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Abstract: In this work, we deliver a novel measure of similarity between Gaussian mixture mod-
els (GMMs) by neighborhood preserving embedding (NPE) of the parameter space, that projects
components of GMMs, which by our assumption lie close to lower dimensional manifold. By doing
so, we obtain a transformation from the original high-dimensional parameter space, into a much
lower-dimensional resulting parameter space. Therefore, resolving the distance between two GMMs
is reduced to (taking the account of the corresponding weights) calculating the distance between sets
of lower-dimensional Euclidean vectors. Much better trade-off between the recognition accuracy and
the computational complexity is achieved in comparison to measures utilizing distances between
Gaussian components evaluated in the original parameter space. The proposed measure is much
more efficient in machine learning tasks that operate on large data sets, as in such tasks, the required
number of overall Gaussian components is always large. Artificial, as well as real-world experiments
are conducted, showing much better trade-off between recognition accuracy and computational
complexity of the proposed measure, in comparison to all baseline measures of similarity between
GMMs tested in this paper.

Keywords: Gaussian mixture models; similarity measures; dimensionality reduction; KL-divergence

1. Introduction

The Gaussian Mixture Models have been used for many years in pattern recognition,
computer vision, and other machine learning systems, due to their vast capability to model
arbitrary distributions and their simplicity. The comparison between two GMMs plays an
important role in many classification problems in the areas of machine learning and pattern
recognition, due to the fact that arbitrary pdf could be successfully modeled by a GMM,
knowing the exact number of “modes” of that particular pdf. Those problems include,
but are not limited to speaker verification and/or recognition [1], content-based image
matching and retrieval [2,3] (also classification [4], segmentation, and tracking), texture
recognition [2,3,5–8], genre classification, etc. In the area of Variational Auto-encoders
(VAE), extensively used in emerging field of deep learning, GMMs have recently found
their gateway (see [9]) with promising results. Many authors considered the problem of
developing the efficient similarity measures between GMMs to be applied in such tasks (see
for example [1–3,7,10]). The first group of those measures utilize informational distances. In
some early works, Chernoff distance, Bhattacharyya distance, and Matusita distance were
explored (see [11–13]). Nevertheless, Kullback–Leibler (KL) divergence [14] emerged as the
most natural and effective informational distance measure. It is actually an informational
distance between two probability distributions p and q. While the solution for the KL diver-
gence between two Gaussian components exists in the analytic, i.e., closed-form, there is no
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analytic solution for the KL divergence between arbitrary GMMs, which is very important
for various applications. The straight-forward solution of the mentioned problem is to
calculate KL divergence between two GMMs via the Monte-Carlo method (see [10]). How-
ever, it is almost always an unacceptably computationally expensive solution, especially
when dealing with a huge amount of data and large dimensionality of the underlying
feature space. Thus, many researchers proposed different approximations for the KL diver-
gence, trying to obtain acceptable precision in recognition tasks of interest. In [2], one such
approximation is proposed and applied in image retrieval task as a measure of similarity
between images. In [10], lower and upper approximation bounds are delivered by the same
authors. Experiments are conducted on synthetic data, as well as in speaker verification
task. In [1], accurate approximation built upon Unscented Transform is delivered and
applied within a speaker recognition task in a computationally efficient manner. In [15], the
authors proposed a novel approach to online estimation of pdf’s, based on kernel density
estimation. The second group of measures utilize informational geometry. In [16], the
authors proposed a metric on the space of multivariate Gaussians by parameterizing that
space as the Riemannian symmetric space. In [3], motivated by the mentioned paper and
the efficient application of vector-based Earth-Movers Distance (EMD) metrics (see [17])
applied in various recognition tasks (see for example [18]), and their extension to GMMs in
texture classification task proposed in [6], the authors proposed sparse EMD methodology
for Image Matching based on GMMs. An unsupervised sparse learning methodology is
presented in order to construct EMD measure, where the sparse property of the underlying
problem is assumed. In experiments, it proved to be more efficient and robust than the
conventional EMD measure. Their EMD approach utilizes information geometry based
ground distances between component Gaussians, introduced in [16]. On the other hand,
their supervised sparse EMD approach uses an effective pair-wise-based method in order
to learn GMM EMD metric among GMMs. Both of these methods were evaluated using
synthetic as well as real data, as part of texture recognition and image retrieval tasks.
Higher recognition accuracy is obtained in comparison to some state-of-the-art methods.
In [7], the method proposed in [3] was expanded. A study concerning ground distances
and image features such as Local Binary Pattern (LBP) descriptor, SIFT, high-level features
generated by deep convolution networks, covariance descriptor, and Gabor filter is also
presented.

One of the main issues in pattern recognition and machine learning as a whole is
that data are represented in high-dimensional spaces. This problem appears in many
applications, such as information retrieval (and especially image retrieval), text categoriza-
tion, texture recognition, and appearance-based object recognition. Thus, the goal is to
develop the appropriate representation for complex data. The variety of dimensionality
reduction techniques are designed in order to cope with this issue, targeting problems such
as “curse of dimensionality” and computational complexity in the recognition phase of
ML task. They tend to increase discrimination of the transformed features, which now
lie either on a subspace of the original high dimensional feature space, or more generally,
on some lower dimensional manifold embedded into it. Those are the so called manifold
learning techniques. Some of the most commonly used subspace techniques, such as Linear
Discriminant Analysis (LDA) [19] and maximum margin criterion (MMC) [3,20], trained in
a supervised manner, or for example Principal Component Analysis (PCA) [21], trained
in an unsupervised manner, handle this issue by trying to increase discrimination of the
transformed features, and to decrease computational complexity during recognition. Some
of the frequently used manifold learning techniques are Isomap [22], Laplacian Eigen-
maps (LE) [23], Locality Preserving Projections (LPP) [24] (approach based on LE), and
Local Linear Embedding (LLE) [25]. The LE method explores the connection between
the graph Laplasian and the Laplace Beltrami operator, in order to project features in a
locally-preserving manner. Nevertheless, it is only to be used in various spectral cluster-
ing applications, as it cannot deal with unseen data. An approach based on LE, called
Locality Preserving Projections (LPP) (see [24]), manages to resolve the previous problem
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by learning linear projective map which best “fits” in the manifold, therefore preserving
local properties of the data in the transformed space. In this way, we can transform any
unseen data into a low-dimensional space, which can be applied in a number of pattern
recognition and machine learning tasks. In [26], the authors proposed the Neighborhood
Preserving Embedding (NPE) methodology that, similarly to LPP, aims to preserve the local
neighborhood structure on data manifold, but it learns not only the projective matrix which
projects the original features to lower-dimensional Euclidean feature space, but also, as
an intermediate optimization step, the weights that extract the neighborhood information
in the original feature space. In [27], some of the previously mentioned methods, such as
LE and LLE, are generalized. An example of LE is given for the Riemannian manifold of
positive-definite matrices, and applied as part of image segmentation task. Note that the
mentioned dimensionality reduction techniques are applicable in many recent engineering
and scientific fields, such as social network analysis and intelligent communications (see
for example [28,29] , published within a special issue presented in an editorial article [30]).

In many machine learning systems, the trade-off between recognition accuracy and
computational efficiency is very important for those to be applicable in real-life. In this
work, we construct a novel measure of similarity between arbitrary GMMs, with an
emphasis on lowering the complexity of the representation of all GMMs used in a particular
system. Our aim is to investigate the assumption that the parameters of full covariance
Gaussians, i.e., the components of GMMs, lie close to each other in a lower-dimensional
surface embedded in the cone of positive definite matrices for the particular recognition
task. Note that this is contrary to the assumption that data themselves lie on the lower-
dimensional manifold embedded in the feature space. We actually use the NPE-based
idea in order to reduce the projection matrix A, but we apply it on the parameter space of
Gaussian components. The matrix A projects the parameters of Gaussian components to a
lower-dimensional space. Local neighborhood information from the original parameter
space is preserved. Let N (µi, Σi), i = 1, . . . , M be a set of all Gaussian components, and
M is the number of Gaussians for the particular task. We assume that parameters of any
multivariate Gaussian component N (µi, Σi), given as vectorized pair (µi, Σi), live in a
high-dimensional parameter space. Each Gaussian component is then assigned to a node
of undirected weighted graph. The graph weights Wij are learned in the intermediate
optimization step, forming the weight matrix W, where instead of the Euclidean distance
figuring in the particular cost functional that is used in baseline NPE operating on feature
space, we use a specified measure of similarity between Gaussian components and plug it
into the cost functional. The ground distances between Gaussians N(µi, Σi) and N(µj, Σj),
proposed in [3,16], are based on information geometry. We name the proposed GMM
similarity measure as GMM-NPE.

2. GMM Similarity Measures

KL divergence is the most natural measure between probability distributions p and q.
The measure is defined as KL(p||q) =

∫
Rd p(x) log p(x)

q(x) dx. However, as mentioned in the
previous section, in the case of GMMs, it cannot be expressed as the closed-form solution.

The straightforward, but at the same time the most expensive, is a computation
calculated by using the standard Monte-Carlo method (see [31]). The idea is to sample the
probability distribution f by using i.i.d. samples xi, i = 1, . . . , N, such that E f

[
ln f (x)

g(x)

]
=

KL( f ||g). It is given by:

KLMC( f ||g) ≈ 1
N

N

∑
i=1

ln
f (xi)

g(xi)
. (1)

Although it is the most accurate, the Monte-Carlo approximation (1) is computation-
ally unacceptably expensive in real world applications, especially in recent years, when
there is a huge amount of data present (big data) in almost all potential areas of inter-
est. In order to cope with the mentioned problem, i.e., to obtain fast, but at the same
time accurate, approximation, various approximations of the KL-divergence between two
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GMMs are proposed in [2–31]. The roughest approximation is based on the convexity of
the KL-divergence [32] and for two GMMs f = ∑n

i=1 αi fi and g = ∑m
j=1 β jgj, it holds

KL( f ||g) ≤∑
i,j

αiβ jKL( fi||gj), (2)

where fi = N (Σi, µi) and gj = N (Σj, µj) are Gaussian components of the corresponding
mixtures, while αi > 0, β j > 0 are corresponding weights, satisfying ∑i αi = 1, ∑j β j = 1.
The “roughest” approximation by upper bound (2), yielding the weighted average version
given by

KLWE( f ||g) ≈∑
i,j

αiβ jKL( fi||gj) (3)

plays special role in the case when Gaussians from different GMMs stand far from each
other. On the other hand, KL divergence KL( fi||gj) between corresponding Gaussians
exists in the closed-form given by

KL( fi||gj) = ln
|Σ fi
|

|Σgj |
+ Tr

[
Σ−1

gj
Σ fi

]
+ (µ fi

− µgj)
TΣ−1

gj
(µ fi
− µgj)− d, (4)

so that (3) is computationally much cheaper than the Monte-Carlo approximation (1).
Various approximations of the KL divergence between two GMMs were proposed

in [1,2,10] and efficiently applied in real world problems, such as speech recognition, image
retrieval, or speaker identification. For example, in [2], the Matching-based Approximation
given by

KLMB( f ||g) ≈∑
i

αi

[
min

j
KL( fi||gj) + log

(
αi
β j

)]
(5)

is proposed, based on the assumption that the element gj, i.e., the one that is most proximate
to fi, dominates the integral

∫
fi log g. Motivated by (5), more efficient matching based

approximation is given by

KLMBS( f ||g) ≈∑
i

αi min
j

KL( fi||gj), (6)

showing good performances when the Gaussians figuring in f and those figuring in g
are mostly far apart, but shows inappropriate if there is significant overlapping among
Gaussian components of f and g. The authors proposed the Unscented Transform-based
approximation as a way to deal with those overlapping situations. The Unscented Trans-
formation is a mathematical function used to estimate the statistics of a random variable
to which a nonlinear transformation is applied (see [33]). If it holds that KL( f ||g) =∫
Rd f log f −

∫
Rd f log g, the unscented transform approach tends to approximate integral∫

Rd fi log g as

∫
Rd

fi log g ≈ 1
2d

2d

∑
k=1

log g(xi,k)

xi,k = µi +
(√

Σi

)
k
, k = 1, . . . , d

xi,d+k = µi −
(√

Σi

)
k
, k = 1, . . . , d, (7)

where
(√

Σi
)

k is the k-th column of the matrix square root of Σi. Integrals
∫
Rd f log f and∫

Rd f log f are now approximated in the previous manner, so that for second integral we
have
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∫
Rd

f log g ≈ 1
2d

n

∑
i=1

αi

2d

∑
k=1

log g(xi,k)

and similarly for the first. Thus, the KLUC( f ||g) is obtained as above.
GMM distance which utilizes KL divergence KL( fi||gj) between Gaussian compo-

nents in order to obtain an approximate KL divergence between full GMMs is Variational
approximation is proposed in [31] (see also [10]), given by

KLVAR( f ||g) = ∑
i

αi
∑î αîe

−KL( fi || f î)

∑j β je
−KL( fi ||gj)

(8)

Earth-Movers Distance (EMD) methodology motivated various recognition tasks (see
for example [17,18]). Based on that, the authors in [6] proposed EMD to measure the
distributional similarity by sets of the Gaussian components representing texture classes.
We denote it as EMD-KL measure. In [3], the authors incorporate ground distances between
component Gaussians into the unsupervised sparse EMD-based distance metrics between
GMMs, using the perspective from the Riemannian geometry and the work delivered
in [16]. The first one is based on Lie Groups and it performs better when incorporated into
the sparse EMD-based measure of similarity between GMMs than the second one, based
on the products of Lie groups. We denote it as SR-EMD measure in the rest of the text.

3. NPE Dimensionality Reduction on Euclidean Data

Unlike PCA, which aims to preserve the global Euclidean structure, and similarly to
LPP (see [24]), the nonlinear dimensionality reduction technique NPE [26] aims to preserve
the local manifold structure of the input data. Given an embedded set of data points in
the configuration space (they lie on a low dimensional manifold, i.e., it is assumed that the
samples from the same class probably lie close to each other in the input space), we first
build a weight matrix W ∈ Rm×d, which describes the relationship between data points.
Namely, if we assume that data are embedded in the Euclidean Rd space, each data point
xi ∈ Rd is represented as the linear combination of neighboring data points, where for the
neighboring data point xj, the coefficients wij ∈ R in the weight matrix represent the “local
proximity” of those two points in the configuration space. The goal is to find the optimal
embedding in order to preserve the neighborhood structure in the reduced space. The NPE
procedure consists of the following steps:

1. Constructing an adjacency graph: Let us consider a graph with m ∈ N nodes, where
the i-th node corresponds to the data point xi. One way to construct the adjacency
graph is to use K nearest neighbors (KNN), where we direct an edge from node i to j
if xj is among the K nearest neighbors of xi. The other one is ε neighborhood: Put an
edge between nodes i and j if ‖xi − xj‖ < ε.

2. Computing the weights: Let W denote the weight matrix with Wij > 0 if there is an
edge from node i to node j, and Wij = 0 if there is no such edge. The weights on the
edges can be computed by solving the following minimization problem:

min
W

∑
i
‖xi −Wijxj‖2

s.t ∑
j

Wij = 1, i = 1, . . . , m (9)

3. Computing the projections: In order to compute the projections, we need to solve the
following optimization problem:
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min
a ∑

i

(
yi −∑

j
Wijyj

)
y = yT = aTX

X = [x1| · · · |xm] (10)

which, by imposing constraint aTXXTa = 1 and by using the Lagrange multipliers,
reduces to the following eigenvalue problem:

XMXTa = λXXTa

M = (I −W)(I −W)T . (11)

Since M is symmetric and positive semi-definite, its eigenvalues are real and non-
negative. By taking the largest l ∈ N, l << d eigenvalues λ0, . . . , λl−1, and the
corresponding l eigenvectors a0, . . . , al−1, we obtain the projection matrix A =
[a1| · · · |al−1] ∈ Rl×d and the embedding xi 7→ yi = Axi, now projecting from the
high-dimensional Rd to the low-dimensional Rl Euclidean space. Readers can find
more details on the subject in [26].

4. GMM Similarity Measure by the KL Divergence Preserving NPE Embedding of the
Parameter Space

We propose a novel measure of similarity between arbitrary GMMs by utilizing the
NPE-based technique and the KL divergence type ground distance between the Gaussian
embedded components, i.e., their parameters, instead of the Euclidean distance between
some observations, as in the standard NPE procedure used as a feature dimensionality
reduction technique.

The first step is to learn the projective matrix A in the neighborhood preserving manner
with respect to informational ground distance, i.e., the (non-symmetric) KL divergence
between Gaussian components of GMMs used, and to project those (vectorized) parameters
into the low-dimensional Euclidean parameter space. Our goal is to preserve the local
neighborhood information which exists in the original parameter space, while dealing
with much lower-dimensional space of transformed parameters. The aim is to obtain the
best possible trade-off between the recognition precision and computational efficiency in a
particular pattern recognition task. We call it the NPE-based measure of similarity between
GMMs and denote it further by GMM-NPE.

The second step is to aggregate the non-negative real value which represents a measure
between two particular GMMs. For that purpose, we compare the transformed “clouds” of
lower dimensional Euclidean parameter vectors corresponding to the original Gaussian
components of GMMs used, pondered by their belonging weights. The first, the simpler
technique that we use is based on aggregation operators (the weighted max-min operator
and maximum of the weighted sums operator in particular), which we apply on “clouds”
of lower dimensional Euclidean parameter vectors in order to aggregate value representing
the final measure between two GMMs. Note that, regardless of the usage of non-symmetric
KL divergence in the first step, i.e., in the calculation of the projective matrix A, the prop-
erties of the invoked measure in terms of the symmetry, satisfying the triangle inequality,
etc., depends on the second step, i.e., on the type of aggregation of value of the measure.
We will comment later on those properties.

4.1. KL Divergence Type Ground Distance, Forming the NPE-Type Weights and the Projection
Matrix

The goal is to use the NPE-like approach in order to obtain the projection matrix
A which transforms vectorized representatives of Pi ∈ Sym+(d + 1) corresponding to
Gaussian components gi = N (Σi, µi), i = 1, . . . , M featuring in GMMs, where M represents
the overall number of components and d is the dimension of the underlying feature
space. Then, as explained previously, the measure of similarity comparing the “clouds”
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of pondered Euclidean vectors is to be used in order to obtain the final value of GMM
measure.

To apply an NPE-like approach, we start from the fact that a set of multivariate
Gaussians is a Riemannian manifold and that d-dimensional multivariate Gaussian com-
ponents g = N (µ, Σ) can be embedded into Sym+(d + 1), i.e., a cone embedded in
n = d(d + 1)/2 + d Euclidean dimensional space and also a Riemannian manifold [3,16].
It can be conducted as follows:

g ↪→ P = |Σ|−
1

d+1

[
Σ + µµT µ

µT 1

]
(12)

|Σ| > 0 denotes the determinant of the covariance matrix of Gaussian component g. For
the detailed mathematical theory behind the embedding (12), one can refer to [16]. We
invoke the assumption that any representative Pi ∈ Sym+(d + 1) can be approximated as
the non-negative weighted sum of neighbors Pj in the following way:

Pi ≈ ∑
j∈N (i)

WijPj = P̂i

Wij ≥ 0, (13)

where N (i) is the set of indices of neighboring representatives, i.e., the representatives
Pj, so that D(Pi, Pj) ≤ T, where T > 0 is a predefined threshold. Recall that if we assign
Gaussians pi = N (0, Pi), i = 1, 2 to non-negative matrices Pi, i = 1, 2, the term D(P1, P2) is
defined as D(P1, P2) = KL(p1||p2), where KL(p1||p2) is given by the expression (4). Thus,
we obtain the following optimization problem:

min
Wij

M

∑
i=1

D
(

P̂i, Pi
)

P̂i = ∑
j∈N (i)

WijPj

s.t.

Wij ≥ 0, i, j = 1, . . . , M,

P̂i � Pi

which reduces to M independent optimization problems given below, for i = 1, . . . , M:

min
Wij

D
(

P̂i, Pi
)

P̂i = ∑
j∈N (i)

WijPj

i = 1, . . . , M

s.t.

Wij ≥ 0, j = 1, . . . , M,

P̂i � Pi,

i = 1, . . . , M,

where the constraint 0 � P̂i � Pi ensures that the residual is positive semi-definite, i.e.,
Ei = Pi − P̂i � 0. By using (4), we have the following considerations:

D(P̂i, Pi) = tr(P̂iP−1
i )− ln det(P̂iP−1

i )− (d + 1)

= tr(P−1/2
i P̂iP

−1/2
i )− ln det

(
P−1/2

i P̂iP
−1/2
i

)
− (d + 1) (14)
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and thus,

D(P̂i, Pi) = tr ∑
j∈N (i)

Wij P̃
(i)
j − ln det ∑

j∈N (i)
Wij P̃

(i)
j ,

P̃(i)
j = P−1/2

i PjP
−1/2
i . (15)

A more efficient way to achieve that only a few “neighbors” effect Pi is to include
sparsity constrain in the form of l1 norm of the weight matrix W (which is the convex
relaxation of the l0 norm). Thus, we include the additional term λ‖W‖1 in the penalty
function (14), where λ > 0 is a parameter representing the trade-off between sparser
representation and closer approximation. The following sparse convex problem is obtained
(similar as in [34]):

min
Wij

M

∑
j=1

Wij

(
tr(P̃(i)

j ) + λ
)
− ln det

M

∑
j=1

Wij P̃
(i)
j

s.t.

Wij ≥ 0, j = 1, . . . , M,
M

∑
j=1

Wij P̃
(i)
j � Id+1,

i = 1, . . . , M,

which is the final problem that we solve in order to obtain the weight matrix W. Note
that Wij ≥ 0 ensures that the following condition is satisfied ∑M

j=1 Wij P̃
(i)
j � 0. The above

formulation of tensor sparse coding is associated with the general class of optimization
problems denoted as determinant maximization problems, or MAXDET [35], while semi-
definite programming (SDP) and linear programming (LP) are its special cases. These
problems are convex and could be solved by a class of interior-point methods (see for
example [36]). In order to implement the actual optimization, we used CVX [37].

Forming the projection matrix A which projects the vectorized parameters (corre-
sponding to Pi, i.e., the Gaussian representatives pi), ṽi = (Pi) ∈ Rn, n = d(d + 1)/2,
i = 1, . . . , M, into the lower l-dimensional Euclidean parameter space, with n� l, is the
next step. It is similar to step 3 from Section 3, and thus includes solving the spectral
problem (11).

4.2. Constructing the GMM-NPE Similarity Measure

The remaining task in constructing the final GMM-NPE similarity measure is to
aggregate the non-negative real value which represents the measure of similarity between
two particular GMMs. Actually, we have to compare the transformed “clouds” of lower
l-dimensional Euclidean parameter vectors, with l � n, n = d(d + 1)/2, corresponding
to the original Gaussian components of GMMs used. We also have to encounter the
belonging weights into final result. In all approaches that we utilize, for the particular
m-component GMM f = ∑

m f
i=1 αi fi with fi = N (µi, Σi), we use the unique representative

F = (v1, . . . , vm f , α1, . . . , αm f ), with vi = Aṽi ∈ Rl , ṽi = (Pi) ∈ Rn, i = 1, . . . , M, with Pi
defined by (12), where we plug µi and Σi, and where A is the projection matrix obtained
as explained in the previous section. Using the above-given representation, the similarity
measure between two GMMs given by f = ∑

m f
i=1 αi fi, and g = ∑

mg
i=1 β jgj can be invoked

by simply comparing the corresponding representatives F =
(

v1, . . . , vm f , α1, . . . , αm f

)
and G =

(
u1, . . . , umg , β1, . . . , βmg

)
in the transformed space, i.e., by comparing them

as weighted low-dimensional Euclidean vectors. Various approaches can be applied to
aggregate a single positive scalar value in order to represent a “distance” between F and
G and therefore implicitly a “measure” between GMMs f and g. In this work, we use



Mathematics 2021, 9, 957 9 of 21

two essentially different approaches. The first one is simpler and utilizes the arbitrary
fuzzy union or intersection in order to extract the mentioned value, given, for example, by
various aggregation operators (see, e.g., [38]). The second approach utilizes EMD distance
on F and G, and it is based on the work proposed in [17].

For the first approach, we use types of fuzzy aggregation operators, operating on
‖vi − uj‖2, using αi and β j as weights. For the above-mentioned representatives, we apply
the weighted max-min operator in the following way:

pi = min{β j‖vi − uj‖2 |j = 1, . . . , m f }
a = max{αi pi |i = 1, . . . , mg}
qj = min{αi‖vi − uj‖2 |i = 1, . . . , mg}
b = max{β jqj |j = 1, . . . , m f }

D1(F, G) =
1
2
(a + b), (16)

as well as the maximum of the positive weighted sums

a = max{αi

n

∑
j=1

β j‖vi − uj‖2 |i = 1, . . . , mg}

b = max{β j

m

∑
i=1

αi‖vi − uj‖2 |j = 1, . . . , m f }

D2(F, G) =
1
2
(a + b). (17)

We denote the previously invoked GMM measure induced by D1 by GMM-NPE1,
while we denote the GMM measure induced by D2 by GMM-NPE2. Note that the choice
of the particular fuzzy aggregation operator, i.e., the fuzzy measure, determines all the
distance-wise properties of the final GMM similarity measure. Those are in our case
the properties of D1 and D2. It is also interesting to discuss which properties of the KL
divergence do GMM-NPE1 and GMM-NPE2 satisfy. Both of them satisfy self similarity and
positivity, for arbitrary GMMs f and g, while self-identity is not satisfied. Furthermore,
the measures D1 and D2 are both symmetric, while KL divergence is not. Nevertheless,
note that we could easily obtain non-symmetry by, for example, letting D1(F, G) = a in
(16), and D2(F, G) = a in (17), but we leave those considerations for some future work.

For the second, i.e., the EMD distance approach, the representatives F and G are
interpreted as pondered “clouds” of Euclidean low-dimensional vectors. Thus, the final
measure of similarity between GMMs f and g is given (see [17]) as follows:

DEMD(F, G) =
∑

m f
i=1 ∑

mg
j=1 dijζij

∑
m f
i=1 ∑

mg
j=1 ζij

, (18)

where the flow [ζij] is given as one that solves the following LP type minimization problem:



Mathematics 2021, 9, 957 10 of 21

min
m f

∑
i=1

mg

∑
j=1

dijζij,

s.t.

ζij ≥ 0, i = 1, . . . , m f , j = 1, . . . , mg,
mg

∑
j=1

ζij ≤ αi, i = 1, . . . , m f ,

m f

∑
i=1

ζij ≤ β j, j = 1, . . . , mg,

m f

∑
i=1

mg

∑
j=1

ζij = 1, (19)

where [dij] is the matrix of Euclidean distances between vi and uj, i.e., dij = ‖vi − uj‖. Note
that the constant 1 which appears in the right hand side of the constraint (19) is due to the
fact that αi, as well as β j, sum to one. Thus, the term DEMD(F, G) is actually interpreted
as the work necessary in order to move, by flow [ζij], the maximum amount of supplies
possible, from the “cloud” F to the “cloud" G. Furthermore, note that the fact that EMD
distance is a metric (see [17]) implies that the measure of similarity between GMMs DEMD
defined by (18) is also a metric. Thus, similarly to the case of D1 and D2, it is symmetric.
We denote the GMM measure induced by DEMD by GMM-NPE3.

4.3. Computational Complexity

In the given analysis, the computational efficiency of a measure is defined as the
efficiency obtained in the testing (not the learning) phase. Let us, for the sake of simplicity
and without loss of generality, further assume that GMMs f and g have the same number,
n = m, and that we treat the full covariance case. Let d denotes the dimension of the
original feature space. Let us first elaborate on baseline measures that we use.

The complexity of KL-based measures of similarity between GMMs KLWE, KLMB, and
KLVAR (see [10]) given by (3)–(8), is roughly equivalent and estimated as O(m2d3). Namely,
as the complexity of calculating the KL divergence between two d-variate Gaussians is
approximately equal to the complexity of calculating the inversion of a d× d matrix and it
is of order O(d3), as there are m2 such inversions, we obtain the previous estimate for the
listed measures.

The Monte-Carlo approximation KLMC (1) is the most computationally demanding.
The computational complexity of Monte-Carlo approximation is estimated as O(Nmd3),
where N is the number of samples. The estimate is then obtained using the arguments
described above. Furthermore, in order to obtain an efficient approximation, the number
of samples N has to be large, i.e., N >> m.

For the state-of-the-art EMD-based measures of similarity between GMMs proposed
in [3], the computational complexity for SR-EMD measure can be estimated as O(8m5d3),
as LARS/Homotopy algorithms that are usually used to find a numerical solution of the
optimization problem elaborated in SR-EMD converge in about 2m iterations (see [39]).
Namely, as (19) is a LP problem, in one iteration, the computational complexity is of order
O(nconstnvar), where nconst is a number of constraints and nvar is a number of variables for
the particular problem. As it holds nconst = nvar = m and the complexity of the inversion
of d× d matrix is of order O(d3), since there are m2 such inversions at each iteration, we
obtain the previously mentioned estimate.

For the proposed similarity measures D1 and D2 given by (16) and (17), the analysis is as
follows: the computational complexity of comparing F and G rise linearly with l and is given
as O(m2l), where l � d3 is delivered a priory on the base of the analysis of the eigenvalues,
as explained at the end of Section 4.1. Nevertheless, if we encounter the computational
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complexity required to transform the parameters of GMMs to the l dimensional space, there
is an additional term O(md2l). One observes that for small l (l ∼ d in our experiments), the
overall complexity of the proposed D1 and D2 is much smaller then all the baseline measures,
and especially for large number of components m. For the EMD-based approach, i.e., the
DEMD given by (18), the computational complexity is estimated as the sum of O(kiterm4l)
term and the mentioned term O(md2l), making it significantly more efficient in comparison
to EMD-KL and SR-EMD-M [3], as it holds l � d � d2. Instead of calculating the KL
divergence between two d-variate Gaussians, we calculate the Euclidian distance between
two vectors of length l, which is of complexity O(l).

5. Experimental Results

In this section, we present experiments comparing the proposed GMM-NPE measures
with the baseline measures presented in Section 2. The experiments were conducted on
synthetic as well as real data sets (texture recognition task). For the first case, synthetic
data are constructed, satisfying specific assumptions, so that the proposed GMM-NPE
measures could demonstrate their effectiveness over the baseline measures in such con-
trolled conditions. In both synthetic and real data case, for the baseline measures, we
chose KLWE, KLMB, and KLVAR, defined by (3), (5), and (8), respectively. In the case of
real data, we additionally use Earth mover based SR-EMD-M as well as SR-EMD-M-L.
In the synthetic data scenario, the computational complexity was largely in favor of the
proposed GMM-NPE measures, in all of our experiments. At the same time, the GMM-NPE
measures obtained greater recognition precision in comparison to all baseline measures.
On real data sets, significantly better trade-off between computational complexity and
recognition precision is obtained for the proposed GMM-NPE measures, in comparison to
all baseline measures.

5.1. Experiments on Synthetic Data

In order to demonstrate the effectiveness of the proposed method, we use toy examples
consisting of two scenarios.

In the first scenario, we set the parameters of the Gaussians to lie on the low dimen-
sional surface embedded in the cone SPD+(d + 1) ⊂ Rn, n = (d + 1)(d + 2)/2, where the
covariance matrix is of dimension d× d, with various dimensions d (d is also the dimension
of the corresponding centroid), as it is given by (12). Dimensions of the surfaces containing
data used in experiments are l = 1 and l = 2.

Mentioned surfaces are formed as follows: For the l = 1 case, we randomly generate
positive-definite matrices A1, A2, both of dimension d× d, in a following way: let i = 1 (the
procedure is identical for i = 2). Firstly we generate a matrix Ã1 containing independent,
identically distributed (i.i.d.) elements, where we set pdf to be U ([0, 1]). After symmetriza-
tion Ãsym

1 = 1
2
(

Ã1 + ÃT
1
)
, we obtain matrix Â1 by replacing only the diagonal elements of

Ãsym
1 =

[
ãij
]

d×d with the sum of off-diagonal elements of matrix Ãsym
1 , i.e., âii ← ∑d

j=1
j 6=i

ãij

(note that ãij > 0) and âij ← ãij for i 6= j. Thus, as Â1 is a symmetric and diagonally
dominant matrix, it is positive semi-definite (see [40]). Finally, we obtain A1 = Ã1 + εI, for
some small ε > 0 (thus A1 is positive definite), where we chose 0.00001 for all experiments.
The same stands for matrix A2. Finally, the l = 1 dimensional manifold in formed in the
form of parabolic curve given by:

F(t) = at2 A2

‖A2‖
+ bt

A1

‖A1‖
+ c ∈ SPD+(d),

t ∈ [r1, r2], r1, r2 ∈ R+ ∪ {0}, r1 < r2,

a, b, c ∈ R+ ∪ {0}, a 6= 0, (20)

and embedded into Rn. For simplicity purposes, a = 1, b, c = 0 in all our experiments.
For the case l = 2, we form the l = 2 dimensional surface given by
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F(t1, t2) = a
(

t2
1

A2

‖A2‖
+ t2

2
A2

‖A2‖

)
+ b
(

t1
A1

‖A1‖
+ t2

A1

‖A1‖

)
+ c ∈ SPD+(d),

t1, t2 ∈ [r1, r2], r1, r2 ∈ R, r1 < r2,

a, b, c ∈ R+ ∪ {0}, a 6= 0, (21)

embedded into Rn. For the same reasons as in the case (20), we chose a = 1, b, c = 0 for all
experiments.

We uniformly sample N = 800 Gaussians directly from the curve (20) for the l = 1 or
(21) for the l = 2 case. From that pool, also by uniform sampling, we obtain M number
of GMMs with the predefined size K, where we set all mixture weights to be 1/K. For
the acquired set of GMMs, we conduct “leave 10 percent out” cross-validation for every
trial. We find that the estimated number of nonzero eigenvalues in all experiments l̂ is fully
coherent with the dimension l of the underlying manifolds, i.e., l̂ = 1 in the l = 1 case
and l̂ = 2 in the l = 2 case, where the threshold for neglecting the eigenvalues was set to
T = 10−3. In all experiments, as the proposed method, we use GMM-NPE1, GMM-NPE2,
or GMM-NPE3. We vary the parameter K representing the size of a particular GMM used
in the training as well as dimension d. We use different values for K, namely K = 1 and
K = 5. In the case l = 1, we first set the means of the Gaussians to be zero vectors,
where the results of experiments are presented for [r1, r2] = [−3, 5] and [r1, r2] = [0, 5]
in Tables 1 and 2, respectively. Next, we make the means of Gaussians used in GMMs to
be d dimensional vectors (we have d ∈ {10, 20, 30, 50} in all experiments), by setting all
means belonging to the first class equal to some fix m1 ∈ Rd, and all means belonging
to the second class equal to some fix m2 ∈ Rd. We set m1 = 0 ∈ Rd, m2 = 10h, with
h = [h1, . . . , hd]

T , hi ∼ U ([0, 1]), i = 1, . . . , d. The results for [r1, r2] = [−3, 5] and
[r1, r2] = [0, 5] are presented in Tables 3 and 4, respectively. The same settings as previously
described are kept for the l = 2 case. The experiments for the case where the means of the
Gaussians are set to zero are presented in Tables 5 and 6, while those where the means of
Gaussians are non-zero are presented in Tables 7 and 8, respectively.

Table 1. Results in the form of recognition accuracy, obtained on the synthetic data: l = 1, t ∈ [−3, 5], N = 800, M = 200,
m1, m2 = 0.

Type of K = 1 K = 5
Measures d = 10 d = 20 d = 30 d = 50 d = 10 d = 20 d = 30 d = 50

GMM− NPE1 0.72 0.77 0.83 0.87 0.87 0.95 0.96 0.96
GMM− NPE2 0.74 0.76 0.85 0.87 0.86 0.96 0.94 0.94
GMM− NPE3 0.78 0.79 0.87 0.90 0.87 0.98 0.95 0.96

KLWE 0.62 0.68 0.79 0.73 0.92 0.86 0.90 0.94
KLMB 0.62 0.68 0.79 0.73 0.91 0.87 0.92 0.93
KLVAR 0.62 0.68 0.79 0.73 0.91 0.87 0.92 0.91

Table 2. Results in the form of recognition accuracy, obtained on the synthetic data: l = 1, t ∈ [0, 5], N = 800, M = 200,
m1, m2 = 0.

Type of K = 1 K = 5
Measures d = 10 d = 20 d = 30 d = 50 d = 10 d = 20 d = 30 d = 50

GMM− NPE1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
GMM− NPE2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
GMM− NPE3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

KLWE 0.92 0.92 0.94 0.95 0.99 1.0 0.98 0.99
KLMB 0.92 0.93 0.94 0.95 1.0 0.98 1.0 0.97
KLVAR 0.92 0.93 0.95 0.95 1.0 1.0 0.98 0.97
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Table 3. Results in the form of recognition accuracy, obtained on the synthetic data: l = 1, t ∈ [−3, 5], N = 800, M = 200,
m1, m2 = 0.

Type of K = 1 K = 5
Measures d = 10 d = 20 d = 30 d = 50 d = 10 d = 20 d = 30 d = 50

GMM− NPE1 0.73 0.98 0.97 0.98 0.99 1.0 0.97 0.98
GMM− NPE2 0.72 0.97 0.97 0.96 0.97 1.0 0.99 0.99
GMM− NPE3 0.77 1.0 1.0 1.0 1.0 1.0 1.0 1.0

KLWE 0.28 0.38 0.35 0.42 0.46 0.43 0.33 0.41
KLMB
KLVAR 0.63 1.0 0.98 1.0 1.0 0.98 0.99 1.0

Table 4. Results in the form of recognition accuracy, obtained on the synthetic data: l = 1, t ∈ [0, 5], N = 800, M = 200,
m1 = 0, m2 = 10h, with h = [h1, . . . , hd]

T , hi ∼ U ([0, 1]), i = 1, . . . , d.

Type of K = 1 K = 5
Measures d = 10 d = 20 d = 30 d = 50 d = 10 d = 20 d = 30 d = 50

GMM− NPE1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
GMM− NPE2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
GMM− NPE3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

KLWE 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
KLMB 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
KLVAR 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Table 5. Results in the form of recognition accuracy, obtained on the synthetic data: l = 2, t1, t2 ∈ [−3, 5], N = 800, M = 200,
m1, m2 = 0.

Type of K = 1 K = 5
Measures d = 10 d = 20 d = 30 d = 50 d = 10 d = 20 d = 30 d = 50

GMM− NPE1 0.82 0.84 0.85 0.98 0.99 0.97 0.98 0.99
GMM− NPE2 0.81 0.83 0.85 0.98 0.98 0.97 0.98 0.98
GMM− NPE3 0.84 0.86 0.87 1.0 1.0 1.0 1.0 1.0

KLWE 0.78 0.76 0.75 0.95 0.97 0.94 0.94 0.93
KLMB 0.78 0.76 0.75 0.83 0.94 0.97 0.95 0.94
KLVAR 0.78 0.76 0.75 0.83 0.95 0.97 0.95 0.96

Table 6. Results in the form of recognition accuracy, obtained on the synthetic data: l = 2, t1, t2 ∈ [0, 5], N = 800, M = 200,
m1, m2 = 0.

Type of K = 1 K = 5
Measures d = 10 d = 20 d = 30 d = 50 d = 10 d = 20 d = 30 d = 50

GMM− NPE1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
GMM− NPE2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
GMM− NPE3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

KLWE 1.0 0.98 0.97 0.99 0.98 1.0 1.0 1.0
KLMB 1.0 0.98 0.97 0.99 0.97 0.99 1.0 1.0
KLVAR 1.0 0.98 0.97 0.99 0.99 0.98 1.0 1.0
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Table 7. Results in the form of recognition accuracy, obtained on the synthetic data: l = 2, t1, t2 ∈ [−3, 5], N = 800, M = 200,
m1 = 0, m2 = 10h, with h = [h1, . . . , hd]

T , hi ∼ U ([0, 1]), i = 1, . . . , d.

Type of K = 1 K = 5
Measures d = 10 d = 20 d = 30 d = 50 d = 10 d = 20 d = 30 d = 50

GMM− NPE1 0.92 0.93 0.92 0.89 0.95 0.98 0.98 0.99
GMM− NPE2 0.93 0.93 0.92 0.90 0.97 0.98 1.0 1.0
GMM− NPE3 0.95 0.95 0.95 0.92 0.99 1.0 1.0 1.0

KLWE 0.94 0.94 0.84 0.85 0.96 0.99 0.97 0.98
KLMB 0.86 0.86 0.90 0.76 1.0 0.96 0.99 1.0
KLVAR 0.86 0.85 0.84 0.87 0.98 0.98 0.98 0.97

Table 8. Results in the form of recognition accuracy, obtained on the synthetic data: l = 2, t1, t2 ∈ [0, 5], N = 800, M = 200,
m1 = 0, m2 = 10h, with h = [h1, . . . , hd]

T , hi ∼ U ([0, 1]), i = 1, . . . , d.

Type of K = 1 K = 5
Measures d = 10 d = 20 d = 30 d = 50 d = 10 d = 20 d = 30 d = 50

GMM− NPE1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
GMM− NPE2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
GMM− NPE3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

KLWE 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
KLMB 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
KLVAR 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

It can be seen from all the experiments that the recognition accuracy of all three
proposed measures is higher than or equal to the recognition accuracy of the baseline
measures, while the computational complexity is largely in favor of the proposed measures.
Namely, the computational complexity for all baseline measures is O(K2d3), with d ∈
{10, 20, 30, 50}, while it is O(K2 l̂)+O(Kd2 l̂), with l̂ ∈ {1, 2} estimated l, where we obtained,
as we mentioned l̂ = l, for l ∈ {1, 2}. Thus, one could observe that it is largely in favor of
all the proposed measures in comparison to all the baseline ones, in all cases.

For the second scenario, N = 800 positive-definite matrices Ai are sampled, each
one formed in a similar way, previously described for A1. Thus, we control the sampling
process in order to obtain positive-definite matrices “uniformly” distributed in the cone
SPD+(d), i.e., not lying on any lower dimensional embedded sub-manifold. The set
of Gaussians is formed using the set of positive-definite matrices, while all means are
set to zero vectors. Ñ different GMMs of size K are formed, their components sampled
uniformly from the above-mentioned set of Gaussians (N = 800, Ñ = 200 and K = 5 in
the experiment). The proposed GMM-NPEi (i = 1, 2, 3) performs equally well, concerning
the recognition precision as well as computational efficiency in comparison to all baseline
methods. Estimated number of the non-negligible characteristic values were equal to the
dimension of the full space. All the above-mentioned confirms that if data do not lye on
the lower dimensional manifold embedded in the cone SPD+(d), the proposed method
does not provide any benefits in comparison to the baseline methods.

5.2. Experiments on Real Data

In this section, the performances of the proposed method described in Section 4.2,
evaluated on real data (texture recognition task), are presented in comparison to baseline
methods. As the baseline, we use KL-based KLWE, KLMB, and KLVAR GMM similarity
measures, all described in Section 2. As the baseline, we also use the unsupervised sparse
EMD-based measure proposed in [3], denoted by SR-EMD-M measure as well as the
supervised sparse EMD-based measure, also proposed in [3], denoted by SR-EMD-M-L.

For a texture recognition task, we conducted experiments on the following databases:
UMD [41], containing 25 classes (1000 images); CUReT [42], containing 61 classes (5612
images); KTH-TIPS [43], containing 10 classes (8010 images).
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We used covariance descriptors as texture features (see [34,44,45]) in the experiments,
as they showed excellent performance in the texture recognition task. We briefly explain
how they were formed: For any given textured image, the row features are calculated in a
form [I, |Ix|, |Iy|, |Ixx|, |Iyy|](x, y) (the actual dimension of the vector is d̃ = 5), from whom,
extracted at the R× R patch (we used R = 30 in all experiments), centered in (x, y), we
estimate the covariance matrix, and then finally vectorize its upper triangular into one
d = d̃(d̃ + 1)/2 = 15 dimensional feature vector. For that particular textured image, the
parameters of GMMs are estimated using EM [46] on the pool of feature vectors obtained
as previously explained. We note that for every train or test image example, we uniformly
divide it into four sub-images and those are used for training/testing. Hence, each image
is represented by four GMMs and compared to all GMMs in the training set, while its
label is determined using the kNN algorithm (k = 3 and class label is obtained by voting).
Recognition accuracy of the proposed GMM-NPE measures, in comparison to all baseline
measures, for the above-mentioned texture databases, are presented in Figures 1–3. For all
databases used, we vary from l = 30 to l = 100 in order to analyze the trade-off between
accuracy and computational efficiency. We kept the number of Gaussian components fixed
and equal to K = 5. For each class, a fixed number of N examples from the training set
is randomly selected (by uniform distribution), keeping the rest for testing. We vary the
mentioned number of training instances N across experiments. Final results are averaged
over 20 trials. In all experiments, we obtained slightly better results using the GMM-NPE2
measure defined by (18), (19) in comparison to the GMM-NPE1, so we present only the
GMM-NPE2 and GMM-NPE3 in our results.

Recall that (see the analysis presented in Section 4.3) the computational complexity of
the proposed GMM-NPE1 (as well as GMM-NPE2) is roughly O(K2l) + O(Kd2l), and for
all the KL-based baseline algorithms, i.e., the KLWE, KLMB, and KLVAR, the computational
complexity is estimated roughly as O(K2d3). Furthermore, (see Section 4.3), for the EMD-
based baseline algorithms, i.e., the EMD-KL and SR-EMD-M, the computational complexity
is estimated roughly as O(8K5d3) and O(kiterK4d3), respectively, with kiter >> K (see [3]). It
follows that the ratio between the computational complexity of the proposed GMM-NPE1
and GMM-NPE2, and any mentioned baseline KL-based method is estimated roughly as
l/d3 + l/(Kd), while the ratios between the computational complexity of GMM-NPE1 and
GMM-NPE2, and the baseline EMD-based measures are estimated as lmax

kiterK2d3 + lmax
8K4d and

lmax
8K3d3 +

lmax
kiterK3d , respectively. Considering lmax � d and kiter >> K, it can be seen that the

computational efficiency is largely in favor of the proposed GMM-NPE1, GMM-NPE2 in
comparison to all baseline measures in all experimental cases. Concerning the proposed
EMD-based GMM-NPE3 measure with its computational complexity roughly estimated as
O(kiterK4l) + O(Kd2l) (see Section 4.3), we compare its computational complexity with the
corresponding EMD-based baseline EMD-KL and SR-EMD-M measures. The complexity
ratios are estimated as kiter lmax

8Kd + lmax
8K3d and lmax

d + lmax
kiterK3d , again largely in favor of the proposed

GMM-NPE3 measure, in comparison to the EMD-KL and SR-EMD-M measures, and especially
for smaller values of l. Thus, we conclude that the trade-off between the recognition accuracy
and the computational efficiency is in favor of the proposed GMM-NPE measures.
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Figure 1. Classification rate vs. the number of training examples for the UMD texture database for the proposed method in comparison to baseline methods.
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Figure 2. Classification rate vs. the number of training examples for the CUReT texture database for the proposed method in comparison to baseline methods.
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Figure 3. Classification rate vs. the number of training examples for the KTH-TIPS texture database for the proposed method in comparison to baseline methods.
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In Table 9, CPU processing times are presented for the proposed GMM-NPE1 and
GMM-NPE2 measures, in comparison to the baseline KLWE, KLMB, KLVAR, and EMD-KL
measures. The results are obtained as CPU processing times needed for the evaluation
of measures of similarity between two GMMs in 100 trials. All GMMs are learned using
randomly chosen example images from KTH-TIPS texture classification database. For all
the experiments, we set kiter = 20, d = 15 and lmax = 30, lmax = 70, or lmax = 100. It can be
seen that the proposed GMM-NPE measure provides significantly lower CPU processing
times in comparison to all baseline measures when there is a significant reduction in
dimensionality of the original parameter space, i.e., lmax = 30 and lmax = 60, where the
original Euclidian parameter space is of dimension n = 120. However, in the case of a
relatively insignificant reduction in dimensionality, i.e., lmax = 100, the performances in
terms of computational complexity deteriorate significantly for the GMM-NPE measures.
These results are consistent concerning the computational bounds given for the proposed
and the baseline measures given in Section 4.3. The experiments were conducted on a
workstation equipped with one 2.3 GHz CPU and 6 GB RAM.

Table 9. Average processing CPU times for the proposed GMM-NPEs, in comparison to the baseline measures, as a function
of number of GMM components K used, as well as dimension of the reduced space lmax (unit: [ms]).

K 5 10 15 20

KLWE 17.6 70.5 159.2 282.3
KLMB 14.7 80.1 187.3 323.4
KLVAR 32.9 128.0 297.5 528.3

EMD-KL 49.3 1987 15102 61123

lmax 30 60 100 30 60 100 30 60 100 30 60 100

GMM− NPE1 7.2 14.4 23.9 14.7 29.6 49.3 22.1 46.2 74.8 30.8 62.1 101.6

GMM− NPE2 7.4 14.7 24.2 14.9 30.2 49.6 22.3 46.5 74.9 31.1 62.4 101.9

The proposed methodology could also be applied in realistic personalization and
recommendation application scenarios presented in [47]. Namely, user profile features
obtained in this process could store history over time, and therefore, the covariance matrix
could be estimated in the learning phase. The transformation matrix could be formed
as presented in Sections 3 and 4.1, and the covariance which represents any particular
user could be projected and represented by low dimensional vector representatives. In
the exploitation phase, stored features collected from users in some predefined period of
time could also be used in order to form covariances which could then be projected. The
measure of similarity between a user and item could then be computed by using similarity
measures and the procedure proposed in Section 4.2.
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