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Abstract

This thesis investigates the problem of using nearest-neighbor based non-parametric
methods for performing multi-class class-conditional probability estimation. The
methods developed are applied to the problem of acoustic modeling for speech recog-
nition.

Neighborhood components analysis (NCA) (Goldberger et al. [2005]) serves as the
departure point for this study. NCA is a non-parametric method that can be seen as
providing two things: (1) low-dimensional linear projections of the feature space that
allow nearest-neighbor algorithms to perform well, and (2) nearest-neighbor based
class-conditional probability estimates.

First, NCA is used to perform dimensionality reduction on acoustic vectors, a
commonly addressed problem in speech recognition. NCA is shown to perform com-
petitively with another commonly employed dimensionality reduction technique in
speech known as heteroscedastic linear discriminant analysis (HLDA) (Kumar [1997]).

Second, a nearest neighbor-based model related to NCA is created to provide
a class-conditional estimate that is sensitive to the possible underlying relationship
between the acoustic-phonetic labels. An embedding of the labels is learned that can
be used to estimate the similarity or confusability between labels. This embedding
is related to the concept of error-correcting output codes (ECOC) and therefore the
proposed model is referred to as NCA-ECOC. The estimates provided by this method
along with nearest neighbor information is shown to provide improvements in speech
recognition performance (2.5% relative reduction in word error rate).

Third, a model for calculating class-conditional probability estimates is proposed
that generalizes GMM, NCA, and kernel density approaches. This model, called
locally-adaptive neighborhood components analysis, LA-NCA, learns different low-
dimensional projections for different parts of the space. The models exploits the
fact that in different parts of the space different directions may be important for
discrimination between the classes. This model is computationally intensive and prone
to over-fitting, so methods for sub-selecting neighbors used for providing the class-
conditional estimates are explored. The estimates provided by LA-NCA are shown



to give significant gains in speech recognition performance (7-8% relative reduction

in word error rate) as well as phonetic classification.

Thesis Supervisor: Michael J. Collins
Title: Associate Professor
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Chapter 1

Introduction

This thesis explores the use of discriminative non-parametric methods for performing

acoustic modeling in speech recognition. Specifically, the supervised training problem

of providing conditional probability estimates for multi-class data is considered. Given

an input set of training samples {(xi, yi), ... , (XN, YN)}, the goal is to provide estimates

of p(ylx) for a new test sample x. The inputs x are D dimensional real-valued vectors,

x E RD, and the labels y are drawn from some finite label set, y E Y. The class-

conditional estimates, p(ylx), are used to discriminate amongst the possible labelings

of the test point x.

Certain properties of the data can make it difficult to calculate good estimates of

p(ylx). First, the dimensionality of the inputs, D, may be large, which could lead

to a sparse distribution of training samples in the space RD. Second, the size of the

label set |Y| may be large, and there may only be a small number of samples for some

labels. Third, there may be some underlying structure to the label space Y, therefore

each label may provide some information about other possible labels. Fourth, the

measurements x may be insufficient for distinguishing between classes and fifth, the

labeling of the training samples may be noisy.

In this thesis, nearest neighbor techniques are developed and applied to the prob-

lem of providing the conditional estimate p(ylx). Neighborhood components analysis

(NCA) (Goldberger et al. [2005]) serves as the inspiration and departure point for

the techniques presented. The basic idea of nearest neighbor techniques is to use



the labels of the closest training samples to classify a test sample. As well as being

simple and intuitive to apply, nearest neighbor techniques are chosen to solve the

class-conditional estimation problem for the following reasons:

(1) They allow us to avoid making potentially incorrect parametric assumptions

about the data

(2) While generally more computationally and memory-intensive than parametric

methods, recent increases in available resources as well as improvements in algo-

rithms for nearest neighbor search (Andoni and Indyk [2006, 2008], Arya et al.

[2002, 1998], Indyk and Motwani [1998], Kushilevitz et al. [1998], Mount [2006])

make them more feasible to study

(3) While generally more data-intensive than parametric methods, recent increases

in the amount of available training data may allow them to perform well

The primary application for motivating and evaluating the proposed methods is

acoustic modeling for speech recognition, which is both a difficult and interesting

task. Acoustic modeling is a component of speech recognition where the inputs x

represent raw acoustic measurements while the labels y can represent an acoustic

category such as a phone. Data for this task often presents many of the difficulties

previously discussed. NCA and speech recognition are introduced below, followed by

an outline of this thesis and its main contributions.

Note that while the methods presented here have been developed with acoustic

modeling in mind, they are general and should be applicable to other tasks such as

some that arise in computer vision and pattern classification.

1.1 Neighborhood Components Analysis (NCA)

NCA (Goldberger et al. [2005]) is introduced briefly here and described in greater

detail in Chapter 2. The method makes use of the idea of stochastic or "soft" nearest

neighbors when labeling a test point x using a training set of points. This means



that each training point j is assigned a weight that determines its influence over

the labeling of the test point. This weight decays as the distance between x and x,

increases.

p(y x) =
= -dist(xj,x)

The function dist(x, z) is a Mahalanobis distance parameterized by a matrix A.

dist(x, z) = (Ax - Az)T(Ax - Az)

The matrix A can be learned so that the nearest neighbor estimate of p(y x) is

well calibrated. Additionally, A may be of size d x D, with d < D, allowing us to

easily learn a low-dimensional representation of the initial inputs. NCA learns the

parameters of A using gradient methods to optimize leave-one-out performance over

the training set.

NCA provides a simple and elegant framework for learning embeddings of the

features vectors in a low-dimensional space. Furthermore, the use of soft nearest-

neighbors allows for the definition of optimization criteria that are learnable using gra-

dient methods. The use of stochastic nearest-neighbors also provides a non-parametric

estimate of p(ylx) that allows us to avoid making parametric assumptions about the

structure of the data. The two main ideas of NCA (1) using stochastic nearest neigh-

bors, and (2) learning low-dimensional embeddings or Mahalanobis distance metrics

are exploited in this thesis to develop new models for nearest-neighbor based class-

conditional estimation.

1.2 Speech Recognition

Speech recognition has proven an invaluable part of human-computer interaction and

is commonly used in many fields such as medicine, banking, customer service, and

intelligence gathering. The demand for speech recognition systems is high because

it has the potential to help process large amounts of spoken information that would



be difficult or expensive for humans to process alone. Research in speech recognition

has also given rise to methods that have proven valuable in other areas of artificial

intelligence research.

Given a raw acoustic signal, or waveform, an automatic speech recognizer gen-

erates a transcript of the words that most likely gave rise to the signal. However,

the accuracy of these systems in a large vocabulary multi-user setting, such as tran-

scribing spontaneous un-constrained speech, is still suboptimal, or worse than human

performance. Most recognizers incorporate several sources of information to effec-

tively deal with noise and uncertainty in the raw acoustic waveform. Uncertainty can

arise in many ways as described in Spoken Language Processing (Huang et al. [2001]).

Acoustic models include the representation of knowledge about acoustics,
phonetics, microphone and environment variability, gender and dialect
differences among speakers, etc. Language models refer to a system's
knowledge of what constitutes a possible word, what words are likely
to co-occur, and in what sequence. The semantics and functions related
to an operation a user may wish to perform may also be necessary for
the language model. Many uncertainties exist in these areas, associated
with speaker characteristics, speech style and rate, recognition of basic
speech segments, possible words, likely words, unknown words, grammat-
ical variation, noise interference, non-native accents and confidence scor-
ing of results. A successful speech recognition system must contend with
all of these uncertainties. But that is only the beginning. The acous-
tic uncertainties of the different accents and speaking styles of individual
speakers are compounded by the lexical and grammatical complexity and
variations of spoken language, which are all represented in the language
model.

Amongst the many components required to build an effective speech recognizer,

this thesis focuses on methods for scoring acoustic models. The proposed non-

parametric models are more flexible than parametric models that have been tra-

ditionally used. Specifically, given a representation of the raw acoustic waveform at a

point in time, this work focuses on methods for providing class-conditional probabil-

ity estimates that a specific acoustic-phonetic class gave rise to that signal. Proposed

non-parametric methods are compared and conciliated with baseline parametric meth-

ods to obtain improved recognition performance. Three problems related to acoustic



modeling are explored and introduced in detail later in this thesis: [1] dimensionality

reduction of the acoustic feature space, [2] modeling of underlying relationships be-

tween acoustic-phonetic labels, and [3] adapting the feature representation to different

parts of the feature space.

1.3 Outline

There are three main pieces of work presented in this thesis.

First, the non-parametric technique known as neighborhood components analysis,

NCA, for reducing the dimension of the input data is explored (Goldberger et al.

[2005]). Reducing the dimension of the input data is a commonly addressed problem

in speech recognition as dimensionality reduction can significantly improve results

when fitting a Gaussian mixture model (GMM) to the samples of a particular class,

i.e. learning the estimate for p(xly). The nearest-neighbor based technique, NCA,

is used to linearly project x to a lower dimensional representation. NCA is shown

to perform competitively with another commonly employed dimensionality reduction

technique in speech known as heteroscedastic linear discriminant analysis (HLDA)

(Kumar [1997]).

Second, a nearest neighbor-based model related to NCA is created to provide an

estimate for p(ylx) that is sensitive to the possible underlying relationship between

the labels, y. An embedding of the labels is learned to provide an estimate of the

similarity or confusability between them. This embedding is related to the concept of

error-correcting output codes (ECOC) and therefore the proposed model is referred to

as NCA-ECOC. The estimates provided by this method along with nearest neighbor

information is shown to provide improvements in speech recognition performance.

Third, a model for calculating p(ylx) is proposed that generalizes GMM, NCA,

and kernel density approaches. This model, called locally-adaptive neighborhood

components analysis, LA-NCA, learns different low-dimensional projections for dif-

ferent parts of the space. The model exploits the fact that in different parts of the

space different directions may be important for discrimination between the classes.



This model is computationally intensive and prone to over-fitting, so methods for

sub-selecting neighbors used for providing the estimates p(ylx) are explored. The es-

timates provided by this method are shown to give significant improvements in speech

recognition performance.

These three pieces of work constitute the three main contributions of this thesis:

(1) NCA is shown to perform competitively with HLDA on acoustic modeling tasks

(2) NCA-ECOC is developed to learn and model the underlying relationship between

acoustic labels and is shown to provide significant improvements in acoustic mod-

eling tasks (on academic lecture task a 2.5% relative improvement in word-error-

rate)

(3) LA-NCA is developed to provide nearest neighbor estimates that adapt to differ-

ent parts of the input space and is shown to provide significant improvements in

acoustic modeling tasks (on academic lecture task a 7-8% relative improvement

in word-error-rate)

This thesis is outlined as follows. First in Chapter 2, the NCA model is described

and in Chapter 3, background information on speech recognition and acoustic model-

ing as well as dimensionality reduction is presented. In Chapter 4, NCA is applied to

dimensionality reduction for acoustic modeling. In Chapter 5, the NCA-ECOC model

is developed and experiments using this model and nearest neighbor information are

presented. In Chapter 6, the LA-NCA model is developed and experiments using this

model along with generatively and discriminatively trained GMMs are performed. In

Chapter 7, conclusions drawn from the thesis and several possible avenues for future

work are discussed.



Chapter 2

Background: Neighborhood

Components Analysis

NCA was introduced by (Goldberger et al. [2005]); the details of the method are

described here for completeness. NCA learns a linear projection of vectors into a

space that optimizes a criterion related to the leave-one-out accuracy of a nearest

neighbor classifier on the training set. The method can be thought of as learning a

Mahalanobis distance metric or as providing nearest-neighbor based class-conditional

probability estimates.

2.1 Training NCA

Formally, NCA takes as input a training set {(x1 , YI), (XN, YN)} where xi E RD and

yi C Y. For example, in acoustic modeling, xi may consist of concatenated vectors of

MFCC measurements and yi may indicate the class of phonemic event described by

the vector, such as /oy/. The method outputs a learned projection matrix A of size

d x D where d may be less that D. By selecting d < D, a dimensionality reducing

linear projection matrix is learned. This matrix projects the training vectors xi into

a d dimensional representation ai.

ai = Axi (2.1)



This projection matrix A also defines a Mahalanobis distance metric that can be used

by a nearest neighbor classifier in the projected space.

dist(xi, xj) = (Axe - Axj)T(Axi - Ax) (2.2)

= (xi - xj)T(ATA)(xi - xj)

The goal of the method is to learn a projection A that maximizes the accuracy of a

nearest neighbor classifier when used in a leave-one-out setting on the training set. In

order to define a differentiable optimization criterion, the method makes use of "soft-

neighbor" assignments instead of directly using the k nearest neighbors. Specifically,

each point j in the training set has a weight aj(i) which determines its probability

of assigning its label to a point i. This weight decays exponentially as the distance,

parameterized by A, between points i and j increases.

a (i) eIIAxi-Ax1| 2 if i # j, 0 if i j (2.3)

A quantity pij can then be defined which indicates that probability of point i

receiving its label from point j.

aZ (i)
Pij N - I i)pE = 0 (2.4)

pij is computed simply by normalizing the weights a (i) over the entire training set.

Note that pii = 0, indicating that a training point is not used to label itself, and

hence a leave-one-out model of training performance can easily be computed from

this quantity.

One possible optimization criterion is to maximize the expected number of points

correctly classified in a leave-one-out setting over the training set. This optimization

criterion can be defined using the above soft-neighbor assignments. First a quantity

p(yli) is defined that denotes the probability of a point i being assigned the class label



y by summing over all training points j whose label is y.

N

p(y li) = 1:pig (2.5)
j=1;y3 =y

The optimization criterion f(A) can then be defined simply as the sum of the prob-

abilities of classifying each point correctly.

N

f (A) = p(yili) (2.6)
i=1

Gradient methods can be used to optimize the leave-one-out criterion f(A). The

following gradient rule can be derived from Equation 2.6. (Note that xi3 is shorthand

for xi - xj.)

OfN N XT N

= 2AZ KP(yili) ZPikXikx - pa xiJx (.7
U=1J k=1 j=1,yj=yi

The function f(A) can be optimized using a number of gradient methods, such as

stochastic gradient ascent, or conjugate gradient ascent. Note that the function f(A)

is not convex, so care needs to be taken when initializing the matrix A in order to

avoid sub-optimal solutions. Specifically, multiple random initializations of the matrix

A could be used to select the optimal solution. Additionally, as the magnitude of

A increases, the effective number of nearest neighbors considered when labeling a

sample decreases. Initializing A to have a large magnitude starts the optimization

at a point where few neighbors are used to label a sample, whereas initializing A to

have a small magnitude starts the optimization at a point where many neighbors are

used to label a sample. Because the optimization is non-convex, this variation could

lead to different solutions.



2.2 Computational Performance

The calculation of the above gradient can be computationally quite expensive. Calcu-

lating the soft-neighbor probabilities aj (i) alone requires O(N 2 d) calculations. We can

minimize the amount of computation when calculating the gradient by re-arranging

the terms of the gradient as follows:

N N N

=2E p(yii) Zpik(Axik)xik - pij (Axigj)x)
i=1 k=1 j=1,yj=yi

Calculating the full gradient takes O(N 2dD), and therefore the running time of the

NCA algorithm is O(LN 2dD) where L is the number of gradient steps taken.

In many cases the projections ai = Axi can be precomputed before each gradient

calculation. When scoring new examples, only the projected version of the training

set and the projection matrix need to be stored, which can greatly improve the space

efficiency of a nearest neighbor classifier when d < D.

Many of the soft-neighbor probabilities, pij will be very close to zero, since they

drop off exponentially as the distance between points i and j increases. This justifies

the truncation of the gradient calculation for those samples. Two strategies are

explored in the literature for performing this truncation (Goldberger et al. [2005],

Weinberger and Tesauro [2007]). One strategy is to retain only the top m neighbors

j of i, or those with the largest values of a (i) and use only these for computing pij.

All other members k of the training set have values of Pik set to 0. The other strategy

is to truncate based on some threshold, E, for the value of Pij. If a sample j has an

associated probability pij less than c, it is ignored during the gradient calculation. In

the experiments presented here, the first strategy is employed but in the literature

both strategies have been shown to be effective (Weinberger and Tesauro [2007]).

The full gradient can be computed in parallel across several machines, which can

reduce the time needed to train the model. In the experiments presented here, NCA

is trained using conjugate gradient ascent using parallelization.



2.3 Scoring Test Samples

The NCA method can be interpreted two ways: (1) as learning a Mahalanobis distance

metric or linear projection, or (2) as learning class conditional probability estimates.

The learned distance metric or projection matrix A can be used to project test

samples x to a new representation a = Ax. This new representation can then be

used by other scoring algorithms. For instance, a model like a Gaussian mixture

model (GMM) can be trained for each class where the training and test points are

projected into the new space using A. The GMMs can then provide scores for p(aly)

as described in Section 3.4. The two main benefits of using the projected points to

train the GMMs are (1) the reduction in parameters achieved by the lower dimensional

representation and (2) the separation achieved between the classes which can allow

for better discrimination. Experiments using GMMs trained in this way are presented

in Chapter 4.

NCA can also be used in two ways for performing multiclass classification:

" kNN Classification: Test samples can be classified using the k nearest neigh-

bor method (kNN) where the projected training set is used to label the projected

test point.

" NCA Classification: Class-conditional estimates for p(ylx) can be calculated

directly using the NCA model as follows.

as (x) = e-IIAx-AjI 2  (2.8)

EN a(x)pjyx) = (2'9)
Ejy_ ay (x)

These estimates can be used to classify the new sample x by choosing

argmaxp(ylx).
y

These two classification strategies will be compared in experiments presented in



Chapter 4. The class-conditional estimates p(ylx) can also be used directly for tasks

like acoustic modeling, and experiments with this idea are described in Chapter 5.



Chapter 3

Background: Speech Recognition

This chapter contains background information on speech recognition that is useful in

understanding the role of this thesis within the broader field. The speech recognition

model used within the SUMMIT system is formally described. Additionally common

methods for performing linear dimensionality reduction are reviewed. Gaussian mix-

ture models (GMMs) are also defined and common methods for training and using

them for acoustic model scoring are discussed. Finally the datasets used throughout

the thesis are detailed.

3.1 Speech Recognition and the SUMMIT System

This section provides a general description of the speech recognition model of the

SUMMIT recognizer, which is used for all recognition experiments described in this

thesis. See (Livescu [1999]) for a general overview of the model and its components as

well as (Glass [2003], Glass et al. [2004]) for additional details about the recognizer.

The goal of automatic speech recognition can be described formally as follows:

Given a sequence of acoustic feature vectors x1, x 2, ... , XT that describe a raw acoustic

waveform, identify the most likely sequence of words w = w1, w2, ... , WM that gave

rise to that waveform.

w* =arg max p(wlxi, x 2 , ---xT) (3.1)
W



Typically, an automatic speech recognizer will model several different possible pro-

nunciations u for a word sequence w which leads to the following maximization.

w arg max Zp(w, u x 1 , x 2, ... , XT) (3.2)
U

For computational reasons the summation is often replaced with maximization over u

as well. This identifies the single best word sequence w* and pronunciation sequence

u* in a Viterbi decoding approach (Bahl et al. [1983]). Using Bayes rules and the fact

that p(x 1 , x 2, ... , XT) is constant we can derive the following.

p(w)p(ulw)p(x1, X2,.1 -- ,xrlw, U)
1, X2 p(xi, x 2 , ... , XT) (3.3)

~_ p(w)p(ulw)p(x1, x2, ... , xrlw, u)

w*, u * =arg max (p(w)p(ulw)p(x 1 , x 2, ---, XTW, u)) (3.4)
W,U

The first part of the product, p(w), is known as the language model and is an

estimate of the likelihood that the word sequence w would arise in the language.

The second part of the product, p(ulw), is the pronunciation or lexical model and

computes the likelihood that the word sequence w is composed of acoustic-phonetic

subunits (such as phones, group of phones, noises or silences) identified by u. Finally,

p(xi, x 2, ... , XT w, u) is the acoustic model that computes the likelihood x 1, x 2 , ---, XT

were generated by a specific choice of w and u. This work will focus on the acoustic

modeling portion of automatic speech recognition.

The SUMMIT recognizer used for the experiments described in this thesis oper-

ates similarly to the model described above, but varies in one important way (Glass

[2003], Glass et al. [2004], Livescu [1999]). SUMMIT uses landmark modelling to

segment the acoustic waveform. Typically recognizers use a frame-based approach

and measure the acoustic vectors xi at specific time intervals (every 10 ms for in-

stance). However landmark-based models first segment the acoustic waveform by

laying "landmarks" at points of interest (often points of large acoustic change) and



then hypothesizing segmentations of the waveform where a segment spans the region

between two landmarks. Then the acoustic vectors xi measured at the landmarks of

a specific segmentation, s, are used to compute the overall score of a word sequence

hypothesis. The landmark based model expands on the decoding scheme of Equa-

tion 3.4 with the inclusion of a segment model, p(s w, u). The SUMMIT model looks

like the following:

p(w, U, sIX 1, x 2 , .... X) - p(w)p(ulw)p(sw, u)p(x 1 , x 2 , ..., XTW, u, s) (3.5)

w*, u* Is*= argmax (p(w)p(ulw)p(s w,u)p(x1 ,x 2 , ... ,XTW,U,S)) (3.6)

The landmark-based recognizer can improve computational efficiency as there are

often far fewer landmarks than frames. The methods presented in this thesis are

trained and tested using the SUMMIT recognizer but could be applied within frame-

based recognizers as well.

3.2 Acoustic Modeling

In order to calculate the likelihood p(x 1 , x 2, ... , XTW, u, s), the acoustic model will

assume that each vector xi is generated independently of one another. This is a

strong assumption since each acoustic vector is part of a structured sequence probably

spoken by a single speaker and clearly not independently drawn. However, in practice,

the other components of the decoding process, such as the language model or speaker

adaptation will compensate for this assumption. Additionally, each xi is also assumed

to depend only on the acoustic-phonetic class, y at the pertinent time in u and w.

Therefore the acoustic model can be broken up as follows.

T

p(x1, x2, --- , xTw, u, s) = J p(Xilyi) (3.7)
i=1

This work focuses on the calculation of p(xly) or the related quantity p(ylx) and both

quantities will be referred to as acoustic models as we proceed. While the quantity



p(xly) is employed within the recognizer, learning models for estimating p(ylx) can

also be useful in a discriminative sense. When we learn estimates of p(ylx), these can

be easily converted to a estimate of p(xly) using Bayes Rule.

p(x y) = p(y x)p(x)
p(y)

Typically p(y) can be estimated from the training set of acoustic samples and p(x)

can be ignored because it is equal for all labels and does not effect the output of the

decoding process. In our experiments p(y) is estimated using the relative proporitions

of the labels in the training set. Note that this is a heuristic estimate, but often works

well in practice.

The acoustic modeling problem is an instance of the supervised class-conditional

probability estimation problem laid out in Chapter 1. The acoustic input vectors

x are D dimensional real-valued vectors, x E RD. The labels y are drawn from a

pre-defined acoustic phonetic label space Y. In general, the dimensionality D can

be high, in the hundreds, and the size of the label space lY| can be large, in the

thousands. This makes learning the estimates for p(xly) difficult due to problems of

over-fitting. Also, it is unknown what the correct hypothesis class of distributions

p(xly) should be, however a mixture of Gaussians is often used. The training set of

samples {(x 1 , y1), ... , (XN, YN)} used to learn the estimates p(x y) is usually large, in

the tens of millions or larger. While N is not large enough to eliminate over-fitting

problems, it is large enough to cause computational issues. Finally the labels y E Y

often share some underlying relationships and are not truly independent. They may

share acoustic properties that make them confusable. For instance /m/ and /n/ are

both nasals and can be difficult to distinguish. Therefore we can see that acoustic

modeling presents many of the difficulties discussed in Chapter 1.

The non-parametric methods developed in this thesis can help eliminate some

of the assumptions of typically employed parametric methods, such as mixtures of

Gaussians, though they can be computationally expensive and data intensive. How-

ever, with recent increases in computational power and the availability of increasing



amounts of data, these methods are becoming more feasible.

3.3 Dimensionality Reduction for Acoustic Mod-

eling

Dimensionality reduction is commonly applied to the problem of acoustic modeling.

Many techniques for changing the basis of the feature space and reducing the number

of feature dimensions exist. Linear methods such as PCA, LDA, and HLDA as well

as non-linear methods such as Kernel PCA, and neural networks have been applied

successfully to acoustic modeling. Here, the commonly used techniques of PCA,

class-based PCA, LDA, and HLDA are described in detail. Many other techniques

are reviewed in Chapter 4.

3.3.1 Principal Components Analysis

Principal components analysis (PCA) is a simple and elegant method for performing

a linear rotation of the feature space (Pearson [1901]). Given a training set of inputs

{X 1 , ... , XN} where xi C RD, the method computes an orthonormal matrix A which is

D x D to create a new representation zi = Axi. Briefly, the method can be described

formally as follows. Let X be a D by N matrix where each column is one of the

training samples with the sample mean of the data, y, subtracted out, xi - p. Let

Z = AX. Calculate A such that ZZT is diagonalized. The method ensures that

in the projected space the dimensions of the data are not correlated. To perform

dimensionality reduction, one can look at the variance in ZZT. The dimensions with

high variances are usually most important. For a more detailed description of PCA

see (Shlens [2005], Smith [2002]).

The method is simple and elegant to apply, but suffers from some serious draw-

backs when applied to acoustic modeling. First, the method works by computing

sufficient statistics, or in other words looks only at the mean and variance of the data

samples. This works well for exponential distributions (such as a single Gaussian),



but does not work well for other types of distributions. Second, the data arises from

multiple separate classes making it very unlikely that all the data can be modelled

using a single exponential distribution. Third, no attempt is made to learn a rotation

that allows for discrimination between classes.

While PCA is in many ways inadequate for the acoustic modeling task, it is still

widely applied as a first step towards refining the feature space. Additionally, the

orthogonality assumption makes this rotation well-suited for the use of GMMs whose

covariances are restricted to be diagonal. Such GMMs are often used in acoustic

modeling since they possess far fewer parameters and are much more resistant to

over-fitting and are faster to compute.

3.3.2 Class-Based Principal Components Analysis

The SUMMIT recognizer makes use of a variation of PCA known as class-based PCA.

The basic idea is to pool covariance matrices that are calculated for the samples from

each class alone. Therefore the covariance relationships between samples of separate

classes are not modelled. Formally, let Zk = AXk where Xk now contains only

samples from class k. Each column of Xk is a sample from class k with mean of

samples from class k, 1k subtracted out. Calculate A such that Ekcy LZkZk T

is diagonalized. Here Nk is the number of samples of class k and Y is the set of

all possible class labels. This works better for acoustic modeling than PCA since

the samples from each class can be located far apart in the feature space without

interacting with the samples from another class. Essentially this is better at modelling

data that arises from multiple classes with different means but the same covariance

structure. However, this is still too strong an assumption for the acoustic modeling

problem. Also this method also makes no attempt to learn a projection of the points

that aids in discrimination between the classes.



3.3.3 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) (Fisher [1936]) learns a linear projection of the

input space like the previous methods, but also attempts to separate the distributions

of points for each class. For a discussion of detailed discussion of LDA see (Duda and

Hart [1973]). A brief description of the method follows. Let the following quantities

be defined where Ny is the number of samples from class y.

NT

V = (X - p)(xi - P)T
i=1
N

Wy = (Xi - py)(xi - py)T
i=1,yi =y

W = +ZNYWY
yEY

V is the total normalized sum of squares and products (SSQP), while Wy is the

per class normalized SSQP, and W is the pooled per class normalized SSQP. To

obtain the projection matrix A, whose rows may be restricted to d < D, maximize

the following quantity:
AVAfl

A = arg max |AWAT|
A JAWATI

This solution to this equation can be found by taking the d eigenvectors of W- 1V

with the largest associated eigenvalues. LDA thus tries to separate the data in the

projected space while minimizing the separation of within-class samples.

LDA works well under the assumption that each class of data is generated by

an exponential distribution with a shared covariance structure and separate means.

This is a large improvement over the previously described methods since an attempt

is made to separate the classes, however, the assumption that data for each class is

generated by a single exponential with shared covariance structure is still very strong.

3.3.4 Heteroscedastic Linear Discriminant Analysis

Heteroscedastic linear discriminant analysis (HLDA) generalizes LDA by modeling



each class with a separate covariance structure. See (Kumar [1997]) for the details

of HLDA, which is more complex than the previous methods. This method is moti-

vated by the observation that most of the information important for discrimination is

retained by the projection matrix A and the 'rejected' subspace of dimension D - d

contains little information. Specifically in the rejected subspace, the means and co-

variance structure for each class are equal and is therefore common to each class.

Let A(neg) denote the rejected subspace. The method optimizes the log-likelihood of

the data under the linear transformation A. The optimization can be performed by

solving the following equation:

N N
A, A(neg) = arg max { -- log |A(neg)VAfneg) " log |(AWjA)I+N log A(t)}

AA(neg) 2 YE2

A(t) denotes the full rank matrix whose first d rows are A and whose last rows are

A(neg). This method works well for acoustic modeling tasks in practice, but still makes

the assumption that each class can be modelled with a single Gaussian distribution.

Nearest neighbor methods used in the next chapter are more flexible since they do

not make this assumption.

3.4 Gaussian Mixture Models

Gaussian mixture models (GMMs) are commonly used in acoustic modeling and are

used throughout the experiments in this thesis. A single multivariate Gaussian dis-

tribution is parameterized as follows:

1 1
p(x) = N(x; y, E) = ( 2 7)D/2 I 1/2 exp- -(X - X)Tz-(X - pI)

where p is the mean of the distribution and E is the covariance structure. p is a D

dimensional real-valued vector, y C R D, and E is a D x D matrix. A GMM model is

a simple extension of the above model.



M

p(x) = E Am.N'(x; ym, Em)
m=1

M indicates the number of Gaussian mixtures which each have their own mean Pm

and covariance structure Em. The mixture weights Am are constrained to lie between

0 and 1, 0 < A_ < 1. Additionally the sum of the mixture weights is 1, Em_1 Am = 1.

Gaussian mixture models are flexible and therefore a powerful tool when modeling

distributions whose underlying structure is unknown as occurs often in acoustic mod-

eling. However the number of mixtures to use M must be chosen carefully as a

number that is to high can lead to over-fitting and a number that is too low may

not represent the data well. Additionally different acoustic classes may be modelled

best with different numbers of mixture components. Gaussian mixtures models are

typically trained using the EM algorithm, the details of which can be found in (Huang

et al. [2001]).

3.5 Speech Datasets

Two speech datasets are used for experimentation in this thesis. The TIMIT dataset

is used primarily for performing multi-class classification experiments. The academic

lecture data set is used for speech recognition experiments. Both sets are described

in detail below.

3.5.1 TIMIT

The TIMIT phone classification task (Lamel et al. [1986]) is a popular task for which

many results have been reported. The standard NIST training set, development set,

and core test set were used in these experiments. The properties of these sets are

summarized in Table 3.1. The samples are labeled with 61 different phonetic labels

which are typically collapsed down to 39 possible labels for classification (see Table

3.2). As is standard, glottal stops are ignored in both training and testing for this

task.



Set # of speakers # of utterances # of tokens # of hours
Train 462 3696 140225 3.14

Development 50 400 15056 0.34
Core Test 24 192 7215 0.16

Table 3.1: Properties of data sets used for TIMIT experiments.

0 /iy/ 1 /ih/,/ix/ 2 /eh/
3 /ae/ 4 /ax/,/ah/,/ax-h/ 5 /uw/,/ux/

6 /uh/ 7 /ao/,/aa/ 8 /ey/

9 /ay/ 10 /oy/ 11 /aw/

12 /ow/ 13 /er/,/axr/ 14 /1/,/el/

15 /r/ 16 /w/ 17 /y/
18 /m/,lem/ 19 /n/,/en/,/nx/ 20 /ng/,/eng/
21 /v/ 22 /f/ 23 /dh/
24 /th/ 25 /z/ 26 Is!

27 /sh/,/zh/ 28 /jh/ 29 /ch/

30 /b/ 31 /p/ 32 /d/
33 /dx/ 34 /t/ 35 /g/
36 /k/ 37 /hh/,/hv/
38 /bcl/,/pcl/,/dcl/,/tcl/,/gcl/,/kcl/,/q/,/epi/,/pau/,/h#/

Table 3.2: Phones belonging to each class of TIMIT data.

In the experiments presented in this thesis the segmental feature measurements

described by (Halberstadt and Glass [1997]) are used. Eight different segmental fea-

ture sets are described. Each feature set includes MFCC or PLP measurements as

well as a log-duration measurement. The feature measurements are summarized in

Table 3.3 reproduced from (Chang and Glass [2007]). The MFCC or PLP coeffi-

cients are consolidated via a temporal basis function (that extended 30ms beyond the

segment boundaries) of either averages or cosine transforms as indicated in the table.

The features referred to as the "S4" features are chosen for classification experi-

ments as they have performed best in past work (Chang and Glass [2007]).

3.5.2 Academic Lecture Recognition Task

Throughout this thesis experiments are conducted on academic lecture data (Glass

et al. [2004], Park et al. [2004]). The data consists of 121 hours of training data, 8



Dimensions Window Size (ms) Spectral Representation Temporal Basis
S1 61 10 12MFCC 5 avg
S2 61 30 12MFCC 5 avg
S3 61 10 12MFCC 5 cos
S4 61 30 12MFCC 5 cos
S5 64 10 9MFCC 7 cos
S6 61 30 15MFCC 4 cos
S7 61 20 12PLPCC 5 avg
S8 61 20 12PLPCC 5 cos

Table 3.3: Summary of features used for TIMIT experiments. Reproduced from
(Chang and Glass [2007]).

hours of development data, and 6 hours of test data. The data is drawn from the MIT

World and MIT OpenCourseWare collection of lectures (ocw, mit). The audio data

is recorded with omni-directional microphones usually within a classroom, which can

add noise such as background talking and coughing to the signal. The data is drawn

from multiple speakers, and the lectures cover various topics. For a detailed analysis

of the data characteristics see (Glass et al. [2004]). Because the lecture data consists

of spontaneous speech, it includes disfluencies such as filled pauses, false starts, and

partial words.

The recognition experiments conducted for this thesis make use of a topic-independent

language model with 37.4K unique words (Glass et al. [2007], Hazen and McDer-

mott [2007]). Topic-dependent language models, which adapt to the subject matter

of the lecture considered have been shown to provide improvements over a topic-

independent language model (Hazen and McDermott [2007]). However, the experi-

ments conducted are primarily to study various strategies for acoustic modelling and

a topic-independent language model is more straightforward to apply. It should be

noted, however, that more sophisticated language modelling techniques could provide

further improvements in performance on this task Hsu and Glass [2008]. For more

detail on the setup of the SUMMIT recognizer for the lecture recognition task see

(Chang [2008]).

The recognition experiments conducted here also use speaker-independent acoustic



Feature Vector b_4  b-3 b-2  b 1  b+ b+ 2  b+3  b+4

Start Time (ms) -75 -35 -15 -5 0 5 15 35
End Time (ms) -35 -15 -5 0 5 15 35 75

Table 3.4: Telescoped time intervals used to construct acoustic vector. Eight individ-
ual feature vectors are concatenated to produced a single 112-dimensional vector.

models. While speaker-adaptive acoustic models can provide dramatic improvements,

it is useful to evaluate the technique in a speaker-independent setting for simplicity.

Future work may consider ways to adopt the proposed non-parametric acoustic mod-

eling techniques within a speaker-adaptive setting.

A forced alignment of the training set is performed with a GMM acoustic model

trained using ML estimation: the acoustic frames in the training set are then labeled

with their most probable label given 1) the model; 2) the acoustic input; and 3) the

manually-transcribed training sentence for the relevant example. This provides us

with a time alignments of words and phonetics events with the raw acoustic signal.

Because the labels, yi, of the training samples, xi, are attained using forced align-

ments, it is possible that they will be noisy, which might need to taken into account

when learning acoustic models for this data.

There are 73 internal acoustic-phonetic labels used by the recognizer:

-, - b1 _b2, _b3, _b4, _ci, _c2, _c3, _c4, _11, _12, _13, _14,
_ni, _n2, _n3, _n4, _n5, _n6, aa, ae, ah, ah-fp, ao, aw, ax, axr,
ay, b, bcl, ch, d, dcl, dh, dx, eh, el, em, en, epi, er, ey, f,
g, gcl, hh, ih, iy, jh, k, kcl, 1, m, n, ng, ow, oy, p, pcl, r,
s, sh, t, tcl, th, uh, uw, v, w, y, z, zh

The first twenty labels are for silence, pauses, background, coughing, laughing,

and other noise; the remainder are used to model phonetic events. The label <> is

also used to mark the ends of an utterance. In additional to the internal labels, there

are diphone transition labels that model the transition from one of these classes to

another (e.g. /f/ -> /ae/ or /s! -> /t/). Many of the possible transitions never

occur in the lexicon and need not be modeled. Other transitions occur rarely and

are therefore clustered with similar transitions. In the end, 1871 possible classes are



retained, some consisting of multiple transition labels grouped together.

Each acoustic sample is represented using a 112-dimensional feature vector, con-

sisting of the concatenation of eight 14-dimensional feature vectors. Each of these vec-

tors contain 14 MFCC measurements taken at eight telescoped time intervals around

the point of the acoustic sample. A summary of the time bounds of these feature

vectors is included in Table 3.4. A Hamming window size of 25.6ms and frame rate

of 5ms is used to compute 14 MFCC measurements which are then averaged within

each telescoped interval. In total about 11.5 million training samples are available

from the 121 hours of training data.
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Chapter 4

Dimensionality Reduction for

Acoustic Modelling Using

Neighborhood Components

Analysis

A fundamental problem in speech recognition has been learning low-dimensional pro-

jections of relatively high-dimensional acoustic vectors (Kumar [1997]). The goal

is typically to find a low-dimensional projection that retains only the information

most useful to discriminating between acoustic-phonetic classes. Lowering the di-

mensionality of the acoustic vectors in this way provides two important benefits.

First, reducing the dimensionality of the acoustic data improves the time and space

efficiency of the acoustic model. Second, a low-dimensional representation reduces the

number of parameters that must be trained for the acoustic model and therefore has

the potential to reduce the risk of over-training. Note that the problem of learning

low-dimensional projections will also be referred to as learning low-dimensional linear

embeddings throughout this thesis. I

'Much of the work presented in this chapter has been previously published in (Singh-Miller et al.
[2007]).



The neighborhood components analysis method (NCA) (Goldberger et al. [2005])

is one approach to learning low-dimensional projections. NCA is a non-parametric

method that learns a low-dimensional linear projection of the feature space that

optimizes the performance of a nearest neighbor classifier. As we will see, using a

projection such as NCA can greatly improve the performance of nearest neighbor

classifiers when discriminating amongst acoustic-phonetic classes.

While there are a number of approaches to the dimensionality reduction problem,

one of the most commonly used in acoustic modeling is heteroscedastic discriminant

analysis (HLDA) (Kumar [1997]) (see Section 3.3.4 for a more thorough discussion of

HLDA). Comparisons between NCA and HLDA for the acoustic modeling problem

will be drawn in this chapter. Low-dimensional representations of acoustic vectors

learned from both methods are used within a conventional speech recognizer to train

Gaussian mixture models (GMMs) for each acoustic-phonetic class. These GMMs

provide scores p(xly) that form the acoustic model component during the speech

recognition process.

While NCA and HLDA can both be used to perform the same task, the criteria

each optimizes is quite different. NCA and HLDA both make use of training sets

consisting of acoustic vectors and their associated class labels in order to learn pro-

jections that will be effective at separating classes in the projected space. However,

HLDA makes stronger assumptions about the distribution of samples in each class

than NCA; specifically, HLDA assumes that each class of acoustic vectors have a

normal distribution. Because NCA optimizes for a nearest neighbor classifier, the

method makes weaker assumptions about the shape of the distribution in each class,

making it a closer match to the use of mixtures of Gaussians which are eventually

employed in modeling these distributions in the acoustic model.

The NCA method is presented, along with discussion of specific implementation

issues. The method is extended by introducing regularization which provides small

improvements in performance. Our end goal is to use these projections to lower word

error rate (WER) in a large vocabulary speech recognition task. Academic lecture

data (Glass et al. [2004], Park et al. [2004]) is used to train and test our approach.



In our experiments, we compare NCA, class-based principal components analysis

(PCA), and HLDA and show that NCA outperforms both other methods, showing a

2.7% absolute improvement in WER over a class-based PCA projection, and a 0.7%

absolute (1.9% relative) improvement over HLDA.

4.1 Neighborhood Components Analysis

NCA was introduced by (Goldberger et al. [2005]); the details of the method are

described in Chapter 2. In this section, we apply NCA to some example data and

consider the addition of regularization to the model.

4.1.1 2-D Acoustic Modelling Examples

An example of learning a two dimensional projection of the phonemes Is!, /sh/,

/z/, and /zh/ is shown in Figure 4-1. Five hundred training samples from each

class were attained from the lecture data task described in Section 3.5.2. The initial

dimension of the data is D = 112 and they are projected down to d = 2 dimensions for

visualization. The NCA matrix A is initialized randomly as depicted in Figure 4-1.

Another example including the six vowels /aa/, /ae/, /ey/, /iy/, /ow/, and /uw/

was similarly trained and is shown in Figure 4-2. The visualization shows that NCA

when randomly initialized learns a projection of the original space where it attempts

to separate training points of different classes.

4.1.2 Regularization

Regularization can be introduced into the NCA optimization criterion in order to

alleviate a few possible problems with the method. Regularization can help counteract

over-fitting effects we might see with the training data. The other problem we seek to

address with regularization is specifically related to the definition of the soft-neighbor

assignments used by the method. Because soft-neighbor assignments pij decay very

rapidly with distance, as the magnitude of A increases the effective number of nearest
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neighbors influencing the labeling of a point decreases. If the magnitude of A grows

sufficiently large, the method might simply consider just the one closest neighbor,

which could lead to a quite suboptimal projection of the data with poor generalization

properties. Therefore the following regularized version of the optimization function is

introduced where C is a constant chosen by optimizing the classification performance

of the learned metric over a development set.

freg(A) = p(yili) -- CZA:,A (4.1)
j,k

Aj,k indicates the element at the jth row and kth column of matrix A. The associated

gradient rule for the criterion freg(A) is the following.

N N N
2AZP(yili) .pxikx7, -- p - A (4.2)

U=1 k=1 j=yj=yi

4.2 Speech Recognition Experiments

NCA and HLDA are compared on a large-vocabulary speech recognition task. The

task is described in detail in Section 3.5.2

4.2.1 Dimensionality Reduction on Lecture Data

NCA and HLDA are both used to learn low-dimensional projections of the training

samples. The HLDA projections are learned using the code provided by (Kumar

[1997]) for HLDA using full covariance matrices. The NCA projections are learned

using conjugate gradient ascent parallelized across several machines.

The low-dimensional representations of the training points are used to train a

conventional maximum-likelihood GMM. This GMM forms the acoustic model com-

ponent of the SUMMIT recognizer (Glass [2003]) for the recognition experiments.

To train both NCA and HLDA, data from 53 context-independent internal phone

classes are used. This is done to limit the computational complexity of training. Also,

these classes contain the phonetic structures we want to focus on separating. Only a
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Figure 4-3: Word error rate (WER) of HLDA and NCA on a test set for several
different dimensionalities.

small portion of this data, 500 samples from each of 53 phonetic classes, is used to

train a projection using the NCA method. These samples are randomly selected and

come from a number of different speakers. To train the HLDA projection all of the

training data across the 53 phonetic classes, around 4 million samples, is used.

Because the optimization function for NCA is non-convex, care needs to be taken

when initializing A. In these experiments, the matrixes for both the NCA and regu-

larized NCA projections were initialized randomly.

The end goal is to use these projections to reduce speech recognition word error

rates (WER). Because the recognizer employs mixtures of Gaussians with diagonal

covariance matrices, and models 1871 classes instead of 53 classes used to train the

projections, a class-based PCA transform is applied after learning NCA and HLDA.

This class-based whitening transform is performed by applying PCA to a covariance

matrix obtained by pooling the covariances of the individual phonetic classes. The

WER achieved by both the unregularized version of NCA and HLDA for a number

of dimensions in the projected space is shown in Figure 4.2.1. As the number of

dimensions is increased, initially large improvements in WER are achieved for both

.... .. .... .. ......... ...... .. . ...... ... ......... ....... ........... .... ........ ..........



Dimensionality Reduction Method WER
PCA 38.8

HLDA, all training data 36.8
HLDA, 500 samples per class 37.1
NCA, 500 samples per class 36.3

NCA (regularized), 500 samples per class 36.1

Table 4.1: Word error rate of recognizer using PCA, HLDA, NCA, and regularized
NCA to learn 50 dimensional projections.

methods, but these level-off quickly at around 40 dimensions. The minimal WER

achieved by NCA occurs at 50 dimensions. As the number of dimensions increases

beyond 90, the performance of the recognizer begins to deteriorate, indicating an

over-training effect. A similar trend is seen with the HLDA method, with optimal

performance achieved at 40 and 50 dimensional projections.

Table 4.1 records the performance of the recognizer using class-based PCA, HLDA,

NCA, and the regularized version of NCA for 50-dimensional projections. Regularized

NCA achieves a large improvement over classed-PCA alone of 2.7%, and a significant

improvement over HLDA as well of 0.7% (1.9% relative improvement). Regularized

NCA also slightly outperforms NCA, with the regularized method achieving an im-

provement of 0.2% over the baseline NCA method.

Experiments were conducted by increasing the number of data points per class

used to train NCA to 1000 and 5000. These experiments led to negligible differences

in speech recognition WER, suggesting that the NCA method can be well trained

using relatively little data.

4.2.2 Discussion

Looking at the classification accuracy achieved in a kNN setting using both HLDA

and regularized NCA can help identify some of the differences between the two meth-

ods. The accuracy of a kNN classifier is calculated on a set of held-out training

samples (i.e. a set of 500 samples per class not used to train the NCA or HLDA

projections). A 50-dimensional projection is learned for both regularized NCA and



HLDA and both are trained with 500 samples from each of the 53 internal phonetic

classes. These are the same training points used to label the held out samples. The

classification performance of the internal phonetic classes ordered by reduction in er-

ror rate achieved using regularized NCA are shown in Table 4.2. NCA achieves large

improvements in classification accuracy across almost all the phonetic classes.

Another fact to note is that while the kNN performance of NCA and HLDA are

very different, the difference in recognition performance of the two methods in terms

of WER is not as large. This suggests that large increases in kNN performance does

not necessarily mean large improvements in WER. This may indicate that a mismatch

occurs between the NCA and GMM framework, where the GMM is unable to exploit

the same information in the data as NCA. This may also be because simple increases

in classification accuracy of phones does not necessarily lead to fewer word errors

since word errors depend on a multitude of other factors. Later in this thesis the

kNN framework is more directly applied to scoring the acoustic models.

One of the most striking aspects of the results is how little data NCA and indeed

HLDA need to achieve competitive performance, only 500 samples from 53 classes.

Because NCA seems to be able to perform well with a relatively small number of

samples, one potential application of this method would be in speaker adaptation

where hopefully with just a small number of samples the method could quickly adapt

to a specific speaker.

4.2.3 An Alternative Log-Likelihood Criterion

The optimization criterion from Equation 2.6 for NCA optimizes the number of train-

ing points classified correctly. For some applications, including acoustic modeling,

optimizing the class-conditional log-likelihood of the training samples may be more

desirable.
N

flog (A) = log p (yilIZ) (4.3)
i=1

Optimizing this criterion discourages the assignment of very low probability to the

correct class of any training sample and hopefully generalizes similarly to test samples.



Phone NCA Acc. HLDA Acc. % Red. in Err.
/epi/
/em/

/ah-fp/

/g/
/b/

/PCl/
/zh/

/p/
/jh/
/uw/
/oy/
/sh/

/w/
/ey/
/tcl/

/y/
/ay/
/uh/
/axr/
/V/
/en/
/d/
/Z/
/f/

/ch/
/ng/
/k/

/dx/
/th/
/dh/
/t/

/ae/
/aw/
/hh/
/dcl/
/bcl/

/ao/
/iy/

/gcl/
/er/
/el/

/I/
/ow/
/r/

/ih/
/eh/
/aa/
/ah/

/n/
/ax/
/m/

/kcl/
/S/

88.60
79.00
72.80
77.80
80.40
63.40
78.00
67.80
55.00
56.60
51.80
67.00
72.20
62.40
49.60
67.20
48.00
58.20
56.00
53.60
55.60
46.40
56.40
63.80
51.00
59.40
62.20
49.60
52.40
55.80
53.40
37.40
39.40
54.20
39.20
50.00
45.20
55.40
42.00
43.40
66.80
25.40
31.80
40.40
32.60
31.80
30.00
27.20
39.00
25.60
31.60
45.20
57.20

62.40
56.60
48.80
58.80
66.40
39.80
65.20
50.00
34.20
37.20
30.60
52.60
60.40
46.60
28.80
54.40
28.40
42.60
40.20
37.00
40.60
29.00
43.00
52.80
37.00
48.00
52.40
36.60
40.60
45.80
43.40
24.40
27.60
45.40
27.80
41.80
36.40
48.40
33.00
35.20
62.00
14.80
22.80
33.00
25.40
24.60
23.40
21.20
34.20
20.60
27.60
43.20
57.40

69.68
51.61
46.88
46.12
41.67
39.20
36.78
35.60
31.61
30.89
30.55
30.38
29.80
29.59
29.21
28.07
27.37
27.18
26.42
26.35
25.25
24.51
23.51
23.31
22.22
21.92
20.59
20.50
19.87
18.45
17.67
17.20
16.30
16.12
15.79
14.09
13.84
13.57
13.43
12.65
12.63
12.44
11.66
11.04
9.65
9.55
8.62
7.61
7.29
6.30
5.52
3.57
-0.47

Table 4.2: Accuracy of a kNN classifier on a test set of acoustic vectors with their
associated phonetic labels. Vectors are first projected into a 50-dimensional space
using HLDA or regularized NCA trained on a training set of 500 points per class.



This can be important for acoustic modeling where assigning near zero probability to

the correct class of an acoustic sample can have detrimental effects on the word error

rate of surrounding words as well.

The gradient associated with this optimization criterion is the following:

N N N
afiog2 2A ( z~z ( i) N Puijj / (4.4)

A PikXikX J
i=1 (k=1 3yli =1,yj=yi

In (Goldberger et al. [2005]), it is reported that both f(A) and flog(A) deliver similar

performance. For the speech recognition task, the findings are similar, with this

method achieving 36.5% WER on the test set. This criterion is further developed in

the other chapters of this thesis.

4.3 Experiments with TIMIT

Phonetic classification experiments on the TIMIT (et al [1993]) corpus were per-

formed. As is commonly done with this phonetic classification task, the 61 phonetic

class labels provided for the training and test data are collapsed down to 39 classes

(Halberstadt and Glass [1997]). There have been a number of approaches to this task

including the use of Gaussian mixture models (Halberstadt and Glass [1997], Rifkin

et al. [2007], Sha and Saul [2007a,b], Chang and Glass [2007]), conditional random

fields (CRFs) (Gunawardana et al. [2005]), and support vector machines (SVMs)

(Clarkson and Moreno [1999]). Recent work has focused on the use of large-margin

GMMs (Sha and Saul [2007a,b], Chang and Glass [2007]) with the best published re-

sults achieved using hierarchical large-margin GMMs (Chang and Glass [2007]). For

a more detailed description of the TIMIT data see Section 3.5.1.

Two sets of experiments are performed in order to determine the effectiveness of

NCA alone as well as in a hierarchical setting with the results presented in Table

4.3. The initial feature representation for the training and test samples is a 61-

dimensional feature representation described previously in (Halberstadt and Glass

[1997], Chang and Glass [2007]). These features include MFCC measurements as well



Model Development Error (%) Test Error (%)
Baseline 26.5 27.2

NCA 21.1 21.9
Hierarchical NCA 20.1 21.6

Table 4.3: Results of k-nearest neighbor classification experiments on the TIMIT
development and test corpus. Results are calculated with k=15. The baseline clas-
sification results make use of the initial feature representation. The NCA results
are computed using a 61-dimensional NCA projection. The hierarchical NCA setup
makes use of a separate projection matrix trained for each node in the hierarchy.

Table 4.4: 2-level Hierarchical decomposition of TIMIT phone labels.

as a log duration measurement. The performance a kNN classifier with k = 15 on this

baseline representation is shown in Table 4.3. The results are quite poor, at 26.5%

on the development set and 27.2% on the test set.

The 61-dimensional NCA rotation of the feature space achieves a significant im-

provement in classification error over the baseline model. A reduction in error of 5.4%

on the development set and 5.3% on the test set are achieved. This provides concrete

evidence of the ability of NCA to define a distance metric that works well for nearest

neighbor classification.

Additionally a two-level hierarchical classifier is constructed with the phonetic

class labels grouped together as described in Table 4.4. The labels are generally

grouped by vowels and semi-vowels, nasals, affricates, sibilants, and stops and frica-

tives. The super-classes of the hierarchy are referred to as si. Classification is per-

Level 1 Level 2 (Phonetic classes)
si /aa/, /ae/, /ah/, /ao/, /aw/, /ax/, /ax-

h/, /axr/, /ay/, /eh/, /el/, /er/, /ey/, /ih/,
/ix/, /iy/, /1/, /ow/, /oy/, /r/, /uh/, /uw/,
/ux/, /w/, /y/

s 2  /em/, /en/, /eng/, /m/, /n/, /ng/, /nx/

83 /ch/, /jh/
S4 /s/, /sh/, /z/, /zh/
S5 /b/, /bcl/, /d/, /dcl/, /dh/, /dx/, /epi/,

/f/, /g/, /gcl/, /h#/, /hh/, /hv/, /k/, /kcl/,
/p/, /pau/, /pcl/, /q/, /t/, /tcl/, /th/, /v/



formed by making a hard decision using a kNN classifier amongst these five groupings

(Si, ... , S5), and then using a kNN classifier amongst the sub-classes to determine the

final label assigned to the test point. k equals 15 for both levels of the hierarchy and

was optimized on the development set. A separate 61-dimensional NCA rotation is

learned for each of these decisions; in total six separate NCA rotation matrices are

learned. Performing classification in this manner leads to an error rate of 20.1% on the

development set and 21.6% on the test set. This is a significant improvement over the

basic NCA model on the development set with a small improvement in performance

over the test set.

The hierarchical grouping of the phones was manually chosen, and there are many

other ways to hierarchically decompose these classes. However, it is clear that a hier-

archical model can significantly improve classification performance which corroborates

findings of other recent publications (Chang and Glass [2007]). The hierarchical NCA

model learns a separate NCA distance metric for each node in the hierarchy. In this

way a separate distance metric is learned for different partitions of the labels (as for

the top node), and for different subsections of the input space (as for the leaf nodes).

These preliminary experiments provide evidence that adaptive distance metrics for

different parts of the space can give significant improvements; this idea is further

developed in Chapter 6.

4.4 Experiments with MNIST Digits

While the primary motivation for the methods developed in this thesis have been

acoustic modeling, the methods can also be applied to other tasks. The MNIST

handwritten digit task seeks to classify handwritten samples of the ten digits 0-9.

The data consists of 60,000 labeled samples, approximate 6,000 for each digit, where

the images are 24 x 24 pixels with 8-bit grayscale labels. Therefore each image forms

a 784-dimensional input vector. Ten thousand test samples are also available. 2

Classification experiments are conducted on this data set. kNN classifiers and

2The MNIST data set is available at: http://cs.nyu.edu/roweis/data.html



Baseline, NCA, NCA, NCA, NCA, NCA,
D=784 d=2 d=3 d=5 d=10 d=20

Optimal k 4 100 100 15 4 2
Test Error 2.8 27.9 17.2 8.9 4.1 2.3

Table 4.5: Error rate of a kNN classifier on MNIST digits test data. The baseline
model is just the original 784-dimensional data. The NCA models are trained for
various values of d. The optimal values for k selected on held-out samples are also

noted.

Baseline, NCA, NCA, NCA, NCA, NCA,
D=784 d=2 d=3 d=5 d=10 d=20

Optimal k 1 200 200 25 5 8
Test Error 3.1 27.9 17.1 9.1 4.3 2.6

Table 4.6: Error rate of a NCA classifier on MNIST digits test data. The baseline
model is just the original 784-dimensional data. The NCA models are trained for
various values of d. The optimal values for k selected on held-out samples are also
noted.

NCA classifiers as described in Section 2.3 are tested with many values of k, the

number of nearest neighbors used to label a test point. Results for the kNN classifier

are reported in Table 4.5 and results for the NCA classifier are reported in Table 4.6.

The optimal value for k is determined on held-out training samples. The classification

performance improves as the dimensionality of the NCA projection increases, with

projections of d = 20 achieving the lowest error rates. Also, the optimal performance

of a kNN classifier is sometimes better than the performance of the NCA classifier and

vice versa. However, generally both methods deliver similar optimal performance.

In Figure 4-4, performance of both kNN and NCA classifiers are depicted on held-

out training samples. We can see that the NCA method for classification delivers

more stable classification accuracy across various values of k, which might make it

more attractive when k can not be carefully chosen.

Figure 4-5 shows a plot of the test points projected using a two-dimensional NCA

rotation. Beneath the plot, each row of the projection matrix is portrayed as a 24

x 24 image. Each element of the row is displayed at its corresponding pixel location

with red indicating a strongly positive value and blue indicating a strongly negative
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Figure 4-4: Performance on held-out development data from MNIST training set
for various values of k. The baseline model makes use of the original images, and
different low-dimensional NCA projections are also used. The top plot indicates the
performance of a kNN classifier and the bottom plot shows an NCA classifier.
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Figure 4-5: A plot of 10% of MNIST digit test points projected using a two-
dimensional NCA rotation. Beneath the plot, each row of the projection matrix is
portrayed as a 24 x 24 image. Each element of the row is displayed at its correspond-
ing pixel location with red indicating a strongly positive value and blue indicating a
strongly negative value.



value. It is clear that each dimension separates the points based on different regions

of pixels. These two learned dimensional projections do a reasonable job of separating

the ten classes of data so they can be visualized in the 2-D plot. This task will be

used in later Chapters to help visualize the results of the proposed methods.

4.5 Related Work

There are numerous alternatives to NCA for performing dimensionality reduction.

Many of these alternatives make strong assumptions about the underlying struc-

ture of the data that NCA does not. Some such methods already described include

PCA (Pearson [1901]), LDA (Duda and Hart [1973], Fisher [1936]), and HLDA (Ku-

mar [1997]). Relevant components analysis (RCA) is another method that learns a

low-dimensional linear projection of the data points (Bar-Hillel et al. [2003]). How-

ever, it also assumes the points are drawn from Gaussian distributions. In (Koren

and Carmel [2004]) a generalized family of LDA-like methods are proposed that are

more robust than LDA, especially in terms of outliers.

There are also many more flexible methods that make use of nearest neigh-

bor structure in order to learn a Mahalanobis distance metric. One method called

variable-kernel similarity metric (VSM) learns a metric very similar to NCA, but con-

strains the projection matrix to be diagonal and optimizes an objective function equal

to the squared difference between the true label and the leave-one-out predicted label

(Lowe [1995]). Another method for achieving large margin nearest neighbor classifi-

cation is introduced by (Weinberger et al. [2006]). A Mahalanobis distance metric is

learned by setting target nearest neighbors for classifying each training sample and

then learning the metric to achieve a margin (with slack variables) to separate those

target neighbors from other neighbors of a different classes. This method has a convex

optimization function but depends on the selection of the initial desired neighbors to

work well. Also dimensionality reduction is performed by first using PCA to reduce

the number of dimensions and then learning their distance metric. In (Torresani and

Lee [2007]) a method is proposed for directly learning the low-dimensional represen-



tation without first using PCA, and they demonstrate better results. In (Xing et al.

[2003]), they propose a method for learning a distance metric that minimizes the

distance between all pairs of points in the same class. Such a method will not work

well if data for each class is multimodal, or has clusters that are separated. In (He

and Niyogi [2003]), the authors propose a method known as locality preserving pro-

jection (LPP) for calculating a low-dimensional linear projection. The method uses a

nearest neighbor based adjacency graph where the edges between the neighbors may

have some weights. Nearby points in the original space are kept close in the learned

low-dimensional space. This method is not specifically discriminative. In (Sugiyama

[2007]), they propose a method called local Fisher discriminant analysis FLDA that

generalizes LDA to include nearest neighbor information in a manner similar to LPP.

This method is better able to cope with multimodal class distributions. However, the

weights between neighbors is again predefined for both LPP and FLDA. In (Glober-

son and Roweis [2006]), the author proposes a method called maximally collapsing

metric learning (MCML) that learns a Mahalanobis distance metric that attempts

to project all points from a single class to one point while maximizing the distance

to points of other classes. This method also may not work well for multimodal data

within a single class. In (Peltonen et al. [2007]), a method is presented for learning

an embedding in a semi-supervised setting with the assumption that each class is

represented by a mixture of Gaussians. This method may be very useful to apply to

acoustic modeling when using unlabeled data to supplement the training set.

There are many non-linear dimensionality reduction techniques. One interesting

technique is locally linear embedding (LLE) introduced by (Roweis and Saul [2000]).

They present a very intuitive algorithm for embedding points in a lower dimensional

space. Essentially each point is first constructed from points within its neighborhood

where each point gets a weight wi which indicates how much j contributes to the

reconstruction of i. Then the points are all mapped to a lower dimensional space

with the idea that the reconstruction weights and points in the new space should

still result in a good reconstruction. It is unclear, however, how test points could

be projected into the lower dimensional space and no specific attempt at discrimi-



nation is made. A method is described for non-linear dimensionality reduction that

preserves local information in (Belkin and Niyogi [2003]). Salakhutdinov et al pro-

pose a method for learning a non-linear embedding that is discriminative and also

based on neighborhood structure (Salakhutdinov and Hinton [2007]). In (Hinton and

Salakhutdinov [2006]), the authors describe a method for constructing a neural net-

work that allows for non-linear compression of data to a low-dimensionality as well

as a reconstruction of the data from the learned low-dimensional code. The method

is efficient and provides good results. Non-linear embeddings can be quite effective

but can be computationally more expensive than linear embeddings and analysis of

the resulting dimensions can be difficult whereas with linear embeddings the resulting

dimensions are simply linear combinations of the original features and therefore easier

to interpret.

There are alternatives to HLDA that have been proposed and applied specifi-

cally to acoustic modeling problems that also learn discriminative projections. In

(Zhang and Matsoukas [2005]), an alternative to HLDA is presented that optimizes

a minimum phoneme error (MPE) criterion, that is more closely related to the end

goal of speech recognition performance. This type of discriminative projection can

also be used for speaker adaptation (Wang and Woodland [2004]). HLDA has also

been effectively applied to speaker adaptation (Matsoukas and Schwartz [2003], Saon

et al. [2001]). For a single speaker, HLDA will most likely perform better than in the

speaker-independent projections we learn here because multiple speakers can intro-

duce a high amount of variability in the data. In (Povey et al. [2005]), the authors

introduce a method called fMPE; a linear projection of a large non-linear expansion

of the feature space is performed with improved results.

4.6 Lessons

In this chapter, NCA was shown to deliver significant improvements in speech recogni-

tion word error rates over PCA and HLDA. However, NCA has drawbacks, including

increased computational cost and non-convex optimization. Parallelizing the NCA



optimization can help with computational time during training, and the results show

that NCA can sometimes be well trained with a relatively small amount of data.

Though NCA has a non-convex optimization, with appropriate care to the initializa-

tion and optimization of the projection, good results are easy to attain. A regularized

version of NCA was introduced with slightly improved results.

NCA provided better kNN classification results than HLDA, but the improvement

in speech recognition performance is more tempered. This is probably due to the other

factors affecting speech recognition, such as the language and pronunciation models.

Also the projections trained by NCA and HLDA were used to train GMM models for

attaining acoustic model scores, whose scores are very different from the classification

decisions provided by kNN.

In the subsequent chapters, the neighborhood analysis framework introduced here

will be applied and expanded to better address the acoustic modeling problem. The

nearest neighbor-based estimates will also be applied directly in the recognizer.



Chapter 5

Learning Label Embeddings for

Modeling Structure in the Label

Space (NCA-ECOC)

In this chapter, the problem of providing class-conditional probability estimates p(y x)

is investigated under conditions where the number of possible labels y is large and the

labels share some underlying structure. To solve this problem, a method is proposed

for using label embeddings, similar to error-correcting output codes (ECOCs), to

model the relationship between labels. A label embedding is learned within the neigh-

borhood analysis framework developed in Chapter 2 and Chapter 4. The learned la-

bel embedding and nearest neighbor information are used to provide class-conditional

probability estimates. These estimates are applied directly to the problem of acoustic

modeling for speech recognition to demonstrate significant improvements in terms

of word error rate (WER) on the academic lecture recognition task over a baseline

GMM model.'

'Much of the work presented in this chapter has been previously published in (Singh-Miller and
Collins [2009]).



5.1 Introduction

For some applications the training set may have some of the following properties: (1)

the size of the label space lY| is large, (2) some labels have relatively few training

samples, (3) there tends to be a lot of overlap between the labels, and (4) the labels

assigned to training samples may be noisy. Estimating p(ylx) based on the neighbor-

hood of x under these conditions can be difficult. For example, consider a test point

x whose neighborhood contains many samples with the phonetic labels /s/ and /ae/

and a few with the transition label /s/->/ae/ (indicating a transition from the phone

Is! to /ae/). The NCA model would give a high probability to the first two phonetic

classes and a low probability to the transition class. Though, intuitively, one might

think that the presence of neighbors from both sides of the transition should bolster

the probability of the transition label being the correct choice. From this example, we

can see that the label y of a test point's neighbor may provide evidence for improving

the class-conditional estimate for other classes as well. This occurs because in the

acoustic modeling problem, as in many problems, there is some underlying structure

or relationship between separate labels in the label space.

In order to discover the structure between the labels and use it to improve class-

conditional probability estimates, the similarity between pairs of labels is modeled

explicitly. To estimate these similarity values, a label embedding approach is pro-

posed. In this approach each label y is represented by an L dimensional real-valued

vector My E RL. This vector is called the prototype vector or output code represent-

ing the class y and is related to the idea of error-correcting output codes (Allwein

et al. [2000], Crammer and Singer [2000], Dietterich and Bakiri [1995], Klautau et al.

[2003a]). The similarity between two classes y and z can be modeled using the output

codes My and Mz for the two classes.

The output codes are learned within a neighborhood analysis framework related

to the NCA framework from the previous chapter. The prototype vectors My are

used to calculate p(ylx), and are learned by optimizing a leave-one-out estimate of

the conditional log-likelihood (CLL) over the training samples. The end result is a



method that embeds labels y into RL in a way that can significantly improve class-

conditional probability estimates and reveal some aspects of the underlying structure

of the label space.

The application focused on is acoustic modeling for speech recognition, where each

input x E RD is a vector of measured acoustic features, and each label y C Y is an

acoustic-phonetic label. As is common in speech recognition applications, the size

of the label space Y is large (for the academic lecture task there are 1871 possible

labels), and there is significant structure within the labels: many acoustic-phonetic

labels are highly correlated or confusable, and many share underlying phonological

features. Experiments are conducted measuring both conditional log-likelihood of

test data, and word error rates when the method is incorporated within a full speech

recognizer. In both settings the experiments show significant improvements for the

NCA-ECOC method over both baseline nearest neighbor methods (e.g., the NCA

method of (Goldberger et al. [2005])), as well as Gaussian mixture models (GMMs),

as conventionally used in speech recognition systems.

While the experiments are on speech recognition, the method should be relevant

to other domains which involve large multi-class problems with structured labels-

for example problems in natural language processing, or in computer vision (e.g., see

(Torralba et al. [June 2008]) for a recent use of neighborhood components analysis

(NCA) (Goldberger et al. [2005]) within an object-recognition task with a very large

number of object labels). Note also that the approach is relatively efficient: the model

is trained on around 11 million training examples.

5.2 Sources of Structure Between Acoustic-Phonetic

Labels

There are several possible sources of structure underlying the acoustic-phonetic label

set used in the academic lecture recognition task.

The labels are either internal phonetic labels, representing a single phonetic or



acoustic category (e.g. /ow/), or transition labels that represent the transition from

one of these categories to another (e.g. /g/->/ow/. It is clear then the transition

labels may be strongly related to the internal label for both its left and right hand

sides.

The phones modeled with the labels also are known to share certain underlying

phonological properties. These properties include manner of articulation, place of

articulation, voicing, rounding, front-back, etc. Multiple phones may share the same

value of these underlying features. For a more detailed discussion of the acoustic-

phonetic properties of these classes see (Stevens [2000]).

Another possible relation between the labels may arise because of frequent co-

occurrence of labels. This may happen if two labels occur next to each other in a

common word for instance. Frequent co-occurrence between two labels may lead to

more frequent confusions between the two or an expectation of seeing one when the

other occurs.

Furthermore, evidence has been presented in speech recognition literature to in-

dicate that phonetic boundaries and the identity of the phone itself can be difficult

to pinpoint in a speech stream. In the work of (Fosler-Lussier et al. [1999]), the

phenomenon of "feature spreading" and "cue-trading" for the phonetic realization of

segments are discussed. Feature spreading occurs when "segments are deleted entirely

in production, though their influence is often manifest in the phonetic properties of

the segmental neighbors" (Fosler-Lussier et al. [1999]). This phenomenon makes it

difficult to separate phonetic segments and indeed to correctly classify them. Cue-

trading occurs when "phonetic realizations often occur in place of canonical acous-

tic patterns... [where] there is no evidence for very predictable words (e.g. more of

that" (Fosler-Lussier et al. [1999])). Both these phenomenon are evidence against the

"beads-on-a-string" model of speech, or the assumption that each segment's acoustic

characteristics depend only on the phonetic identity of the segment. Clearly the iden-

tity of the surrounding phones can also have an impact on the acoustic properties of

a segment. Trying to model the underlying structure of the chosen label space can

help weaken the "beads-on-a-string" assumption.



5.3 Baseline Models

There are two baseline models that make use of neighborhood information to estimate

p(ylx) that will be considered. The first is the NCA model from Chapter 4, and the

second is a model based on the kNN classification algorithm. All the models described

in this chapter will be learned using a training set of samples {(x1, y1), ..., (XN, YN),

where x E RD is a feature vector representing some input, and y is a label drawn

from a set of possible labels Y.

5.3.1 NCA Model

The NCA model is optimized using the log-likelihood criterion from Equation 4.3.

This criterion optimizes the conditional log-likelihood of the training points:

N

log p(yiIxi)

Optimizing the log-likelihood rather than simple classification error is performed be-

cause the estimates will be applied within a larger system, in this case a speech recog-

nizer, where the probabilities will be propagated throughout the recognition model;

hence it is important for the model to provide well-calibrated class-conditional prob-

ability estimates.

The NCA model learns a projection matrix A of size d x D with d < D. This

provides a new representation a = Ax for the original samples x where a is now

a d dimensional real-valued vector. For the duration of this chapter, the projection

matrix A will be fixed and the representation a will be used to train the other models.

Therefore the training set will now be {(ai, y1), ... , (aN, YN)}. Now, the NCA method

for providing the class-conditional probability estimates for a test point a can be

described using the following equations:

-ej(a) = e-la--aI (5.1)



aj (a)52
pnca(y la) = N',- a3 (a (5.2)

_1N azj(a)

In NCA, for any test point a, the distribution a(jla) decreases rapidly as the

distance between a and a3 increases. Because the matrix A is trained using the log-

likelihood criterion, the resulting NCA estimates and the representation a are well-

calibrated in terms of using nearest neighbors to estimate p(yla) through Eq. 5.2. A

first baseline method for our problem is therefore to directly use the estimates defined

by Eq. 5.2.

We will, however, see that this baseline method performs poorly at providing

estimates of p(yla) within the speech recognition application. Importantly, the model

fails to exploit the underlying structure or correlations within the label space. For

example, consider a test point that has many neighbors with the phonetic label Is!.

This should be evidence that closely related phones, /sh/ for instance, should also

get a relatively high probability under the model, but the model is unable to capture

this effect.

5.3.2 kNN Model

A second baseline model for estimating p(yla) is based on the kNN algorithm. This

baseline uses the k nearest neighbors directly by estimating pk(yIa) to be the number

of k nearest neighbors from the training set with label y divided by the total number

of neighbors considered, k.

Pk(yja) # of k-nearest neighbors of a in training set with label y (53)
k

Here the choice of k is crucial. A small k will be very sensitive to noise and necessar-

ily lead to many classes receiving a probability of zero, which is undesirable for our

application. On the other hand, if k is too large, samples from far outside the neigh-

borhood of a will influence pk(yla), and the estimate will start to resemble the prior

distribution over the labels, p(y). A baseline method, pA that interpolates estimates



from several different values of k can mitigate these detrimental effects.

pan(y la; A) = AkPk(y la) (5.4)
kEIC

This distribution is an interpolation of many distributions calculated for different

values of k drawn from some pre-defined set 1C. The parameters Ak define the mixing

proportions for the individual distributions pk(yla), and together are denoted by A.

For all k, 0 < Ak < 1 and, EZkc Ak 1. Methods for estimating these parameters

are discussed in the experiments section of this chapter.

This baseline will be useful within the final speech recognition model, but again

suffers from the fact that it does not model the underlying structure of the label

space.

5.4 Error-Correcting Output Codes for Class Con-

ditional Probability Estimation

A new model, called NCA-ECOC is proposed that uses error correcting output codes

to explicitly represent and learn the underlying structure of the label space Y. Each

label y is represented by a prototype vector My E R' in this model. To measure

the similarity between class y and class z, the inner product of their corresponding

prototype vectors will be used.

similarity (y, Z) = (my, Mz) (5.5)

This similarity measure is symmetric since similarity(y, z) = similarity(z, y), though

it is possible to use an asymmetric measure. Note that other measures of similarity,

such as Euclidean distance, could also be used here.

The vectors My will be learned automatically using an NCA-style paradigm, ef-

fectively learning an embedding of the labels in RL. In this section first the structure

of the model is described, and then a method for training the parameters of the model



is presented (i.e., learning the prototype vectors M.).

5.4.1 NCA-ECOC Model

The NCA-ECOC model makes direct use of the learned output codes My when pro-

viding the class-conditional probability estimates p(yla). When considering a test

sample a, first weights ay(a) are assigned to points aj from the training set through

the NCA definition in Eq. 5.1. Let M be a matrix that contains all the prototype

vectors My as its rows. A vector H(a; M) can then be constructed that uses the

weights ay(a) and the true labels of the training samples to calculate the expected

value of the output code representing a.

H(a; M) = (5.6)
jY 1o a(a)

This vector is essentially a weighted average of the prototype vectors for each la-

bel, where the weights consist of the NCA estimate for the probability of the label.

Therefore the above equation is equivalent to the following.

H(a;M) = pnca(yja)My (5.7)
yEY

The representative output code, H(a; M), can be used to directly provide an es-

timate of p(yla). Using the definition of similarity from Equation 5.5, the new class

conditional probability estimate is the following:

pecoc(y Ia; M) = (M,,(a;M)) (5.8)

The similarity between the representative output code H(a; M) and the output code

for a label My can be either positive or negative, and exponentiating this value ensures

a positive probability distribution. The denominator of the above equation simply

normalizes the estimate over the contributions of all possible labels. This distribution

assigns most of the probability for a sample vector a to classes whose prototype vectors



have a large inner product with H(a; M). All labels receive a non-zero weight under

Pecoc(y la; M).

5.4.2 Properties of the NCA-ECOC Model

There are some interesting special cases of estimates that can arise from the NCA-

ECOC model.

" If a sample a had a representative output code H(a; M) that was equal to 0 for

all dimensions, the estimate of pecoc(yla) would be equivalent to g, a uniform

prior over the labels.

* It is possible for the NCA estimate of a label to be very high, say pnca(yla) = 1,

but have y not be the top candidate selected by the NCA-ECOC model. This

can happen if similarity(y, y) < similarity(y, z) for some other label z which

may occur if (MyI, My) < (My, MZ).

" Even if the estimate for a class under the NCA model is very small or equal to

0, the estimate under the NCA-ECOC model will be non-zero.

" If the matrix of output codes was the identity matrix, where all output codes

have the length L = |C|, the classification decisions of the NCA-ECOC and

NCA models would be the same, but the class-conditional estimates would be

different.

The probability estimate for Pecoc can be decomposed as follows:

e(My,H(a;M))
Pecoc(y a; M) =

CZzEYpnca(zja)(My,Mz)

eEze p.ca(za)(MY,M)

Z Y/EY HzGY C Pn,.(zja)(MY/1MZ)

Pecoc(y a; M) oc J7 e pca(zja)(My,Mz) (5.9)
zY
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This decomposition of the estimate makes it easier to see how the estimate varies

with the inner product between the output codes for two labels. It is clear from

Equation 5.9 that when computing Pecoc(Yla), the similarity between y and every

possible label z is used. There are three possible effects each label z can have on the

expression in Equation 5.9: (1) if (My, Mz) is 0, then there is no net effect, (2) if

(My, M2) is greater than 0, then the net effect is positive, and (3) if (MY, Mz) is less

than 0, then the net effect is negative. Intuitively, Pecoc(yla) is high if labels that are

similar to y receive a high probability under Pnca, and pecoc(yla) is low if labels that

are dissimilar to y receive a high probability under Pnca.

5.5 NCA-ECOC Optimization Criterion

As in NCA, the NCA-ECOC method uses a leave-one-out optimization criterion,

which is particularly convenient within nearest-neighbor approaches. The optimiza-

tion problem will be to maximize the conditional log-likelihood function.

N

fecoc(M) = 0log0pe)(yiIai; M) (5.10)

Here p coc (yiI a; M) is a leave-one-out estimate of the probability of label yi given the

input ai, assuming an ECOC matrix M. This criterion is related to the classification

performance of the training data and also discourages the assignment of very low

probability to the correct class, both of which are important for the acoustic modeling

application.

The leave-one-out estimates for the training set are given through the following

definitions. The weights ay(i) and the probabilities pij are defined as in NCA except

the projection matrix A is now fixed:

ay(i) = e-||aiaj if i - j and 0 otherwise (5.11)

ay (i)
pi = N (5.12)
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Again note that pij = 0 for all i, indicating that each point contributes nothing to

the labeling of itself. The representative output code is then defined as:

H(i; M) = pijMj (5.13)

This equation is equivalent to the following equation, which can help reduce the

complexity of the optimization.

(5.14)H(i; M) =pnca(yli)My
yEY

where

Pnca(YIZ) (5.15)

N

j=1,yg=y

The NCA-ECOC leave-one-out class conditional estimates for the training samples

are then:

(5.16)

The optimization of the training criterion can be performed using gradient meth-

ods similar to those used to train the NCA criterion.

5.6 Learning the NCA-ECOC Model Parameters

The gradient derived from the optimization criterion fecoc(M) is the following:

Ofecoc (M)
fM)= V(z) - V'(z)

N N

V(z) = [ Zp 3i (6z,yi My3 + yj,zMyi)]
i=1 j=1

N

V'(z) = : pecoc(YIi;I M)

i=VyEYT

(5.17)

e(My,H(i;M))

pecoc (Y li; M) = ,(M ,H (i;M))

(N

j=1E[pig 
(6z'yMy 

+ 6yjzmy,)])



Here 6 is the Kronecker delta; 6 a,b =1 if a = b and 6 a,b = 0 if a $ b. To improve the

computational efficiency, this gradient can be rewritten.

N

V(z) E[pnca (yIi)(6z, YMy + 6y,2My)

N N (5.18)
V'(z) = pecoc(Y'lI M) [pnca (Yli)(z,,M + 6,2MY)

y'EY (yCY

This gradient can be calculated most efficiently if it is possible to precompute and

store the values of Pnca(Yli) for all training samples i and classes y. In Figure 5-

1 an algorithm for computing the gradient is presented. The computation of the

gradient can be used for each iteration of an optimization algorithm such as conjugate

gradient ascent. Stochastic alternatives for optimizing fecoc(M) could also easily be

implemented. Note that this optimization is non-convex and it is possible to converge

to a local optimum. In the experiments described here the prototype vectors were

initialized randomly for each class by selecting each parameter of each vector randomly

from [-a, a] where a was selected to be o = 0.01.

5.6.1 Selecting the Length of the Prototype Vectors, L

For the acoustic modeling experiments on the academic lecture data set, the length

of the prototype vectors is selected experimentally. A set of approximately 115,000

held-out labeled samples (DevSetl) are used to select L. The average conditional

log-likelihood achieved by different values of L are listed in Table 5.1. The prototype

vectors are randomly initialized for each experiment as described above. The perfor-

mance of the method improves initially as the size of L increases, but the objective

levels off around L = 40. Performance deteriorates slightly as the value of L increases,

which may be due to over-fitting.



Inputs:
Training samples {(ai, yi), ... , (aN, YN)}. Length of output codes L. Initialization
parameter a-.

Initialization:

1. Initialize the output codes My for all y C Y by randomly selecting My from [-o-, o-]L

2. Precompute and store pnca(yli):

for i = 1 : N
for j = 1 : N

aj (i <- e-||ai-aj 1

ai (i) +- 0
ic(i) <-_ EN a

for y E Y

tnca W)

Algorithm for calculating gradient:

for all y E Y, df(y) <- [0 ]L

for i = 1: N

1. Calculate pecoc(yli):

H(i; M) +- Eyy Pnca(yli)My

tecoc (i) <- Eyey e(My,H(i;M))

for y E Y

pecoc(yl) tecoc()

2. Calculate each training sample's contribution to the gradient:

for y C y

df (y) <- df (y) + pna(y i)My

df (yi) <-- df (yi) + pnca(y i)My

for y' E Y
for y E Y

df (y) <- df (y) - Pecoc(Y'|i)Pna(Y Ii)My

df (y') <- df (y') - Pecoc(Y'l i)Pna(Yi)My

Output:
The gradient df(y) for each label y.

Figure 5-1: The algorithm for calculating the gradient of NCA-ECOC.



L average CLL
2 -4.388
10 -2.748
20 -2.580
30 -2.454
40 -2.432
50 -2.470
60 -2.481

Table 5.1: Average conditional log-likelihood achieved by NCA-ECOC model over
DevSetl for different values of L

5.7 Experiments on Log-Likelihood

In this section experiments on the academic lecture data described in Section 3.5.2

are conducted to determine the effectiveness of several methods in terms of their

ability to provide good class-conditional probability estimates. The 112 dimensional

data is initially projected down to 50 dimensions using the NCA projection learned

in Chapter 3. There are about 11.5 million training samples, and 1871 distinct class

labels. Additionally there are two sets of held out labeled samples, each containing

about 115,000 points called DevSetl and DevSet2.

In total six models are compared in terms of their conditional log-likelihood per-

formance on DevSet1.

NCA Model (pna)

The estimates pnca(yla) are calculated using the equations defined in Section 5.3.1.

kNN Model (p,,)

The baseline model, A, makes use of estimates pk(yla) as defined in section 5.3.2.

The set IC is a set of integers representing different values for k, the number of nearest

neighbors used to evaluate Pk. In these experiments,

K = {5, 10, 20, 30, 50, 100, 250, 500, 1000}.



Additionally, we assume c functions over the labels, P1(y), ., Pc(y). These can

be thought of as different prior functions over the labels to help smooth the nearest-

neighbor based estimate and ensure the pan(yla) is not equal to 0 for any label y.

The model is then defined as

C

pnn(yIa; A) = Akpk (y la) -S Apj (y) (5.19)
keK j=1

where Ak > 0, Vk C C, AO > 0 for j = 1, ... , c, and E k Ak A+ E 1 A' = 1. The A val-

ues are estimated using the EM algorithm on a validation set of examples (DevSet2).

Three functions over the labels are used in these experiments. Each of the three

distributions is based on the prior probabilities, p(y), of the 1871 acoustic phonetic

classes. The set of labels, Y, is divided into three disjoint categories.

" yM includes labels involving internal phonetic events (e.g. /ay/)

Sy2(2) includes labels involving the transition from one phonetic event to another

(e.g. /ow/->/ch/)

" Y() includes labels involving only non-phonetic events like noise and silence

A distribution p(l)(y) for the first category is then defined as follows. Similar

distributions are defined for the other two categories.

p(y), if y y(1)
0, otherwise

y() =)(5.20)

The prior function over the labels was partitioned in this way because each of the

three categories may behave quite differently. In particular, members of the second

category tend to have fewer examples and perhaps should receive a higher backoff

weight A. Indeed this effect is seen when tuning the A parameters, with category

2 receiving the highest weight, followed by category 1, and category 3 receiving the

lowest weight (probably because it contains few classes with many samples and hence

doesn't require much smoothing).



NCA-ECOC Model (pecoc)

The estimates pecoc(yja) are calculated using the equations defined in Section 5.4.1.

Combining NCA-ECOC and kNN (pmix)

The information in the p,, and Pecoc models are combined using interpolation into a

fourth model pmix. This model makes use of nearest neighbor information, the label

structure information provided by the NCA-ECOC model, as well as the distributions

over the labels described above. The model takes the following form:

C

pmix(ya;AX) =ZAp(y la) - ZApj(y) e Accocpecoc(y Ia; M) (5.21)
keIC j=1

The values of A here have similar constraints as before; where Ak > 0, Vk C IC, A' 0

for j = 1, ..., c, Accoc > 0, and EZkg Ak + 1 A, - Accoc = 1. The A values are

estimated using the EM algorithm on a validation set of examples (DevSet2).

GMM model (pgmm)

A GMM model, as conventionally used in speech recognition systems, is also used

to compute class-conditional probability estimates. The GMM is trained with the

SUMMIT system (Glass [2003]) and is the same as the baseline GMM model used

in Chapter 3. The GMM defines a generative model pgmm(aly); a conditional model

can be derived as follows:

Pgmm(y la) Pgnrn (5.22)
EY y pgmm(a y')-p(y')

The parameter r is a smoothing parameter and is selected experimentally to achieve

maximum conditional log-likelihood on DevSet2. This parameter is useful because

the GMM is trained for a maximum likelihood criterion and may be poorly calibrated

for calculating conditional log-likelihoods. In these experiments r was selected to be

0.5 which indicates that indeed a large amount of smoothing is necessary to achieve

good performance on conditional log-likelihood for the GMM model. p(y) refers to



the prior over the labels calculated directly from their relative proportions in the

training set.

Combining ECOC, GMM, and kNN (pful)

A final interpolated model combines nearest neighbor information, the label structure

information provided by the NCA-ECOC model, the GMM estimates based on the

global structure of each class, as well as the distributions over the labels described

above. The model is called pfull:

d
Pfull(Yja; A)=E kkya+ A y

p y Asp(y la) -E A,9p(y) e Accocpecoc(yIa; M) + Agmmpgmm(y Ia)
keIC j=1

(5.23)

The values of A are constrained as follows; Ak > 0, Vk E KC, A > 0 for j = 1,

Aecoc > OAgmm > 0, and EkgE Ak + E,9 AO + Aecoc + Agmm = 1. Again, the A values

are estimated using the EM algorithm on a validation set of examples (DevSet2).

5.7.1 Perplexity Results

Table 5.2 contains the average conditional log-likelihood achieved on a set of acoustic

samples (DevSetl) by each of the six proposed models. The perplexity achieved by

the models is also noted, where the perplexity is simply e-', where x is the average

CLL of the samples. These results show that pecoc clearly outperforms these two

baseline nearest neighbor models, p,, and pnca. The NCA model performs the worst,

probably because this model contains no smoothing. The interpolated model pmix

outperforms each of the previous three models and comes close to pgmm in perfor-

mance, with pgmm giving slightly improved results. Results for pfull are shown in

the final row in the table. This interpolated model gives a clear improvement over

both the GMM and NCA-ECOC models alone. Thus the NCA-ECOC model, com-

bined with additional nearest-neighbor information, can give a clear improvement

over state-of-the-art GMMs on this task.

It is interesting to note that all these models still perform quite poorly in terms



Model Average CLL on DevSet 1 Perplexity
Pnca -2.657 14.25
Pnn -2.535 12.61

Pecoc -2.432 11.38

Pmix -2.337 10.35

Pgmm -2.299 9.96

P__U11 -2.165 8.71

Table 5.2: Average conditional log-likelihood (CLL) Of Pnca, Pnn, Pecoc, prnix, pgmm and
pful on DevSetl. The corresponding perplexity values are indicated as well where
the perplexity is defined as e- given that x is the average CLL.

of conditional log-likelihood or perplexity. The perplexity for the best model is 8.71,

showing that there is a long way to go towards improving these estimates.

5.8 Recognition Experiments

In this section experiments are conducted with a model that integrates the NCA-

ECOC estimates within a full speech recognition system. The parameters A are

learned using both DevSetl and DevSet2 for pmix(yla). The conditional probability

estimates cannot be used directly, and instead an estimate for p(aly) needs to be

derived for use by the recognizer. This can be done by using an estimate for p(aly)

proportional to !ya. This is motivated by Bayes rule and has been used previouslyp(y)

by (Zavaliagkos et al. [1994]).

In these experiments the following two methods for calculating the acoustic model

are considered.

* Baseline Model: #1 log pgmm(aly)

" Augmented Model: 02 log (YPgmm(y~ a)pmix(y~a)

The baseline method is just a GMM model with the commonly used acoustic

model scaling parameter #1. The augmented model combines pgmm linearly with pmix

using parameter -y and the log of the combination is scaled by parameter #2. The

parameters #1, #2, y are selected using the downhill simplex algorithm by optimizing



Acoustic Model WER (Development Set) WER (Test Set)
Baseline Model 36.3 35.4

Augmented Model 35.2 34.5
Alternative Augmented Model 35.5 34.7

Table 5.3: WER of recognizer for different acoustic models on the development and
test set.

WER over the development set (Press et al. [2007]). The development set consists

of eight hours of data including six speakers and the test set consists of eight hours

of data including five speakers. The mixing parameters within pmix are determined

using the EM algorithm to optimize perplexity performance over held-out samples as

described in the previous section. Results for both methods on the development set

and test set are presented in Table 5.3.

The augmented model outperforms the baseline GMM model. This indicates that

the nearest neighbor information along with the ECOC embedding, can significantly

improve the acoustic model. Overall, an absolute reduction of 1.1% in WER on the

development set and 0.9% on the test set are achieved using the augmented acoustic

model. These results are significant with p < 0.001 using the sign test calculated at

the utterance level.

The following alternative augmented model was also tested:

e Alternative Augmented Model: #3 log pgmm(a y) +# 4log prnla)

This method combines the GMM model with Pmix in log-space using scaling pa-

rameters /3 and /4. These parameters are also optimized for WER over the develop-

ment set. This method outperforms the baseline model but performs slightly worse

than the augmented model. Results for recognition experiments using this model are

included in Table 5.3.



5.9 Discussion

5.9.1 Plot of a low-dimensional embedding

In order to get a sense of what is learned by the output codes of the NCA-ECOC

model a plot of 2-D output codes can be constructed. Figure 5-2 shows a plot of the

output codes learned when L = 2. The output codes are learned for 1871 classes,

but only 73 internal acoustic-phonetic classes are shown in the plot for clarity. In the

plot, classes of similar acoustic-phonetic category are shown in the same color and

shape.

We can see that items of similar acoustic categories are often grouped closely

together. For example, the vowels are close to each other in the bottom left quadrant,

while the stop-closures are grouped together in the top right, the affricates in the top

left, and the nasals in the bottom right. The fricatives are a little more spread out but

usually grouped close to another fricative that shares some underlying phonological

feature such as /sh/ and /zh/ which are both palatal and /f / and /th/ which are

both unvoiced.

Other properties of the data also emerge in the plot of the output codes. For

example /b/ is placed close to some of the vowels because /b/ often precedes these

vowels and can be difficult to recognize. Therefore a test sample whose neighborhood

contains examples of these vowels is seen as evidence supporting the classification of

the example as a /b/.

Additionally, the magnitude of the output code, or their distance from the origin,

varies. Often this is a sign of their relative frequencies within the training set. For

example the vectors for /sh/ and /zh/ are close together, but the magnitude of the

more infrequent phone /zh/ is smaller.

Figure 5-3 depicts the output codes for classes that represent transition or diphone

labels. Classes in which /z/ is the first phone is shown in the top plot and classes in

which /z/ is the second phone are displayed in the bottom plot. These plots show

that the transition labels can often cluster near one or another of the corresponding

internal phone labels. This effect may be stronger depending on the position of the
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the phone as either the first or second element. When /z/ is the first of the two

phones, the output codes are more tightly clustered than when /z/ is the second

phone. These types of effects can be captured using the learned output codes and

might be difficult to model using manually designed rules that indicate underlying

phonological properties of the labels.

The plots in Figure 5-3 also suggest a potential difficulty with the NCA-ECOC

model. Two labels a and b may each be similar to another label c. In some cases, it

may be good to take this as evidence that a and b are also similar. For other cases,

however a and b may in fact be dissimilar (e.g. /z/->/ey/ and /ey/->/z/ are similar

to /z/ but dissimilar to each other). If the length of the output codes L is low, labels

such as a and b are constrained to be similar, but as the length of L grows, such

constraints are relaxed. Selecting a good value for L is therefore important to the

performance of the method, as corroborated by the results in Table 5.1.

5.9.2 A Generalization of NCA-ECOC

The NCA-ECOC model presented in this chapter can be generalized to depend on

the similarity measure. Let

s(y, z) = similarity(y, z) (5.24)

As previously discussed the inner product of the output codes is only one way to

measure similarity between labels. In the extreme case, s(y, z) could be a parameter

freely chosen from the reals and it need not be true that s(y, z) = s(z, y). In this case

the training estimate of p(yli) would be

p(y = Pnca(Y'S(YY')(5.25)

E i) e V'ey pnca (y'li)s(z,y')

In the case of the academic lecture data this implies learning 3,500,641 free parameters

and the model would be very under-constrained. The NCA-ECOC model constrains

the values for s(y, z) through the use of the limited length output codes. If each s(y, z)



value was unconstrained, regularization over the matrix of similarity values could be

added to the training criterion to constrain the model. The generalized model also

happens to be convex to estimate, whereas the NCA-ECOC model is not.

5.9.3 Co-learning NCA and NCA-ECOC

The ECOC embedding of the label space could also be co-learned with an embedding

of the input vector space by extending the approach of NCA (Goldberger et al. [2005]).

It would simply require the re-introduction of the projection matrix A in the weights

a (x).

ay (x) = e-|Ax-Ax,| 2

The representative output codes H(x; M, A) and class-conditional probabilities pecoc(Y x)

would retain similar definitions.

The optimization criterion would now depend on both A and M. Co-learning

the two embeddings M and A could still be performed using gradient methods. The

gradient rule for optimizing the output codes would not change. To optimize A, there

is the following gradient rule.

0(AM)i( N N
f=(A, M) ( E ((My,, M Y)Uig) - ( Pecoc(Y'li) ((My, my')Ugy)))

i=1 j=1,j='i y'eGy j=1,j='i

N

U = -2Apij(xijx - pimXimXim)
m=1,mfi

(5.26)

To train the two embeddings, one could alternate optimizing the ECOC and NCA

parameters, or optimize both jointly.

5.10 Experiments with TIMIT

While the primary motivation for developing the NCA-ECOC method is to improve

class-conditional probability estimates, it would be interesting to see if the method



DEVELOPMENT SET:
L Error Rate
2 43.8
3 25.7
4 21.9
5 21.3
6 21.1
7 20.8
8 20.7
9 20.7
10 20.7

TEST SET:
L Error Rate
2 44.5
3 26.5
4 23.0
5 22.2
6 21.8
7 21.7
8 21.4
9 21.5
10 21.5

2 4 6 8 10 2 4 6 8 10
length of output codes, L length of output codes, L

Figure 5-4: TIMIT classification results on the development and test set using NCA
and NCA-ECOC models with multiple values of L, the length of the output codes.

can improve the error rate for classification tasks as well. The TIMIT task, like the

lecture recognition tasks, has phonetic labels that have some underlying structure

and therefore may be well-suited to the NCA-ECOC model. See Section 3.5.1 for a

description of the TIMIT phone classification task.

Multiple NCA-ECOC models are trained and compared with the NCA model

from Chapter 3 on this task. Figure 5-4 shows the performance of the NCA-ECOC

model for multiple values of L, the length of the learned output codes. Results are

shown for both the development and test sets. For both sets the NCA-ECOC model

improves dramatically initially as the length L increases, and beyond L = 6, the

performance of the model is better than the NCA model. The improvement is small

but significant-0.4% on the development set and 0.5% on the test set.

Figure 5-5 shows the two dimensional label embedding learned for TIMIT. As
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Figure 5-5: 2-D NCA-ECOC embedding of TIMIT labels.

with the lecture data many of the underlying phonetic properties of the labels are

discernible from their distribution.

5.11 Related Work

This work is related to previous work on error-correcting output codes for multi-class

problems. (Allwein et al. [2000], Crammer and Singer [2000], Dietterich and Bakiri

[1995], Klautau et al. [2003a]) describe error-correcting output codes; more recently



(Crammer and Singer [2000, 2002], Klautau et al. [2003a], Pujol et al. [2006]) have

described algorithms for learning ECOCs. Output codes are generally learned to

combine the results of multiple binary classifiers to solve a multi-class classification

problem. (Crammer and Singer [2000, 2002]) describe an algorithm for learning con-

tinuous valued codes (similar to the NCA-ECOC codes) for each class. This work

differs from the NCA-ECOC model however as the output code for a test sample

consists of the output of multiple classifiers, not a combination of the learned codes

for different classes. Also the NCA-ECOC model learns the output codes within a

nearest neighbor framework over the training samples.

In Section 5.2 phenomenon were described that make it difficult to segment the

speech stream into separate phones and indeed to correctly label those phones. In

work by (Livescu et al. [2003]) a method is presented for learning hidden feature

models for each phonetic segment whereby each acoustic feature depends not only on

the target phone, but directly on the corresponding acoustic feature of the surrounding

segments. The authors of (Ostendorf [1999]) suggest learning similar hidden feature

models for different subword units than the phoneme. Recent work (Frankel et al.

[2007]) present a model for speech recognition that depends on articulatory features

and not phonemes. Like many of these approaches, the NCA-ECOC model also

softens the phonetic labeling decision. Unlike these approaches, however, the NCA-

ECOC model makes use of information it learns about the structure of the label space

and does not try to model any underlying phonetic features.

There are other approaches that make use of class-conditional estimates from

multiple labels to leverage underlying structure in the acoustic label space. One such

approach is proposed in work by (Hermansky et al. [2000]). In their approach, class-

conditional estimates p(ylx) from a neural network are recycled as features within the

acoustic model when training a GMM. They found significant improvements using this

approach. In the fMPE approach proposed by (Povey et al. [2005]), class-conditional

estimates from Gaussian models are also included as features in the acoustic model.

This approach also leverages cross class structure to improve the acoustic model

estimates. Both these approaches differ significantly from the one presented in this



chapter because of their use of posterior estimates as features rather than using the

posterior estimates to construct output codes that are employed directly in scoring

the acoustic model.

5.12 Lessons

In this chapter, a model is proposed that makes use of error-correcting output codes to

represent the underlying structure of the label space. This model is trained within a

nearest neighbor framework similar to that used to train the NCA model. The NCA-

ECOC model is shown to provide improvements to the class-conditional probability

estimates for the academic lecture acoustic modeling task as well as improvements in

word-error rates. Future work might investigate different definitions of similarity for

the learned output codes and possible co training of the label space embedding with

the input space embedding.



Chapter 6

Locally Adaptive Neighborhood

Components Analysis (LA-NCA)

for Acoustic Modeling

Neighborhood components analysis (NCA) Goldberger et al. [2005] is a simple but

effective technique for improving the performance of nearest-neighbor classification

or for class-conditional probability estimation by learning a single low-dimensional

projection of the data. In this chapter a generalization of NCA called Locally Adaptive

Neighbourhood Components Analysis (LA-NCA) is introduced. The key idea in LA-

NCA is to allow each training point to have its own projection matrix or distance

metric. The primary motivation for the generalization from NCA to LA-NCA is

the acoustic modeling application, where the complexity of the data may warrant

locally adaptive models. Experiments on the academic lecture recognition task show

significant gains over both maximum-likelihood and MCE-trained Gaussian mixture

models in terms of word-error-rate.

6.1 Introduction

NCA learns a low-dimensional linear projection of training and test data points,

through optimization of a smooth approximation of the leave-one-out error of a
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Figure 6-1: Example of three-class problem. The arrows indicate the direction most
important for discrimination in their part of the space.

nearest-neighbour classifier on training examples. Equivalently, it can be viewed

as a method that learns a globally-constant distance metric or covariance structure

that is tailored towards nearest-neighbour classification or nearest-neighbour-based

class-conditional estimation. In Chapter 4 we saw that use of projection learned by

NCA can greatly improve the performance of nearest neighbor classifiers. However

one of the limitations of the model is that it makes use of the same distance metric

throughout the entire space, which is too simplistic for many datasets.

For many multi-class problems, in different parts of the feature space, different

distance metrics or directions may be useful for discrimination amongst the classes.

Consider the simple example in Figure 6-1. The three arrows indicate the directions

most important for discrimination amongst the classes in different parts of the space.

In other words, the distance measure should locally increase rapidly along the direc-

tion of the arrows. This ensures that points seek nearest neighbors along their side

of the various boundaries. More complex data sets, such as those used for acoustic

modeling, may benefit greatly by adapting the distance metric to each part of the

input feature space.

In this chapter a generalization of NCA, LA-NCA, is introduced that uses locally

adapted distance metrics to solve the multi-class classification and conditional esti-

mation problems. The key idea in LA-NCA is to allow each training point to have

its own projection matrix or distance metric. A leave-one-out training criterion that

is closely related to the training criterion used in NCA is optimized. A parameter

.. ........ ..... ........ ...... ..........



estimation method for the model based on stochastic gradient updates is used to

optimize the leave-one-out criterion.

The generalization from NCA to LA-NCA is relatively simple, but it leads to a

radical increase in the number of parameters in the model. This raises concerns about

computational efficiency and overfitting behavior. However with appropriate solutions

to these problems, LA-NCA gives significant improvements in performance over NCA

on the TIMIT phone classification task, and also gives impressive performance on the

academic lectures recognition task.

In a first set of experiments, on the TIMIT phonetic classification problem, LA-

NCA gives a 2.7% absolute reduction in error rate in comparison to NCA. A com-

parison to other methods on this data, including support vector machines (Clarkson

and Moreno [1999]) and large-margin Gaussian mixture models (GMMs) (Sha and

Saul [2007a]), shows competitive performance for LA-NCA, with only the hierachi-

cal large-margin GMMs of (Chang and Glass [2007]) giving higher accuracy on test

examples.

In a second set of experiments, LA-NCA is scaled to the academic lecture recogni-

tion problem, where LA-NCA is used to provide acoustic-model probability estimates

within the SUMMIT recognizer. This task is considerably larger than TIMIT, with

120 hours of training data drawn from multiple speakers. LA-NCA is compared with

baseline models of maximum-likelihood trained GMMs (ML-GMMs), and GMMs

trained using the minimum classification error (MCE) method developed by (McDer-

mott and Hazen [2004], McDermott et al. [2007]) (MCE-GMMs). The findings are as

follows:

9 When interpolated with an ML-GMM, LA-NCA gives a 2.5% absolute (7.1%

relative) reduction in word error rate (WER) over the ML-GMM (from 35.4%

WER to 32.9% WER).

e When interpolated with an MCE-GMM, LA-NCA gives a 2.7% absolute (8.2%

relative) reduction in WER over the MCE-GMM (from 33.1% WER to 30.4%

WER).



It is particularly encouraging that the gains from LA-NCA and MCE training

are additive; in combination, the two methods give a 5% absolute (14.1% relative)

reduction in WER over ML-GMMs.

After introducing the LA-NCA model and training algorithm in section 6.2, and

describing experiments in section 6.4, section 6.7 of this chapter discusses the rela-

tionship between LA-NCA and previous work. While LA-NCA is naturally derived

as a generalization of NCA, the model is closely related to other discriminative pa-

rameter estimation methods for speech recognition, such as MMI training of mixtures

of Gaussians (Valtchev et al. [1997], Woodland and Povey [2002]), or large-margin

GMMs (Sha and Saul [2007a]).

6.2 The LA-NCA Model

This section describes the form of the LA-NCA model to provide estimates of p(ylx) as

well as an algorithm for learning the parameters of the model. Issues of computational

efficiency and overtraining are also discussed.

6.2.1 Form of the Model

The goal of the LA-NCA model is to provide an estimate p(ylx) of the conditional

probability of a label y C Y given a test input x E RD, where Y is a finite set. The

method uses a training set {(xi, yi), ... , (XN, YN)} as did the NCA and NCA-ECOC

models. When scoring a test point x, each training sample j is assigned a weight

aj (x):

a3 (x) = e-IAjxj-Ajxl||2+0j (6.1)

This equation is similar to the definition from the NCA model (Equation 2.8), except

the projection matrices Aj now vary with each training point and a bias parameter

#j is also introduced. Each matrix Aj is of dimension d x D where d < D. The

value for aj(x) depends on the distance between x and xj under the Mahalanobis

distance defined by the matrix Aj and decays rapidly as that distance increases. The



bias parameter #3 for each point j can be any real-valued number, and can indicate

the relative importance of some training points over others. A large negative value

for #3 indicates that the point is not useful for classifying its neighbors (such as an

outlier point). A very large value for #3 can mean that point is very important for

classification of its neighbors and might be seen at the boundaries or in relatively

empty stretches of the input space where a point may have to look far to find its

neighbors.

The conditional estimate for p(ylx) for LA-NCA is then defined as follows using

the definition for aj(x) from Equation 6.1:

Z _=1 a (x)

The numerator involves a sum over all training examples with the target label y.

The denominator is a normalization constant calculated by summing over all training

examples. This is the same definition as that of NCA except the aj are calculated

using the new LA-NCA definition.

NCA is a special case of the LA-NCA model, where #3j 0 for all j, and the

Aj matrices are constrained to be equal (i.e., for all j, A = A for some matrix

A). Thus LA-NCA represents a radical increase in the number of parameters in the

model, by allowing each point x3 to have its own projection matrix Aj. Note that

the goal of LA-NCA is to give improved estimates of p(ylx). NCA can be interpreted

as a method for improving estimates of p(ylx), or improving the performance of a

NN classifier; it can also be interpreted as a method for learning an embedding of

points defined by A for visualization or other applications. In the latter case, a single

projection matrix A may be preferable.

To compute a NCA estimate for a test point O((N + D)d) parameters must be

stored whereas for LA-NCA O(NDd) parameters are stored, which is a dramatic

increase. This may make the LA-NCA model prohibitively memory intensive to

employ for tasks such as acoustic modeling in this naive form. Some methods for

reducing the size of the model will be investigated in this chapter, but future research



may further investigate other ways to reduce the number of parameters used in the

model.

6.2.2 The Training Criterion

As in NCA, it is natural to derive a leave-one-out criterion for training the LA-NCA

model. For each training point xi, the leave-one-out estimate Pianca(yli) is defined as

follows:

a()= e-|Aix3 - 3x*| 2 +3 if i # j, 0 otherwise; (6.3)

N

Panca ) = lopYjy (i) (6.4)

Note that t(i) o0 indicates that a point can not be used to label itself. For

convenience we will use E c i(At , i))N G 1 to denote the full set of parameters in

the model. Following Globerson and Roweis [2006], the training objective is the

conditional log-likelihood of the training examples,

N

f (0) 10 loPanca (Yi~ (6.5)

In the next section an algorithm based on stochastic gradient descent (SGD) is de-

scribed for maximizing this criterion. Given the very large number of parameters in

the model, overfitting is a clear concern; this issue is discussed in detail in section 6.2.4.

6.2.3 The Training Algorithm

This section describes an SGD algorithm for the optimization of the LA-NCA model.

Differentiating f (6) gives the following partial gradients with respect to the individual

projection matrices A2 and the bias parameters 02. Note that xij = xi - xj, and



6(a, b) = 1 if a = b, and 0 otherwise:

Of(E) N / zM6(Y'Y

OAZ - 2Azxizxz 1N - z, (6.6)

af(8) N Zz W z (i J yi)af~ E(OZj(i)) (6(Yz)- (6.7)

Figure 6-2 gives an SGD algorithm LeCun et al. [1998] based on these gradients.

The stochastic algorithm is chosen here because it can converge with relatively few

passes over the training data, which is important given the large size of the training

set and relatively slow running time of the gradient computation. The algorithm has

some important characteristics, as follows:

Sub-sampling The algorithm is defined for a slightly more general setting than that

given in Equations 6.1 and 6.2, where a subset of the training examples, S C {1 .. .N}

is used to define the model. The estimate for the conditional likelihood of a training

sample under this scheme is redefined as follows:

Planca(YIX) = E( (6.8)
EZ's a (x)

The training estimates p(yli) and optimization criterion f(0) also change similarly.

Ejs,yj=y aj (i
Planca(Y li) =((6.9)

N

f (6) = log p(yli)

1- ((6.10)

= log es'j a

Sub-sampling effectively ignores a3 (x) for any j that is not a member of S. This

means that a subset of the training set S serves as the the support points, or neigh-

bors used to label training and test samples. The original model is equivalent to



Inputs: Training samples (in randomized order), {(x 1 , yi), ... , (XN, YN)}.
Learning rate parameter, q.
Number of iterations L.
Subset of training examples S C {1, ..., N}.
Truncation level m (where 1 < m < IS).

Algorithm:
Initialize Aj and 3j for all j E S
t <- 1
for iter = 1 to L

for i 1 to N

1. a(i) <- exp{-||Ajxi - Ax1|2 +#13} for allj S

2. Set S' C S to be the top m members of S \ {i} with the highest
values of aj (i)

3. di <- Ej es, aj (i)

4. p(yjli) <- y EjEs'gm~,aji

5. for j E S'

xij -i - Xj

A3 j- Ay + (p /N 2AXijx T (2Ai)) (1 Y

B3 <- 03 + I +t/N di p(i)

6. t <- t + 1

Output: #3 and Aj for all j E S

Figure 6-2: The stochastic gradient algorithm used for parameter estimation of the
LA-NCA model.



setting S = {1... N}. Note that while only a subset of the points are used to la-

bel the test and training points, the entire training set is still used to estimate the

parameters associated with these support points. By sub-sampling the training set

for a reduced set of support points the number of parameters that must be learned

can be reduced as well. Intuitively sub-sampling should work well under conditions

where the structure of the input space around multiple points in a neighborhood can

be adequately modelled using a single support point with the associated projection

and bias parameter able to compensate for the loss of nearby points.

In the experiments various scenarios are described, including the case where S

{1. .. N}, and also the case where S is a randomly sampled subset of the full training

set. Defining S to be a subset of the training set increases the computational and

space efficiency of training and testing and can also potentially reduce overfitting

problems.

Truncation Motivated by computational concerns, a parameter m that governs the

level of truncation is introduced in the model. In step 2 of the algorithm only a subset

S' of the set S is retained, where |S'l = m. The set S' contains the m highest scoring

members of S (sorted by aj(i)) for the training example i under consideration. Steps

3, 4 and 5 of the algorithm then use the set S' to approximate S, reducing each

of these steps from O(IS|) time to 0(m) time. This approximation is justified if

the values for a3 (i) decrease relatively rapidly, which is often the case in practice.

Note that this approximation only gives a constant factor speed-up, as step 1 takes

O(ISlkd) time, and steps 3, 4, and 5 combined take O(IS'Ikd) time. Nevertheless,

this approximation leads to useful speed-ups in practice.

Gradient steps Each gradient step (step 5 of the algorithm) involves a pair of

training examples, i C {1... N}, and j E S'. The point j is the sample which is

being used to help determine the estimate of p(yli). Step 5 computes a "stochastic"

approximation to the true gradient in the usual manner by extracting from Equa-

tions 6.6 and 6.7 the terms for Aj and #3 pertaining to the ith example. Following



previous work that uses SGD (e.g., see LeCun et al. [1998]), the learning rate de-

cays slowly with the number of training examples t that have been visited over all

iterations, with q being a constant that gives the initial learning rate.

learning rate =
1 + t|N

Initialization In all the experiments described in this chapter, a random initial-

ization for the matrices A3 is used. Each of the (d x D) components of each matrix

Aj is drawn at random from the uniform distribution over [-, +], where a is se-

lected by validation on development data (in the experiments here o 0.05). The O/

parameters are initialized to 0.

Runtime Each inner loop of the algorithm (steps 1 to 6) takes O(ISlkd) time; it

follows that each pass over the training data takes O(NISlkd) time. As in previous

work on SGD methods, we have found that the model converges to a good solution

in a relatively small number of iterations.

The optimization of f(6) is non-convex and it is therefore possible to get stuck

in local optima during optimization. However, in practice good results were achieved

despite this problem and multiple random initializations of the parameters resulted

in similar performance on the TIMIT classification task.

6.2.4 Overfitting Issues

The proposed LA-NCA model has a very large number of parameters, and overfitting

is a concern. To give an extreme example, consider the case where S = {1 ... N}. It

is then possible to define a degenerate solution to the problem of maximizing f(8),
where p(y Ii) = 1 for all i = 1 ... N, but where the model will clearly not generalize to

new examples. Define a function g : {1... N} -+ {1... N} such that g(i) / i for all i,

the mapping is one-to-one (i.e., g(i) $ g(j) for i # j), and for all i, y, = yg(i). Thus the

function g assigns a "target" point g(i) to each point i, under the constraint that point

g(i) has the same label as i. It is always possible to find such a mapping, provided that



each label y E Y has at least two data points in the training set. Then choose Ag(i)

such that ||Ag(i)Xzg(i) - Ag(iyzill) 2 < ||Ag(i)xg(i) - Ag(i)xjl|2 for all j # i, j # g(i). In

other words, g(i) will only be used to label training point i and lend very little weight

to the labeling of all other training points. This is always possible if the training points

are in general position (i.e. no three points i, g(i) and j are on the same line). As we

scale the magnitude of Ag(i), then ||Ag(i)xg(i) - Ag(i)xil 2 - ||Ag(i)xg(i) - Ag(i)xj|| 2 4

-oc for all i and j # g(i), and it can be verified that p(yili) -+ 1 for all i.

Two main strategies are used to avoid overfitting. The first is to choose the set

S in the algorithm in Figure 6-2 to be a strict subset of the full training set. While

eliminating the degenerate solution discussed above, this method may still be prone

to overfitting. The second, and more important, strategy is to use early stopping

in the SGD algorithm (i.e., a small value for L), which was found to be effective in

our experiments. Typically just a few iterations over the training set with carefully

chosen values for o- and r/. Future work may consider methods that regularize or

constrain the projection matrices A, as an alternative to early stopping.

There are several possible ways to regularize the model. One way would be to try

to limit the magnitude of the parameters in the projection matrices. This would help

avoid the degenerate solution suggested above. (ai,,,, denotes the element of the rth

row and sth column of the matrix Ai.)

N d D

fregi (6) = f(6) - ki
i=1 r=1 s=1

Another possibility is to encourage each training point i to draw its estimate of

p(yli) from several points. In the degenerate case, each conditional probability is

effectively estimated by a single point. To encourage more neighbors to contribute

to the labeling of point i, the entropy of distribution over pij can be added to the

optimization criterion.

N N1

freg2(6) = f (0) + k2 pij log
i= j=1,jsz E



Zj ()

While both these approaches can help combat overfitting, in experiments on

TIMIT early stopping was found to be just as effective, without having to tune reg-

ularization parameters. Early stopping also implies less computation time training

the parameters. The strategy of sub-sampling also implies improved computational

efficiency which the regularized criteria do not. Therefore in the experiments reported

in this chapter, sub-sampling and early stopping are the main methods used to limit

overfitting effects.

6.3 An Illustration of the Approach

To illustrate the LA-NCA approach consider a simple example, where the task is

to discriminative between three classes from the TIMIT data set (see section 3.5.1),

Is!, /z/, and /sh/+/zh/. First an NCA model is trained with a projection down

to d = 2 dimensions to allow us to visualize the data. In a second experiment, the

2-dimensional representation produced by NCA is used to train LA-NCA on the same

data set with d = 2. Hence the LA-NCA model learns full rank 2 x 2 dimensional

projection matrices for the data. Note that training LA-NCA on the original data,

with d = 2, would perhaps be a preferable model, but it would not be possible to

view the result in 2 dimensions. Each training point xj has its own distance metric

defined by A3 under the LA-NCA model.

Figure 6-3 shows the data under the NCA and LA-NCA representations. The

distance metric for each point xj is represented by an ellipse where each point on

the ellipse is equidistant from xj. NCA leads to circular contours of this form since

in the projected space the distance metric at each point can be represented by the

identity matrix. The LA-NCA model leads to ellipses. Note also that outlier points

generally have smaller ellipses, indicating that they contribute less to the labelling

of the surrounding points. The classification performance of NCA on this small task
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Figure 6-3: Results for a three class problem from TIMIT using NCA (top figure)
and LA-NCA (bottom figure). Ellipses or circles centered on data points allow the
covariance structure Aj to be visualized for a random sample of the points (about
2%). The top plot shows the resulting decision boundary under NCA; the bottom
plot shows decision boundaries from both methods (LA-NCA in bold).
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is 72.4% while the LA-NCA model is able to improve performance to 74.1%. Figure

6-3 also indicates the decision boundaries determined by each model. The decision

boundaries are quite different, in particular the boundary between the green and blue

classes. The density of the blue points is less than the density of the green points.

The LA-NCA model compensates for this by learning distances metrics for the blue

points that imply larger ellipses or larger weights when labeling a test sample than

the green points. This is an example of how the freedom of each point to select its

own distance metric allows the model to better estimate decision boundaries.

6.4 Experiments

Experiments were conducted on two different acoustic modeling tasks. The first is

the TIMIT phone classification task, where the model is used strictly to perform

multiclass classification. The second is a large-vocabulary speech recognition task.

Here the model is used to provide conditional probability scores p(ylx) that are used

within the SUMMIT recognizer.

6.4.1 TIMIT Phone Classification

The TIMIT phone classification task (Lamel et al. [1986]) is a popular task for which

many results have been reported and is described in detail in Section 3.5.1. A sum-

mary of previously reported results on this task is given in Table 6.1. Note that the

approaches in this table use a variety of different feature representations as input to

the learning algorithms.

For our experiments we use the 61-dimensional segmental feature measurements

described in (Chang and Glass [2007], Halberstadt and Glass [1997]), referred to as

the "S4" features. The S4 feature set often gives improved performance on the TIMIT

task over other representations (e.g., for SVMs it results in a reduction in error from

22.4% to 19.5%; for large-margin GMMs it gives a reduction in error from 21.1% to

19.6%).

Table 6.2 gives results for several models using this representation. Model 1 is
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Table 6.1: Previously reported results on the TIMIT phonetic classification task.

Model Error Error
(Dev) (Test)

(1) NCA, w/knn classifier k=15 21.1 % 21.9%
(2) One projection per class, 13 = 0 19.7% 21.1%

Large Margin GMMs (Chang and Glass [2007]) 19.6%
(3) Multi-class SVM 17.6% 19.5%

(4) One projection per point, O3 = 0 17.4% 19.2%
(5) One projection per point 17.7% 19.0%

Hierarchical Large Margin GMMs (Chang and Glass [2007]) 18.1% 18.7%

Table 6.2: Results on the TIMIT phonetic classification task. The table shows systems
which all make use of the same S4 feature representation, from (Chang and Glass
[2007], Halberstadt and Glass [1997]).

an NCA model, combined with a k-nearest neighbour classifier; the value for k was

set to 15 by validation on the development data.

Model 2 is a version of LA-NCA where each class y E Y has its own projection

matrix Ay; thus this model has many fewer parameters than the full LA-NCA model.

Thirty-nine total projection matrices are learned with d = 50. This model tests

whether using the same distance metric or covariance structure for each point within

a class provides enough local adaption of the distance metrics to perform well on this

task.

Model 3 is a reimplementation (using LIBSVM Chang and Lin [2001]) of the

SVM approach described in (Clarkson and Moreno [1999]) using RBF kernels, where
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Model Error
(Test)

SVM (Clarkson and Moreno [1999]) 22.4%
Hidden CRF (Gunawardana et al. [2005]) 21.7%

Large Margin GMM (Sha and Saul [2007a]) 21.1%
Hierarchical GMM (Halberstadt and Glass [1997]) 21.0%

RLS2 (Rifkin et al. [2007]) 20.9%
SVM w/ hybrid features (Yousafzai et al. [2010]) 19.0%

Hierarchical LM GMMs (Chang and Glass [2007]) 18.7%
Hierarchical LM GMMs 16.7%

w/committee classifiers (Chang and Glass [2007])



the kernel width and the slack constant C are optimized over the development set.

Model 4 is a version of the LA-NCA model with 3j = 0 for all j (hence no

bias parameters are learned), whereas Model 5 is the full LA-NCA model with bias

parameters.

In training Models 2, 4, and 5, the set S = {1... N}, and the truncation level

m = 20, 000. The learning rate 1 was chosen by validation on the development set

and was equal to 0.1. The Aj matrices had dimension 20 x 61 for Models 4 and

5, and dimension 50 x 61 for Model 2. In these models truncation was also applied

during testing, with the truncation value m = 50. Hence for each test point x, only

the top 50 highest scoring training examples under the criterion a3 (x) were used to

contribute to the estimate of p(ylx) (we found this gave a slight improvement over

using the full training set). The value m = 50 was again chosen using validation on

the development set. Models 2, 4, and 5 were each trained using the SGD algorithm

where development data was used to find the optimal value for L. Typically the value

chosen for L was between five and ten.

Models 4 and 5 are competitive, with only hierarchical large-margin GMMs (Chang

and Glass [2007]) giving lower error rates on test data. These models perform sim-

ilarly to one another indicating that perhaps the bias parameters are not necessary

when using the entire set as support points for this task. Models 4 and 5 give an

almost 3% absolute improvement in error over the NCA baseline, demonstrating the

value of allowing the parameters Aj to vary with the training example j. The re-

striction in Model 2 to having a single projection matrix for each class significantly

degrades performance, with roughly 2% higher absolute error than Models 4 and 5,

and a small improvement over NCA.

The LA-NCA model makes some improvements over the multiclass SVM model,

however, the SVM model has many fewer parameters. This suggests that intelligent

sub-sampling of support points may allow the LA-NCA model to still perform well

while reducing the number of parameters. Also the SVM model more directly op-

timizes classification performance whereas the LA-NCA model is used primarily to

optimize conditional log-likelihood.
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Number of support points Error Rate (development set) Error Rate (test set)
1000 20.6 21.9

10000 19.3 20.3
50000 18.2 19.6

140225 (full training set) 17.7 19.0

Table 6.3: Performance of LA-NCA on TIMIT phonetic classification task for various
values of the number of training points subselected for learning distance metrics.

Experiments with Subselection

In Table 6.3, the performance of an LA-NCA classifier for multiple values of m, the

number of points sub-selected as support points is reported. The sub-selected points

are chosen randomly. As the number of points increases, the performance of the

classifier also improves on both the training and test sets. This suggests that further

increases in the size of the training set would allow the LA-NCA method to still

improve performance. It is also interesting that the system performs reasonably well,

even with only 1000 randomly selected support points.

6.4.2 Lecture Recognition

Results are now reported on a large-vocabulary speech recognition task. The experi-

ments on TIMIT were useful when developing the LA-NCA model, and are useful for

comparison to previous approaches, but the TIMIT data has limitations: it involves

phone classification rather than full recognition, and the size of the TIMIT data sets

is small in comparison to the data sets now typically used in full recognition exper-

iments. The lecture data used consists of 120 hours of training data (11.5 million

samples, 80 times more samples than TIMIT) from multiple speakers, and a vocabu-

lary size of over 37,000. The SUMMIT system (Glass [2003]) is used for recognition.

We compare to both maximum-likelihood and discriminatively-trained baselines. The

academic lecture task is described in detail in Section 3.5.2. While not quite at the

scale of some speech recognition tasks (e.g., (Kim et al. [2005]) describe experiments

using 1,350 hours of training data), the lecture recognition task is nevertheless of a

significant size and complexity.
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The SGD algorithm in Figure 6-2 is used to train the model. A subset S of size

IS ~ 140, 000 (1.2% of all training points) is selected. These points were chosen at

random, under the constraint that each of the 1871 classes should receive at least

10 points. The truncation size m was set to be 20, 000 for training and testing, and

L = 3 iterations of training were performed. The matrices Aj were of dimension

20 x 112. The relatively small number of support points and training iterations were

selected because of overfitting as well as computational efficiency concerns.

The following models are then designed for use in full recognition experiments

with the SUMMIT system. Results for the models are shown in Table 6.4.

ML-GMMs. The baseline maximum-likelihood (ML) Gaussian mixture model (GMM)

is a commonly-employed baseline in acoustic modeling. The acoustic vectors were first

projected using a 50-dimensional NCA projection (results from Chapter 4 show that

this method is competitive with HLDA (Kumar [1997]), a commonly used method for

dimensionality reduction in speech recognition), followed by a class-based PCA pro-

jection (this has been found to improve performance, especially when using diagonal

covariance GMMs).

MCE-GMMs. MCE is a discriminative training method for GMMs (McDermott

et al. [2007]). It has been shown in previous work to give significant improvements in

recognition performance over ML training on the lecture recognition task, and in other

settings. The MCE model we use was originally developed (McDermott and Hazen

[2004], McDermott et al. [2007]). The input representation used in the experiments

with MCE consisted of 50 dimensional vectors produced by class-based PCA and the

GMM model makes use of diagonal covariance matrices as well.

Model A: Interpolation of LA-NCA and ML-GMMs. The LA-NCA model

produces an estimate pianca(y x) for any phone label y for any acoustic input x. We

can also use a maximum-likelihood trained GMM to derive the following conditional
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Acoustic Model WER (Development Set) WER (Test Set)
Baseline ML-GMM 36.3 35.4

Model A: LA-NCA + ML-GMM 33.8 32.9
Baseline MCE-GMM 33.3 33.1

Model B: LA-NCA + MCE-GMM 31.2 30.4
Model C: LA-NCA 36.2 35.0

Table 6.4: WER of recognizer for different acoustic models on the lecture data.

estimate.

Pgmm (Y IX) - Pgmm(X y)p(y)

Zy/cy Pgmm(X1Y')P(Y')

As described in Chapter 5, the recognizer requires a generative model score p(x y),

as opposed to a discriminative model score of p(ylx). The following value is therefore

employed within the recognizer:

#1 log (1Pmm(YIX) + (1 - 7Y)Panca(YIX) (6.11)

The parameter 0 < 7i < 1 gives relative weights for the GMM and LA-NCA models

and is optimized for WER on the development set. 01 is the acoustic model scaling

parameter and is also tuned to optimize WER on the development set. The numerator

gives an interpolated estimate of p(ylx). Each p(y) is proportional to the number

of times y is seen in training. The term p(y) is motivated by Bayes rule (p(x) is

constant w.r.t. y, and can be ignored during decoding). This type of acoustic model

was previously applied in Chapter 4.

Model B: Interpolation of LA-NCA and MCE-HMMs. The MCE-trained

GMM model also produces estimates pmce (xIy) which can be interpolated with Pianca(Y X)

estimates in the same way as in Model A, replacing Pgmm with Pmce.

Pme(YlX) - Pmce (x Y)P(Y)

EYCP~(1 Y)Pc(Y

2 1og (72Pmce(YjX) + (1 - 72)Planca(Yjx)) (6.12)
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Y2 is restricted to be in [0, 1] and together with #2 is optimized as in Model A.

Model C: LA-NCA alone. In this model the LA-NCA model is used without

interpolation with a GMM model. The model scores used within the HMM are

defined as

3 1og planca(Y X) (6.13)

6.4.3 Results

The results in Table 6.4 show that Model A gives a 2.5% absolute decrease in WER

in comparison to the ML-GMM. This is a large improvement, slightly bigger than the

gains seen from MCE training. Moreover, Model B gives a 2.7% absolute gain over the

MCE trained GMM. MCE and LA-NCA combined give additive gains in performance,

resulting in an absolute gain of 5% in WER over the ML-GMM. Finally, Model C

performs only slightly better than the ML-GMM, showing that interpolation with

either an ML-GMM or an MCE-GMM is important for performance. This may be

because Model C is undersmoothed; future work may investigate this further.

Perplexity for the LA-NCA and ML-GMM models is also reported in Table 6.5.

(Noter that perplexity is defined as e- where K is the average of the log-likelihoods

logp(ylx) on held out samples). ML-GMM has a perplexity of 9.96; LA-NCA has a

perplexity of 8.89; an interpolation of the two models has a perplexity of 5.59. This is

a large improvement in the perplexity of the acoustic model, more dramatic than the

improvement in WER. More investigation is needed to determine exactly why such a

large drop in perplexity does not lead to a bigger improvement in WER. However, the

word-error rate depends on many other factors such as language and pronunciation

models. It is possible the WER would still be significant even with the very low

perplexity. NCA gives a perplexity value of 14.25 on this data, significantly worse

than both ML-GMM and LA-NCA.
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Model Average CLL on held-out data Perplexity
Pgmm -2.299 9.96
Planca -2.185 8.89

PA -1.721 5.59

Table 6.5: Average conditional log-likelihood (CLL) of pgm m (ML GMM), Planca, and

PA (Model A) on DevSet1. The corresponding perplexity values are indicated as well
where the perplexity is defined as e-' given that rK is the average CLL.

6.5 Combining LA-NCA and NCA-ECOC Models

This section describes experiments on the academic lecture task that combine LA-

NCA and NCA-ECOC approaches. The main idea is to replace the NCA estimate of

p(ylx) in Equation 5.7 with an LA-NCA estimate. The representative output code of

a test sample then becomes

Hecoc'(x; M, ) = planca(y x; E)My (6.14)

yEY

and the estimate of p(ylx) of the combined model is the following.

P (IX M,8) e(My,Hecoc(xM,E)))
pecoc'(yx;M,8) e(M,Hecoc'(x;M,)) (6.15)

The training estimates of p(yli) are similarly altered to use the LA-NCA estimates

and the model is trained as in Chapter 5. Also the model can still be trained efficiently

if all the estimates of Planca(yli) can be pre-computed and stored.

The estimates of Planca(yjx) are interpolated with LA-NCA estimates Pecoc'(YIX)

to create a model called Ptotal:

Ptotal(yjx) = Atotalplanca(yIX) + (1 - Atota1)Pecoc'(YlX) (6.16)

Atotal lies in [0, 1] and determines the mixing proportion between the the two esti-

mates. Atotal is selected to optimize perplexity on held-out samples and is set to 0.65.

The perplexity of the LA-NCA model is 8.89 and the perplexity achieved by the

interpolated model Ptotal is 8.40.
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Acoustic Model WER (Dev) WER (Test)
Model B: LA-NCA + MCE-GMM 31.2 30.4

Model C: LA-NCA 36.2 35.0
Model D: LA-NCA + NCA-ECOC + MCE-GMM 30.9 30.2

Model E: LA-NCA + NCA-ECOC 35.7 34.8

Table 6.6: WER of recognizer for different acoustic models on the lecture data.

Experiments are conducted on the academic lecture set using the interpolated

model ptotal and results are reported in Table 6.6. The results for Model B and Model

C are repeated here for comparison. Model D is an interpolated model combining

Ptotal with Pmce

4 log 'Y4Pmce(YIX) + (1 - 74)ptotal(Y x)) (6.17)

7y4 is restricted to be in [0, 1] and together with /34 is optimized as in Model A.

Model E makes use of only the Ptotal estimates and is not interpolated with a

GMM model. The scores of Model E are defined as follows:

35 log P ) (6.18)

The gains provided by combining the NCA-ECOC model with LA-NCA model

are modest, with 0.2 percent reduction in WER from Model B to Model D on the

test set. A 0.2 percent reduction in WER frm Model C to Model E on the test set

is also seen. These results suggest that NCA-ECOC model as it is defined provide

just a small benefit over the LA-NCA model. Future work may consider alternate

methods of combining the output code information with the LA-NCA model.

6.6 Experiments with MNIST Digits

While the primary motivation for the methods developed in this thesis have been

acoustic modeling, the method can also be applied to other tasks. Results are pre-

sented here on the MNIST handwritten digit classification task described in Sec-
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NCA, d = 2, k = 200 27.9
NCA, d 3, k = 200 17.1
NCA, d 5, k = 25 9.1
NCA, d =10, k = 5 4.3
NCA, d = 20,k = 8 2.6

LA-NCA, d = 2, k = 9 2.2
LA-NCA, d = 3, k = 6 2.2
LA-NCA, d = 5, k = 4 1.5

LA-NCA, d = 10, k = 5 1.8
LA-NCA, d = 20, k = 6 1.7

Table 6.7: Error rate of a NCA and LA-NCA classifiers on MNIST digits, trained with
60,000 samples and tested with 10,000 samples. The value d indicates the number of
rows in the learned projection matrices. The value k indicates the number of nearest
neighbors used to perform the classification and was selected on held-out data.

tion 4.4 using the LA-NCA model. In Table 6.7 the performance of various NCA and

LA-NCA models are listed for d dimensional projections and k nearest neighbors used

to perform the classifcation. The LA-NCA model using two dimensional projections

outperforms the NCA model using twenty dimensional projections. Additional gains

are seen as the value for d increases with the LA-NCA models but degrades after

d = 5. Each of the LA-NCA models does much better than the NCA model with

the same size projection. The two-dimensional LA-NCA model achieves 2.2% error

whereas as the two-dimensional NCA model achieves 27.7% error, dramatically high-

lighting the importance of modeling localized structure. Performance of the LA-NCA

models on held-out training samples for various values of k are depicted in Figure 6-4.

As with the NCA model, the accuracy can vary with the value of k. The value of k

used to classify test samples is chosen on these held-out samples.

In Figure 6-5, one randomly selected sample of each of the ten digits is depicted,

with the original image pictured in the last column. One randomly selected row of

the projection matrix Aj associated with each point is shown as an image, similar to

Figure 4-5. The random initialization is shown in the first column; the second column

shows the learned row for LA-NCA with d = 2; the third column shows the difference

between columns one and two. The classification performance of the initialized repre-
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Figure 6-4: Classification accuracy of LA-NCA model on held-out MNIST training
samples set for various values of d and k. The value d indicates the number of rows
in the learned projection matrices. The value k indicates the number of nearest
neighbors used to perform the classification.

sentation is 4.4%; the learned representation achieves 2.2% error; the original images

achieve 2.8% error using a kNN classifier. It is interesting that both the initial and

learned representations look fairly random. However the difference between the two

clearly show a structure similar to the original image with a preference to differentiate

with other possible confusable images.

6.7 Related Work

Now the relationship between LA-NCA and models other than NCA is discussed.

Discriminatively-trained GMMs are widely used for speech recognition (Cheng

et al. [2009], Kim et al. [2005], McDermott and Hazen [2004], McDermott et al.

[2007], Sha and Saul [2007a], Soltau et al. [2005], Valtchev et al. [1997], Woodland

and Povey [2000, 2002]). A discriminative GMM can be used to provide an estimate
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Original ImageInitialization

Figure 6-5: One randomly selected sample from each of the 10 MNIST classes, with
the original image pictured in the last column. One randomly selected row of the
projection matrix A1 associated with each point is shown. The random initialization
is shown in the first column; the second column shows the learned row for LA-NCA
with d = 2; the third column shows the difference between columns one and two.
The classification performance of the initialized representation is 4.4%; the learned
representation achieves 2.2% error; the original images achieve 2.8% error using a
kNN classifier.
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of p(y x) as follows:

p(y) E i Ay,mn(x; Ity,m, Ey,m)
p(y lx) = MI M (6.19)

E-p(y') Emy' A,mNj(x; pyr,m, Ey,,m)

where N(x; y, E) = exp{-j(x - p)TE-I(x - p)}/(27r)d/ 2 JE 1/2 is the multivariate

Gaussian. The parameters of the model are mixing weights Ay,m, means py,m, and

covariances Ey,m for the different mixture components. The p(y) terms are priors for

the different classes. Models which take a similar form to this, but where normaliza-

tion is performed at the sentence level, are referred to as MMIE models in the speech

recognition literature. A common method for optimizing log-likelihood under this

model is to use the extended Baum-Welch algorithm (Gopalakrishnan et al. [1991]).

The LA-NCA approach in Equations 6.1 and 6.2 has close connections to dis-

criminative GMMs. In particular, in the case where each projection matrix Aj is

of dimension D x D (i.e., no dimensionality reduction is performed), it is possible

to define a discriminative GMM which specifies the same distribution p(ylx) as LA-

NCA. The basic idea is to define the centers of the mixture components in the GMM

to be the training points xj for j = 1... N, and the associated covariance matrices

to be E- 1 = AfAi. A suitable choice for the p(y) parameters and mixing weights

can then be used to capture the effect of the #3 parameters. In this case LA-NCA

can be viewed as using a reparameterization of a discriminative GMM, where the

parameters Aj, #3 replace the parameters Ej and the mixing weights. The advantage

of this reparameterization is that it is relatively easy to derive gradient updates for

the LA-NCA model. ((Cheng et al. [2009]) discuss this reparameterization of discrim-

inative GMMs at length. They do not, however, explore the case involving A C RdxD

where d < D.) Under the model in Eq. 6.19, naive gradient updates do not retain

positive-definiteness constraints for E.

There are, however, several substantive differences between LA-NCA and MMI-

trained GMMs, in particular: the use of centers xj associated with training points; the

use of a leave-one-out training criterion; the use of a different parameterization that

allows gradient-based optimization; the use of projection matrices Aj of dimension
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(d x D) where d < D, in which case the correspondence to GMMs is not so clear; and

the use of a training objective that considers log-likelihood of training examples at the

frame level (MMI training generally aims to optimize the conditional log-likelihood

over entire training utterances).

Other criteria for training discriminative GMMs include large-margin methods

(Sha and Saul [2007a]), and perceptron-style training (Cheng et al. [2009]). The

TIMIT results in section 6.4 show that LA-NCA is competitive with large-margin

GMMs.

While LA-NCA is applied to class-conditional probability estimation, it is related

to other non-parametric statistical methods such as kernel regression and kernel den-

sity estimation. Kernel regression is a non-parametric method of estimation where

the output value for a test point is estimated using a weighted average of the training

samples (Benedetti [1977]). The weight on each training sample is determined using

a kernel function that typically decays rapidly as the distance between the training

and test sample increases. There has been recent work in kernel regression on learn-

ing both globally optimal kernel functions as well as locally adaptive functions such

as the one proposed here (Navot et al. [2006], Takeda et al. [2006], Weinberger and

Tesauro [2007]). Similar to kernel regression, kernel density estimation typically uses

each training point to provide an estimate of the density of a distribution at a test

point (Parzen [1961]). There have also been some attempts to train kernel density

estimators discriminatively (Szummer and Jaakkola [2001]), and on adaptive kernels

for these estimators (Brox et al. [2007], Sain [2002]). Our model differs from other

proposed models mostly in the relative freedom of the kernel parameters and the

way in which they are learned. There are other approaches to learning locally adap-

tive distance metrics such as (Domeniconi et al. [2005], Hastie and Tibshirani [1996])

which adapt the distance metric to each test point.
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6.8 Lessons

This chapter introduced a generalization of NCA, LA-NCA, that learns multiple

distance metrics that adapt to the local neighbourhood structure around each training

point. We have demonstrated that LA-NCA is effective for acoustic modeling in

speech recognition. There are several possible directions for future work. In terms

of improvements in computational efficiency,' training and decoding times under the

model depend linearly on the size of the set S; future work may consider methods

for selecting S that are more effective than random sampling methods, and that

may lead to sparser models. Parallelization methods may also be a natural way to

increase efficiency of the algorithm in Figure 6-2. In terms of model structure, a

better understanding of overfitting behavior, and of possible regularization of the Aj

parameters, is needed. Finally, while the experiments in this chapter have focused on

speech recognition, future work should consider other applications for LA-NCA.

iWe note that our model is not particularly inefficient when compared to state-of-the-art large-
scale discriminatively trained systems. In our experiments we chose the set S such that |S
140, 000; it is not uncommon to have over 100, 000 Gaussian mixture components in modern speech
recognition systems, e.g., see (Soltau et al. [2005]). Processing each training point in Figure 6-2
for the lecture-recognition task takes between 2x and 3x real time, which is comparable to other
discriminative training methods for large-vocabulary speech recognition.
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Chapter 7

Conclusion

7.1 Summary

This thesis was inspired by the neighborhood components analysis method (Gold-

berger et al. [2005]). This simple non-parametric method allowed us to do two things:

(1) learn low-dimensional linear projections, and (2) provide nearest-neighbor based

class-conditional probability estimates. Acoustic modeling has been traditionally

approached as parametric estimation problem; but NCA provided an elegant non-

parametric paradigm for developing nearest-neighbor based techniques for acoustic

modeling.

Three problems related to acoustic modeling were tackled using NCA-based ap-

proaches. The first problem addressed was performing dimensionality reduction on

acoustic vectors. NCA learns a low-dimensional linear projection of the feature space

to improve the performance of a nearest neighbor classifier. The method avoids mak-

ing parametric assumptions about the data and therefore can work well when the

data is complex or multi-modal, which may be the case with acoustic data. NCA was

shown to perform competitively with HLDA (Kumar [1997]) on the academic lecture

task. The method also trained well with relatively few training samples suggesting

that it could be applied successfully to problems such as speaker adaptation.

Second, we investigated the problem of modeling the underlying structure of the

acoustic-phonetic label space in order to improve acoustic model estimates. The NCA-
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ECOC model was developed to learn an output code to represent each acoustic-

phonetic label. The similarity or dissimilarity between the output codes of each label

could reveal structure in the label space. These output codes were used to improve

the class-conditional probability estimates which are employed along with nearest

neighbor information in the acoustic model. The end result was a relative reduction

in word-error-rate on the academic lecture recognition task of 2.5%.

Third, the LA-NCA model was proposed to locally adapt the distance metric to

different parts of the feature space. This model massively increases the number of

parameters by learning a separate distance metric for each training point. Overfitting

was controlled by subselecting support points and early stopping. The LA-NCA model

delivered a 7-8% relative improvement in WER on the academic lecture recognition

task.

7.2 Future Work

Future work could focus on improving the efficiency and performance of the models

presented in this thesis.

Fast look-up of nearest neighbors could improve both training and test efficiency of

the models and a number of algorithms have been published to this end (Andoni and

Indyk [2006, 2008], Arya et al. [2002, 1998], Indyk and Motwani [1998], Kushilevitz

et al. [1998], Mount [2006]). Many algorithms address the problem of quickly finding

nearest neighbors under a single distance metric, though it is unclear how to perform

fast search when using multiple distance metrics as in the LA-NCA model. Designing

algorithms for finding nearest neighbors quickly under a locally adaptive distance

metric could be an interesting direction for future research.

For the NCA-ECOC model, other definitions of similarity could be investigated.

Additionally co-training of the distance metric and label space embedding could also

be performed. Future work might also consider how the relationship between labels

varies in different parts of the space.

For the LA-NCA model, methods for intelligent sub-selection of support points
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could allow the model to work very well with many fewer parameters. Boosting

approaches might be considered for the sub-selection of support points. It may also be

possible to reduce the complexity of the model by constraining the distance metrics

in some way. For instance, nearby points could somehow be constrained to have

similar distance metrics. Regularization of the LA-NCA optimization criterion may

also provide benefits. If efficiency of the method could be improved and overfitting

concerns could be mitigated, the performance of the LA-NCA method could be even

better.

Finally, evaluating these models on other applications such as some that arise in

computer vision as well as on larger speech recognition tasks could be interesting

avenues for future work. Using these models to perform speaker adaptation is also an

important step towards incorporating these models into state-of-the-art recognizers.
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