34 research outputs found

    Measure of similarity between GMMs by embedding of the parameter space that preserves KL divergence

    Get PDF
    In this work, we deliver a novel measure of similarity between Gaussian mixture models (GMMs) by neighborhood preserving embedding (NPE) of the parameter space, that projects components of GMMs, which by our assumption lie close to lower dimensional manifold. By doing so, we obtain a transformation from the original high-dimensional parameter space, into a much lower-dimensional resulting parameter space. Therefore, resolving the distance between two GMMs is reduced to (taking the account of the corresponding weights) calculating the distance between sets of lower-dimensional Euclidean vectors. Much better trade-off between the recognition accuracy and the computational complexity is achieved in comparison to measures utilizing distances between Gaussian components evaluated in the original parameter space. The proposed measure is much more efficient in machine learning tasks that operate on large data sets, as in such tasks, the required number of overall Gaussian components is always large. Artificial, as well as real-world experiments are conducted, showing much better trade-off between recognition accuracy and computational complexity of the proposed measure, in comparison to all baseline measures of similarity between GMMs tested in this paper.Web of Science99art. no. 95

    Subspace discovery for video anomaly detection

    Get PDF
    PhDIn automated video surveillance anomaly detection is a challenging task. We address this task as a novelty detection problem where pattern description is limited and labelling information is available only for a small sample of normal instances. Classification under these conditions is prone to over-fitting. The contribution of this work is to propose a novel video abnormality detection method that does not need object detection and tracking. The method is based on subspace learning to discover a subspace where abnormality detection is easier to perform, without the need of detailed annotation and description of these patterns. The problem is formulated as one-class classification utilising a low dimensional subspace, where a novelty classifier is used to learn normal actions automatically and then to detect abnormal actions from low-level features extracted from a region of interest. The subspace is discovered (using both labelled and unlabelled data) by a locality preserving graph-based algorithm that utilises the Graph Laplacian of a specially designed parameter-less nearest neighbour graph. The methodology compares favourably with alternative subspace learning algorithms (both linear and non-linear) and direct one-class classification schemes commonly used for off-line abnormality detection in synthetic and real data. Based on these findings, the framework is extended to on-line abnormality detection in video sequences, utilising multiple independent detectors deployed over the image frame to learn the local normal patterns and infer abnormality for the complete scene. The method is compared with an alternative linear method to establish advantages and limitations in on-line abnormality detection scenarios. Analysis shows that the alternative approach is better suited for cases where the subspace learning is restricted on the labelled samples, while in the presence of additional unlabelled data the proposed approach using graph-based subspace learning is more appropriate

    Neighborhood analysis methods in acoustic modeling for automatic speech recognition

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 121-134).This thesis investigates the problem of using nearest-neighbor based non-parametric methods for performing multi-class class-conditional probability estimation. The methods developed are applied to the problem of acoustic modeling for speech recognition. Neighborhood components analysis (NCA) (Goldberger et al. [2005]) serves as the departure point for this study. NCA is a non-parametric method that can be seen as providing two things: (1) low-dimensional linear projections of the feature space that allow nearest-neighbor algorithms to perform well, and (2) nearest-neighbor based class-conditional probability estimates. First, NCA is used to perform dimensionality reduction on acoustic vectors, a commonly addressed problem in speech recognition. NCA is shown to perform competitively with another commonly employed dimensionality reduction technique in speech known as heteroscedastic linear discriminant analysis (HLDA) (Kumar [1997]). Second, a nearest neighbor-based model related to NCA is created to provide a class-conditional estimate that is sensitive to the possible underlying relationship between the acoustic-phonetic labels. An embedding of the labels is learned that can be used to estimate the similarity or confusability between labels. This embedding is related to the concept of error-correcting output codes (ECOC) and therefore the proposed model is referred to as NCA-ECOC. The estimates provided by this method along with nearest neighbor information is shown to provide improvements in speech recognition performance (2.5% relative reduction in word error rate). Third, a model for calculating class-conditional probability estimates is proposed that generalizes GMM, NCA, and kernel density approaches. This model, called locally-adaptive neighborhood components analysis, LA-NCA, learns different low-dimensional projections for different parts of the space. The models exploits the fact that in different parts of the space different directions may be important for discrimination between the classes. This model is computationally intensive and prone to over-fitting, so methods for sub-selecting neighbors used for providing the classconditional estimates are explored. The estimates provided by LA-NCA are shown to give significant gains in speech recognition performance (7-8% relative reduction in word error rate) as well as phonetic classification.by Natasha Singh-Miller.Ph.D

    Mera sličnosti između modela Gausovih smeša zasnovana na transformaciji prostora parametara

    No full text
    Predmet istraživanja ovog rada je istraživanje i eksploatacija mogućnosti da parametri Gausovih komponenti korišćenih Gaussian mixture modela  (GMM) aproksimativno leže na niže dimenzionalnoj površi umetnutoj u konusu pozitivno definitnih matrica. U tu svrhu uvodimo novu, mnogo efikasniju meru sličnosti između GMM-ova projektovanjem LPP-tipa parametara komponenti iz više dimenzionalnog parametarskog originalno konfiguracijskog prostora u prostor značajno niže dimenzionalnosti. Prema tome, nalaženje distance između dva GMM-a iz originalnog prostora se redukuje na nalaženje distance između dva skupa niže dimenzionalnih euklidskih vektora, ponderisanih odgovarajućim težinama. Predložena mera je pogodna za primene koje zahtevaju visoko dimenzionalni prostor obeležja i/ili veliki ukupan broj Gausovih komponenti. Razrađena metodologija je primenjena kako na sintetičkim tako i na realnim eksperimentalnim podacima.This thesis studies the possibility that the parameters of Gaussian components of a particular Gaussian Mixture Model (GMM) lie approximately on a lower-dimensional surface embedded in the cone of positive definite matrices. For that case, we deliver novel, more efficient similarity measure between GMMs, by LPP-like projecting the components of a particular GMM, from the high dimensional original parameter space, to a much lower dimensional space. Thus, finding the distance between two GMMs in the original space is reduced to finding the distance between sets of lower dimensional euclidian vectors, pondered by corresponding weights. The proposed measure is suitable for applications that utilize high dimensional feature spaces and/or large overall number of Gaussian components. We confirm our results on artificial, as well as real experimental data

    Subspace and graph methods to leverage auxiliary data for limited target data multi-class classification, applied to speaker verification

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 127-130).Multi-class classification can be adversely affected by the absence of sufficient target (in-class) instances for training. Such cases arise in face recognition, speaker verification, and document classification, among others. Auxiliary data-sets, which contain a diverse sampling of non-target instances, are leveraged in this thesis using subspace and graph methods to improve classification where target data is limited. The auxiliary data is used to define a compact representation that maps instances into a vector space where inner products quantify class similarity. Within this space, an estimate of the subspace that constitutes within-class variability (e.g. the recording channel in speaker verification or the illumination conditions in face recognition) can be obtained using class-labeled auxiliary data. This thesis proposes a way to incorporate this estimate into the SVM framework to perform nuisance compensation, thus improving classification performance. Another contribution is a framework that combines mapping and compensation into a single linear comparison, which motivates computationally inexpensive and accurate comparison functions. A key aspect of the work takes advantage of efficient pairwise comparisons between the training, test, and auxiliary instances to characterize their interaction within the vector space, and exploits it for improved classification in three ways. The first uses the local variability around the train and test instances to reduce false-alarms. The second assumes the instances lie on a low-dimensional manifold and uses the distances along the manifold. The third extracts relational features from a similarity graph where nodes correspond to the training, test and auxiliary instances. To quantify the merit of the proposed techniques, results of experiments in speaker verification are presented where only a single target recording is provided to train the classifier. Experiments are preformed on standard NIST corpora and methods are compared using standard evalutation metrics: detection error trade-off curves, minimum decision costs, and equal error rates.by Zahi Nadim Karam.Ph.D

    Mera sličnosti između modela Gausovih smeša zasnovana na transformaciji prostora parametara

    Get PDF
    Predmet istraživanja ovog rada je istraživanje i eksploatacija mogućnosti da parametri Gausovih komponenti korišćenih Gaussian mixture modela  (GMM) aproksimativno leže na niže dimenzionalnoj površi umetnutoj u konusu pozitivno definitnih matrica. U tu svrhu uvodimo novu, mnogo efikasniju meru sličnosti između GMM-ova projektovanjem LPP-tipa parametara komponenti iz više dimenzionalnog parametarskog originalno konfiguracijskog prostora u prostor značajno niže dimenzionalnosti. Prema tome, nalaženje distance između dva GMM-a iz originalnog prostora se redukuje na nalaženje distance između dva skupa niže dimenzionalnih euklidskih vektora, ponderisanih odgovarajućim težinama. Predložena mera je pogodna za primene koje zahtevaju visoko dimenzionalni prostor obeležja i/ili veliki ukupan broj Gausovih komponenti. Razrađena metodologija je primenjena kako na sintetičkim tako i na realnim eksperimentalnim podacima.This thesis studies the possibility that the parameters of Gaussian components of a particular Gaussian Mixture Model (GMM) lie approximately on a lower-dimensional surface embedded in the cone of positive definite matrices. For that case, we deliver novel, more efficient similarity measure between GMMs, by LPP-like projecting the components of a particular GMM, from the high dimensional original parameter space, to a much lower dimensional space. Thus, finding the distance between two GMMs in the original space is reduced to finding the distance between sets of lower dimensional euclidian vectors, pondered by corresponding weights. The proposed measure is suitable for applications that utilize high dimensional feature spaces and/or large overall number of Gaussian components. We confirm our results on artificial, as well as real experimental data

    Machine Learning

    Get PDF
    Machine Learning can be defined in various ways related to a scientific domain concerned with the design and development of theoretical and implementation tools that allow building systems with some Human Like intelligent behavior. Machine learning addresses more specifically the ability to improve automatically through experience

    Deep Grassmann Manifold Optimization for Computer Vision

    Get PDF
    In this work, we propose methods that advance four areas in the field of computer vision: dimensionality reduction, deep feature embeddings, visual domain adaptation, and deep neural network compression. We combine concepts from the fields of manifold geometry and deep learning to develop cutting edge methods in each of these areas. Each of the methods proposed in this work achieves state-of-the-art results in our experiments. We propose the Proxy Matrix Optimization (PMO) method for optimization over orthogonal matrix manifolds, such as the Grassmann manifold. This optimization technique is designed to be highly flexible enabling it to be leveraged in many situations where traditional manifold optimization methods cannot be used. We first use PMO in the field of dimensionality reduction, where we propose an iterative optimization approach to Principal Component Analysis (PCA) in a framework called Proxy Matrix optimization based PCA (PM-PCA). We also demonstrate how PM-PCA can be used to solve the general LpL_p-PCA problem, a variant of PCA that uses arbitrary fractional norms, which can be more robust to outliers. We then present Cascaded Projection (CaP), a method which uses tensor compression based on PMO, to reduce the number of filters in deep neural networks. This, in turn, reduces the number of computational operations required to process each image with the network. Cascaded Projection is the first end-to-end trainable method for network compression that uses standard backpropagation to learn the optimal tensor compression. In the area of deep feature embeddings, we introduce Deep Euclidean Feature Representations through Adaptation on the Grassmann manifold (DEFRAG), that leverages PMO. The DEFRAG method improves the feature embeddings learned by deep neural networks through the use of auxiliary loss functions and Grassmann manifold optimization. Lastly, in the area of visual domain adaptation, we propose the Manifold-Aligned Label Transfer for Domain Adaptation (MALT-DA) to transfer knowledge from samples in a known domain to an unknown domain based on cross-domain cluster correspondences

    Re-identifying people in the crowd

    Get PDF
    Developing an automated surveillance system is of great interest for various reasons including forensic and security applications. In the case of a network of surveillance cameras with non-overlapping fields of view, person detection and tracking alone are insufficient to track a subject of interest across the network. In this case, instances of a person captured in one camera view need to be retrieved among a gallery of different people, in other camera views. This vision problem is commonly known as person re-identification (re-id). Cross-view instances of pedestrians exhibit varied levels of illumination, viewpoint, and pose variations which makes the problem very challenging. Despite recent progress towards improving accuracy, existing systems suffer from low applicability to real-world scenarios. This is mainly caused by the need for large amounts of annotated data from pairwise camera views to be available for training. Given the difficulty of obtaining such data and annotating it, this thesis aims to bring the person re-id problem a step closer to real-world deployment. In the first contribution, the single-shot protocol, where each individual is represented by a pair of images that need to be matched, is considered. Following the extensive annotation of four datasets for six attributes, an evaluation of the most widely used feature extraction schemes is conducted. The results reveal two high-performing descriptors among those evaluated, and show illumination variation to have the most impact on re-id accuracy. Motivated by the wide availability of videos from surveillance cameras and the additional visual and temporal information they provide, video-based person re-id is then investigated, and a su-pervised system is developed. This is achieved by improving and extending the best performing image-based person descriptor into three dimensions and combining it with distance metric learn-ing. The system obtained achieves state-of-the-art results on two widely used datasets. Given the cost and difficulty of obtaining labelled data from pairwise cameras in a network to train the model, an unsupervised video-based person re-id method is also developed. It is based on a set-based distance measure that leverages rank vectors to estimate the similarity scores between person tracklets. The proposed system outperforms other unsupervised methods by a large margin on two datasets while competing with deep learning methods on another large-scale dataset
    corecore