer 103

User Groups

To understand the impact of user tagging and preparing the evaluation of using tags, we
consider RHCe’s typical user groups more closely. The user base is divided into three main
groups, each with their own characteristics:

1. RHCe’s largest user group are senior citizens. They are generally very interested in
genealogy (usually their own family) and everything they relate to their childhood.
They are usually very enthusiastic and are even invited sometimes to supply their
stories on certain objects to help the professional annotators with their work. RHCe
suspects that this particular user group might form a core of enthusiastic users of the
Web application and thus become a great source of metadata (under the condition
that the application is kept simple). Browsing through the Map and Time views can
help them significantly to find material important to them. They can also be shown
new uncharted data.

2. Another substantial user group, and one that RHCe would like to grow, are students.
RHCe has contacts with different schools in the neighborhood. These students
sometimes get assignments that include finding interesting objects in the archives.
RHCe expects less from this group in the sense of new metadata, but they do assume
that using the user-generated metadata from the elderly helps the students in finding
objects that are interesting for them.

3. The historians form a third group, smaller in size, but important for RHCe. They
use the archives to study Eindhoven’s history and need metadata to search through
the data. They can provide a wealth of metadata, however they are better capable
of using a native ontology-based approach instead of a tagging approach as they
are already accustomed to ontologies. They probably will not use the χ Explorer
directly, but the χ Engine can be invaluable to them for their research.

The current χ Explorer version was made available under experimental conditions
(with selected user groups and conditions). Before being released to the general public, the
application will go through a number of evaluation steps and user studies to validate the
ideas and refine the application based on the specifics of the community. At the same time
these explorative steps help RHCe to get a better understanding of the entire metadata
creation process that envelops the system.

Focus Group

We did a focus group [Morgan, 1997] to qualitatively review if users appreciate the semantic
navigation interfaces in χ Explorer. 15 users participated equally divided in 3 types (i.e.
groups of 5 users): external young users (in the range of 15-25 years of age), external
senior users (in the range of 55-65 years of age), and RHCe internal users (representing
historians). These groups represent the three current main user groups of RHCe.

The participants were given a list with 12 assignments to find and browse objects
that were available in the system. An example of such a task was “Try to find photos of
the center of Eindhoven that feature buildings damaged in the Second World War”. We
also advised them to try using all the available facet visualizations. During these tasks
we let the users think aloud and filmed their reactions; at the end they also filled out a
questionnaire. The users got a list of statements and used scores on a scale between 1 and

104 Applications of Data Integration

Seniors Students Historians

The map view is clear 5 5 5
Searching within locations is easy and clear 5 5 4

The time view is clear 5 5 5
Searching trough the time view is clear 5 5 4

The graph view is clear 5 5 4
Searching trough the graph is easy and clear 5 5 4

Table 6.1: User Study Results for navigation (condensed)

5, where 5 means ‘definitely agree’ and 1 ‘definitely disagree’. An ‘X’ means that there was
no agreement within the user group, i.e. the users in those group had opposite reactions.

Table 6.1 is a condensed overview of the most interesting responses from the test group
on the navigational facets that were provided to them.

From our observations we found that it took all the users time to get used to the
visualization interfaces, especially for the graph visualization. Even for RHCe internal
users that recognized the concept descriptor structure. This is also clear from the responses
on how easy the search facilities where learnable.

We also saw differences between the groups: the younger users accommodated to the
new visualizations more easily than the other groups, e.g. the maps visualization most
of them used before, while some senior users overlooked the zoom functionality. All the
users however got enthusiastic about the possibilities of the new interfaces after they used
those interfaces for some time. The responses in the questionnaire also reflect this attitude
towards the χ Framework.

Seniors Students Historians

The graph view should include longer paths X 2 4
The graph view provides enough relations between concepts 4 5 4
There should be more relationship types 4 X 2
The differences between relationship types are clear 4 5 4

Search capabilities in χ Explorer are sufficient 4 4 4
Using the search facilities was easy to learn 3 4 3
Search history should be stored in the profile 3 4 4

Table 6.2: User Study Results for extensions (condensed)

We also probed the users about possible extensions for χ Explorer, for which the
most interesting results are displayed in Table 6.2. Different user groups seem to have
contrasting opinions in this matter. For example, the historians preferred to so see a larger
part of the concept graph in the Graph view, as they were familiar with the graph already
and wanted to navigate faster and combine concepts in searches. The other two groups
however strongly preferred the existing graph view as they preferred its simplicity and
feared that it might it become too complex if extended. Here we see an opportunity for
personalization.

One result of the study was that the users struggled with large result sets within a
specific facet. During the study we did not have the clustering feature yet: based on the
feedback we introduced the clustering described in Section 6.1.2. Another issue that we are
currently looking into is combining facets for searching: users would like to select a region
with objects in the map view and then for these objects navigate through the timeline.

Please note that a focus group, in this case with three groups of five persons each does
not lead to any hard conclusions. The results of the focus group should only be seen as

6.1 χ Explorer 105

indicative, which can be used to make improvements. Future user studies on a larger scale
are necessary for definite conclusions.

Evaluation of Relco Suggestions

For an insight into how the Relco component performs in the RHCe case we did some
evaluation tests with Relco. Table 6.3 contains two examples of input tags and the
suggestions that are provided by Relco that are typical for the RHCe use case (in Dutch).
In the first example “christendom” (Christianity) is related to Christian concepts (except
maybe the less obvious connection with “koning” (king). In the second example “zang”
(singing) is related to music concepts, but also to “zand” (sand) because of the close
syntactical resemblance between “zang” and “zand”.

Input Suggestions Input Suggestions
christendom christenen zang muziek

religie liederen
katholicisme karaoke
oosterse kerken koor
protestantisme musical
aartsbisschop opera
bisschop operette
christelijk onderwijs songfestival
kerk zand
priester geologie
zonde grondsoorten
koning strand

Table 6.3: Example tag suggestions Relco (Dutch)

Table 6.4 is a summary of our findings of applying Relco in the RHCe use case. The
RHCe domain ontology contains 1387 concepts. We had photos from the collection tagged
with single word tags to describe the content of the photo (without having knowledge
of the ontology). In approximately 58% of the cases Relco gave at least one suggestion.
In 8% no result was given, while there was a synonym for that term in the dataset. To
improve this recall issue a chaining of two Relco components is possible, by first using it
to match on a semantic lexicon (e.g. Wordnet for English) and then passing the result to a
second Relco version with the actual (domain) ontology. However, this decreases precision.

The precision of the suggestions (when at least one suggestion was given) averaged on
73% with a standard deviation of 8%. These results can be naturally explained with the
underlying structure of the domain ontology. For instance, as a significant part of RHCe’s
object archives is dedicated to the Second World War, the ontology contains relationships
between bombardments and the buildings that were damaged by the bombardments.
Therefore a term like “church” is related to “bombardments” in the ontology, while in
general users will not consider “bombardment” to be closely related to “church”.

Context disambiguation does not influence the precision of the results, only their
ordering. When using relevant context, we found in the dataset that in 27% of the
cases the ordering of the suggestions improved compared to the case without context
disambiguation. Moreover, it never worsened the ordering.

Using user feedback can improve the precision of the suggestion process. The importance
of the feedback is configurable, but in the experiment we used a configuration where it

106 Applications of Data Integration

#concepts #results>0 avg missed synonyms
1387 58% 8%
precision avg context improvement #feedback ordering
73% (σ=8%) 27% 4.2%

Table 6.4: Data about Relco applied in RHCe domain

took on average 4.2 consistent and correct user feedbacks for a tag to get a 100% precision
ordering for that tag. Note that in reality user feedback might not be consistent or
correct at all: user tests under those conditions need to show whether we need additional
mechanisms to determine which feedback is most probable correct.

Relco Configuration

The quality of the suggestions from Relco depends in general on many factors, such as
the richness and accuracy of the concepts and relationships in the underlying ontology.
Relco’s configuration also has an important impact on its performance. We earlier found
that the best way to configure Relco was with help of both users and experts. Given
the user’s input we asked the domain expert to evaluate (based on his knowledge of the
domain ontology) the concepts he found to be relevant for the user and we compared this
with suggestions actual provided with the given configuration. In this way, we iteratively
fine-tuned the system to an optimal configuration for the current datasets.

re
st

au
re

er

p
la

tt
el

an
d

em
an

ci
p
at

ie

am
st

er
d
am

re
m

b
ra

n
t

ch
ri

st
en

d
om

za
n
g

ko
n
in

gi
n

b
ea

tr
ix

Substring matching 0 8 4 160 0 2 31 4
Levenshtein 1 1 3 9 1 3 3 2
JaroWinkler 2 4 3 5 1 4 7 5
Soundex 1506 682 1266 3369 1196 3080 1042 1753
N-gram matching 23 24 24 16 22 20 25 7
N-gram Levenshtein 1 1 3 5 1 3 3 0
N-gram JaroWinkler 2 2 2 2 1 2 2 1
N-gram Soundex 2 4 4 5 1 13 9 6

Table 6.5: The effect of applying different string matching algorithms in Relco

To illustrate the influence of configuration on the results consider the number of results
for different Reclo configurations in table 6.5. We used a number of actual user-generated
tags in χ Explorer and looked at the influence of different string matching algorithms. The
figures in the table represent the number of final results that were computed using the
concerning start algorithm. The N-gram technique is used for speeding up computation
and can be combined with the other techniques, which combinations are shown in the
three bottom rows.

In our application precision is more important than recall. The Soundex algorithm for
instance finds most matches of all algorithms, but most matches are not relevant for the

6.2 The SenSee TV-Recommender 107

input tag. We think that the problem with Soundex in our case was that it was optimized
towards the English language while at RHCe we target Dutch and therefore is not very
useful. The substring method found more matches than alternative algorithm because our
vocabulary frequently uses some terms as prefix for other terms. For example “Amsterdam”
is often used in more specific names, like “Amsterdamse Effectenbeurs” (Amsterdam Stock
Exchange). It is debatable if the Amsterdam Stock Exchange is a relevant suggestion for
the input tag Amsterdam, but if it is substring matching might be a good candidate in
some circumstances.

By looking together with the RHCe domain experts at these results we found that
both N-gram Levenshtein and N-gram JaroWinkler are generally good trade-offs in speed,
precision and recall for the RHCe domain.

6.1.5 Related Work

Interest and research in using Semantic Web techniques in the cultural heritage domain
has been flourishing lately [Hardman et al., 2009]. This research shows that Semantic Web
techniques can be used in several additional ways besides the one that we discussed in
this section. For example, there is progress in extracting metadata from natural language
descriptions [Ruotsalo et al., 2009], using encyclopedias for creating ontological knowledge
sources[Witte et al., 2009] and using analysis of materials and techniques in artworks for
disseminating the collection to different types of users [Karagiannis et al., 2009]. And
these are only some of the subjects which are explored.

The navigation from χ Explorer builds upon related work. For instance, mSpace
[Schraefel et al., 2005] and /facet [Hildebrand et al., 2006a] present faceted browsers.
These are more general and more flexible than χ Explorer, as they are able to use any
RDF-property as basis for a facet. Their approach supports a powerful but easy query
paradigm, which is something we could incorporate in χ Explorer as well. Choosing
some well-defined facets obviously has the advantage that one can build very specialized
visualizations for them, like we did with Google Maps, Simile Timeline and Graphviz. /facet
actually has support for specialized facet visualizations as well and also MuseumFinland did
something similar in the recent CultureSampo semantic web 2.0 portal for cultural heritage
[Hyvönen et al., 2008]. CultureSampo is a much more extensive Web application than χ
Explorer. For visualization it actually uses the same visualizations as χ Explorer (however
in more versatile ways), even though it does not incorporate a clustering algorithm. The
main difference with our work is that we focused a lot on user-based input for not yet
well-annotated collections, where they used already well-structured datasets.

While the χ Explorer project is smaller than the ones in literature, the results show,
and that was one of the research challenges at the start of this project, that the semantic
techniques we use are applicable and useable for small/medium parties like the regional
historic centers in the Netherlands. The discussed techniques solve issues that organizations
of the type of RHCe have been struggling with for a long time.

6.2 The SenSee TV-Recommender

The second Web application that we examine in this chapter is called SenSee. SenSee is a
personalized Web-based recommender for digital television content. It was developed in
the context of the Passepartout [Passepartout, 2007] project, which investigates the future
of digital television. SenSee collects information about TV programs as well as related
data from various sources on the Web. Furthermore, the user can access his personalized

108 Applications of Data Integration

TV guide from various devices at any time, so not only on the TV itself. To provide
high-quality personalization SenSee collects data on the user. It provides the user with
direct feedback options to provide his information manually, but also observes the user’s
behavior and with help of sensor information like GPS determines the user context.

Figure 6.9: SenSee Architecture

6.2.1 SenSee Architecture

The SenSee architecture, as depicted in Figure 6.9, is a layered one. At the bottom
part of the figure, we find the various heterogeneous content sources. This can include
regular TV broadcasts, but also movie clips from the Web, media stored on the local
computer or physical media like DVD and Blu-ray discs. Metadata about the content
originates from the bottom, propagates up while at each layer gaining semantics and
context, and is finally used by an application at the top. In this process first information
about the content is collected, and then converted to our internally used vocabulary and
aggregated into packages. In order to do so we use two external services that are specified
by the TV-Anytime specification5, namely the CRID Authority for uniquely identifying
multimedia objects and the Metadata Service that maintains metadata on these objects.
Since typically there are numerous content packages available, we use personalization
and recommendation based on the context and the user model with the aim to prevent
that the user gets lost in the information abundance. Furthermore, we offer the user a
user-guided search to assist the user in finding what he or she is looking for by refining a
user query (keywords) with help of ontological domain knowledge. Both for personalization
and user-guided search we use supporting services, each with their own responsibility
and functionality. The User Model Service (UMS) maintains and retrieves data from the

5http://www.tv-anytime.org/

http://www.tv-anytime.org/

6.2 The SenSee TV-Recommender 109

user model (including the current user context), the Filter Service (FS) provides filters
needed to eliminate content unsuitable for the current user, and the Ontology Service (OS)
maintains and manages all vocabularies and ontologies defining the semantics of concepts
and properties. Finally, the metadata is shown to the user in a hierarchically structured
way: the user can browse through the data and select the desired multimedia object.
The object can then be retrieved via its unique CRID identifier [Earnshaw, 2005] for
consumption (viewing).

Figure 6.10: SenSee Connection Architecture

Figure 6.10 shows how the different parts of the SenSee framework are connected.
The user can access SenSee via a client application. Several client applications exist.
In this section we focus on the SenSee Web application, which we built as a proof of
concept. The SenSee Web applications allows users to search and browse program and
movie information, based on semantic relationships between both interests of the user and
between the programs and movies themselves. Next to the academic proof of concept, a
commercial front end application called iFanzy6 has been built by our commercial partner
Stoneroos. iFanzy is a set of front end applications including a Web application, a set-top
box front end that is controlled by the television remote control and an IPhone app for
mobile tv recommendations.

The SenSee Web application connects to the SenSee server, which besides the SenSee
Service (which contains the main application logic) also contains the three supporting
services: UMS, FS and OS. The TV-Anytime services, CRID Authority Service and
Metadata Service, as well as the content metadata that is not stored locally, are accessible
via the Internet. Sensors and device information are accessed via external applications

6http://www.ifanzy.nl

http://www.ifanzy.nl

110 Applications of Data Integration

which are responsible to reading the sensor values and adding or updating them in the user
model. Having SenSee running as a service enables these various applications to quickly
make a connection and push their readings to the system. SenSee on its turn processes
these readings and can immediately take them into account in upcoming actions.

6.2.2 Semantic Integration

SenSee offers users an integrated view over several heterogenous datasets. Achieving data
integration was a similar effort as we did for χ Explorer, i.e. we used RDF as our underlying
data representation and modeling format and harmonized metadata that is important for
navigation in our application. We will mainly focus on the specifics for SenSee.

When a user sends a request, SenSee responds with an integrated set of content
containing pieces from various sources. As previously mentioned, SenSee retrieves content
and metadata descriptions from these various sources which comply with different data
schemes. However, since SenSee is completely built around the TV-Anytime scheme, we
chose to transform all incoming content to TV-Anytime. The TV-Anytime specification
consists of two parts, “phases” in TV-Anytime speak. The first phase consists of a
synchronized set of specification documents for metadata, content referencing, rights
management, and content protection. The second phase defines open standards that build
on the foundations of the first phase and includes areas such as targeting, redistribution
and new content types. A central concept in the second phase is packaging. A package is
a structure which contains a set of unambiguous identifiers referring to content-elements
which are somehow related. An example would be a ‘Lord of The Rings’ package containing
all the movies, Making-Ofs, the text of the books, images, the soundtracks, etc. To be
able to reuse this generated content we add a sense of context to each package from which
we can benefit in future requests.

Figure 6.11: SenSee data integration scheme

In Figure 6.11 we see the complete SenSee data integration scheme. In this figure we
see that there are two layers visible, namely XML/HTML at the top and RDF/OWL at
the bottom of the figure, depicting a clear separation between the two. On the right hand
side we see our various sources located on the Web, these sources are typically retrieved in
HTML (Wikipedia, IMDB, ...) or XML (XML-TV and BBC Backstage content) formats.
This content is then transformed to TV-Anytime Phase I (XML). However, in order to
apply our semantics available in the OS which are typically modelled in RDF/OWL, we

6.2 The SenSee TV-Recommender 111

need to transform the TV-Anytime XML (Phase I). This second transformation crosses
the dashed line bringing the TV-Anytime Phase I content set into the RDF/OWL layer.
All content here is stored in a Sesame RDF store which serves as a temporal cache to
augment and work with the retrieved data.

In order to integrate the content data in SenSee we in general followed an extendible
three step alignment procedure:

1. Making TV metadata available in RDF. Adding a new TV metadata source to the
system requires it to be in RDF format making sure that it fits and can connect
to already available data sources. In SenSee we use three live data sources: online
TV guides in XMLTV format7 (e.g. 1.2M triples for the daily updated programs),
online movie databases such as IMDB (83M triples, representing 1M movies and
trailers from Videodetective.com), and metadata available from BBCbackstage (e.g.
92K triples, daily updated). All three sources were parsed and converted to our
TV-Anytime domain model in RDF.

2. Making relevant vocabularies available in RDF. Having the metadata available, it is
also necessary to make relevant vocabularies available in RDF. In SenSee we did this
in a SKOS-based manner for the genre vocabularies (resulting in 5K triples). All
these genres play a role in the classification of the TV content and the user’s likings
(in order to support the recommendation). We also used the locations hierarchy used
in IMDB (60K triples), Word-Net28 (2M triples) and the OWL Time Ontology9 both
as published by W3C.

3. Aligning and enriching vocabularies/metadata. Here we did (1) alignment of Genre
vocabularies (e.g. aligning imdb:sci-fi and tva:science fiction), (2) semantic enrich-
ment of the Genre vocabulary in TV-Anytime (e.g. relating TVAGenres:Sport and
TVAGenres:Sport News), and (3) semantic enrichment of TV metadata with IMDB
movie metadata (e.g. connecting the broadcasted movie “Il Buono, il brutto, il
cattivo” to the IMDB movie “The Good, the Bad and the Ugly”).

The advantage of our approach of using RDF is that the resulting integrated datamodel
can be easily adapted for plugging in and removing data sources and relating those to
supporting ontologies because of the open world nature of RDF. Relating datasource
to the supporting ontologies can be done by using the Relco framework as described in
chapter 5.5.1. For the online sources this results in STL mapping rules that are applied
whenever an incremental update is done.

Let us look at the following typical example. Imagine we retrieve metadata of two
separate TV programs broadcasted on different channels retrieved from different sources
(with some syntax simplification for brevity reasons):

<program channel="NED1">
<source>http://foo.bar/</source>
<title>Sportjournaal</title>
<start>20120309184500</start>
<end>20120309190000</end>
<genre>sport nieuws</genre>

</program>

7xmltv.org
8http://www.w3.org/2006/03/wn/wn20/
9http://www.w3.org/TR/owl-time/

xmltv.org
http://www.w3.org/2006/03/wn/wn20/
http://www.w3.org/TR/owl-time/

112 Applications of Data Integration

and

<program title="Match of the Day">
<channel>BBC One</channel>
<start>2012-03-09T19:45:00Z</start>
<duration>PT01H15M00S</duration>
<genre>sport</genre>

</program>

Both programs are sport programs broadcasted on the same day. However, since the
data is coming from different sources, the syntax and semantics differ. As mentioned we
transform all instances from our different sources to the central TV-Anytime domain in
RDF using STL mappings. After this transformation the generated RDF looks (for the
first program) like:

<TVA:ProgramInformation ID="crid://foo.bar/0001">
<hasTitle>Sportjournaal</hasTitle>
<hasGenre rdf:resource="TVAGenres:Sport_News"/>

</TVA:ProgramInformation>
<TVA:Schedule ID="TVA:Schedule_0001">

<serviceIDRef>NED1</serviceIDRef>
<hasProgram crid="crid://foo.bar/0001"/>
<startTime rdf:resource="TIME:TimeDescription_0001"/>

</TVA:Schedule>

RDF also allows to use inference techniques (e.g. subsumption) to get more useful data
for the user and we can utilize mechanisms like the context feature in Sesame 2.010 to
track the origin of information. Once here, we can apply the semantics stored in the OS
to enrich the current content set. For example, every TV-Anytime Phase I content set
always has a set of keywords to describe this content in its metadata. The TV-Anytime
(TVA) field for this is:

<element name="Keyword" type="tva:KeywordType"
minOccurs="0" maxOccurs="unbounded"/>

We can make a simple enrichment by searching for synonyms of these keywords,
in the WordNet dictionary, and expand the existing set. Similarly, we can also add
semantics to time specifications. In TVA every time-related field is modeled by an
MPEG-7 ‘timePointType’, where a time point is expressed with the regular expression:

‘-’?yyyy‘-’mm‘-’dd‘T’hh‘:’mm‘:’ss(‘.’s+)?(zzzzzz)?

The date ‘2012-01-01T12:30:05’ is an example. By mapping this string to a time
description in our Time ontology we can obtain the following time specification (do note
the abbreviated syntax):

<CalendarClockDescription rdf:ID="example">
<second>05</second>
<hour>12</hour>

10http://www.openrdf.org/doc/sesame2/users/ch08.html#d0e1238

http://www.openrdf.org/doc/sesame2/users/ch08.html#d0e1238

6.2 The SenSee TV-Recommender 113

<minute>30</minute>
<year>2012</year>
<month>01</month>
<week>01</week>
<day>01</day>

</CalendarClockDescription>

This richer time description enables us for example to easily cluster all content produced
in a particular year or all content being broadcasted before or after a certain point in time.

6.2.3 Inference, Query Expansion and Recommendation

In the previous sections we demonstrated solutions for the data integration issues. However,
the described techniques could also be used to improve the core personalization functionality
of the application. Besides offering ‘passive’ recommendations, the user can also actively
search through the available content.

Our approach is based on semantic faceted browsing techniques (e.g. similar to Section
6.1.2 and [Yee et al., 2003; Hildebrand et al., 2006b]). The idea is to go beyond a pure
keyword-based search. Instead the user is assisted to search through different facets
of the data. To accomplish this, additional metadata fields as defined in TV-Anytime
specification were used. Moreover, as previously mentioned, ontological sources to make a
further semantical connection between the terms in TV-Anytime play a important role.
Consider for instance the time facet, TV-Anytime uses the XML datetime datatype to
express the time when a program is broadcasted. To semantically enrich time information
we use the W3C OWL-Time ontology, adding for instance that the concept ‘afternoon’
ranges from 1400h-1800h. In this way we can easily search for programs in the afternoon
by looking for all programs broadcast within this 1400h-1800h interval.

By incorporating all these results, as is shown in the screenshot in Figure 6.12, we try
to close the gap between the keywords the user types in and what the user intends to
search for. As an example, consider a user making the following keyword request: “sports
Scotland ‘Friday evening’” when he looks for Scottish sports games to watch during Friday
evening when his friends come over. The system reacts by trying to find any ontological
matches for these keywords, through the use of the OS. In Figure 6.12 the results are
shown. Under the tab ‘Genres’ we see that the system found some matches for the keyword
‘sport’ in the genre classification and in the Geo ontology a match was found for ‘Scotland’.
In the time ontology a match was found for ‘Friday evening’ and automatically translated
to an interval from 18pm until 23pm as shown in the calender under the ‘Time’ tab. With
this system-assistance the user is able to manually refine the original request. With the
genre hierarchy it is possible now to specify a more particular sport type the user might
be looking for, or just select the broad term ‘sports’. In the geographical hierarchy either
a narrower term, like a region in Scotland, or a broader term like ‘United Kingdom’ can
be chosen. Via the calender the user can revise his time interval.

After the system-assistance, the newly refined query is taken as input for the retrieval
process which tries to find relevant content made available by the various sources. When the
sources start responding with multimedia content, the retrieved content needs to be filtered
and personalized by leaving out items deemed unsuited, and ranking important item higher
up the results list. This process, which forms the heart of the personalization process,
uses mainly the UMS to find the user’s preferences, the FS to provide the appropriate
filter, and the OS to give correct semantics throughout the complete sequence. The filter

114 Applications of Data Integration

Figure 6.12: User-driven concept refinement

provided by the FS basically acts as the glue between values in the user model and fields
in the content’s metadata. It decides for every content-element whether or not it should be
discarded after comparing its metadata to the interests and preferences of the user. Lastly,
the resulting content set needs to be presented to the user, by means of the TV-Anytime
packaging concept. Packages allow us to create for example a ‘Marlon Brando’ package
were everything known from this person can be bundled and browsed. Packages can
contain all kinds of content-elements ranging from pure text to full HD (High Definition)
movie clips. Like this, the results are clustered and hierarchically structured to obtain an
easy-to-browse content-container where the user finds what he or she was looking for or at
least is interested in.

SenSee also allows recommendation of programs. Recommendations are computed based
on the user model. Users can rate programs, which are stored in the user model. Using
these ratings SenSee can compute semantically related programs based on the underlying
ontology. The recommendation algorithm can for example recommend programs of the
same or a related genre, programs with the same or related presenters or actors, filmed
on the same or neighboring location, etcetera. For a more extensive treatment of several
recommendation strategies refer to [Bellekens, 2010].

The SenSee framework is in general hard to evaluate as most of it are underlying
services that allow the system to ‘just’ work. However, user recommendation is something
that can be tested. Table 6.6 contains figures of a user recommendation evaluation study.
In this study 60 participants used the SenSee recommender system. In order to overcome
the cold start problem historic television watching statistics were used from Stichting Kijk-
Onderzoek11. For every program since 2008 this information includes watching statistics for
the Dutch people, including a breakdown in demographics like age, gender and education.
As these demographics vary greatly for different programs these seem good first general
indicators of program likings. Therefore, during registration to the recommendation system
uses were asked to give these three personal characteristics which were then mapped on
programs that correspond to those characteristics.

Using this mapping a first set of recommendations could be made and the users were
asked to provide feedback about the quality of these recommendations via a questionnaire,
which correspond to the rows of table 6.6. Then the users could start rating specific
programs and based on those ratings and the underlying ontology more personal user

11http://www.kijkonderzoek.nl/

http://www.kijkonderzoek.nl/

6.2 The SenSee TV-Recommender 115

end of test

b
eg

in
n
in

g
of

te
st

al
m

os
t

n
ev

er

so
m

et
im

es

re
gu

rl
ar

ly

of
te

n

al
m

os
t

al
w

ay
s

almost never (19%) 0% 40% 30% 30% 0%
sometimes (38%) 0% 35% 30% 30% 5%
regularly (32%) 6% 29% 24% 35% 6%
often (11%) 0% 17% 33% 50% 0%
almost always (0%) 0% 0% 0% 0% 0%

Table 6.6: Recommendation satisfaction evolution

recommendations could be made. After two weeks the users were questioned again with
a questionnaire, which figures can be found in the columns of table 6.6. The figures
show that semantic recommendation improved the recommendations for 55,8% of the
users. However, 26,3% of the users claimed that the recommendation remained roughly of
equal quality, while 17,9% of the users indicated that the recommendations decreased in
quality. It is hard to specifically determine why recommendations for 44,2% of the users
did not improve, but probably the main reason was that some semantic links might be
less important for the liking of a program than we thought for these users.

6.2.4 Related Work

Several related TV recommender systems can be found in literature [Ardissono et al., 2004;
Blanco Fernández et al., 2006; van Setten, 2005]. However, those systems mainly focus on
the recommendation part. In AVATAR [Blanco Fernández et al., 2006], for example, the
authors make use of a combination of TV-Anytime [TV-Anytime, 2003] metadata fields
and a custom-made genre hierarchy. Their recommendation algorithm is an effective hybrid
combination of content-based and collaborative filtering, although there is no inclusion
of any kind of user context. To get an overview of the various kinds of recommendation
strategies and combinations that exist both for selection, structuring and presentation of
content refer to [van Setten, 2005].

In SenSee, however, we focused on the framework which serves as the backbone of
the SenSee recommender. This included a data integration issue that we solved using
RDF and standards like XMLTV and TV-Anytime to incorporate one extendible graph-
structure. We also focused on a multi-device implementation, which recognizes the growing
number of devices available to connect to a television, e.g. PC, mobile devices and set-top
boxes. In the end, the main objective of our SenSee framework is to provide techniques to
improve personalization in the world of multi-device access to interactive Web applications
connected via semantic-based integration.

More extensive description of the SenSee framework and related systems and its
evaluation can be found in [Bellekens, 2010].

116 Applications of Data Integration

6.3 The ViTa Educational Videos

The ViTa project was meant to research and review techniques that allow to find more
relevant information by its users. As part of the project the ViTa framework was built,
which is a Video Tagging system for educational videos. The system provides access to a
collection of video clips that are supplied with professional metadata such as keywords,
title and description. The metadata were provided by Teleblik12, a Dutch organization
that provides access to multimedia sources for students in secondary education. Two
other stakeholders in this project were SURFnet13 and Kennisnet14. SURFnet is a Dutch
national non-profit organization that provides internet access and internet-related services
to most higher education institutes (like universities) and research centers. Kennisnet is
a Dutch public organization dedicated to providing IT-services for primary, secondary
education and vocational training. Both have a videoportal15 with many educational
videos, but with also very little known metadata about most videos.

6.3.1 Semantic Integration of User Tags

The goal of the ViTa project was to study and review the number of relevant videos
that students can find via keyword search by using various types of metadata. The video
collection that is used in ViTa has professional metadata. However, as many videos in the
collections of Teleblik, Kennisnet and SURFnet do not have this professional metadata
(yet) other alternatives were considered as well. The idea was to experiment with different
metadata sets on the same video collection and to compare the different types of metadata
in a user test with students to see how the different metadata approaches help the user to
find the videos they are looking for.

One way to acquire this metadata is user tagging. In this setup we first let a group
of students watch the videos and asked them to provide tags. We wanted to evaluate if
semantic integration, in this case by relating tags to a semantic structure or other tags,
helps students providing those tags so that efficiency in finding the right videos later on
improves. We tried different scenarios in extending the tags. The typical scenario in which
Relco is used is depicted in Figure 6.13.

The user provides a tag for a video and Relco is used to match the tag with concepts in
an ontology. The user then gets a list of textual representations of concepts as suggestions.
If such a suggestion is used, the video is effectively annotated with a concept from the
ontology and a link is established between the particular tag and the chosen concept.
This approach is based on the assumption that using the structured ontology provides an
effective way to browse and search the ontology. That using ontologies in browsing and
searching can be effective has been demonstrated in various faceted browser solutions, e.g.
[Schraefel et al., 2005; Hildebrand et al., 2006b].

Another approach that we tried in this study is depicted in Figure 6.14. Users provide
tags and Relco is configured to use the existing set of user tags to come up with suggestions
from amongst previous user tags. In order to use Relco effectively in this domain we
configured it to use the Dutch Common Thesaurus for Audiovisual Archives (GTAA)
ontology [Brugman et al., 2006], to find semantic relations between tags. GTAA is intended
to describe TV program metadata. The GTAA contains approximately 160.000 terms:

12http://www.teleblik.nl/
13http://www.surfnet.nl/
14http://www.kennisnet.nl/
15http://www.surfmedia.nl/ and http://video.kennisnet.nl/

http://www.teleblik.nl/
http://www.surfnet.nl/
http://www.kennisnet.nl/
http://www.surfmedia.nl/
http://video.kennisnet.nl/

6.3 The ViTa Educational Videos 117

Figure 6.13: “Relating tags to ontology (concepts)” scenario

∼3800 Subjects, ∼97.000 Persons, ∼27.000 Names, ∼14.000 Locations, 113 Genres and
∼18.000 Makers.

This approach helps us in two ways. First, we can find relations between tags and thus
build a structured ontology based on the user tags (which also has been tried in [Specia
and Motta, 2007]). Second, it allows consolidating the tag set where only the most popular
tags are shown and the less frequently related tags will be hidden as alternative for the
more popular ones, i.e. we hide unpopular tags and show the more popular related tags as
alternative.

Figure 6.14: “Suggesting previous tags” scenario

A third way to acquire metadata that has been used in ViTa was automatic extraction
of relevant tags based on documents that described a video. The videos in the ViTa dataset
were described in short documents that contained a natural language description of the
video (between half a page and a page long). With a keyword clustering technique the
keywords that best describe the topic are detected; the technique is described in [Wartena
and Brussee, 2008]. Next, Relco was used to automatically extend this set of keywords
with semantically related terms. We used again the GTAA ontology for this. Together
these keywords and their semantic extension provide a sufficient description for the video
over which the user can search.

118 Applications of Data Integration

Tag Application Total # tags Total # unique tags
BasicTagger 3742 2635
SocialTagger 3513 2091
SmartTagger 3880 2401

Table 6.7: Normalized total number of tags per tagging application

6.3.2 Evaluation

These various scenarios have been evaluated in an elaborate user study that studied the
effects of user tagging on searching educational videos. The evaluation is described in
detail in [Melenhorst et al., 2008]. The concise evaluation overview in this section focusses
on the comparison of semantic techniques based on Relco with other approaches.

The study was performed with students of a Dutch high school. The user study
consisted of two phases. The tag phase and the search phase. The domain of the study
was the art domain, for which a collection of 115 educational videos were available, all
between 1 and 2.5 minutes of duration and initially without a five line description provided
by professionals.

During the tag phase the students were asked to provide all tags they could think of
that would help finding the videos. A total of 194 students participated, of which 97 male
and 97 female. Their mean age was 15.5 years old with a 1.1 year standard deviation. Of
the 194 students, 135 students were studying on the VWO (higher) level and the other 59
students studied on the HAVO (intermediate) level.

The students were blindly and uniformly divided over three different tagging appli-
cations. The BasicTagger provided the students no tag suggestion. The SocialTagger
provided tag suggestions based on the most popular tags used by other students who
tagged that video. The SmartTagger provided tag suggestions by using Relco, which used
the GTAA ontology for providing suggestions on basis of the user input.

The results of the tagging phase are summarized in table 6.7. It is remarkable that
the social tagger leads to significant less tags than the other two tag applications. Even
though not exactly clear why this is, one can hypothesize that the social taggers allow
students to converge and agree on their vocabulary. This might give less incentive to use
semantically equivalent terms. Also remarkable is that the SmartTagger resulted in most
tags overall but has fewer unique tags than the BasicTagger. This is probably due to the
(relatively) limited GTAA ontology that the tag suggestion algorithm can choose from,
even though the effect is significantly less than with the social tagger.

During the search phase the students were asked to answer (the same) eight questions
each, by searching for the right video clips. Experts determined the right answer beforehand.
When students found the right video clip this was made clear in the interface with a
‘right-answer-button’. A total of 140 students participated, of which 68 male and 72 female.
Their mean age was 15.6 years old with a 0.8 year standard deviation. Of the 140 students,
61 students were studying on the VWO (higher) level and the other 79 students studied
on the HAVO (intermediate) level. The interface was restricted to searching only, i.e. no
general browsing. The questions and accompanying answers were chosen such that the
terms used in formulation of the questions alone were not too obviously related to the
keywords related to the answer.

The students were blindly and uniformly divided over five different searching appli-
cations. The BasicSearcher could search in professional metadata based on keyword
extraction of the approximately five-line video description that was available for every

6.4 Summary 119

Search Applications Participants # Tags Answers (mean) Correct (mean)
BasicSearcher 25 1932 6.4 (s.d. 2.3) 4.5 (s.d. 2.2)
BasicSocial 22 6305 6.7 (s.d. 1.6) 5.0 (s.d. 1.6)
DocumentSearcher 31 4022 5.3 (s.d. 2.2) 3.5 (s.d. 2.1)
SmartSearcher 31 1528 6.2 (s.d. 2.2) 4.8 (s.d. 2.0)
SocialSearcher 22 4373 6.7 (s.d. 1.4) 5.5 (s.d. 1.6)

Table 6.8: Evaluation figures on the ViTa Search Applications

video. The SocialSearcher allowed to search in user tags as were captured in the tagging
phase, i.e. this were the direct user tags for the video excluding the smart tags that resulted
by confirming a tag from the SmartTagger that originated from the GTAA ontology. The
BasicSocial searcher combined the tags from the first, to see the delta of user tags over
professional tags. The Document searcher used tags based on natural language processing
of documents that were related to the videos. And finally, the SmartSearcher used only
those tags that were suggested by the SmartTagger based on the GTAA ontology and
taken over by the users tagging the videos.

Table 6.8 contains the results of the search phase. The only significant underperforming
search application is the document searcher. This seems to indicate that automatic keyword
extraction leads to keywords that are not suitable enough to always lead to the right
answers. The SocialSearcher outperforms all other search method. Notably, extending the
social tags with professional tags does not improve the search quality. On the contrary, it
seems to degrade the search results somewhat. But please note that this difference is not
statistically significant and no solid conclusions can be drawn from this difference. Also
the difference between the SmartSearcher based on the underlying GTAA ontology and
the Social and BasicSearcher is not statistically significant. Surprisingly the SmartSearcher
leads to similar results with a significant smaller search space than the other search engines.
Also, the search space is limited to concepts in the GTAA ontology that is specifically
tailored to the tv domain not the art domain.

This shows that using semantically structured metadata is a promising way of tagging
and searching multimedia videos. Much depends on the used background ontology, however.
The better the underlying ontology contains concept suitable for describing the content of
videos, the better it will perform. Not many domain specific ontologies are available in the
Dutch language, which makes the application of Relco less obvious in this specific case.
However, we have shown that even with an ontology that is not precisely tailored to this
domain the results are potentially on par with general collaborative techniques.

6.4 Summary

In this chapter we looked at three applications in three different domains that are only
related in that they have some need for data integration. We have looked at the specific
data integration need of these applications and how we solved, partly by using the Relco
framework which was introduced in chapter 5. For all of these applications we saw how
these applications benefit from data integration. Next to that we have also looked at some
of the explicit needs and consequences which were the result of these added capabilities.

For χ Explorer we have seen an integration of several legacy databases. Data integration
was done by translating these various databases into an RDF representation that was
then mapped to a common metadata schema developed by RHCe experts that captured

120 Applications of Data Integration

almost everything available in the various database. Most importantly were three data
integration processes, namely harmonizing the location and time data into one common
format and syntax and mapping between metadata descriptors and concepts in an ontology
(developed by RHCe). These three ‘facets’ were used as basis for navigation within the Web
application via specialized views, i.e. a map view, timeline and a graph view. Furthermore,
we introduced a social tagging functionality that allows users to provide tags for existing,
but especially for objects without metadata in hope that the users can provide the necessary
metadata. Here we chose tagging because of its simplicity, but we extended it with Relco
to give suggestions from the expert ontology in the hope we could connect user tags to the
concepts from this ontology.

SenSee is a TV-recommendation system. At first glance SenSee is a TV guide applica-
tion. However, besides the normal program information which can be found on the Web,
this data was extended with movie information from IMDb and Wikipedia information
for shows, presenters, etc. These datasets were coupled by both transforming the data
into RDF and couple the related data items via the datacoupling techniques as provided
by Relco. The result of this process is a large program graph. It allows to navigate in
several ways, for example by searching programs of the same genre, or that share the
lead actor or director, etc. This could also be used for recommendation, e.g. whenever
someone rates a program, this rating is propagated and implicitly used to rate semantically
related programs. This information can be used to recommend users semantically related
programs to the programs they like.

ViTa was a tagging evaluation framework that was built to evaluate several ways of
collecting metadata about educational videos for improving finding data within these
videos. The results favored using collaborative techniques, but semantic search was still
significantly better than using professional metadata while the background ontology was
not even specifically tailored for this task. Based on these results, it might be interesting
to try and combine these kinds of techniques in this application domain.

Chapter 7

Exchanging User Models

In this chapter we investigate how we can apply data coupling techniques to
the specific domain of user modeling. Many applications use user models for
personalization and benefit from knowing as much as possible about a user. One
way for applications to increase the knowledge about a user is by exchanging
user model data between applications. We discuss how data coupling in the
user model field presents some unique challenges that need to be dealt with.
We illustrate user model data exchange in two project, namely the MobiLife
project and the GRAPPLE project. MobiLife is a project that looks at mobile
technology, and especially how by using user model exchange the mobile phone
can act as a personal assistance that allows context-based personalization. The
GRAPPLE project looks at integration of adaptive hypermedia frameworks and
learning management systems. By exchanging user model data these systems
can achieve tight integration which allows students to combine the strengths
of these systems and for example allows students to simultaneously study at
several institutions. Based on our work within GRAPPLE, we also found use
for defining an engine-independent adaptation language. This language, called
GAL, could be used to exchange adaptive applications between different adaptive
hypermedia systems. This can improve reusability of these applications, e.g. if
different institutions use different adaptive systems. GAL is based on the Hera-
S application model we presented earlier, and is for the propose of GRAPPLE
extended to deal with all relevant types of adaptation. Also a formalization of
GAL is presented as a first possible step towards standardization.

7.1 Introduction

Web applications must because of their nature be able to adapt to a wide and heterogenous
audience. In many cases this means that personalization is needed for adapting to the
many possible different circumstances or knowledge levels of the users. In order to do so,
many Web applications maintain user models. The more they know about the user, the
better they are able to adapt to them.

However, most Web applications only have a limited view of the user. Most Web
users only spend a limited amount of time per application. This leads to a fragmented
perception of the knowledge of the user of several applications. It also gives an additional
burden for the users as for a new application they may have to reenter user information
that they already have entered in several other systems. One strategy to overcome this

122 Exchanging User Models

issue is exchanging user information between applications.

However, exchanging user information is not trivial. First there are obvious highly
needed privacy and security issues that need to be taken into account. However, because
of the depth and broadness of these topics we will leave those issues out of consideration
and only focus on the technical challenge of exchanging data. Technically there are plenty
of challenges to overcome. For instance, not all applications will be interested in the
same user information, so the first challenge is in finding the parts of information that
are interesting for the applications to exchange. If these model parts are identified two
important issues remain, namely user and context identification and semantic heterogeneity
of the underlying data models.

These issues are discussed in more detail below. Afterwards we will illustrate how we
solved different combinations of these issues in two different projects, namely MobiLife
and GRAPPLE.

7.1.1 User Model Context

User model data inherently belongs to a specific person and these persons might be known
differently to different systems. Some applications identify users by an application specific
user identifier (e.g. “userAB34”), others use a user’s name (e.g. “Kees van der Sluijs”),
others us a general identifier like a university wide identifier (e.g. “s441340”) and yet others
use a national identification number (e.g. “123456782”). Knowing which user the system
is dealing with is crucial because of the possibility of pollution of user models with false
data, but also because of privacy considerations. Therefore, establishing and mapping the
user identity between systems is a precondition before data can be exchanged.

Figure 7.1: Different Social Contexts Users

Next to identification also the user context can be an important factor to take into
account. The user context can be defined as any information that can be used to characterize
the situation of a user [Dey, 2000]. The context of a user is interesting because users can
have different roles, different preferences and different goals in different contexts. Figure 7.1
depicts in which context typical people might interact. Some applications use contextual
information to determine the right subset of the user model that is appropriate for the
given situation. Consider for example a news application that tries to find relevant news
articles for a user. At work this user might be only interested in news that relates to his
work, e.g. economic news for an economist. After work the user might be interested in

7.1 Introduction 123

sports and entertainment news and much less economic news. In this case the relevant
context ‘being at work’ changes the user preferences.

Selecting the proper context and mapping this context between context aware ap-
plication can be seen as a separate step in the user model exchange process. Also the
user context should lead to changes in the user interface, as for example in UsiXML
[Stanciulescu et al., 2005]. This process deals more with selecting and comparing similar
contexts in different applications than actually mapping data.

7.1.2 Semantic Heterogeneity

The most important step in the user model exchange process is dealing with semantic
heterogeneity. This issue is illustrated in Figure 7.2. This figure contains a screenshot
of the registration screen of two large Dutch web applications, one is a Web store called
Bol.com while the other is a Dutch computer enthusiasts community called Tweakers.net.
It is clear that in this case the two information needs have similarities, but also contain
unique items for the specific Web applications. Note that this is a simplified example.
With an eye on semantic web systems we will not assume user models to be lists of
attribute-value pairs, but rather allow for any graph-based structure.

Figure 7.2: Lack of Semantic Interoperability Between Applications

An example of a similar information need is related to a user’s name. What we see is
that even though the user name might be a simple piece of information, there is still a
variety of ways to separate it into different elements. Bol.com separates name elements into
‘title’, ‘first name’, ‘infix’ (common in Dutch names) and ‘last name’, while Tweakers.net
only discerns ‘first name’ and ‘last name’. If we consider the name “ir. Kees van der
Sluijs”, this will be separated as is depicted in table 7.1. As can be seen, the Tweakers.net
application is not interested in titles and doesn’t discern infixes from last names.

Mapping the user name between these two applications is still rather straightforward
with string based concatenation and split operations. However, other data can be more
complex to map. For example, the relationship between postal codes (‘postcode’ in Dutch)
and city (‘woonplaats’ in Dutch) cannot be mapped by mere string based operations.
Figure 7.3 illustrates the relationship between postal code and city. To map between these
entities one will first need to have an external source that relates postal codes and cities.

124 Exchanging User Models

Bol.com Tweakers.net
title ir. first name Kees
first name Kees last name van der Sluijs
infix van der
last name Sluijs

Table 7.1: Example of two different schemas to store a user name

Also, one needs to take into account the difference in granularity. A postal code relates
uniquely to a city, but not the other way around. A city can only be related to a range
of postal codes. This means that the mapping process between applications might not
be equivalent in terms of reusability in the sense that application ‘A’ might have more
relevant information for application ‘B’ than the other way around.

Figure 7.3: London postal code illustration

Some information might be semantically equivalent in different application schemas
but nevertheless cannot be exchanged. An example of that in Figure 7.2 is the password
field. Even though both applications might have this password field, this does not mean
that the content of this field can be transferred between applications (next to privacy and
security issues) as users might use different passwords for different applications. Another
example of such an element would be the choice for an ‘optional newsletter’ for which it
might not hold that if a user agrees to that for one application, he is also interested in
that option for another application.

Both examples imply that determining mapping schemes between application will
generally contain some manual decision making and labor. This is because the schemas
generally have implicit meaning assigned to them by applications (and their designers)
that is not externalized and therefore cannot be used.

When one is looking at a scenario in which several applications are expected to exchange
user model data between them, e.g. in some integrated framework of (possibly existing)
applications, one also need to look at which general exchange approach one could take. We

7.1 Introduction 125

can use several strategies to support this, for example, the strategy depicted in Figure 7.4
by making mappings to and from every application. The advantage of this approach is that
the application is not required to use a specific vocabulary and structure to be interoperable
with other applications, and specific custom-made mappings between applications can be
built. The disadvantage is the complexity involved in the obligation to have 2N2 mapping
for N applications. This means that for adding one application to the system 2N mappings
need to be created before being able to fully utilize the exchange of data between all the
applications.

Figure 7.4: Direct mapping strategy

Another strategy is depicted in Figure 7.5. The principle is to create a Shared User
Model (S-UM), which contains the most used concepts within the domain. Typically this
S-UM could be based on one of the available standard ontologies for UM (like [Heckmann
et al., 2005]). By creating a mapping to and from every application and S-UM, S-UM
can be used as a mediator for the exchange of user data between the applications. The
advantage of this approach is that new applications can be easily added to the system
through only two mappings. The complexity is here 2N mappings for N applications.
Disadvantage is that mapping in two steps, via S-UM, might result in loss of information.
Moreover, one cannot make specific mappings between applications that take into account
subtle details of the two applications that are not reflected in S-UM.

Figure 7.5: Shared UM mapping strategy

126 Exchanging User Models

The most interesting strategy in most cases in using a hybrid mix between the previous
two strategies. Once can use a S-UM for exchanging the most common UM information
between the applications, allowing to easily add new applications to the system with a low
design complexity. Next to that we allow for direct mappings between applications, such
that the need for more custom-made exchange of application-specific information can be
fulfilled.

7.2 MobiLife

MobiLife was a European IST-project from 2004 to 2006 targeted on bringing advances
in mobile applications and services within the reach of users in their everyday life. The
MobiLife consortium consisted of 22 partners throughout Europe and included industrial
partners like Nokia, HP, Motorola, Alcatal, Siemens, Suunto and TELIN (Novay1). The
research area within the project that we focus on was creating a personalization framework
that allowed applications running on the phone to do context aware adaptation.

The main idea of this part of the project was that users will use their mobile phones for
a growing range of applications. Because of limited ways of user interaction with mobile
devices, personalization should help to make mobile application a frustrating experience.
As users will have their mobile phones with them all day this will expose them to different
situations and different social contexts. This allows the phone to gather and exploit context
dependent information. As context and personalization services will be used system wide
by mobile phone applications, the MobiLife personalization framework intends to offer a
user modeling and context awareness API to all applications running on mobile phones.

Because of the size of the project we will only focus on the part of the project that
was done in relation to this thesis. For more information please refer to the deliverables
on the Mobilife website2 or refer to the MobiLife book [Boda et al., 2007].

7.2.1 General architecture

Figure 7.6 shows the overall MobiLife architecture. This architecture consists of several
building blocks, namely the User Interface Adaptation Function, Context Awareness
Function, Privacy & Trust Function, Personalization Function, Group Awareness Function,
Service Usage Function, Service Provisioning Function and Operational Management
Function. The names of most of these blocks are rather self-descriptive, but we will give a
short explanation for every block below.

The User Interface Adaptation Function Users may use different devices to access
mobile applications, even concurrently. Each device supports different input and
output modality services, different connectivity, and with different capabilities. To
face this problem without creating a specific user interface representation for each
device, mobile service developers are supported with user interface adaptation through
the User Inferface Adaptation Function. The Gateway Function deals with device
discovery and capability management, while the Modality Function specifies the
actual service adaptation functionalities.

Context Awareness Function This function takes care of raw, interpreted and aggre-
gated context data. It handles context data related to individual users and to groups

1http://www.novay.nl/
2www.ist-mobilife.org

http://www.novay.nl/
www.ist-mobilife.org

7.2 MobiLife 127

Figure 7.6: MobiLife General Architecture

of users. This module takes care of context descriptors together form a unique context
for which separate adaptation actions are needed by using learning techniques. It
supports the application developer by providing users’ and groups’ current context
information through well-defined interfaces.

Privacy & Trust Function Mobile services and applications deal with data related to
the user, which raises the fundamental issue of trust and privacy of the personal user
data. Therefore, the Privacy & Trust Function has been introduced to the Mobile
Services Reference Model, ensuring privacy and trust through specifying a Trust
Engine and defining privacy policies in Privacy Policies Storage/Management.

Personalization Function This function enables adaptation of mobile services and
applications according to personal and group needs and interests. It offers a Profile
Manager to manage user and group-related profiles and preferences.

Group Awareness Function The Group Awareness Function is the entrance point
for all mobile application services and framework services related to group state
information provisioning and to group lifecycle aspects. It provides means for the
management of group lifecycle aspects through the Group Management Function as
well as the automatic creation and deletion of groups through the Group Evolution
System.

Service Usage Function This function covers all aspects related to the service usage.
In particular it covers every step in the ‘timeframe’ between service discovery and

128 Exchanging User Models

service offering. The Service Provisioning Function covers the components Service
Discovery, Service Composition and Service Execution.

Service Provisioning Function This function deals with how services can be pro-
actively offered to a user. It provides information about available mobile applications
and application services in the Service Catalogue Provisioning. It enables the ad-
vertisement of applications automatically or pro-actively to users/groups, without
any user/group request or interaction, defined in the Proactive Service Provisioning
components. Furthermore, it offers functionality to keep track of a user’s service
usage behavior and to automatically recommend services to users based on this
history data through Self Provisioning functionality. Finally, service configurations
can be pushed through Configurations Provisioning.

Operational Management Function This function performs operational management
of mobile applications, application services, and related configuration of resources.
The Service Management focuses on the knowledge of services (access, connectivity,
content, etc.). The Resource Management maintains knowledge of resources (appli-
cation, computing and network infrastructures) and is responsible for managing all
the resources (e.g., networks, IT systems, servers, routers, etc.) utilized to deliver
and support services required by or proposed to customers. Data Collection pro-
cesses interact with the resources to collect administrative, network and information
technology events and performance information for distribution to other processes
within the enterprise.

MobiLife was envisioned to run on a client-server architecture, i.e. all processor heavy
processes would be maintained on dedicated servers while the mobile phone because of
limited processing power would only show the user interface. However since enormous
advances in mobile processing power have been made, the whole MobiLife infrastructures
could nowadays be easily placed on the mobile phone itself. This would reduce security
issues involved in transferring personal data and do away with the requirement to maintain
internet connection with the mobile phone at all times in order to maintain the full service
function.

7.2.2 User Model Context

User identification was done by identifying the user by his phone. It was assumed that
mobile phones are only used by one user and that users generally use one phone, so that
all user model gathered on a mobile phone could be assumed to be a single user. As every
mobile phone has a unique International Mobile Equipment Identifier (IMEI) associated
with it, this number can be used as identification of the user as well - or so was assumed
for simplification reasons.

Figure 7.7 depicts the general architecture of the MobiLife personalization framework.
This framework consists of two parts, the contextualization part called Personal Context
Function (PCF) and the personalization part called Personal Profiling Function (PPF).
The user exchange strategy in MobiLife was the direct mapping strategy as depicted in
Figure 7.4. The reason for choosing this strategy was because it is beforehand unclear
what the domain is of the applications developed for the mobile phones. Because these
applications can be diverse it will be very hard to come to a common ontology. Also,
we did not expect tight integration of most mobile applications, so the number of direct
mappings might be reasonably low.

7.2 MobiLife 129

Figure 7.7: Architecture of the PCF and PPF

Context awareness was an important factor in the project. The context awareness
module was to process the various phone sensors to determine the current context. These
sensors typically are time and location, but could also include heart rate, altitude and depth
if the software was for example running on one of Suunto’s wrist computers for diving or
outdoor training. PCF receives the raw sensor data, data about available services, devices
and modalities, and application requests from the Device and Modality Function and other
services and applications. The Context Gathering and Interpretation block transforms
and grounds all the sensory data streams in context representations and transforms it
into instances of the MobiLife context ontology. This is implemented by a rule engine
which allows to produce low-level and high-level interpretations of the user’s context and
situation. One can define rules and labels for high-layer interpretations. For example, one
could define ‘being in the car’ as being in close enough proximity of the bluetooth network
of the carkit and ‘driving’ could be defined as ‘being in the car’ plus having a speed higher
than 20 kilometers per hour calculated from the GPS input stream.

Another function of the PCF is monitoring user behavior in applications. Applications
can send user actions to the MobiLife framework using an API. This data can be interpreted
by using various machine learning approaches. The structure of this learning mechanism is
highly modular and eases the reuse and evaluation of different machine learning methods.
Furthermore, the modularity makes it easier to evaluate how well different algorithms
perform in different domains. Currently, the system supports rule based reasoning (the
same one as for interpreting context data) and tree augmented naive Bayesian classifiers
(TAN), by calculating the maximum weight spanning tree using the Chow and Liu algorithm
[Chow and Liu, 1968]. The result of this process is an inferred set of user preferences
which is stored in the user model.

Another part of the user model is inserted via the PPF. These are the explicit user
data and user preferences as provided by the user in the different mobile applications. The
application can use the PPF to store this information so that every application doesn’t
need to build a separate facility for that.

User can see and edit all their data in the different applications using the Mobilife
Profile Editor. This includes both the explicit user data and user preferences and the
inferred user data, except for data for which this is explicitly prohibited in the schema via
a special property. This might be useful for too fine grained data that is useful for the

130 Exchanging User Models

user, but unintelligible for the user. Figure 7.8 is a screenshot of the pc-version of this
profile editor. Given the limitations in screensize and screen capabilities of mobile phones
during the MobiLife project we opted not to build a mobile version of the profile editor
as the total amount of information stored by the applications and the possible complex
structure of the data would be too complex to easily browse on the mobile phone. Instead,
the users can still access their data directly in the applications on their phone and us
the Mobilife Profile Editor on their pc to review and modify their information if needed.
Providing the users the means for exerting the control on the user model data is intended
for transparency reasons and might help to improve the understanding of the user about
which data is collected and how this can improve the applications.

Figure 7.8: Profile Editor

The Mobilife Profile Editor visualizes the user models instances as trees. The RDF
format is however intrinsically graph based. Trees are obviously no problem, but the
Mobilife Profile Editor is restricted in the sense that cyclic nodes in graphs will not be
visualized. Instead every node in the tree that is already visualized elsewhere in the tree is
shown in italics to indicate that it is a double and its subnodes will not be visualized. For
every phone application we encountered during the Mobilife project this sufficed as these
applications typically only stored user data in attribute-value pairs, so typically this is not
an issue.

The MobiLife user model is structured as depicted in Figure 7.9. Every user has
an associated profile with possibly some personal details. Next to that every profile is
associated with zero or more so called profile subsets. Every profile subset is related to a
specific application and has a context and schema associated with it. The context is a
set of descriptors which describe for which context the profile subset is valid. The empty
context is the default profile subset for the user for that application. The schema is an
RDF schema of which the user profile data is an instance. The schema information can
be used both for validating the user model instance data, but can also be used as basis
for schema matching so that applications can exchange user model information e.g. using

7.2 MobiLife 131

the Relco framework (refer to Section 5.5). The actual data is stored in RDF statements
under ‘UserData’. The ‘UserData’ can hold any RDF document which the applications
might want to store, i.e. it is not necessary to adhere to the schema stored in the Qualifiers.
However, if the applications want to check the validity of the ‘UserData’ as instance of the
schema this can be checked. It is upon the application to deal with any errors resulting
from this check.

Figure 7.9: MobiLife User Model

Enabling contextual personalization of future services includes a variety of aspects that
has been covered by related work. As an example, [Tafazolli, 2006] describes high-level
requirements for personalization and profiling enablers. There are also several specifications,
which deal with more detailed requirements for user profiles and user profile management
such as the 3GPP Generic User Profile (GUP) [Koza, 2004] and the ETSI User Profile
Management specification [Petersen et al., 2005]. However, these specifications basically
provide high-level requirements but no concrete solutions or implementations. Furthermore,
there is also existing work on profile describing schemas like CC/PP [Klyne et al., 2004b]
and user model ontologies like GUMO [Heckmann et al., 2005]. However, these approaches
lack considering context-dependent user preferences.

7.2.3 Applications

The whole purpose of the MobiLife framework is to support the creation of rich mobile
applications. To prove that the context and profile framework is able to support such
applications eight of these applications have been developed within the project. As these
applications themselves are not themselves part of the work for these thesis, but only give
an idea of the possibilities, we will only give a short description of every application:

• ContextWatcher is an application that makes it easy and unobtrusive for people
to share information about their whereabouts, or any other piece of context informa-
tion they might want to share, ranging from body data to pictures, local weather
information, and even subjective data such as moods and experiences. The goal
of the application is to offer people new ways to keep (and stay) in touch without
the need for direct interaction. The ContextWatcher can be used to generate and
publish personal blogs (screenshot Figure 7.10).

• Personal Context Monitor has been designed as a solution to monitor and process
in real time essential physiological parameters such as electrocardiogram (ECG) and
heartbeat using mobile body measuring devices. This application supports wireless

132 Exchanging User Models

Figure 7.10: A sample blog entry for a day in Canada

real-time transmission of the data stream via Bluetooth all types of listening devices
e.g. for reviewing, storage, or e.g. interpretation by a doctor.

• Proactive Service Portal provides a simple, but personalized and dynamic service
portal. The basic idea of the portal is to relieve the user from browsing through
endless index lists to finally find a desired service; or to avoid having the user to type
in lengthy URLs with the restricted keyboard capabilities of a mobile device. This
functionality is realized by situation-based service recommendation and identification,
and proximity-based self-promotion of services.

• Multimodal Infotainer is a multi-functional client-server system for use on mobile
devices or personal computers. It is able to discover surrounding environment
parameters and enables users to watch information from configurable resources
through manageable content feeds (news services, blogs and other sources of data).
It can also play multimedia content, through multiple devices or modalities, from
remote streams or from local files utilizing gathered environment configuration data
with the built-in discovery engine.

• Wellness-Aware Multimodal Gaming System is a personalized wellness mon-
itoring system that allows monitoring a user’s fitness situation and that creates
personal training plans according to the current wellness situation of the user (screen-
shot Figure 7.11). The recommended training plans take into account the user’s
training habits derived form past trainings, the user’s preferences (e.g. the preferred
training devices), general user data that might influence the training (such as user’s
age and weight), as well as expert knowledge from professional gym coaches.

• FamilyMap is a location-sensitive messaging system implemented into a map user
interface. The main focus of the FamilyMap application is to assist families with
small children in their everyday life, especially when on the move. Dealing with
location-based, logistical and baby-care related issues came from the realization of
difficulties present when one tries to find necessary information from sporadically
available information sources while in the city.

• TimeGems is a group-centric application that highlights groups as social inter-
action and communication spaces. The application is designed to provide users
with extended interaction possibilities within the various groups they belong to

7.3 Grapple 133

Figure 7.11: Screenshot of the Wellness-Aware Multimodal Gaming System

(e.g., work, family and friends). The application primarily aims to facilitate group
activity planning within the users’ unused occasional and free-time slots for which a
spontaneous organization of group activities is usually very difficult.

• MobiCar allows users to plan and set up a group with the objective of sharing a
ride in a car that belongs to one of the members, i.e. carpooling.

Every application uses the MobiLife framework and uses and exchanges information
with sensory applications and exchange information with other applications. Next to that,
some of these applications are social and communicate with nearby machines or people,
i.e. the MobiLife context and personalization functions are heavily used.

7.3 Grapple

GRAPPLE3 was a European FP74 STREP5 Project between 2008 and 2011 [De Bra et al.,
2010b]. GRAPPLE involved 15 academic and industrial partners from all over Europe.

GRAPPLE stands for “Generic Responsive Adaptive Personalized Learning Environ-
ment”. The project’s goal was to extend technology-enhanced learning environments like
Learning Management System (LMS)s with a beyond the state of the art Adaptive Learn-
ing Environment (ALE), in order to provide students with a technology-enhanced learning
environment for life-long learning. The following steps were taken within GRAPPLE to
reach this goal:

• Extend the state of the art of ALE and build a renewed adaptation framework

• Integrate this new ALE in the main existing LMSs

• Provide interoperability between ALE applications, LMSs and possible interesting
external knowledge via an integration framework, including an engine for exchanging
user model information

3http://grapple-project.org/
4http://ec.europa.eu/research/participants/portal/page/fp7_calls
5Specific Targeted Research Projects

http://grapple-project.org/
http://ec.europa.eu/research/participants/portal/page/fp7_calls

134 Exchanging User Models

• Provide additional tooling for laymen course designers (e.g. teachers) like an authoring
framework, additional visualization components and prototype extensions of the
ALE with a Simulation and Virtual Reality framework

• Evaluate the ALE environment and authoring environment with user studies to
study user acceptance and ideas for improvement for future work

The whole project is way too large too completely discuss here, so we will not describe
all of these aforementioned points. Instead, we will focus on the work done in relation
with this thesis and provide summarizations were necessary. For more detailed information
please refer to the GRAPPLE deliverables on the GRAPPLE website6.

7.3.1 GALE

First goal was to extend the state of the art of ALE. The seminal papers on adaptive
hypermedia by Brusilovsky [Brusilovsky, 1996, 2001] have been an inspiration for a lot
of research on personalized information access and resulted many adaptive systems as
summarized in [Knutov et al., 2009]. The project included authors of many such systems,
but the main inspiration for the GRAPPLE ALE was AHA! [De Bra et al., 2006]. For
GRAPPLE this resulted in the GRAPPLE adaptive learning environment (GALE). GALE
is the spiritual successor of the AHA! system, but it is not just an evolution as the system
has been completely redesigned and reprogrammed.

Creating adaptive applications in GALE is at first glance rather similar to creating
adaptive applications in Hera-S (chapter 3). GALE needs several input models, including
a domain model, a user model and an adaptation model.

The domain model describes concepts that are modeled using an URI that can have
properties and relations with other concepts. In essence there are numerous similarities
between the GALE domain model and RDF.

A user model in GALE contains domain dependent and domain independent variables.
Domain dependent variables are typically extensions of the concept URIs in the domain
model (e.g. the user knowledge attribute of a domain concept), while independent variables
are modeled via different URIs that do not refer to concepts in the domain model.

The adaptation model describes user model updates based on events, so called event-
condition-action (ECA) rules. ECAs are coupled to concepts in the domain. Whenever
some concept is requested or viewed or some custom event is specified, this triggers an
user model action based on some condition. These conditions and actions may contain
arbitrary Java code, making them rather expressive. When some event code is executed
this will typically result in user model updates. User models updates can trigger other
user model updates, e.g. when an event is set on a user model update, which is called
forward reasoning.

The actual content are called resources. Resources are related to concepts in the
domain model. A concept can have several resources. Within GALE users navigate to
concepts and the GALE engine will then select the appropriate resource to show to the
user, typically based on the user model. Resources are referred to using URLs and can
be either stored on the server running GALE but can also refer to external pages. Users
can embed adaptive behavior inside a resource by embedding GALE code that expresses
conditional inclusion of objects and fragments like images but also other DM resources.
The conditions typically refer to the user model. An example of such conditional inclusion
object is:

6http://grapple-project.org/deliverables

http://grapple-project.org/deliverables

7.3 Grapple 135

<gale:attr-variable name="src"
expr="${gale://gale.tue.nl/personal#isVerbaliser}?

${?smallimage}:${?largeimage}">
<object><gale:attr-variable name="data"

expr="${gale://gale.tue.nl/personal#isVerbaliser}?
${?longinfo}:${?shortinfo}"></object>

If the “isVerbaliser” attribute is true (the user has the Verbaliser learning style), a
small image will be included and a long explanation, whereas users without the Visualiser
learning style (“isVerbaliser” is false) will see a large image and only a short description.

Presentation specifics are typically specified in the resources themselves. Resources are
(x)html documents that contain markup information or associated CSS files like any other
webresource. GALE does provide some additional presentation features through variable
processors. These processors can be custom made and can contain directives to create
specific views, e.g. defining a layout schema that uses frames. Several views are predefined
in GALE. An often used example is the static-tree-view. The static-tree-view creates
a hierarchical view of the domain model based on ‘parent’ relationships. Optionally an
integer ‘order’ attribute can be used to order elements in the tree and a boolean ‘hierarchy’
attribute can be used to omit elements in the tree. Other examples of views include the
next-view for presenting a link to the best suitable next concept for the user and a file-view
that displays content e.g. in the domain model.

GALE versus Hera-S

GALE and Hera-S might seem rather similar at first glance. However, there are some large
and some more subtler differences. The main difference between the two are its different
starting points. Hera-S, as an MDWE design approach, is a data driven approach which
means that the content is assumed to be in some RDF or relational datasource. It then
provides the means to build the pages of the web applications by refering to the elements
in that datasource. GALE, like many adaptive hypermedia approaches, typically allows to
remodel an existing non-adaptive Web application into an adaptive one. In other words,
given an existing Web application GALE allows to easily extend it and/or transform it
with minimal effort.

An example of such a transformed Web application is the business English course shown
in the screenshot in Figure 7.12. The business English course is an existing non-adaptive
course offered by the BBC7 which was made adaptive using GALE. It uses the static-tree-
view to indicate the available topics and does not only allows adaptivity, but also more
freely browsing through the course (i.e. not only linear) based on learning conditions. For
more information on this application refer to [van der Sluijs and Höver, 2009a].

There are many other differences between GALE and Hera-S, but more interesting
are the striking similarities. Both approaches allow defining full-fledged adaptive and
personalized applications for the user. For example, note that both approaches allow
designers to design their application from scratch and in that respect it is a matter of
taste which approach one could take best. Besides the different approaches, one could
say that GALE might be more powerful (e.g in using custom Java code in expressions)
while Hera-S might be more flexible in using external and existing domain models and
externalizing all data including the application and user models.

7http://www.bbc.co.uk/worldservice/learningenglish/business/tendays/index.shtml

http://www.bbc.co.uk/worldservice/learningenglish/business/tendays/index.shtml

136 Exchanging User Models

Figure 7.12: The adaptive business English course

One of the consequences of the similarity between GALE and Hera-S is that as part
of the interoperability and standards focus within the project it was decided to look into
interoperability between the many existing adaptive frameworks. Part of the project was
to enable exchange of information between LMSs, e.g. for the scenario of cooperating
universities or universities that use different LMSs. Exchanging user model data for
example allows students to seamlessly follow courses at several institutions, while keeping
track of their global progress. A similar case could be serving the same course at different
institutions that might use different adaptive frameworks. By defining a standard format
for all models necessary to define an adaptive course we envisioned we could enable this
interoperability between adaptive systems.

We conceived the information flow for GRAPPLE as visualized in Figure 7.13. The
output of the authoring process is the so-called Conceptual Adaptation Model (CAM). The
CAM contains all models necessary to define an application, but also includes information
like canvas shapes, position, size, and other tool specific information, and it does not
contain the actual resources. The CAM is sent to the Engine Specific Compiler via the
communication channel called GRAPPLE Event Bus (GEB) which compiles this into the
GALE models which allows the GALE engine to run the course. The GALE engine then can
communicate via the GEB with a Engine Independent Compiler and send the entire course
(i.e. all models and adapted content). This compiler then should be capable to transform
this data into an engine-independent language that can be communicated between engines.
The engine-independent language was called Generic Adaptation Language (GAL). This
Engine Independent Compiler should also be able to retranslate from the GAL language
to GALE specific models.

Our foremost goal therefore was to come up with an engine-independent language. We
chose to base GAL on the Hera-S models. This effort is further detailed in Section 7.3.1.

7.3 Grapple 137

Figure 7.13: GRAPPLE Framework Information Flow

7.3.2 Overall Architecture

The GRAPPLE architecture (shown in Figure 7.14) consists of the following functional
blocks:

• Integration with existing LMSs that manage the learning process, progress and
support. The actual LMSs with which GRAPPLE integrated were well-known open
source systems like Moodle8, Claroline9 and Sakai10, but also proprietary systems
aimed at corporate learning applications that were realized by GRAPPLE’s industry
partners.

• GEB, a generic Event Bus that facilitates an asynchronous information exchange
between all GRAPPLE components, but can also be used for external communication.

• GALE for the adaptive delivery of learning material, as described in Section 7.3.1.

• Generic User Model Framework (GUMF) that maintains information about each
learner as he uses different LMSs, GALE instances or other software.

• A single sign-on facility (based on Shibboleth11) for user authentication that ensures
user identification within all components connected to the GRAPPLE framework.

• The GRAPPLE authoring tools (GAT), which provides authors and course designers
(e.g. teachers) to visually create adaptive courses that can be deployed in GALE.

8http://moodle.org/
9http://www.claroline.net/

10http://sakaiproject.org/
11shibboleth.internet2.edu/

http://moodle.org/
http://www.claroline.net/
http://sakaiproject.org/
shibboleth.internet2.edu/

138 Exchanging User Models

• GVIS, a visualization framework that can aggregate and visualize information from
GUMF. GVIS is also integrated with every LMS.

Figure 7.14: GRAPPLE Architecture

Most interesting in terms of interoperability are the GEB and GUMF.
GEB facilitates communication within the GRAPPLE framework. Applications (every

internal GRAPPLE component or GRAPPLE external applications) that connect with
the Grapple Framework subscribe via the Event Bus webservice. Every application can
set a list of event types in which it is interested and every application can post events of a
specified type to the Event Bus. If an application posts an event to the Event Bus it will
send this to all listening applications that specified interest in that type of event. Every
event contains the following components:

• eventId, a unique identifier of events of type int. The eventId is generated by GEB.
The functionality of this ID, is to provide the possibility to identify the messages
exchanged between the components through the GRAPPLE Event Bus.

• previousIdEvent, a unique identifier of type int. It is an optional attribute. In this
case, this ID is provided by the component which made the request. This ID is the
identification, if the request has any relation with other event.

• methodName, the type of event. It is used by the Event Bus to decide to which
listening components an event should be sent.

• body, contains the actual event message that is interpreted by the components that
receive the event. The content of the body is not processed by GEB but only passed
on to the listeners.

For example, if the LMSs Moodle and Sakai both have an interest in course updates
from their students they can both subscribe to the “umChanged” event. When a user
model update then takes place in GUMF, GUMF can then send a “umChanged” event
to GEB, reporting for which students UM updates have taken place. GEB takes care of

7.3 Grapple 139

sending around the “umChanged” events to all listening applications. In this way, GUMF
does not need to keep track nor hardcode which applications might be listening and might
need notifications. The listening application can then process the event and if needed send
an event-reply.

The GRAPPLE event bus abstracts from the need that every GRAPPLE component
needs to be exactly aware about which LMS or other application accesses it. The Event
Bus also simplifies the process of adding new components to the framework and facilitates
distribution of components as the components might have instances running at several
locations. The connecting applications only need to provide an event listener interface to
GUMF that GEB can send the messages to.

GEB is an asynchronous service, meaning that components that send messages do
not have the facility to wait for an answer or know for certain if any more answers might
come or not. For some applications this might be an issue, especially for components that
run in the client browser as these cannot run web service listeners. Therefore, for these
applications (e.g. GAT) a proxy webservice was created that can be used to access the
GEB through and which can temporary store replies, which allows the (browser) client
applications to periodically check for replies.

GEB is an open platform that allows any component to subscribe and listen to events.
This can of course be a privacy concern. And even though security measures have not
been implemented it would not be to hard to extend with authentication measures and
encryption to increase security.

7.3.3 GUMF

The GUMF facilitates exchange of user data between GALE, LMS and any other applica-
tion that wants to exchange user data. Examples of what might be exchanged between
GALE and LMS are for instance a measure of progress with the adaptive course from
GALE to the LMS and the results for a specific test in the LMS to GALE, which allows
blending LMS capabilities like taking tests with GALE’s adaptive course. Exchange
between GALE applications allows reuse of data between similar domains, e.g. we could
estimate from a regular English course what a users level is when starting the business
English course.

To be an effective framework for exchanging user data between applications, GUMF has
to somehow deal with user identification, context and semantic heterogeneity as detailed
in sections 7.1.1 and 7.1.2.

In GUMF users are identified by a unique URI, i.e. a URI uniquely identifies a user.
Users can have different URIs in different applications, though. GUMF explicitly does
not solve this issue, but leaves this to the applications that use GUMF. This means that
applications that wants to use the information of one of their users in another application
somehow need to know the URI used by that other applications to identify the user
in question. Within the GRAPPLE framework this is covered by using the Shibboleth
authentication mechanism. In this way, GALE and every LMS connected within the
GRAPPLE framework will use the same user identifier. In other scenarios applications
will need to find other ways to establish the user identity, e.g. by once requesting users
to provide the login details of the target application. In this scenario user involvement is
typically also desired because of privacy and scrutiny reasons. Leaving this issue to the
applications on one hand burdens the application with solving this issue, on the other
hand it also allows applications to use specialized user authentication mechanisms that
typically are already used in most institutions and companies anyway. The choice in this

140 Exchanging User Models

case is for flexibility instead of additional (possibly redundant) service.

Contexts in GUMF can be covered by so-called data spaces. A data space is specified
as a logical bundle of data (instances) as well as ontologies and rules (schema). Data
spaces thus go beyond the notion of namespaces as they explicitly allow us to specify a
set of things that span a certain data space, on which an operation (e.g. query operation
or reasoning operation) should be executed. In more detail, such data spaces represent
the part of GUMF that a certain client application is managing and responsible for, i.e.,
its own workspace. However, in typical use an application has only one dataspace in
GRAPPLE. This is because in the educational domain is a bit different from typical
consumer applications, as it is not the user preferences in relation to the context that is
the most important, but the actual knowledge and progress of the user as a student is.
In this case context seem to be less important. This does not mean that contexts cannot
separate user model data context, technically data spaces could perfectly cover this, but
in practice this is typically less important in the educational domain.

Semantic heterogeneity is dealt with in several ways within GRAPPLE and in GUMF
in particular. First of all as the existing LMSs are rather similar in nature it was decided to
come to standardize input and output communication via the existing IMS-LIP standard
[IMS Global Learning Consortium, 2001]. The user information currently interesting for
the LMS could be encoded using this standards. GALE supports arbitrary complex user
models and also can embed ECAs which cannot be captured by IMS-LIP. So GALE user
model data is not translated into IMS-LIP.

GUMF internally models UM data by means of Grapple statements. A Grapple
statement is basically a packaged RDF statement with some fixed additional metadata.
Some of this data should be provided by the applications that use GUMF, e.g. the target
data space, the user whom the information is about, the time of observation of the
information and the application that is the source of the statement. Some other elements
are added by the GUMF framework itself like id, storage date, originating URL, etc. This
user model metadata allows richer queries over the data.

As IMS-LIP has a different syntax and structure than Grapple statments, the IMS-LIP
data needs to be converted from and to Grapple statements when stored in GUMF. This
process is detailed in Figure 7.15. The IMS-LIP is sent to GUMF via the GEB and arrives
at the GUMF listener. This listener recognizes the IMS-LIP datastructure and it calls
the converter which maps the IMS-LIP data to Grapple statements. Then it can be
stored in GUMF. In order to exchange user data between LMSs, these LMSs only have
communicate the data space address that stores the user information from the other LMS
to retrieve their user model data (i.e. by configuration).

GALE transforms its data directly into Grapple statements, i.e. by one of its processors.
As domain and user model data resemble RDF in structure this is a straightforward
processor.

The most interesting transformation within the GUMF engine is between the differently
modeled data, like between GALE and the LMSs, or other possible applications. To deal
with this, GUMF has so-called Grapple Derivation Rules (GDR), which is a rule-based
mapping language that is inspired by both the SWRL based mapping system which was
described in Section 5.4.3 and the SPARQL based mapping system which was described in
Section 5.4.4. GDR allow to map and aggregate values from the data stored in one data
space into the structure of another data space.

GDR have premises and consequents. For example, the following GDR rule in-
structs the multiply operator to increase the knowledge level of a student for the concept
“gale://..HotelCheckin” if the student completes a quiz (with ID 118316) that tests the

7.3 Grapple 141

Figure 7.15: GUMF Information Flow

student’s knowledge in conversing in English when checking into hotels. The rule simply
multiplies the current knowledge level for these concepts by 1.5, i.e. new knowledge level
of ‘HotelCheckin’ is equal to the previous knowledge level multiplied by 1.5:

<gdr:rule name="Quiz Level to External Knowledge (CLIX)"
description="Maps quiz result of a CLIX quiz to gale attribute"
creator="http://pcwin530:8080/gumf/client/1">

<gdr:premise dataspace="1">
<gc:subject>?user</gc:subject>
<gc:predicate rdf:resource="http://grapple/ims-lip/completedTest"/>
<gc:object>118316</gc:object>
<gc:level>?level</gc:level>

</gdr:premise>
<gdr:consequent dataspace="1">

<gc:subject>?user</gc:subject>
<gc:predicate rdf:resource="http://gale/predicate/knowledge"/>
<gc:object>gale://gale/BusinessEnglishCAM/HotelCheckin</gc:object>
<gc:level>op:multiply(?level,1.5)</gc:level>

</gdr:consequent>
</gdr:rule>

This rule shows how properties between an LMS and GALE can be exchanged and
how actual values can be manipulated using data operators. For this purpose several
operators are available (e.g. multiply, divide, add, substract). These can be easily extended
with more. The GDR are executed via a custom built rule engine within GUMF, which
internally uses sesame and SPARQL queries and custom transformation code.

Obviously there is a learning curve involved in creating these mapping rules. However,
these rules need to be created only once by a specialist between two applications. Currently,
there is some basic tool support for creating these rules in GAT. However, this tool support
can be easily extended using Relco to find matching elements between user models and a
basic facility which should be able to point and click these relations between user models
to generate a GDR copy rule. This would only necessitate more specialistic knowledge of
these rules for more complex situations.

142 Exchanging User Models

7.4 GAL

As noted in Section 7.3.1, we are interested in an engine-independent adaptation language.
We named this language GAL and based it on the Hera-S AM (refer to Section 3.4). This
is because the Hera-S models seems to be a fine grained way to model both the content
and adaptation. Our hypothesis is that if we are able to show that GAL is able to perform
all types of adaptation as defined by Brusilovsky [Brusilovsky, 1996], it should be able
to define adaptation as can be expressed by most existing adaptive hypermedia systems.
Furthermore, we reasoned that a formal definition of the GAL language is an important
requirement if it is to be used an engine-independent standard language for adaptation
that can be used to exchange applications between e.g. AHA!, GALE and others.

7.4.1 Extending GAL

GAL is basically defined as the Hera-S AM model. However, first we will extend the AM
with two language constructs that in Hera-S are more typically considered to be part of
presentation considerations, but are deemed important in terms of adaptation - as some
important types of adaptation include presentation adaptation.

These two constructs are ‘Emphasis’ and ‘Order’.
GAL Components can be emphasized by giving them the property

:hasEmphasis "high"

We discern four types of emphasis:

• low emphasis means under-emphasis. A component with low emphasis should get
less emphasis than normal objects.

• default emphasis is as if no hasEmphasis property has been defined, i.e. the default
for all GAL Components.

• emphasis means more emphasis than normal (no emphasis). This level allows the
adaptive engine to differentiate between more important objects (“normal” emphasis)
and most important objects (“high” emphasis).

• high emphasis is the most emphasis a GAL Component can have.

Emphasis is a construct that directly influences the presentation. Even though we
mainly target adaptive navigation, emphasizing components (especially links) on a page
can strongly influence the navigation behavior of the user and it is a regular adaptive
construction. Therefore, it was chosen to include this construct in GAL. It is up to the
engine to decide how to present an emphasized GAL Component, e.g. by highlighting.
Emphasis for a NavigationUnit means emphasis for every element in that unit.

Order is also an important aspect of adaptive navigation. Moreover, it might be
important for the internal logical structure of a page. GAL Components can have an order
element that specifies an ordering. The value of an ordering element is either an integer,
or a (conditional) query resulting in an integer. For example we can give an attribute
“Conversation” an order element with value 1 as follows:

:CheckingIn :hasAttribute [
:name Conversation;
:order 1

]

7.4 GAL 143

The order element dictates a partial order in GAL Components within the scope of a
particular NavigationUnit. This means that if two or more GAL Components have an order
attribute with an integer value, the subcomponent with the lowest value is guaranteed
to be displayed before the subcomponent with a higher ordering value. Subcomponents
with the same ordering value are considered relatively unordered, meaning that there is no
guarantee which of these subcomponent is displayed before the other. The ordering of GAL
components that have non-integral values or missing ordering properties are undefined. In
general we do not assume any particular order based on the order of GAL code. However,
we do allow specifying to strictly follow the GAL code order within a GAL Component by
defining a default-ordering property for that unit by simple declaring:

:default-ordering true

Note that using an explicit order attribute takes precedence over the default ordering.
For set results (e.g. for the SetUnit construct) we automatically assume the default-

ordering to be true, unless specified otherwise.

7.4.2 Types of Adaptation

Our basic GAL constructs thus far expressed adaptation on a very basic level. This allows
for very generic types of adaptation. However, we also consider more specific adaptation
technologies as proposed in Brusilovsky’s adaptation taxonomy [Brusilovsky, 1996], which
gives us the following adaptation techniques:

• Adaptive multimedia presentation

• Adaptive text presentation

• Direct guidance

• Link sorting

• Link hiding

• Link annotation

• Map adaptation

We review these techniques and present how GAL can be used to apply these techniques
and we also provide some constructs that help to apply some of the techniques and we
explain how these additional constructs can be translated into basic GAL constructs. In
this way we show that GAL supports the basic types of adaptation as recognized in the
field of adaptive systems. Along the way, we will introduce shorthand GAL constructs
that can directly express the different adaptation types. We will also provide how these
shorthand constructs can be modeled with basic GAL constructs.

Adaptive Multimedia Presentation

Usually in adaptive systems Adaptive Multimedia Presentations means personalized media
selection, i.e. given that there is a choice of a number of multimedia clips the system
chooses the one that fits best for the user.

A selection would look like this:

144 Exchanging User Models

:select [
:case [:casenumber "1";

:condition [Query1];
:hasAttribute [
..details of multimedia attribute 1..]

] ;
...
:case [:casenumber "N";

:condition [QueryN];
:hasAttribute [
..details of multimedia attribute N..]

] ;
:case [:casedefault "true";

:hasAttribute [
..details of multimedia attribute in the default case..]

] .
].

The semantics of this statement is that the first case that matches its corresponding
condition will be shown and otherwise the default case will be shown. One way of
translating this in terms of GAL if-statements of one attribute with different values is as
follows:

:hasAttribute [
..some general details of the attribute..
:if [Query1] ;
:then [..query of multimedia attribute 1..];
:else[... :if [QueryN];

:then [..query of multimedia attribute N..];
:else [..query of default multimedia attribute..] .

] .
] .

Direct adaptation of multimedia objects cannot be done directly in GAL (except if
they can be expressed in RDF). However, if a Web Service exists that allows adaptation
of a multimedia object this can be supported in GAL via the Web Service construct.
Personalization can than be done. GAL can send variable parameters to the Web Service
call. However, the Web Service should send a result that can be handled within the GAL
language, e.g. text or an URL.

Adaptive Text Presentation

In GAL an attribute can be a piece of text as well as any other type of media (identified by
a URL). So the choice of construction in the previous paragraph also applies to text. This
means that alternative page fragments can be selected. Moreover, general text adaptation
can be done using the (conditional) query mechanism in GAL that can refer to both
domain concepts and the UM. We offer a specific construct to weave different versions of a
document together. This allows to quickly select a group of items to be shown based on a
condition.

At the start of a Unit for which we want to define different versions together we declare
something like

7.4 GAL 145

:alternative [
:case [:casenumber "1";

:condition [Query1];
:selectid "alternative1"

] ;
...

:case [:casenumber "N";
:condition [QueryN];
:selectid "alternativeN"

] ;
:case [:casedefault "true";

:selectid "default"
] .

] .

Based on this selection criterion we now define in the rest of the unit which GAL
sub-Components belong to which selection id by adding the :selectid property with the
appropriate name, for example:

:has Attribute [
:label "Conversation Option:";
:value [query];
:selectid "alternativeN"

]

In this way all GAL Components with selected “alternative” will be initialized, while all
attributes that belong to one of the other alternatives are not initialized. This can be done
for all GAL Components that accept queries. This alternative construction can be used to
prevent repeating selection queries and to get a better overview for which page-alternative
a construct is used. The semantics of this construction is that all GAL Components with
a specific selectid will be shown only if it’s the first case in the alternative statement for
which the condition is satisfied.

The translation into GAL constructs (internally) is done by repeating the conditions
for every GAL component to check if the condition for the specific GAL component is the
first that satisfies the condition of the case statement.

Direct Guidance

Direct Guidance means that the system decides what the best next link for a user is. In
order to support this we use a slightly adapted version of the ‘alternative’ construction
above, namely

:emphasize [
:case [:casenumber "1";

:condition [Query1];
:emphasisid "emphasis1";
:hasEmphasis "high"

] ;
...

:case [:casenumber "N";

146 Exchanging User Models

:condition [QueryN];
: emphasisid "emphasisN"

] ;
:case [:casedefault "true";

: emphasisid "default"
] .

] .

So instead of a selectid property we use an emphasisid, where the id points to GAL
Components. Typically for Direct Guidance we would only point to links, but this construct
can also be used to emphasize other GAL Components other than links.

Translation in GAL terms is slightly different here, because conditions cannot be
attached to hasEmphasis properties, but only to query elements. Instead we generate
two versions of the same GAL Component that is referred in the emphasisid clause, an
emphasized and a non-emphasized one, and based on conditions we choose one of them.

Link Sorting

Adaptive link sorting is already directly supported in GAL via the SetUnit in combination
with ordering. This assumes that the query language supports ordering. By referring
in the query to the user model (as well as the DM) allows to retrieve a set of links that
depend on the user model.

Link Hiding

Link hiding (as well as hiding of other GAL Components) is also directly supported in
GAL via conditions. By not specifying a then or else part in the condition means that a
link (or other component) is not initiated and thus effectively hidden.

If the GAL Component should not be really hidden but just displayed differently (e.g.
grayed out) the emphasis level “low” can be used.

Link Annotation

Link annotation means that there is some form of adaptive comment or presentational
makeup, to give visual cues to the user. We do not specify direct presentational aspects of
link annotation in GAL, as this is an engine specific presentation detail. However, what is
necessary from GAL perspective is that user information can be updated and used to adapt
different aspects of a link. This is possible in GAL because the value of the properties in a
link can be determined via queries in combination with adaptive conditions. For example,
given GALE, we could adaptively determine the class of an attribute or a link. GALE
then is responsible for the concrete different forms of annotation of links.

Map Adaptation

Map adaptation is used to for instance generate menu structures. One typical type of
map adaptation is a hierarchical structure of links. This can be defined in a hierarchical
construction as follows:

:hasHierarchy [
:item [:itemid "ch1";

:subitem :root;

7.4 GAL 147

:hasLink [Link specification ch1] .
] ;
:item [:itemid "ch1.1";

:subitem "ch1";
:hasLink [Link specification ch1.1] .

] ;
:item [:itemid "ch1.1.1";

:subitem "ch1.1";
:hasLink [Link specification ch1.1.1] .

] ;
....

:item [:itemid "chN";
:subitem :root;
:hasLink [Link specification chN] .

] .
] .

This can be translated in GAL terms by using the hierarchical structures of Units
in combination with the Order attribute. For example consider the following (partial)
translation:

:hasUnit [
:hasNavigationRelationship
[:order 1;

{..Further Link specification ch1..}
] ;
:hasUnit[:order 2;
{..Ref SubUnit that specifies ch1.1 and ch1.1.1..}
] ;

....
:hasNavigationRelationship
[:order N;

{..Further Link specification chN..}
] .

] .

7.4.3 Formal Specification

Here we provide a first formal specification of the GAL language. This is not a complete
and strict formalization, just a first step in that direction. Also note that some of the
following constructs have been named and specified slightly differently from the AM
definition in Section 3.4, for example we changed setUnits into listUnits as these last
are simpler to define. All these changes are introduced to simplify the formalization. It
depends on the resulting implementation of the language which constructs are easier and
preferable to use. Based on this experience we can either choose to use the changed
construct, or change the formalization (and complicate that a bit in the process).

Basic constructs

The purpose of GAL is to describe the navigational structure of a web application and how
this adapts itself to the actions of the users. The central concept is that of NavigationUnit

148 Exchanging User Models

which is an abstract representation of a page as it is shown to a certain user after a certain
request. Basically it is a hierarchical structure that contains the content and links that
are to be shown, and also updates that are to be executed when the user performs certain
actions such as requesting the page or leaving the page. All data from which these units are
generated is assumed to be accessible via a single RDF query endpoint, and the updates
are also applied via this endpoint.

Preliminary definitions and notation

For the purpose of formalizing the syntax and semantics of GAL we postulate the following
sets and constants: ET (event types), DB (database instances, which are queried and updated
through the RDF query endpoint), VQ (value queries over the RDF query endpoint that
retrieve a single value), LQ (list queries that retrieve lists of bindings from the RDF query
endpoint), UQ (update queries that update the RDF query endpoint), A (attribute names), V
(values, which includes RDF literals and URIs), EL (element labels), UT (unit types, which
we here assume to be a URI consisting of a namespace and a local identifier), EN (element
names), X (variable names containing a distinguished variable user), DC (domain concepts).
We use the special constant ⊥ which is not in any of the postulated sets, and the special
constants “gal: top”, “gal: self” and “gal: parent” which are not in UL. We define the
set B to be the set of bindings, i.e., partial functions b : X ⇀ V that map variables to
value. For partial and total functions b1 and b2 we define their combination as b1#b2 such
that (b1#b2)(x) = b1(x) if b1(x) is defined and b2(x) is undefined, (b1#b2)(x) = b2(x) if
b2(x) is defined and (b1#b2)(x) is undefined otherwise. We generalize the # operator such
that (b1# . . .#bn) = (b1# . . .#bn−1)#bn for n > 0 and (b1# . . .#bn) = ∅ for n = 0.

Additionally we introduce the following notation: L(S) the set of finite lists with
elements from S. Lists are denoted as [1, 1, 2], and list concatenation as L1 · L2. We write
x ∈ L to denote that an element x occurs in list L. We use list-comprehension syntax, such
as [f(x, y) | x ∈ L1, y ∈ L2] to construct lists and bags with the usual semantics.

For queries we assume that they contain variables, which can be replaced with a value.
Concretely we assume the queries are expressed in SPARQL where variables are used in
the graph patterns and are preceded with “?” or “$”. For such queries q we let q[b] denote
the query that is obtained when the variables in q for which b is defined are replaced with
their value in b. Strictly speaking for SPARQL queries this can result in an invalid query
if variables in the SELECT clause are replaced, but we ignore this for the moment. We
assume that for all queries q a semantics is given, viz., [[q]] : DB → V for value queries
q ∈ V Q, [[q]] : DB → L(B) for list queries q ∈ LQ and [[q]] : DB → DB for update queries.
We also assume that it is stored in the database which values denote an instance of a
domain concept. For a database instance db ∈ DB and domain concept dc ∈ DCthe set of
instances of dc is given by a set [[dc]]db ⊆ V . Concretely we will assume this set is retrieved
by the SPARQL query SELECT ?v WHERE { ?v a dc } .

We now define the syntax of value expressions. We assume that the following non-
terminals already are defined: <value> describes V, <val-query> describes VQ,
<list-query> describes LQ.

<val-expr> ::= <value> | “$”<var-name> | “(”<val-expr>“.”<val-expr>“)” |
“[”“gal:query”<val-query>“]” |
“[”“gal:if”<list-query> “;” (“gal:then”<val-expr>“;”)? (“gal:else”<val-expr>“;”)?“]”.

The set of all value expressions, i.e., those belonging to <val-expr>, is denoted as VE.
A value expression binding is a partial function be : X ⇀ VE.

7.4 GAL 149

The definition of units and content elements

We first define the set NR of navigation relationships as they are represented in a navigational
unit. It contains exactly all tuples of the form ln(ut, b, q, be, t) with a unit type ut ∈ UT , a
value binding b ∈ X ⇀ V , a query q ∈ LQ∪ {⊥}, a value expression binding be : X ⇀ V E
and a link target t ∈ N ∪ {“gal: top”,“gal: self”,“gal: parent”}.

The intuition of the definition of navigation links is as follows. The unit type ut
indicates to what type of unit the link will lead, the value binding b specifies the fixed
link parameters that are passed with the page request, the query q computes a binding
that defines a set of additional parameters which are computed at the time the link is
followed, the value expression binding be specifies even more additional parameters that
are computed at navigation time by given value expressions for individual variables and
finally the target t indicates which part of the current page will be replaced by the result
of the request that is generated by navigating the link.

We define the sets U of proper units and E of content elements as the smallest sets such
that (a) U contains

1. all units, i.e., tuples un(C, h, nl) where C ∈ L(E) is a finite list of content elements,
a relation h ⊆ ET × UQ and the navigation relationship nr ∈ NL ∪ {⊥},

and (b) that E contains

1. all attributes, i.e, pairs at(n, l, v) with name n ∈ EN ∪ {⊥}, label l ∈ EL ∪ {⊥} and
value v ∈ V ,

2. all unit containers, i.e., tuples uc(n, l, u) with name n ∈ EN∪{⊥}, label l ∈ EL∪{⊥},
and unit u ∈ U ,

3. all unit lists, i.e., tuples ul(l, UL) with label l ∈ EL∪ {⊥}, and unit list UL ∈ L(U).

Note that since U and E are defined as the smallest sets that satisfy the properties (a)
and (b), the mutual recursion is finite, i.e., the trees that are defined by mutually nested
units and content elements are of finite height.

The intuition behind the concepts of units and content elements is as follows. A unit
consists of (1) its content C, (2) the relation h that indicates which update queries are
associate with which event type, i.e., are executed when these events occur, and (3) the
navigation relationship nr that will be associated with the representation of the unit.

The intuition behind the definition of content elements is as follows. Attributes represent
basic content and consist of (1) the name n, which is mostly there to indicate the meaning
of the attributes, (2) the label l, which will be used in the presentation on the page and
(3) the value v, which represents the content of the attribute. Unit containers represent
nested units and consist of (1) the name n, which is used to identify the particular position
of this nested unit, (2) the label l, which is used in the representation of the nested unit
and (3) the nested unit u. The unit sets and unit lists represent a nested collection of
units and consist of (1) a label l, which is used the representation of these collections, and
(2) the bag or list of units that is the collection.

Syntax of the Language

We assume that the following non-terminals already are defined: <unit-type-name> de-
scribes UT, <var-name> describes X, <domain-concept> describes DC, <literal> describes

150 Exchanging User Models

RDF literals, <val-query> describes VQ, <list-query> describes LQ,
<update-query> describes UQ, <unit-label> describes UL, <unit-name> describes UN and
<event-type> describes ET.

The set of GAL expressions is then defined by the following syntax:

<gal-expr> ::= (<unit-decl> “.”)* .
<unit-decl> ::= <unit-type-name> <unit-type-def> .
<unit-type-def> ::= “a”“gal:unit”“;”<input-var>* <content> <link-expr>? <on-event-expr>*
<content> ::= “gal:contains”“(” (“[” (<attr-def> | <subunit-expr> |

<list-unit-expr>) “]”)* “)” .
<input-var> ::= “gal:hasInputVariable”“[”“gal:varName”<var-name> “;”

“gal:varType”<domain-concept> “]”“;” .
<on-event-expr> ::= “gal:onEvent”“[”“gal:eventType” (“gal:onAccess” | “gal:onExit”) “;”

“gal:update”<update-query> “]”“;”.
<attr-def> ::= “a”“gal:attribute”“;”<name-spec>? <label-spec>? “gal:value”<val-expr> .
<name-spec> ::= “gal:name”<elem-name> “;” .
<label-spec> ::= “gal:label”<val-expr> “;” .
<subunit-expr> ::= “a”“gal:subUnit”<name-spec>? <label-spec>? <unit-constr> “;” .
<list-unit-expr> ::= “a”“gal:listUnit”<label-spec>? <unit-constr> “;” .
<link-expr> ::= “gal:hasLink”“[”<link-constr> <target-spec>? “]”“;” .
<link-constr> ::= “gal:refersTo”<unit-type-name> “;”<bind-list> .
<target-spec> ::= “gal:targetUnit” (<unit-name> | “gal: top”| “gal: self”| “gal: parent”) “;” .
<bind-list> ::= <query-bind>? <var-bind>* .
<query-bind> ::= “gal:hasQuery”“[”<list-query> “]”“;” .
<var-bind> ::= “gal:assignVariable”“[”“gal:varName”<var-name> “;”

“gal:value”<val-expr> “]”“;” .
<unit-constr> ::= “gal:refersTo”“[”<unit-type-def> “]”“;”<bind-list> .

We let each non-terminal also denote the set of expressions associated with it by the
syntax, so <gal-expr> is the set of all GAL expressions.

We extend the syntax with some syntactic sugar: inside a <unit-constr> the fragment
“[”<unit-type-def> “]” can be replaced by a <unit-type-name> if in the total expression
this is associated with this <unit-type-def>. In other words, if a <unit-type-name> occurs
in the <unit-constr> after the “gal:refersTo” then it is interpreted as the associated “[”
<unit-type-def> “]”.

Semantics of the Language

The semantics of a GAL expression is described in two parts. In the first part the semantics
of a GAL expression describes how a page request results in a unit. In the second part it is
defined how a total navigation step is performed, i.e., what are the updates to the database
and the resulting current unit in the browser if in a certain unit a certain navigation link
is followed.

The resulting unit of a page request

The semantics of the syntax is defined by giving functions for each non-terminal, for
example, for expressions ge in <gal-expr> we define a partial function that maps a user
identifier (the requesting user), a unit type, a binding and a database to a unit, denoted
as [[ge]] : V ×UT ×B ×DB ⇀ U . We overload this notation for all non-terminals, but not
in all cases with the same signature.

Before we proceed with the semantics of GAL expressions, we first define the semantics
of <val-expr> defined earlier. We recall the syntax rule:

7.4 GAL 151

<val-expr> ::= <value> | “$”<var-name> | “(”<val-expr> “.”<val-expr> “)” |
“[”“gal:query”<val-query> “]” |
“[”“gal:if”<list-query> “;”

(“gal:then”<val-expr> “;”)? (“gal:else”<val-expr> “;”)? “]” .

For ve ∈ <val-expr> we define [[ve]] : B ×DB ⇀ V as follows. If ve = v ∈ V then
[[ve]](b, db) = v. If ve = “$”x with x ∈ X then [[ve]](b, db) = b(x) if b(x) is defined and un-
defined otherwise. If ve = “(”ve1“.”ve2“)” then, if [[ve1]](b, db) is a string s1 and [[ve1]](b, db)
is a string s2, then [[ve]](b, db) is the string concatenation of s1 and s2, otherwise the result
is undefined. If ve = “[”“gal:query”vq“]” then, if q[b] ∈ V Q then [[ve]](b, db) = [[q[b]]](db),
and undefined otherwise. If ve = “[”“gal:if”q“;”“gal:then”ve1“;”“gal:else”ve2“;”“]” then
[[ve]](b, db) = [[ve1]](b, db) if [[q[b]]](db) 6= [], and [[ve2]](b, db) otherwise. If ve1 or ve2 are not
specified in ie then [[ve1]](b, db) or [[ve2]](b, db) are presumed to be undefined.

We now proceed with defining the semantics for GAL expressions. We first recall the
relevant syntax rules, and then give the corresponding semantics.

<gal-expr> ::= (<unit-decl> “.”)* .
<unit-decl> ::= <unit-type-name> <unit-type-def> .

For ge ∈ <gal-expr> we define [[ge]] : V × UT × B ×DB ⇀ U as follows. Assume
that ge = ud1“.”. . . udn“.”, with each udi = uti udfi. Let j be the smallest number such
that utj = ut then [[ge]](v, ut, b, db) = [[udfj]](b#{(user, v)}, db), and [[ge]](v, ut, b, db) is
undefined if such a j does not exist.

<unit-type-def> ::= “a”“gal:unit”“;”<input-var>* <content> <link-expr>? <on-event-expr>*
<content> ::= “gal:contains”“(” (“[” (<attr-def> | <subunit-expr> |

<list-unit-expr>) “]”)* “)” .
<input-var> ::= “gal:hasInputVariable”“[”“gal:varName”<var-name> “;”

“gal:varType”<domain-concept> “]”“;” .
<on-event-expr> ::= “gal:onEvent”“[”“gal:eventType” (“gal:onAccess” | “gal:onExit”) “;”

“gal:update”<update-query> “]”“;”.

For ud ∈ <unit-type-def> we define [[ud]] : B ×DB ⇀ U as follows. Let us assume
that ud = “a”“gal:unit”“;”iv1 . . . ivn cont le eve1 . . . evep, with each
ivi = “gal:hasInputVariable”“[”“gal:varName”xi“;”“gal:varType”dci“]”“;”,
cont = “gal:contains”“(”“[”ce1“]”. . .“[”cem“]”“)”,
each cej ∈ <attr-def> ∪<subunit-type-def> ∪<list-unit-expr>, le ∈ <link-expr>, and
each evek = “gal:onEvent”“[”“gal:eventType”etk“;”“gal:update”uqk“]”“;”. We say
that the binding b ∈ B is correct under database db ∈ DB if for all 1 ≤ i ≤ n it holds that
b(xi) is defined and b(xi) ∈ [[dci]]db. If b is not correct under db then [[ud]](b, db) is undefined,
and otherwise [[ud]](b, db) = un(C, h, nl) where C = [[ce1]](b

′, db) · . . . · [[cem]](b′, db), h =
{(et1, uq1), . . . , (etp, uqp)}, b′ = {(x, v) ∈ b | x ∈ {user, x1, . . . , xn}} and nr = [[le]](b′, db).
If le is missing in ud then the result is the same except that nr = ⊥.

Note that the specified input variables are used to restrict the bindings under which
the nested content expressions evaluation. Also note that these expressions are assumed
to result in a list, which will either be a singleton list containing a content element or an
empty list if there no well-defined resulting content element.

<attr-def> ::= “gal:hasAttribute”“[”<name-spec>? <label-spec>? “gal:value”<val-expr> “]”.
<name-spec> ::= “gal:name”<elem-name> “;” .
<label-spec> ::= “gal:label”<val-expr> “;” .

152 Exchanging User Models

For ad ∈ <attr-def> we define [[ad]] : B ×DB → L(E) as follows. If
ad = “gal:hasAttribute”“[”“gal:name”an“;”“gal:value”“[”ve“]”“]”, then [[ad]](b, db) =
[at(an, [[ve]](b, db),]) if [[ve]](b, db) is defined and [] otherwise. If an is not present then we
assume that an = ⊥.

<subunit-expr> ::= “gal:hasSubUnit”“[”<name-spec>? <label-spec>? <unit-constr> “]”“;” .

For su ∈ <subunit-expr> we define [[su|]] : B ×DB → L(E) as follows. If
su = “gal:hasSubUnit”“[”ls ns uc“]”“;” with ls = “gal:label”ul“;”, ns = “gal:name”
un“;” and ud ∈ <unit-descr> then [[su]](b, db) = [uc(ul, un, u1)] if [[uc]](b, db) = [u1, . . . , un]
and [] otherwise. If ls or ns is not present in su then the result is the same except that
ul = ⊥ or un = ⊥.

<list-unit-expr> ::= “gal:hasListUnit”“[”<label-spec>? <unit-constr> “]”“;” .

For lue ∈ <list-unit-expr> we define [[lue]] : B × DB → L(E) as follows. If sue =
“gal:hasListUnit”“[”ls uc“]”“;”with ls = “gal:label”ul“;”and uc ∈ <unit-constr> then
[[lue]](b, db) = [ul(ul,L[[uc]](b, db))]. If ls is not present then we assume that ul = ⊥.

<link-expr> ::=“gal:hasLink”“[”<link-constr> <target-spec>? “]”“;” .
<link-constr> ::=“gal:refersTo”<unit-type-name> “;”<bind-list> .
<target-spec> := “gal:targetUnit” (<unit-name> | “gal: top”| “gal: self”| “gal: parent”) “;” .

For le ∈ <link-expr> we define [[le]] : B ×DB → NL as follows. Assume that le =
“gal:hasLink”“[”lc ts“]”“;” with lc = “gal:refersTo”ut“;”bl and bl = q vb1 . . . vbn with
q ∈ <query> and each vbi = “gal:assignVariable”“[”“gal:varName”xi“;”“gal:value”vei-
“]”“;” with xi ∈ <var-name> and vei ∈ <val-expr>. Also assume that ts =
“gal:targetUnit”tu“;” then [[le]](b, db) = ln(ut, b, q, be, tu) with be =
{(x1, ve1), . . . , (xn, ven)}. If ts is missing in le then the result is the same except that
tu = “gal: top”.

Note that in a link expression the interpretation of the binding list bl is different form
that in subunit, list-unit and set-unit expressions. Rather than computing one or more
bindings it is more or less stored as is such that it can be computed when the link is
followed.

<bind-list> ::= <query-bind>? <var-bind>* .

For bl ∈ <bind-list> we define [[bl]] : B × DB → L(B) as follows. Let bl =
be1 . . . ben with bei ∈ <query-bind> ∪ <var-bind>. Then [[bl]](b, db) = [b1# . . .#bm |
b1 ∈ [[be1]], . . . , bn ∈ [[ben]]].

<query-bind> ::= “gal:hasQuery”“[”<list-query> “]”“;”

For qb ∈ <query-bind> we define [[qb]] : B ×DB → L(B) as follows. If
qb = “gal:hasQuery”“[”q“]”“;” then [[qb]](b, db) = [[q[b]]](db) if q[b] ∈ LQ and [] otherwise.

<var-bind> ::= “gal:assignVariable”“[”“gal:varName”<var-name> “;”
“gal:value”<val-expr> “]”“;” .

For vb ∈ <var-bind> we define [[be]] : B ×DB → L(B) as follows. If
vb = “gal:assignVariable”“[”“gal:varName”x“;”“gal:value”ve“]”“;”then [[vb]](b, db) =
[(x, [[ve]](b, db))] if [[ve]](b, db) is defined and [] otherwise.

<unit-constr> ::= “gal:refersTo”“[”<unit-type-def> “]”“;”<bind-list> .

For uc ∈ <unit-constr> we define [[uc]] : B ×DB → L(U). Assume that
uc = “gal:refersTo”“[”ud“]”“;”be and that [[be]](b, db) = [b1, . . . , bn] then [[uc]](b, db) = [u |
bi ∈ [[be]](b, db), u = [[ud]](b′i, db)] with b′i = b#bi#{(user, b(user))}.

7.5 Summary 153

The side effects and result of following a navigation link

Here we (informally) describe the navigation process that is defined by a certain GAL
program. At the core of the navigation semantics is the previously described computation
of the unit that is the result of the request of a user. The resulting unit then is presented
to the user and becomes the current unit, i.e., the unit that is currently presented to the
user. In addition all the update queries associated with the gal:onAccess events in it at
any nesting depth are applied to the RDF store in some arbitrary order.

If subsequently the user navigates to an external link then all the update queries
associated in it with the gal:onExit event at any nesting depth are applied to the RDF
store in some arbitrary order. If the user follows an internal link ln(ut, b, q, be, t) in the
current unit, then the following happens. First the target unit in the current unit is
determined as follows. If the target is a unit name then this is the unit in the first unit
container with that name. If it is “gal: self” then it is the containing unit, i.e., the unit in
which the link is directly nested. If it is “gal: parent” then it is the parent unit, i.e., the
unit which has as a content element a unit container, unit set or unit list that refers to the
containing unit. If it is “gal: top” then it is the root unit of the current unit. If in any of
the preceding cases the result is not well defined then the target unit is the root unit of
the current unit. When the target unit is determined then all “gal:onExit” events that
are directly or indirectly nested in it are applied to the RDF store in some arbitrary order.

Then, the binding that describes the parameters is computed as follows: the binding b
is combined with the first binding in the result of q[b] and this in turn is combined with
the binding that is obtained when evaluating be for binding b and the current database
instance. The resulting binding is sent together with the specified unit type as a request.
Then, if this request results in a unit, the “gal:onAccess” update queries in this unit are
executed as described before. In the final step the new current unit is the old current unit
but with the target unit replaced with the resulting unit of the request.

7.5 Summary

In this chapter we investigated applying data coupling techniques to the specific domain
of user modeling. We introduced what factors need to specifically dealt with in exchange
of user model data, namely identification, context and interoperability.

We explored two projects in which these issues were dealt with, namely MobiLife
and GRAPPLE. MobiLife was a project that centered around mobile and context aware
applications, e.g. applications that use time and location to learn something about the
user and use this information to improve the user experience. We built a server-side user
profile and contextualization framework that can be used by mobile applications to store
and exchange user model data and which allows richer personalization in applications.

GRAPPLE was focused on providing a new state of the art adaptation framework,
that would also be integrated with learning management systems. Its goal is to improve
interoperability between all those systems and improve on the existing infrastructures by
the use of an adaptive hypermedia framework. It was envisioned that this would provide
an technology-enhanced learning environment which fits in the EU’s vision of lifelong
learning. We described the several components in the GRAPPLE framework, including the
GALE adaptive engine, the GEB communication framework and the GUMF user model
framework. We demonstrated that this integration of components and the exchange of
user model information provides a tight integration between this system, which improves
the student experience.

154 Exchanging User Models

Finally, we looked at an engine-independent adaptation language, called GAL. GAL
is based on the Hera-S models. We showed how it provides a generic way of defining
an adaptive application which is able to express the most used types of adaptation.
We also provided a first formalization of the GAL language, which could be a start for
standardization if this would seem useful by the community.

Chapter 8

Conclusions and Future Work

This last chapter is about our conclusions and future work. We reexamine the
research questions that were formulated in chapter 1 and formulate the answers
that follow from the work throughout the chapters. We also give a short outlook
into the future and propose some suggestions for future research.

8.1 Conclusions

In this thesis we presented a completely remodeled and reimplemented version of Hera
[Vdovjak et al., 2003], which is a Model-Driven Web Engineering method with a strong
focus on the Semantic Web. The approach has now an even stronger focus on Semantic
Web, allowing any RDF data source as input, to make use of the many of these sources that
are nowadays available on the Web. The architecture of this new version of Hera, called
Hera-S, offers capabilities and possibilities for a greatly enhanced flexibility in designing
Web-based applications. We have investigated and discussed some of these capabilities like
mixing content and user model or mixing possible content types, as well as capabilities for
for the use of scripting and web services. We also showed some of the new possibilities
for using data integration techniques at the Hera-S back end, we investigated the use of
aspect-oriented programming techniques to inject functionality in running applications,
and the use of specialized components for presentation generation together with Hera-S.

The largest focal point was data integration. As this is an issue larger than within
Hera-S alone, we have studied this issue in isolation. This resulted in a tool that can
be used to integrate heterogenous datasourses via a mapping language and engine that
can actually do the integration of a datasource with another one, together with a set of
techniques that allows to discover possible relationships between elements in different RDF
(or other) datasets. We showed the universal applicability of this approach in several case
studies in diverse domains. It showed us that solving the data integration issue opens up
a wealth of interesting new rich Web applications in these domains.

We now look at the questions from chapter 1. For every question we describe what has
been done in this thesis to solve it.

Question 1: How do MDWE architectures have to be adapted to enable flexi-
ble and dynamic Semantic Web data integration?

We presented a totally rebuilt version of the Hera-S MDWE method and implementation
in chapter 3. The goal was, as stated in the question, to enable flexible and dynamic

156 Conclusions and Future Work

Semantic Web data integration. In general we were interested in simplifying existing
models used in Hera-S, i.e. the Domain Model (DM), User Model (UM) and Application
Model (AM). By leaving full freedom in the DM and the UM, i.e. by allowing to reuse
any RDF related input, and even allow to mix these models provides a larger freedom and
reusability of existing data sources and enables support of the many Semantic Web tools
available on the Web.

Furthermore, the DM and UM are now completely decoupled from the Hera-S im-
plementation. This means that Hera-S does not keep these models under its own closed
control, but allows other processes access to the data - also at runtime. This allows data
integraton processes to get the final content in the background that is used inside the
Web application. Thus, this open approach proves to be crucial to enable flexibility and
dynamic behavior.

These decisions did have their effect on the rest of Hera-S’ design. For example, the
AM had to be completely revised as it could no longer depend on a certain structure
of the DM. Instead the AM uses SPARQL query expressions that help us to refer to
the data in both UM and DM. This comes at some cost in terms of simplicity, as every
reference to data has to be a query, even though the queries themselves are often simple.
Some of this added complexity can be alleviated by the model builders which are able to
generate the queries for simple RDF elements by just clicking on them. A large benefit
compared to past AM structures is the added expressive power by using queries, where
now every element of both the content and the user model can be used everywhere in the
Web application and for personalization.

This of course also had consequences for the implementation of Hera-S. This imple-
mentation, called Hydragen, is basically stateless along the architectural guidelines of the
REST software architecture [Fielding, 2000]. This means that Hydragen does not maintain
state information for its clients, but that the clients need to communicate all information
needed to generate the next AM (instance) page. Whenever such a call from the client
comes in, Hydragen will query the AM at the Sesame database to retrieve the relevant
pieces of the AM to generate the AMP. This means that external changes to the AM will
be immediately available to the clients as Hydragen will query the current state of the AM
and will not keep this in memory (except for possible caching mechanisms for performance
reasons).

Furthermore, as part of a separation of concerns effort we decoupled different func-
tionalities in Hera-S. Hera-S is now focussed on application modeling, which has always
been its core. This is where our desing efforts were mainly aimed at. Actual presentation
generation was implemented as a separate functional block, which can easily be replaced
by another functional component as we showed when we simply replaced our own simple
presentation module by the specialized AMACONT presentation generation framework.
Similarly, access to the datasources and models was implemented using the Sesame RDF
database. However, it is rather simple to replace Sesame by another RDF store if this
would be for some reason beneficial. As long as this other store has SPARQL support,
it can simply replace Sesame by implementing a single abstract connection class that
describes how to connect with the replacing datasource. In this way also specialized RDF
stores could be used that offer some specialized functionality we might want to use for
specific applications.

The resulting focus of Hera-S on the application model actually inspired us to use it
as a basis for an engine-independent adaptation language called GAL, as we described in
Section 7.4.3.

8.1 Conclusions 157

Question 2: How can MDWE benefit from data coupling techniques?

Data coupling, i.e. coupling data sets by adding links between concepts instead of data
integration efforts in which data is actually transformed to some target structure, allows
MDWE methods like Hera-S to still use it like one big integrated dataset. This is because
RDF and its query language SPARQL allow to traverse over these links, where the actual
origin of this link is not necessarily important. Using data coupling is very interesting
because it allows the use of an external dataset that the MDWE engine has no control over.
This is important for several reasons. Not everyone will completely open up their dataset,
e.g. for legal reasons or to just ensure the correctness of the dataset they govern. Another
reason may be a highly volatile dataset with realtime data for which continues exports
may be unwanted. By using data coupling Hera-S is still able to use these potentially
interesting datasets directly in a Web application.

Consequently, data coupling allows combining data sources and mashing up interesting
Web applications. For example, the scenario that we gave in Section 4.2 where might want
to combine datasets about movies, with a dataset about cinemas and a dataset about
restaurants, for making a Web application that allows users to plan a complete night out
to the movies.

Our decoupling of models and engine provides more benefits as we have shown in our
work on aspect-orientation in Section 4.4. This technique allows to couple the existing
AM with new funcitonality using data coupling techniques, i.e. by refering to which
navigational unit, or attribute, some injected piece of model belongs. In this way, the
added functionality does not actually has to be injected in the actual AM datasource, but
can be in a separate context. When Hydragen queries the AM via configuration it will
then also query the relevant parts of new code. This is good for maintainability, because if
some aspect-oriented functional block is no longer needed it can be easily deleted from this
context instead of a need to modify the original AM context. In a similar way it could
also be possible to couple applications, and mix local applications with remote ones.

Question 3: How to couple semantic heterogenous RDF data?

By creating links between concepts in those data sources. However, this is certainly
not simple in many cases. If you have large datasets and changing datasets it’s laborious
and sometimes just impossible to do this by hand. Also, sometimes just data coupling
is not enough and data integration is a better solution. For example, when we have ten
different heterogenous sources which we want to navigate in a Web application, this could
mean the designer has to create a complex query that refers to the specifics of every data
source to get the whole dataset.

In order to help designers solve these we problems we introduced the Relco toolset in
chapter 5. This toolset offers two main functionalities. A transformation language which
allows to specify how content (or parts of it) can actually be transformed into a target
format. Two such languages were created, one based on the SWRL rule language, and one
based on an extended version of the SPARQL query language. The transformation always
consists of two parts, one selection mechanism that selects the data to be transformed
that includes variable bindings. The second part is the transformation that transforms
the variables and applies a structure transformation and value manipulation in order to
translate the data.

The second part of the toolset contains techniques for finding candidate concepts
in an ontology for a textual representation of some input concept. These techniques

158 Conclusions and Future Work

included syntax-based techniques (i.e. string comparisons), semantic-based techniques (i.e.
by using external knowledge sources like WordNet and exploit context information), and
collaborative techniques (i.e. based on user feedback).

Relco provides designers with tools that help in constructing mappings. Accuracy of
Relco depends on many variables, like quality of source and target ontologies, the external
knowledge sources, the natural language that is used, and other domain specific factors.
In some domains Relco can provide only rough guesses while in others it can be right in
most of the cases and can completely automate data integration.

Relco can be used as a separate toolset, but also as a library within other projects that
need data integration functionality.

Question 4: How can we apply data integration in Web applications in various
domains?

In chapters 6 and 7 we consider five diverse applications is various domains that all
have to deal with data integration in one form or another.

• χ Explorer is a Web application to disclose a very large collection of historic data
from Regionaal Historisch Centrum Eindhoven (RHCe). RHCe has a large number
of different datasets that were acquired in numerous ways, and of which the digital
data was stored in several databases and other data sources. In order to offer these
fragmented datasource as one homogeneous dataset to users, these datasets needed
to be somehow integrated. This was done by first writing RDF wrappers for the
various datasources that were able to transform the original data into RDF (and vice
versa for some instances). Next these sets were mapped onto a single extendible data
structure. As part of the integration effort time and location data were standardized,
i.e. mapped to one specific format, so that later on we could provide homogenous
browsing over these facets. Also, the available metadata was used to link the objects
to concepts in a standard RHCe ontology (i.e. using Relco), which later on provided
subject-based graph navigation, using the relations in the standard ontology as edges
and the concepts as nodes. For objects that did not contain (enough) metadata
user-based tagging was used, were Relco was used again to provide suggestions for
linking the user tags to concepts in the ontology.

• The SenSee TV-Recommender is a Web application (and underlying framework) for
providing television recommendations. In order to provide these recommendations
datasets are combined, e.g. program guide data with data from the IMDb for movies
and from Wikipedia information about presenters, shows, etc. Because of the size and
volatility of the datasets this integration had to be done fully automatic, which could
be realised with Relco. Like in χ Explorer, dates and locations were standardized.

• ViTa was a project that evaluated several ways of using user tagging and auto-
matically generated metadata for finding educational videos, via a user study with
intermediate level students. We did an integration effort by integrating user tags
with concepts of an existing ontology using Relco to provide concept suggestions.
Another approach, also with Relco, was to relate user tags with previous user tags
and present those as alternatives in order to convergate the metadata tagset for
particular videos.

• MobiLife was a project for advancing mobile applications with personalization and
contextualization. Part of this effort was to integrate user models of existing and

8.1 Conclusions 159

new mobile phone applications. In order to achieve that, designers could use Relco-
based techniques to map and exchange user model information between applications.
Combining this richer user models should help in providing better personalization.

• GRAPPLE was a project which focussed on integrating existing leading Learning
Management Systems with a beyond the state of the art Adaptive Learning Environ-
ment in order to provide students with a technology-enhanced learning environment.
This integration effort lead to the GRAPPLE framework, which among others con-
sisted of a User Modeling Framwork called GUMF. GUMF was a crucial factor for
the integration efforts, as true integration includes exchanging mutual beneficial
information. GUMF was realized with a transformation language based on the Relco
transformation language and can benefit from the Relco for finding the relations
between datasets. In this way, for example, results from LMS quizzes could be
used to estimate the knowledge of the user in GALE, while the LMSs could get
information about the progress of the user with their adaptive courses.

Question 5: How can domain specific Web applications benefit from data in-
tegration?

The applications, as mentioned under the answer of Question 4, all have some benefit
from data integration. We consider some benefits that these application have that is made
possible by data integration:

• χ Explorer provided users a homogenous browsing experience over an integrated data
set originating from very heterogenous sources. Browsing was based on metadata
items that were common among most historical objects in the dataset, namely time,
location and contentwise descriptions using an ontology. Users can either search the
dataset, but also browse the different facets. For time, objects are put on a timeline.
In this way users can easily browse objects that are related to a very specific time
frame, like the day Eindhoven was bombed during WW2. For location, objects
were grouped and put on a map. In this way users could access every object that
was related to a specific location. For metadata descriptions we provided a simple
graph view, in which for every object that relates to a specific concept in the RHCe
ontology we can see other objects which relate to the same concept or objects that
relate to related concepts.

• The SenSee TV-Recommender provides several browsing paradigms. Besides brows-
ing using the typical tv-guide view, one can also view ‘related’ programs, which are
defined via semantic relations, e.g. movies by the same director or actor, programs
with the same presenter, programs of the same genre, etc. Recommendations work
similarly. People can recommend a program, and using predefined weights of relation
types this propagates through the underlying graph and implicitly also rates seman-
tically related programs. In this way people can get recommendations for programs
based on their ratings.

• ViTa evaluated several searching strategies for educational videos that were provided
with metadata, also using several strategies. In the evaluation, students had to find
specific information in educational videos searching over the acquired metadata sets.
The results showed that using collaborative techniques performed best. Semantic
search also performed well and provided results that were similar to the professionally

160 Conclusions and Future Work

tagged datasources. Both performed significantly better than searching based on
automatic extraction of metadata based on documents describing the resource, i.e.
the way most multimedia Web search engine work nowadays.

• MobiLife used the user modeling framework for exchanging contextualized user data
between applications to facilitate a number of example mobile phone applications.
This includes an semi-automatic blogging application that collects information about
user activity and helps the users to create rich blogs about their activities. A
personal portal application that uses contextual data and other user information
to collect local and relevant content feeds, like news, blogs, etc. It also includes
a workout application that collects personal health information from sensors and
other context to provide personalized exercise programs. Generally, many other
applications exploiting the possibilities of this framework can be thought of and
created.

• GRAPPLE used data integration for exchanging user information. In this way details
of the course, including aggregated class information, could be visualized inside the
various LMS. It also allows LMS to collaborate, which is for example important
if students study courses on several universities that typically use different LMSs.
Another application of GUMF is exchanging user data between different GALE
applications. For example, if someone starts the advanced business English course,
the information from the beginning course can be used to estimate the current level
of knowledge of the student.

8.2 Contributions

Here we summarize the contributions made by this thesis.
The first contribution is a redesign and reimplementation of the Hera method, which

is more powerful and flexible in several ways. Hera-S is capable to use any RDF data
source as input. Moreover by using a query mechanism it is more flexible and powerful in
combining and reusing data, including user and context data, in every page. Units can be
reused and included as subunits inside other units. Hera-S also allows the use of scripts
and web services in its models. Furthermore, Hera-S provides a basic presentation model
which allows to model presentation concerns to presentation units. Hera-S is implemented
in a stateless engine called Hydragen. Hydragen allows updates to the different models
(domain, user, application and presentation) at runtime which allows several extension
points to be implemented. The results of this contribution have been published in the
following papers: [Houben et al., 2008; Schwinger et al., 2008]. The Hera-S application
model was finally used as the basis for the GAL-language as published in [van der Sluijs
et al., 2009].

The second contribution is in a set of tools and extensions that were created on top of
Hera-S that explore its power and flexibility. This includes data integration capabilities
using Sesame. This has been published in [van der Sluijs et al., 2006]. Another tool is
Hera-Studio which offers model builders specific for the Hera-S method. These model
builders allow to create Hera-S models graphically, directly deploy the models in Hydragen
and provide basic model checking capabilities. Another extension point on top of Hera-S
is aspect-oriented adaptation. Aspect-orientation in Hera-S allows to include application
wide functionality to be included on runtime. This resulted in a query-based method
which does not require code changes in the original application models. This has been

8.3 Future Work 161

published in the following papers: [Casteleyn et al., 2009, 2006a,b]. The presentation
layer of Hera-S was extended with a specialized presentation adaptation component called
AMACONT. This includes integration of AMACONT in the Hydragen engine and the
conceptual connection between the two frameworks, as well as the extension of AMACONT
with semantic-based adaptation. This was published in the following papers: [van der
Sluijs et al., 2010; Niederhausen et al., 2009; Houben et al., 2005].

The third contribution is a data integration toolset called Relco. Relco offers a
data transformation language called STL which extends SPARQL with an additional
TRANSFORM construct. Relco also combines a set of techniques that can be used to
relate concepts from one ontology to concepts a target ontology, e.g./ techniques like string
matching, utilization of helper ontology, context disambiguation, etc. The results for this
contribution have been published in the following papers: [van der Sluijs and Houben,
2009, 2006a,b, 2005].

The fourth contribution is a set of applications that are created using the Relco toolset
and its techniques that exploit the advantages of data integration. In χ Explorer, an cultural
heritage application, several heterogenous databases have been integrated. This allowed us
to build a faceted browsing application which allows users to browse objects using a map,
a timeline and a graph. It also provides users ways to actively contribute new metadata.
Results on χ Explorer have been published in the following papers: [van der Sluijs and
Houben, 2010, 2008c,a]. In SenSee, a TV guide application, several TV-guide sources have
been integrated with information from IMDb and Wikipedia. The underlying graph can
be used to semantically extend user queries and to compute semantical recommendations.
Results on SenSee have been published in the following papers: [Bellekens et al., 2008,
2007]. ViTa is a student video portal that allows users to tag educational videos and uses
this metadata for improving searching specific videos. Techniques from Relco were used to
improve user tagging quality and use semantic relation in an helper ontology to improve
finding relevant videos for user queries. Evaluations showed that applying semantic tagging
and searching was significantly better for students than using metadata that was created
by professionals. Results of our contribution to ViTa were published in [van der Sluijs and
Houben, 2008b]. MobiLife was a project on mobile phone infrastructure. Our main focus
was a user modeling framework called Personal Profiling Function, which allows mobile
applications to store context-based user model data and which can use Relco techniques
for exchange of user model data between applications. Within the project it was shown
that this approach works as applications that use this framework were made. Results
of our contribution to MobiLife were published in [Sutterer et al., 2007]. GRAPPLE
was a project for providing LMSs adaptive learning facilities. This thesis focuses on the
general architecture and communication infrastructure for the project which facilitated the
integration of LMSs and GALE, and the general infrastructure of the GUMF framework
that can use techniques similar to Relco’s STL for exchanging user model data between
applications. Results of our contribution to GRAPPLE were published in [De Bra et al.,
2012; van der Sluijs and Höver, 2009a; De Bra et al., 2010a; van der Sluijs and Höver,
2009b; Leonardi et al., 2009; Abel et al., 2009].

8.3 Future Work

This thesis explored several topics which can be the basis for further research. Following
is a number of possible interesting research topics that might deserver attention.

162 Conclusions and Future Work

8.3.1 Hera

In our research we assumed that the datastructure of content sources is more or less stable.
Even though we allow for flexibility and change in the application model, a dynamic
content structure can still have a negative impact on an application. In many cases this
dependency on stability is fine since many data sources show stability with respect to their
schema. However, some scenarios might show frequent change. Dealing with these changes
and automatically (or with minimal effort) updating the application model would be an
interesting line of research. This means that first changes that impact the application have
to be detected using some advanced model checking capabilities. After detection steps
have to be taken to either update the application model or at least inform the designer for
possible issues with their application.

Along the same lines, we could envision automatic model generation. Many scenarios
exist in which designers will follow very similar ways in building a Web application for
a given dataset. It might be possible to define generalized strategies and patterns that
can be applied to certain datasets. Automatic generation of application models, or part of
application models, might greatly improve the efficiency in design. Similarly, recording and
analyzing designer’s behavior might present ways to deduce new strategies and patterns
that could be reused.

Another line of research may be automatic adaptation based on user behavior. Especially
for educational courses with a focus on knowledge gain it might be interesting if the system
can introduce small changes to courses, e.g. with respect to adaptativity, order, presentation,
etc. By monitoring these changes and measuring learning efficiency in terms of results
of quizzes, etc, allows assessing the quality of these changes. Furthermore, they might
present the designer with clues about the course itself, e.g. about which parts of a course
are too difficult or too simple in certain contexts.

In Hera-S we considered data source heterogeneity in the light of data integration
purposes. Another interesting topic would be data distribution for performance reasons.
Some introductory work was done on this work [Bellekens et al., 2008; Verheijen, 2008],
but this is an interesting research topic in its own rights. This includes related topics like
caching, load distribution, sharding, consistency, etcetera. This is partly RDF database
research, but some interesting strategies might exist that exploits knowledge of the
underlying MDWE framework. Next to back-end distribution, front-end distribution might
prove interesting. For example, aspect-orientation provides interesting way to implement
functional blocks. Combining different functional blocks into one Web application with
one homogenous presentation might be a challenging goal. Similarly, mixing (parts of)
existing Web applications into new functionality could be a possibility.

Note that much of the future work we suggested for Hera is not Hera-specific, i.e.
they might be researched either in general Semantic Web applications or another MDWE
context.

8.3.2 Relco

Relco allows the exploitation of external knowledge sources. This provides good results
and demonstrates the possibilities of reuse on the Semantic Web. This is an interesting
path to do further research on. Human semantic processing power is based on a (relative)
enormous set of background knowledge. By exploiting large sets of connected datasets (e.g.
the Linked Open Data dataset) and efficiently access to these datasets, e.g. by applying
reasoning, knowledge chains, etc, the results of semantic interpretation and disambiguation
could improve. The potential of dealing with many large datasets versus the effective

8.3 Future Work 163

and efficient use of this data is an interesting consideration. It also introduces many
diverse issues like the need for context dependent assessments of quality, correctness and
applicability of (parts of) datasets.

Another way to improve on Relco is by learning from the designers. By using more
quantitative considerations (e.g. through machine learning), we could try to assess the
process of internal and implicit knowledge modeling by the designer. It would be interesting
to use designer’s behavior for deducing if some (e.g. unknown) underlying concept or
relationships must assist. This type of research could be interesting in two ways. First, it
provides a platform like Relco with new information that could be exploited to get better
matches between concepts. It could however also be used for deducing new knowledge
sources and derive new useful ontologies that could makes implicit knowledge from designers
more explicit and useful.

8.3.3 Cultural Heritage

In χ Explorer we have explored the data integration issue within one institution which
wants to share its data with the public. A logical next step would be to connect different
institutions together. This would mean dealing with diversification of solutions and
limitations that were chosen on a grander scale.

Besides an organizational challenge, a nation wide integration of datasets would open up
new possibilities for new applications of these datasets. For example, a historic framework
could be assembled with multiple innovative analysis and visualizing tools for historic
research. Combining datasources could for example provide insights in the dynamics of
wealthy families over the century, e.g. if they spread over the country over the century,
if they could hold on to their wealth, and the relationships with other wealthy families.
Analysis and visualization techniques could greatly improve this line of research. But most
importantly the necessary sources need to be integrated and connected. Solutions should
be found to effectively and efficiently integrate many diverse sources.

Further research could be the integration of feature recognition techniques for identifying
semantic relationships between objects. This could be a possible enrichment for dealing
with the ‘cold start’ problem. Especially cultural heritage institutions with an already
enormous growing set of uncataloged objects need ways to gather new metadata. Even
though feature recognition could help in this respect, current feature recognition techniques
deal with low accuracy rates. Dealing with uncertainty of these processes in combination
with users might be challenging, e.g. you might not want to confront the users with too
many faulty data which might give the users the impression that the system just doesn’t
work. In other words, research should be done on how a system which lacks the metadata
to perform optimally can use ‘crowd-sourcing’ without scaring away the user.

8.3.4 SenSee

SenSee is a recommender system that uses a semantic network for computing recom-
mendations. Most popular recommenders online use collaborative filtering. It would be
interesting to explore a recommendation system that combines these techniques. For
example, detecting subnets of semantic networks of which the nodes are often explored
by similar users can be used to compute which semantic relationships are considered
important in a social context. This is only an example of how combining background
knowledge together with social engineering could improve the knowledge about users which
in its turn might allow better recommendations.

164 Conclusions and Future Work

There are several other research directions for SenSee. One is including Video On-
Demand sources, Web videos and Web streams in the TV-guide recommendations. As
more and more new TV-sets are connected to the internet this is a perfectly viable option.
This would greatly increase the possible sources too choose from and it would be a great
source to compute a complete ‘gapless’ TV-schedule for the night. This could be achieved
by for instance a collaborating web of agent-based systems that continuously monitors
the Web for content. Building in synchronization between agents of friends and colleagues
could for example ensure that people have something to discuss at work or in some social
setting. It is an interesting challenge to build agents with these kinds of capabilities -
especially effective and non-pervasive communication with users could be challenging.

8.3.5 GRAPPLE

A bottleneck for the acceptance of adaptive systems is the quality of the authoring tools.
The authoring tools must provide an intuitive interface which guide authors throughout
the entire authoring process. It should provide an environment that lets authors think
naturally in the adaptive exploratory paradigm instead of the usual linear course design.
A similar issue holds for user modeling and user model exchange. These are complicated
issues for which innovative authoring interfaces are needed to guide the authors through
the process. If done right this could lead to a breakthrough for ALEs.

Another issue that should get attention is error detection. GALE is a powerful adaptive
engine, but this power also makes it error prone in which authors might not realize the
consequence of some seemingly logical choices. Static analysis and simulation analysis
could be tools to find all kinds of logical errors like dead ends, unreachable material,
recursion loops, etc.

User model information over several courses could also be the topic of further studies.
This information could provide insight in student’s interests and competencies. This
could be the basis of course advice (e.g. which course are interesting for the user) and
maybe even career advice. This could be achieved with some kind of global user model
that extracts key characteristics from courses. If a part of this process could be done
(semi-)automatically remains to be seen, but it would be at least be an interesting topic of
study.

Bibliography

Abel, F., Heckmann, D., Herder, E., Hidders, J., Houben, G.-J., Krause, D., Leonardi,
E., and van der Sluijs, K. (2009). A framework for flexible user profile mashups. In
Proceedings of the International Workshop on Adaptation and Personalization for Web
2.0 (APWEB 2.0 2009).

Aleksovski, Z., ten Kate, W., and van Harmelen, F. (2006). Ontology matching using
comprehensive ontology as background knowledge. In et al., P. S., editor, Proceedings of
the International Workshop on Ontology Matching at ISWC 2006, pages 13–24. CEUR.

Algergawy, A., Massmann, S., and Rahm, E. (2011). A clustering-based approach for
large-scale ontology matching. In Advances in Databases and Information Systems,
volume 6909 of LNCS, pages 415–428. Springer Berlin / Heidelberg.

Ames, M. and Naaman, N. (2007). Why we tag: motivations for annotation in mobile and
online media. In CHI ’07: Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 971–980, New York, NY, USA. ACM.

Ardissono, L., Kobsa, A., and Maybury, M. T., editors (2004). Personalized Digital
Television, volume 6 of Human-Computer Interaction Series. Springer.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P. F., editors
(2003). The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press.

Baumeister, H., Knapp, A., Koch, N., and Zhang, G. (2005). Modelling adaptivity
with aspects. In Proceedings of the 5th International Conference on Web Engineering
(ICWE’05), pages 406–416, Sydney, Australia. Springer.

Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D. L., Patel-
Schneider, P. F., and Stein, L. A. (2004). Owl web ontology language reference. W3C
Recommendation 10 February 2004. http://www.w3.org/TR/owl-ref/.

Beckett, D. and Berners-Lee, T. (2011). Turtle - terse rdf triple language. W3C Team
Submission. http://www.w3.org/TeamSubmission/turtle/.

Beckett, D. and Broekstra, J. (2008). Sparql query results xml format. W3C Recommen-
dation 15 January 2008. http://www.w3.org/TR/rdf-sparql-XMLres/.

Bellas, F. (2004). Standards for second-generation portals. IEEE Internet Computing,
8(2):54–60.

Bellekens, P. (2010). An Approach towards Context-sensitive and User-adapted Access
to Heterogeneous Data Sources, Illustrated in the Television Domain. PhD thesis,
Technische Universiteit Eindhoven, Eindhoven, the Netherlands.

http://www.w3.org/TR/owl-ref/
http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TR/rdf-sparql-XMLres/

166 BIBLIOGRAPHY

Bellekens, P., van der Sluijs, K., Aroyo, L., and Houben, G.-J. (2007). Engineering
semantic-based interactive multi-device web applications. In Proceedings of the 7th
International Conference on Web Engineering (ICWE’07), volume 4607 of Lecture Notes
in Computer Science, pages 328–343, Como, Italy. Springer.

Bellekens, P., van der Sluijs, K., van Woensel, W., Casteleyn, S., and Houben, G.-J. (2008).
Achieving efficient access to large integrated sets of semantic data in web applications.
In Proceedings of the 2008 Eighth International Conference on Web Engineering, ICWE
’08, pages 52–64, Washington, DC, USA. IEEE Computer Society.

Berners-Lee, T. (2003). WWW past & future. http://www.w3.org/2003/Talks/
0922-rsoc-tbl/.

Berners-Lee, T. (2006). Design issues: Linked data. http://www.w3.org/DesignIssues/
LinkedData.html.

Berners-Lee, T., Cailliau, R., Luotonen, A., Nielsen, H. F., and Secret, A. (1994). The
world-wide web. Commun. ACM, 37(8):76–82.

Berners-Lee, T. and Fischetti, M. (1999). Weaving the Web; The Original Design and
Ultimate Destiny of the World Wide Web by Its Inventor (2 Cassettes). Harper Audio.

Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The semantic web. Scientific American,
284(5):34–43.

Biron, P. V., Permanente, K., and Malhotra, A. (2004). Xml schema part 2: Datatypes.
W3C Recommendation 28 October 2004. http://www.w3.org/TR/xmlschema-2/.

Blanco Fernández, Y., Pazos Arias, J. J., Gil Solla, A., Ramos Cabrer, M., and López
Nores, M. (2006). Bringing together content-based methods, collaborative filtering and
semantic inference to improve personalized tv. 4th European Conference on Interactive
Television (EuroITV 2006).

Boda, P., Brgulja, N., Gessler, S., Giuliani, G., Koolwaaij, J., Martin, M., Melpignano,
D., Millerat, J., Nani, R., Nurmi, P., Ollikainen, P. J., Polasek, P., Radziszewski, M.,
Salacinski, M., Schultz, G., Sutterer, M., Trendafilov, D., and Ukropec, L. (2007). In
Klemettinen, M., editor, Enabling Technologies for Mobile Services: The MobiLife Book.
John Wiley & Sons.

Bos, B., Çelik, T., Hickson, I., and Lie, H. W. (2011). Cascading style sheets level
2 revision 1 (css 2.1) specification. W3C Recommendation 07 June 2011. http:
//www.w3.org/TR/CSS2/.

Bozzon, A., Comai, S., Fraternali, P., and Carughi, G. T. (2006). Conceptual modeling
and code generation for rich internet applications. In ICWE ’06: Proceedings of the
6th international conference on Web engineering, pages 353–360, New York, NY, USA.
ACM.

Brambilla, M., Butti, S., and Fraternali, P. (2010). Webratio bpm: A tool for designing
and deploying business processes on the web. In Benatallah, B., Casati, F., Kappel, G.,
and Rossi, G., editors, Web Engineering, volume 6189 of Lecture Notes in Computer
Science, pages 415–429. Springer Berlin / Heidelberg.

http://www.w3.org/2003/Talks/0922-rsoc-tbl/
http://www.w3.org/2003/Talks/0922-rsoc-tbl/
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/CSS2/
http://www.w3.org/TR/CSS2/

BIBLIOGRAPHY 167

Brambilla, M., Celino, I., Ceri, S., Cerizza, D., Valle, E. D., and Facca, F. M. (2006). A
software engineering approach to design and development of semantic web service appli-
cations. In Proceedings of the 5th International Semantic Web Conference (ISWC’06),
pages 172–186, Athens, GA, USA. Springer.

Brambilla, M., Comai, S., fraternali, P., and Matera, M. (2008). Designing web applications
with webml and webratio. In Rossi, G., Pastor, O., Schwabe, D., and Olsina, L., editors,
Web Engineering: Modelling and Implementing Web Applications, volume 12 of Human-
Computer Interaction Series, pages 221–261. Springer.

Brickley, D. and Guha, R. (2004). Rdf vocabulary description language 1.0: Rdf schema.
W3C Recommendation 10 February 2004. http://www.w3.org/TR/rdf-schema/.

Broekstra, J. (2005). Serql: A second-generation rdf query language. In Storage, Querying
and Inferencing for Semantic Web Languages, PhD Thesis, pages 67–87. PhD Thesis,
Vrije Universiteit Amsterdam.

Broekstra, J., Kampman, A., and van Harmelen, F. (2002). Sesame: A generic architecture
for storing and querying rdf and rdf schema. In Horrocks, I. and Hendler, J., editors,
Proceedings of the First Internation Semantic Web Conference, number 2342 in Lecture
Notes in Computer Science, pages 54–68. Springer Verlag.

Brugman, H., Malaisé, V., and Gazendam, L. (2006). A web based general thesaurus
browser to support indexing of television and radio programs. In Proceedings of the 5th
international conference on Language Resources and Evaluation (LREC 2006), pages
1488–1491.

Brusilovsky, P. (1996). Methods and techniques of adaptive hypermedia. User Modeling
and User-Adapted Interaction, 6:87–129.

Brusilovsky, P. (2001). Adaptive hypermedia. User Modeling and User-Adapted Interaction,
11(1 - 2):87–110.

Brusilovsky, P. (2007). Adaptive navigation support. In Brusilovsky, P., Kobsa, A.,
and Nejdl, W., editors, The Adaptive Web, pages 263–290. Springer-Verlag, Berlin,
Heidelberg.

Bulterman, D., Jansen, J., Cesar, P., Mullender, S., Hyche, E., DeMeglio, M., Quint,
J., Kawamura, H., Weck, D., Pañeda, X. G., Melendi, D., Cruz-Lara, S., Hanclik, M.,
Zucker, D. F., and Michel, T. (2008). Synchronized multimedia integration language
(smil 3.0). W3C Recommendation 01 December 2008. http://www.w3.org/TR/SMIL/.

Busch, M., Knapp, A., and Koch, N. (2011). Modeling secure navigation in web information
systems. In BIR, LNBIP, pages 239–253. Springer Verlag.

Casteleyn, S., Fiala, Z., Houben, G.-J., and van der Sluijs, K. (2006a). Considering
additional adaptation concerns in the design of web applications. In Proceedings of
the 4th International Conference on Adaptive Hypermedia (AH’2006), volume 4018 of
Lecture Notes in Computer Science, pages 254–258, Dublin, Ireland. Springer.

Casteleyn, S., Fiala, Z., Houben, G.-J., and van der Sluijs, K. (2006b). From adaptation
engineering to aspect-oriented context-dependency. In Proceedings of the 15th Inter-
national Conference on World Wide Web (WWW’06), pages 897–8998, Edinburgh,
Scotland. ACM.

http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/SMIL/

168 BIBLIOGRAPHY

Casteleyn, S., van Woensel, W., van der Sluijs, K., and Houben, G.-J. (2009). Aspect-
oriented adaptation specification in web information systems: a semantics-based ap-
proach. New Review of Hypermedia and Multimedia, 15(1):39–71.

Ceri, S., Daniel, F., Demaldé, V., and Facca, F. M. (2005). An approach to user-behavior-
aware web applications. In Proceedings of the 5th International Conference on Web
Engineering (ICWE’05), pages 417–428, Sydney, Australia. Springer.

Ceri, S., Daniel, F., Matera, M., and Facca, F. M. (2007). Model-driven development of
context-aware web applications. ACM Trans. Internet Technol., 7(1).

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., and Matera, M. (2002).
Designing Data-Intensive Web Applications. Morgan Kaufmann.

Chow, C. and Liu, C. (1968). Approximating discrete probability distributions with
dependence trees. IEEE Transactions on Information Theory, 14:462–467.

Choy, S.-O. and Lui, A. K. (2006). Web information retrieval in collaborative tagging
systems. In Proceedings of the International Conference on Web Intelligence, pages
352–355, New York. IEEE Press.

Clark, J. (1999). Xsl transformations (xslt). W3C Recommendation 16 November 1999.
http://www.w3.org/TR/xslt/.

Damerau, F. J. (1964). A technique for computer detection and correction of spelling
errors. Communications of the ACM, 7(3):171–176.

De Bra, P., D. Smits and, K. v. d. S., Cristea, A., Hendrix, M., and other members
of the GRAPPLE Research Team (2010a). Grapple: Personalization and adaptation in
learning management systems. In ED-MEDIA 2010-World Conference on Educational
Multimedia, Hypermedia and Telecommunications, Proc. of ED-MEDIA 2010. Association
for the Advancement of Computing in Education (AACE).

De Bra, P., Smits, D., and Stash, N. (2006). The design of aha! In Proceedings of the
seventeenth conference on Hypertext and hypermedia, HYPERTEXT ’06, pages 133–134,
New York, NY, USA. ACM.

De Bra, P., Smits, D., van der Sluijs, K., Cristea, A. I., Foss, J., Glahn, C., and Steiner, C. M.
(2012). Grapple: Learning management systems meet adaptive learning environments
(forthcoming).

De Bra, P., Smits, D., van der Sluijs, K., Cristea, A. I., and Hendrix, M. (2010b). Grapple:
Personalization and adaptation in learning management systems. In ED-MEDIA 2010-
World Conference on Educational Multimedia, Hypermedia & Telecommunications, Proc.
of ED-MEDIA 2010. Association for the Advancement of Computing in Education
(AACE).

de Moura, S. S. and Schwabe, D. (2004). Interface development for hypermedia applications
in the semantic web. In LA-WEBMEDIA ’04: Proceedings of the WebMedia & LA-Web
2004 Joint Conference 10th Brazilian Symposium on Multimedia and the Web 2nd
Latin American Web Congress, pages 106–113, Washington, DC, USA. IEEE Computer
Society.

http://www.w3.org/TR/xslt/

BIBLIOGRAPHY 169

De Troyer, O., Casteleyn, S., and Plessers, P. (2008). Wsdm: Web semantics design
method. In Rossi, G., Pastor, O., Schwabe, D., and Olsina, L., editors, Web Engineer-
ing: Modelling and Implementing Web Applications, volume 12 of Human-Computer
Interaction Series, pages 303–352. Springer.

Dey, A. K. (2000). Providing architectural support for building context-aware applications.
PhD thesis, Georgia Institute of Technology, Atlanta, GA, USA. AAI9994400.

Doan, A., Madhavan, J., Domingos, P., and Halevy, A. (2002). Learning to map between
ontologies on the semantic web. In Proceedings of the 11th international conference on
World Wide Web, WWW ’02, pages 662–673, New York, NY, USA. ACM.

Earnshaw, N. (2005). The tv-anytime content reference identifier (crid).

Euzenat, J. and Shvaiko, P. (2007). Ontology Matching. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA.

Facca, F. M. and Brambilla, M. (2007). Extending webml towards semantic web. In
WWW ’07: Proceedings of the 16th international conference on World Wide Web, pages
1235–1236, New York, NY, USA. ACM.

Falkovych, K., Sabou, M., and Stuckenschmidt, H. (2003). Uml for the semantic web:
Transformation-based approaches. In Knowledge Transformation for the Semantic Web,
pages 92–106. IOS Press,US.

Fiala, Z., Frasincar, F., Hinz, M., Houben, G.-J., Barna, P., and Meissner, K. (2004).
Engineering the presentation layer of adaptable web information systems. In Fourth
International Conference on Web Engineering (ICWE2004), Munich, number 3140 in
Lecture Notes in Computer Science, pages 459–472. Springer-Verlag Berlin Heidelberg.

Fiala, Z., Hinz, M., MeiSSner, K., and Wehner, F. (2003). A component-based approach
for adaptive dynamic web documents. Journal of Web Engineering, Rinton Press,
2(1&2):058–073.

Fielding, R. T. (2000). Architectural styles and the design of network-based software
architectures. PhD thesis, University of California, Irvine.

Fons, J., Pelechano, V., Pastor, O., Valderas, P., and Torres, V. (2008). Applying the oows
model-driven approach for developing web applications. the internet movie database case
study. In Rossi, G., Pastor, O., Schwabe, D., and Olsina, L., editors, Web Engineering:
Modelling and Implementing Web Applications, Human-Computer Interaction Series,
chapter 5, pages 65–108. Springer London.

Frasincar, F. (2005). Hera presentation generator. In Hypermedia Presentation Generation
for Semantic Web Information Systems, pages 67–87. Eindhoven University of Technology
Press Facilities.

Frasincar, F., Houben, G.-J., and Barna, P. (2006). Hpg: The hera presentation generator.
Journal of Web Engineering, 5(2):175–200.

Gaedke, M. and Meinecke, J. (2008). The web as an application platform. In Rossi,
G., Pastor, O., Schwabe, D., and Olsina, L., editors, Web Engineering: Modelling and
Implementing Web Applications, Human-Computer Interaction Series, chapter 3, pages
33–49. Springer London.

170 BIBLIOGRAPHY

Gellersen, H.-W., Wicke, R., and Gaedke, M. (1997). Webcomposition: an object-oriented
support system for the web engineering lifecycle. Comput. Netw. ISDN Syst., 29(8-
13):1429–1437.

Golder, S. and Huberman, B. A. (2006). Usage patterns of collaborative tagging systems.
Journal of Information Science, 32(2):198–208.

Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowl.
Acquis., 5(2):199–220.

Hardman, L., Aroyo, L., van Ossenbruggen, J., and Hyvonen, E. (2009). Using ai to access
and experience cultural heritage. IEEE Intelligent Systems, 24:23–25.

Heath, T. (2010). Linked data community. http://linkeddata.org/.

Heckmann, D., Schwartz, T., Brandherm, B., Schmitz, M., and von Wilamowitz-
Moellendorff, M. (2005). Gumo - the general user model ontology. In Proceedings
of the 10th International Conference on User Modeling (UM’05), number 3538 in LNAI,
pages 428–432. Springer.

Henze, N., Nejdl, W., and Wolpers, M. (1999). Modeling constructivist teaching function-
ality and structure in the kbs hyperbook system. In Proceedings of the 1999 conference
on Computer support for collaborative learning, CSCL ’99. International Society of the
Learning Sciences.

Hildebrand, M., van Ossenbruggen, J., and Hardman, L. (2006a). /facet: A Browser for
Heterogeneous Semantic Web Repositories. In Cruz, I. F., Decker, S., Allemang, D.,
Preist, C., Schwabe, D., Mika, P., Uschold, M., and Aroyo, L., editors, 5th International
Semantic Web Conference (ISWC), volume 4273 of Lecture Notes in Computer Science,
pages 272–285. Springer.

Hildebrand, M., van Ossenbruggen, J., and Hardman, L. (2006b). /facet: A browser for
heterogeneous semantic web repositories. In Proceedings of the International Semantic
Web Conference (ISWC ’06), pages 272–285, Berlin / Heidelberg. Springer.

Hillairet, G. (2007). Atl use case - odm implementation (bridging uml and owl). Eclipose
Project. http://www.eclipse.org/m2m/atl/usecases/ODMImplementation/.

Hirtle, D., Boley, H., Grosof, B., Kifer, M., Sintek, M., Tabet, S., and Wagner, G. (2006).
Schema specification of ruleml 0.91. http://ruleml.org/0.91/.

Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P. F., and Rudolph, S. (2009).
Owl 2 web ontology language primer. W3C Recommendation 27 October 2009. http:
//www.w3.org/TR/owl-primer/.

Hockemeyer, C., Conlan, O., Wade, V., and Albert, D. (2003). Applying competence
prerequisite structures for elearning and skill management. j-jucs, 9(12):1428–1436.

Horrocks, I., Parsia, B., Patel-Schneider, P., and Hendler, J. (2005). Semantic web
architecture: Stack or two towers? In Fages, F. and Soliman, S., editors, Principles
and Practice of Semantic Web Reasoning (PPSWR 2005), volume 3703 of LNCS, pages
37–41. Springer.

http://linkeddata.org/
http://www.eclipse.org/m2m/atl/usecases/ODMImplementation/
http://ruleml.org/0.91/
http://www.w3.org/TR/owl-primer/
http://www.w3.org/TR/owl-primer/

BIBLIOGRAPHY 171

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., and Dean, M. (2004a).
Swrl: A semantic web rule language combining owl and ruleml. W3C Member Submission
21 May 2004. http://www.w3.org/Submission/SWRL/.

Horrocks, I., Patel-Schneider, P. F., Boley, H., Tabet, S., Grosof, B., and Dean,
M. (2004b). Swrl: A semantic web rule language combining owl and ruleml.
http://www.w3.org/Submission/SWRL/.

Houben, G.-J., Fiala, Z., van der Sluijs, K., and Hinz, M. (2005). Building self-managing
web information systems from generic components. In Proceedings of the 1st International
Workshop on Adaptive and Self-Managing Enterprise Applications (ASMEA’05), Work-
shop at CAiSE’05, The 17th Conference on Advanced Information Systems Engineering,
pages 053–067, Porto, Portugal. FEUP Ediçőes.

Houben, G.-J., van der Sluijs, K., Barna, P., Broekstra, J., Casteleyn, S., Fiala, Z., and
Frasincar, F. (2008). Hera, volume 12 of Human-Computer Interaction Series, pages
263–301. Springer.

Hyvönen, E., Mäkelä, E., Kauppinen, T., Alm, O., Kurki, J., Ruotsalo, T., Seppälä, K.,
Takala, J., Puputti, K., Kuittinen, H., Viljanen, K., Tuominen, J., Palonen, T., Frosterus,
M., Sinkkilä, R., Paakkarinen, P., Laitio, J., and Nyberg, K. (2008). Culturesampo –
a collective memory of finnish cultural heritage on the semantic web 2.0. In Semantic
Computing Research Group, Helsinki University of Technology and University of Helsinki.

IMS Global Learning Consortium, I. (2001). Ims learner information packaging information
model specification. Final Specification. Version 1.0. http://www.imsglobal.org/
profiles/lipinfo01.html.

Jain, A. K., Murty, M. N., and Flynn, P. J. (1999). Data clustering: a review. ACM
Computing Surveys, 31(3):264–323.

Jaro, M. A. (1989). Advances in record linking methodology as applied to the 1985 census
of tampa florida. Journal of the American Statistical Society, 84(406):414–420.

Karagiannis, G., Vavliakis, K., Sotiropoulou, S., Damtsios, A., Alexiadis, D., and Salpistis,
C. (2009). Using signal processing and semantic web technologies to analyze Byzantine
iconography. IEEE Intelligent Systems, 24:73–81.

Kiczales, G., Lamping, J., Menhdhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., and
Irwin, J. (1997). Aspect-oriented programming. In Akşit, M. and Matsuoka, S., editors,
Proceedings of the European Conference on Object-Oriented Programming, volume 1241,
pages 220–242, Berlin, Heidelberg, and New York. Springer-Verlag.

Kifer, M. and Boley, H. (2010). Rif overview. Automatically generated Mediawiki page
(June 2010). http://www.w3.org/2005/rules/wiki/Overview.

Klyne, G., Reynolds, F., Woodrow, C., Ohto, H., Hjelm, J., Butler, M., and Tran, L.
(2004a). Composite Capability/Preference Profiles (CC/PP): Structure and Vocabularies
1.0. W3C Recommendation.

Klyne, G., Reynolds, F., Woodrow, C., Ohto, H., Hjelm, J., Butler, M. H., and Tran,
L. (2004b). Composite capability/preference profiles (cc/pp): Structure and vo-
cabularies 1.0. W3C Recommendation 15 January 2004. http://www.w3.org/TR/
CCPP-struct-vocab/.

http://www.w3.org/Submission/SWRL/
http://www.imsglobal.org/profiles/lipinfo01.html
http://www.imsglobal.org/profiles/lipinfo01.html
http://www.w3.org/2005/rules/wiki/Overview
http://www.w3.org/TR/CCPP-struct-vocab/
http://www.w3.org/TR/CCPP-struct-vocab/

172 BIBLIOGRAPHY

Knuth, D. E. (1973). The soundex algorithm. The Art of Computer Programming Volume
3: Sorting and Searching, pages 334–395.

Knutov, E., De Bra, P., and Pechenizkiy, M. (2009). Ah 12 years later: a comprehen-
sive survey of adaptive hypermedia methods and techniques. New Rev. Hypermedia
Multimedia, 15:5–38.

Koch, N., Knapp, A., Zhang, G., and Baumeister, H. (2008). Uml-based web engineering:
An approach based on standard. In Rossi, G., Pastor, O., Schwabe, D., and Olsina,
L., editors, Web Engineering: Modelling and Implementing Web Applications, Human-
Computer Interaction Series, chapter 7, pages 157–191. Springer London.

Koch, N., Pigerl, M., Zhang, G., and Morozova, T. (2009). Patterns for the model-
based development of rias. In Proceedings of the 9th International Conference on Web
Engineering (ICWE2009), pages 283–291, Berlin, Heidelberg. Springer-Verlag.

Koza, Y. (2004). 3gpp generic user profile (gup). stage 2: Data description method (ddm).
3GGP Proposal, June 2004. http://www.3gpp.org/ftp/Specs/html-info/23241.
htm.

Krǐstofič, A. and Bieliková, M. (2005). Improving adaptation in web-based educational
hypermedia by means of knowledge discovery. In Proceedings of the sixteenth ACM
conference on Hypertext and hypermedia, HYPERTEXT ’05, pages 184–192, New York,
NY, USA. ACM.

Leonardi, E., Houben, G.-J., van der Sluijs, K., Hidders, J., Herder, E., Abel, F., Krause,
D., and Heckmann, D. (2009). User profile elicitation and conversion in a mashup
environment. In Proceedings of the International Workshop on Lightweight Integration
on the Web (ComposableWeb’09).

Manola, F. and Miller, E. (2004). Rdf primer. W3C Recommendation 10 February 2004.
http://www.w3.org/TR/rdf-primer/.

Manolescu, I., Brambilla, M., Ceri, S., Comai, S., and Fraternali, P. (2005). Model-driven
design and deployment of service-enabled web applications. ACM Trans. Internet
Technol., 5(3):439–479.

Meinecke, J., Gaedke, M., and Thiele, C. (2007). Enabling architecture changes in
distributed web-applications. In Proceedings of the 2007 Latin American Web Conference,
LA-WEB ’07, pages 92–99, Washington, DC, USA. IEEE Computer Society.

Melenhorst, M., Grootveld, M., van Setten, M., and Veenstra, M. (2008). Tag-based
information retrieval of video content. In Proceeding of the 1st international conference
on Designing interactive user experiences for TV and video, pages 31–40. ACM Press.

Mika, P. (2005). Ontologies are us: A unified model of social networks and semantics. In
Proceedings of the International Semantic Web Conference, pages 522–536, Heidelberg.
Springer.

Miles, A. and Bechhofer, S. (2009). Simple knowledge organization system.
http://www.w3.org/TR/skos-reference/.

http://www.3gpp.org/ftp/Specs/html-info/23241.htm
http://www.3gpp.org/ftp/Specs/html-info/23241.htm
http://www.w3.org/TR/rdf-primer/

BIBLIOGRAPHY 173

Millard, D. E. and Ross, M. (2006). Web 2.0: hypertext by any other name? In HY-
PERTEXT ’06: Proceedings of the seventeenth conference on Hypertext and hypermedia,
pages 27–30, New York, NY, USA. ACM.

Morgan, D. (1997). Focus Groups As Qualitative Research. Number 16 in Qualitative
Research Methods Series. Sage Publications, second edition edition.

Nagy, I., Bergmans, L. M. J., and Akşit, M. (2005). Composing aspects at shared join
points. In Proceedings of International Conference NetObjectDays(NODe2005), volume
P-69 of Lecture Notes in Informatics, pages 19–38, Bonn, Germany. Gesellschaft für
Informatik (GI).

Niederhausen, M., van der Sluijs, K., Hidders, J., Leonardi, E., Houben, G.-J., and Meißner,
K. (2009). Harnessing the power of semantics-based, aspect-oriented adaptation for
amacont. In Proceedings of the 9th International Conference on Web Engineering (ICWE
2009), volume 5648 of Lecture Notes in Computer Science, pages 106–120. Springer.

Nunes, D. A. and Schwabe, D. (2006). Rapid prototyping of web applications combining
domain specific languages and model driven design. In Proceedings of the 6th international
conference on Web engineering, ICWE ’06, pages 153–160, New York, NY, USA. ACM.

Passepartout (2005-2007). Itea passepartout project. http://wwwis.win.tue.nl/∼ppartout.

Pastor, O., Gómez, J., Insfrán, E., and Pelechano, V. (2001). The OO-Method approach for
information systems modeling: from object-oriented conceptual modeling to automated
programming. Inf. Syst., 26(7):507–534.

Petersen, F., Brown, W., and Pluke, M. (2005). Eg 202 325, user profile management. ETSI
Recommendation, Oktober 2005. http://portal.etsi.org/stfs/stf_homepages/
stf342/eg_202325v010101p.pdf.

Protégé (2011). The protégé ontology editor and knowledge acquisition system. http:
//protege.stanford.edu/.

Prud’hommeaux, E. and Seaborne, A. (2008). Sparql query language for rdf. W3C
Recommendation 15 January 2008. http://www.w3.org/TR/rdf-sparql-query/.

Rahm, E. and Bernstein, P. A. (2001). A survey of approaches to automatic schema
matching. The VLDB Journal, 10(4):334–350.

Rossi, G. and Schwabe, D. (2008). Modeling and implementing web applications with
oohdm. In Rossi, G., Pastor, O., Schwabe, D., and Olsina, L., editors, Web Engineering:
Modelling and Implementing Web Applications, Human-Computer Interaction Series,
chapter 6, pages 109–155. Springer London.

Rossi, G., Schwabe, D., Olsina, L., and Pastor, O. (2008). Web Engineering: Modelling and
Implementing Web Applications, chapter Overview of Design Issues for Web Applications
Development, pages 49–63. Human-Computer Interaction Series. Springer London.

Ruotsalo, T., Aroyo, L., and Schreiber, G. (2009). Knowledge-based linguistic annotation
of digital cultural heritage collections. Intelligent Systems, IEEE, 24(2):64–75.

http://portal.etsi.org/stfs/stf_homepages/stf342/eg_202325v010101p.pdf
http://portal.etsi.org/stfs/stf_homepages/stf342/eg_202325v010101p.pdf
http://protege.stanford.edu/
http://protege.stanford.edu/
http://www.w3.org/TR/rdf-sparql-query/

174 BIBLIOGRAPHY

Schauerhuber, A., Wimmer, M., Schwinger, W., Kapsammer, E., and Retschitzegger, W.
(2007). Aspect-oriented modeling of ubiquitous web applications: The aspectwebml
approach. In Proceedings of the 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems, pages 569–576, Washington,
DC, USA. IEEE Computer Society.

Schmitz, P., Yu, J., and Santangeli, P. (1998). Timed interactive multimedia extensions for
html (html+time), extending smil into the web browser. W3C Submission 18 September
1998. http://www.w3.org/TR/NOTE-HTMLplusTIME.

Schraefel, M., Smith, D. A., Owens, A., Russell, A., Harris, C., and Wilson, M. (2005).
The evolving mspace platform: leveraging the semantic web on the trail of the memex.
In HYPERTEXT ’05: Proceedings of the sixteenth ACM conference on Hypertext and
hypermedia, pages 174–183, New York, NY, USA. ACM.

Schwabe, D., Szundy, G., de Moura, S. S., and Lima, F. (2004). Design and implementation
of semantic web applications. In WWW Workshop on Application Design, Development
and Implementation Issues in the Semantic Web.

Schwinger, W., Retschitzegger, W., Schauerhuber, A., Kappel, G., Wimmer, M., Pr/”oll,
B., Castro, C. C., Casteleyn, S., Troyer, O. D., Fraternali, P., abd Franca Garzotto, I. G.,
Ginige, A., Houben, G.-J., Koch, N., Moreno, N., Pastor, O., Paolini, P., Ferragud, V. P.,
Rossi, G., Schwabe, D., Tisi, M., Vallecillo, A., van der Sluijs, K., and Zhang, G. (2008).
A survey on web modeling approaches for ubiquitous web applications. International
Journal of Web Information Systems, 4(3):234–305.

Shadbolt, N., Berners-Lee, T., and Hall, W. (2006). The semantic web revisited. IEEE
Intelligent Systems, 21(3):96–101.

Simile (2008). Rdfizers. The RDFizer project is directory of tools for converting various
data formats into RDF. http://simile.mit.edu/wiki/RDFizers.

Sirin, E. and Parsia, B. (2004). Pellet: An owl dl reasoner. In Haarslev, V. and Möller, R.,
editors, Proceedings of the 2004 International Workshop on Description Logics (DL2004),
volume 104 of CEUR Workshop Proceedings.

Specia, L. and Motta, E. (2007). Integrating folksonomies with the semantic web. In
ESWC ’07: Proceedings of the 4th European conference on The Semantic Web, pages
624–639, Berlin, Heidelberg. Springer-Verlag.

Stanciulescu, A., Limbourg, Q., Vanderdonckt, J., Michotte, B., and Montero, F. (2005).
A transformational approach for multimodal web user interfaces based on usixml. In
Proceedings of the 7th international conference on Multimodal interfaces, ICMI ’05,
pages 259–266, New York, NY, USA. ACM.

Sutterer, M., Coutand, O., Droegehorn, O., David, K., and van der Sluijs, K. (2007).
Managing and delivering context-dependent user preferences in ubiquitous computing
environments. In Proceedings of the 2007 International Symposium on Applications and
the Internet Workshops (SAINTW’07), pages 4–4, Hiroshima, Japan. IEEE CS Press.

Tafazolli, R., editor (2006). Technologies for the Wireless Future: Wireless World Research
Forum (WWRF), volume 2. Wiley.

http://www.w3.org/TR/NOTE-HTMLplusTIME
http://simile.mit.edu/wiki/RDFizers

BIBLIOGRAPHY 175

Taylor, J. (2008). Introducing the freebase rdf service. Freebase Blog. http://blog.
freebase.com/2008/10/30/introducing_the_rdf_service/.

Thiran, P., Hainaut, J.-L., and Houben, G.-J. (2005). Database wrappers development:
Towards automatic generation. In Proceedings of the Ninth European Conference on
Software Maintenance and Reengineering (CSMR’05), pages 207–216. IEEE CS Press.

Trujillo, S., Batory, D., and Diaz, O. (2007). Feature oriented model driven development:
A case study for portlets. In Proceedings of the 29th international conference on Software
Engineering, ICSE ’07, pages 44–53, Washington, DC, USA. IEEE Computer Society.

TV-Anytime (2003). The TV-Anytime Forum, Requirement Series: RQ001v2.0, TV140.
Available at: ftp://tva:tva@ftp.bbc.co.uk/pub/Plenary/0-Plenary.html.

van der Sluijs, K., Hidders, J., Leonardi, E., and Houben, G.-J. (2009). Gal: A generic
adaptation language for describing adaptive hypermedia. In Proceedings of the Interna-
tional Workshop on Dynamic and Adaptive Hypertext: Generic Frameworks, Approaches
and Techniques (DAH’09).

van der Sluijs, K. and Houben, G.-J. (2005). Towards a generic user model component. In
Proceedings of the 1st Workshop on Personalization on the Semantic Web (PerSWeb’05),
Workshop at the 10th International Conference on User Modeling (UM’2005), pages
043–052, Edinburgh, Scotland.

van der Sluijs, K. and Houben, G.-J. (2006a). A generic component for exchanging user
models between web-based systems. International Journal of Continuing Engineering
Education and Life-Long Learning (IJCEELL), 16(1/2):64–76.

van der Sluijs, K. and Houben, G.-J. (2006b). Query discovery for translating user model
data. In Proceedings of the 4th International Workshop on Applications of Semantic Web
Technologies for E-Learning (SW-EL’06), Workshop at the 4th International Conference
on Adaptive Hypermedia (AH’2006), pages 109–111, Dublin, Ireland.

van der Sluijs, K. and Houben, G.-J. (2008a). Metadata-based access to cultural heritage
collections: the rhce use case. In Proceedings of the 2nd International Workshop
on Personalized Access to Cultural Heritage (PATCH’2008), pages 15–25, Hannover,
Germany.

van der Sluijs, K. and Houben, G.-J. (2008b). Relating user tags to ontological informa-
tion. In Proceedings of the 5th International Workshop on Ubiquitous User Modeling
(UbiqUM’2008), Gran Canaria, Spain.

van der Sluijs, K. and Houben, G.-J. (2008c). Tagging and the semantic web in cultural
heritage. ERCIM News - Special: The Future Web, (72):22–23.

van der Sluijs, K. and Houben, G.-J. (2009). Automatic generation of semantic metadata
as basis for user modeling and adaptation. In Advances in Ubiquitous User Modelling,
volume 5868 of Lecture Notes in Computer Science, pages 73–93. Springer.

van der Sluijs, K. and Houben, G.-J. (2010). Exploiting user tags to build a semantic
cultural heritage portal. IEEE Intelligent Systems, 25:84–92.

http://blog.freebase.com/2008/10/30/introducing_the_rdf_service/
http://blog.freebase.com/2008/10/30/introducing_the_rdf_service/

176 BIBLIOGRAPHY

van der Sluijs, K., Houben, G.-J., Broekstra, J., and Casteleyn, S. (2006). Hera-s -
web design using sesame. In Proceedings of the 6th International Conference on Web
Engineering (ICWE’06), pages 337–345, Palo Alto, California, USA. ACM.

van der Sluijs, K., Houben, G.-J., Leonardi, E., and Hidders, J. (2010). Hera: Engineering
web applications using semantic web-based models. In de Virgilio, R., Giunchiglia,
F., and Tanca, L., editors, Semantic Web Information Management, pages 521–544.
Springer Berlin Heidelberg. 10.1007/978-3-642-04329-1 22.

van der Sluijs, K. and Höver, K. M. (2009a). Integrating adaptive functionality in a LMS.
International Journal of Emerging Technologies in Learning (iJET), 4(4):46–50.

van der Sluijs, K. and Höver, K. M. (2009b). Integrating adaptive functionality in a
lms. In Proceedings of the International Conference on E-Learning in the Workplace
(ICELW2009).

van Deursen, A., Klint, P., and Visser, J. (2000). Domain-specific languages: an annotated
bibliography. SIGPLAN Not., 35:26–36.

van Setten, M. (2005). Supporting people in finding information: Hybrid recommender
systems and goal-based structuring. Telematica Instituut Fundamental Research Series,
No.016 (TI/FRS/016). Universal Press.

van Setten, M., Brussee, R., van Vliet, H., Gazendam, L., van Houten, Y., and Veenstra, M.
(2006). On the importance of “who tagged what”. In Workshop on the Social Navigation
and Community-Based Adaptation Technologies.

Vdovjak, R., Frasincar, F., Houben, G. J., and Barna, P. (2003). Engineering semantic
web information systems in Hera. Journal of Web Engineering, 2(1-2):3–26.

Verheijen, W. (2008). Efficient query processing in distributed rdf databases. Master’s thesis,
Technische Universiteit Eindhoven. /urlhttp://alexandria.tue.nl/extra1/afstversl/wsk-
i/verheijen2008.pdf.

Wartena, C. and Brussee, R. (2008). Topic detection by clustering keywords. In DEXA
Workshops, pages 54–58.

Wireless Application Protocol Forum (2001). User agent profiling specification. WAP-248-
UAProf-20011020-a, Version 20-Oct-2001.

Witte, R., Krestel, R., Kappler, T., and Lockemann, P. (2009). Converting a historical
encyclopedia of architecture into a semantic knowledge base. IEEE Intelligent Systems,
25:58–67.

Yee, K.-P., Swearingen, K., Li, K., and Hearst, M. (2003). Faceted metadata for image
search and browsing. In Proceedings of the SIGCHI conference on Human factors in
computing systems (CHI ’03), pages 401–408, New York, NY, USA. ACM Press.

List of Publications

This is a list of the publications which are the basis for this thesis. The items in the list
refer to the publication details in the bibliography.

• Book Chapters

– [De Bra et al., 2012]

– [van der Sluijs et al., 2010]

– [Houben et al., 2008]

• Journal Papers

– [van der Sluijs and Houben, 2010]

– [van der Sluijs and Höver, 2009a]

– [van der Sluijs and Houben, 2009]

– [Casteleyn et al., 2009]

– [van der Sluijs and Houben, 2008c]

– [Schwinger et al., 2008]

– [van der Sluijs and Houben, 2006a]

• Conference Papers:

– [De Bra et al., 2010a]

– [van der Sluijs and Höver, 2009b]

– [Niederhausen et al., 2009]

– [Bellekens et al., 2008]

– [Bellekens et al., 2007]

– [van der Sluijs et al., 2006]

– [Casteleyn et al., 2006a]

– [Casteleyn et al., 2006b]

• Workshop Papers

– [van der Sluijs et al., 2009]

– [Leonardi et al., 2009]

– [Abel et al., 2009]

178 List of Publications

– [van der Sluijs and Houben, 2008a]

– [van der Sluijs and Houben, 2008b]

– [Sutterer et al., 2007]

– [van der Sluijs and Houben, 2006b]

– [van der Sluijs and Houben, 2005]

– [Houben et al., 2005]

List of Figures

2.1 Meta-data illustration (1) . 7
2.2 Meta-data illustration (2) . 8
2.3 The Semantic Web Stack . 9
2.4 RDF Graph example . 10
2.5 RDFS Graph example . 12
2.6 Linked Data cloud February 2008 . 16
2.7 Linked Data cloud August 2011 . 17

3.1 Hera Models . 26
3.2 Hera-S Framework . 27
3.3 UML model of the IMDb domain . 30
3.4 Protégé screenshot for the IMDb data modeling 31
3.5 RDF-graph representation of IMDb domain and context data 31
3.6 Presentation Model for the ’MovieUnit’ Navigational Unit 41
3.7 Hydragen Information Flow . 42
3.8 HydragenCore Class Diagram . 43
3.9 Activity Diagram for handling Units . 44

4.1 Intersecting domains . 46
4.2 Sesame Architecture . 47
4.3 Hera Studio . 48
4.4 DM example . 48
4.5 AM example . 49
4.6 AMACONT Component Model . 60
4.7 The AMACONT Presentation Generation Pipeline 61
4.8 AMACONT Presentation on a PC . 61
4.9 AMACONT Presentation on a PDA . 62
4.10 Aspect Model of AMACONT Adaptation 63

5.1 Integrated view over coupled dataset . 71
5.2 Shared-UM approach . 73
5.3 Direct connection approach . 76
5.4 Relco information flow . 83
5.5 Two matches in one region of an ontology 87
5.6 Example of concept with multiple labels 88
5.7 Feedback Data Model . 89
5.8 Simplified Relco Class diagram . 91

6.1 χ metadata structure . 95
6.2 Example picture from the RHCe dataset 96

180 LIST OF FIGURES

6.3 Map view χ Explorer . 97
6.4 Timeline view χ Explorer . 98
6.5 Graph view χ Explorer . 99
6.6 χ Framework Architecture . 100
6.7 χ Explorer Feedback GUI . 101
6.8 Rating Form . 102
6.9 SenSee Architecture . 108
6.10 SenSee Connection Architecture . 109
6.11 SenSee data integration scheme . 110
6.12 User-driven concept refinement . 114
6.13 “Relating tags to ontology (concepts)” scenario 117
6.14 “Suggesting previous tags” scenario . 117

7.1 Different Social Contexts Users . 122
7.2 Lack of Semantic Interoperability Between Applications 123
7.3 London postal code illustration . 124
7.4 Direct mapping strategy . 125
7.5 Shared UM mapping strategy . 125
7.6 MobiLife General Architecture . 127
7.7 Architecture of the PCF and PPF . 129
7.8 Profile Editor . 130
7.9 MobiLife User Model . 131
7.10 A sample blog entry for a day in Canada 132
7.11 Screenshot of the Wellness-Aware Multimodal Gaming System 133
7.12 The adaptive business English course . 136
7.13 GRAPPLE Framework Information Flow 137
7.14 GRAPPLE Architecture . 138
7.15 GUMF Information Flow . 141

Abbreviations

ALE Adaptive Learning Environment . 133

AM Application Model . 27

AMP AM (instance) page . 28

CAM Conceptual Adaptation Model . 136

CSS Cascading Style Sheets . 40

DM Domain Model . 27

DMOZ Open Directory Project . 17

CM Context Model . 28

FS Filter Service . 109

GAL Generic Adaptation Language . 136

GALE GRAPPLE adaptive learning environment . 134

GAT GRAPPLE authoring tools . 137

GEB GRAPPLE Event Bus . 136

GDR Grapple Derivation Rules. .140

GTAA Common Thesaurus for Audiovisual Archives . 116

GUMF Generic User Model Framework . 137

GUP Generic User Profile . 131

IMDb International Movie Database . 29

IMEI International Mobile Equipment Identifier . 128

LMS Learning Management System . 133

MDA Model-Driven Architecture . 23

MDE Model-driven engineering. .24

MDWE Model-Driven Web Engineering . 1

OOHDM Object-Oriented Hypermedia Design Model . 19

OOWS Object-Oriented Web Solutions Approach . 19

OS Ontology Service . 109

OWL Web Ontology Language . 13

PCF Personal Context Function . 128

PIM Platform-Independent Model . 23

182 Abbreviations

PM Presentation Model . 28

PPF Personal Profiling Function . 128

PSM Platform-Specific Models . 23

RDF Resource Description Framework . 2

RDF(S) Resource Description Framework (Schema) . 12

RDFS Resource Description Framework Schema . 11

RHCe Regionaal Historisch Centrum Eindhoven . 93

RIF Rule Interchange Format. .15

SeAL Semantics-based Aspect-Oriented Adaptation Language . 52

SHDM Semantic Hypermedia Design Method . 21

SKOS Simple Knowledge Organization System . 84

SMIL Synchronized Multimedia Integration Language . 20

SPARQL SPARQL Protocol and RDF Query Language . 15

STL SPARQL Transformation Language . 80

SWRL Semantic Web Rule Language .15

Turtle Terse RDF Triple Language . 12

UID User Interaction Diagrams . 21

UM User Model .156

UMS User Model Service . 108

UWE UML-based Web Engineering approach. .19

URI Uniform Resource Identifier .9

URL Uniform Resource Locator . 9

WebML Web Modeling Language . 19

WML Wireless Markup Language . 20

WIS Web Information Systems . 2

XSLT EXtensible Stylesheet Language . 25

XML Extensible Markup Language . 9

Summary
Model Driven Design and Data Integration in Semantic Web
Information Systems

The Web is quickly evolving in many ways. It has evolved from a Web of documents into
a Web of applications in which a growing number of designers offer new and interactive Web
applications with people all over the world. However, application design and implementation
remain complex, error-prone and laborious. In parallel there is also an evolution from
a Web of documents into a Web of ‘knowledge’ as a growing number of data owners
are sharing their data sources with a growing audience. This brings the potential new
applications for these data sources, including scenarios in which these datasets are reused
and integrated with other existing and new data sources. However, the heterogeneity of
these data sources in syntax, semantics and structure represents a great challenge for
application designers. The Semantic Web is a collection of standards and technologies
that offer solutions for at least the syntactic and some structural issues. If offers semantic
freedom and flexibility, but this leaves the issue of semantic interoperability.

In this thesis we present Hera-S, an evolution of the Model Driven Web Engineering
(MDWE) method Hera. MDWEs allow designers to create data centric applications using
models instead of programming. Hera-S especially targets Semantic Web sources and
provides a flexible method for designing personalized adaptive Web applications. Hera-S
defines several models that together define the target Web application. Moreover we
implemented a framework called Hydragen, which is able to execute the Hera-S models to
run the desired Web application. Hera-S’ core is the Application Model (AM) in which
the main logic of the application is defined, i.e. defining the groups of data elements
that form logical units or subunits, the personalization conditions, and the relationships
between the units. Hera-S also uses a so-called Domain Model (DM) that describes the
content and its structure. However, this DM is not Hera-S specific, but instead allows
any Semantic Web source representation as its DM, as long as its content can be queried
by the standardized Semantic Web query language SPARQL. The same holds for the
User Model (UM). The UM can be used for personalization conditions, but also as a
source of user-related content if necessary. In fact, the difference between DM and UM
is conceptual as their implementation within Hydragen is the same. Hera-S also defines
a presentation model (PM) which defines presentation details of elements like order and
style. In order to help designers with building their Web applications we have introduced
a toolset, Hera Studio, which allows to build the different models graphically. Hera Studio
also provides some additional functionality like model checking and deployment of the
models in Hydragen.

Both Hera-S and its implementation Hydragen are designed to be flexible regarding
the user of models. In order to achieve this Hydragen is a stateless engine that queries for
relevant information from the models at every page request. This allows the models and
data to be changed in the datastore during runtime. We show that one way to exploit
this flexibility is by applying aspect-orientation to the AM. Aspect-orientation allows us

184 Summary

to dynamically inject functionality that pervades the entire application. Another way
to exploit Hera-S’ flexibility is in reusing specialized components, e.g. for presentation
generation. We present a configuration of Hydragen in which we replace our native
presentation generation functionality by the AMACONT engine. AMACONT provides
more extensive multi-level presentation generation and adaptation capabilities as well
aspect-orientation and a form of semantic based adaptation.

Hera-S was designed to allow the (re-)use of any (Semantic) Web datasource. It even
opens up the possibility for data integration at the back end, by using an extendible storage
layer in our database of choice Sesame. However, even though theoretically possible it
still leaves much of the actual data integration issue. As this is a recurring issue in many
domains, a broader challenge than for Hera-S design only, we decided to look at this issue
in isolation. We present a framework called Relco which provides a language to express
data transformation operations as well as a collection of techniques that can be used
to (semi-)automatically find relationships between concepts in different ontologies. This
is done with a combination of syntactic, semantic and collaboration techniques, which
together provide strong clues for which concepts are most likely related.

In order to prove the applicability of Relco we explore five application scenarios in
different domains for which data integration is a central aspect. This includes a cultural
heritage portal, χ Explorer, for which data from several datasources was integrated and
was made available by a mapview, a timeline and a graph view. χ Explorer also allows
users to provide metadata for objects via a tagging mechanism. Another application is
SenSee: an electronic TV-guide and recommender. TV-guide data was integrated and
enriched with semantically structured data from several sources. Recommendations are
computed by exploiting the underlying semantic structure. ViTa was a project in which
several techniques for tagging and searching educational videos were evaluated. This
includes scenarios in which user tags are related with an ontology, or other tags, using the
Relco framework. The MobiLife project targeted the facilitation of a new generation of
mobile applications that would use context-based personalization. This can be done using
a context-based user profiling platform that can also be used for user model data exchange
between mobile applications using technologies like Relco. The final application scenario
that is shown is from the GRAPPLE project which targeted the integration of adaptive
technology into current learning management systems. A large part of this integration is
achieved by using a user modeling component framework in which any application can
store user model information, but which can also be used for the exchange of user model
data.

Samenvatting

Het Web evolueert in veel opzichten. Zo heeft het zich ontwikkeld van een Web van
documenten naar een Web van applicaties waarin een groeiend aantal ontwerpers nieuwe en
interactieve Web-toepassingen kan maken voor een wereldwijd publiek. Maar het ontwerpen
en implementeren van Web applicaties blijft een moeizame bezigheid die ontzettend veel
tijd kost en waarin fouten snel worden gemaakt. Naast het Web van applicaties is er
een parallelle evolutie van een Web van documenten naar een Web van kennis, waarbij
steeds meer mensen en instituten hun data beginnen te delen met een groeiend publiek.
Hieruit volgen nieuwe kansen voor applicaties die deze beschikbaar gestelde databronnen
gebruiken, inclusief scenario’s waarin deze bronnen worden herbruikt en gëıntegreerd met
andere bestaande en nieuwe bronnen. Maar de heterogeniteit van deze bronnen qua syntax,
betekenis en structuur zorgt voor nieuwe uitdagingen voor ontwerpers. Het Semantische
Web is een verzameling standaarden en technologieën dat standaardoplossingen biedt voor
in ieder geval de syntax en de structuur van de data. Het biedt semantische vrijheid en
flexibiliteit, maar semantische interoperabiliteit blijft daarmee wel een probleem.

In dit proefschrift presenteren we Hera-S, een verdere ontwikkeling van de model-
gedreven Web-ontwerpmethode (MDWE) genaamd Hera. MDWE’s laten ontwerpers
data-centrische applicaties ontwerpen middels modellen de plaats van programmeren.
Hera-S is speciaal ontworpen voor Semantische Web-bronnen en levert een flexibele
methode voor het ontwerpen van gepersonaliseerde adaptieve applicaties. Hera-S definieert
verschillende modellen die samen een volledige Web-applicatie beschrijven. We hebben
daarnaast ook een platform gëımplementeerd dat Hydragen heet en dat Hera-S modellen
kan uitvoeren als Web-applicatie. De kern van Hera-S is het applicatie model (AM) dat
de belangrijkste applicatie-logica vastlegt, waarin groepen van data-elementen worden
gedefinieerd in termen van eenheden en subeenheden, de personalisatie condities worden
vastgelegd, en de relaties tussen de verschillende eenheden worden vastgelegd. Hera-S
baseert zich in het AM op een zogenaamd domein model (DM) waarin de eigenlijke
inhoud van de Web-applicatie wordt vastgelegd. Het DM is echter niet Hera-S specifiek,
aangezien elke Semantische Webbron kan worden gebruikt als DM, zolang deze maar
kan worden bevraagd via de gestandaardiseerde Semantisch Web zoek-taal genaamd
SPARQL. Hetzelfde geldt voor het gebruikersmodel (UM). Het UM kan gebruikt worden
voor personalisatiecondities, maar net zo goed ook voor gepersonaliseerde inhoud als
dat nodig is. In feite is er alleen een conceptueel verschil tussen het DM en het UM,
want de eigenlijke implementaties in Hydragen zijn vergelijkbaar. Hera-S definieert ook
een presentatiemodel (PM) dat presentatie details definieert zoals volgorde en stijl van
de elementen. Om ontwikkelaars te helpen met het bouwen van hun Web-applicaties
hebben we daarvoor een toolset ontwikkeld, Hera Studio, die kan worden gebruikt om
de verschillende modellen met grafische ondersteuning te bouwen. Hera Studio bevat
daarnaast nog aanvullende mogelijkheden zoals modelverificatie en de mogelijkheid om

186 Samenvatting

het model rechtstreeks in Hydragen te activeren.
Zowel Hera-S als de Hydragen implementatie zijn ontwikkeld om flexibel om te gaan

met modellen. Zo is Hydragen een toestandsloze machine die bij elk paginaverzoek
gaat zoeken naar de relevante informatie in de betreffende modellen. Hierdoor kunnen
modellen en databronnen worden aangepast terwijl de applicatie in gebruik is. Een
manier waarop we dit exploiteren is bij het toepassen van aspect-oriëntatie op het AM.
Aspect-orië ntatie geeft de mogelijkheid om dynamisch functionaliteit te injecteren dat
de gehele Web applicatie bëınvloedt. Nog een manier om de flexibiliteit van Hera-S te
exploiteren is middels het hergebruik van gespecialiseerde componenten, bijvoorbeeld
voor presentatie-generatie. We schetsen bijvoorbeeld een configuratie van Hydragen
waarin we onze standaard presentatiegeneratie-module vervangen door het AMACONT
platform. AMACONT heeft uitgebreidere meerlaagse presentatiegeneratie mogelijkheden
met de optie voor adaptatie, aspect-oriëntatie en semantisch gebaseerde adaptatie. Hera-S
was speciaal ontwikkeld om Semantisch Web databronnen te (her)gebruiken. Het staat
zelfs data-integratie toe aan de achterkant van het platform, door het gebruik van een
uitbreidbare opslaglaag in onze achterliggende database, Sesame. Deze mogelijkheid neemt
het eigenlijke data integratie probleem nog niet volledig weg. Aangezien dit een steeds
terugkerend probleem is in vele domeinen, en het dus een Hera-S overstijgend probleem
is, hebben we ervoor gekozen om dit probleem nader en in isolatie te onderzoeken. We
presenteren daarvoor een nieuw platform, genaamd Relco, dat een taal levert die kan
worden gebruikt om datatransformatie uit te drukken en daarnaast ook een collectie van
technieken aanbiedt die kunnen worden gebruikt voor het (semi-)automatisch vinden van
overeenkomsten tussen concepten in verschillende ontologieë n. Dit wordt gedaan met een
combinatie van syntactische, semantische en collaboratieve technieken, die samen sterke
hints opleveren voor welke concepten hoogstwaarschijnlijk aan elkaar verwant zijn.

Om de toepasbaarheid aan te tonen van Relco verkennen we het gebruik ervan in vijf
verschillende toepassingsscenario’s in verschillende domeinen, waarin data-integratie steeds
een centraal aspect vormt. Een van die toepassingen is een cultuurhistorische applicatie, χ
Explorer, waarin data van verschillende bronnen is gëıntegreerd en toegankelijk is gemaakt
met een kaartinterface, een tijdlijn en een graaf-gebaseerde interface. χ Explorer biedt
ook een mechanisme waarmee gebruikers metadata kunnen invoeren via een tagging-
mechanisme. Een andere applicatie is SenSee: een elektronische programmagids en
aanbeveler. Daarvoor is programmagidsinformatie verrijkt met gestructureerde data uit
verschillende bronnen. Aanbevelingen worden daarbij berekend door gebruik te maken
van die onderliggende semantische structuur. ViTa was een project waarin verschillende
‘label en zoek’ technieken werden geëvalueerd voor het ontsluiten van educatieve video’s.
In een van de scenario’s daarin werden labels van gebruikers gerelateerd aan concepten
in een ontologie of aan andere labels met behulp van het Relco raamwerk. Het MobiLife
project was er op gericht om een nieuwe generatie van mobiele applicaties mogelijk te
maken die gebruik maken van context-gebaseerde personalisatie. Dit kan worden gedaan
met een context gebaseerd gebruikersmodelleerplatform dat ook kan worden gebruikt voor
het uitwisselen van gebruikersgegevens met technologieën zoals Relco. Het laatste scenario
dat we hebben verkend is in het kader van het GRAPPLE project, waarin we tot doel
hadden om adaptieve technologieën te integreren met de huidige systemen voor training
en onderwijs. Een groot deel van deze integratie werd bewerkstelligd door middel van een
gebruiksmodelleerplatform waarin elke applicatie gebruikersgegevens kan opslaan en dat
ook kan worden gebruikt voor het uitwisselen van gebruikersgegevens.

Curriculum Vitae

Kees van der Sluijs was born on 22 July 1978 in Maasdriel, the Netherlands. After
completing pre-university education at the Stedelijk Gymnasium ’s-Hertogenbosch he
started his study onin technical computer science at the Technische Universiteit Eindhoven.
After writing a master thesis on the subject of “Searching the Semantic Web” he received
his M.Sc. degree in 2004.

Subsequently Kees started his Ph.D. research at the same department of Information
Systems at the Technische Universiteit Eindhoven. His research was part of the Hera
research program that combines research on Web information systems, including design
and engineering of WIS, automated adaptive presentation generation, Semantic Web tech-
nology, data integration and distribution, user profiling, enriched information delivery and
(Semantic) Web services. During his Ph.D. research he participated in several large national
and international projects. He has published more than two dozen publications, including
two bookchapters, journal publications, and publications in international conferences and
workshop proceedings. Kees also has teaching experience. He has been teaching within
several courses and has supervised a total of seven students for their Master’s projects and
subsequent theses.

Kees has worked as the project manager of the EU FP7 GRAPPLE Project between
2008 and 2011,. The main objective of GRAPPLE was supporting life-long learning by
means of a personalized and adaptive technology-enhanced learning (TEL) environment
that integrates with major learning management systems (LMSs) using a service-oriented
(Web) framework approach. GRAPPLE combined expertise scattered among some of the
core players in adaptive TEL in Europa, with the aim to integrate the benefits of the key
technologies in a modular way and also integrate or interface with large existing open
source and commercial LMSs.

Currently Kees works as an IT-specialist at the Ministry of the Interior and Kingdom
Relations (BZK), one of the eleven ministries of the Dutch central government.

Kees’ research interests include Web and Semantic Web technologies, Information
Systems, Distributed Databases, Web 2.0, Adaptive Hypermedia, Personalization and User
Modeling.

SIKS Dissertatiereeks
====
1998
====

1998-1 Johan van den Akker (CWI)
DEGAS - An Active, Temporal Database of Autonomous Objects

1998-2 Floris Wiesman (UM)
Information Retrieval by Graphically Browsing Meta-Information

1998-3 Ans Steuten (TUD)
A Contribution to the Linguistic Analysis of Business Conversations
within the Language/Action Perspective

1998-4 Dennis Breuker (UM)
Memory versus Search in Games

1998-5 E.W.Oskamp (RUL)
Computerondersteuning bij Straftoemeting

====
1999
====

1999-1 Mark Sloof (VU)
Physiology of Quality Change Modelling;
Automated modelling of Quality Change of Agricultural Products

1999-2 Rob Potharst (EUR)
Classification using decision trees and neural nets

1999-3 Don Beal (UM)
The Nature of Minimax Search

1999-4 Jacques Penders (UM)
The practical Art of Moving Physical Objects

1999-5 Aldo de Moor (KUB)
Empowering Communities: A Method for the Legitimate User-Driven
Specification of Network Information Systems

1999-6 Niek J.E. Wijngaards (VU)
Re-design of compositional systems

1999-7 David Spelt (UT)
Verification support for object database design

1999-8 Jacques H.J. Lenting (UM)
Informed Gambling: Conception and Analysis of a Multi-Agent
Mechanism for Discrete Reallocation.

====
2000
====

2000-1 Frank Niessink (VU)
Perspectives on Improving Software Maintenance

2000-2 Koen Holtman (TUE)
Prototyping of CMS Storage Management

2000-3 Carolien M.T. Metselaar (UVA)
Sociaal-organisatorische gevolgen van kennistechnologie;
een procesbenadering en actorperspectief.

2000-4 Geert de Haan (VU)
ETAG, A Formal Model of Competence Knowledge for User Interface Design

2000-5 Ruud van der Pol (UM)
Knowledge-based Query Formulation in Information Retrieval.

2000-6 Rogier van Eijk (UU)
Programming Languages for Agent Communication

2000-7 Niels Peek (UU)
Decision-theoretic Planning of Clinical Patient Management

2000-8 Veerle Coup (EUR)
Sensitivity Analyis of Decision-Theoretic Networks

2000-9 Florian Waas (CWI)
Principles of Probabilistic Query Optimization

2000-10 Niels Nes (CWI)
Image Database Management System Design Considerations,
Algorithms and Architecture

2000-11 Jonas Karlsson (CWI)
Scalable Distributed Data Structures for Database Management

====
2001
====

2001-1 Silja Renooij (UU)
Qualitative Approaches to Quantifying Probabilistic Networks

2001-2 Koen Hindriks (UU)
Agent Programming Languages: Programming with Mental Models

2001-3 Maarten van Someren (UvA)
Learning as problem solving

2001-4 Evgueni Smirnov (UM)
Conjunctive and Disjunctive Version Spaces with
Instance-Based Boundary Sets

2001-5 Jacco van Ossenbruggen (VU)
Processing Structured Hypermedia: A Matter of Style

2001-6 Martijn van Welie (VU)
Task-based User Interface Design

2001-7 Bastiaan Schonhage (VU)
Diva: Architectural Perspectives on Information Visualization

2001-8 Pascal van Eck (VU)
A Compositional Semantic Structure for Multi-Agent Systems Dynamics.

2001-9 Pieter Jan ’t Hoen (RUL)
Towards Distributed Development of Large Object-Oriented Models,
Views of Packages as Classes 2001-10 Maarten Sierhuis (UvA)
Modeling and Simulating Work Practice
BRAHMS: a multiagent modeling and simulation language
for work practice analysis and design

2001-11 Tom M. van Engers (VUA)
Knowledge Management:
The Role of Mental Models in Business Systems Design

====
2002
====

2002-01 Nico Lassing (VU)
Architecture-Level Modifiability Analysis

2002-02 Roelof van Zwol (UT)
Modelling and searching web-based document collections

2002-03 Henk Ernst Blok (UT)
Database Optimization Aspects for Information Retrieval

2002-04 Juan Roberto Castelo Valdueza (UU)
The Discrete Acyclic Digraph Markov Model in Data Mining

2002-05 Radu Serban (VU)
The Private Cyberspace Modeling Electronic Environments
inhabited by Privacy-concerned Agents

2002-06 Laurens Mommers (UL)
Applied legal epistemology;
Building a knowledge-based ontology of the legal domain

2002-07 Peter Boncz (CWI)
Monet: A Next-Generation DBMS Kernel For Query-Intensive Applications

2002-08 Jaap Gordijn (VU)
Value Based Requirements Engineering: Exploring Innovative
E-Commerce Ideas

2002-09 Willem-Jan van den Heuvel(KUB)
Integrating Modern Business Applications with Objectified Legacy Systems

2002-10 Brian Sheppard (UM)
Towards Perfect Play of Scrabble

2002-11 Wouter C.A. Wijngaards (VU)
Agent Based Modelling of Dynamics: Biological and Organisational Applications

2002-12 Albrecht Schmidt (Uva)
Processing XML in Database Systems

2002-13 Hongjing Wu (TUE)
A Reference Architecture for Adaptive Hypermedia Applications

2002-14 Wieke de Vries (UU)
Agent Interaction: Abstract Approaches to Modelling, Programming and
Verifying Multi-Agent Systems

2002-15 Rik Eshuis (UT)
Semantics and Verification of UML Activity Diagrams for Workflow Modelling

2002-16 Pieter van Langen (VU)
The Anatomy of Design: Foundations, Models and Applications

2002-17 Stefan Manegold (UVA)
Understanding, Modeling, and Improving Main-Memory Database Performance

====
2003
====

2003-01 Heiner Stuckenschmidt (VU)
Ontology-Based Information Sharing in Weakly Structured Environments

2003-02 Jan Broersen (VU)
Modal Action Logics for Reasoning About Reactive Systems

2003-03 Martijn Schuemie (TUD)
Human-Computer Interaction and Presence in Virtual Reality Exposure Therapy

2003-04 Milan Petkovic (UT)
Content-Based Video Retrieval Supported by Database Technology

2003-05 Jos Lehmann (UVA)
Causation in Artificial Intelligence and Law - A modelling approach

2003-06 Boris van Schooten (UT)
Development and specification of virtual environments

2003-07 Machiel Jansen (UvA)
Formal Explorations of Knowledge Intensive Tasks

2003-08 Yongping Ran (UM)
Repair Based Scheduling

2003-09 Rens Kortmann (UM)
The resolution of visually guided behaviour

2003-10 Andreas Lincke (UvT)
Electronic Business Negotiation: Some experimental studies on the interaction
between medium, innovation context and culture

2003-11 Simon Keizer (UT)
Reasoning under Uncertainty in Natural Language Dialogue using Bayesian Networks

2003-12 Roeland Ordelman (UT)
Dutch speech recognition in multimedia information retrieval

2003-13 Jeroen Donkers (UM)
Nosce Hostem - Searching with Opponent Models

2003-14 Stijn Hoppenbrouwers (KUN)
Freezing Language: Conceptualisation Processes across ICT-Supported Organisations

2003-15 Mathijs de Weerdt (TUD)
Plan Merging in Multi-Agent Systems

2003-16 Menzo Windhouwer (CWI)
Feature Grammar Systems - Incremental Maintenance of Indexes to
Digital Media Warehouses

2003-17 David Jansen (UT)
Extensions of Statecharts with Probability, Time, and Stochastic Timing

2003-18 Levente Kocsis (UM)
Learning Search Decisions

====
2004
====

2004-01 Virginia Dignum (UU)
A Model for Organizational Interaction: Based on Agents, Founded in Logic

2004-02 Lai Xu (UvT)
Monitoring Multi-party Contracts for E-business

2004-03 Perry Groot (VU)
A Theoretical and Empirical Analysis of Approximation in Symbolic Problem Solving

2004-04 Chris van Aart (UVA)
Organizational Principles for Multi-Agent Architectures

2004-05 Viara Popova (EUR)
Knowledge discovery and monotonicity

2004-06 Bart-Jan Hommes (TUD)
The Evaluation of Business Process Modeling Techniques

2004-07 Elise Boltjes (UM)
Voorbeeldig onderwijs; voorbeeldgestuurd onderwijs, een opstap naar
abstract denken, vooral voor meisjes

2004-08 Joop Verbeek(UM)
Politie en de Nieuwe Internationale Informatiemarkt, Grensregionale
politiële gegevensuitwisseling en digitale expertise

2004-09 Martin Caminada (VU)
For the Sake of the Argument; explorations into argument-based reasoning

2004-10 Suzanne Kabel (UVA)
Knowledge-rich indexing of learning-objects

2004-11 Michel Klein (VU)
Change Management for Distributed Ontologies

2004-12 The Duy Bui (UT)
Creating emotions and facial expressions for embodied agents

2004-13 Wojciech Jamroga (UT)
Using Multiple Models of Reality: On Agents who Know how to Play

2004-14 Paul Harrenstein (UU)
Logic in Conflict. Logical Explorations in Strategic Equilibrium

2004-15 Arno Knobbe (UU)
Multi-Relational Data Mining

2004-16 Federico Divina (VU)
Hybrid Genetic Relational Search for Inductive Learning

2004-17 Mark Winands (UM)
Informed Search in Complex Games

2004-18 Vania Bessa Machado (UvA)
Supporting the Construction of Qualitative Knowledge Models

2004-19 Thijs Westerveld (UT)
Using generative probabilistic models for multimedia retrieval

2004-20 Madelon Evers (Nyenrode)
Learning from Design: facilitating multidisciplinary design teams

====
2005
====

2005-01 Floor Verdenius (UVA)
Methodological Aspects of Designing Induction-Based Applications

2005-02 Erik van der Werf (UM))
AI techniques for the game of Go

2005-03 Franc Grootjen (RUN)
A Pragmatic Approach to the Conceptualisation of Language

2005-04 Nirvana Meratnia (UT)
Towards Database Support for Moving Object data

2005-05 Gabriel Infante-Lopez (UVA)
Two-Level Probabilistic Grammars for Natural Language Parsing

2005-06 Pieter Spronck (UM)
Adaptive Game AI

2005-07 Flavius Frasincar (TUE)
Hypermedia Presentation Generation for Semantic Web Information Systems

2005-08 Richard Vdovjak (TUE)
A Model-driven Approach for Building Distributed Ontology-based Web Applications

2005-09 Jeen Broekstra (VU)
Storage, Querying and Inferencing for Semantic Web Languages

2005-10 Anders Bouwer (UVA)
Explaining Behaviour: Using Qualitative Simulation in Interactive Learning Environments

2005-11 Elth Ogston (VU)
Agent Based Matchmaking and Clustering - A Decentralized Approach to Search

2005-12 Csaba Boer (EUR)
Distributed Simulation in Industry

2005-13 Fred Hamburg (UL)
Een Computermodel voor het Ondersteunen van Euthanasiebeslissingen

2005-14 Borys Omelayenko (VU)
Web-Service configuration on the Semantic Web; Exploring how semantics meets pragmatics

2005-15 Tibor Bosse (VU)
Analysis of the Dynamics of Cognitive Processes

2005-16 Joris Graaumans (UU)
Usability of XML Query Languages

2005-17 Boris Shishkov (TUD)
Software Specification Based on Re-usable Business Components

2005-18 Danielle Sent (UU)
Test-selection strategies for probabilistic networks

2005-19 Michel van Dartel (UM)
Situated Representation

2005-20 Cristina Coteanu (UL)
Cyber Consumer Law, State of the Art and Perspectives

2005-21 Wijnand Derks (UT)
Improving Concurrency and Recovery in Database Systems by
Exploiting Application Semantics

====
2006
====

2006-01 Samuil Angelov (TUE)
Foundations of B2B Electronic Contracting

2006-02 Cristina Chisalita (VU)
Contextual issues in the design and use of information technology in organizations

2006-03 Noor Christoph (UVA)
The role of metacognitive skills in learning to solve problems

2006-04 Marta Sabou (VU)
Building Web Service Ontologies

2006-05 Cees Pierik (UU)

Validation Techniques for Object-Oriented Proof Outlines
2006-06 Ziv Baida (VU)

Software-aided Service Bundling - Intelligent Methods & Tools
for Graphical Service Modeling

2006-07 Marko Smiljanic (UT)
XML schema matching – balancing efficiency and effectiveness by means of clustering

2006-08 Eelco Herder (UT)
Forward, Back and Home Again - Analyzing User Behavior on the Web

2006-09 Mohamed Wahdan (UM)
Automatic Formulation of the Auditor’s Opinion

2006-10 Ronny Siebes (VU)
Semantic Routing in Peer-to-Peer Systems

2006-11 Joeri van Ruth (UT)
Flattening Queries over Nested Data Types

2006-12 Bert Bongers (VU)
Interactivation - Towards an e-cology of people, our technological environment, and the arts

2006-13 Henk-Jan Lebbink (UU)
Dialogue and Decision Games for Information Exchanging Agents

2006-14 Johan Hoorn (VU)
Software Requirements: Update, Upgrade, Redesign - towards a Theory of Requirements Change

2006-15 Rainer Malik (UU)
CONAN: Text Mining in the Biomedical Domain

2006-16 Carsten Riggelsen (UU)
Approximation Methods for Efficient Learning of Bayesian Networks

2006-17 Stacey Nagata (UU)
User Assistance for Multitasking with Interruptions on a Mobile Device

2006-18 Valentin Zhizhkun (UVA)
Graph transformation for Natural Language Processing

2006-19 Birna van Riemsdijk (UU)
Cognitive Agent Programming: A Semantic Approach

2006-20 Marina Velikova (UvT)
Monotone models for prediction in data mining

2006-21 Bas van Gils (RUN)
Aptness on the Web

2006-22 Paul de Vrieze (RUN)
Fundaments of Adaptive Personalisation

2006-23 Ion Juvina (UU)
Development of Cognitive Model for Navigating on the Web

2006-24 Laura Hollink (VU)
Semantic Annotation for Retrieval of Visual Resources

2006-25 Madalina Drugan (UU)
Conditional log-likelihood MDL and Evolutionary MCMC

2006-26 Vojkan Mihajlovic (UT)
Score Region Algebra: A Flexible Framework for Structured Information Retrieval

2006-27 Stefano Bocconi (CWI)
Vox Populi: generating video documentaries from semantically annotated media repositories

2006-28 Borkur Sigurbjornsson (UVA)
Focused Information Access using XML Element Retrieval

====
2007
====

2007-01 Kees Leune (UvT)
Access Control and Service-Oriented Architectures

2007-02 Wouter Teepe (RUG)
Reconciling Information Exchange and Confidentiality: A Formal Approach

2007-03 Peter Mika (VU)
Social Networks and the Semantic Web

2007-04 Jurriaan van Diggelen (UU)
Achieving Semantic Interoperability in Multi-agent Systems: a dialogue-based approach

2007-05 Bart Schermer (UL)
Software Agents, Surveillance, and the Right to Privacy:
a Legislative Framework for Agent-enabled Surveillance

2007-06 Gilad Mishne (UVA)
Applied Text Analytics for Blogs

2007-07 Natasa Jovanovic’ (UT)
To Whom It May Concern - Addressee Identification in Face-to-Face Meetings

2007-08 Mark Hoogendoorn (VU)
Modeling of Change in Multi-Agent Organizations

2007-09 David Mobach (VU)
Agent-Based Mediated Service Negotiation

2007-10 Huib Aldewereld (UU)
Autonomy vs. Conformity: an Institutional Perspective on Norms and Protocols

2007-11 Natalia Stash (TUE)
Incorporating Cognitive/Learning Styles in a General-Purpose Adaptive Hypermedia System

2007-12 Marcel van Gerven (RUN)
Bayesian Networks for Clinical Decision Support:
A Rational Approach to Dynamic Decision-Making under Uncertainty

2007-13 Rutger Rienks (UT)
Meetings in Smart Environments; Implications of Progressing Technology

2007-14 Niek Bergboer (UM)
Context-Based Image Analysis

2007-15 Joyca Lacroix (UM)
NIM: a Situated Computational Memory Model

2007-16 Davide Grossi (UU)
Designing Invisible Handcuffs. Formal investigations in
Institutions and Organizations for Multi-agent Systems

2007-17 Theodore Charitos (UU)
Reasoning with Dynamic Networks in Practice

2007-18 Bart Orriens (UvT)
On the development an management of adaptive business collaborations

2007-19 David Levy (UM)
Intimate relationships with artificial partners

2007-20 Slinger Jansen (UU)
Customer Configuration Updating in a Software Supply Network

2007-21 Karianne Vermaas (UU)
Fast diffusion and broadening use: A research on residential adoption and usage of
broadband internet in the Netherlands between 2001 and 2005

2007-22 Zlatko Zlatev (UT)
Goal-oriented design of value and process models from patterns

2007-23 Peter Barna (TUE)
Specification of Application Logic in Web Information Systems

2007-24 Georgina Ramı́rez Camps (CWI)
Structural Features in XML Retrieval

2007-25 Joost Schalken (VU)
Empirical Investigations in Software Process Improvement

====
2008
====

2008-01 Katalin Boer-Sorbán (EUR)
Agent-Based Simulation of Financial Markets: A modular,continuous-time approach

2008-02 Alexei Sharpanskykh (VU)
On Computer-Aided Methods for Modeling and Analysis of Organizations

2008-03 Vera Hollink (UVA)
Optimizing hierarchical menus: a usage-based approach

2008-04 Ander de Keijzer (UT)
Management of Uncertain Data - towards unattended integration

2008-05 Bela Mutschler (UT)
Modeling and simulating causal dependencies on process-aware information systems
from a cost perspective

2008-06 Arjen Hommersom (RUN)
On the Application of Formal Methods to Clinical Guidelines, an Artificial Intelligence Perspective

2008-07 Peter van Rosmalen (OU)
Supporting the tutor in the design and support of adaptive e-learning

2008-08 Janneke Bolt (UU)
Bayesian Networks: Aspects of Approximate Inference

2008-09 Christof van Nimwegen (UU)
The paradox of the guided user: assistance can be counter-effective

2008-10 Wauter Bosma (UT)
Discourse oriented summarization

2008-11 Vera Kartseva (VU)
Designing Controls for Network Organizations: A Value-Based Approach

2008-12 Jozsef Farkas (RUN)
A Semiotically Oriented Cognitive Model of Knowledge Representation

2008-13 Caterina Carraciolo (UVA)
Topic Driven Access to Scientific Handbooks

2008-14 Arthur van Bunningen (UT)
Context-Aware Querying; Better Answers with Less Effort

2008-15 Martijn van Otterlo (UT)
The Logic of Adaptive Behavior: Knowledge Representation and Algorithms
for the Markov Decision Process Framework in First-Order Domains.

2008-16 Henriette van Vugt (VU)
Embodied agents from a user’s perspective

2008-17 Martin Op ’t Land (TUD)
Applying Architecture and Ontology to the Splitting and Allying of Enterprises

2008-18 Guido de Croon (UM)

Adaptive Active Vision
2008-19 Henning Rode (UT)

From Document to Entity Retrieval: Improving Precision and Performance of Focused Text Search
2008-20 Rex Arendsen (UVA)

Geen bericht, goed bericht. Een onderzoek naar de effecten van de introductie
van elektronisch berichtenverkeer met de overheid op de administratieve lasten van bedrijven

2008-21 Krisztian Balog (UVA)
People Search in the Enterprise

2008-22 Henk Koning (UU)
Communication of IT-Architecture

2008-23 Stefan Visscher (UU)
Bayesian network models for the management of ventilator-associated pneumonia

2008-24 Zharko Aleksovski (VU)
Using background knowledge in ontology matching

2008-25 Geert Jonker (UU)
Efficient and Equitable Exchange in Air Traffic Management Plan Repair
using Spender-signed Currency

2008-26 Marijn Huijbregts (UT)
Segmentation, Diarization and Speech Transcription: Surprise Data Unraveled

2008-27 Hubert Vogten (OU)
Design and Implementation Strategies for IMS Learning Design

2008-28 Ildiko Flesch (RUN)
On the Use of Independence Relations in Bayesian Networks

2008-29 Dennis Reidsma (UT)
Annotations and Subjective Machines - Of Annotators, Embodied Agents, Users, and Other Humans

2008-30 Wouter van Atteveldt (VU)
Semantic Network Analysis: Techniques for Extracting, Representing and Querying Media Content

2008-31 Loes Braun (UM)
Pro-Active Medical Information Retrieval

2008-32 Trung H. Bui (UT)
Toward Affective Dialogue Management using Partially Observable Markov Decision Processes

2008-33 Frank Terpstra (UVA)
Scientific Workflow Design; theoretical and practical issues

2008-34 Jeroen de Knijf (UU)
Studies in Frequent Tree Mining

2008-35 Ben Torben Nielsen (UvT)
Dendritic morphologies: function shapes structure

====
2009
====

2009-01 Rasa Jurgelenaite (RUN)
Symmetric Causal Independence Models

2009-02 Willem Robert van Hage (VU)
Evaluating Ontology-Alignment Techniques

2009-03 Hans Stol (UvT)
A Framework for Evidence-based Policy Making Using IT

2009-04 Josephine Nabukenya (RUN)
Improving the Quality of Organisational Policy Making using Collaboration Engineering

2009-05 Sietse Overbeek (RUN)
Bridging Supply and Demand for Knowledge Intensive Tasks -
Based on Knowledge, Cognition, and Quality

2009-06 Muhammad Subianto (UU)
Understanding Classification

2009-07 Ronald Poppe (UT)
Discriminative Vision-Based Recovery and Recognition of Human Motion

2009-08 Volker Nannen (VU)
Evolutionary Agent-Based Policy Analysis in Dynamic Environments

2009-09 Benjamin Kanagwa (RUN)
Design, Discovery and Construction of Service-oriented Systems

2009-10 Jan Wielemaker (UVA)
Logic programming for knowledge-intensive interactive applications

2009-11 Alexander Boer (UVA)
Legal Theory, Sources of Law & the Semantic Web

2009-12 Peter Massuthe (TUE, Humboldt-Universitaet zu Berlin)
Operating Guidelines for Services

2009-13 Steven de Jong (UM)
Fairness in Multi-Agent Systems

2009-14 Maksym Korotkiy (VU)
From ontology-enabled services to service-enabled ontologies
(making ontologies work in e-science with ONTO-SOA)

2009-15 Rinke Hoekstra (UVA)
Ontology Representation - Design Patterns and Ontologies that Make Sense

2009-16 Fritz Reul (UvT)
New Architectures in Computer Chess

2009-17 Laurens van der Maaten (UvT)
Feature Extraction from Visual Data

2009-18 Fabian Groffen (CWI)
Armada, An Evolving Database System

2009-19 Valentin Robu (CWI)
Modeling Preferences, Strategic Reasoning and Collaboration in Agent-Mediated Electronic Markets

2009-20 Bob van der Vecht (UU)
Adjustable Autonomy: Controling Influences on Decision Making

2009-21 Stijn Vanderlooy (UM)
Ranking and Reliable Classification

2009-22 Pavel Serdyukov (UT)
Search For Expertise: Going beyond direct evidence

2009-23 Peter Hofgesang (VU)
Modelling Web Usage in a Changing Environment

2009-24 Annerieke Heuvelink (VUA)
Cognitive Models for Training Simulations

2009-25 Alex van Ballegooij (CWI)
”RAM: Array Database Management through Relational Mapping”

2009-26 Fernando Koch (UU)
An Agent-Based Model for the Development of Intelligent Mobile Services

2009-27 Christian Glahn (OU)
Contextual Support of social Engagement and Reflection on the Web

2009-28 Sander Evers (UT)
Sensor Data Management with Probabilistic Models

2009-29 Stanislav Pokraev (UT)
Model-Driven Semantic Integration of Service-Oriented Applications

2009-30 Marcin Zukowski (CWI)
Balancing vectorized query execution with bandwidth-optimized storage

2009-31 Sofiya Katrenko (UVA)
A Closer Look at Learning Relations from Text

2009-32 Rik Farenhorst (VU) and Remco de Boer (VU)
Architectural Knowledge Management: Supporting Architects and Auditors

2009-33 Khiet Truong (UT)
How Does Real Affect Affect Affect Recognition In Speech?

2009-34 Inge van de Weerd (UU)
Advancing in Software Product Management: An Incremental Method Engineering Approach

2009-35 Wouter Koelewijn (UL)
Privacy en Politiegegevens; Over geautomatiseerde normatieve informatie-uitwisseling

2009-36 Marco Kalz (OUN)
Placement Support for Learners in Learning Networks

2009-37 Hendrik Drachsler (OUN)
Navigation Support for Learners in Informal Learning Networks

2009-38 Riina Vuorikari (OU)
Tags and self-organisation: a metadata ecology for learning resources in a multilingual context

2009-39 Christian Stahl (TUE, Humboldt-Universitaet zu Berlin)
Service Substitution – A Behavioral Approach Based on Petri Nets

2009-40 Stephan Raaijmakers (UvT)
Multinomial Language Learning: Investigations into the Geometry of Language

2009-41 Igor Berezhnyy (UvT)
Digital Analysis of Paintings

2009-42 Toine Bogers
Recommender Systems for Social Bookmarking

2009-43 Virginia Nunes Leal Franqueira (UT)
Finding Multi-step Attacks in Computer Networks using Heuristic Search and Mobile Ambients

2009-44 Roberto Santana Tapia (UT)
Assessing Business-IT Alignment in Networked Organizations

2009-45 Jilles Vreeken (UU)
Making Pattern Mining Useful

2009-46 Loredana Afanasiev (UvA)
Querying XML: Benchmarks and Recursion

====
2010
====

2010-01 Matthijs van Leeuwen (UU)
Patterns that Matter

2010-02 Ingo Wassink (UT)
Work flows in Life Science

2010-03 Joost Geurts (CWI)
A Document Engineering Model and Processing Framework for Multimedia documents

2010-04 Olga Kulyk (UT)

Do You Know What I Know? Situational Awareness of Co-located Teams
in Multidisplay Environments

2010-05 Claudia Hauff (UT)
Predicting the Effectiveness of Queries and Retrieval Systems

2010-06 Sander Bakkes (UvT)
Rapid Adaptation of Video Game AI

2010-07 Wim Fikkert (UT)
Gesture interaction at a Distance

2010-08 Krzysztof Siewicz (UL)
Towards an Improved Regulatory Framework of Free Software.
Protecting user freedoms in a world of software communities and eGovernments

2010-09 Hugo Kielman (UL)
A Politiele gegevensverwerking en Privacy, Naar een effectieve waarborging

2010-10 Rebecca Ong (UL)
Mobile Communication and Protection of Children 2010-11 Adriaan Ter Mors (TUD)
The world according to MARP: Multi-Agent Route Planning

2010-12 Susan van den Braak (UU)
Sensemaking software for crime analysis

2010-13 Gianluigi Folino (RUN)
High Performance Data Mining using Bio-inspired techniques

2010-14 Sander van Splunter (VU)
Automated Web Service Reconfiguration

2010-15 Lianne Bodenstaff (UT)
Managing Dependency Relations in Inter-Organizational Models

2010-16 Sicco Verwer (TUD)
Efficient Identification of Timed Automata, theory and practice

2010-17 Spyros Kotoulas (VU)
Scalable Discovery of Networked Resources: Algorithms, Infrastructure, Applications

2010-18 Charlotte Gerritsen (VU)
Caught in the Act: Investigating Crime by Agent-Based Simulation

2010-19 Henriette Cramer (UvA)
People’s Responses to Autonomous and Adaptive Systems

2010-20 Ivo Swartjes (UT)
Whose Story Is It Anyway? How Improv Informs Agency and Authorship of Emergent Narrative

2010-21 Harold van Heerde (UT)
Privacy-aware data management by means of data degradation

2010-22 Michiel Hildebrand (CWI)
End-user Support for Access to Heterogeneous Linked Data

2010-23 Bas Steunebrink (UU)
The Logical Structure of Emotions

2010-24 Dmytro Tykhonov
Designing Generic and Efficient Negotiation Strategies

2010-25 Zulfiqar Ali Memon (VU)
Modelling Human-Awareness for Ambient Agents: A Human Mindreading Perspective

2010-26 Ying Zhang (CWI)
XRPC: Efficient Distributed Query Processing on Heterogeneous XQuery Engines

2010-27 Marten Voulon (UL)
Automatisch contracteren

2010-28 Arne Koopman (UU)
Characteristic Relational Patterns

2010-29 Stratos Idreos(CWI)
Database Cracking: Towards Auto-tuning Database Kernels

2010-30 Marieke van Erp (UvT)
Accessing Natural History - Discoveries in data cleaning, structuring, and retrieval

2010-31 Victor de Boer (UVA)
Ontology Enrichment from Heterogeneous Sources on the Web

2010-32 Marcel Hiel (UvT)
An Adaptive Service Oriented Architecture: Automatically solving Interoperability Problems

2010-33 Robin Aly (UT)
Modeling Representation Uncertainty in Concept-Based Multimedia Retrieval

2010-34 Teduh Dirgahayu (UT)
Interaction Design in Service Compositions

2010-35 Dolf Trieschnigg (UT)
Proof of Concept: Concept-based Biomedical Information Retrieval

2010-36 Jose Janssen (OU)
Paving the Way for Lifelong Learning; Facilitating competence development
through a learning path specification

2010-37 Niels Lohmann (TUE)
Correctness of services and their composition

2010-38 Dirk Fahland (TUE)
From Scenarios to components

2010-39 Ghazanfar Farooq Siddiqui (VU)
Integrative modeling of emotions in virtual agents

2010-40 Mark van Assem (VU)

Converting and Integrating Vocabularies for the Semantic Web
2010-41 Guillaume Chaslot (UM)

Monte-Carlo Tree Search
2010-42 Sybren de Kinderen (VU)

Needs-driven service bundling in a multi-supplier setting - the computational e3-service approach
2010-43 Peter van Kranenburg (UU)

A Computational Approach to Content-Based Retrieval of Folk Song Melodies
2010-44 Pieter Bellekens (TUE)

An Approach towards Context-sensitive and User-adapted Access to Heterogeneous Data Sources,
Illustrated in the Television Domain

2010-45 Vasilios Andrikopoulos (UvT)
A theory and model for the evolution of software services

2010-46 Vincent Pijpers (VU)
e3alignment: Exploring Inter-Organizational Business-ICT Alignment

2010-47 Chen Li (UT)
Mining Process Model Variants: Challenges, Techniques, Examples

2010-48 Milan Lovric (EUR)
Behavioral Finance and Agent-Based Artificial Markets

2010-49 Jahn-Takeshi Saito (UM)
Solving difficult game positions

2010-50 Bouke Huurnink (UVA)
Search in Audiovisual Broadcast Archives

2010-51 Alia Khairia Amin (CWI)
Understanding and supporting information seeking tasks in multiple sources

2010-52 Peter-Paul van Maanen (VU)
Adaptive Support for Human-Computer Teams: Exploring the Use of Cognitive Models
of Trust and Attention

2010-53 Edgar Meij (UVA)
Combining Concepts and Language Models for Information Access

====
2011
====

2011-01 Botond Cseke (RUN)
Variational Algorithms for Bayesian Inference in Latent Gaussian Models

2011-02 Nick Tinnemeier(UU)
Organizing Agent Organizations. Syntax and Operational Semantics of
an Organization-Oriented Programming Language

2011-03 Jan Martijn van der Werf (TUE)
Compositional Design and Verification of Component-Based Information Systems

2011-04 Hado van Hasselt (UU)
Insights in Reinforcement Learning; Formal analysis and empirical evaluation of
temporal-difference learning algorithms

2011-05 Base van der Raadt (VU)
Enterprise Architecture Coming of Age - Increasing the Performance of an Emerging Discipline.

2011-06 Yiwen Wang (TUE)
Semantically-Enhanced Recommendations in Cultural Heritage

2011-07 Yujia Cao (UT)
Multimodal Information Presentation for High Load Human Computer Interaction

2011-08 Nieske Vergunst (UU)
BDI-based Generation of Robust Task-Oriented Dialogues 2011-09 Tim de Jong (OU)
Contextualised Mobile Media for Learning

2011-10 Bart Bogaert (UvT)
Cloud Content Contention

2011-11 Dhaval Vyas (UT)
Designing for Awareness: An Experience-focused HCI Perspective

2011-12 Carmen Bratosin (TUE)
Grid Architecture for Distributed Process Mining

2011-13 Xiaoyu Mao (UvT)
Airport under Control. Multiagent Scheduling for Airport Ground Handling

2011-14 Milan Lovric (EUR)
Behavioral Finance and Agent-Based Artificial Markets

2011-15 Marijn Koolen (UvA)
The Meaning of Structure: the Value of Link Evidence for Information Retrieval

2011-16 Maarten Schadd (UM)
Selective Search in Games of Different Complexity

2011-17 Jiyin He (UVA)
Exploring Topic Structure: Coherence, Diversity and Relatedness

2011-18 Mark Ponsen (UM)
Strategic Decision-Making in complex games

2011-19 Ellen Rusman (OU)
The Mind ’ s Eye on Personal Profiles

2011-20 Qing Gu (VU)

Guiding service-oriented software engineering - A view-based approach
2011-21 Linda Terlouw (TUD)

Modularization and Specification of Service-Oriented Systems
2011-22 Junte Zhang (UVA)

System Evaluation of Archival Description and Access
2011-23 Wouter Weerkamp (UVA)

Finding People and their Utterances in Social Media
2011-24 Herwin van Welbergen (UT)

Behavior Generation for Interpersonal Coordination with Virtual Humans On Specifying,
Scheduling and Realizing Multimodal Virtual Human Behavior

2011-25 Syed Waqar ul Qounain Jaffry (VU)
Analysis and Validation of Models for Trust Dynamics

2011-26 Matthijs Aart Pontier (VU)
Virtual Agents for Human Communication - Emotion Regulation and Involvement-Distance
Trade-Offs in Embodied Conversational Agents and Robots

2011-27 Aniel Bhulai (VU)
Dynamic website optimization through autonomous management of design patterns

2011-28 Rianne Kaptein(UVA)
Effective Focused Retrieval by Exploiting Query Context and Document Structure

2011-29 Faisal Kamiran (TUE)
Discrimination-aware Classification

2011-30 Egon van den Broek (UT)
Affective Signal Processing (ASP): Unraveling the mystery of emotions

2011-31 Ludo Waltman (EUR)
Computational and Game-Theoretic Approaches for Modeling Bounded Rationality

2011-32 Nees-Jan van Eck (EUR)
Methodological Advances in Bibliometric Mapping of Science

2011-33 Tom van der Weide (UU)
Arguing to Motivate Decisions

2011-34 Paolo Turrini (UU)
Strategic Reasoning in Interdependence: Logical and Game-theoretical Investigations

2011-35 Maaike Harbers (UU)
Explaining Agent Behavior in Virtual Training

2011-36 Erik van der Spek (UU)
Experiments in serious game design: a cognitive approach

2011-37 Adriana Burlutiu (RUN)
Machine Learning for Pairwise Data, Applications for Preference Learning
and Supervised Network Inference

2011-38 Nyree Lemmens (UM)
Bee-inspired Distributed Optimization

2011-39 Joost Westra (UU)
Organizing Adaptation using Agents in Serious Games

2011-40 Viktor Clerc (VU)
Architectural Knowledge Management in Global Software Development

2011-41 Luan Ibraimi (UT)
Cryptographically Enforced Distributed Data Access Control

2011-42 Michal Sindlar (UU)
Explaining Behavior through Mental State Attribution

2011-43 Henk van der Schuur (UU)
Process Improvement through Software Operation Knowledge

2011-44 Boris Reuderink (UT)
Robust Brain-Computer Interfaces

2011-45 Herman Stehouwer (UvT)
Statistical Language Models for Alternative Sequence Selection

2011-46 Beibei Hu (TUD)
Towards Contextualized Information Delivery: A Rule-based Architecture
for the Domain of Mobile Police Work

2011-47 Azizi Bin Ab Aziz(VU)
Exploring Computational Models for Intelligent Support of Persons with Depression

2011-48 Mark Ter Maat (UT)
Response Selection and Turn-taking for a Sensitive Artificial Listening Agent

2011-49 Andreea Niculescu (UT)
Conversational interfaces for task-oriented spoken dialogues:
design aspects influencing interaction quality

====
2012
====

2012-01 Terry Kakeeto (UvT)
Relationship Marketing for SMEs in Uganda

2012-02 Muhammad Umair(VU)
Adaptivity, emotion, and Rationality in Human and Ambient Agent Models

2012-03 Adam Vanya (VU)

Supporting Architecture Evolution by Mining Software Repositories
2012-04 Jurriaan Souer (UU)

Development of Content Management System-based Web Applications
2012-05 Marijn Plomp (UU)

Maturing Interorganisational Information Systems
2012-06 Wolfgang Reinhardt (OU)

Awareness Support for Knowledge Workers in Research Networks
2012-07 Rianne van Lambalgen (VU)

When the Going Gets Tough: Exploring Agent-based Models of
Human Performance under Demanding Conditions

2012-08 Gerben de Vries (UVA)
Kernel Methods for Vessel Traject

2012-09 Ricardo Neisse (UT)
Trust and Privacy Management Support for Context-Aware Service Platforms

2012-10 David Smits (TUE)
Towards a Generic Distributed Adaptive Hypermedia Environment

2012-11 J.C.B. Rantham Prabhakara (TUE)
Process Mining in the Large: Preprocessing, Discovery, and Diagnostics

2012-12 Kees van der Sluijs (TUE)
Model Driven Design and Data Integration in Semantic Web Information Systems

	Preface
	Introduction
	Motivation
	Problems and Research Goals
	Outline of the Dissertation

	Related Work
	Web Development
	Semantic Web
	Languages of the Semantic Web
	XML
	RDF(S)
	OWL
	SPARQL
	Rules
	Linked Open Data
	Tagging

	Web Information Systems
	WebML
	OOHDM
	UWE
	OOWS
	Related Fields

	Summary

	Hera-S
	Introduction
	Method
	Data Modeling
	Application Model
	Units, Attributes and Relationships
	Adaptation Examples
	Other constructs

	Presentation Model
	Implementation
	Summary

	Extending Hera-S
	Introduction
	Data Integration in Hera-S
	Model Builders
	Modeling Aspects in Hera-S
	Introduction
	Related work
	Aspect-Oriented Adaptation Engineering
	Implementation

	Presentation Generation
	Aspect-Orientation in AMACONT
	Semantics-Based Adaptation

	Summary

	Data Integration Using SW-based Techniques
	Introduction
	Data Coupling
	Vocabularies
	Data Transformation
	Data exchange
	Transformation scenario
	Transformation using SWRL
	Transformation using customized SPARQL queries

	Automating Relation Discovery
	String Matching Techniques
	Utilizing Helper Ontologies
	Using Context for Disambiguation
	Using User Feedback
	Implementation and Performance

	Summary

	Applications of Data Integration
	Chi Explorer
	Semantic Integration
	Navigation and Visualization
	User-generated Metadata
	Evaluation
	Related Work

	The SenSee TV-Recommender
	SenSee Architecture
	Semantic Integration
	Inference, Query Expansion and Recommendation
	Related Work

	The ViTa Educational Videos
	Semantic Integration of User Tags
	Evaluation

	Summary

	Exchanging User Models
	Introduction
	User Model Context
	Semantic Heterogeneity

	MobiLife
	General architecture
	User Model Context
	Applications

	Grapple
	GALE
	Overall Architecture
	GUMF

	GAL
	Extending GAL
	Types of Adaptation
	Formal Specification

	Summary

	Conclusions and Future Work
	Conclusions
	Contributions
	Future Work
	Hera
	Relco
	Cultural Heritage
	SenSee
	GRAPPLE

	Bibliography
	List of Publications
	Abbreviations
	Summary
	Samenvatting
	Curriculum Vitae

