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Abstract

In automated video surveillance anomaly detection is a challenging task. We ad-

dress this task as a novelty detection problem where pattern description is limited

and labelling information is available only for a small sample of normal instances.

Classification under these conditions is prone to over-fitting. The contribution of this

work is to propose a novel video abnormality detection method that does not need

object detection and tracking. The method is based on subspace learning to disco-

ver a subspace where abnormality detection is easier to perform, without the need of

detailed annotation and description of these patterns. The problem is formulated as

one-class classification utilising a low dimensional subspace, where a novelty classifier

is used to learn normal actions automatically and then to detect abnormal actions

from low-level features extracted from a region of interest. The subspace is discovered

(using both labelled and unlabelled data) by a locality preserving graph-based algo-

rithm that utilises the Graph Laplacian of a specially designed parameter-less nearest

neighbour graph.

The methodology compares favourably with alternative subspace learning algo-

rithms (both linear and non-linear) and direct one-class classification schemes com-

monly used for off-line abnormality detection in synthetic and real data. Based on

these findings, the framework is extended to on-line abnormality detection in video

sequences, utilising multiple independent detectors deployed over the image frame to

learn the local normal patterns and infer abnormality for the complete scene. The

method is compared with an alternative linear method to establish advantages and

limitations in on-line abnormality detection scenarios. Analysis shows that the alter-

native approach is better suited for cases where the subspace learning is restricted on

the labelled samples, while in the presence of additional unlabelled data the proposed

approach using graph-based subspace learning is more appropriate.
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Chapter 1

Introduction

1.1 Motivation

In recent years we have witnessed an increase in the deployment of large networks of CCTV

cameras in key infrastructure sites such as underground transportation and airports. In

these sites, it is desirable to detect events and behaviours that take place in the scene.

This is a challenging task. Camera networks generate a large amount of data that needs to

be filtered by a human operator, in order to identify instances that need further attention.

Under these operating conditions issues like fatigue, operational stress and change blindness

occur that greatly affect the ability of the human operator to detect events [1].

Machine vision is focused on providing the CCTV camera system with additional intel-

ligence and help security personnel by filtering out unnecessary and redundant information.

A challenging security task is to perform abnormal event detection and detect rare and

unexpected actions. For example, the motion of a person walking against the usual flow of

people in an airport site is marked abnormal because it is statistically infrequent. Based

on the context, these actions might be dangerous or even illegal. Thus, automatic detec-

tion of unexpected action is a desired task. Machine vision systems can provide real-time

alarms and warnings for security or medical personnel to act and intervene. In the long

term, statistical information gathered can prove useful to redesign safety procedures and

improve security services.

However, although the problem of abnormality detection in video sequences has a

simple definition, the solution is not an easy task. Related work addresses the abnormality

9
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detection problem as novelty detection. Features extracted from a video sequence are used

to model the normal (usual) behaviour that takes place in front of the camera and the

trained classifiers rank new data as novel based on whether these instances have been seen

during training. A common approach aims to track the moving objects in the scene and

detect abnormal trajectories [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. More recent research is geared

towards using low-level cues (e.g. motion) when trajectories are unreliable [13, 14, 15].

While abnormality detection frameworks cover a wide diversity of methodologies, each of

them suffers from a number of limitations and, as a whole, they fail to address issues due

to camera positioning, crowded scenes, non-linearity, high dimensionality and complexity.

This thesis specifically addresses the on-line novelty detection problem where labelling

information is available only for a small sample of normal patterns. The problem is ad-

dressed as unbalanced one-class classification. Given a set of low-level features extracted

from video where a part is declared normal, the aim is to learn the patterns of usual

behaviour (motion) and classify abnormal instances based on their statistical properties

(rarity). Training under these conditions is prone to over-fitting and the curse of dimensio-

nality [16], which leads to degraded performance. This thesis extends video abnormality

detection by pursuing a subspace learning framework based on graph-based dimensiona-

lity reduction. The abnormality detection method utilises the low-dimensional subspace

to provide motion video abnormality detection while keeping the running and deployment

complexity low.

1.2 Problem statement

Our objective is to deploy an on-line novelty detection framework for single camera ab-

normality detection, with a limited number of parameters to be defined by the user. We

consider the abnormality detection problem under the following conditions: (i) normal

instances are common; (ii) no information on abnormal events is available; (iii) no a priori

model of normality is available; and (iv) object tracking data is not available or it is

unreliable.

The abnormality detection problem is thus stated as an one-class classification problem.

Given a video sequence P = {It | t = 1, . . . T} composed of a set of images captured over

time t, features are extracted so that each frame It is represented by a multi-dimensional
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(a) (b) (c) (d)

Figure 1.1: Motion patterns (a) that exist in the labelled samples (first 7500
frames) of the real world sequence S5 and sample events that do not exist in training:
(b,c) people entering the platform and (d) person walking in the corridor right to
left.

observation feature vector ot ∈ Rl. We form the set O = {ot | t = 1, . . . T} and a video clip

that contains commonly observed action patterns is labelled by the operator as normal (i.e.

X = {ot | t = T1, . . . T2, ot isnormal} where T1, T2 are the boundaries of the annotated

video clip). The abnormality detection framework F needs to learn the classes of normal

behaviour based on the provided labelled and unlabelled information and then classify a

new observation ot̃ at time t̃. The problem is described as novelty detection that classifies

ot̃ into the normal and abnormal classes,

FO,X (ot̃) =


0 ifot̃ is normal

1 ifot̃ is abnormal
. (1.1)

In a real-world scenario the operator provides data from a camera and labels a small

part as normal. Since normal actions are only defined by example, anything that does

not comply with the norm is considered abnormal. For example, given a scene of an

underground train station and the knowledge that actions that take place in the first 7500

frames are normal ; actions that are not contained in the training samples should be labelled

abnormal (Fig. 1.1). However, detailed information about the characteristics, such as type

and speed, of the normal or abnormal actions is not provided. Under these conditions

abnormality detection is a very challenging task.

1.3 Major contributions

• A graph-based low-dimensional representation method (described in Section 3.3) tu-

ned for video event projection without explicitly using foreground object detection or
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object tracking. Given a region of interest (ROI) in the scene, which depicts a single

object, we investigate and propose an algorithm that discovers a low-dimensional

subspace suitable for abnormal event visualisation. The setup compares favourably

in terms of complexity and performance to alternative linear and non-linear tech-

niques in projecting common and uncommon events so that they can be visually

identified [J1].

• An off-line abnormality detection framework for local motion video abnormality de-

tection based on a graph-based low-dimensional representation (described in 3.3.4).

Using motion vectors and assuming that the detector size (region) is no smaller than

the average size of the moving body parts (e.g. head and torso), the work compares

low-level features and presents the advantages that subspace learning can give to a

low complexity novelty detector against alternative more complex classifiers [J2].

• An on-line abnormality detection framework (described in Section 4.7) for motion vi-

deo abnormality detection utilising a grid of local detectors with similar assumption

as in [J2]. The method uses a graph-based unsupervised subspace learning method

to allow out-of-sample extension for on-line motion abnormality detectors. The al-

gorithm is compared with an alternative linear subspace based approach under a

variety of subspace training conditions using both labelled and unlabelled samples

to identify advantages and limitations in real-world scenarios [C1].

1.4 Organisation of the thesis

This thesis is structured as follows: Chapter 2 provides a review of video abnormality

detection techniques, related background on subspace learning and recent work in non-

linear graph-based methods. It identifies the issues and limitations while highlighting

a number of open challenges that exist in the related works. Chapter 3 describes the

proposed method for subspace learning and presents the framework for local motion-based

video abnormality detection. In particular, the self-tuned neighbourhood graph which

allows subspace learning suitable for novelty detection applications is given, followed by

the description of the off-line and on-line novelty detectors. Discussion on deployment and

parameter selection is also provided. Chapter 4 presents results on off-line and on-line
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abnormality detection using single and multi-object datasets. The method is compared

with alternative subspace learning algorithms and the use of different low-level features is

investigated. Furthermore, the off-line local detector is evaluated against popular novelty

detection algorithms. Finally, the on-line framework is compared with alternative linear

subspace learning method to establish performance, suitability and training limitations

under challenging real-world scenarios. Chapter 5 concludes the thesis and discusses future

directions.



Chapter 2

Background

2.1 Introduction

There has been an increased interest in research tackling the video abnormality detection

problem. In related works, Abnormal or unusual events refer to events in the video that

differ from the activities that have already been observed. The task is formalised as

novelty detection with restrictions on prior knowledge. While the problem of abnormality

detection in video sequences has a simple definition, solving the problem is not an easy

task. In unconstrained crowded environments with articulated objects, behaviours cannot

be easily modelled and unexpected events are rare and, by their nature, cannot necessarily

be described fully. In contrast, footage of normal actions is available in abundance. Such

restrictions hinder the deployment of novelty detection frameworks in real world scenarios

because they eventually require a large amount of detailed annotated data (which is usually

expensive and error prone) for model definition and training. Furthermore, the rarity of

abnormal samples proves to be an important issue in the estimation of optimal working

parameters. The generic framework is composed of two separate pipelines (Fig. 2.1). The

training pipeline uses the labelling information from the operator and features extracted

from the training sequence to model the normal action patterns and train the novelty

classifier. The detection pipeline uses a similar feature extraction module to produce a

feature vector so that the novelty classifier can label for abnormality based on the previously

learnt models.

The next section provides a more detailed description of video abnormality detection

14
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video

Feature
Extraction

Modelling
Training

operator

Novelty
Classifier

unknown

Feature
Extraction

{0,1}

Figure 2.1: Generic framework for video abnormality detection. Features are
extracted from the video sequences to model the normal instances (annotated by
the operator) and train the novelty classifier to detect the abnormal events.

based on its correspondence with the novelty detection problem and discusses the challenges

and the methodologies proposed in the literature to tackle this problem.

2.2 Video abnormality detection

Anomaly or novelty detection is an important signal analysis task that aims to classify data

into known (regular) and novel (irregular) classes. These classes are usually defined based

on modelling the statistical properties of patterns in complex signals. Chandola et al. [17]

provide a comprehensive discussion and review of the generic novelty detection problem

and how it is addressed in various research fields. Following their analysis, the main

characteristics of the problem are: (i) the nature of data; (ii) the anomaly type; (iii) the

training labels; and (iv) the final output. Using this decomposition we find correspondences

and associate the video abnormality detection problem with the generic novelty detection

framework.

2.2.1 Anomaly detection

In video abnormality detection, the nature of the data (features) can take a wide range of

types. These range from high-level information such as trajectories of moving objects in the
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scene to blob features (object detection) and even low-level cues such as appearance (pixels)

and motion vector fields. This selection provides the first filtering process applied to the

video sequence and reduces the types of abnormalities that can be detected by the system.

For example, the use of motion vectors would make detection of uncommon clothing (e.g.

yellow jacket) in a scene impossible. The challenge is to find the best compromise between

filtering the noise and keeping the information necessary for describing the model of normal

behaviour. However, and especially for stream-like data, it is important for the framework

to understand and compensate for the temporal correlation between the feature vectors.

According to Chandola et al. [17] there can be three types of anomalies in the generic

problem of novelty detection: (i) point, (ii) contextual, and (iii) collective. These are

defined below, with the addition of global and local anomalies which are specific to the

video abnormality detection problem.

Point anomalies are defined when the feature vector or action pattern does not appear on

the training set (e.g. a person jumping on the rails of a train, or walking against

the flow in a one-way corridor). The majority of related work in abnormality

detection solves the problem of point anomalies which is easier to model from

the data.

Contextual anomalies are present when the data is only anomalous in a specific context.

In surveillance, such a context is usually the time of day (e.g. a person running

inside a tube station out-of-hours, in contrast to a person running during rush-

hour). Contextual anomalies usually require additional information about the

structure of the scene and function (e.g. traffic-lights) and are specific to the

particular application.

Collective anomalies or conditional anomalies are composite anomalies that mainly appear

when the data are in sequence and a correlation exists between the vectors in

time. The various parts of which they are composed of are not necessarily

anomalous but their order is abnormal. In video sequences these anomalies are

commonly temporal anomalies (e.g. a person waiting for the elevator who does

not use it when it arrives). By their definition, collective anomalies describe

abnormalities that exist in a variety of temporal scales. However, a feature
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transformation of the sequence features (e.g. packing in spatio-temporal win-

dows) can transform the problem into point anomaly detection. The side-effect

in these cases is that the complexity of the patterns and the dimensionality of

the feature vector rapidly increase.

Global and local anomalies are defined based on spatial criteria. Global anomalies are

expressed (or take place) when all the motion in the scene is anomalous (e.g. a

crowd in panic in a corridor). Local anomalies are spatially restricted in a local

region. They can be expressed as contextual anomalies when normal behaviour

is only inferred based on the region (spatial context) of the scene (e.g. normal

motion on the street is different from normal motion on the pavement).

The training labels of the abnormality detection problem are provided during training in

order to infer that a specific instance (video clip) is abnormal. The labels could be provided

as prior information about the type and structure of the annotated events. However, such

high quality annotation is very rare and expensive. In practice, annotation is provided only

for a small part of the video, where the operator has evaluated that all the actions taking

place in the scene “look normal” without any additional description. Furthermore, there

are no guarantees that the provided annotation is comprehensive enough to incorporate

the complete corpus of possible behaviours that take place in a scene. The lack of detailed

information is the primary reason that related work has been mainly applied in supervised

or semi-supervised modes. The challenge is to maximise the transfer of information from

the feature vectors to the model utilising both the provided labelled and unlabelled samples.

Finally, the output of an abnormality detection method is commonly a score (scalar

value) that measures abnormality. However, the application requires a binary label, thus

the abnormality score is thresholded in to the abnormality label. Given the limited infor-

mation available, abnormality detection cannot provide clear semantic labels of activity

(i.e. actions are not allocated an activity tag such as jumping or running). This point

clearly separates these frameworks from works that aim at specific event detection and are

expected to provide a more detailed class label as an output.

The following subsections discuss related work in video abnormality detection. As

presented in Table 2.1, video abnormality detection methods use a large variety of tools to

model the patterns that exist in the training feature vectors. This proliferation of methods
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makes categorisation and comparison of the abnormality detection frameworks a difficult

task, yet some aspects of the methods can be compared and criticised. The methods are

grouped based on the type of abnormality they detect (global or local) and the features

they use to achieve the task (i.e. trajectories, object detections, and low-level features).

This taxonomy is followed, in this chapter from high-level towards low-level features in

order to provide an overview and critique of related work that motivates our proposed

framework for addressing the identified challenges.

2.2.2 Trajectory-based methods

Trajectories are produced by detecting moving objects in the scene and tracking them over

time. The majority of the methods that use object tracking are suitable for both global

and local abnormality detection. Modelling of global and local behaviour is performed

hierarchically. Feature vectors are extracted from normal trajectories to model the local

behaviour of the moving objects in a local region. Global patterns are modelled based on

the learnt local behaviour models.

Johnson and Hogg [2] suggest a two-layer system to model normal actions. They

convert trajectories to a sequence of 4-D vectors describing the position and speed of an

object at regular spatio-temporal intervals. Modelling involves a set of neural networks (in

sequential topology) to perform vector quantisation (VQ), define prototypes and learn the

spatial and temporal distributions of the sequence of the feature vectors. New trajectories

are characterised as abnormal based on the learnt probability densities. A similar modelling

method is proposed by Mecocci et al. [3] who use a 5-D feature vector by adding the object

size/perimeter ratio.

Basharat et al. [11] use a 5-D feature vector describing time, location and size of the

associated object for every pixel in the normal trajectories. Their modelling is based on

Gaussian Mixture Models (GMMs). Each GMM is associated with every pixel in the

image and learn the possible transitions (i.e. paths) that can take place based on the

normal trajectories. Local and global abnormality is inferred by finding the probability of

an observed object transitions. Sillito and Fisher [12] propose a semi-supervised on-line

learning method (also based on GMM), where a novelty classifier is incrementally updated

to detect abnormality based on the feedback of the human operator. This method is only
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Tools Local/Global Reference

Trajectories Neural Net local/global Johnson and Hogg [2]
Mecocci et al. [3]

HMM models local/global Chan et al. [7]
Hu et al. [9]
Jiang et al. [8]

global Izo and Grimson [5]

Spectral clustering global Porikli and Haga [6]

Trees local/global Piciarelli and Foresti [4]

Mix. of Gaussians local/global Basharat et al. [11]
Salas et al. [10]

global Sillito and Fisher [12]

Objects MOHMMs global Xiang and Gong [18, 19, 20]
Adapted HMMs Zhang et al. [21]

Tracking Cui et al. [22]
SVM Sudo et al. [23]

LSA local Li et al. [24]
Concurrence Matrix local Li et al. [25]

Histogram Russell and Gong [26, 27]

Spectral clustering global Zhong et al. [28]
Hamid et al. [29]

Appearance infinite-HMMs local/global Pruteanu-Malinici and Carin [30]
HMMs Kratz and Nishino [31]
HMMs Ermis et al. [32]

Database search Boiman and Irani [33]

Motion MOHMMs global Andrade et al. [15]

Histograms local/global Adam et al. [13]
MRF Kim and Grauman [14]

Table 2.1: Related work in video abnormality detection. (Key: HMM - Hid-
den Markov Model, MOHMM - Multi Observation HMM, SVM - Support Vector
Machine, LSA - Latent Semantic Analysis, and MRF - Markov Random Field)
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able to detect global abnormality since it represents the complete trajectory with a single

feature vector, containing the coefficient values of a polynomial fitted on the trajectories.

While most of the trajectory-based methods assume that the trajectories are already

available, Hu et al. [9] propose a complete system to extract and cluster trajectories in a

hierarchical way, and detect abnormal events. In their work, the trajectories are re-sampled

and normalised to the same length and clustered using the fuzzy k-means algorithm. The

results allow the original set of trajectories to be separated into spatial classes of inter-

mediate trajectories. A second layer of clustering takes place on each spatial class using

temporal information to group the main motion patterns in the scene. A chain of Gaus-

sians is trained on each pattern. Anomaly detection is based on the probability that a new

trajectory belongs to one of the learnt patterns. Hidden Markov Models (HMMs) [34] were

used to learn the main trajectory classes in [8]; where they are paired with hierarchical

clustering to automatically find the number of states and learn the dominant paths in the

scene. Hu et al. [9] present results on a sparsely occupied scene of pedestrians moving at a

distance. For simple scenes in a stationary environment, such as an airport cargo terminal,

tracks can be converted into semantic primitives and HMMs can be trained in order to

detect rare events [7].

Hybrid approaches combine HMMs with spectral clustering. Porikli and Haga [6] train

one HMM per trajectory (modelling position, direction and speed) to define a similarity

measure between trajectories that is independent of their length. Using the HMM model

similarity, Porikli and Haga propose a spectral clustering method based on conformity

scores, that provides unsupervised off-line abnormal trajectory detection. More recently,

Izo and Grimson [5] use spectral clustering in an iterative way so that on-line abnormality

detection is possible. The similarity function in this case is defined based on a weighted

sum of trajectory attributes. They adopt the Normalised Cuts [35] algorithm and cluster

the data in a low-dimensional representation. New instances are embedded in the low

dimensional space based on the Nyström approximation. However, in order to reduce the

computational cost the method uses a smaller sample set (landmarks) to find the out-

of-sample extension on the embedding space. After the embedding, new instances are

validated against the learnt clusters for abnormality.

A different approach uses tree structures to represent and cluster trajectories [4]. Each
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(a)

(b) (c)

Figure 2.2: Examples of scenes with low probability of dynamic occlusions where
trajectory-based methods present results: (a) distant rigid objects [6, 9, 5], (b) top
view [7], and (c) low object density [11, 8]. (Note: images extracted from [6, 9, 5,
7, 11, 8])

node describes a cluster of similar local paths. During training the tree is populated and

clusters the normal patterns that exist in the trajectories. Given the information in the

tree, “abnormal” are trajectories that have low probability. When additional information

about the scene is available, Salas et al. [10] suggest using a combination of appearance and

motion features to track rigid objects at crossroads where vehicle movement is controlled

by traffic lights. Based on the status of the controller of the traffic light system, contextual

abnormality is detected (e.g. wrong turns and red light violation) when a track follows a

path is not expected during that phase of the system.

Research that relies on trajectories has been restricted in scenes which have a small

number of moving objects (Fig. 2.2). Such a restriction is mainly due to the low perfor-

mance of object association under crowded and low-contrast conditions. Such conditions

cause misdetections due to partial and dynamic occlusions and thus tracking is unre-

liable [36]. Furthermore, since tracking is commonly supported by a number of modules

(e.g. background subtraction, object detection), the modelling is very sensitive to errors

that appear earlier in the pipeline.

In terms of computational complexity, the trajectory based methods, utilising HMMs
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and neural networks are fast and have been known to work in real time (given that the

cost of multi-object tracking is not included). However, since the complexity of trajectories

in crowded scenes is high, the need for extended amounts of annotated training samples

increases. As a result, the deployment cost of the framework is prohibitive and requires

numerous error-free manually selected trajectories for training to avoid degradation of the

model. Spectral methods are less sensitive to noisy training data but their computational

complexity is high. Thus they are more suitable for off-line detection.

The next subsection discusses methods that avoid the tracking and association modules

and directly use output from the object detection module.

2.2.3 Object-based methods

Several approaches attempt to detect abnormal events using features extracted by the

object detection module. We consider object-based features as mid-level since there is a

good amount of post-processing (often involving heuristics) that takes place before the

individual object blobs can be defined. Only point abnormalities are detected since there

is no temporal information in the object detection. It is however common to add and

pack together observations over time intervals, to incorporate in the extracted features

the temporal evolution of the object’s motion in the scene. Such feature “packing” allows

collective abnormalities that conform to a specific time scale to be discovered.

Xiang and Gong [18] use object detection to extract Pixel Change History maps (PCH)

and represent each blob as a 7-D vector. The feature vectors are clustered into event

instances based on fitting a GMM over the training features. The video is divided into

clips that are detected based on frames of inactivity. The events that take place in each

clip compose an action pattern set. Each pattern set is then modelled by an adapted Multi-

Observation Hidden Markov Models (MOHMM) to provide a similarity measure with which

they can be clustered into classes. Using the class information the action pattern sets are

now re-modelled using a Mixture of MOHMMs for each class. The process is unsupervised

since it automatically assigns the abnormal label to the classes that have a low membership

count. The framework also allows for the model to be adapted on-line as more data become

available. It is demonstrated on indoor sequences with low crowd density, but is only able

to detect global abnormal events. In an alternative implementation [20, 19], they suggest an
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on-line algorithm to the sequence that does not relay on frames of inactivity. Furthermore,

they describe a method to cluster the action pattern sets using an eigen-decomposition. In

addition to the indoor scene used in [18], results are also demonstrated on a scene from an

aircraft ramp area where small rigid objects are in motion.

Cui et al. [22] also choose to extract change-relevant pixel statistical features. They

use Pixel Change Frequency (PCF) and Pixel Change Retainment (PCR), which describe

each pixel’s change frequency and duration. The detections are grouped together over a

temporal window to produce a set of visual events (blobs) and luminance histograms are

used to describe each blob. Using additional knowledge about the normal event classes the

visual events are separated and preprocessed by Principal Component Analysis (PCA) [37]

to produce a low-dimensional subspace for each class. The classes of events are then

modelled using an extended Sequential Monte Carlo tracker framework which tracks the

sequence of classes (events) based on probabilistic manifolds. Abnormality is evaluated

based on the Expected Log Likelihood (ELL) of the current state provided by the tracker.

Zhang et al. [21] propose a semi-supervised incremental learning algorithm that uses

object features packed over regular time intervals. The high-dimensionality of the fea-

ture vectors is again addressed by PCA. Modelling is based on iterative adapted HMMs

(iHMMs) that are initially trained on labelled normal samples. These models are then

incrementally adapted based on the unlabelled training samples. This semi-supervised

approach allows better initialisation of the pattern modules, since the classes are provi-

ded by the operator. However, the use of PCA places a number of restrictions on the

characteristics of the feature vectors (see section 2.3).

A linear subspace is also utilised by Sudo et al. [23] and is coupled with an incremental

SVM [38] novelty classifier to detect abnormality from change detection features. Fea-

tures are packed using a sliding window and subspace learning is performed through an

incremental approach (iPCA) which adapts the subspace based on the new samples. The

one-class SVM is incrementally updated, using the new principal components, to detect

global abnormal events. Unfortunately classifiers such as the SVM are based on the as-

sumption that normal and abnormal sets have similar sizes, which conflicts with the fact

that the problem of abnormality detection is by definition unbalanced and abnormal events

are rare.
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For batch-mode (off-line) unsupervised detection of uncommon events, Zhong et al.

[28] extract object features from non-overlapping clips from a video sequence in a high-

dimensional space and co-embed them, into a low-dimensional space, with prototypes

provided by k-means. Detection requires an additional clustering step to find the classes

with total low inter-cluster similarity and to label them as abnormal. When contextual

information is available, object detections can be directly converted to semantic tags and

the video abnormality problem is transformed into identifying uncommon sequences of tags.

An example application is presented by Hamid et al. [29], who use spectral clustering on

event-motifs (semantic tags) corresponding to object detections in a utility room (kitchen).

Contextual local abnormality is detected by Li et al. [25, 24], who cluster blob features

from short clips and use the learnt classes to the scene into regions of similar activity.

For each clip the prototypes of atomic blob events are discovered (k-means). The atomic

events in the clips are further clustered to define global behavioural patterns. Regions

where the same behaviour exists are defined using image segmentation applied on feature

vectors describing the patterns that take place at each pixel position. The most relevant

blob features in each region are selected based on entropy and the new feature space

is clustered to acquire regional behavioural patterns. Modelling is based on hierarchical

probabilistic Latent Semantic Analysis (pLSA) [24]. The first layer models the local (region

based) topics and the second layer learns the global topics based on the models of the first

layer. However, the method is restricted to scenes with a clear phase structure in the

regions (e.g. traffic light junctions) which is required to be known à priori. A method that

can be applied in generic scenes is given in [25], where the regional and global behavioural

patterns on the training set are modelled using a concurrence matrix. The abnormality

label is then inferred by identifying unexpected pairs of atomic events.

In similar scenarios with clear phase structure, Russell and Gong [26, 27] propose on-

line methods based on discovering the fundamental frequency of the feature change cycle

over a spatio-temporal grid. In [27] the aspect ratio of the detected objects is used to form

a spatio-temporal histogram for each spatio-temporal volume. The fundamental frequency

(cycle) of each spatial grid position is discovered using the training clips. Next, the local

activity is modelled by an average spatio-temporal histogram of the features within the

cycle. The model is updated on-line to keep track of the fundamental frequency changes.
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(a) (b) (c)

Figure 2.3: Example of scenes where object-based method are able to detect global
events under perspective distortion: (a) Corridor [18, 19] , (b) Poker game [21, 28]
and (c) nursing home [21]. (Note: images extracted from [18, 19, 21, 28])

Abnormal objects are detected when their aspect ratio does not conform to the learnt

model. In [26] the feature space is replaced by a 5-D histogram (i.e. 2-D optical flow

+ 3-D colour intensity) extracted from detected objects to represent a multi-dimensional

signal. The model update is controlled by a Phase Loop Locked (PLL) topology which

removes jitter noise in the estimation of the fundamental frequency.

In contrast to the trajectory-based approaches, object-detection based methods present

results in indoor scenes with perspective distortion (Fig. 2.3). However, under heavy

perspective and crowded scenarios (e.g. underground stations, airports) the probability

of dynamic occlusions is very high and thus the important task of object separation is

very challenging. Yet, without proper object separation inferring abnormality on a local

region is difficult. This is the primary reason why a number of methods that provide local

abnormality detection [26, 24, 25, 27, 29] are demonstrated on sequences where object

separation is more reliable (Fig. 2.4).

2.2.4 Low-level feature-based methods

In crowded scenes the interactions among multiple objects moving in an unrestricted man-

ner create complex action patterns. Several actions take place at the same time and as a

result spatially local abnormal instances are difficult to identify. In crowded scenes object

detection cannot separate the different moving objects and low-level features are preferred

to describe the behaviour patterns. Common features used for modelling are appearance,

pixel change and motion related features.
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(a) (b)

Figure 2.4: Examples of scene that allow local abnormality detection in object-
based frameworks: (a) top view [29] and (b) rigid distant objects [26, 24, 25, 27].
(Note: images extracted from the corresponding publication)

(a) (b)

(c) (d)

Figure 2.5: Sample frames from the work of Boiman and Irani [33], applied in
scenes with low perspective distortion. (left column) normal instances and (right
column) detection of regions where action is not present in the database. (Note:
images extracted from [33])
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Using appearance Boiman and Irani [33] extract numerous spatio-temporal ensembles

(cuboids), overlaid on each frame. The ensemble is divided into multiple small patches in

various scales and a local descriptor is calculated from each patch. The ensemble descriptors

along with their position relative to the centre of the ensemble provide a database of normal

patterns. Abnormal events are detected when they cannot be inferred from the existing

patterns in the database. While local abnormality is detected the global nature of the

method will not describe in a specific manner the patterns that are dominant (normal)

in the various regions of the scene. Such a setup assumes that spatially local actions

are global, meaning that an action is normal or abnormal independent of the position it

appears in the scene. The method is demonstrated in scenes with no perspective distortion

(Fig. 2.5) and is able to detect local abnormalities in a variety of crowd densities. The

sophisticated feature descriptor used requires a large number of manually set parameters

and calculation over multiple temporal scales to capture behaviour reliably. Thus, due

to the high complexity and memory requirements (over 100,000 descriptors per minute of

video), it does not scale well to larger training samples.

While appearance based features are easy to acquire, their use in video abnormality

detection is problematic. A common issue raised is due to the diversity in the appearance

of the objects. It is common to have objects with different colours perform the same

action or behaviour. As a result, when we need to represent a specific behaviour in a

comprehensive way, we need to have examples of all possible colour appearances of the

objects. Furthermore, appearance is very sensitive to illumination changes. Conversion to

grayscale might help reduce the effect but still it is expected that the high variability in

appearance will cause problems in modelling the normal patterns for novelty detection.

To reduce the dependency on appearance, features based on change detection are utili-

sed. Ermis et al. [32] use the change rate in each pixel, captured over a fixed size temporal

window, as a one-dimensional time series. The novel idea is to consider the normal change

rate as a static motion pattern for each pixel. Novelty detection is then addressed as back-

ground subtraction where the static pattern is treated as the background and the detections

are the abnormal instances. Low-dimensional representations of change rate patterns from

all the pixels in the scene are provided by dimensionality reduction based on random pro-

jections and then are clustered using K-means. Finally, a histogram is constructed to
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(a) (b)

Figure 2.6: Sample frames from the work of Ermis et al. [32], applied in scenes
with rigid objects and distant cameras: (a) Original view, (b) output by removing
pixels with normal change rate. (Note: images extracted from [32])

model each discovered normal class. The likelihood of the observed change rate in a pixel

labels the change pattern for abnormality. Using the change rate of the pixels provides a

degree of geometrical independence under perspective distortion and thus allows matching

of behaviours in multi-camera scenarios [39]. However, the pixel change rates will not be

able to properly describe instances for non-rigid objects and under dynamic occlusions.

Furthermore, pixels are assumed to be independent or to only have linear correlation thus

modelling is not expected to cope well with articulated objects. Therefore, they have been

applied in scenes where the cameras are positioned far away from the moving objects and

at angles that reduce dynamic occlusions (Fig. 2.6). The modelling methodology also suf-

fers from the assumption that the change patterns are spatially universal (global) similar

to the work of Boiman and Irani [33].

Another popular feature is motion, which provides a more reliable description against

partial occlusions and is less sensitive to appearance changes. Andrade et al. propose a

hybrid method that uses both change detection and optical flow. In their work [15], the

video sequence is divided into clips and motion feature vectors are extracted from each

frame. For each video clip, a MOHMM is trained on a low-dimensional representation

produced by PCA. The video grouped are grouped through spectral clustering based on

the similarity measure between the learnt models. A new set of MOHMMs is trained on the

samples from each class. Detection is provided by thresholding the observation’s likelihood

against the learnt bank of models. The method assumes that the training data do not

have instances of inactivity and considers only global abnormality detection. Furthermore,
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(a) (b)

Figure 2.7: Multi-detector based setups for local abnormality detection. Example
deployment of (a) single pixel motion based detectors [13] and (b) region based
detectors [14].

results suggest that in real-world scenarios parameter selection is challenging.

To overcome complexity and better represent the spatial dependency of the action

patterns, frameworks use simple low-level feature descriptors and introduce the concept of

the local detector. The detector in this case is permanently associated with a spatial region

of the scene. In the literature, local detectors are associated to a pixel or a specific region

(Fig. 2.7a). Adam et al. [13] use a grid of pixel based local detectors. They estimate the

motion vector on single pixels while taking into account the optical flow in the local pixel

neighbourhood. The measurement from each point is evaluated against the histogram of

previous results and ranked based on the probability of occurrence. The abnormality label

for the frame is obtained through a voting schema of local detections over a number of

previous frames. The concept of independent detectors allows for pure local abnormality

detection but modelling can only consider one feature at a time (angle or magnitude). The

approach has a low complexity, but abnormality is evaluated based on recent (temporal)

motion history and thus detected abnormal events might not be consistent (i.e., what is

abnormal at a certain time instant might not be abnormal in the future). However, this

memory characteristic makes the detection of abnormal contextual events (time of day)

possible.

Another example of a multi-detector framework is presented in Pruteanu-Malinici and

Carin [30]. The scene is divided into a grid of non-overlapping regions (Fig. 2.7b) and

each detector is trained on appearance based features. The feature space is construc-
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ted using Invariant Subspace Analysis (ISA) [40] which finds a low-dimensional subspace

transformation and train infinite-HMMs for each block in the grid.

In a similar setup, Kim and Grauman [14] use optical flow calculated over different

scales and construct a space-time Markov Random Field (MRF) [41] to infer abnormalities.

The scene is divided into non-overlapping regions which themselves are further divided in to

smaller sub-regions. The feature vector for each region is constructed by concatenating the

set of 9-dimensional vectors (angle histogram plus speed) calculated over the sub-regions.

The features in the training sample are clustered into “words” using Mixture of Probabilistic

Principal Components Analysis (MPPCA) [42]. Detection takes place by constructing a

space-time Markov Random Field (MRF) over the last 10 frames and finding the labelling

that maximises the Maximum a Posteriori Probability (MAP). The MRF is constructed

based on histograms of the discovered “words” to describe the typical local activities and

their interaction. A frequency histogram of “words” (local activity) is associated with

each node, and a co-occurrence histogram of “words” (activity interaction) is associated

with each link of the MRF. The framework can be used in off-line (batch) mode. On-

line application is possible, assuming that the posterior probability of each component

is constant so that the MPPCA components can be updated with a small complexity

cost. The detection results have improved compared to the work of [13], since it also

utilises spatial restrictions to infer the abnormality labelling and a local method MPPCA

to represent motion patterns. However, this modelling also suffers from the assumption

that these patterns are universal in the scene (similar to Ermis et al. [32], Boiman and Irani

[33]). Such an assumption is restrictive and undermines the concept of local abnormality.

Spatio-temporal restrictions among local detectors are also suggested in the work

of Kratz and Nishino [31]. The scene is divided into a grid and spatio-temporal cuboids

are extracted from each region. An action signature is constructed by statistically model-

ling the spatio-temporal gradients of pixels in the cuboids using a multi-variate Gaussian.

Assuming that the local motion patterns do not deviate much across the scene, the si-

gnatures extracted from the complete video volume are clustered based on the symmetric

Kullback-Leibler divergence [43] to separate the signatures in classes and find their pro-

totypes. Each cuboid can now be represented as a distribution of prototypical signatures.

Detection of abnormal instances is based on modelling the spatio-temporal dynamics of
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the distribution of the prototypical classes of signatures that are associated with a specific

location. The temporal dynamics are captured by training HMMs for each local region

and the spatial correlation of the cuboids is captured using coupled HMMs on the adjacent

regions. To infer the abnormality label for the scene, the confidence values of the spatial

and temporal models are fused (weighted-sum). The method is demonstrated on extremely

crowded scenes, yet a number of important parameters are fine tuned (e.g. the weights for

the spatio-temporal abnormality ranking) based on the ground-truth.

Based on recent work motion, is more reliable for abnormality detection in crowded

scenes with dynamic occlusions [13, 14, 31]. These methods consider a number of detec-

tors associated with a specific region to provide local temporal abnormality detection. The

results are later fused to further infer spatio-temporal abnormality in a hierarchical fa-

shion. Results favour the use of mid-sized local regions per detector to capture the motion

patterns of articulated objects [14, 31]. Nevertheless, key aspects of the novelty detection

problem regarding the feature space properties and framework complexity have not been

investigated in a comprehensive way. The next subsection will highlight these limitations

and the challenges that exist in the literature of video abnormality detection.

2.2.5 Limitations and challenges

So far, in the literature, the focus is to identify appropriate and reliable features that des-

cribe the motion patterns in the scene (feature extraction module) and, based on these

features, define a modelling strategy that can provide spatio-temporal abnormality detec-

tion for both local and global instances. An important aspect of the problem is how this

transfer of information from the feature vectors to the model takes place as well as the cost

of the practical application of the abnormality detection framework in real-world scenarios.

Practical application is greatly affected by the computational complexity. During trai-

ning one can accept some delay, but real-world solutions demand real-time performance

during on-line abnormality detection. Thus complex algorithms that require high compu-

tational power and a large amount of memory are not practical [33]. Alternatively, simple

(low complexity) frameworks [13, 14, 31, 15] are more appropriate.

However, in most methods it is common to ignore the deployment complexity of a

framework. This complexity is related to the cost of setting up, training and fine tuning
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the various parameters of the work. In the literature these parameters are usually hidden

and not fully explained (e.g. the number and size of the bins in the history histogram

in [13]) or they are estimated retrospectively from the results and the ground truth [31]. It

is usually considered that methods that have more user-defined parameters can be better

fitted to a variety of problems. But this belief can be supported only when: (i) the

annotated training data are in abundance; (ii) there is a clear connection between the

parameters and their effects and; (iii) abnormal instances are available during training.

It can be argued, that custom made modelling strategies can be designed, when the

operator provides additional information about the scene, such as: detailed annotation (e.g.

separation of training into classes); contextual information; or already known abnormal

events. However, the cost of such annotation is very high and hence such annotation is not

always available. Furthermore, there is the possibility that this information is biased and

does not actually represent the true structure of the patterns unless it is carefully selected

and verified.

In real-world scenarios of abnormality detection, the limited amount of information

about the normal patterns and lack of annotated abnormal instances during the training

phase places limitations on the parameter estimation. Optimisation through methods of

cross-validation is also not a practical solution for complex frameworks whose pipeline re-

quires a plethora of manually tuned parameters in order to provide acceptable performance.

Therefore, it is of interest to design frameworks that can work using a limited amount of

annotation and extract all the possible information directly from labelled and unlabelled

data.

The ability to work under such restrictions favours methods that focus on maximising

the transfer of information. Yet in related work this process is usually hindered by weak

assumptions on the nature and characteristics of the feature vectors. Most frameworks

ignore issues that arise when manipulating high-dimensional data. Processing of such high-

dimensional feature spaces is inherently difficult due to the curse of dimensionality [16].

The feature space is sparsely populated by the training vectors and pattern recognition

algorithms fail to perform.

Furthermore, in the vast space of mathematically possible vectors that correspond to

each feature space, those that are physically possible are only a small fraction. These
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vectors are embedded into a low-dimensional manifold that is defined by the correlation

between the free parameters of the system. Biological systems are known to exploit this

correlation, which in the general case is non-linear [44].

Finally, non-linear dynamics can be introduced through the post-processing steps per-

formed on the feature vectors, yet most methods are oblivious to the serious side-effects

these steps can have on the data. For example a number of works in the literature, group

or pack the observations over a number of frames (video clips) in order to construct feature

vectors that capture the temporal evolution of the actions. Unfortunately, such a process

changes the dynamics of the feature space in such as a way that clustering algorithms fail

to capture the real pattern information. This is demonstrated in the work of Lin et al. [45].

Their experiments on clustering and learning patterns from time series data (stock market

values) has shown that the results are the same and are independent of which dataset is

used for training (even a random time-series gives similar results). The paradox is revealed

when it is shown that sliding window sampling filters the patterns and forces them lie

within an ellipse [46].

It is argued that if these challenges are not considered, no modelling can be expected to

reach its full potential. Maximising the transfer of information is thus of equal importance

to the modelling strategy. To this extent, subspace learning methods are usually employed

to provide a low dimensional subspace which allows for better representation of the data

and to compress information removing redundancy and noise. Furthermore, the possibility

of using both annotated and non-annotated data can alleviate the need for detailed and

costly information provided by the operator. However, in related work [23, 21, 22, 14, 30,

15], when a subspace learning algorithm is used: (i) this is performed assuming a linear

correlation between the feature vectors (e.g. PCA); and (ii) the main focus is on reducing

the complexity of the framework and not the transfer of information.

This section has presented and discussed recent work on the problem of video abnorma-

lity detection. The problem is addressed as novelty detection where the normal instances

are in abundance and abnormal instances are rare. The methods are grouped into catego-

ries based on the features they utilise to infer abnormality and are discussed to identify their

positive and negative points. In related work, trajectory-based methods attempt to exploit

the high-quality information that is included in an object trajectory and detect both local
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and global abnormal instances. However, in challenging, unrestricted, real-world scenarios,

trajectories are not always reliable. To compensate, recent work uses mid-level features

from object-detection blobs. Unfortunately, these methods still suffer problems when the

scene is crowded and the probability of dynamic occlusions is high. Additionally, using

object detection features makes local abnormality detection a very difficult task. To this

extent, the current trend is to use low-level features, yet, a number of issues regarding the

deployment complexity and the transfer of information have not been fully addressed. It is

argued, that subspace learning can provide a path to address these issues thus maximising

the transfer of information. The next section presents a brief review of commonly used

subspace learning methods identifying the characteristics, advantages and limitations that

their application involves.

2.3 Dimensionality reduction

The term dimensionality reduction is commonly used in the literature [47, 48, 49] to des-

cribe methods that aim to learn, from high-dimensional samples, a low-dimensional sub-

space wherein specific statistical properties can be well preserved. All methods assume

that, due to redundancy and correlation between the feature dimensions, the feature vec-

tors lie close to a low-dimensional manifold embedded in the original high-dimensional

space.

Given the feature vector ot ∈ Rl, the aim is to produce yt ∈ Rm that represents ot

into a low-dimensional space (i.e. m� l). Then dimensionality reduction is the mapping

function D,

yt = D(ot). (2.1)

When the mapping can be expressed as a linear combination of the basis vectors the

projection can be expressed as,

yt = D(ot) = A>ot, (2.2)

where A is an l×m matrix that provides the basis transformation from the original high-

dimensional feature space to a low-dimensional subspace.

Dimensionality reduction methods are commonly divided into two categories: linear
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Non-linear Global/Local Criteria Ref.

PCA - +/- (max) variance Shlens [37]
ICA - -/+ statistical independence Comon [50]
MDS - +/- (min) metric dis. Cox and Cox [51]
Isomap yes +/- (min) geodesic dis. Tenenbaum et al. [48]
LLE yes +/+ neighbourhood graph Roweis and Saul [49]
LE yes +/+ neighbourhood graph Belkin and Niyogi [47]

MVU yes +/+ neighbourhood graph Saul et al. [52]

Table 2.2: Dimensionality reduction methods and their main properties.

and non-linear. Linear methods can be expressed as a linear mapping (Eq. 2.2). Non-

linear methods can be only expressed using Eq. 2.1. Apart from this categorisation, the

algorithms mainly differ on the criteria they use to find the optimal projection (Table

2.2). These criteria enhance or suppress various characteristics and dynamics of the input

feature vectors.

2.3.1 Linear methods

A common practice to compress and preprocesses the feature space is to use linear di-

mensionality reduction. A well-known method is Principal Components Analysis (PCA)

expects that variables in the high-dimensional feature vectors are linearly correlated (i.e.

there exist only first order dependence between the variables) and that the feature patterns

follow approximately Gaussian distributions [37]. The PCA method aims at discovering

a subspace projection (Eq. 2.2) that maximises the variance. Therefore, PCA will not be

able to properly represent feature vectors where maximum variance is not important while

being very sensitive to outliers.

In some cases where the number of dimensions is high and the complexity of solving the

PCA eigen-problem increases, it is easier to compute the projection matrix using Multi-

Dimensional Scaling (MDS) [51]. MDS uses a dissimilarity matrix between the feature

vectors of the original feature vectors O to construct a low-dimensional representation Y

that preserves the pair-wise distances. When the dissimilarity matrix is calculated based

on the Euclidean distance, results are equivalent with PCA.

Another linear method is Independent Components Analysis (ICA) [50], which at-

tempts to discover a linear transformation of a random vector that minimises the statistical
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dependence between its components and can cope with patterns that follow non-Gaussian

distributions. However ICA’s performance is poor when the feature patterns actually fol-

low a close-to-Gaussian distribution. Draper et al. [53] compare these two methods on the

classification problem of face recognition where they conclude that based on the task, PCA

is more suitable for global tasks (like face recognition) compared to ICA which is better

suited for tasks that involve local patterns like expression recognition.

2.3.2 Non-linear methods

When feature vectors are not linearly correlated the mapping can be produced by non-linear

dimensionality reduction algorithms which rely on metrics defined on a neighbourhood

graph. Based on these metrics and under certain constraints, the mapping (Eq. 2.1) is pro-

duced by solving an eigenvalue problem to find the solution that minimises the projection

error.

A popular method is Isomap [48], an extension to MDS where the distance metric is the

geodesic distance defined on a neighbourhood graph constructed from the input data. Using

this metric, Isomap can achieve adequate results on mapping data that lay on manifolds

that have a non-linear global structure. Another global non-linear dimensionality reduction

algorithm is Maximum Variance Unfolding (MVU) [52] (previously known as Semi-Definite

Embedding), which solves the optimisation problem that maximises the distance between

the unconnected nodes in a neighbourhood graph while preserving the distances along the

edges and the angles between the edges. This optimisation problem is solved using Semi-

Definite Programming (SDP) [54]. Locally Linear Embedding (LLE) [49] and Laplacian

Eigenmaps (LE) [47] use neighbourhood graphs to embed data accounting for the local

data structure around each point in the high dimensional space. Specifically, LE is based

on the commute times between the graph nodes, which take into account all the paths

from one node to another, and not just the shortest path, thus preserving local structure.

An example is presented in Fig. 2.8. The data consist of 539 points [55] sampled from

a trefoil knot in three dimensions. The underlying manifold is an one-dimensional closed

loop and is projected in two dimensions. The application of LE, Isomap and MVU produce

the correct projection. On the other hand, PCA and MDS fail to account for non-linear

correlation between the features in the input vectors.
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(a) Original (b) PCA (c) MDS

(d) Isomap (e) MVU (f) LE

Figure 2.8: Example of dimensionality reduction of the trefoil manifold (a), from
three dimensions to two, using linear (b,c), global non-linear (d,e) and local non-
linear (f) dimensionality reduction algorithms.

However, Balasubramanian and Schwartz [56] claim that graph-based methods cannot

be applied except for specific synthetic examples. More recently, Van der Maaten and Hin-

ton [57] also challenge the performance of graph-based dimensionality reduction methods.

The main critique is that they are unstable and cannot provide meaningful projections of

real-world datasets. These issues exist because, in the non-linear dimensionality reduction

literature [47, 48, 49] there exist a subtle assumption that the neighbourhood graph is

approximating the assumed manifold structure where the feature points exist. Neverthe-

less, while the graph embedding problem is addressed by a number of methods, the graph

construction problem has not yet been fully investigated.

2.3.3 Neighbourhood graphs

Commonly used graphs are the k and ε nearest neighbours (NN). The k-NN graph is

based on the rule that each node is connected to at least k neighbourhood (closest) nodes

sorted by a similarity measure (usually the Euclidean distance between vectors). As a

set of connection rules node i is connected to node j if node j is among the k closest
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neighbours of i or node i is among the k closest neighbours of j. The main advantages are

that it usually provides a sparsely connected graph and the numerical eigen-solver executes

faster. Alternatively, the rules for the ε-nearest neighbour graph dictate that we form a

hypothetical hypersphere, with radius ε around each point and connect only those vectors

that exist inside it. Thus node i is connected to node j if dij ≤ ε (where dij is the similarity

between nodes i and j ). This set of rules provides a good approximation of the relative

neighbourhood around each node which is more intuitive from a geometrical perspective.

Unfortunately, it is sensitive to the choice of parameters and therefore requires a careful

selection to avoid distorted mappings.

Some research to improve the graph construction, and thus graph-based dimensionality

reduction, tries to automate the process of selecting the neighbourhood size. Samko et al.

[58] provide a heuristic method for finding the optimal global neighbourhood size, which

requires an exhaustive search over the probable values. Unfortunately the cost of applying

the non-linear dimensionality reduction algorithms in a batch, so that we can find the

optimal parameters, becomes impractical as the number of feature vectors increases. Fur-

thermore, it is not applicable to problems where prior information is limited (i.e., novelty

detection). Mekuz and Tsotsos [59] adapt the local a neighbourhood size using intrinsic

dimensionality estimation. They select the local size of neighbourhood by fitting a tangent

space at each point. The approach is complex and uses heuristics to converge into an

acceptable result. Alternatively, one can use different graph construction rules which tend

to be more stable and approximate the manifold better than the global neighbourhood

size graphs (k-NN, ε-NN). Yang [60] looks into several approaches [61, 62, 63] to provide a

better approximation of the data manifold. The resulting graphs have been demonstrated

with new methods of calculating geodesic distances in the work of Meng et al. [64]. Never-

theless, these works [61, 62, 63] still depend on manually setting free parameters that can

be verified by exhaustive search.

2.3.4 Proximity graphs

A plausible alternative to the parameter estimation is to use proximity graphs (also known

as topological graphs), a family of graphs that describe the topological structure for point

sets [65]. Common proximity graphs are: (i) the Delaunay Graph (DG); (ii) the Ga-



CHAPTER 2. BACKGROUND 39

connect disconnect

Figure 2.9: Connection example for the Relative Neighbour Graph: If there is no
other node inside the lune between the nodes then a connection is established.

briel Graph (GG) [66]; and (iii) the Relative Neighbour Graph (RNG) [67]. Additionally,

RNG and GG belong to the sub-family of the β-Skeleton Graphs [68]. These graphs

GRNG, GGG, GDG are related to each other by the sub-graph relation,

GRNG ⊆ GGG ⊆ GDG. (2.3)

where all the graphs are constructed by the same set of vectors.

The proximity graphs are unique and parameter-less, but they have a very high com-

plexity. For example, the RNG is constructed by the rule that two nodes i, j are connected

if and only if there is no other node exist between them closer than their pairwise distance

di,j . Figure 2.9 provides an example of the application of the RNG rule in two dimensions

where a connection between two points is allowed only when no other point exist in the

overlapping area of two circular discs. The discs have a radius of di,j and are centred at the

two nodes i and j. To satisfy the RNG connection rule the brute force implementation in

high-dimensional data (n vectors) requires O(n3) operations [67]. Furthermore, it can be

demonstrated that under manifolds that fold on themselves (like the Swiss Roll) the output

is not following the manifold (Fig. 2.10). Dimensionality reduction using the RNG graph

is thus not advisable since the incorrect connections will distort the embedding. Since the

RNG is a sub-graph of the GG and DG (i.e. the connection in RNG also exist in GG

and DG), it is fair to conclude that GG and DG a not suitable for use in dimensionality

reduction.

This section presented a brief overview of dimensionality reduction methods commonly

used to discover a low-dimensional subspace. It is argued in the literature that non-

linear methods are better suited to represent data without assumptions on linearity and
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Figure 2.10: Graph construction for the Swiss roll manifold: (a) Original data,
(b,c) different views of the relative Relative Neighbour Graph.

restriction on the pattern distribution. In contrast to the non-parametric linear algorithms,

the application of graph-based dimensionality reduction is sensitive to the parameters used

to construct the neighbourhood graph. However, methods that attempt to address this

issue suffer from high-complexity and often require additional information to be available.

2.4 Summary

This chapter has provided a detailed literature review on video abnormality detection

methods, highlighting advantages, limitations and open challenges. The problem is inves-

tigated under the novelty detection framework, where a normal event is mainly inferred

from frequency of appearance, and rare events are abnormal. Features extracted from the

video sequences are processed and utilised to model the normal instances based on infor-

mation provided by the operator. The models are then used to detect abnormal action

in the video. Video abnormality detection methods are required to overcome challenges

such as partially annotated data, high-dimensionality and complexity in order to provide

an abnormality label for point, contextual, collective, local and global anomalies that take

place in a real-world scene. To achieve this goal, the state of the art utilises a large variety

of methods and features to learn the normal action patterns and detect the abnormal ones.

Previous work on abnormal event detection used object detection and tracking/association

features. Tracking features, in theory, provide the information needed to create detailed

models of usual behaviour, but the various stages have been studied independently assu-

ming that the input is accurate, with assumptions of feature independence and linearity.

The matching between the different modules and filters is still an open problem and needs
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careful manual tuning of several parameters in order to produce accurate results. To

overcome these limitations, recent research is uses mid-level foreground-background seg-

mentation, thus avoiding the tracking module. Nevertheless, such modules do not perform

well under camera scenarios where dynamic occlusion is highly probable and they cannot

always provide local abnormality detection in crowded scenes. Moving one step further,

methods can remove the object detection module and extract low-level features from the

image frames. Spatial (local) abnormality is inferred by training local detectors associa-

ted with sub-regions of the scene. The local temporal abnormality labels are later fused,

inferring global spatio-temporal abnormality.

A number of challenges regarding deployment complexity and the transfer of informa-

tion on the video abnormality problem have not been fully addressed. Methods contain

hidden parameters that are difficult to define without additional knowledge of abnormal

events and costly cross-validation techniques. This affects the practical application of the

methods and challenges their performance under real-world scenarios where information is

limited and abnormal events are unknown.

Under these restrictions the transfer of information to the detector from the training

samples is a very challenging task, but this has not been properly investigated in related

work. Intermediate processing steps may cause side-effects which distort the distribution

of the action patterns. Furthermore, the high-dimensionality of the feature space and the

effects of the curse of dimensionality have been addressed through linear dimensionality

reduction methods without considering the strong assumptions and filtering that these

methods impose on the data. It is thus argued that, in order to maximise the transfer of

information, graph-based dimensionality reduction can provide a low-dimensional subspace

that is better suited for abnormality detection. Nevertheless, graph-based dimensionality

reduction is itself an open problem and its practical application in the framework of novelty

detection is challenging.

The next chapter will describe the proposed approach to use graph-based subspace lear-

ning to find a low-dimensional representation of low-level features extracted from a local

region of a video sequence. The proposed subspace method is used along low-complexity

novelty classifiers to provide a local abnormality detector. Finally, a multi-detector frame-

work for abnormality detection is described.
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Abnormal event detection

3.1 Introduction

This chapter describes a method for training and deploying an abnormality detection frame-

work. The method uses graph-based dimensionality reduction to provide a low-dimensional

representation of the feature vectors. The goal is to maximise the transfer of informa-

tion, while keeping the computational and deployment complexity low. The framework

is based on the local detector [13] principle (Fig. 3.1). To this extent, a set of regions

R = {Ri,j | i = 1, . . . rh; j = 1, . . . rh} are defined in the frame and a set of independent

local detectors H = {hi,j | i = 1, . . . rh; j = 1, . . . rh} are associated with each region.

Motion vectors are extracted and a low-dimensional representation is produced for each

region based on graph-based dimensionality reduction. The independent detector (the no-

velty classifier) is utilising the learnt subspace to provide local abnormality detection. The

abnormality label of each detector is later fused through a voting scheme that labels frames

as abnormal based on the recent history of alarms accumulated by the set of detectors.

The main assumptions of the method are:

• The video sequence is continuous (i.e. it does not contain scene cuts). This is typical

in footage from CCTV cameras that is recorded without editing.

• The normal instances are the majority of the actions taking place in the scene. This

ensure that the problem is an unbalanced classification problem in line with the

definition of abnormality detection.

42
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Figure 3.2: Schematic example of the region selection where a video sequence is
divided into a 2× 2 grid of (spatial) regions.

• The training labelled frames do not contain any abnormal events. This is a common

assumption for supervised and semi-supervised novelty detection algorithms. (Note

that this only refers to the training samples for the novelty detector and not the

subspace learning algorithm, which is unsupervised)

There are no restrictions on the distribution of the vector patterns and no assumptions

about the significance of the vector variance to separate the normal and abnormal classes.

The next sections describe in detail the various steps for training and testing the proposed

abnormality detection framework.

3.2 Feature extraction

Feature extraction is the first filtering process in abnormality detection. Selection of the

appropriate feature space affects performance, computational complexity and ease of de-

ployment in a fundamental way. The proposed framework is flexible and can use different

low-level features. However, based on experiments in single object and multi-object se-

quences (see section 4.4) motion vectors have been shown to provide abnormality detection

performance when compared to the use of pixel values or change detection masks.

In order to produce the high-dimensional feature vectors, we define It to be the image
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frame of size ih × iw (rows × columns) at time t of the video sequence and ICt (i, j) the

colour values of the (i, j) pixel, where C ∈ {R,G,B} and i = 1, . . . ih; j = 1, . . . iw). We

also define the grid R of non-overlapping spatial image regions Ri,j ∈ R (where i = 1, . . . rh

and j = 1, . . . rw). Figure 3.2 provides a schematic example of the region placement with

a 2× 2 grid.

The motion vectors are calculated using the block matching technique implemented in

the OpenCV library [69]. The image It is first converted from colour to grayscale IYt based

on,

IYt (i, j) = 0.299IRt (i, j) + 0.587IGt (i, j) + 0.114IBt (i, j), (3.1)

with i = 1, . . . ih and j = 1, . . . iw.

A two-dimensional blurring filter is applied on IYt to produce the filtered image ĨYt . The

image ĨYt is divided into non-overlapping blocks bw pixels (width) and bh pixels (height).

The grid of blocks is defined as B(t) = {Bi,j(t) | i = 1, . . . bih/bhc , j = 1, . . . biw/bwc} and

each block Bi,j(t) is a sub-image (bh× bw in pixels) of the grayscale image ĨYt whose centre

pixel is ĨYt (̂i, ĵ). The index is given by (̂i, ĵ) = (bbh ∗ i+ bh/2c , bbw ∗ j + bw/2c) where

the indices i, j refer to Bi,j(t). For each Bi,j(t) the block matching algorithm searches the

neighbourhood of the corresponding pixel position in ĨYt−1 to find a block that is most simi-

lar to the Bi,j(t) in ĨYt . The search is limited to a square area around each corresponding

pixel ĨYt−1(̂i, ĵ) of size 2sh × 2sw. Where the values sh and sw define the maximum displa-

cement that can exist due to motion. The metric used to measure similarity is the Sum of

Absolute Difference (SAD) of the pixel values. The horizontal and vertical displacement

(relative to the centre pixel) of the best match provides the associated motion vector vi,j(t)

of Bi,j(t). The resulting motion vector field is Vt = [vi,j(t)]vh×vw where vw = biw/bwc,

vh = bih/bhc and i = 1, . . . vh, j = 1, . . . vw. Typical values used for the calculation of the

motion vectors in real-world scenes (such as in sequence S5) are: (i) bw = 19; (ii) bh = 19;

(iii) sw = 20; (iv) sh = 20; and (v) window size 5 × 5 or 7 × 7 for the filtering of the

grayscale image IYt .

Since the search for the estimation of motion vectors at the edges of the image frame

is not symmetrical, the value of these motion vectors is ambiguous and often incorrect.
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(a) (b)

Figure 3.3: Example illustration of dividing the motion vector field into multiple
non-overlapping regions: (a) original vector field and (b) region deployment and
grouping, with 5 × 5 motion vectors per region. (Key: regions are depicted by
alternating colour patterns)

To avoid introducing these errors into the feature space these edge vectors are removed.

Additional errors commonly present in motion vectors calculated through block matching

are: (i) short bursts of unexpected motion vectors caused by sudden camera motion or

errors in the search algorithm; and (ii) small jitter of the motion vector due to the finite

resolution of the motion vector calculation. Both types of noise need to be addressed

before further processing. To remove the first type a median filter is used as it removes

short lived spikes while preserving the shape of the signal. The second type of errors is

better addressed through a moving average filter, which filters out the high-frequency jitter

noise. These one-dimensional filters are applied over time on every component (horizontal

and vertical) for each motion vector independently. The window size parameter for the

successive filtering (first median then moving average) is estimated by visual inspection of

the motion vectors on a small part of the training samples. The results should aim for

smooth motion vectors relatively free from high-frequency noise and sudden spikes.

To produce the observation vectors in the regions, we divide the motion vector grid and

group the motion vectors according to R (see example at Fig. 3.3). Each region Ri,j ∈ R

(where i = 1, . . . rh and j = 1, . . . rw) at time t is associated with the enclosed mh ×mw

motion vectors from the motion vector field Vt,
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Figure 3.4: Schematic example of motion vector grid and the relationship between
the enclosed motion vectors and the regions in the image frame. Each region is
associated with the 9 (i.e. mh = 3, mw = 3) motion vectors that are enclosed.


vmh(i−1)+1,mw(j−1)+1(t) . . . vmh(i−1)+1,mw(j−1)+mw(t)

...
. . .

...

vmh(i−1)+mh,mw(j−1)+1(t) . . . vmh(i−1)+mh,mw(j−1)+mw(t)

 ,

where the indices in the matrix are relative to Vt. Figure 3.4 provides a schematic example

of the motion vector grid and the division of motion vectors into regions. The observation

vector oijt , that corresponds to the region Ri,j at time t (i.e. Ri,j(t)), is constructed by

concatenating the individual scalar values of the enclosed motion vectors into a single

column vector. Thus, given that a motion vector is two-dimensional v = (v, u), where v

and u are the horizontal and vertical displacement, the observation vector oijt is,

oijt =



vmh(i−1)+1,mw(j−1)+1(t)

umh(i−1)+1,mw(j−1)+1(t)

vmh(i−1)+1,mw(j−1)+2(t)

umh(i−1)+1,mw(j−1)+2(t)
...

umh(i−1)+mh,mw(j−1)+mw(t)


. (3.2)
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According to the local detector principle [13] each region Ri,j is associated with a detector

hi,j . We define the following sets of the observation vectors oijt that are associated with

each region Ri,j :

Si,j contains the feature vectors (both labelled and unlabelled) that are used in the di-

mensionality reduction process (where Si,j ⊆ Oi,j) .

Xi,j contains the feature vector samples that are annotated as normal based on the infor-

mation provided by the operator (where Xi,j ⊆ Si,j). This information is only used

during the novelty classifier training procedure.

Zi,j contains the set of unlabelled samples used during the evaluation of the abnormality

detection framework.

For simplicity we represent the oijt vectors that belong to the above sets with sijt , xijt and

zijt respectively.

This section described and illustrated the feature space construction process to produce

the original high-dimensional feature vectors for the multi-detector abnormality detection

framework. The next section will describe the algorithm to produce a non-linear low-

dimensional representation of these high-dimensional feature vectors.

3.3 Subspace learning

Subspace learning is the main module of the proposed abnormality detection framework.

It provides a low-dimensional projection with emphasis on separating the normal (statisti-

cally common) from the abnormal (statistically uncommon) instances in the feature space.

It addresses at the same time the high-complexity, non-linear and unbalanced nature of the

problem. Since it is unsupervised, annotation of the data is not necessary; thus the provi-

ded subspace uses all available information while being robust to the (possible) existence

of abnormal instances. This is achieved by using Laplacian Eigenmaps, a graph-based

dimensionality reduction algorithm that uses a neighbourhood graph (graph embedding)

to provide a low-dimensional space. When out-of-sample extension is required, an alterna-

tive method is utilised that approximates the subspace provided by Laplacian Eigenmaps

and allows for new samples (vectors) to be projected in the subspace. To maximise the
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(a) (b) (c)

Figure 3.5: Synthetic example sequence S0: (a) normal motion pattern, (b) ab-
normal motion pattern and (c) illustration of the path of all the motion instances.

transfer of information from the sequence to the projections, one has to select the proper

parameters for the graph construction: (i) the neighbourhood size; and (ii) the weights

for the edges of the graph.

Since each region Ri,j is processed independently and in order to allow for a sim-

pler mathematical notation, the analysis of the graph-based dimensionality reduction will

concentrate only on the observation vectors ot (instead of oijt ) of the generic region R

(instead of Ri,j) and of the associated detector h (instead of hij). In a similar manner the

observation sets are S,X ,Z. Furthermore, the various stages of subspace learning are also

illustrated using S0, a synthetic single object video sequence (2240 frames) that depicts

single circular disks moving in the scene. Figure 3.5 presents the path of the normal events

and the single abnormal instance. The colour, speed and size of the disks remains constant.

White and Gaussian noise are added to the image frames and the disc motion respectively.

We assume a single region R equal to the image frame It and the vector ot is produced by

concatenating the pixel values of the image matrix into a high-dimensional feature vector.

3.3.1 Temporal ε-graph

As discussed in section 2.2, the neighbourhood graph is crucial to the success of the graph-

based subspace learning process. The graph neighbour parameters define what is consi-

dered to be local. An inappropriate selection of neighbourhood parameters produces a

distorted embedding. Unfortunately, in several approaches where graph dimensionality

algorithms are used, the local neighbourhood is predefined or estimated by trial and er-

ror schemes. Such approaches are not suitable for the application of subspace learning in

real-world problems (e.g. video abnormality detection).
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Figure 3.6: A sample matrix of a graph constructed with the temporal e-graph
rules. Nodes (frames) are divided into popular and lonely. The regions of low
connectivity (frames: 45–75 and 146–207) correspond to frames with slow changing
actions.

In special cases, e.g. when the uncommon events are known to be composed of actions

which evolve slowly in time, it is possible to define the local neighbourhood indirectly

by exploiting prior knowledge on the patterns that are of interest, by incorporating that

information into the graph connection rules. The graph that utilises this information is

a variation of the ε-NN graph, where the neighbourhood size of each vector is defined

by the similarity of temporally adjacent vectors. The temporal ε-graph, is thus formed

in compliance to the following connection rules. Given the set S of nS high-dimensional

feature vectors:

1. Vector si is always connected to the next in time vector si+1 with i = 1 . . . (nS − 1)

2. Based on the similarity dij between vectors si and sj (where j = 1 . . . nS and j /∈

{i, (i+1)}), an undirected connection between si and sj is formed when dij ≤ di(i+1).

The nodes of the graph can be described as popular and lonely nodes (Fig. 3.6). Vectors

nodes that have a large difference from adjacent (in time) nodes, have their neighbourhood

threshold relaxed (popular). Vector nodes with small differences are hardly connected
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Figure 3.7: Points sampled from a hyperbolic spiral (a) and their k-nearest neigh-
bours graphs for the (b) minimum graph and (c) the distorted graph with incorrect
connections when the neighbourhood size is increased.

to any other nodes (lonely), except the previous and next in time vector from the video

sequence. These rules will make events with slow changing features stand out in the

projections (see section 4.3).

However, such a graph will not provide a good representation when the assumptions

about the action patterns do not hold. When the normal patterns are described in an

abstract manner (i.e. frame labels), a more generic approach is necessary.

3.3.2 Minimum k-NN

The proposed method for a generic graph is based on the k-nearest neighbours (k-NN)

graph commonly used in the literature. This graph is built according to the rule that

each node is connected to at least k neighbourhood (closest) nodes sorted by a similarity

measure. Since the structure of the manifold is unknown, similarity is estimated using

the Euclidean distance as an approximation. However, Euclidean distance is unreliable in

high-dimensional spaces and deviates from the geodesic distance between points that exist

on a low-dimensional manifold [48]. As a result, connections in the graph between vectors

with large Euclidean distance do not follow the manifold surface and are incorrect (see

Fig. 3.7(c)). In order to avoid such connections, we have to keep the graph neighbourhood

inside a small area around the reference node where the error between the Euclidean and

the geodesic distances is small (see Fig. 3.7(b)).

A good value for the size of the neighbourhood can be achieved by using the minimum

k that provides a connected graph through the iterative process described below:
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1. Calculate the similarity (distance) function for all the possible vector pairs between

the nS vectors in the training set S. Given two randomly selected vectors si, sj with

i = 1, . . . nS and j = 1, . . . nS , the distance function is:

di,j =| si − sj | . (3.3)

When duplicate vectors exist in the feature space, numerical calculations will give

di,j = 0. These cases should be identified and specially treated by the nearest-

neighbour search so that the connection is not lost between these vectors and is

properly accounted for. A simple method (and the one followed in this work) is to

replace the zero value with a very small (but representable) floating point number.

2. Construct the k-NN graph matrix G with duplicates. Given that Ki is a set of the k

nearest neighbours of si and dki is the similarity of the last (most distant) neighbour

in Ki, we populate the graph matrix with edges based on the following:

gi,j =


di,j if di,j ≤ dki or di,j ≤ dkj .

0 otherwise.
(3.4)

This definition provides an extended undirected k-NN which takes into account that

in S it is possible to have several vectors with the same distance from a reference

vector. The probability of such duplicate similarity distance is especially high in dis-

crete feature spaces (e.g. pixel values, change detection masks and motion vectors).

Without this exception, the reference node could randomly connect to one of the can-

didate nodes and the resulting connectivity would not be unique and geometrically

symmetrical (Fig. 3.8).

3. Select the minimum neighbourhood size by iteratively increasing the value k until

the produced graph is a connected graph.

The resulting graph matrix represents a sparse undirected graph, which is composed of

two type of edges, the close-in-time (close to the main diagonal) and the far-in-time edges.

The close-in-time edges represent the evolution of the scene through time and they should

exist since we assume that the video sequence evolves smoothly through time (i.e. there
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(a) (b) (c)

Figure 3.8: k-NN rules example (k = 2): (a,b) Original rules only one of the two
equidistant nodes will be connected at random and (c) correct nearest neighbour
graph using the proposed extension.

are no scene cuts in the video sequence). The far-in-time edges represent the similarity

between the action patterns where temporal patterns observed at different times in the

sequence are similar and thus connected. Figure 3.9 presents the connectivity structure of

the minimum k-NN graph produced by using sequence S0. Since in S0 there exist multiple

instances of the normal patterns, the graph depicts numerous far-in-time connections.

Additionally, due to the fact that the actions in the sequence evolve smoothly the close-

in-time connections are also present. However, as discussed later in subsection 4.3.5, when

the main assumptions about the video sequence and the patterns do not hold, the two

types of connections in the graph are not in balance and the acquired representation will

not be useful for abnormality detection.

Due to the iterative nature of the algorithm to acquire the minimum-k-NN graph, the

size of neighbourhood k is not restricted from reaching high values if the pattern classes

are very far from each other. While the Laplacian Eigenmaps will be able to provide a

projection even under these circumstances, the solution will be computationally impractical

and equivalent to spectral clustering methods. To investigate these extreme cases, let us

assume that we have a set of N multi-dimensional normal vectors M and a set of n

abnormal vectors A. We also assume that M∩A = Ø and N � n. We combine these

vector sets (M∪B) and construct the graph G based on the proposed rules. The minimum-

k-NN algorithm will start from k = 1 and will continue to increase until k = n−1. At that

point the sub-graph of the abnormal vectors GA ⊂ G is fully connected, while the main

graph remains unconnected. However, when k = n, the rules will force all of the vectors



CHAPTER 3. ABNORMAL EVENT DETECTION 54

0 500 1000 1500 2000

0

500

1000

1500

2000

Frames

F
ra
m
es

Figure 3.9: Illustration of the connection patterns in the minimum k-NN produced
from sequence S0. The connections that are close to the main diagonal represent the
time flow, while the off-diagonal connections describe similarity between patterns.
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Algorithm 1 K-nearest neighbours with duplicates
1: function K-nn(data,K) . construct the K-nn graph from the distance matrix data
2: n← number of rows in data
3: Create an empty graph g
4: for i = 1 to n do . iterate for every row in the matrix
5: row ← data[i] . get the i-th row
6: index← argsort(row) . get the index that would sort the row
7: for j = 2 to K + 1 do . connect the k nearest neighbours
8: g(i, index[j])← connected
9: g(index[j], i)← connected . undirected graph
10: end for
11: while row[index[j + 1]] = row[index[k + 1]] do . connect equidistant nodes
12: j ← j + 1
13: g(i, index[j])← connected
14: g(index[j], i)← connected . undirected graph
15: end while
16: end for
17: return g . Return the graph
18: end function

Algorithm 2 minimum K-nearest neighbours
1: procedure Minknn(data) . Find connected graph of the data with the minimum K
2: K ← 1
3: g ← k-nn(data,K) . Create graph
4: while g 6= connected do
5: K ← K + 1 . Increase neighbours
6: gprevious ← g . Save previous graph
7: g ← K-nn(data,K) . Create new graph
8: end while
9: g ← gprevious . Restore the last connected graph
10: return g . Return the graph
11: end procedure

in A to connect to the closest point in M, making the graph connected. In practice,

the minimum-k-NN becomes fully connected using just a few nearest neighbours. This

happens because the features in a video sequence without scene cuts evolve smoothly over

time.

Algorithm 1 describes the brute-force implementation of the extended k-NN graph

construction. To automatically choose the number of neighbours, we follow the iterative

process (Algorithm 2) that provides a connected graph with the minimum possible k. The

bottlenecks in the process are the calculation of the distance matrix and, to a lower degree,

the intermediate k-NN graph construction. The brute-force algorithm, while being easily

parallelised, requires O(ln2) distance calculations (l is the original vector dimensionality

and n is the number of vectors). However, recent work [70] has proved that it is possible

to get approximate k-nearest neighbours with a lower than quadratic complexity O(lnκ)

where κ is a small number close to 1.
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3.3.3 Graph weighting

The last step in the graph construction is to apply the appropriate weighting scheme that

will produce the weighted graph matrix W . Given a graph G of nS , matrix W is based on

the weighting function [47]:

wij =


e−

g2ij
τ if gi,j > 0,

0 otherwise.
(3.5)

where i = 1, . . . nS and j = 1, . . . nS . Parameter τ effectively separates the local neigh-

bourhood into close and distant connections. The simple scheme is to use a binary repre-

sentation and to assign ‘‘1” where there is an edge between two nodes and ‘‘0” otherwise.

We can achieve this result by setting τ =∞ in Eq. 3.5. The value τ∞ =∞ preserves the

general information about the local structure in the proximity of each vector, but discards

the relative importance among the neighbours. By setting the value of τ , we can scale the

influence that neighbourhood (connected) nodes have. Values very close to zero result in

a numerically unstable eigenvalue problem, and thus should be avoided. Values close to

+∞ dictate that only the graph structure is important for the embedding. This value is

highly popular among several graph-based dimensionality reduction approaches that ex-

pect a global manifold to exist. It is also generally preferred as it has a small memory

footprint and the eigenvectors converge faster to a solution. If we select a value between

those extremes (i.e. {0,∞}) we can exploit not only the fact that nodes are neighbours,

but also how close they are to each other. In theory, the latter weighting strategy holds

more information about the local neighbourhood. Both weighting schemes produce similar

results when the number of nodes reaches infinity. However, the latter needs careful selec-

tion of the scale parameter τ to avoid errors in the numerical solution of the generalised

eigenvalue problem.

Figure 3.10 gives an example for such values for the scale parameter using Laplacian

Eigenmaps (LE) and projecting into one dimension. All values produce an unfolding of the

global manifold. The colour sequence in the projections is the same as would be perceived

if we were running along the spiral. As we move from larger to smaller values of τ , the

grouping on the points in the line follows more closely the grouping that is apparent in
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Figure 3.10: Points sampled from a hyperbolic spiral (Fig.3.7a) and their LE
projection into one dimension using the minimum connected graph with different
value for the scale parameter τ . Smaller values provide more information about the
grouping of the points that exist on the manifold. (Key: τ values are relative to the
maximum edge length in the graph )

Figure 3.7(a). As a result the weighting of the graph values is very important for the

discovery of clusters on the manifold.

In this work three different values for τ were used in the experiments:

• The binary scheme τ∞ =∞. This value discards any similarity information between

the feature vectors and only considers their connectivity.

• The value τµ =
∑
ij g

2
ij

ne
, where ne is the number of vertices (edges) in the graph G.

This value represents the average distance in the graph. It is used in our initial

experiments as an estimate for τ to separate between the close and distant connec-

tions in the graph and thus improve the grouping of the patterns in the projections.

However, the weighted graph based on τµ was found to cause issues with the nume-

rical stability of the eigen-solver algorithm used in graph embedding (see subsection

4.3.3). In these cases, a better estimation τo is proposed.

• The value τo is provided by applying Otsu’s method [71] on the histogram of the

squared edges (g2
ij > 0) of the graph. Otsu’s method is an unsupervised decision

procedure which separates a set of values into two classes and aims to find a value

τ (threshold) that minimises the inter-class variance. The procedure is commonly

used for estimating the threshold that clusters grayscale images into two classes by

using the intensity histogram. In this work, it is used to provide the value τo, based

on the edge histogram of the neighbourhood graph, that would separate the edges

into close and distant neighbours. Value τo is also the preferred value since it was
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found to provide better stability for the eigen-solver algorithms and good projection

results.

3.3.4 Graph embedding

The process of graph embedding follows closely the graph-based non-linear dimensionality

reduction method Laplacian Eigenmaps (LE), as described in [47]. The method is based

on the Graph Laplacian of the neighbourhood graph created over the end points of the

high-dimensional input vectors. Given a set of nS multi-variate observations s1, s2, . . . , snS

in Rl(l� 1), and a weighted graph G built over the endpoints of these vectors; LE solves

the problem of mapping S to Y (of lower dimensionality m) so that the connected points

in G stay as close as possible.

Consider the mapping of the high-dimensional feature vectors to a line thus Y =

{y1, y2, . . . , ynS} with yi ∈ R (where i = 1, . . . nS). This mapping can also be repre-

sented as a vector ỹ = (y1, y2, . . . , ynS )>. A reasonable criterion for choosing a good map

is to minimise the following objective function,

∑
ij

‖ yi − yj ‖2 wij with i = 1, . . . , nS and j = 1, . . . , nS (3.6)

The objective function (3.6) with our choice of weights wij incurs a heavy penalty if

neighbouring vectors si, sj are mapped far apart. Belkin and Niyogi [47] show that the

minimisation problem can be expressed as,

1

2

∑
ij

‖ yi − yj ‖2 wij = ỹLỹ (3.7)

where L = ∆ − W is the combinatorial Graph Laplacian matrix. ∆ is the diagonal

weight matrix whose entries are columns (or rows, since W is symmetric) sums of W (i.e.

δii =
∑

j wij). The problem in (3.7) reduces to finding

argmin
ỹ>∆ỹ=1

ỹ>Lỹ. (3.8)

In the more generic case where we embed the graph into Rm the result is given by the nS×m

matrix Ỹ where the i-th row provides the embedding coordinates yi = (ỹi,1, . . . ỹi,m)> of
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the original vectors si. In this case the optimisation problem becomes,

argmin
Ỹ>∆Ỹ=I

tr(Ỹ >LỸ ), (3.9)

where tr() is the trace of the matrix.

The constrain ỹ∆ỹ = 1 for the one dimensional embedding prevents the solution

from collapsing onto a point. For the multi-dimensional embedding, Ỹ >∆Ỹ = I prevents

collapse of the solution to a space of dimension less than m. The solution is provided

by the eigenvectors corresponding to the lowest, non-zero, eigenvalues of the generalised

eigenvalue problem:

Lỹ = λ∆ỹ. (3.10)

The procedure to perform LE is formally stated below:

1. Compute the combinatorial Graph Laplacian L.

2. Solve the generalised eigenvalue problem of the graph Laplacian (Eq.3.10).

3. Embed into m-dimensional space using the first m eigenvectors in ascending order

of eigenvalues, starting from the first non-zero eigenvalue,

with λ0 = 0 < λ1 < λ2 < . . . < λm

si → yi = (ỹ1(i), ỹ2(i), . . . , ỹm(i))>
(3.11)

where ỹj(i) is the i-th element of the j-th eigenvector and yi ∈ Y the low-dimensional

representation of si.

The main computational module of LE is the solution of a sparse generalised eigenvalue

problem for which there are a number of established, fast and stable eigensolvers.

Due to the locality preserving characteristics of the Graph Laplacian, LE is able

to compactly group normal (common) patterns in the projections and “separate” them

from the abnormal (uncommon), without assumptions on linearity or variance significance

(Fig. 3.11a,b). Such a difference in the mapping of normal and abnormal instances is be-

neficial to novelty classification as presented in the experiments (see subsection 4.4.3). In

contrast, global linear methods such as MDS and PCA expect the feature space to follow

strict assumptions, thus “separation” is not always possible (Fig. 3.11c,d).
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(a) (b)

(c) (d)

Figure 3.11: LE projection normal and abnormal actions in the S0 sequence using
the weighted (τo) minimum k-NN graph: (a) dimensions 1-3 and (b) dimensions
4-6. The abnormal event is projected away from the main class of normal patterns
(especially for b), while the MDS projection is not providing the same quality of
separation since the abnormal pattern is enclosed inside the normal : (c) dimen-
sions 1-3 and (d) dimensions 4-6. (Key: The normal (blue) and abnormal (red)
instances are manually colour coded based on the known ground-truth to aid the
visual inspection of the results)



CHAPTER 3. ABNORMAL EVENT DETECTION 61

3.3.5 Out-of-sample extension

One of the issues that emerges when using Laplacian Eigenmaps is the inability to project

new points into the learnt subspace. This limitation restricts the application of LE only to

off-line based abnormality detection. To alleviate this limitation the Locality Preserving

Projections [72] algorithm is used. This method is also based on the Graph Laplacian

and shares similar characteristics with its off-line alternative Laplacian Eigenmaps. In this

thesis, we use the spectral regression flavour of Locality Preserving Projection (SR-LPP),

a graph-based linear dimensional reduction, which finds the linear approximation of the

Laplacian Eigenmaps embedding using a spectral regression technique [73]. The result is a

linear mapping that is able to compensate for the non-linear correlation among the features

in the input vectors.

Following the SR-LPP method we estimate the projection matrix A which maps the

vectors si ∈ S (where i = 1, 2, . . . , nS) to a low-dimensional representation yi ∈ Y based

on the information that exists in the graphW. Consider the projection of the initial vectors

to a line Y = {y1, y2, . . . , ynS} with yi ∈ R. This mapping can also be represented as a

vector ỹ = (y1, y2, . . . , ynS )>. The solution is based on solving the minimisation problem

in (3.8),

argmin
ỹ>∆ỹ=1

ỹ>Lỹ = argmin
ỹ>Lỹ

ỹ>∆ỹ
,

since L = ∆−W the minimisation problem can be converted to the equivalent,

argmax
ỹ>W ỹ

ỹ>∆ỹ
, (3.12)

Thus the solution to the optimal mapping is given by the eigenvectors corresponding to

the maximum eigenvalues of the generalised eigenvalue problem,

W ỹ = λ∆ỹ. (3.13)

Note that SR-LPP is based on (3.13) which is equivalent to (3.10), thus LE and SR-LPP

are expected to have similar mappings when compared to each other.

To be able to map new instances we assume a linear projective function f(si) = a>si

and thus ỹ = S>a (where the i-th column of S corresponds to the si vector). In this case,
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equation (3.12) becomes,

argmax
ỹ>W ỹ

ỹ>∆ỹ
= argmax

a>SWS>a

a>S∆S>a
. (3.14)

Thus the optimal a’s are produced by solving the maximum eigen-problem:

SWS>a = λS∆S>a. (3.15)

This problem however has a high computational complexity and does not scale well with

the number of vectors, yet it is possible to find the linear projective functions without

solving the dense eigen-problem (3.15). In their work Cai et al. [73] suggest to use spectral

regression where the best fit is given by the regularised least square minimisation problem:

argmin
a

(
nS∑
i=1

(a>si − ỹi)2 + ε ‖ a ‖2
)

(3.16)

where nS is the number of vectors in S and ỹi is the i -th element of the eigenvector ỹ

calculated by the eigenproblem (3.13). The solution of Eq. (3.16) for the first m major

eigenvectors produce the transformation l × m matrix A, whose i-th column is the ai

eigenvector of (3.16). Using matrix A new observations can be projected into the low

dimensional subspace using equation (2.2). The method is implemented in two steps: (i)

find the m major eigenvectors of (3.13); and (ii) estimate the eigenvectors of (3.15) using

the regularised list square equation (3.16).

Equation (3.16), is also called ridge regression and the parameter ε ≥ 0 controls the

amount of shrinkage. Ridge regression overcomes issues with small sample sizes and pro-

vides more stable solutions especially when the dimensionality of the feature vectors is

high [74]. Furthermore, experimental results have shown that using SR-LPP to perform

LPP provides a closer approximation to the Laplacian Eigenmaps compared with alterna-

tive implementations of the LPP projection (see subsection 4.6.2).

This section has described an unsupervised method, based on graph-based subspace

learning techniques, to discover a low-dimensional subspace that is suitable for abnormality

detection. The next section will utilise the subspace to deploy and train a multi-detector

framework for video abnormality detection.
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3.4 Abnormality detection

This section describes the procedure to deploy a multi-detector framework to address the

video abnormality detection problem. For each region Rij (where i = 1, . . . , rh; and j =

1, . . . , rh) we associate the set of observations Sij , Xij , Zij that are extracted from that

region. We then define a “subspace-aware” novelty detector which is a classifier operating

on the low-dimensional subspace of the high-dimensional observation vectors. The graph-

based dimensionality reduction method produces the low-dimensional representation Yij of

the feature space utilising both labelled and unlabelled data in Sij . A novelty classifier hij

is then trained in the low dimensional subspace based on the normal labelling (annotation)

Xij , provided by the operator. Unlabelled samples Zij are projected onto the learnt low-

dimensional subspace and the trained classifier will provide the abnormality label.

In off-line detection, the classifier training and testing sets are part of the subspace

learning (Xij ⊆ Sij and Zij ⊆ Sij). The two pipelines for off-line and on-line detectors are

presented in Figures 3.12 and 3.13.

3.4.1 Novelty classifier

While the proposed method does not restrict us to a specific novelty classifier, we prefer

to select a one-class classifier that: has a small operational footprint ; and can be trained

using only the annotated normal instances from the subspace. The operational footprint of

the novelty classifier refers to processing and memory requirements of the novelty classifier

during abnormality detection. A commonly used classifier is formed by Gaussian mixture

models (GMM). GMMs are based on the assumption that the patterns (classes) can be

approximated with a mixture of Gaussians. The advantages of this approach are: (i) the

novelty classifier can be trained in an unsupervised manner; and (ii) the training samples

can be discarded keeping only a small number of parameters that describe the mixture

model.

Assuming that the GMM is composed of n mixtures and the feature vector dimen-

sionality is m (i.e. the dimensionality of the subspace), then the number of parameters

required for each mixture component are: m2 for the covariance matrix; nm for the para-

meters of the mean value; and n weights to measure the influence of each mixture com-

ponent. Thus the total number ηGMM of parameters for models with full covariance is
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ηGMM = n(m2 + m + 1). To reduce this number, the modelling assumes only diagonal

covariance matrices thus the number is now η̃GMM = n(2m+ 1).

In contrast, the use of methods such as an one-class SVM would require setting of

training parameters and demand an equal amount of positive and negative annotated

samples. Unfortunately the parameters are not easily optimised in the abnormality detec-

tion problems where prior knowledge of abnormal events is lacking and the events are rare

(unbalanced classification problem). Alternative novelty classifiers such as nearest neigh-

bours have been shown to be effective but they require the training samples to be present

during detection and are thus more complex and require more memory than GMMs.

For these reasons, the use of GMMs is more appropriate for real-time abnormality

detection. Thus for each region Rij a GMM is trained based on the projection X̆ijof the

associated training set Xij of annotated normal instances. The GMM model is fit using

the Expectation Maximisation (EM) algorithm and the number of mixture components is

selected by maximising the Bayesian Inference Criteria (BIC) over a range for the number

of components (e.g. [1, 10]).

Unlabelled samples zijt ∈ Zij are mapped into the low dimensional space (zijt → z̆ijt )

and ranked for abnormality based on frank(z̆
ij
t ) = −log(pdfGMM (z̆ijt )). Given a threshold

θij we label observations as normal or abnormal using,

hij(z̆
ij
t ) =


0 if frank(z̆

ij
t ) ≤ θij

1 otherwise

. (3.17)

3.4.2 Multi-detector fusion

After training, each local detector hi,j provides the local motion abnormality label for the

associated motion feature vectors oijt of the single region Ri,j at time t in the scene. To

reduce false alarms in the detector grid H = {hij | i = 1, . . . rh, j = 1, . . . rw}, we infer

the abnormality H(t) of the complete framework by placing temporal constrains on the

labelling of the local detectors. The method was proposed by Adam et al. [13] and is

achieved using the following functions,
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fα(t) =


0 if

∑
ij hij(t) < α

1 otherwise
, (3.18)

H(t) =


0 if

∑t
t−γ fα(t) < β

1 otherwise
. (3.19)

The system has two states: (i) the alarm state which is set when fa(t) = 1; and (ii)

the abnormal state which is set when H(t) = 1. The abnormal state is the final output of

the algorithm to the operator. The parameters are defined as follows: (i) γ is the number

of frames in history that we look back from the current frame; (ii) β is the number of

alarms in history that are necessary to consider the current frame abnormal; and (iii) α is

the number of detectors that are required to have abnormal labels before we declare the

current frame at alarm state.

3.4.3 Parameter selection

Since abnormal events are not available during training, the parameters α, β, γ and the

threshold θ need to be defined manually. Parameter α depends upon the size of the detector

relative to the size of the moving objects. For example when small detectors are deployed

in scenes with large moving objects then we might need to set α > 1. In our case since

the size of the detectors is not very small when compared to the moving objects (humans)

the value is fixed to 1. Parameters β, γ are selected based on the expected minimum

duration for abnormal events in order to temporally filter the results from the detectors.

This duration is subject to the combination of the frame-rate and the expected speed of

the moving objects (faster moving objects mean that the duration should be smaller to

compensate). The relative difference between these two values (γ−β) give some robustness

to occlusions or missing detections and it should not be bigger than β/2 to avoid merging

different events together. Regarding the threshold θ, if we assume that the training sample

is free of abnormal instances then a safe value is the maximum rank that is attributed to

the training set of vectors. Selecting larger values for the threshold is considered arbitrary

and cannot be validated without examples of abnormal events. The number of dimensions
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for the subspace is no more than 10 dimensions to keep the computational complexity of

the on-line detection low.

3.5 Summary

This chapter has described the methodology for the training and deployment of an abnor-

mality detection framework that is composed of independent novelty classifiers utilising a

low-dimensional subspace. The goal is to maximise the information that can be extracted

(transfer of information) from all the available vectors (both annotated and unlabelled)

and to discover a low-dimensional space that reflects the structure and frequency of the

motion patterns that exist in the associated region of interest.

This goal is achieved using unsupervised dimensionality reduction methods based on

the Graph Laplacian of a neighbourhood graph (minimum k-NN). The neighbourhood

size k and weighting τ parameter are automatically estimated from the provided data.

The weighted graph is used by the graph-based subspace learning approaches of Laplacian

Eigenmaps or Locality Preserving Projections (when we require on-line abnormality de-

tection), thus a low-dimensional projection is discovered where normal events are mapped

into compact clusters and abnormal instances are mapped far away.

Such a setup allows for a more effective training of a variety of novelty classifiers.

However, due to complexity and training limitations that exist in the video abnormality

detection problem, it is preferable to use methods that have a small operational footprint

and that can be trained in an unsupervised way (automatic selection of model parameters).

With this aim, GMMs have been selected to detect abnormal instances.

The framework is based on a grid of non-overlapping regions over which a graph-

based dimensionality reduction algorithm discovers a low-dimensional subspace of the high-

dimensional features associated with each local region. A novelty classifier, trained on the

feature subspace with annotated data from the operator, learns the local normal motion

patterns and provides local abnormality detection. Using these subspace-aware local de-

tectors it is possible to infer abnormality for a larger area surveyed by the CCTV sensor

by fusing the local abnormality labels that they produce. The process follows the work of

Adam et al. [13], who propose a low complexity temporal filtering approach to fuse detector

labels and provide abnormality detection for the full scene.
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The overall complexity of the on-line detection is low and can be easily performed

in embedded systems, while training is dominated by the cost of the graph construction.

Nevertheless, subspace learning is required only once and the methodology can exploit

recent algorithms on parallel systems to reduce the computational cost. The complete

framework requires a small number of training parameters associated with the physical

aspects of the scene and thus can be inferred empirically using neither detailed knowledge

of the abnormal events nor cross-validation techniques.

The next chapter presents the experimental results that support and justify the motiva-

tion for the proposed approach. The method is applied on single and multi-object datasets

in experiments of incremental complexity to verify advantages and identify limitations.



Chapter 4

Experimental results

4.1 Introduction

This chapter provides experimental results on the application of the proposed approach for

video abnormality detection. The experiments investigate several aspects of the framework.

The off-line graph-based subspace learning method is compared with alternative linear and

non-linear dimensionality reduction methods to demonstrate the ability to maximise the

transfer of information from the feature space to a low-dimensional subspace suitable for

abnormality detection. Then, the performance advantage of motion vectors against alter-

native low-level features is verified on both single object and crowded real-world sequences.

The resulting off-line local subspace detector is later compared against alternative novelty

classifiers to demonstrate the performance advantages. Finally, the full multi-detector fra-

mework is compared with linear subspace learning to identify issues and limitations of the

application in real-world scenarios.

4.2 Datasets

This section will describe and discuss the motivation behind the use of the specific sequences

used for the subsequent experiments. These datasets are grouped into two categories:

single; and multi-object, based on the number of moving objects that simultaneously exist

in the scene.

70
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(a) (b) (c)

Figure 4.1: Events in sequence S1: (a) car, (b) man and (c) null event.

4.2.1 Single-object dataset

In this work, single object sequences are used as a baseline dataset to test, evaluate and

compare the use of the subspace learning methods (LE and SR-LPP) in the proposed

abnormal event framework. We select a small fixed region of interest (i.e. there is no

tracking of the moving objects) from the MPEG-7 dataset (highway) and we create a

number of event sequences by concatenating normal and abnormal events separated by

frames of inactivity. The selected region (54×52 pixels in size) is usually occupied by a

single object. Four sequences were created in order to test and compare the proposed

subspace learning algorithm. These are described in more detail below:

S1 is a small sequence depicting two events with completely different appearance and mo-

tion characteristics: (i) a car “passing by”; and (ii) a man crossing the highway. These

two events are different: in appearance; speed; direction of motion; and duration.

S2 is a relatively large sequence (6000 frames) that depicts several instances of moving

vehicles and three abnormal events: (i) a car reversing in the auxiliary lane; (ii) the

same car moving forward in the auxiliary lane; and (iii) a man crossing the road.

These abnormal events (Fig. 4.2) have a number of characteristics that differentiate

them from the normal instances. The “man crossing” and “car reversing” events are

slow actions (i.e. the appearance difference between frames is low). Furthermore,

the location where the abnormal car events are taking place is a sparsely occupied

area in the sequence (i.e. auxiliary lane).

S3 is a smaller sequence (from the same region as S2) that includes in addition to the

moving vehicles three abnormal events (Fig. 4.2): (i) two instances of the man cros-
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Seq. Number of
Frames

ROI Size
(pixels) Description Frames

S1 451 54x51 Car passing 45-75
Man crossing 146-207

S2 6000 54x51
Car reversing 762-881
Car using auxiliary lane 1917-1961
Man crossing 3303-3353

S3 2900 54x51
Man crossing 211-261
Car crossing (synthetic) 415-496
Man crossing 2194-2246

S4 1057 54x51 Car using auxiliary lane 173-848

Table 4.1: Highway dataset description.

sing the road; and (ii) an abnormal event generated using an static image of a car,

slowly moving from right to left. The slowly moving car has been scaled to 70% of

the original size to produce less distortion. The resulting scene is similar in speed

and distortion to the one of the pedestrian.

S4 is a small scene that intentionally relaxes the assumption on the number of objects in

the scene. The uncommon event in this case is a car using the auxiliary lane, while

other vehicles are moving in the highway (Fig. 4.3).

Table 4.1 summarises the contents of the four sequences. In all the sequences normal events

(actions) are composed of vehicles that move from the bottom right hand corner to the top

left hand corner of the ROI and they constitute the majority of the actions in the scene

(Fig. 4.4).

Sequence S1 is used for testing and evaluating the different subspace learning methods

in a very simple scenario. S1 consists of only two events, thus any subspace learning me-

thod should be able to map the feature vectors in a low-dimensional space in which they

are visually separated. However, sequences S2 and S3 are built to help identify suitable

methods to be used as a part of an abnormality detection framework. The normal actions

in S2 and S3 are numerous and consist of a variety of objects (different appearance). Fur-

thermore, the abnormal events do not always follow the “good behaviour” of linearity (in

the case of articulated objects) and high-variance (in the case of slow moving objects) yet

are real and valid uncommon events that can take place in a highway scenario. An unsu-
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(a) S2

(b) S2

(c) S2 and S3

(d) S2

Figure 4.2: Key frames of abnormal events: (a) car reversing in the auxiliary lane,
(b) car using the auxiliary lane and (c) man crossing and (d) synthetic event of the
pasted car.

Figure 4.3: Key frames of the car using the auxiliary lane in sequence S4
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(a)

(b)

(c)

Figure 4.4: Normal instances in the Highway ROI: (a) key frames of normal action
patterns from sequence S2 and (b,c) sample frames of vehicles from sequences S2
and S3.
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(a) S5A (b) S5B

Figure 4.5: Sample frames of sequence S5 depicting a scene form the exit of an
underground train station and the selected ROI: (a) S5A for a single detector, (b)
S5B for the multi-detector framework.

pervised subspace learning method should be able to handle (computational complexity)

the large number of high-dimensional vectors and group the normal instances in a compact

cluster. At the same time, it should map the abnormal instances away from the normal

cluster. Finally, sequence S4 helps to identify the issues and problems that arise when

assumptions on the number of objects and the ratio of normal to abnormal patterns in the

sequence are relaxed.

4.2.2 Multi-object dataset

To investigate the performance and compare the proposed subspace-aware local detectors, a

challenging sequence (S5) from the dataset used in the work of Adam et al. [13] is selected.

It is a scene from an underground train station (64900 frames of size 512x384, 25 fps)

where the camera oversees the exit turnstiles of the platform (Fig. 4.5). During the normal

motion flow in S5, people that arrived with the train are exiting the platform through the

turnstiles and turn left or right on the corridor.

The main characteristics of this sequence are:

1. The moving objects are articulated (humans) and appear in a variety of crowd den-

sities from a single object to multiple objects following different behaviour patterns.

2. The camera placement is such that heavy perspective distortion is present.

3. Partial dynamic occlusions are highly probable.
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4. It has been designed specifically for the abnormality detection problem thus the

abnormal events are closer to real-world scenarios. The normal events are numerous

and the abnormal are rare.

5. Behaviour patterns are not global and have spatial affinity (stairs, corridor) and, as

a result, abnormal events can also be local.

Alternative datasets in the literature only include some of these properties. For example,

sequences used in work based on object detection and tracking might be multi-object but

depict rigid objects with the camera placed at a distance (Figs. 2.2(a,b), 2.4(b) and 2.6).

Even when the camera setup is such that the action is taking place in close proximity to

the camera sensor, the events are restricted and global (Fig. 2.3), there is no perspective

distortion (Fig. 2.5) or the crowd density is relatively low (Figs.2.3 (a,b)).

In order to evaluate the proposed subspace based abnormality detector we define a

region of interest as presented in Figure 4.5 (a). This ROI was selected because it has a

good ratio of normal to abnormal events with a wide range of duration. Given that the

first 7500 frames of the video are normal, the abnormal events consist of people entering

the ROI going down the stairs (wrong way) and people jumping. These events involve

abnormality that is relative to both speed and angle of motion. Figure 4.6 and 4.7 present

sample frames from the normal and abnormal instances that exist in S5A.

The complete multi-detector framework is tested on a larger ROI (S5B) as shown in

Figure 4.5(b). Note that S5B is similar to the one selected in the work of [13]. Adam

et al. [13] describe as abnormal events only a small number of scripted instances that they

have performed and they are located “around” a centre frame without specific duration.

In contrast, Kim and Grauman [14], using the same dataset but considering the complete

frame, increase the number of abnormal events to 19. This ground-truth, in addition to the

abnormal events in [13], includes loitering (i.e. a person waiting), people changing their

direction (e.g. start moving left then moving right) and even motion caused by children.

Creating the ground-truth in larger regions is subjective and remains an open problem, it

is thus difficult to understand what is normal and abnormal in these cases where similar

abnormal actions are ignored [13] or the majority of behaviours is considered abnormal

[14].

Based on our definition of the abnormality detection problem, abnormality inferred
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(a)

(b)

(c)

(d)

Figure 4.6: Sample key frames of normal instances as they appear in S5A.
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(a) wrong way

(b) wrong way

(c) jump

(d) wrong way (small distortion)

Figure 4.7: Sample key frames of abnormal instances as they appear in S5A. (Key:
people performing abnormal actions are shown with a bounding box for illustration
purposes)
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based on the abstract annotation of normal behaviour provided by the operator and the

assumption that such actions constitute the majority of behaviours in the scene. To this

extent, we have summarised the main paths of motion that exist in the first 7500 frames

(annotated clip) and considered abnormal those actions that have not been observed before.

The ground-truth for the S5B area where the local detectors are deployed in sequence S5

was produced in two steps:

First, the full image frame ground-truth was created using the Viper tool [75] where we

manually defined the bounding box of the perpetrator (the person who performs the

abnormal action). The events start when the action is abnormal and stop when the

associated object stops moving or reverts to normal behaviour. It should be noted

that if the person moves in an abnormal way at a later instance then a new event is

declared. Because of these rules a number of events are separated by a small gap (e.g

the person stops moving for a number of frames) and thus two events are recorded.

The abnormal events are separated into; (i) moving down the stairs into the platform;

and (ii) moving from right to left in the corridor. There are no miscellaneous events

(e.g. children moving).

Second, the events that take place in the S5B area of the scene were found automati-

cally. The algorithm performs a proximity check of the bounding box in the full

image frame ground-truth and the S5B area boundary. An event exists in S5B if a

bounding box from the full ground-truth is closer than two pixels to the boundary

of S5B. When two abnormal events take place in S5B at the same time, they are

merged into one abnormal event. Note that, the bounding boxes in the full frame

ground-truth are only used to find the start and stop time instances of the event in

the S5B area and the final ground-truth does not contain any bounding box informa-

tion. Figures 4.8 and 4.9 provide representative samples of the normal and abnormal

behaviours that are produced by these rules. While these rules have their limita-

tions, e.g. spatially independent events might be merged; they provide a set of rules

that can be easily implemented to provide performance evaluation. The resulting

ground-truth for S5B consists of 14 events.
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Method Graph Weight

LE-A minimum k-NN τ∞
LE-B minimum k-NN τµ
LE-C temporal ε-graph τ∞
LE-D temporal ε-graph τµ

Table 4.2: Parameter variations used for LE in 3D projections. (Key: for the τ
value definition please refer to 3.3.3)

4.3 Subspace learning

In this section, we discuss and compare the off-line subspace learning approach (see subsec-

tion 3.3.4) with alternative state-of-the art dimensionality reduction algorithms on map-

ping single-object video sequences in a low-dimensional space. Appearance-based features

extracted from the video sequences are used to construct a low-dimensional mapping repre-

senting the acquired feature vectors in the ROI. This makes it possible to map and visualise

the actions in the scene, as represented by the feature vectors, in a low-dimensional space.

The off-line subspace learning approach is evaluated using the suggested graphs (minimum

k -NN and ε-temporal graph) and compared with PCA, MDS, Isomap and MVU. The aim

is to identify the advantages of graph-based dimensionality reduction on representing event

patterns and to demonstrate that the proposed subspace learning method based on LE is

better suited for projecting abnormal instances that exist in the videos.

4.3.1 Preliminaries

The proposed approach is based on the off-line method described in 3.3.4 using LE. The

different graph and value τ (defined in subsection 3.3.3) combinations used are denoted

with LE-(A, B, C and D) and are given in Table 4.2. For Isomap and MVU, we used the

same neighbourhood size that was calculated for the LE-A variation (other parameters are

set to default values). MVU was used in combination with the C library for SemiDefinite

Programing (CSDP) [76]. However, projections of the S2 and S3 sequences were acquired

using the alternative incremental approach of MVU, using 2000 initial vectors, due to

limitations imposed by the available memory on the test system.

In order to compare the different subspace learning methods we visualise the results in

a three dimensional subspace. Given a video sequence we extract the pixels in the region
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of interest and associate them with a single detector region R. The appearance-based

observations are constructed by concatenating the pixel colour values that are enclosed

in R at time t to form a high-dimensional observation vector ot ∈ Rl. The number of

dimensions is related to the size of the region in pixels and the number of colour channels

that are describing each pixel. Thus a 100 × 100 colour (RGB) region will result to a

feature with l = 1002 ∗ 3 = 30000 dimensions. All the projection methods are applied

using the high-dimensional appearance based vectors S (where st = ot) to produce the

three dimensional mapping Y. The events are colour coded manually in the plots where

normal events are coloured with the same colour, except for S1 where both actions (car

and man) have different colours.

The projections are evaluated on abnormal event separation. This term refers to the dif-

ference in the low-dimensional mappings between normal and abnormal instances. Please

note that the term separation as used in this context is not equivalent to detection since

no classifier is utilised to achieve any labelling. Visually we define the abnormal events

separation as the effect that the dimensionality reduction methods have in mapping the ab-

normal events away from the normal while considering at the same time how compact the

mapping of the normal instances is. Performance is also relative to the amount of overlap

that exists between the normal and abnormal classes in the low-dimensional projection.

Numerically, separation is evaluated based on how well the abnormal instances fit

within the distribution of the normal class (in the projected space). Thus, given the low-

dimensional projection Y of the feature vectors S in the single region R and the projection

X̆ of the set of labelled normal vectors X , we compute the score fsap(yt, X̆ ) of an instance

yt ∈ Y using the Mahalanobis distance:

fsep(yt, X̆ ) = (yt − µ)TC−1

X̆
(yt − µ), (4.1)

where C is the covariance matrix of the projected normal vectors X̆ and µ is their mean.

To evaluate the separation of a set of feature vectors that belong to an abnormal event

y
(i)
t ∈ Y(i) ⊂ Y (where i ∈ {1, 2, . . .} identifies the different abnormal events), we can use

the average separation index (ASI) calculated over all the elements of Y(i),
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fASI(Y(i)) =
1

nY(i)

∑
{fsep(y(i)

t , X̆all) | ∀yt ∈ Y(i)}, (4.2)

where nY(i) is the number of vectors in Y(i) and X̆all is the set which contains all of the

normal instances as defined in the ground-truth. ASI provides a measure of the relative

distance of the abnormal instances from the class of normal, based on the assumption of

a single Gaussian distribution for the normal pattern class. Small values (negative in the

logarithmic scale) denote a poor separation. In this case, the uncommon event vectors

are inside the point cloud of the normal vectors. Values close to 10 account for event

projections that have a fair degree of overlapping with the normal set. Finally, values

greater than 10 correspond to projections where the highlighted events are further away

from the normal vectors.

4.3.2 Event representation

We apply the dimensionality reduction methods (i.e. PCA, MDS, Isomap, MVU and LE)

on the appearance based observation vectors from sequence S1, which contain only two

events, (Fig. 4.10). The PCA projection separates the two events. The “man crossing”

event generates a small loop inside the bigger loop of the “car passing” event. MDS also

provides a similar embedding. Isomap results in a projection where different events are

mapped in different loops of points (trajectories). MVU projects the two events in opposite

directions but the path that the objects follow in this space is not as clear as in the case of

the rest of the algorithms. Changes in angle of the trace of the man correspond to changes

in the shape (size) of the man while he runs across the highway.

The LE variation and Isomap have the same appearance (Fig. 4.10). The events are

placed in loops that start and end in the null event where no action takes place in the

scene. The LE-B variation mapping has a topology similar to the PCA projection, but

reveals additional interesting features. The pedestrian performs a periodic movement while

crossing the road from right to left and periodically changes his shape and size, thus the

sequential observation vectors in the region have maxima and minima in distance between

them. The periodic movement of the man generates angles and density differences in the

LE projection similar to MVU. If we use the temporal ε-graph (i.e. setup LE-C) then the

two events are better separated. Since the “man crossing” is a slow action and the “car
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passing” is a fast action, there are no connections between them in the temporal ε-graph

thus, LE will make sure that these vectors are as far away as possible in the projections.

Additionally, when we use LE-D, the vectors representing the fast moving car collapse to a

small area close to the “no event” vectors, while the vectors associated with the pedestrian

generate a loop.

PCA (Fig. 4.10(a)) provides a descriptive summary of the actions in the region of the

video. Isomap forces each action to project in a distinct loop. LE gives a fusion of these

properties in various degrees depending on the graph and weighting schemes used, from

the Isomap projection (Fig 4.10(e)) to the PCA or the MVU projections (Fig. 4.10f) and

even further to extreme projections (Fig. 4.10(g,h)) when using the temporal ε-graph.

As seen from the results, LE is able to separate the two events in the sequence (cause by

a car and a man) in the low-dimensional representation. Although the other dimensionality

reduction algorithms perform well on this simple scenario, LE combines their distinct

characteristics under a single framework.

4.3.3 Abnormal events

To further explore the advantages and limitations of LE as a means to acquire low-

dimensional mappings that can be used for abnormal event detection, we apply the LE

variations (LE-A and LE-B) to S2 and S3 (Figs. 4.11 and 4.12). LE-B and LE-D were

not included because the application of the weighting scheme τµ resulted in an unstable

(singular) solution of the eigenvalue problems, thus results could not be acquired (see

subsection 4.3.5).

Figure 4.11 compares the mapping algorithms applied on an extended video, S2. The

linear dimensionality reduction algorithms, PCA and MDS, fail to consider the non-linear

correlation of the feature vectors, as they use only the variance or distance information

in the high dimensional space. The internal structure is also not discovered by global

graph-based dimensionality reduction algorithms (i.e. Isomap and MVU in Figure 4.10).

In contrast, when LE-A (Fig. 4.11(e)) is used with sequence S2, the loops that occur

describe the car (green and light blue dots) but not the man crossing the road. The

normal vectors are distributed on a triangular surface: the lower corner holds the vectors

that show a car (or truck) in the centre of the ROI; the two top corners correspond to
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vectors under different illumination conditions and some small movement of the camera;

the area in between is occupied by the vectors where the cars move in and out of view.

The trace associated with each vehicle follows a similar path; it starts at the top corner,

moves down to the low corner and returns to the original position when it is out of the

view.

Using the temporal ε-graph (i.e. LE-C) in sequence S2 changes the mapping in a drastic

way (Fig. 4.11(f)). The temporal ε-graph creation rules only penalise the connectivity of

vectors which change slowly. Both the “man crossing” and “car in reverse” events are slow

thus in the graph the associated vectors are lonely nodes. However, when the car is moving

forward the movement is fast enough that the average distortion of the associated vectors

is large thus these nodes are popular in the graph. The same effect applies to the vectors

of the normal patterns where the cars move fast in the scene. LE embeds the temporal

ε-graph so that popular nodes are mapped compactly together and the lonely nodes are

mapped far away from the area of the normal patterns.

The S3 sequence is another example that demonstrates the effect of the temporal ε-

graph for slow changing actions. In this case the sequence combines an artificial (i.e. “car

crossing”) and two instances of a real-life unusual event (i.e. “man crossing”). The alter-

native global subspace projections (PCA, MDS, Isomap) cannot provide any visual clues

about the highlighted events, while LE-A projection (Fig. 4.12(e)) shows the highlighted

events in separate loops. Similarly to the S2 sequence (Fig. 4.12 (e,f)), the usual events

are visualised in a triangular shaped surface and the unusual events form loops out of that

surface. MVU also provides good visual separation for the abnormal events making the

“car crossing” event is easier to spot.

The results for sequence S3 are improved by applying LE-C (Fig. 4.12(f)). The instances

of the abnormal events are mapped so that the projected points follow a straight line.

Although the abnormal actions (i.e. “man crossing” and “car crossing”) events are both

slow, they are not embedded close together in the low-dimensional subspace. The difference

between the associated feature vectors is large enough that the vectors are not connected

in the graph, thus in the LE projection each abnormal action is placed far away from the

other.
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Algorithms

S2 S3
man

crossing

car

reversing

car
using the

auxiliary lane

man

crossing

car

crossing

PCA -0.20 -0.93 -0.40 0.25 0.45
MDS -0.20 -0.93 -0.40 0.25 0.45
Isomap -0.98 -0.52 -0.46 0.16 0.57
MVU 0.57 2.50 2.44 0.51 1.75

LE-A 1.15 4.48 4.14 0.43 0.79
LE-C 6.38 7.32 -0.39 2.62 8.05

Table 4.3: The average separation index (Eq. 4.2) for the abnormal events in
sequences S2 and S3. (Key: the values are presented in the logarithmic scale)

4.3.4 Event separation

The existence of visible structures in the projections, which can provide us with clues

about the characteristics of the motion/action in the scene, is a desired property for event

representation. However, for abnormality detection the separation in the low-dimensional

subspace of the uncommon events from the normal instances is also important. This can

be evaluated by calculating the ASI value (Eq. 4.2) of each abnormal event against all the

normal instances in the projection.

Table 4.3 shows the ASI values for the abnormal events of the projections (using PCA,

MDS, Isomap, MVU, LE-A and LE-C) on sequences S2 and S3. The results show that

LE, especially with the LE-C set of parameters is able to separate the abnormal events

very well. The only exception is that the “car using the auxiliary lane” event in S2 has a

very low score. The object in this event is moving fast thus the main assumption of the

temporal ε-graph does not hold. However, using the minimum-k -NN graph (i.e. LE-A), it

is possible to provide a better separation for the “car using the auxiliary lane” event but on

average the performance is lower than the LE-C setup. Alternative linear (i.e. PCA and

MDS) and non-linear (i.e Isomap) methods fail to separate the uncommon events. The

method that provides comparable results with LE-A is MVU. However, the computational

complexity of MVU is very high and does not scale well with the number of feature vectors

(i.e. long sequences).

We can argue, that based on the visual and quantitative comparison, LE is more

suitable to provide a low-dimensional space that can be used for training of classifiers and
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Figure 4.13: Application of LE-A and LE-D on a multiple object scene (S4).
(Key: vectors are colour coded manually in the plots based on the ground truth to
aid the visualisation)

detection of abnormal events. The conclusions from the comparison in 4.3 can be extended

to the subspace learning algorithm SR-LPP, which provides an approximation to the LE

projection. This is due to the fact that the SR-LPP method is based on Eq. (3.13), which

is equivalent with the eigenproblem solved by LE (i.e. Eq. (3.10)).

4.3.5 Issues in subspace learning

In the previous subsections (i.e. 4.3.2, 4.3.3 and 4.3.4), results were presented using se-

quences with one moving object in the ROI and thus the number of possible motion

patterns was limited. However, when multiple objects move inside the ROI, the number

of possible patterns increases exponentially. In such cases the assumption that the normal

patterns classes are the majority and that there are numerous examples of normal actions

in the samples used for subspace learning, is difficult to satisfy. To demonstrate this issue,

a multi-object sequence with a small number of vectors is used (i.e. S4).

The application of the Laplacian Eigenmaps is presented in Figure 4.13. Every new ob-

ject in the video creates a new path in the projected space (Fig.4.13(a)). These paths cross

each other in various places corresponding to vectors in the sequence with similar content.

When LE-D setup is used, the complete sequence is projected as one loop (Fig. 4.13(b)).
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(a) (b)

Figure 4.14: Nearest neighbours graph when multiple patterns exist and the
number of vectors is not enough: (a) minimum-k -NN graph and (b) temporal ε-
graph of S4 do not have any significant structure away from the main diagonal.

However, there is no visible grouping of patterns in normal and abnormal classes as seen

in Figures 4.11 and 4.12.

The problem is associated with the information that is retained by the neighbourhood

graph produced from the appearance-based vectors constructed by concatenating the pixel

values in the ROI of the sequence S4 (Fig. 4.14). When the action patterns are not properly

represented (i.e. there are not enough examples of the different patterns in the sequence),

the graph is fully connected using only a small number of nearest neighbours and these

connections mainly correspond to the time-line direction of the video stream. To avoid cases

in which the graph and thus the discovered subspace does not provide useful information

about the abnormality detection problem, we need to: (i) increase the subspace learning

samples; or (ii) reduce the size of the ROI to lower the complexity and number of the

action patterns.

The first requirement is easier to achieve since the proposed subspace learning process

is unsupervised (no need to annotate instances) and scales well with the number of vectors.

The second requirement places restrictions on the size of the ROI which is less intuitive

if there is no information about the size of the moving objects. Nevertheless, the graph

structure allows us to detect this representation problem prior to the process of training

and validating the abnormality detection system. When there are not enough examples
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of the normal patterns the neighbourhood graph structure provides visual clues (structure

similar to Figure 4.14) and thus we can act accordingly to avoid the representation issue

(e.g. provide more samples to the subspace learning module).

Another issue is associated with the graph weighting schema and the numerical stability

of the solution. Experiments in sequences S2 and S3 have shown that the LE solution is

sensitive to the selected value of τ . In these cases the value τ = τµ resulted in badly

scaled matrices and the eigen-problem became singular. Thus the eigensolver was not

able to provide a numerically reliable solution. The problem has been addressed in later

experiments (section 4.4) where using τ = τo has shown that the numerical stability of the

solution in sequence S3, using a variety of features, has improved. The next section will

investigate the effect of using different low-level features in order to detect the abnormal

instances in a region of interest.

4.4 Feature comparison

In the previous section we have demonstrated that the proposed off-line graph-based di-

mensionality reduction methodology is able to provide a low-dimensional subspace where

abnormal events are mapped far away from the class of normal patterns. The next step

is to study commonly used features that can be extracted from the video sequence and

to evaluate their performance for abnormality detection. To this extent we evaluate the

abnormality detection performance of appearance, change detection and motion vector ba-

sed feature vectors, for subspace-aware detectors. Even though each feature has a number

of intrinsic limitations, the goal is to identify features that are suitable for reliable and

low-complexity independent abnormality detectors in video surveillance scenarios.

4.4.1 Preliminaries

The different types of extracted features are studied using sequence S3 that has a variety

of moving vehicles (e.g. cars, vans and trucks numbering) 20 occurrences in total thus

there is wide variety in speeds and appearance of the moving objects. The sequence is

first preprocessed by a low-pass blurring filter based on a 5-pixel square sliding window,

to remove noise. We assume a single region R that is equal to the ROI. We then extract

the following features for comparison:
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Pixels Change detection mask Motion vectors

Colour space RGB gray RGB gray gray gray

Low pass 5× 5 5× 5 5× 5 5× 5 5× 5 5× 5

Threshold – – 10 8 – –
Block size – – – – 5× 5 5× 5

Maximum displacement – – – – 5 10

Dimensionality 8424 2808 2808 2808 200 200

Setup A1 A2 B1 B2 C1 C2

Table 4.4: Experimental setup parameters for feature comparison.

1. The colour and grayscale appearance based observations (A1 and A2) are produced

by concatenating the pixel values in the region R.

2. The change detection mask is a binary matrix Ct = [ci,j(t)]ih×iw where inactive “0”

pixels are considered background pixels and the active “1” pixels are associated with

foreground objects. The size of the resulting binary image is equal to the original

image and is calculated by thresholding the absolute pixel-wise difference Ĩt of It and

It−1,

ci,j(t) =


1 if (ĨRt (i, j) > thc) ∧ (ĨGt (i, j) > thc) ∧ (ĨBt (i, j) > thc)

0 otherwise
(4.3)

with i = 1, . . . ih and j = 1, . . . iw

For grayscale images IYt , IYt−1 (produced by Eq. 3.1) and their absolute pixel-wise

difference ĨYt , the equation is simplified to,

ci,j(t) =


1 if (ĨYt (i, j) > thc)

0 otherwise
(4.4)

with i = 1, . . . ih and j = 1, . . . iw

The threshold thc is selected by visually inspecting the output for a part of the video

sequence and selecting thc that maximises the detection of foreground pixels that

belong to moving objects while minimising noise (i.e. pixels that do not belong
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to moving objects). The observation vectors are constructed by concatenating the

pixel values in Ct into a multi-dimensional column vector. Table 4.4 presents the

parameters sets for the colour (B1) and grayscale (B2) setups for the change detection

masks.

3. The motion vectors are calculated using two setups C1 and C2, based on block

matching (as described in 3.2). The setups differ on the size of the search area.

A summary of the setups and their parameters is provided in Table 4.4. We construct

the proposed minimum k-NN graph using τo (defined in 3.3.3), for each setup using all

the available vectors. The off-line subspace learning method (based on LE) then provides

the low-dimensional projection. The desired characteristics of an ideal projection for ab-

normality detection should map the normal event vectors in a compact area. However,

the abnormal events should be mapped far away from the normal event class. This sepa-

ration (see subsection 4.3.1) of the normal and abnormal instances in the projections, is

expected to improve the performance of novelty classifiers. To aid the visual comparison

of the projections, the events are colour coded manually in the plots (based on the known

ground-truth) where normal events are coloured with the same colour.

To evaluate the use of each feature to produce a mapping suitable for abnormality

detection, we use the ASI score (i.e. Eq. (4.2)). We then divide each result by the number

of subspace dimensions, to generate the average separation index per dimension (ASID)

for each highlighted event,

fASID(Y(i),m) =
fASI(Y(i))

m
, (4.5)

where the sets S, Y, Xall and X̆all (i.e. the projection of Xall) are associated with each

specific setup (Table 4.4), Y(i) (with i ∈ {1, 2}) is the subset containing one of the abnormal

events (i.e. “man crossing” and “car crossing“ for sequence S3) and m is the dimensionality

of the low-dimensional representation. The value ofm normalises the fASI value so that we

can compare the values from the mappings for which the subspace dimensionality differs.

Large values are an indication that the highlighted event is mapped far away from the

normal action patterns.
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The fASID value provides a measure of the separation (see of the abnormal instances

against all the normal instances as defined in the ground-truth. However, in off-line

detection scenarios the operator will only label a sample as normal X ⊆ S. Using Eq. (4.1)

we can construct a low-complexity novelty classifier and evaluate the performance of a

subspace-aware local detector,

G(z̆t) =


0 if fsep(z̆t, X̆ ) ≤ θ

1 otherwise

, (4.6)

where z̆t are the unlabelled vectors and X̆ the labelled samples in the low-dimensional

subspace. The training and detection is taking place on the low-dimensional representation

provided by the off-line unsupervised subspace learning algorithm (Laplacian Eigenmaps).

Results are evaluated based on the Receiver Operating Characteristic (ROC) and Pre-

cision and Recall (PR) curves [77] produced by varying the threshold θ. Precision (PR)

describes how certain we are that the detected abnormal instance is truly abnormal. Re-

call (RC) measures the probability that all the abnormal instances are detected. These

measures are given by,

PR =
True positive

True positive + False positive

RC =
True positive

True positive + False negative

(4.7)

ROC and PR curves provide complementary information especially when highly unbalan-

ced datasets are classified. Furthermore, the quality of the classifier based on the ROC

curve can also be associated with the scalar value of the Area Under Curve (AUC) of the

ROC graph. AUC is defined as the area that exist under the ROC curve in the ROC graph

and its range is [0, 1], where 1 corresponds to the perfect classifier.

4.4.2 Visual comparison

In the three-dimensional projections (Fig. 4.15) each event is projected in a loop that starts

and ends at the “no activity” feature vector. The main loop is produced by the normal

events of the passing cars (blue colour). This is, however, better defined (more compact)
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(a) (b) (c)

Figure 4.16: Motion vectors represent objects that follow the same path in a
similar manner, regardless of of their appearance.

by the B1, B2 and C2 (but not C1 ) setups when compared with the pixel-based setups

(A1, A2 ). This can be attributed to the fact that the feature vectors produced by the raw

pixels are more sensitive to noise and the appearance difference between cars. The change

detection and motion feature vectors (B1, B2 and C2 ) display a better separation between

the normal and abnormal events. The C2 projection however shows a few abnormal vectors

very close to the “no activity” vectors. This is attributed to very few perceivable motion

vectors in the ROI since the object is not fully visible (during entry and exit) and the

motion vectors calculated at the edges of the ROI are unreliable. Finally, the projection

provided based on the C1 setup fails to show the expected structure and abnormal events

are not mapped away from the class of normal patterns. The low performance is due to

the maximum search radius parameter value used. The search window is small thus the

fast moving objects (e.g. cars) are not represented properly in the observation vectors and

cannot be distinguished from the abnormal events.

Each type of feature has intrinsic limitations. The colour or grayscale pixel-based

features are very sensitive to appearance changes. We can see this in the projections

(Fig. 4.15), where common events have a wide spread over the three-dimensional space.

Even though these objects follow the same path, they do not share a similar appea-

rance (Fig. 4.16). This sensitivity leads to performance degradation in abnormality detec-

tion. The change detection mask based features are less sensitive to appearance changes

(common motion patterns are mapped to a compact ring in Figure 4.15). However, it may

not detect objects that move slow, stop or have areas of uniform appearance. In addition

to this, duplicate imprints may be generated by the motion of the object. Due to these
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(a) (b) (c)

Figure 4.17: Limitations of motion vectors and change detection from sequence S1:
(a,b) Uniform colour, (d) Duplicate detection of a running man (change detection
only).

problems (Fig. 4.17 (b,c)), crowded scenes will not be represented well by change detection

masks. Finally, motion vector based features suffer from similar limitations in the case

of non-moving objects and objects with uniform appearance (Fig. 4.17 (a)), but there are

no issues such as with duplicate imprints and motion vectors tend to be more reliably in

crowed scenes.

4.4.3 Novelty detection

The ASID (Eq. 4.5) value is calculated to provide a measure of abnormal event separation

for each mapping. Figures 4.18(a,b) show the resulting scores using an increasing number

of dimensions (3, 6 and 9) from each feature space. To provide more detail on the motion

vectors, results are also calculated using feature vectors constructed from the magnitude

or the angle of the computed motion vectors (i.e. setups C1-mag, C2-mag, C1-ang and

C2-ang).

Since the ASID is based on the Mahalanobis distance (Eq. 4.1), we are restricted by

the Gaussian assumption regarding the distribution of the normal vectors in the projected

space. Figure 4.15 shows the projection of motion features in three dimensions where

the main motion pattern is projected on a loop. As presented in Figure 4.18(b) the first

three dimensions can provide a small separation since the ASID value is between 0 − 10.

Nevertheless the loop of normal patterns, while not Gaussian, is projected onto a plane

almost perpendicular to the plane formed by the abnormal vector loops. Thus a Gaussian

distribution is a good approximation. Furthermore, in higher dimensions the trend to pack
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Figure 4.18: Separation scores of abnormal events in sequence S3 based on pro-
jection to 3, 6 and 9 dimensions: (a) man running event and (b) pasted car event.
(Key: pixels using colour (A1 ) and grayscale (A2 ); change detection mask using
colour (B1) and gray (B2 ); motion vectors using C1 setup and C2 setup; using the
magnitude of motion vectors C1-mag and C2-mag; and using the angle of motion
vectors C1-ang and C2-ang)

the normal vectors into a small area is magnified providing ASID values close to 104.

The ASID values confirm our visual inspection conclusions where change detection and

motion vectors gave better visual separation. Selecting the proper value for the search

window parameters (i.e. sh, sw) greatly improves the performance of the magnitude (i.e.

C2-mag setup), which along with good estimation of the angle (i.e. C2-ang setup) accounts

for the higher overall performance of the C2 setup.

To investigate the use of the learnt subspaces for abnormality detection, we utilise

detector G(z̆t) in Eq. (4.1). The training set X contains a single normal instance of a

car passing by (i.e. frames 1211-1238). To produce the ROC curves we use G(z̆t) and

vary the value of the threshold θ. The results are presented in Figure 4.19 where the B2

and C2 setups provide better classification performance than those using setup A2. B2

is marginally better since it has a higher AUC value, but the cost of higher feature space

dimensionality (ratio 14:1 compared to the motion vectors) favours the motion vectors in

terms of computational complexity and memory requirements.
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Figure 4.19: ROC curves of the abnormality detection and classification varying
the number of dimensions, trained using one normal action instance of a car (1% of
sequence length). Setups: (a) A1, (b) B2 and (c) C2.
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4.4.4 Crowded scenes

The performance difference in single object-scenarios between motion vectors and change

detection masks is very small. However, in crowded scenarios where multiple objects move

in the ROI, the change detection masks will not be able to properly describe the patterns

in the scene. To verify this assumption we compare motion vectors and change detection

mask on a local abnormality detector of a region from a real-world scene (i.e. S5A).

We assume a single region R equal to the S5A region (Fig. 4.5a). The sequence is

converted to grayscale and preprocessed using a two-dimensional low-pass blurring spatial

filter with a square window of 7 pixels. We calculate motion vectors (mh = 5, mw= 5)

using a 16×16 block and a search area of 16×16 pixels. The change detection mask for the

same region (112×112 pixels), is produced using a threshold of thc = 6. To further reduce

complexity we remove the vectors with no activity in the ROI, leaving only one frame

before and after each video clip. The process reduces the size of the feature vectors set to

5090 (SC) and to 3764 (SM ) vectors for change detection mask and motion, respectively.

Given that the first 7500 frames of the sequence are normal, the training for the motion

vectors XM consists of the first 584 vectors and for the change detection mask XC of the

first 784 vectors. Testing is performed on the unlabelled section of the sequence (ZC =

SC \ XC and ZM = SM \ XM ). The novelty classifier G(z̆t) is trained and tested on the

low-dimensional subspace provided by the off-line graph-based dimensionality reduction

method. The graph is based on the minimum-k-NN rules and is weighted using τo(see

section 3.3.3).

Figure (4.20) compares the classification performance when using motion vectors against

change detection masks. The classification is evaluated based on the ROC and PR curves.

The number of subspace dimensions for each feature was selected based on the highest

AUC value. In these graphs (Fig. 4.20), the motion vectors show a lower false alarm and

high true positive rates, while the change detection mask is no better than a random guess

of the abnormality label. The PR curves are more informative and show that motion vec-

tors are offering a better classification performance (almost 4 times better precision) while

the change detection mask cannot offer more than 0.5 recall. Since the methodology used

is exactly the same for both features, we can conclude that the performance difference

depends only on the feature vectors. Small sub-image regions (e.g. S5A) have a higher
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(a) (b)

Figure 4.20: Classification performance comparison for S5A: (a) ROC curves,
(b) Precision and Recall. (Key: (blue) motion vectors and (red) change detection
mask).

likelihood to become crowded. Furthermore, in real-world scenes, such as depicted in S5,

shadows, illumination changes and slow apparent motion (due to perspective distortion)

are very common. Change detection mask seams to be more sensitive to these factors and

thus has a low performance.

In this section we have compared low-level features in-order to identify a suitable can-

didate for use in subspace based abnormality detection. Of the three features tested (i.e.

appearance, change detection mask and motion vectors) motion vectors were found to

provide better overall performance, considering computational complexity and detection

accuracy, in both single-object and crowded datasets. The next subsection will evaluate

the classification performance of single off-line detectors utilising a low-dimensional space

against commonly used novelty detectors utilising the high-dimensional observations.

4.5 Classifier comparison

While the results presented thus far for the subspace-aware novelty classification show that

it can achieve good classification performance, it is important to establish how alternative

methods perform on the same problem. This section will perform a comparison of no-

velty detection methods on a region of interest of the real-world sequence (S5A) against

a subspace-aware low-complexity novelty classifier, as defined in Eq. 4.6. The alternative

methods (SVM and k-NN classifier) will be applied on the original high-dimensional ob-
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servations based on motion vectors. The detection performance for each classifier will be

evaluated based on precision and recall values for the S5A region.

4.5.1 Preliminaries

Novelty detection can be achieved by using classifiers such as a one-class SVM [38] or k

nearest neighbours classifier (k-NN classifier). The first method in our comparison (SVM)

maps the training class of positive (normal) instances into a higher dimensional space using

a predefined kernel function. In this space the algorithm learns the optimal boundary lines

that enclose the single normal class. Based on these boundaries the test vectors are labelled

as normal or abnormal. The SVM classifier is implement by the SVMLIB [78]. Results

are presented both using a Radial-based-Function (RBF) and a linear kernel. The second

method (k-NN classifier) is an adaptation of the multi-class nearest neighbour classifier to

one-class novelty detection problems. The k nearest neighbours of the test vector is disco-

vered among the training samples. The average Euclidean distance of the test vector from

it’s neighbours is then thresholded to label for abnormality. Finally, the subspace-aware

novelty classifier is based on G(z̆t) where the subspace is produced by LE (see subsec-

tion 3.3.4), on the motion vectors extracted from the S5A region (Fig. (4.5)a). The graph

is based on the minimum-k-NN rules and is weighted using the value τo(see section 3.3.3).

Motion vectors SM are calculated for the S5A region as discussed in subsection 4.4.4. The

training vectors XM consist of the first 584 vectors, as defined in subsection 4.4.4. For

the one-class SVM and k-NN we use the high-dimensional motion vector observations XM ,

while the subspace-aware novelty classifier is applied on the low-dimensional subspace X̆M .

Finally, the labelling results are filtered with a 5-frame window median filter to remove

non-persistent labels.

The k-NN classifier requires only two parameters to be manually defined (number of

neighbours and threshold), while the more complex one-class SVM requires: the selection

of the kernel function (plus the parameters associated with it); the learning parameters

for the training; and the threshold constant. The classification threshold for the one-class

SVM is provided by the SVMLIB implementation with default parameters applied for

training. The threshold value for the k-NN classifier is estimated as follows. We apply the

k-NN classifier on each annotated training vector without thresholding. The maximum
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value given from the algorithm (i.e. k -NN classifier) is then used as the threshold for

abnormality labelling. In a similar manner, we find the threshold for the classifier G(z̆t).

We calculate precision PR and recall RC values (see Eq. 4.7) of the labelling based

on per frame and per event abnormality detection respectively, to quantify the detection

performance. When considering single frames we evaluate the detectors ability to detect

the abnormal instances at time t, in this case: (i) true positive instances TPf are those that

are correctly labelled abnormal; (ii) False positive instances FPf are incorrectly labelled

abnormal; and (iii) false negative instances FNf are incorrectly labelled normal. However,

abnormality detectors in real-world scenarios are commonly required to detect events and

not frames. Thus we need to see how the detectors perform in detecting the abnormal

events (i.e. time segments of the video) in the sequence. We define a simple set of rules for

evaluating the detection of these events: (i) true positive detections TPe exist when at least

one observation labelled abnormal overlaps in time with an event from the ground truth;

(ii) false positive detections FPe are video segments that are incorrectly labelled abnormal

(i.e. they do not overlap with the ground truth); and (iii) false negative detections FNe are

assigned where abnormal video segments from the ground-truth are not abnormal in the

detector’s output. These event detection guidelines will give high values to detectors which

have detected extended video segments as abnormal. For example, a detector could return

all the sequence as abnormal and have high PRe and RCe values. However, frame-based

precision PRf and recall RCf values will show that such a detector is performing poorly.

Thus the combination provides a complementary view of the classification performance.

4.5.2 Abnormality labelling

The results (Fig. 4.21) using the one class SVM are inferior to the proposed approach based

on the subspace-aware classifier. This can be attributed to high dimensionality [79] and

non-linear correlation that exists between input vectors. In addition, one-class SVMs have

been found to be very sensitive to the parameter selection in the work of Manevitz and

Yousef [38].

The nearest neighbour classifier shares the characteristics of the nearest neighbour

graph and is able to provide a boundary for the abnormal events without assumptions

on the class distribution. It is also better at handling high-dimensional feature spaces.
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Method Frames Events

TPf FPf FNf PRf RCf TPe FPe FNe PRe RCe

LE-d5 46 3 823 0.939 0.053 7 0 4 1 0.636
LE-d7 25 3 844 0.893 0.029 4 0 7 1 0.364
LE-d10 121 17 748 0.877 0.139 10 3 1 0.769 0.909

2-NN 65 45 804 0.591 0.075 7 5 4 0.583 0.636
3-NN 17 18 852 0.486 0.020 3 3 8 0.500 0.273
5-NN 4 0 865 1 0.005 1 0 10 1 0.091
7-NN 1 0 868 1 0.001 1 0 10 1 0.091

SVM-RBF 757 1430 112 0.346 0.871 11 54 0 0.169 1.0
SVM-linear 122 1381 747 0.081 0.140 6 54 5 0.100 0.545

Table 4.5: Precision and Recall values for the abnormality detection methods on
the selected ROI (S5A). (Key: (i) proposed approach using 5, 7 and 10 dimensions
(LE-d5, LE-d7 and LE-d10), (ii) novelty nearest neighbor classifier (k-NN) using 2,
3, 5 and 7 neighbors and (iii) one-class SVM using the RBF and linear kernels)

However, the labelling is very sensitive to the selection of the neighbourhood size. Using a

small number of neighbours (Fig. 4.21), the classifier provides a labelling that misclassified

a few of the abnormal events. Yet, increasing the neighbourhood size tends to reduce the

number of abnormal events that are detected. In contrast, the proposed off-line dimensio-

nality reduction using the minimum k-NN graph discovers a mapping which compresses

the normal (common events) and maps abnormal instances away from the normal class.

Such a mapping allows the subspace-aware novelty detector to label correctly the abnormal

events.

Table 4.5 presents the per frame and per event evaluation based on precision and recall

values. Overall the proposed subspace-aware novelty detection, based on LE and the mi-

nimum k -NN graph, performs better compared to alternative novelty detectors. Precision

is high (P̄Rf ∼ 0.903, P̄Re ∼ 0.923) and decreases slowly as the subspace dimensionality

increases. When we increase the subspace dimensionality, we introduce more noise in the

projections which results in a bigger number of false positives. Therefore the event precision

decreases more quickly. Recall is low since not all the frames are detected. However, the

detector correctly detects most of the abnormal events using 10 dimensions (RCe = 0.909).

The k-NN novelty classifier is not able to detect all the abnormal events and the precision

and recall values decrease when increasing k. The SVM classifier labels a lot of instances

as abnormal and achieves high RCe value using the RBF kernel. Precision shows that this

labelling is not reliable and there are numerous false positives.

This section has compared the proposed off-line subspace learning method described in
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3.3.4, combined with a low-complexity novelty detector, to alternative non-subspace-aware

novelty detection algorithms. The results suggest that the subspace-aware abnormality

detector is able to detect all the abnormal events that take place in the associated region

with higher precision than the alternative methods. The number of false alarms is also kept

low, something that can be associated with the filtering capabilities of the Graph Laplacian

and our selected value for the graph and weighting parameters (i.e. minimum-k-NN graph

and the τo value). The next section will investigate on the use of the SR-LPP method to

create a subspace-aware abnormality detector suitable for on-line use.

4.6 On-line detection

The abnormality detector needs to function on-line for real-world scenarios. Therefore the

LE based approach is not suitable as it does not allow out of sample extension. We can

instead use the on-line approach that utilises the LPP algorithm. LPP can be viewed as

a linear approximation of the LE. The output of LPP is a transformation matrix which

allows mapping new samples onto the discovered subspace. Replacing LE with LPP is

logical and requires a minimal amount of implementation changes in the current motion

abnormality detector framework. However, the performance is expected to be lower for

the following reasons:

• On-line methodologies are usually hindered by smaller training sets compared to the

complete dataset that batch mode methods have at their disposal.

• The mapping is an approximation of the equivalent non-linear projection provided

by LE.

While the first reason is based on the fact that graph-based subspace learning benefits

and is particularly successful when data are in abundance (i.e. number of samples goes to

infinity) the second has not been directly investigated in the literature.

However, there exist a number of implementations of LPP with subtle differences in

the way they discover the transformation matrix. In this experiment we will investigate

the application of two LPP implementations: (i) the original LPP [72]; and (ii) the more

recent implementation SR-LPP [73]. We apply the methods in batch mode (off-line) and
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compare with LE, in order evaluate the eligibility of using LPP as a replacement for the

LE.

4.6.1 Preliminaries

We use the sequence S3 (2900 frames, 15 fps) which is created by concatenating events from

a small ROI (54×52 pixels) in a highway. The sequence has a variety of moving vehicles

(i.e. cars, vans and trucks) numbering 20 occurrences in total. The off-line subspace

learning framework using LE is compared with two versions of the LPP method:

LPP based on an implementation using the original implementation

SR-LPP based on recent work using spectral regression to implement the LPP method

Code for the LPP implementations was provided by the respective authors [72, 73]. The

graph used in all methods is constructed from the motion vectors calculated from the

sequence using the C2 setup defined in Section 4.4. Each grid of vectors is reshaped into

a long feature vector (50 dimensions) to form a set of high-dimensional vectors S. These

features are used to find the minimum k-NN graph. The graph edges are rescaled to the

range of [0, 1] and then weighted using the τo parameter defined by Otsu’s method on the

edge histogram of the graph (see subsection 3.3.3). The component values in the high-

dimensional vectors where also rescaled to lie in the range [0, 1]. This is performed by

dividing the components in the vectors by the maximum value found in S. These changes

in scale are necessary in order to utilise the higher representation accuracy that floating

point numbers have between 0 and 1 when compared to the representation error that is

present in larger values.

The dimensionality reduction methods are evaluated visually by inspecting the three

dimensional projections of the complete sequence (i.e. S3). The vectors in the plots are

colour coded manually based on the ground truth to aid the visualisation. Furthermore,

the use of LE, LPP and SR-LPP for subspace learning in a subspace-aware abnormality

detector is evaluated based on the low-complexity novelty detector G(z̆t) defined Eq. 4.6.

The training set X contains a single normal instance of a car passing by (i.e. frames

1211-1238).
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4.6.2 Comparison of LE, LPP and SR-LPP

The projections provided by the subspace learning methods (Fig. 4.22) show that the

only method that provided similar results to LE is the SR-LPP version of the algorithm.

While in theory both implementations of LPP should provide similar results, the imple-

mentations differ in complexity and numerical stability. The respective authors [72, 73],

to overcome these issues apply a number of computational “tricks” and transformations so

that the running complexity of the algorithm is low and the algorithm is numerically stable.

However, in order to achieve good numerical stability under difficult problems (i.e. small

number of samples, close to singular matrices) the original LPP implementation is using

PCA to preprocesses the original feature space and remove dimensions with low variance.

However, as seen in section 4.3.2, information for abnormal events is not always relevant

to the maximum vector variance, thus PCA on the original feature space is equivalent to

filtering the data and removing non-linear dynamics from the feature vectors. Such filte-

ring is enough to distort the results when using the original LPP algorithm (Fig. 4.22(b)).

In contrast, the SR-LPP method is closer to the LE mapping (Fig. 4.22(c)) as it uses a

different implementation based on spectral regression to find the solution, which has better

numerical stability and does not filter the information like PCA.

The ROC curves (Fig. 4.23) show that the SR-LPP performs very similarly to the LE

method. For low number of subspace dimensions SR-LPP is outperforming LE and is more

consistent on it’s performance (i.e. ROC curves). Nevertheless, the overall performance

based on the AUC values of LE is higher than that of the out-of-sample methods. The per-

formance of the original LPP method is significantly lower, which confirms our conclusions

from the visual inspection of the three-dimensional projections.

This section has investigated the use of different implementations of the LPP algo-

rithms in order to extend the off-line subspace learning for on-line scenarios. It is apparent

that the best candidate for the out-of-sample extension of the system is the SR-LPP im-

plementation. This is based on both the visual inspection of the results and evaluation

metrics that have been used to evaluate the system’s performance. The next section will

investigate the use of multiple abnormality detectors based on the graph-based dimensio-

nality reduction method (SR-LPP) and evaluate the performance of on-line detection on

a real-world scenario.
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(a)

(b)

(c)

Figure 4.22: Three dimensional mappings of sequence S3 provided by: (a) LE,
(b) LPP, (c) SR-LPP. (Key: vectors in the plots are colour coded manually based
on the ground truth to aid the visualisation)
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Figure 4.23: ROC curves of the novelty detection in sequence S3 utilising different
dimensionality reduction methods and the varying dimensionality of the subspace:
(a) LE, (b) LPP and (d) SR-LPP.
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(a) (b)

Figure 4.24: Motion and detector grid defined in the greater region S5B of the
real world sequence S5

4.7 Scene abnormality detection

To provide abnormality detection for a larger area of the scene we deploy a number of

local detectors in a non-overlapping grid and fuse their results in order to infer the overall

abnormality. Each local abnormality detector will utilise a “personal” subspace discovered

by the proposed subspace learning approach (using SR-LPP) and the results will be fused

based on the temporal filtering that functions (3.18) and (3.19) offer. We compare the fra-

mework based on subspace-aware detectors against a framework based on novelty detectors

applied directly on original high-dimensional feature vectors. Additionally, we investigate

and evaluate the results against the use of an alternative linear subspace learning (i.e.

PCA) and examine the correlation between the detection performance and the size of the

subspace learning sample.

4.7.1 Preliminaries

We evaluate the framework on the real-world sequence S5 regarding the first 7500 frames

of the sequence are normal. In the labelled part of the video, people exit the platform

through the turnstiles, move up the stairs and walk left (or right) along the corridor at the

top of the stairs. In addition to the people exiting the platform, there are a few instances

where someone is moving across the corridor from left to right. Based on these observations

we define as abnormal actions those that do not follow these patterns. Thus actions, such

as moving across the corridor from right to left or entering the platform, are considered
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abnormal.

Motion vectors are calculated on the main action area S5B (Fig.4.24a) with bw =

19,bh = 19 and maximum displacement of 20 pixels (i.e. sh = sw = 20). Each image

frame is preprocessed using a two-dimensional blurring filter (window = 7 × 7). The

detector grid consists of 3× 3 non-overlapping regions where each region contains a set of

5× 5 motion vectors (Fig. 4.24b). To remove noise from the measurements we apply two

temporal filters: (i) a median filter (window = 7); and (ii) a moving average filter (window

= 3). Each filter is applied over time independently for each dimensional component of

the feature vectors. The motion vectors enclosed in each region Rij (with i ∈ {1, 2, 3} and

j ∈ {1, 2, 3}) provide the associated observation feature vectors oi,jt . To avoid problems

with the matrix eigensolvers (especially for PCA) we remove duplicate vectors from the

samples used for the subspace learning and the classifier training (denoted with S∗ij ,X ∗ij
respectively).

We apply the framework on the complete sequence to evaluate the behaviour of the

detector grid. While in previous examples, the use of a novelty classifier based on the Ma-

halanobis distance was enough, in this case we use the GMM novelty classifier as described

in subsection 3.4.1. After subspace learning, each detector is trained using the default

parameters for the EM framework on the low-dimensional projections of the annotated

normal samples.

The frame abnormality is inferred by the local detectors with a setup (α = 1, β = 7, γ =

10) which provides temporal filtering raising an alarm if the local detectors are signalling

the last 7-10 frames as abnormal (∼ 1/3 seconds duration). The selected threshold θij

for each detector is the maximum rank given by each classifier on the training set. We

calculate the precision and recall for abnormal events against the ground-truth and compare

the results from direct application on the original (high dimensional) feature space and in

subspaces learned by performing PCA and SR-LPP. The subspace dimensionality is fixed

at 2 dimensions and the experiment is repeated using, at each time, an increasing size for

the subspace learning set. Table 4.6 provides the relative size of the subspace learning and

classifier training sets for each setup.



CHAPTER 4. EXPERIMENTAL RESULTS 115

Setup 1 2 3 4 5 6 7
X 7.5k
S 7.5k 10k 20k 30k 40k 50k 60k

S∗ (avg.) 251 255 390 516 539 848 970

Table 4.6: Number of samples used for each setup (Key: X , S refer to the sample
size of the subspace learning and training sets given to the complete abnormality
detection framework, S∗ reported is the average subspace learning sample size of
the feature vectors given to the 9 detector regions as calculated after the removal
of duplicate instances, i.e. S∗i,j with i ∈ {1, 2, 3} and j ∈ {1, 2, 3}).

4.7.2 Comparison

We calculate the precision and recall values for abnormal event detection using each setup

(Table 4.6). The confusion matrix is constructed considering a detected abnormal video

segment as a true positive if at least one labelled frame is within two frames distance from

the ground-truth. Multiple detections within the expected abnormal video segments are

ignored and false positives are the video segments that cannot be associated with a real

abnormal event. Abnormal video segments from the ground-truth that do not have any

detection are considered false negatives.

Figure 4.26 provides the precision and recall scores relative to the subspace size. Results

indicate that the direct application of novelty detection in the high-dimensional subspace

(denoted as “direct” framework) has a small number of false positives but it fails to detect

all the abnormal events. The application of PCA causes the performance of the detectors to

improve and is able to detect the majority of the events, but has more false alarms. When

we increase the sample size for subspace learning results with PCA do not improve. This

is expected since larger sample sets can include a number of abnormal events and the PCA

subspace learning process is sensitive to these “outliers”. However, the subspace provided

by SR-LPP does not suffer from such shortcomings. Even though the performance initially

low, it steadily increases with the increase in the number of subspace learning samples, even

when the majority of abnormal events are included in the learning. The equal performance

ratio for subspace-aware detectors using the PCA and SR-LPP is 3.86, thus it requires

almost 4 times more subspace training vectors to achieve the same performance using the

SR-LPP algorithm.

However, as seen in Figure 4.25, the best performing setups for PCA (subspace set 1)

and SR-LPP (subspace set 7) have an increased number of false detections. These false
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Figure 4.26: Precision (a) and recall (b) values for abnormality detector frame-
works using: direct application on the high-dimensional feature vectors, PCA and
SR-LPP. (x-axis: subspace learning set)

alarms are the main reason why the highest F factor (Harmonic mean of precision and

recall) for the subspace learning (FPCA = 0.53, FLPP = 0.57) is marginally lower than the

“direct” method (FDirect = 0.60).

Figures 4.27 and 4.28 show sample frames from the best performing PCA and SR-LPP

setups respectively. The detections that are provided by the fusion module relative to the

labelling results of the local detectors can be described as false, correct, problematic and

missed :

False: defined when the local detectors are falsely activated and cause the fusion

module to declare an abnormal event. (e.g. Figures 4.27(a,b,c) and 4.28(a,b,c)).

Correct: true positive detections where the abnormal actions are clearly detected by the

correct local detectors (e.g. Figures 4.27(d) and 4.28(d)).

Problematic: appears when there is discrepancy between the correct labelling from the

fusion module and the local detectors. It is thus possible to have correct de-

tection of events where some detectors are active, while the abnormal action

takes place in another region. (e.g. Figures 4.27(e) and 4.28(e)). Alternatively,

problematic correlation is when some of the abnormal actions in the scene are

detected (e.g. Figures 4.27(f) and 4.28(f)).

Missed: refers to abnormal actions that were not detected by any local detector (e.g.4.28(g))
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 4.27: Sample images of detections and their correlation with the local
detector layout using the best PCA setup: (a,b,c) false positive, (d) true positive,
(e) detector abnormal state is false, (f) detector is missed a locally abnormal ins-
tance and (g) framework missed the abnormal event. (Key: abnormal state for the
detectors is denoted by a red rectangle while abnormal state for the abnormality
framework is denoted by the red frame number on the bottom left of the image
frame)
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 4.28: Sample images of detections and their correlation with the local
detector layout using the best SR-LPP setup: (a,b,c) false positive, (d) true positive,
(e) detector abnormal state is false, (f) detector is missing abnormal instance, and
(g) framework missed the abnormal event. (Key: abnormal state for the detectors
is denoted by a red rectangle while abnormal state for the abnormality framework
is denoted by the red frame number on the bottom left of the image frame)
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or the fusion module has suppressed the alarm state of a detector due to tem-

poral filtering (e.g.4.27(g)).

The errors suggest that a limiting factor in the performance of the subspace-aware detectors

can be associated with the small number of available samples. In these cases, the provided

vectors are not enough to describe the patterns in the local region and thus the subspace

is not properly defined. Furthermore, the novelty classifier does not have enough samples

to learn the normal patterns and thus it not well trained and has higher sensitivity.

4.8 Summary

This chapter described experiments that were performed in order to evaluate and test the

use of the proposed graph-based dimensionality reduction method to improve the abnor-

mality detection in low-level features extracted from video sequences. The experiments

were demonstrated on single-object sequence representing a ROI of a highway and on re-

gions extracted from a challenging multi-object real-world sequence of an underground

train station.

The visual comparison of projections, on single-object dataset, demonstrate the suita-

bility of the subspace learning based on the Laplacian Eigenmaps algorithm compared to

commonly used linear (e.g. PCA and MDS) and rival non-linear (e.g. Isomap and MVU)

dimensionality reduction methods. Results show, that Laplacian Eigenmaps is able to find

a low-dimensional representation of the scene and uncommon (abnormal) actions, without

assumptions on variance (e.g. PCA), providing better performance and lower complexity

over alternative dimensionality reduction methods. In addition, the proposed graph can

provide clues for the violation of assumptions regarding the normal patterns in the subspace

training sample and a number of techniques to overcome this limitation are suggested.

The off-line subspace learning method is combined with a low-complexity novelty clas-

sifier based on the Mahalanobis distance to form an off-line local abnormality detector.

Low-level features (appearance, change detection and motion) are then compared to iden-

tify features suitable for single and crowded regions. Results suggest that the use of motion

vectors greatly improves the “separation” of the normal and abnormal events in the low-

dimensional projection while keeping the computational complexity of the method low.
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In contrast, appearance is not able to provide the same performance on the single-object

sequences and change detection mask is not suitable for crowded scenes.

The off-line detector is later compared against non-subspace aware (i.e. methods using

the original feature space) techniques using popular novelty detection algorithms (SVM and

k -NN classifiers) on the local region extracted from a real-world sequence. The comparison

shows that alternative methods applied in the high dimensional feature space are sensitive

to the parameter selection and fail to overcome the curse of dimensionality. However, the

novelty classifier trained on the low-dimensional subspace produced by the proposed off-

line subspace learning approach is able to detect the abnormal events with higher accuracy

and fewer false alarms. To extent the local detector for on-line scenarios the LE graph

embedding method is replaced with LPP. Two different algorithmic approaches LPP (ori-

ginal) and SR-LPP are compared and SR-LPP is shown to provide a better approximation

of the subspace discovered by the off-line algorithm.

The complete framework using a grid of local abnormality detectors is applied on a

real-world scene from an underground station. The experiment compares three variations

of the on-line multiple local motion abnormality detector schema based on direct (i.e. high-

dimensional), classical (i.e. PCA) and graph-based (i.e. SR-LPP) subspace learning. The

local detectors are based on a GMM classifier trained on the associated local region and

their labelling is fused to produce the abnormality state for the scene. Results suggest

that PCA is better suited for cases when the subspace learning is limited to the labelled

samples. When more labelled and unlabelled data are available, the SR-LPP approach

gradually improves the generalisation properties of the detectors and is robust to outliers.

In order to outperform the PCA approach, the SR-LPP approach requires an excess of 3.9

times more samples. The analysis also revealed that both subspace methods are able to

detect the majority of abnormal events compared to the direct use of the high-dimensional

feature space with which only half of the events are detected. However, the local novelty

detectors have more false alarms. This is attributed to the number of samples, as when

their number is low, subspace-aware novelty classifiers suffer from over-fitting and cannot

generalise well on new instances.
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Conclusions

5.1 Summary of achievements

This thesis addressed the problem of anomaly detection in crowded video sequences using

low-level features with limited labelling information on normal events and without prior

knowledge of abnormal events. The goal is to utilise both labelled and unlabelled samples,

taking advantage of the knowledge that abnormal events are rare and normal events are in

abundance, and thus to find a low-dimensional subspace suitable for abnormality detection.

This is achieved without assumptions of linearity of the feature space and the characteristics

that separate the normal and abnormal pattern classes (e.g. that the direction of maximum

variance is important). At the same time, the method aims to keep the operational and

deployment complexity low so that the framework is suitable for real-world scenarios where

parameter setting through cross-validation is either not available (no abnormal events are

provided) or costly. The main assumptions are that large number of unlabelled samples is

available and that the majority of the motion patterns are normal. Further assumptions

are that the video sequence does not contain scene cuts and that the labelled training

instances do not contain abnormal events.

The proposed method utilises a spatial grid of local motion detectors based on a novel

subspace representation of the feature space produced by graph-based linear dimensiona-

lity reduction methods. Namely, the unsupervised minimum-k-nearest neighbour graph is

constructed and weighted to represent and approximate the local neighbourhood structure

of the feature vectors in the high-dimensional space. Based on the Graph Laplacian a

122
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low-dimensional representation is produced that emphasises the local grouping of patterns

and the frequency of their appearance. The output is a subspace that closely follows the

internal structure of the data that are associated with each local detector. The mapped

instances of a manually labelled normal sample are used to train a subspace-aware novelty

detector based on Gaussian mixtures and to provide the local abnormality labelling. The

final decision is based on fusing the local detections by imposing temporal constraints on

the labelling provided by the local detectors.

Experiments using single-object sequences demonstrate that the unsupervised subspace

learning framework using Laplacian Eigenmaps outperforms popular alternative subspace

learning approaches, such as PCA, MDS, Isomap and MVU. It has also been demonstrated

in multi-object sequences that a low-complexity local detector based on the produced low-

dimensional representation outperforms the performance of popular non-subspace-aware

novelty detection algorithms (i.e. SVM and nearest neighbour novelty classifier). The off-

line method is extended to on-line abnormality detection using SR-LPP which provides a

close approximation of the embedded non-linear mapping based on Laplacian Eigenmaps.

The proposed on-line multi-detector framework based on the on-line graph-based sub-

space learning approach is able to detect the majority of abnormal events. Yet, in order

to provide better performance than PCA, it is necessary to have more samples (3.9 times

more). Nevertheless, the framework suffers from an increased number of false alarms which

suggests that the subspace-aware detectors are more sensitive. The issue affects both fra-

meworks that use PCA and SR-LPP and can be attributed to the small number of samples

that are available for subspace learning and the novelty classifier. As a result, the produ-

ced subspace does not reflect all the normal patterns in the local region and the novelty

classifier is not properly trained. Nevertheless, because the proposed graph-based sub-

space learning is not hindered by the existence of abnormal events in the subspace learning

samples, it is possible, with limited additional cost to the operator (no need for labelling

and manual removal of abnormal instances), to use more training samples and improve the

generalisation properties of the local detectors.
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5.2 Future work

Based on the analysis and discussion in the previous chapters a number of issues and

questions arise which provide guidelines for improvement and extension of the presented

research.

The subspace learning process is essential to the transformation and filtering of informa-

tion. The proposed neighbourhood graph provides a good approximation of the similarity

between vectors and their local neighbourhood, yet it does not specifically enforce temporal

consistency. That is, the construction rules are unaware of any sequence between vectors.

The temporal information that exists in the graph is a side-effect of the assumption that

the vectors are in abundance and that the evolution of the motion vectors through time

is smooth (i.e. video sequence without scene cuts). However, since we already have the

knowledge of the temporal evolution of the motion vectors it is possible to augment the

graph with connections of temporal nature. Unfortunately, information in the graph is

represented by two properties: (i) connectivity; and (ii) weighting. As a result, the two

graphs (neighbourhood and temporal) describe two different characteristics of the feature

space with the same properties. The challenge we are faced with when augmenting the

graph with prior knowledge is to balance the influence (connectivity and weighting) of

the additional known information (e.g. temporal) relative to the unknown neighbourhood

structure. Furthermore, in order for the subspace learning process to remain parameter-

less, the size of the temporal neighbourhood (similar to the k) needs to be defined in an

automatic way. The definition of such criteria is an open challenge.

In addition to the temporal augmentation of the graph, further improvements can

be achieved by finding the optimal subspace dimension for each local detector. Recent

advancements on local intrinsic dimensionality estimation [80] suggest that it is possible

provide information about the optimal subspace dimensionality. However, the methods

are complex and their sensitivity to the initial parameters proves to be a very challenging

problem.

Apart from the subspace learning process, experiments demonstrate that the multi-

detector framework suffers under specific conditions of training. Since each detector is

spatially anchored, it is possible that its placement is not optimal to describe the local

motion patterns. Graph-based subspace learning requires the training samples (label-
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led/unlabelled) to be extensive. Thus the method is expected to fail when there is mini-

mal or no information (i.e. non-zero motion vectors) about the local region. Regions that

are good to deploy the abnormality detector on could be verified using cross validation.

However, such techniques are not applicable when knowledge of abnormal events is unavai-

lable and thus the challenge is to be able to detect when a region is not suitable given the

provided training samples. A possible direction could be to analyse the visual structure

of the graph and identify the cases where there is not enough information to describe the

variability of the patterns. Furthermore, it is possible that the classifier itself might suffer

from lack of representative training (labelled) samples, yet this issue cannot be easily iden-

tified without cross-validation. It is argued that in these cases a semi-supervised training

approach for the novelty classifier can potentially improve the generalisation properties of

the detectors.

Finally, improvements can be achieved by revisiting the fusion method in order to

incorporate spatial-temporal restrictions and to track the abnormality through the scene

before the event is declared abnormal, to reduce false alarms. In addition ti this, the fusion

algorithm should also consider the confidence of the detector. These changes should aim at

low complexity and reduce number of free parameters needed to achieve good performance.
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