
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Books/Book Chapters School of Computer Sciences

2007-08-29

Proceedings of the 18th Irish Conference on Artificial Intelligence Proceedings of the 18th Irish Conference on Artificial Intelligence

and Cognitive Science and Cognitive Science

Sarah Jane Delany
Technological University Dublin, sarahjane.delany@tudublin.ie

Michael Madden
NUI Galway

Follow this and additional works at: https://arrow.tudublin.ie/scschcombk

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Delany, S.J. & M. Madden, (2007). Proceedings of the 18th Irish Conference on Artificial Intelligence and
Cognitive Science, Dublin 29-31 August. doi:10.21427/wmr8-km59

This Book is brought to you for free and open access by
the School of Computer Sciences at ARROW@TU Dublin.
It has been accepted for inclusion in Books/Book
Chapters by an authorized administrator of ARROW@TU
Dublin. For more information, please contact
arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 3.0 License

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/scschcombk
https://arrow.tudublin.ie/scschcom
https://arrow.tudublin.ie/scschcombk?utm_source=arrow.tudublin.ie%2Fscschcombk%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=arrow.tudublin.ie%2Fscschcombk%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:%20arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Proceedings of the 18th Irish Conference on
Artificial Intelligence and Cognitive Science

Sarah Jane Delany and Michael Madden (eds)

S. J. Delany and M. Madden (Eds.)

AICS 2007

Proceedings of the 18th Irish Conference on Artificial Intelligence and
Cognitive Science

29th to 31st August 2007

School of Computing,
Dublin Institute of Technology,
Kevin Street,
Dublin 8,
Ireland.

Printed by:

Cahill Printers Ltd,
IDA Business & Technology Park,
Clonshaugh,
Dublin 17

Preface

These proceedings contain the papers that were accepted for publication at
AICS-2007, the 18th Annual Conference on Artificial Intelligence and
Cognitive Science, which was held in the Dublin Institute of Technology;
Dublin, Ireland; on the 29th to the 31st August 2007. AICS is the annual
conference of the Artificial Intelligence Association of Ireland (AIAI). Since
its inception in 1988, it has provided a forum for the exchange of ideas and
the presentation of results relating to work conducted in Ireland and
worldwide.

The conference spans both basic and applied research in the areas of
Artificial Intelligence and Cognitive Science, broadly construed. This year’s
papers covered topics including constraint satisfaction, artificial life,
intelligent user interfaces, information retrieval, machine learning, and
multi-agent systems. All submissions were reviewed by three anonymous
reviewers; 45% were accepted for oral presentation, 24% were accepted for
poster presentation and the remaining 31% were not accepted.

This year's conference also featured thought-provoking and interesting
keynote talks by two distinguished AI researchers. Dr Mehran Sahami, a
senior research scientist from Google, spoke about trends in making use of
large Web datasets and the potential they offer for further advancing
research and development in Artificial Intelligence. Dr Eamonn Keogh, a
professor in the University of California, Riverside, spoke about the lack of
reproducibility of results in data mining and machine learning. He argued
that this is crippling research progress and allowing a large number of false
research findings go unchallenged and enter the popular consciousness as
true.

We thank all authors for submitting their work to AICS, and the PC
members and additional reviewers who all provided thoughtful analyses and
critiques of the submissions. We are also grateful for the help and support
we received from DIT’s School of Computing, in particular the
administrative support from Denise Murray and technical support from
Michael Gleeson. We also appreciate the advice received from Derek
Bridge, Chair of AIAI, and other members of AIAI who have organised this
conference previously.

We sincerely thank this year’s sponsors of AICS: Dublin Institute of
Technology, School of Computing; Enterprise Ireland, ARC Informatics
Commercialisation Team; and Google. Their financial support has enabled
the participation of our keynote speakers, the provision of a substantial prize
for best paper, and a convivial social programme, while ensuring that
participation remained affordable for attendees.

Finally, we are grateful to all of the researchers who support AICS each year
by their attendance at the conference, and we hope that the papers in these
proceedings will be a useful resource to AI and Cognitive Science
researchers internationally.

Michael Madden & Sarah Jane Delany
AICS-2007 Programme Chairs

August 2007.

Organising Committee

Conference Chairs
Sarah Jane Delany Dublin Institute of Technology
Michael Madden NUI Galway

Programme Committee
David Bell Queen's University, Belfast
Michaela Black University of Ulster, Coleraine
Derek Bridge University College Cork
Ken Brown University College Cork
Arthur Cater University College Dublin
Fintan Costello University College Dublin
Brian Crean Galway-Mayo Institute of Technology
Norman Creaney University of Ulster, Coleraine
Fred Cummins University College Dublin
Pádraig Cunningham University College Dublin
John Dunnion University College Dublin
Malachy Eaton University of Limerick
Tim Fernando Trinity College Dublin
Josephine Griffith NUI Galway
Ray Hickey University of Ulster, Coleraine
Mark Humphrys Dublin City University
John Kelleher Dublin Institute of Technology
Weiru Liu Queen's University Belfast
Brian Mac Namee, Dublin Institute of Technology
Lorraine McGinty University College Dublin
Paul Mc Kevitt University of Ulster, Magee
David McSherry University of Ulster, Coleraine
Diarmuid O'Donoghue NUI Maynooth
Colm O'Riordan NUI Galway
Barry O'Sullivan University College Cork
Geároid O'Neill University of Limerick
Ronan Reilly NUI Maynooth
Stephen Sheridan Blanchardstown Institute of Technology
Barry Smyth University College Dublin
Humphrey Sorenson University College Cork
Ray Walshe Dublin City University

Additional Reviewers
Dara Curran University College Cork
Conor Nugent University College Cork

Acknowledgements

The programme committee of AICS07 would like to gratefully acknowledge
the sponsors of this year’s conference:

School of Computing, Dublin Institute of Technology;

ARC Informatics Commercialisation Team, Enterprise Ireland;

Google.

Table of Contents

Oral Presentations

An Evaluation of One-Class Classification Techniques for Speaker
Verification ... 1

Anthony Brew, Marco Grimaldi and Pádraig Cunningham

Using Relaxations to Improve Search in Distributed Constraint
Optimisation ... 11

David A. Burke and Kenneth N. Brown

Automated Constraint Reformulation for Explanation................................... 21
Hadrien Cambazard and Barry O'Sullivan

Experiments in Mobile Content Enrichment .. 31
Karen Church and Barry Smyth

An Axiomatic Comparison of Learned Term-weighting Schemes in
Information Retrieval.. 41

Ronan Cummins and Colm O’Riordan

Evolutionary Simulations of Behaviours in a Common-Pool Resource
Problem... 51

Dara Curran, Colm O'Riordan and Humphrey Sorensen

Evolving Team Behaviours in Environments of Varying Difficulty 61
Darren Doherty and Colm O’Riordan

Using User Model Information to support Collaborative Filtering
Recommendations... 71

Josephine Griffith, Colm O’Riordan and Humphrey Sorensen

Evaluating Communication Strategies in a Multi Agent Information
Retrieval System... 81

David Lillis, Rem Collier, Fergus Toolan and John Dunnion

One-Class Support Vector Machine Calibration Using Particle Swarm
Optimisation ... 91

Yang Liu and Michael G. Madden

Increasing the Coverage of Decision Trees through Mixed-Initiative
Interaction ... 101

David McSherry

Evolving a Hybrid Deceptive Strategy for the Repeated English Auction... 111
Pilib Ó Broin and Colm O’Riordan

Analogy and Sense Extension,.. 121
Dervla O'Keeffe and Fintan Costello

Evaluating the Robustness of Collaborative Web Search............................. 131
Michael P. O'Mahony and Barry Smyth

Finding the Most Satisfiable Maximal Relaxation in Over-Constrained
Problems ... 141

Alexandre Papadopoulos and Barry O'Sullivan

Using Support Vector Machines and Acoustic Signal Processing for
Degradation Analysis of Rotating Machinery .. 151

Patricia Scanlon and Susan Bergin

Constructive vs Perturbative Local Search for General Integer Linear
Programming .. 161

Stephania Verachi and Steven Prestwich

An Evaluation of Dimension Reduction Techniques for One-Class
Classification .. 171

Santiago D Villalba and Pádraig Cunningham

Computational Modelling of Switching Behaviour in Repeated Gambles... 181
Jiaying Zhao and Fintan Costello

Poster Presentations

Recurrent Progressive Deepening with Pruning ... 191

Arthur Cater

Reasoning about Durative Action... 201
Karl Devooght and Marc Guyomard

A Combinational Creativity Approach to Composing Traditional Irish
Reels ... 211

Nan Zheng and Bryan Duggan

Using Computer Vision to Create a 3D Representation of a Snooker Table
for Televised Competition Broadcasting .. 220

Hao Guo and Brian Mac Namee

A Kelly Criterion Approach to Dynamic Algorithm Portfolio Balancing.... 230
Alan Holland

The Evolution of a Kernel-Based Distance Metric for k-NN Regression 240
Tom Howley and Michael G. Madden

A Study of Syntactic Information Retrieval ... 250
Chang Liu, Hui Wang, Sally McClean, Jun Liu and Shengli Wu

Rule-Based Khmer Part-of-Speech Tagging with Generalized Unknown
Word Handling ... 260

Chenda Nou and Wataru Kameyama

Sticking with a Winning Team: Better Neighbour Selection for
Conversational Collaborative Recommendation .. 270

Rachael Rafter, Lorcan Coyle, Paddy Nixon and Barry Smyth

An Evaluation of One-Class Classification
Techniques for Speaker Verification

Anthony Brew, Marco Grimaldi, and Pádraig Cunningham

School of Computer Science and Informatics, University College Dublin
{Anthony.Brew,Marco.Grimaldi,Padraig.Cunningham}@ucd.ie

Abstract. Speaker verification is a challenging problem in speaker recog-
nition where the objective is to determine whether a segment of speech
in fact comes from a specific individual. In supervised machine learning
terms this is a challenging problem as, while examples belonging to the
target class are easy to gather, the set of counter-examples is completely
open. In this paper we cast this as a one-class classification problem and
evaluate a variety of state-of-the-art one-class classification techniques
on a benchmark speech recognition dataset. We show that of the one-
class classification techniques, Gaussian Mixture Models shows the best
performance on this task.

1 Introduction

In speaker recognition research two separate problem categories are identified;
speaker identification and speaker verification [1]. In machine learning, speaker
identification is an n-class supervised learning problem where the query sample
is matched to one of n classes in the training data. Speaker verification might be
considered a binary classification problem in that the objective is to determine
whether or not the query is from the individual whose identity is claimed for the
query. Given that binary classification is normally easier than multi-class classi-
fication, speaker verification would appear to be an easier problem to solve than
speaker identification. However, real-world examples of the speaker verification
problem, as arising for instance in security applications, are very challenging
because of their open nature. If the utterances of an individual are the exam-
ples of the class to be recognised then the non-class examples cover everything
else. For this reason it is worth analysing the merit of casting this as a one-class
classification problem rather than a binary classification problem.

One-class classifiers (OCCs) have emerged as a set of techniques for situations
where labeled data exists for only one of the classes in a two-class problem. For
instance, in industrial inspection tasks, abundant data may only exist describing
the process operating correctly. Training data describing the myriad of ways
the system might operate incorrectly are difficult or impossible to gather. The
philosophy behind the OCC approach is to develop a classifier that characterises
the target class, and thus can distinguish it from all counter-examples.

A related problem arises where negative examples exist, but their distribu-
tion cannot be characterised. For example, it is easy to provide characteristic

1

examples of the writings of Shakespeare but impossible to provide examples of
the counter-class (material not by Shakespeare). While such problems are also
appropriate for the OCC approach, the motivation is slightly different – counter
examples are in fact available but it is difficult to construct a set of counter
examples with good coverage of the universe of possible counter examples.

In speaker verification the problem is generally cast as a binary problem, un-
fortunately the imposter is impossible to accurately model. Although we recog-
nise the fact that use of an impostor model will dramatically improve perfor-
mance, we believe the area merits a base evaluation, where OCCs are trained
solely on target data so that direct comparisons can be fairly made. The evalua-
tion presented here is carried out on the CHAINS corpus introduced by Cummins
et al. [2].

The paper proceeds with an overview of the speaker recognition research area
in section 2 and a brief review of the relevant OCC techniques in section 3. The
main results of the evaluation are presented in section 4 and the paper concludes
with a summary and some suggestions for future work in section 5.

2 Speaker Verification

Speaker recognition systems aim to extract, characterize and recognize the in-
formation enclosed in the speech signal conveying the identity of a speaker.
The general area of speaker recognition includes two fundamental tasks: speaker
identification and speaker verification [3, 4]. Speaker identification is the task of
assigning an unknown voice to one of the speakers known by the system: it is
assumed that the voice must come from a fixed set of speakers. Thus, the system
must solve a n-class classification problem and the task is often referred to as
closed-set identification.

Feature Extraction Outcome

Imposter Model

Hypothesis Test

Speaker Model

Fig. 1. Speaker Verification System.

On the other hand, speaker
verification refers to the case
of open-set identification: it
is generally assumed that the
unknown voice may come
from an impostor, not all the
speakers accessing the system
are known. In this case, the
standard approach is based on
a likelihood ratio test to dis-
tinguish between the two hy-
potheses: the test speech comes from the claimed speaker or from an impostor.
Furthermore, depending on the specific application, speaker verification systems
can work in a text-dependent or text-independent setup. In text-dependent ap-
plications the verification system has prior knowledge of the text to be spoken
(e.g. a pass-phrase). In a text-independent application, no prior knowledge of
the text to be spoken is provided to the system.

2

Generally, speaker verification systems are composed of three main compo-
nents as shown in Figure 1: a front-end responsible for signal processing and
feature extraction, a model for each speaker allowed to access the system and
a model for impostor detection. The big advantage of the OCC approach to
speaker verification is that there is no need for an impostor model as the classi-
fier is trained on the speaker model only. In the next two sections we introduce
each individual component of the verification system.

2.1 Front-end Processing and Feature Extraction

As a first step, the front-end module of the verification system generally performs
speech activity detection to remove the non-speech portion of the signal. Next,
features embodying information on the speaker identity are extracted from the
speech signal. Finally, the front-end implements some form of channel compen-
sation in order to remove those spectral characteristics that are dependent on
the acquisition channel (e.g microphone) and do not reflect the speaker identity.

In most speaker verification and identification systems, some form of spectral-
based parametrization is used to encode the speech in machine readable form.
Typically short-term analysis (about 20 ms) is used to compute a sequence of
magnitude spectra. Most commonly, the spectra obtained are then converted
into cepstral coefficients and the frequency scale warped into the Mel scale [3].

In this work, conventional Mel Frequency Cepstral Coefficients (MFCCs)
feature vectors are employed for speech parametrization. 25 MFCCs are used
for speech parametrization, extracted using a Hamming window of about 20 ms.
The zeroth cepstral coefficients (the DC level of the log-spectral energies) are
not used in the feature vector.

2.2 Speaker Modeling

The feature vectors extracted from the training speech material are used to cre-
ate a set of speaker models, to verify if the test speech sample belongs to one
of the speakers in the pool. The modeling of a speaker may be implemented
according to various approaches, i.e. k nearest neighbour (k-NN), neural net-
works, hidden Markov models (HMMs) and support vector machines (SVMs).
Generally, the selection of the model adopted is largely dependent on the type of
speech used, the expected performance and the computational and storage cost
[4]. From published results (e.g. [1]), HMM-based systems generally produce
the best performance and in the case of text-independent applications single
state HMMs – also known as Gaussian mixture models (GMMs) – are the most
commonly used. Neural networks have been largely tested in this context also,
however some of their shortcomings (such as the fact that the optimal structure
has to be selected by trial-and-error procedures) have been judged crucial in
the area of speaker verification [3, 4]. SVMs, on the other hand, have been the
subject of recent studies [3] aimed at adapting this extremely powerful technique
to the problem of speaker verification.

3

2.3 Impostor Modeling

Two main approaches are used to obtain the impostor model used in the likeli-
hood ratio test implemented in speaker verification systems. The first approach
– known as likelihood sets, cohort or background speakers [3, 4] – uses a set of
other speakers to cover the space of alternative hypotheses. The impostor score is
usually computed as a function (e.g. max, average) of the match scores obtained
from the alternative models. It is generally recognized that this approach re-
quires a speaker-specific background speaker set to obtain the best performance
[3]. The second approach to impostor modeling uses a single speaker-independent
model trained on speech from a large number of speakers. This approach is usu-
ally referred to as general model, world model or universal background model
(UBM) [3]. The main advantage of the UBM approach is that a single speaker-
independent model is trained and then used for all the speakers in the pool. This
approach has become the predominant approach used in speaker verification sys-
tems. Generally, these two approaches can be applied to any speaker modeling
technique [4].

3 One-Class Classification (OCC)

When employing binary classification we attempt to train a known speaker
against anything that is ‘not’ from the speaker. This is an unfortunate scenario,
as to sample everything that is ‘not’ is an impossible task. We are training with
a class that is statistically well-sampled versus a class that is not. This statistical
imbalance in the training set may lead to the creation of a system that does not
generalise well when run against non-training data.

The area of OCC is well adapted to such problems; one builds a model that
creates a boundary around the well-sampled target distribution that rejects all
but a small percentage f of target examples and hence hopes to be able to
identify (100− f)% of the target while rejecting as many of the outlier class as
possible. Most OCCs will produce a score for a given example and if it lies above
a given threshold it is classified as a member of the target class.

The data we have is a sequence of sets of Mel cepstral coefficients where each
set represents a time slice of 20ms of speech and there is an overlap between time
slices of 10ms. Each individual slice is not particularly informative to predict the
class of the data. It is assumed that groups of slices are taken from the same
single source speaker. An approach that is used in the n-class problem is to take
many slices accounting for a given period of speech and aggregate the scores to
strengthen the evidence that this window over a sequence of slices comes from a
given source [1]. Here we propose a similar strategy, which is explained in section
3.2.

3.1 Selection of Classifiers Used

In this work we chose four OCCs to compare: a single Gaussian, a GMM, a k-
NN based approach and an approach based on SVMs, the support vector domain
description (SVDD) [5].

4

(a) (b)

Fig. 2. In (a) a single Gaussian is used to model the underlying target data, the value
of the gaussian function is thresholded so that when a value of less than the threshold is
found the item will be rejected. Whereas (b) (a GMM) shows by using many individual
Gaussian models and weighting them, more complex distribution shapes can be formed.

Single Gaussian: A simple model for any problem is to assume the data is
drawn from the Gaussian distribution [6]. This model assumes that the data fits
a unimodal convex data description. The function that determines the score,
where µ is the mean of all the ‘target’ points, Σ it the covariance matrix of the
target points and d is the dimensionality of the problem given by the classifier
is :

p(x, µ,Σ) =
1

(2π)d/2|Σ|
exp

(
1
2

(x− µ)TΣ−1(z− µ)
)

Gaussian Mixture Models (GMMs): GMMs can model more complex un-
derlying distributions. As the name suggests GMMS are the combination of
several Gaussian models (a weighted sum). The underlying Gaussians of the
GMM have been shown to represent the characteristic spectral shapes of the
phonetic sounds that make up a person’s voice [1]. In these experiments we use
only diagonal covariance matrices for each Gaussian. It is argued in [1] that this
limits the computational complexity of the problem and adding more underlying
mixtures of diagonal covariance, is equivalent to modeling with fewer full covari-
ance matrices. The function that determines the score, where p is the Gaussian
of an individual model, the αi’s are mixture weights which sum to one, and k is
the number of individual Gaussian models used is given by:

pGMM (x) =
k∑
i=1

αip(x, µi, Σi)

Support Vector Domain Description (SVDD): The SVDD finds a sphere
of minimum radius that encloses all of the target data. This is cast as a minimi-
sation problem where one finds a radius R and centre c such that the following

5

minimisation problem is solved. Data that lies further than a given distance from
the centre of the sphere is labeled as an outlier.

min R2 s.t.

〈xi − c,xi − c〉 ≤ R2 ∀ xi ∈ target

By replacing the inner product in the above problem with a ‘kernel’ function,
more flexible decision boundaries may be found. Once the optimisation problem
is solved, new points that are further than a given distance from the centre are
labeled as outliers. Details of the mathematical derivation and details of the
method can be found in [5]. The kernel function that is used in this work is the
Gaussian kernel:

K(x,x′) = e−‖x−x′‖2/2σ2

The σ parameter is selected for the kernel depending on the classification task
at hand. It is often known as the width parameter and controls the flexibility of
the decision boundary. If σ is set too high the model will tend to under-fit the
data and if it is set too small it will over-fit the data.

k-Nearest Neighbour: We carried out a comparison of several nearest neigh-
bour techniques to identify the variation producing the best results on a single
time slice, as determined by the highest area under the ROC curve (AUC)[7].
The k-NN method we chose takes the magnitude of the average directional vector
to the k nearest neighbours as its output to threshold against.

3.2 Aggregation of Scores

Each of the above classifiers produces a score, if the score is above a given thresh-
old it is considered to be from the ‘target’ class and otherwise it is considered to
be an ‘outlier’. Since each individual score is a high-variance prediction of the
class, it makes sense to aggregate a sequence of scores when making a prediction.

The component scores from classifiers do not directly represent the proba-
bility of the item belonging to a class so in order to combine scores it is better
to convert the raw scores to probabilities. To achieve this, the score for the
item belonging to the target and the score for it belonging to the outliers were
normalised to sum to one.

To combine the probabilities for individual classification we used a simple
summation, a strategy that has been shown to give good results [8]. Although
the alternative product rule follows directly from a Baysian viewpoint, under the
assumption of independence, it can dramatically amplify errors as more slices
are added [9]. The sum rule is much less sensitive to estimation error at the
single slice level [9] and hence was used for the evaluation presented here.

6

4 Evaluation

The objective in the evaluation is to assess the performance of OCC techniques
on the problem of speaker verification. As explained in section 2 the OCC will
have the advantage that the problem of designing and constructing an impostor
model is avoided.

Thus we are interested in the absolute performance of OCCs trained on
‘target’ data only. And we are interested in a comparative analysis of the OCCs
described in section 3 against each other. We expect that GMM’s will outperform
other classifiers at a cepstral level as it has been shown that the underlying
Gaussian components of the model inherently model the underlying distributions
of the phonetic sound production [10].

4.1 Experimental Setup

The chains corpus [2] is the result of an effort to provide a speech database
expressly designed to characterize speakers as individuals1. The corpus contains
the recordings of 36 speakers obtained in two different sessions with a time
separation of about two months taken on two different recording environments.
Across the two sessions, each speaker provides recordings in six different speaking
styles.

In the experiments conducted here we used one speaking style solo, where
16 speakers read a prepared text alone. We only used speech from one recording
session so that we would not have to manage problems imposed by different
channel effects between different microphones. The training set was made up
of speakers reading ten sentences making up on average 24 seconds on speech
per speaker. The test set was made up of speakers reading nine sentences later
in the same session making up on average 16 seconds one speech per speaker.
As noted above, we train only using target data to provide a fair comparison
between classifiers.

In order to select the parameters of the base classifiers we built them on the
individual slice level first. The parameters for each classifier (number of mixture
models for GMM, σ for the SVDD, etc.) were selected by using a consistency
criterion. This criterion selects to reject f% (in our case 10%) of individual target
slices and then uses more and more complex parameters for the classifier until
the model becomes statistically unstable. This process defines the most complex
classifier, which can still reliably be trained on the data [11]. For k-NN the
simplest model was already unstable, so to select k we ran cross validation and
found a best value to use (k = 40). It should be noted that parameter selection
was done for each individual speaker rather than on a global basis.

On the training set the summed scores of the target class were thresholded
to reject 10% of the target class in order to provide a tight decision boundary
around the target class.

1 The corpus is freely available for research purposes from http://chains.ucd.ie.

7

4.2 Discussion of Results

When an evaluation on a single 20 ms time slice was done on the data we
found a high variability of scores between speakers (Fig3a.). With more slices all
classification strategies increased performance and this trend continued even at
the 10 second mark (Fig3b.). A very wide range of performances was found across
all speakers (Fig4.). This is highlighted by the fact that, although on average
the SVDD was outperformed by all other classifiers, it was the classifier which
achieved the best performance on an individual speaker with a false positive rate
over a 10 second window of 11.54%.

(a) (b)

Fig. 3. In (a) it is clear that, working with a single slice only, classifiers have difficultly
deciding whether the object comes from the ‘target’ or ‘outlier’ class. Over the 16
speakers the best false positive rate found was 0.56 while false positive error rates as
high as 0.86 can be observed for the SVDD. In (b) the average performance increases
as the number of slices is increased, this is seen to be continuing to rise even when 1000
slices (∼ 10 seconds) of speech is used in the classification

By looking at the false negative scores it can be seen that on average none of
the classifiers hit their trained target of 10% rejection during test and rejected
more than this base amount on average.The GMM and Gaussian model best
fitted their target distribution between training and test sets. As mentioned in
[10] the average speech spectrum contains speaker specific information and for
this reason was not removed in these experiments. The average speech spectrum
can vary considerably over even short periods of time [10] and so this shift may
account for the drift between the trained false negative rate differing from the
values attained on the training set.

5 Conclusions and Future Work

The objective with this work was to assess whether state-of-the-art one-class
classification techniques are effective for speaker verification. The evaluation pre-
sented here shows that GMM affords the best performance on average of the four

8

Fig. 4. It can be seen that for some individuals OCC techniques yielded good results
when compared against other speakers. It is also noted that certain classification strate-
gies preformed better for some speakers than for others indicating that model selection
may also need to be considered when building an OCC for a given speaker.

classification techniques examined. As expected, the accuracy increases as the
speech window used for classification is increase (i.e. more slices are added).
While the accuracy on 10 seconds of speech is adequate for some speakers (i.e.
< 10% FP), it is not adequate for all speakers.

It has been seen that different classification models perform better for differ-
ent speakers and it would be interesting to try to tease out the reasons for these
differences. Some speakers failed to perform well across all classification strate-
gies (e.g. ‘Female Max’ Fig4.). These poor performing speakers may merely sit
very close to one another in a region of feature space and so the spread of their
underlying cepstral distributions overlaps more prominently than with other
speakers. This could be investigated by looking at cross correlation matrices to
see which speaker the false positives for a given individual comes from and in
what percentage.

It has been suggested that the future direction of speaker verification will be
in the use of higher level speech features [12] that capture not only the individual
time slices but also the temporal information. While the GMM-UBM model is
the best approach for a slice by slice level, active research is looking at the
combination of sequence kernels for SVMs. The combination of these classifiers
with the GMM-UBM has shown considerable promise [13]. An investigation into
an extended feature space would seem appropriate.

The next step in this evaluation is to compare this against a binary classifica-
tion approach where a broad set of speakers is sampled to produce representative
training examples of the non class. We will also employ limited outlier data for

9

thresholding in the OCCs – this can be expected to improve on the performance
of the OCCs presented here.

References

1. Reynolds, D.: Speaker identification and verification using Gaussian mixture
speaker models. Speech Communication 17 (1995) 91–108

2. Cummins, F., Grimaldi, M., Leonard, T., Simko, J.: The CHAINS corpus: CHAr-
acterizing INdividual Speakers. In: Proc of SPECOM’06. (2006) 431–435

3. Bimbot, F., Bonastre, J., Fredouille, C., Gravier, G., Magrin-Chagnolleau, I.,
Meignier, S., Merlin, T., Ortega-Garcia, J., Petrovska-Delacretaz, D., Reynolds,
D.: A tutorial on text-independent speaker verification. EURASIP Journal on
Applied Signal Processing 4 (2004) 430–451

4. Reynolds, D.: An overview of automatic speaker recognition technology. In: Proc.
Int. Conference on Acoustics, Speech, and Signal Processing. (2002)

5. Tax, D.M.J., Duin, R.P.W.: Support vector domain description. Pattern Recogn.
Lett. 20 (1999) 1191–1199

6. Tax, D.M.J.: One-class classification. PhD thesis, Delft University of Technology
(2001)

7. Bradley, A.P.: The use of the area under the ROC curve in the evaluation of
machine learning algorithms. Pattern Recognition 30 (1997) 1145–1159

8. Taniguchi, M., Tresp, V.: Averaging regularized estimators. Neural Computation
9 (1997) 1163–1178

9. Kittler, J., Hatef, M., Duin, R.P.W., Matas, J.: On combining classifiers. Pattern
Analysis and Machine Intelligence, IEEE Transactions on 20 (1998) 226–239

10. Reynolds, D.A., Rose, R.C.: Robust text-independent speaker identification using
gaussian mixture speaker models. Speech and Audio Processing, IEEE Trans. 3
(1995) 72–83

11. Tax, D.M.J., Muller, K.R.: A consistency-based model selection for one-class clas-
sification. In: ICPR. Volume 3. (2004) 363–366

12. Reynolds, D.A.: Channel robust speaker verification via feature mapping. In:
ICASSP. (2003) II–53–6 vol.2

13. Wan, V., Renals, S.: Speaker verification using sequence discriminant support
vector machines. Speech and Audio Processing, IEEE Trans 13 (2005) 203–210

10

Using Relaxations to Improve Search in
Distributed Constraint Optimisation ?

David A. Burke and Kenneth N. Brown

Centre for Telecommunications Value-Chain Research
and Cork Constraint Computation Centre

Dept. Computer Science, University College Cork, Ireland

Abstract. Densely connected Distributed Constraint Optimisation Prob-
lems (DisCOP) can be difficult to solve optimally. Finding good lower
bounds on constraint costs can help to speed up search, and we show how
lower bounds can be found by solving relaxed problems obtained by re-
moving inter-agent constraints. We present modifications to the Adopt
DisCOP algorithm that allow an arbitrary number of relaxations to be
performed prior to solving the original problem. We identify useful relax-
ations based on the solving structure used by Adopt, and demonstrate
that when these relaxations are incorporated as part of the search it
can lead to significant performance improvements. In particular, where
agents have significant local constraint costs, we achieve over an order of
magnitude reduction in the messages exchanged between agents.

1 Introduction

Many combinatorial decision problems are naturally distributed over a set of
agents: e.g. coordinating activities in a sensor network [1], or scheduling meetings
among a number of participants [2]. Distributed Constraint Reasoning (DCR)
considers algorithms explicitly designed to handle such problems, searching for
globally acceptable solutions while balancing communication load with process-
ing time [3]. Many algorithms have been proposed that consider both satisfaction
(DisCSP) and optimisation (DisCOP), including Adopt [4]. However, Adopt’s
efficiency decreases as the size and density of the network of agents increase [4,
5]. Search in Adopt can be reduced if good lower bounds on costs are available.
In this paper, we show how to generate effective lower bounds through problem
relaxation. Relaxation changes a problem such that an optimal solution to the
relaxed problem is a lower bound on the optimal solution to the original problem.

Relaxations have previously been applied to DisCSP, where they have been
used to find solutions for over-constrained satisfaction problems [6]. In this pa-
per, we investigate relaxation for DisCOP by removing selected inter-agent con-
straints. We present a relaxation framework, AdoptRelax, that allows Adopt
to be run in multiple phases, allowing one or more relaxed versions of the problem
to be used when solving the original problem. Lower bound information gathered
? This work is supported by Science Foundation Ireland under Grant No. 03/CE3/I405

11

by the agents in one phase is used as input to the next, allowing portions of the
search space to be pruned. While the concept of computing and re-using lower
bounds dynamically during search has been explored in centralised constraint
optimisation [7], this is the first investigation of such methods for DisCOP. The
idea of using multiple levels of relaxations was first introduced in [8], but this
also has not been investigated in a distributed environment. We identify graph-
based relaxations that are of particular use with the search structures used by
Adopt, and we show that incorporating these relaxations can significantly im-
prove performance as the size and density of the network of agents increases. In
particular, where agents have significant local constraint costs we show over an
order of magnitude reduction in messages passed.

2 Distributed Constraint Optimisation and ADOPT

A Distributed Constraint Optimisation Problem consists of a set of agents, A=
{a1, a2, ..., an}, and for each agent ai, a set Xi={xi1, xi2, . . . , ximi

} of variables
it controls, such that ∀i 6=j Xi ∩Xj = ∅. Each variable xij has a corresponding
domain Dij of values that it may be assigned. X=

⋃
Xi is the set of all variables

in the problem. C = {c1, c2, . . . , ct} is a set of constraints, where each ck acts
on a subset of the variables s(ck) ⊆ X, and associates a cost with each tuple
of assignments to these variables ck:

∏
ij:xij∈s(ck)Dij→ IN∪{∞}, where a cost of

infinity indicates a forbidden tuple. The agent scope, a(ck), of ck is the set of
agents that ck acts upon1: a(ck)={ai :Xi∩s(ck) 6=∅}. An agent ai is a neighbour
of an agent aj if ∃ck : ai, aj ∈ a(ck). A global assignment, g, is the selection of one
value for each variable in the problem: g∈

∏
ijDij . A local assignment, li, to an

agent ai, is an element of
∏

jDij . For any assignment t and set of variables Y , let
t↓Y be the projection of t over the variables in Y . The global objective function,
F , assigns a cost to each global assignment: F :

∏
ijDij→ IN :: g 7→

∑
kck(g↓s(ck)).

An optimal solution is one which minimises F . The solution process, however,
is restricted: each agent is responsible for the assignment of its own variables,
and thus agents must communicate with each other, describing assignments and
costs, in order to find a globally optimal solution.

Adopt [4] is a complete DisCOP algorithm where agents execute asyn-
chronously. Initially, the agents are prioritised into a Depth-First Search (DFS)
tree, such that neighbouring agents appear on the same branch in the tree. Each
agent ai maintains a lower (LBi) and upper (UBi) bound on the cost of its sub-
tree, which means that the lower and upper bounds of the root agent are bounds
for the problem as a whole. Let Hi be the set of higher priority neighbours of
ai, and let Li be the set of its children. During search, each agent repeatedly
performs a number of tasks:
1. VALUE messages, containing variable assignments, are received from higher

priority agents and added to the current context CCi, which is a record of
higher priority neighbours’ current assignments: CCi∈

∏
j:aj∈Hi

Dj .

1 In this study we restrict our attention to binary inter-agent constraints, i.e. con-
straints do not act on more than two agents.

12

2. COST messages, containing lower and upper bounds, are received from chil-
dren and stored if they are valid for the current context – for each subtree,
rooted by an agent aj ∈ Li, ai maintains a lower bound, lb(li, aj), and an
upper bound ub(li, aj) for each of its assignments li. Each cost is valid for a
specific context CX(li, aj)∈

∏
k:ak∈Hj

Dk. Any previously stored cost with a
context incompatible with the current context is reset to have lower/upper
bounds of 0/∞.

3. A THRESHOLD message is received from the immediate parent of ai – the
threshold ti is the best known lower bound for the subtree rooted by ai.2

4. The local assignments with minimal lower and upper bound costs are cal-
culated. Let Cij be the constraint between xi and xj . The partial cost,
δ(l), for an assignment of li to xi is the sum of the agent’s local cost
fi(li), plus the costs of constraints between ai and higher priority neigh-
bours: δ(li) = fi(li)+

∑
j:aj∈Hi

Cij(li, CCi↓xj
). The lower bound, LB(li), for

an assignment of li to xi is the sum of δ(li) and the currently known lower
bounds for all subtrees: LB(li) = δ(li)+

∑
j:aj∈Li

lb(li, aj). The upper bound,
UB(li), is the sum of δ(li) and the currently known upper bounds for all
subtrees: UB(li) = δ(li) +

∑
j:aj∈Li

ub(li, aj). The minimum lower bound
over all assignment possibilities, LBi, is the lower bound for the agent ai:
LBi = minli∈Di

LB(li). Similarly, UBi is the upper bound for the agent ai:
UBi = minli∈DiUB(li).

5. The agent’s current assignment, di, is updated and sent to all neighbours in
Li: if ti == UBi then di ← li that minimises UB(li), else if LB(di) > ti
then di ← li that minimises LB(li).

6. LBi and UBi are passed as costs to the parent of ai, along with the context
to which they apply, CCi.

As the search progresses, the bounds are tightened in each agent until the
lower and upper bounds are equal. If an agent detects this condition, and its
parent has terminated, then an optimal solution is found and it may terminate.

To avoid exponential memory requirements, each agent stores only one set of
costs for each of its possible assignments, for each of its subtrees. Whenever an
agent’s current context changes it checks to see if the stored costs are compatible
with the new context. Incompatible costs are reset to have lower/upper bounds
of 0/∞. If a previously visited context is returned to, then the costs for it need to
be re-discovered, so there is a significant overhead incurred in context switching.
By reducing context switching we can prune the search space. One method of
doing this is to use informed lower bounds. Ali et al. [9] proposed a preprocessing
that produces lower bounds that are then used during a subsequent execution of
Adopt. They demonstrated that if incompatible costs are reset to have non-zero
lower bounds, then context switching can be reduced. While useful, the proposed
2 The threshold in Adopt is used to reduce thrashing. During search agents discover

lower bounds for different contexts. When an agent returns to a previously explored
context, the search is guided by the fact that the agent knows it cannot find an
assignment with a cost better than the threshold. For a detailed explanation of
thresholds and Adopt, please refer to [4].

13

Algorithm 1: AdoptRelax

for relaxLevel = n− 1 to 0 do1

currentProblem← phase[relaxLevel];2

ADOPT ();3

if relaxLevel > 0 then save();4

else terminate();5

technique is not always appropriate or efficient because: (i) each agent produces
bounds for all of its parent’s possible assignments, while in fact the parent
may have private constraints or constraints with other agents eliminating some
of these assignments; (ii) when an agent has multiple variables this approach
requires repeatedly solving its local problem for each possible parent assignment,
which can be expensive for large local problems. In Section 4, we make use of
the same concept of ‘informed lower bounds’, but do so within a new relaxation
framework.

3 Relaxation Framework for ADOPT

AdoptRelax (Algorithm 1) builds on the Adopt algorithm to allow iterated
searches on a number of problem relaxations that lead to the optimal solution of
the original problem. In a similar style to [8], the search is split into n phases, i.e,
n− 1 relaxations, and a final search on the original problem. The current phase
is denoted by relaxLevel, whereby n−1 is the most relaxed problem and 0 is the
original problem. The first phase uses the most relaxed problem. Once a solution
to the current problem has been found, the relaxation level is checked (line 4). If
the solution is for the original problem the algorithm terminates as normal (5).
If it is for a relaxed problem, each agent will save its current lower bounds for
each subtree and each assignment, including the contexts to which these bounds
apply (4).3 Once all agents have saved, the next search phase begins.

The next phase of the search has two advantages over the initial search. First,
the root has a lower bound that will be propagated down through the priority
tree as thresholds to each agent, preventing some repeated search. Second, each
agent has a lower bound for each subtree and each of its local assignments. When
costs get reset, this lower bound can be used whenever the current context is
compatible with the context of the stored lower bound, resulting in reduced
context switching. Using a general DisCOP algorithm such as Adopt in each
search phase provides us with a general framework that allows us to compute
lower bounds in a decentralised manner for arbitrary problem relaxations with
different topologies. While it would also be possible to use other algorithms to
3 By saving a single context-dependent set of bounds for each subtree and each as-

signment, we keep to the principles of the original Adopt algorithm, which requires
polynomial space. More information could be stored, potentially leading to greater
improvements, but would also lead to greater memory requirements.

14

(a) Example (b) Tree (c) Width-2 (d) Priority-2

Fig. 1. (a) Example DisCOP agent graph. Arrows indicate constraints between agents,
with black arrowheads indicating parent-child relationships within the priority tree.
Number indicates level of agent in priority tree. (b) TREE relaxation removes all non-
parent/child constraints. (c) WIDTH-2 removes all constraints that span greater than
2 levels. (d) PRIORITY-2 removes all non-parent/child constraints from top 2 levels.

solve the relaxed problems, it may be more difficult to exchange information
between phases such that the information could still be used by Adopt.

4 Relaxations in ADOPT

To use the relaxation framework we must first define problem relaxations. There
are a number of different ways in which to relax distributed constraint prob-
lems, e.g. agents could be removed, constraints could be deleted or forbidden
tuples could be removed from the constraints. Previous experimental analysis
has shown the number of inter-agent constraints to be a key factor in deter-
mining the ‘hardness’ of distributed constraint problems [10, 4, 5], so we will
focus on removing inter-agent constraints. The next question is deciding which
constraints to remove. We want to remove constraints to produce a relaxed
problem that can be quickly solved, while still containing enough of the original
problem to provide meaningful lower bounds. We will use our knowledge of the
context switching behaviour and the priority tree structure to determine which
constraints to remove. Fig. 1.a shows the priority tree of an example problem.
The current context of each agent consists of assignments to all higher priority
neighbours of the agent, plus higher priority non-neighbours that impact on the
costs received by the agent. We can reduce the space of possible contexts in
agents, and in turn the number of context switches that will occur, by removing
constraints. We now make two important observations:

1. The costs stored by an agent may become incompatible if they are dependent
on agents of higher priority. E.g. the costs that agent H stores for its child J
have a context that contains the assignment to D (because J has a constraint
with D), and so become incompatible if D changes its assignment.

15

2. The higher up in the search tree that a context switch occurs, the greater
the potential impact, i.e, when agents change their assignment, it will lead
to a new search involving all lower priority agents, and so a context switch in
higher priority agents can be more expensive than in lower priority agents.
E.g. a context switch in agent B may affect all agents C−J , while a context
switch in D only affects agents H and J .

Based on these observations, we propose three relaxations to investigate:

1. TREE : remove all non-parent/child constraints in the tree;
2. WIDTH-X : remove all constraints spanning more than X levels in the tree;
3. PRIORITY-X : remove all non-parent/child constraints from agents with

priority less than X.

Taking into account the first observation, in the TREE relaxation, we re-
move all non-parent/child links, reducing the context space of each agent to be
dependent on just one other agent – its immediate parent (Fig. 1.b). In this
relaxation, all costs received by an agent are independent of any higher priority
agents, and so they are valid for all contexts and will never need to be reset.
The TREE relaxation should make the problem much easier to solve, but if the
network is densely connected it will remove many constraints, which means that
the resulting bounds may not be good approximations. It may still be useful for
loosely connected networks and also where agents have complex local problems.
By only removing inter-agent constraints, each agent’s internal problem is still
considered in full, and so local costs still contribute to the relaxed bounds.

If we want to retain more constraints, we can generalise the TREE relaxation.
WIDTH-X reduces the context space of each agent to be dependent on at most
X agents (Fig. 1.c). This is done by removing all constraints that span greater
than X levels in the tree, thus reducing the width [11] of the given graph ordering
to be at most X. In fact, TREE = WIDTH-1. This relaxation allows us to trade
off between solving the relaxed problem quickly (low values for X) or getting a
good lower bound (high values for X). It may be that different values of X may
be of use for different density networks. It should be noted that in TREE the
lower bounds found in the relaxation are compatible with all contexts, while in
WIDTH-2 this is not the case. E.g, in Fig. 1.c, the lower bounds of agent H
for its child J are dependent on the assignment of D. This means that the final
bounds stored by H will be useful when solving the original problem only when
D has an assignment compatible with the stored context.

Our next relaxation considers the second observation we made previously.
That is, we would like to reduce context switches in agents higher up in the search
tree. The PRIORITY-X relaxation is thus biased towards removing constraints
that appear higher up in the tree. PRIORITY-X removes all non-parent/child
constraints from agents with a priority less than X (Fig. 1.d). This may allow
fewer constraints to be removed while achieving greater search savings.

Each of these relaxations provide lower bounds that can be used to prune the
search space in subsequent search phases. Multiple relaxations can be used in a
single execution of the algorithm, with the bounds from each phase feeding into

16

Fig. 2. Random DisCOPs varying inter-agent constraint density: 10 agents, each with
one variable of domain size 5; tightness = 0.9; costs from 1–3.

the subsequent phase, e.g. TREE could be followed by PRIORITY-2 before the
original problem is solved. Finally, note that these relaxations can be performed
in a distributed manner. The priority tree can be created using a decentralized
algorithm [12]. Then, using only knowledge of their own priority and the priority
of their neighbours, agents can remove the necessary inter-agent constraints.

5 Experiments

We compare the original Adopt with AdoptRelax on two problem domains:
random distributed constraint optimisation problems, and meeting scheduling.
AdoptRelax is run using each of TREE, WIDTH-2 and PRIORITY-2 relax-
ations individually as part of a two-phase search, and also using the combination
TREE -PRIORITY-2 as part of a three-phase incremental search. The experi-
ments are run in a simulated distributed environment: we use one machine but
each agent runs asynchronously on its own thread. In problems where agents have
multiple variables, a centralised solver is used to make local assignments. To com-
pare performance, we recorded the number of messages communicated by the
agents, and also the number of Non-Concurrent Constraint Checks (NCCC) [13].
The results of both metrics were comparable, so we now only display graphs for
the number of messages. All results are averaged over 20 test instances.

In the random problems, we use 10 agents, each with a single variable of
domain size 5. For each constraint, 90% (the tightness) of tuples have a non-zero
cost chosen uniformly from the set {1, 2, 3}. The inter-agent constraint density is
varied between 0.2 and 0.5.4 A characteristic of these problems is that all costs
are on inter-agent constraints, i.e. there are no local agent costs. Fig. 2 (log scale)
shows that the relaxations give an improvement over the standard Adopt as the
4 Increasing the number of inter-agent constraints is expensive [10]. Most DisCOP

algorithms are tested on problems with densities no greater than 0.4, e.g. [4, 2, 14].

17

 1000

 10000

 100000

 1e+006

 4 6 8 10 12

m
es

sa
ge

s

number of agents

NO-RELAX
TREE

Fig. 3. Meeting scheduling problems: number of meetings = number of agents; 2 at-
tendees per meeting; 2 personal tasks per agent; maximum of 4 meetings per agent.

density increases. PRIORITY-2 finds high lower bounds and for less dense prob-
lems these bounds are found quickly. For denser problems it can take longer, and
so the benefit from relaxation only accrues late in the search, hence worse per-
formance for higher densities. TREE always finds bounds quickly, although for
denser problems, these bounds will be further from the actual solution. TREE
slightly outperforms WIDTH-2 up to a density of 0.4 but WIDTH-2 is better for
0.5. By combining two relaxations, TREE -PRIORITY-2, there is an increased
overhead. However, as the density increases, this overhead becomes less impor-
tant and TREE -PRIORITY-2 outperforms the other relaxations, giving almost
50% improvement over Adopt for density 0.5.

We generate meeting scheduling problems following a model used by [2] and
others. For each meeting each agent is involved in, it owns a variable with 8
values (meeting starting times). Variables in different agents that represent the
same meeting are linked with equality constraints. Agents also have personal
tasks (single variables with 8 values). Variables in the same agent are linked
with inequality constraints (the agent can not have two meetings/tasks at the
same time). Agents have preferences, represented as costs, for the values they
would like to assign to each meeting/task. Note in these problems the inter-
agent constraints are hard constraints, which will have a cost of 0 when satisfied.
Therefore, the costs incurred in solutions to the problem are local costs, i.e. the
preferences of the agents. Removing inter-agent constraints allows the agents to
choose more preferable local assignments, but in both the relaxed and original
problems local costs will be incurred.

In our first experiment, we set the number of meetings equal to the number of
agents. This setting means that all agent graphs will be a tree plus one additional
constraint. Relaxing this constraint using the TREE relaxation gives remarkable
results (Fig. 3), saving over an order of magnitude reduction in messages. The

18

 100

 1000

 10000

 100000

 1e+006

 7 8 9 10

m
es

sa
ge

s

number of agents

NO-RELAX
TREE

PRIORITY-2
WIDTH-2

TREE-PRIORITY-2

Fig. 4. Results of meeting scheduling problems: inter-agent link/meeting density = 0.3;
2 attendees per meeting; 2 personal tasks per agent; max. 4 meetings per agent.

key reason for this is that the agents have significant local costs and since the
problem relaxations consider the local problems in full, strong lower bound ap-
proximations can be found, allowing greater pruning of the search space. In
Fig. 4 we show results for increasing the number of agents with the inter-agent
constraint density fixed to 0.3. All relaxations apart from WIDTH-2 show over
an order of magnitude improvement for 8 agents, and Adopt hits an imposed
cutoff of 106 messages for all instances greater than 8 agents. PRIORITY-2 and
TREE are successful for lower numbers of agents, but TREE -PRIORITY-2 is
the best once the problems are increased to contain 10 agents. WIDTH-2 be-
comes more competitive when there are more agents and more opportunities to
remove constraints.

Note that although we achieve very good results in these problem domains,
care should be taken in applying these relaxation techniques. If most of the costs
in the problem are incurred by, or are dependent on, inter-agent constraints,
then removing these constraints may produce extremely poor lower bounds, and
thus the general graph-based relaxation methods presented here may be counter-
productive. In such cases, relaxation heuristics that take account of the structure
of the objective function would be required.

6 Conclusions and Future Work

We have proposed AdoptRelax, a novel relaxation framework that is an ex-
tension of the Adopt DisCOP algorithm. AdoptRelax allows an arbitrary
number of problem relaxations to be solved prior to solving the original problem.
These relaxations produce lower bounds that allow portions of the search space
to be pruned. We have proposed a number of graph-based relaxations which
remove inter-agent constraints. We have shown, through experimental analysis

19

on random DisCOPs and meeting scheduling that AdoptRelax can offer an
order of magnitude speed-up, particularly where agents have significant local
costs. Future work will investigate alternative relaxation heuristics, as well as
examining relaxations where the constraints are modified rather than removed.
We will also investigate if algorithms other than Adopt could be useful when
solving the relaxations.

References

1. Béjar, R., Domshlak, C., Fernàndez, C., Gomes, C., Krishnamachari, B., Selman,
B., Valls, M.: Sensor Networks and Distributed CSP: Communication, Computa-
tion and Complexity. Artificial Intelligence 161(1-2) (2005) 117–147

2. Petcu, A., Faltings, B.: A Scalable Method for Multiagent Constraint Optimiza-
tion. In: Proc. 19th Int. Joint Conference on Artificial Intelligence. (2005) 266–271

3. Yokoo, M., Hirayama, K.: Algorithms for Distributed Constraint Satisfaction: A
Review. Autonomous Agents and Multi-Agent Systems 3(2) (2000) 185–207

4. Modi, P., Shen, W., Tambe, M., Yokoo, M.: ADOPT: Asynchronous Distributed
Constraint Optimization with Quality Guarantees. Artificial Intelligence 161(1–2)
(2005) 149–180

5. Burke, D., Brown, K.: Efficient Handling of Complex Local Problems in Distributed
Constraint Optimization. In: Proc. 17th European Conference on Artifical Intelli-
gence. (2006) 701–702

6. Hirayama, K., Yokoo, M.: An Approach to Over-constrained Distributed Con-
straint Satisfaction Problems: Distributed Hierarchical Constraint Satisfaction. In:
Proc. 4th International Conference on Multi-Agent Systems. (2000) 135–142

7. Marinescu, R., Dechter, R.: AND/OR Branch-and-Bound for Graphical Models.
In: Proc. 19th Int. Joint Conference on Artificial Intelligence. (2005) 224–229

8. Sacerdoti, E.D.: Planning in a Hierarchy of Abstraction Spaces. Artificial Intelli-
gence 5(2) (1974) 115–135

9. Ali, S.M., Koenig, S., Tambe, M.: Preprocessing techniques for Accelerating the
DCOP Algorithm ADOPT. In: Proc. 4th International Joint Conference on Au-
tonomous Agents and Multi-Agent Systems. (2005) 1041–1048

10. Hirayama, K., Yokoo, M., Sycara, K.: The Phase Transition in Distributed Con-
straint Satisfaction Problems: First Results. In: Proc. 6th International Conference
on Principles and Practice of Constraint Programming. (2000) 515–519

11. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA (2003)

12. Chechetka, A., Sycara, K.P.: A Decentralized Variable Ordering Method for Dis-
tributed Constraint Optimization. In: Proc. 4th International Joint Conference on
Autonomous Agents and Multi-Agent Systems. (2005) 1307–1308

13. Meisels, A., Razgon, I., Kaplansky, E., Zivan, R.: Comparing Performance of Dis-
tributed Constraints Processing Algorithms. In: Proc. 3rd International Workshop
on Distributed Constraint Reasoning. (2002) 86–93

14. Gershman, A., Meisels, A., Zivan, R.: Asynchronous forward-bounding for dis-
tributed constraints optimization. In: Proc. 17th European Conference on Artifical
Intelligence. (2006) 103–107

20

Automated Constraint Reformulation for Explanation

Hadrien Cambazard and Barry O’Sullivan

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

{h.cambazard|b.osullivan}@4c.ucc.ie

Abstract. Many approaches to explanation generation in constraint satisfaction
problems have been reported in the literature. The dominant approach is based
on computing minimal conflicting sets of constraints. An explanation can be con-
sidered concise if it involves constraints of low arity over a small subset of the
variables of the problem. However, in many practical domains constraints are
specified extensionally as tables of allowed assignments of values to variables.
Such tables often have high arity. From an explanation point of view, table con-
straints can prevent us from finding concise explanations. In this paper we present
an approach to automatically reformulate large arity table constraint into a set of
low arity constraints whose conjunction is logically equivalent to the original ta-
ble. We demonstrate the utility of our approach on a number of real-world table
constraints from the fields of product configuration and machine learning.

1 Introduction

Constraint satisfaction techniques are ubiquitous in many practical problem-solving
contexts. The fundamental notion in constraint satisfaction is to separate the representa-
tion of a problem from the method used to solve it. As the number of interactive systems
built upon constraints technology increases, several issues become a concern. For ex-
ample, how should we integrate information sources that are more naturally represented
as tables, or simple databases, with more traditional constraint-based methods? Also,
how can we support the generation of concise explanations when a set of constraints
cannot be satisfied? It is common in user-focused interactive applications to allow users
to add unary constraints, i.e. assignments to variables, to a set of background constraints
that define the general problem being solved. When such a set of constraints cannot be
satisfied, one can compute a set-wise maximal subset of the user’s choices that are con-
sistent, or a set-wise minimal subset of his constraints that are inconsistent. These are
the standard notions of maximal (minimal) relaxation (conflict) that have been used in
the artificial intelligence community [4, 7]. In the context of general arity constraints,
computing a minimal conflict can be more challenging. However, again, there is a sig-
nificant literature on finding minimal conflicting sets of constraints, sometimes referred
to as minimal unsatisfiable subproblems [8]. The duality between conflicting sets of
constraints and relaxations is also well known [2, 3, 7, 10].

In this paper we address a novel question in this area: how do we compute con-
cise explanations when we have problems involving constraints of very high arity, i.e.
defined over many variables in the problem. We regard an explanation as concise if it

21

involves constraints of low arity over a small subset of the variables of the problem. In
particular, we consider the case in which some constraints are defined using tables of
consistent assignments to a set of variables. We use techniques used to normalise rela-
tional databases to automatically reformulate a large arity constraint into a conjunction
of lower arity constraints. We can guarantee that the set of solutions to the reformulation
is equivalent to that of the original set of constraints. Therefore, using the reformulation,
we can find explanations that involve constraints of much lower arity over a smaller set
of variables.

The remainder of the paper is organised as follows. In Section 2 we present the for-
mal background required throughout the paper. We demonstrate the utility of constraint
reformulation for generating explanations in Section 3. We present our approach to con-
straint reformulation in Section 4. An empirical evaluation is presented in Section 5.

2 Background

A constraint satisfaction problem (CSP) is defined by a set of variables, each of which
must be assigned a value from its domain, subject to a set of constraints. Each constraint
restricts the set of consistent assignments to a subset of the variables.

Definition 1 (Constraint Satisfaction Problem). A constraint satisfaction problem P
is a triple P def= 〈X ,D, C〉, where: X = {x1, . . . , xn} is a finite set of variables; D =
{D(x1), . . . , D(xn)} is a set of domains corresponding to the possible values of each
variable; and C = {c1, . . . , cm} is a set of m constraints. Each constraint ci ∈ C is
defined by a pair 〈scope(ci), rel(ci)〉, where scope(ci) denotes an ordered subset of X ,
and rel(ci) is a set of tuples over scope(ci) that satisfy the constraint ci. The number of
variables constrained by ci, i.e. |scope(ci)|, is known as the arity of the constraint ci.

Definition 2 (Solution to a CSP). Given a CSP P def= 〈X ,D, C〉 and given any con-
straint ci ∈ C, a labelling t to the variables in scope(ci) satisfies ci if t ∈ rel(ci). We
denote as t[xi] the value v ∈ D(xi) assigned to xi in t. A labelling t of X is a solution
ofP if for every ci ∈ C, the restriction of t to scope(ci) satisfies ci. We denote as sol(P)
the set of all solutions to P .

Example 1 (A Simple CSP). We exemplify the definitions given above on a simple
example CSP in which X = {x1, x2, x3, x4}, D = {D(x1) = {0, 1, 2}, D(x2) =
{0, 2, 4}, D(x3) = {0, 1, 2, 3}, D(x4) = {2, 3, 4}}, and the constraints C are:

c1(x1, x3)
def= {(0, 0), (1, 0), (2, 1), (0, 2), (2, 3)},

c2(x1, x4)
def= {(0, 4), (1, 2), (2, 3), (2, 2)},

c3(x2, x3)
def= {(0, 0), (4, 1), (4, 2), (2, 3)},

c4(x2, x4)
def= {(0, 4), (0, 2), (4, 3), (4, 4), (2, 2)}.

The constraints scopes are {x1, x3}, {x1, x4}, {x2, x3}, and {x2, x4}, and the relations
are the sets specified in the right-hand sides above. The set of solutions are as follows

{(0, 0, 0, 4), (0, 4, 2, 4), (1, 0, 0, 2), (2, 2, 3, 2), (2, 4, 1, 3)}

using the natural subscript ordering for the variables in X . N

22

In this paper we are interested in automatically computing equivalent reformula-
tions of large arity table constraints. It is useful, therefore, to formally define the mean-
ing of equivalence between CSPs.

Definition 3 (Equivalent CSPs). Given a CSP P def= 〈X ,D, C〉 and a CSP P ′ def=
〈X ,D, C′〉 we say that P is equivalent to P ′ if both problems have equivalent sets
of solutions, i.e. sol(P) ≡ sol(P ′).

When we reformulate a high arity constraint ci we obtain a conjunction of lower
arity constraints, c1

i , . . . , c
k
i , where the scope of each cj

i is a subset of scope(ci). To
define the notion of restricting a tuple of allowed values to a sub-scope of the original
constraint we use the projection operator from Codd’s Relational Algebra.

Definition 4 (Scope Restriction [5]). Let r be a relation instance over a set of vari-
ables Y and t, a tuple of r. The projection onto Z ⊆ Y of t, denoted t[Z], is the
restriction of t to Z. The projection of r onto Z, denoted σZ(r), is the set {t[Z]|t ∈ r}.

Scope restriction is a form of constraint relaxation. Informally, by restricting the
scope of a constraint we are reducing the number of variables that are constrained.
Therefore, any tuple satisfying the original constraint also satisfies the relaxation.

Definition 5 (Relaxation of a Positive Table Constraint). We say that constraint cr
i

with a scope X = scope(cr
i) is a relaxation of constraint ci if X ⊆ scope(ci) and

rel(cr
i) = σX(rel(ci)), i.e. the set of allowed tuples of the relaxation cr

i are obtained
by projecting the set of allowed tuples of ci onto the set of variables constrained by cr

i .
The constraint cr

i corresponding to the relaxation of c on X is also denoted ΠX(ci).

Based on the notion of constraint relaxation, we can regard a reformulation of a
constraint as a subset of its (irredundant) relaxations.

Definition 6 (Constraint Reformulation). A reformulation ∆(ci) of a positive table
constraint ci is a set of relaxations R def= {c1

i , . . . , c
k
i } of ci such that ∀cx

i , cy
i ∈ R, x 6=

y, scope(cx
i) * scope(cy

i) and scope(cy
i) * scope(cx

i).

As a notational convenience, we often denote a reformulation of a constraint ci as a
set of subsets of scope(ci) defining the relaxations involved.

Example 2 (Constraint Reformulation). Consider the following constraint, over the same
variables and domains as those in Example 1:

ca(x1, x2, x3, x4)
def= {(0, 0, 0, 4), (0, 4, 2, 4), (1, 0, 0, 2), (2, 2, 3, 2), (2, 4, 1, 3)}.

A reformulation of this constraint, in terms of two relaxations of ca, is as follows:

c1
a(x1, x2, x4)

def= {(0, 0, 4), (1, 0, 2), (2, 4, 3), (0, 4, 4), (2, 2, 2)},
c2
a(x1, x3)

def= {(0, 0), (0, 2), (1, 0), (2, 1), (2, 3)}.

We will refer to this reformulation as ∆(ca) = {{x1, x2, x4}, {x1, x3}}. Note that the
set of solutions to the reformulation is not equivalent to those of ca, since the tuple
(0, 4, 0, 4) is allowed by this reformulation. However, note that the set of constraints in
Example 1 forms an equivalent reformulation of ca. N

23

Reformulations that give rise to conjunctions of constraints that are equivalent, i.e.
have the same set of solutions, are very important. We refer to such reformulations as
lossless, in keeping with the standard terminology in databases1.

Definition 7 (Lossless Reformulation). Given a CSP P def= 〈X ,D, {ci}〉 involving a
single constraint ci. ∆(ci) is a lossless reformulation of ci if the CSPP ′ def= 〈X ,D,∆(ci)〉
is such that sol(P) ≡ sol(P ′).

3 An Application of Lossless Constraint Reformulation

In many real-world problems we have to deal with large arity table constraints. For
example, in the well-known Renault Megane Car Configuration Problem [1], all con-
straints are represented as extensional table constraints defined by a set of allowed tu-
ples of assignments. Most constraints in this problem have arities between five and nine
variables. When a set of constraints does not admit a solution, a common form of expla-
nation is to generate a minimal conflicting set of constraints, i.e. a set of constraints that
is inconsistent, but all subsets of this set are consistent. When our problem formulation
contains many high arity constraints, such an explanation may not be concise. However,
a lossless reformulation may exist that gives a very concise explanation.

Example 3 (Explanations from Lossless Reformulations). Consider the following set of
constraints, each of arity four:

c1(x1, x3, x4, x6)
def= {(2, 0, 0, 1), (1, 1, 1, 2), (2, 0, 2, 1), (1, 1, 0, 0)},

c2(x1, x2, x5, x7)
def= {(0, 1, 0, 1), (1, 2, 2, 0), (1, 0, 1, 0), (2, 1, 0, 2)},

c3(x5, x2, x3, x4)
def= {(1, 0, 2, 2), (2, 1, 1, 2), (0, 2, 0, 1), (2, 1, 2, 1)}.

This set of constraints does not admit a solution. A minimal conflict set that is sufficient
to explain this inconsistency involves all three constraints. This is because by removing
any of the constraints, the problem becomes consistent and a solution can be found.

However, a lossless reformulation provides a much more compact explanation. It
can be shown that each of the constraints above is equivalent to the corresponding con-
junctions of constraints given below:

c1(x1, x3, x4, x6) ≡ {c1
1(x1, x3), c2

1(x1, x6), c3
1(x4, x6)},

c2(x1, x2, x5, x7) ≡ {c1
2(x1, x7), c2

2(x5, x2), c3
2(x1, x2)},

c3(x5, x2, x3, x4) ≡ {c1
3(x2, x5), c2

3(x2, x3, x4)}.

On this reformulation, the inconsistency can be more compactly explained by using the
following constraints from the reformulation:

{c1
1(x1, x3), c2

3(x2, x3, x4), c3
2(x1, x2)}.

In fact, an even more compact explanation can be found since in c2
3, x4 is not required

to explain the inconsistency. However no lossless reformulation can discover this. N

We now present how lossless reformulations can be computed automatically.
1 Note that in our context by selecting a reformulation that is not lossless, the reformulation

admits solutions that are inconsistent with the original constraint. In this setting we have “lost”
information ruling out some combinations of values.

24

4 Reformulation of Positive Table Constraints

In contrast with earlier work, e.g. [5], our approach to computing lossless reformula-
tions of positive table constraints exploits the concept of functional dependencies in a
relation [6]. A functional dependency in a relation rel(ci) is written as Fi : Xi → yi,
where Xi ∪ {yi} ⊆ scope(ci). A functional dependency states that if a pair of tuples
in the relation take the same values for the variables in Xi, they must also take the
same value for variable yi. A functional dependency Fi : Xi → yi is minimal if yi is
not functionally dependent on any subset of Xi. A dependency Fi : Xi → yi is said
to be trivial if yi ∈ Xi. Algorithms for finding the set of all minimal and non-trivial
dependencies that hold in a given relation are known [6].

Example 4 (Functional Dependencies in Constraint Relations). Consider constraint ca

from Example 2, presented below:

ca(x1, x2, x3, x4)
def= {(0, 0, 0, 4), (0, 4, 2, 4), (1, 0, 0, 2), (2, 2, 3, 2), (2, 4, 1, 3)}.

The following minimal functional dependencies (among the seven that exist for this
relation) hold in ca: F1 : {x3} → x2,F2 : {x1, x2} → x3, and F3 : {x1, x2} → x4.
The values of x2 are uniquely determined by the value of x3 and the values of x4 and x3

depend, similarly, only on the values taken by x1 and x2. The dependency {x2} → x3

does not hold because value 4 of x2 does not determine the value of x3 (2 or 1). N

Based on a set of functional dependencies that hold on the relation of a constraint,
we define a lossless reformulation of the constraint into a conjunction of constraints
as follows. Given a positively defined table constraint ci and a functional dependency
Fi : Xi → yi holding on rel(ci), constraint ci can be reformulated into a pair of con-
straints. The first constraint is defined over the scope scope(ci)−{yi}, while the second
constraint is defined over the scope Xi ∪ {yi}. Informally, a functional dependency al-
lows us to split the scope of a constraint by eliminating the functionally dependant
variable yi.

Example 5 (Constraint Reformulation using a Functional Dependency). Consider the
constraint ca and the functional dependencies presented in Example 4. The original
scope of ca is (x1, x2, x3, x4). If we apply F3 : {x1, x2} → x4, this scope is split
into (x1, x2, x3) and (x1, x2, x4), according to the procedure above. If we apply F1 :
{x3} → x2 on the scope (x1, x2, x3) we can split this into (x1, x3), (x2, x3) and the
resulting lossless reformulation of ca is made of (x1, x3), (x2, x3) and (x1, x2, x4). N

Since we perform constraint reformulation using functional dependencies the fol-
lowing theorem immediately follows.

Theorem 1 (Lossless Reformulation). The reformulation ∆(ci) of constraint ci using
the functional dependency Fi : Xi → yi holding on rel(ci) is lossless.

A reformulation is obtained by applying a sequence of dependencies. However,
as dependencies are applied, others may no longer be applicable to the reformulation
we obtain. For example, in Example 5 we did not apply functional dependency F2 :

25

{x1, x2} → x3. This is because having applied F1 and F3 it is not longer applicable,
since no scope in our reformulation can be decomposed with it. Two dependencies
cannot be applied in the same sequence if they have, for example, the same right-hand
side. Others have to be applied in a given order, due to the following theorem.

Theorem 2 (Valid Ordering of Functional Dependencies). Given a constraint ci, let
Fi : Xi → yi and Fj : Xj → yj be two minimal functional dependencies that hold in
rel(ci) such that yj ∈ Xi ∪ {yi} and Xi ∪ {yi} 6⊂ Xj ∪ {yj}. Then Fi can only be
applied before Fj , which we denote as Fi ≺ Fj .

Therefore, a set of functional dependencies can be viewed as a directed graph in
which each vertex represents a functional dependency. A directed edge (Fi,Fj) in this
graph between the vertices Fi and Fj is added if Fi can only be applied before Fj . Pro-
vided the set of functional dependencies are applied in an order that does not correspond
to a cyclic path in this graph, the resultant reformulation is unique.

Given a set of functional dependencies, we seek to use them to find a reformulation
in which the maximum arity of the constraints in the reformulation is minimised. This
problem is NP-Hard, since the corresponding decision problem can be used to solve
the Feedback Vertex Set problem, which is known to be NP-Complete. However, our
experiments show that, even on real-world table constraints, the optimal reformulation
can be found in less than one second.

5 Experiments

The objective of our experimental evaluation was twofold2. Firstly, we wished to evalu-
ate the extent to which functional dependencies could be used to effectively reformulate
real-world table constraints in order to significantly reduce the maximum arity of the
constraints in the reformulation. Secondly, we sought to show that using a reformulation
of table constraints based on functional dependencies, more compact minimal conflict
explanations could be found. Our experiments achieved each of these objectives and
support our claim that exploiting functional dependencies in constraint relations is a
promising approach to automated reformulation of table constraints.

We have used a well-known library, called TANE [6], to compute the set of func-
tional dependencies in a constraint relation. Four datasets were used in our experiments:

1. From the Renault Megane Car Configuration Problem [1] we used the two largest
table constraints (R80 and R140). R80 involves 10 variables and contains 342 tu-
ples, while R140 involves 9 variables and contains 164 tuples.

2. We used a dataset of digital cameras, defined using 11 variables and 113 tuples [9].
3. We used a dataset of laptops, defined using 13 variables and 403 tuples [9].
4. We used the CBR travel case base, defined using 9 variables and 1470 tuples.

For each dataset we removed any field that gave a unique identifer to each tuple, since
these would have introduced many “artificial” dependencies. Specifically, this resulted
in the arities of the digital camera and laptop data-sets being reduced to 8 and 10 vari-
ables, respectively. All other data-sets remained unchanged.

2 Experiments were implemented using Choco (http://choco-solver.net), and run on
a MacBook with 2Gb of RAM and a dual core 2Ghz processor.

26

5.1 Experiment 1: Reformulation of Real-World Constraints

The objective of this experiment was to evaluate the extent to which a functional dependency-
based reformulation could be used to reformulate the table constraints in each of our
data-sets. This experiment involved computing the set of all functional dependencies,
and computing a reformulation with the smallest maximum arity. We summarise our
results in Table 1. We report the number of tuples and arity of the initial tables. We also
present the number of functional dependencies found by TANE, from which we find
the best reformulation, i.e. the one that gives a reformulation whose maximum arity is
smallest. For each dataset we report the number of constraints, minimum and maximum
arity, and the time (in seconds) taken to compute the optimal reformulation.

Table 1. Lossless reformulations of the table constraints in our dataset.

Data-set #tuples arity #dependencies #constraints min.arity max.arity time(s)

camera 113 8 41 4 5 5 0.20
laptop 403 10 54 4 5 6 0.57

renault R80 342 10 2 3 2 8 0.00
renault R104 164 9 11 6 2 4 0.02

travel R0 1470 9 7 4 4 6 0.00

There are several very positive results in this table. Firstly, the optimal reformulation
can be found extremely quickly, eventhough this task is theoretically intractable. Sec-
ondly, it is possible to find reformulations in which the maximum arity is significantly
reduced, e.g. by 55% in the case of the Renault R104 constraint. Thirdly, it is interest-
ing to see that the reformulations found can sometimes contain constraints of very low
arity. Specifically, for both constraints from the Renault configuration problem we were
able to find an equivalent reformulation involving binary constraints.

5.2 Experiment 2: Computing Compact Explanations

The objective of this experiment was to measure the compactness of the explanations
of inconsistency found for each dataset using the original constraint, as well as a refor-
mulation with the smallest maximum arity. We used the same datasets as before, but
in the case of the Renault tables we combined both together in the same problem, giv-
ing us four scenarios in total. The key measurements taken in this experiment were the
number of variables, along with the maximum arity of the constraints involved in the
explanations of inconsistency. A more compact explanation involves fewer variables
and constraints of lower arity.

The approach we adopted was, for each dataset, to add a set of randomly generated
binary constraints to force inconsistency with a given (set of) table constraint(s), but are
consistent without the table constraint. Therefore, in the case where the table constraints
in our datasets were used in their original form, the table constraints were involved in all
explanations of inconsistency. However, using the reformulation, it was often possible
to find a much more compact explanation, as our results illustrate.

27

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12 14 16

c
o
n
s
tr

a
in

t
a
ri
ty

#variables in the explanation

original (best)
reformulation (best)

original (avg)
reformulation (avg)

(a) camera (low)

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12 14 16

c
o
n
s
tr

a
in

t
a
ri
ty

#variables in the explanation

original (best)
reformulation (best)

original (avg)
reformulation (avg)

(b) camera (high)

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12 14 16

c
o
n
s
tr

a
in

t
a
ri
ty

#variables in the explanation

original (best)
reformulation (best)

original (avg)
reformulation (avg)

(c) renault (low)

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12 14 16

c
o
n
s
tr

a
in

t
a
ri
ty

#variables in the explanation

original (best)
reformulation (best)

original (avg)
reformulation (avg)

(d) renault (high)

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12 14 16

c
o
n
s
tr

a
in

t
a
ri
ty

#variables in the explanation

original (best)
reformulation (best)

original (avg)
reformulation (avg)

(e) laptop (low)

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12 14 16

c
o
n
s
tr

a
in

t
a
ri
ty

#variables in the explanation

original (best)
reformulation (best)

original (avg)
reformulation (avg)

(f) laptop (high)

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12 14 16

c
o
n
s
tr

a
in

t
a
ri
ty

#variables in the explanation

original (best)
reformulation (best)

original (avg)
reformulation (avg)

(g) travel (low)

 2

 4

 6

 8

 10

 12

 2 4 6 8 10 12 14 16

c
o
n
s
tr

a
in

t
a
ri
ty

#variables in the explanation

original (best)
reformulation (best)

original (avg)
reformulation (avg)

(h) travel (high)

Fig. 1. Experimental results showing the compactness of the explanations found using a refor-
mulation of a table constraint, as compared with the original case. Note that the avg and best
values for the original constraint always coincide.

28

To generate a variety of classes of inconsistent problems for which we computed ex-
planations, we varied both the density of constraints to be combined with the constraints
in our dataset, and their tightness. The density of a set of constraints is the percentage of
all possible binary constraints that can be defined on a set of variables that are present
in the constraint network. The tightness of a constraint is the percentage of all possible
tuples that can be assigned to a pair of variables that violate the constraint.

Table 2. Constraint density and tightness settings used in our experiments.

Dataset density (%) low tightness (%) high tightness (%)

camera 43 75 88
laptop 27 69 90
travel 33 72 94

renault 8 42 88

For each dataset, 20 problems are generated: 10 with a low tightness and 10 with
high tightness. The density and tightness of the random binary problems, therefore, var-
ied for each table as it is related to the size of the initial scope and the initial domains
of the variables in the constraint. The low tightness setting was chosen to be the first
tightness found before the problems generated began to be inconsistent and the high
tightness setting is the last tightness found before all problems generated are inconsis-
tent. Table 2 summarises the parameters used to generate the set of additional binary
constraints used for each dataset to generate inconsistencies.

To fairly compare the compactness of explanations found using the reformulation
against that of the original constraint, for each inconsistent problem we computed the
set of all minimal conflicts using a well-known algorithm by Bailey and Stuckey [2].
Based on the set of all possible minimal conflicts, we can measure either the smallest
maximum arity and the total number of variables in that best explanation (we refer to
this as best), or the average maximum arity and average total number of variables
(which we refer to as avg).

In Figure 1 we present our results. For each dataset we show two figures: one for
the cases where inconsistency was caused by the addition of low tightness constraints,
while in the other high tightness constraints were used. In each case, we plot: (a) a point
at a coordinate given by the average minimum number of variables in the explanation
and the corresponding average smallest maximum arity (the best case); and (b) a
point at a coordinate given by the average number of variables in the explanation and
the corresponding average arity (the avg case). The former represents the best case,
while the latter represents the average measurements for the explanations we compute.
We also plot coordinates corresponding to the original constraint in each case.

It is clear that, in each case, the minimal set of constraints sufficient to explain in-
consistency in the case of the reformulation is always more compact than if the original
table was used. It is often possible to either find explanations that either reduce the arity
of the largest constraint, or the number of variables involved in the explanation by al-
most half. When the constraints added are of high tightness, in the case of the Renault

29

tables (Figure 1(d)), the number of variables can be reduced from nine to almost three,
while the maximum arity constraint in the explanation is reduced from nine to two.

This is a very significant improvement in explanation compactness. This trend is
similar for all datasets. Finally, even when focusing on the performance of the average-
case results, rather than the best-case, the improvements are also significant.

6 Conclusion

We have presented a novel approach to automatically reformulating constraints defined
as a table of allowed assignments to variables. Constraints of this form are common
in a variety of settings. We demonstrated that by using functional dependencies from
the field of database design, reformulations of table constraints could be found that
yield compact explanations of inconsistency by reducing both the number of variables
required to explain inconsistency and the arity of the largest constraint involved in the
explanation. We demonstrated our approach on real-world datasets with very positive
results.

Acknowledgements

This work was supported by Science Foundation Ireland (Grant Number 05/IN/I886).
We thank Pearl Pu for providing the laptop and camera datasets.

References

1. Jérôme Amilhastre, Hélène Fargier, and Pierre Marguis. Consistency restoration and expla-
nations in dynamic CSPs – application to configuration. Artif. Intell., 135:199–234, 2002.

2. James Bailey and Peter J. Stuckey. Discovery of minimal unsatisfiable subsets of constraints
using hitting set dualization. In Proceedings of PADL, pages 174–186, 2005.

3. Johan de Kleer and Brian C. Williams. Diagnosing multiple faults. Artif. Intell., 32(1):97–
130, 1987.

4. Jon Doyle. A truth maintenance system. Artificial Intelligence, 12:231–272, 1979.
5. Marc Gyssens, Peter Jeavons, and David A. Cohen. Decomposing constraint satisfaction

problems using database techniques. Artif. Intell., 66(1):57–89, 1994.
6. Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. Tane: An efficient algo-

rithm for discovering functional and approximate dependencies. Comput. J., 42(2):100–111,
1999.

7. Ulrich Junker. QUICKXPLAIN: Preferred explanations and relaxations for over-constrained
problems. In AAAI, pages 167–172, 2004.

8. Mark H. Liffiton and Karem A. Sakallah. On finding all minimally unsatisfiable subformulas.
In SAT, pages 173–186, 2005.

9. James Reilly, Jiyong Zhang, Lorraine McGinty, Pearl Pu, and Barry Smyth. Evaluating
compound critiquing recommenders: a real-user study. In ACM Conference on Electronic
Commerce, pages 114–123, 2007.

10. Raymond Reiter. A theory of diagnosis from first principles. Artif. Intell., 32(1):57–95,
1987.

30

Experiments in Mobile Content Enrichment

Karen Church and Barry Smyth

Adaptive Information Cluster,
Department of Computer Science,

University College Dublin, Belfield, Dublin 4, Ireland
{Karen.Church, Barry.Smyth}@ucd.ie

Abstract. Mobile content, by its concise nature, offers limited index-
ing opportunities, which makes it difficult to build high-quality mobile
search engines and indexes. In this paper we address this problem by
evaluating a heuristic content enrichment framework that uses standard
Web resources as a source of additional indexing knowledge. We present
an evaluation using a mobile news service that demonstrates significant
improvements in search performance compared to a benchmark mobile
search engine.

1 Introduction

Recent positive developments in handsets, infrastructure, content quality, and
charging models are fueling renewed optimism about the potential of the Mobile
Internet. For example, a recent report by Informa put the number of mobile
subscribers at 2.7 billion at the end of 2006 1. Ipsos Insight published a study in
2006 which shows that 28% of mobile subscribers worldwide have browsed the
Internet using their mobile phone 2. This pattern of growth was driven primarily
by older users (age 35+) indicating that the traditional early adopter segment,
i.e. young males, no longer dominates wireless Internet access.

Until recently, the Mobile Internet, for the majority of subscribers, has meant
the “walled-garden” of content that has been available through their operator’s
portal. However, as off-portal content has grown so too has the interest of users
in accessing this content, which has led to a sharp increase of interest in the
potential for mobile search engines to provide users with fast and efficient access
to this content. For example, major players within the search engine industry like
Google and Yahoo continue to release exciting new improvements to their mobile
search services. One recent study reports that 31% of users started using mobile
search in 2006 with another 48% expecting to start in the next few months 3.
1 IT Week: Mobile industry ’bullish’ for the new year,

http://www.itweek.co.uk/vnunet/analysis/2171436/mobile-industry-bullish-2007
2 Ipsos Insight: Mobile phones could soon rival the PC as worlds dominant Internet

platform, http://www.ipsos-na.com/news/pressrelease.cfm?id=3049
3 Mobile Marketing Association: Mobile Marketing Association announces Mobile

Search study key findings,
http://www.primezone.com/newsroom/news.html?d=103374

31

There are many significant issues to be addressed if current search engine
technologies are to deliver the type of search experience that is necessary to en-
gage mobile users. For a start there are the many well-documented challenges of
delivering information to small screen devices [5]. In addition, restricted text in-
put capabilities inevitably have a significant impact on the use of these handsets
as search devices, limiting the type of queries that will likely be provided. These
device limitations are but one aspect of the larger problem and the nature of
mobile content itself is such that it introduces additional challenges from an in-
dexing and search standpoint. Mobile pages are typically much shorter in length
than their Web counterparts; most mobile gateways and handsets are limited by
the size of the pages they can process, and traditionally WML (Wireless Markup
Language, the mobile equivalent of HTML) decks are restricted to just a few KB.
Mobile Internet access is mainly about content snacking but smaller pages mean
that there is less content for a search engine to index and thus less information
available to inform retrieval. This exacerbates the so-called vocabulary gap [4]
that plagues Web search — referring to the tendency for searchers to often chose
query terms that do not correspond to those used to index their target document
— because there are even fewer terms available for indexing thus reducing the
likelihood of a query match during future searches.

We consider this issue of limited page content in this paper and describe a
heuristic context enrichment strategy to extend the indexing knowledge that is
used to characterise mobile content by discovering additional indexing terms. To
do this for some item of content we automatically transform the content item in
to a set of enrichment queries which are used to retrieve a set of enrichment re-
sults from a standard Web search engine. These related result pages then act as a
source of enrichment terms which are extracted, ranked and added to the mobile
index. We have previously described and evaluated a basic content enrichment
(CE) framework, focusing on the selection of enrichment terms, and demon-
strating a significant improvement in retrieval accuracy [2]. However, this work
highlighted a number of opportunities for improving the way in which enrich-
ment queries are generated, and the way in which enrichment results are selected
prior to enrichment term extraction and in this paper we propose improvements
in both of these areas and demonstrate additional performance gains.

2 Related Work

The research area we have identified as most relevant to our current work is
the query expansion or relevant feedback domain. A well known issue in Web
search and IR is that short queries and term mismatching can cause relevant
documents to be omitted from search results because they do not contain the
terms within a user’s query. The idea behind query expansion is that if we enrich
the query using terms from a set of relevant documents, overall retrieval perfor-
mance increases. One of the most popular query expansion techniques is known
as relevance feedback [6, 7]. The standard approach involves a user submitting an
initial query to the system, receiving a set of results and indicating which results

32

are relevant. Terms are then extracted from these relevant documents and are
used to supplement the users initial query. This iterative process continues until
the users information need is satisfied.

Although existing research shows that relevance feedback can achieve signif-
icant improvements in retrieval performance, it requires that users provide ac-
curate relevance judgments. However, users are often reluctant to provide such
information. To overcome this difficulty, the concept of pseudo-relevance or blind
feedback was introduced. In this approach the system handles relevance feedback
by assuming that the top-ranked documents returned to a given query are rele-
vant. Terms are then extracted from these documents and are used to formulate
a new enriched query. Previous studies have shown that pseudo-relevance can
lead to significant improvements in retrieval performance [1, 3]. Our approach
to content enrichment is similar in spirit to pseudo-relevance feedback domain
except that top-ranking documents are used as a source of indexing terms (at
indexing time) as opposed to a source of query terms at search time.

3 Mobile Content Enrichment

The main contribution of this paper is to describe a technique for enriching
mobile content by leveraging existing Web search resources. The objective is
to expand the limited content of a typical mobile page to produce an enriched
version of this page for the purpose of indexing. The enrichment process involves
using elements of the page’s original content as queries to a Web search engine,
with the enrichment terms extracted from the top ranking results retrieved for
these queries. The assumption is that this will lead to enrichment terms that are
missing from the original content (document) but that are nevertheless useful
for indexing, and that thus provide for additional retrieval opportunities.

Previously we [2] described a basic enrichment technique, focusing on how
enrichment terms are extracted from the search engine results, and demonstrat-
ing search performance improvements in excess of 20%. In this paper, we will
extend this work by focusing on two different stages of the enrichment process—
(1) the extraction of query terms from the original content; and (2) the selection
of results as a source of enrichment terms — and will demonstrate how these
improvements have a further impact on search engine performance.

3.1 The Enrichment Process

To provide a general overview of the basic enrichment process, consider a mobile
page S’. Enrichment is then a 5-stage process:

1. Query Extraction: Generate a query, Q(S′), or rather a set of q queries from
S’ by extracting k informative terms.

2. Result Extraction: Submit each query Qi(S′) to a Web search engine (by
default we use Yahoo) to generate a set of r results, RQi(S′).

3. Result Selection: Select the r highest quality results from RQi(S′) to produce
a filtered set of Web search results, Rfiltered

Qi(S′) .

33

4. Term Extraction: Analyse the content of these filtered results to extract a
set of the n most informative enrichment terms V (S′) = t1, ..., tn.

5. Page Indexing : Index S′ using a combination of its own terms and the en-
richment terms; that is, E(S′) = S′ ∪ VQ(S′).

In this way each mobile page S′ is expanded by a set of enrichment terms
which have been selected because they appear to be related to the content of S′.
The process above can be tuned in a variety of ways, by varying key parameters
(such as the number of enrichment terms to add or the number of related results
to select as a source of these terms) to facilitate a narrow or broad approach to
enrichment. If the enrichment terms are too narrow then new retrieval opportu-
nities may be limited. If they are too broad, while new retrieval opportunities
may be readily available, retrieval precision may be reduced.

As mentioned above, our previous work [2] has focused on Step 4 of the
enrichment process, while using very straightforward approaches in the other
steps. In the following sections we will focus on Steps 1 & 3. The assumption is
that by improving the way in which we generate queries from the source content
we can more reliably identify result pages that are likely to provide a good source
of enrichment terms. Similarly, by being more selective in the result pages that
we use as a source of these terms, we can produce a better set of final enrichment
terms; for example, eliminating pages that are among the top retrieved results
but that do not appear to be relevant to S′ will help to improve the final quality
of the enrichment terms.

3.2 Query Generation

The default approach to generating a query from S′, as reported in [2], was
based on generating a single query for each S′ from the top k most frequently
occurring terms in S′ (after stop-word removal). While this approach appeared to
work reasonably well it is clear that there is considerable room for improvement.
As such we propose two new strategies that involve the generation of multiple
queries, instead of a single query, using two different query extraction techniques:

1. MTF (multiple queries, term frequency extraction): Instead of generating a
single query, we generate q (q = 10) queries of size k (k = 5) from the terms
with the highest frequency in S′. Specifically we extract the top 10 terms
with the highest frequency in S’ and generate a list of q unique 5-term query
combinations from these top 10 terms.

2. MYH (multiple queries, Yahoo term extraction): Generate a set of q (q = 10)
queries by submitting S′ to the Yahoo Term Extraction Tool 4. This tool
returns a ranked list of key terms from a body of text (S’), which we use as
a source to extract q k − term queries as above (with q = 10 and k = 5).

4 http://developer.yahoo.com/search/content/V1/termExtraction.html

34

3.3 Result Selection

In the enrichment technique employed by Church and Smyth [2], the results
chosen as a source of enrichment terms were simply all of the top-ranking results
returned by the underlying search engine for some query Qi(S′). The problem
with this approach is that it can lead to the inclusion of a result that has little or
no relevance to the source content (S′), especially in the face of a vague query.

What is needed is a technique for filtering out result pages that are unlikely
to serve as a good source of enrichment terms. One way to do this is to compare
each result rj to S′. If there is a significant overlap between the result and S′

then we can reasonably infer a level of similarity or relatedness. Overlap on its
own does not go far enough however because we would like to favour results that
are related but that also offer extra terms that are missing from S′; after all rj

may be very related to S′, but if S′ − rj is essentially empty then rj will not
act as a source of new enrichment terms. For this reason we evaluate each result
rj by considering its overlap with S′ and the availability of new terms that are
missing from S′. We prefer results that have a significant overlap and that offer
a significant number of new terms by using a harmonic mean of both factors to
evaluate result quality; see Equations 1, 2, and 3. Thus, in this paper we will
examine a result selection approach (Sel) which selects the top m Yahoo results
with the highest quality scores. In this way high-ranking results that fall below
this threshold will not be considered as a source of enrichment terms.

Quality(rj , S
′) =

1
1

Overlap(rj ,S′) + 1
Diff(rj ,S′)

(1)

Overlap(rj , S
′) =

|rj ∩ S′|
|S′|

(2) Diff(rj , S
′) =

|rj − S′|
|rj |

(3)

4 Evaluation

We have argued that enrichment is one way to improve the retrievability of
mobile content and that existing search engines can be a valuable source of
enrichment knowledge. In this section we will evaluate the impact of our new
query generation and result selection components compared to a standard mobile
search engine and the basic approach to enrichment described by [2].

4.1 Test Data

In this experiment we use a database of 1999 recent news stories, harvested from
a Web-based news service during October 2005 - February 2006, as the basis for a
mobile news search engine. News stories were chosen for two important reasons.
First of all, news is a good example of the type of content that is popular on the
mobile Internet. Second, it is relatively easy, for the purpose of this experiment,
to convert a long-version of a news story into a shorter, mobile version that
will form the basis of the mobile news content. Typically these shorter versions

35

were about 10-20% of the original and, in the case of our news content, this
truncation process was straightforward because each story was preceded by a
concise summary of the longer text. The point of this is that the additional
story content, which did not make it into the mobile form of the story, was then
available as a plausible source of potential target test queries. In this way, during
performance testing, for each indexed mobile story (target story), we generated
test queries (using the same technique for generating enrichment queries) from
the content that was missing from the mobile form; thus test queries will often
contain terms that are not present in the mobile version of the story, but that are
nonetheless relevant as potential query terms. These test queries were submitted
to each test search engine and we measured the percentage of times that the
target story was retrieved among the top 10 results.

4.2 Test Search Engines

In all we evaluated 6 different test search engines, each corresponding to a dif-
ferent approach to indexing and enrichment: SE1 used no enrichment and news
stories were indexed using their existing content only; the remaining 5 search en-
gines implement different version of our enrichment strategies. All of the search
engines were implemented using the Lucene5 platform and Yahoo was used as
the underlying search engine responsible for providing enrichment results. The
summary details for each search engine are as follows:

1. SE1 : This search engine provided a baseline as it used only standard mobile
content to index the news stories.

2. TF : This search engine uses a basic enrichment technique (described by [2])
in which each news story is enriched from the top 10 ranking results returned
from Yahoo based on a single enrichment query made up of the top k most
frequent terms in the mobile story.

3. MFT : This search engine uses the same enrichment technique as TF except
that 10 enrichment queries are used to provide enrichment results.

4. MYH : This search engine uses the same enrichment approach as MTF ex-
cept that the enrichment queries are generated using the Yahoo Term Ex-
traction Tool as discussed in Section 3.2.

5. MTFSel : This variation operates in the same way as MTF except that in ad-
dition, the enrichment results are filtered using the quality metric discussed
in Section 3.3.

6. MYHSel : This variation operates in the same way as MTFSel except that
the enrichment queries are generated using the Yahoo Term Extraction Tool
as discussed in Section 3.2 and results are filtered using the quality metric
as discussed in Section 3.3.

Note that k, the number of terms used in our mobile query Q(S′), is set to
5 for each search engine in our experiments.

5 http://lucene.apache.org

36

4.3 Methodology

An experimental run involves testing the retrievability of each of the 1999 news
stories. For each test story, we generate a set of test queries q, where q = 3 from
its non-mobile content. To generate the test queries we vary p (the number of
terms used in test queries) between 1,2 or 3 terms by selecting the t most frequent
terms in the remaining portion of news content that is not part of the original
news stories S′. Next we submit each test query to the 6 test search engines and
compute the average percentage accuracy (we will refer to this as the success
rate) for each of the test search engines as the percentage of times that the
target result (the current test story) is found in the top 10 results returned. This
is repeated for a variety of different parameterizations of our content enrichment
technique by varying r = 3, 10 (the number of Yahoo results extracted) and
n = 10, 50, 100, 200 (the number of terms used for enrichment), to understand
how retrieval performance varied under different experimental conditions.

4.4 Overall Successful Rates

Figure 1 presents the overall success rate for each of the 6 test search engines
averaged over all parameter settings. Although the average success rates are
reasonably low—e.g., the results show that indexing mobile news stories by their
own content delivers successful retrievals approx. 20% of the time, on average—
we must remember that the procedure we are using enforces a strict notion of
relevance, in the sense that only one news story is considered to be relevant
for each query. In reality, searchers are likely to entertain a variety of relevant
results for their queries. As such it is reasonable to interpret the results as lower
bounds on search engine performance. The average searcher is likely to enjoy
better search engine performance in practice, but we predict that comparable
relative differences between the search engines will remain under such weaker
relevance conditions.

Returning to the success rates for each of our test search engines, we find that
the basic search engine SE1 (which uses no enrichment), fails to find the target
news story in 79% of cases. In contrast, we see that on average, all of the enriched
engines do significantly better. For example, the basic enrichment technique
(TF) offers improvements of around 23% over SE1. However, the results also
show that each of our enhancements to the basic enrichment technique have a
positive effect on retrieval performance. For example, MTF and MY H take
advantage of multiple enrichment queries to offer improvements of 27% over
SE1. MTFSel which incorporates a quality-based result selection phase offers
an even greater overall benefit (34%). Overall, the best performing technique,
MY HSel, combines the use of multiple queries, the more sophisticated Yahoo
term extraction service to generate enrichment queries, and quality-based result
selection, to achieve a relative success rate increase of 37% over SE1.

These results clearly demonstrate that we can significantly increase retrieval
performance by (1) using multiple queries at the query generation phase, (2) us-
ing more sophisticated term extraction techniques, and (3) employing the quality
metric to filter out any low-quality enrichment results.

37

0

5

10

15

20

25

30

SE1 TF MTF MYH MTFSel MYHSel

%
 S
u
c
c
e
s
s

0

5

10

15

20

25

30

35

40

%
 B
e
n
e
f
it

% Success

% Benefit

Fig. 1. Average overall percentage success rates for each of the 6 search engines and
the relative benefit of the 5 enriched search engines compared to SE1.

4.5 Varying n: the number of enrichment terms

Varying the number of additional enrichment terms is likely to have a significant
impact on retrieval performance. The more relevant the terms selected for in-
dexing, the better able the search engine will be to return the target document
for a relevant query. The risk, however, is that if too many irrelevant (or at least
less relevant) terms are used to index a document then this will increase the
likelihood of false remindings at search time. If this happens we can expect to
find many irrelevant documents being retrieved during a typical search, thereby
increasing the likelihood that the target document will be pushed further down
the result-list and thus reduce search success.

The results obtained by varying n, the number of enrichment terms used
during indexing, are presented in Figure 2 and 3, by averaging the experimental
runs for each particular value of n. Once again, we find a significant advantage
accruing to the enriched search engines. Indeed we see that as the enrichment
terms are increased from 10 to 200 there is a steady improvement in overall
search engine performance, relative to SE1. At only 10 enrichment terms there
is little significant advantage for the enriched search engines but the use of 200
enrichment terms sees a minimum relative improvement of 33% for the basic
enrichment technique TF , while MY HSel achieves a 73% relative improvement
over SE1; note 73% is the average of the individual relative benefits found for
MY HSel during the r = 3 and r = 10 runs, at n = 200.

Again it is clear that the use of multiple queries, the more sophisticated term
extraction technique for query generation, and the quality filter for result selec-
tion, all have an independently positive effect on overall retrieval performance.
For example, the use of multiple queries contributes up to 20% in relative benefit
terms, whereas the use of the more sophisticated term extraction technique adds
another 6%, and the result selection filter adds a further 14%.

38

15

20

25

30

35

10 50 100 200

n (the number of enrichment terms)

%
 S
u
c
c
e
s
s

SE1

TF

MTF

MYH

MTFSel

MYHSel

Fig. 2. Search success rates

0

20

40

60

80

100

10 50 100 200

n (the number of enrichment terms)

%
 B
e
n
e
fi
t

TF

MTF

MYH

MTFSel

MYHSel

Fig. 3. Average benefit relative to SE1

4.6 Varying r: the number of enrichment results

Another critical parameter in the enrichment process is the number of results
that are retrieved in response to each enrichment query. These results provide
the raw material from which the enrichment terms are extracted. If too many
results are retrieved then it is likely that less relevant sources of enrichment
terms will be considered during the term selection phase. This will potentially
reduce the quality of enrichment terms. At the same time, if we retrieve too few
results then we are limiting the enrichment process to a reduced set of potential
enrichment terms and this could lead to missed indexing opportunities.

The results for 2 different settings for r (3 and 10) are presented in Figure
4 and 5. As before we see that the enriched search engines all do significantly
better than SE1 across the different values for r. Interestingly, using fewer results
(r = 3) is seen to have a positive impact on overall retrieval performance. For
r = 10 each of our enriched search engines offers improvements over SE1 of
between 23%-33%. However, when r = 3 we see improvements in the range
23%-42%. The results suggest that higher ranking results are a better source
of enrichment material and while the result-selection filter helps to control the
quality of the results used in enrichment, at r = 10 some lower quality results
are being incorporated. Remember that in this experiment we extract the top
r results with the highest threshold. At r = 3 the average quality of selected
results is approximately 0.4, but at r = 10 this average quality decreased to
0.36. Thus the higher quality results selected for r = 3 have contributed to an
overall increase in performance for this setting.

5 Conclusions

Mobile search is challenging because of fundamental device and content limi-
tations. Mobile content, by its very nature, tends to be brief and can lack the
richness that is needed to build a good search index and, in this paper, we have
addressed this problem by presenting a heuristic content enrichment framework
that leverages traditional Web search engines and tools as a way to enrich mo-
bile content prior to indexing. We have described a number of enhancements to

39

15

20

25

30

SE1 TF MTF MYH MTF Sel MYH Sel

%
 S
u
c
c
e
s
s

r=10

r=3

Fig. 4. Search success rates

0

5

10

15

20

25

30

35

40

45

TF MTF MYH MTF Sel MYH Sel

%
 B
e
n
e
f
it

r=10

r=3

Fig. 5. Average benefit relative to SE1

our basic content enrichment strategy and evaluated the performance of each of
these enrichment strategies, relative to a benchmark mobile search engine, and
under a variety of experimental conditions. The results demonstrate significant
improvements in overall search engine performance.

This content enrichment framework provides many opportunities for further
developments beyond the term-based selection and weighting techniques used to
date. For example, a logical next step is to take advantage of linguistic knowl-
edge and simple natural language processing techniques in order to guide more
meaningful enrichment. Moreover, there are a number of opportunities to look
at the application of machine learning techniques to the extraction of suitable
enrichment terms and the classification of indexing knowledge, for example.

References

1. C. Buckley, G. Salton, J. Allan, and A. Singhal. Automatic Query Expansion Using
SMART: TREC 3. In Proceedings of the TREC-3, 1994.

2. K. Church and B. Smyth. Mobile Content Enrichment. In Proceedings of the
International Conference on Intelligent User Interfaces (IUI’07), pages 112–121,
2007.

3. E. N. Efthimiadis and P. V. Biron. UCLA-Okapi at TREC-2: Query Expansion
Experiments. In Proceedings of TREC-2, pages 278–290, 1993.

4. G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. The Vocabu-
lary Problem in Human-System Communication. Communications of the ACM,
30(11):964–971, 1987.

5. M. Ramsay and J. Nielsen. The WAP Usability Report. Neilson Norman Group.
1983.

6. J. J. Rocchio. Relevance Feedback in Information Retrieval. Gerard Salton, editor,
The SMART Retrieval System - Experiments in Automatic Document Processing,
pages 313–323, 1971.

7. G. Salton and M. McGill. Introduction to Modern Information Retrieval. 1983.

40

An Axiomatic Comparison of Learned

Term-weighting Schemes in Information

Retrieval

Ronan Cummins and Colm O’Riordan

Dept. of Information Technology,
National University of Ireland,

Galway, Ireland.
ronan.cummins@nuigalway.ie, colm.oriordan@nuigalway.ie

Abstract. Learning approaches in information retrieval are becoming
increasingly widespread. One learning paradigm that has attracted some
attention recently has been genetic programming. In this paper, we
present term-weighting functions reported in the literature which were
developed by four separate approaches using genetic programming.
Recently, three axioms (constraints), from which all good term-weighting
scheme should be deduced, have been developed and shown to be theo-
retically and empirically sound. We introduce a new axiom which follows
intuitively from the original three. We analyse the BM25 scheme and the
four learned schemes presented to determine if the schemes are consis-
tent with all four axioms. We find that only one term-weighting approach
is consistent with all the axioms. Finally, we empirically evaluate all of
the schemes on a number of test collections for short, medium and long
TREC queries and subsequently show that the only scheme that is con-
sistent with all of the axioms outperforms the other schemes.

1 Introduction

Term-weighting is crucial to the problem of document ranking within most, if
not all, information retrieval (IR) systems. Many approaches to term-weighting
have been developed over the years. The derived schemes have been produced
from various types of models, ranging from empirical learning models to purely
theoretical models. With the increase in computing resources and the advances
in machine learning techniques, many attempts have been made to learn term-
weighting schemes assuming a bag of words approach. In particular genetic pro-
gramming (GP) is becoming popular due to the freedom offered in the definition
of the problem and representation of the possible solutions. The basis behind
many of these approaches is that useful features and properties within a popula-
tion of solutions survive and propagate. GP produces a symbolic representation
of the solution, which is useful for analysis and generalisation. There have been
a number of attempts using GP to evolve term-weighting schemes for ad hoc
retrieval [7, 4, 10, 2].

41

An axiomatic approach to IR [5] has been employed which develops a number
of constraints (axioms) to which all good weighting functions should adhere.
This approach and the constraints in particular, are useful in attempting to
theoretically motivate term-weighting functions that are developed from purely
automated learning (empirically based) models.

More precisely, we believe that the best functions produced from a valid
learning approach to IR should adhere to these existing constraints (axioms).
The satisfaction of the constraints serve as a useful guide to the optimality of
the solutions produced. These constraints can potentially be used in a number
of different ways. They can be used to validate a specific learning paradigm in
an IR domain by showing that the solutions (term-weighting schemes) produced
adhere to them (i.e. that the learning approach adopted navigates the search
space effectively and finds the area of the space in which good term-weighting
schemes lie). The axioms can also be used to constrain the search space so that
the learning approach is searching a much smaller space. In the latter case, the
learning approach can search a space in which good solutions are already known
to exist.

This paper presents an analysis, using the existing axiomatic framework
for IR, of term-weighting schemes learned using four different GP approaches.
Firstly, we introduce the three existing axioms and postulate a new axiom which
complements the original axioms. We present one benchmark term-weighting
scheme (BM25) and four learned term-weighting schemes from separate GP ap-
proaches to the problem. All of the learned term-weighting schemes herein have
been developed using a GP process in a bag of words retrieval framework. Fur-
thermore, we present results which show that the only scheme which obeys with
all the axioms outperforms all others over multiple collections for various types
of query without the need for tuning parameters.

The remainder of the paper is organised as follows: Section 2 introduces the
existing axioms and motivates a fourth axiom. Section 3 presents five term-
weighting approaches together with a brief analysis of each scheme. In section 4,
we present results which provide empirical evidence for the validity of the four
axioms. Finally, our conclusions are outlined in section 5.

2 Axioms for Term-Weighting

We will briefly introduce previously developed constraints using an inductive
framework [5]. The idea of this inductive framework is to define a base case
function that describes the score (weight) assigned to a document containing
a single term matching (or not matching) a query containing a single term.
All other cases can be dealt with inductively using two separate functions. A
document growth function describes the change in the document score when a
single term is added to the document, while a query growth function describes the
change in the document score when a single term is added to the query. This is an
elegant approach to formalising necessary characteristics of good term-weighting
functions.

42

Three axioms have been postulated and these can be used to validate or to
develop term-weighting schemes in a constrained space. Thus, we used the term
axiom and constraint analogously in this paper. The first constraint (constraint
1) states that adding a new query term to the document must always increase the
score of that document. This captures the basic behaviour of a term-frequency
aspect. The second constraint (constraint 2) states that adding a non-query
term to a document must always decrease the score of that document. This
constraint ensures that some sort of normalisation is present and specifies its
basic operating principle. The third constraint (constraint 3) states that adding
successive query terms to a document should increase the score of the document
less with each successive addition. Essentially, the term-frequency influence must
be sub-linear. The intuition behind this constraint is that it is ultimately the first
occurrence of a term that indicates that the document is on-topic (i.e. related
to the query). Due to characteristics of natural language, it is known that when
a term first appears, when reading through a document, the likelihood of re-
appearance increases. Thus, the weight given to successive occurrences of a query
term should be reduced.

These constraints are used to check the validity of term-weighting schemes
before evaluation. Furthermore, term-weighting schemes which adhere to these
constraints are shown empirically to outperform weighting schemes that fail to
adhere to one or more of the constraints [5]. The constraints are also useful
in defining valid bounds on tuning parameters that appear in many existing
term-weighting schemes. It should be noted that simply adhering to these con-
straints does not guarantee a high performance weighting scheme. Rather it is
the violation of one or more of the constraint that indicates the performance
is non-optimal (i.e. breaks some rule of the proposed model of relevance). It is
worth noting that these axioms typically constrain a term-weighting schemes
within-document features (i.e. its term-frequency aspect and normalisation as-
pect).

2.1 New axiom

We now propose a new constraint which aims to avoid over-penalising successive
occurrence of non-query terms in documents. F (Q, D) is a function which scores
a document D in relation to a query Q in a standard bag of words retrieval model.
With notation similar in style to [5], our new constraint can be formalised as
follows, where t ∈ T is a term t in the set of terms in a corpus and δt(t, D, Q) =
F (Q, D ∪ {t})−F (Q, D) (i.e. the change in score as t is added to the document
D):
Constraint 4: ∀Q, D and t ∈ T , if t /∈ Q, |δt(t, D, Q)|−1 > |δt(t, D∪ {t}, Q)|−1.
According to Heaps’ law [6], the appearance of new unseen terms in a corpus
grows in roughly a square-root relationship (sub-linearly) to the document length
(in words). Therefore, as non-query terms appear in a document they should be
penalised less with successive occurrences. This constraint avoids over-penalising
longer documents by ensuring that the normalisation aspect is sub-linear.

43

Essentially, the inverse of the score reduction due to non-query terms being
added (an increasing value) should be sub-linear. This follows intuitively from
constraint 3 which controls how the score of a document changes as successive
query terms are added to a document. As such, it is the first appearance of a
non-query term that ultimately indicates a change in the topic of a document
and successive occurrences of this term do not indicate that the topic of that
document is drifting from the query to the same degree.

3 Term-weighting Analysis

This section presents the BM25 benchmark function and four learned functions
found in the literature. Each function is briefly analysed using the axioms pre-
viously introduced. Table 1 summarises the conclusions from this section.

3.1 BM25

The BM25 weighting scheme, developed by Robertson et al. [9], is a weighting
scheme based on the probabilistic model. The score of a document D in relation
to a given query Q can be calculated as follows:

BM25(D, Q) =
∑

t∈Q∩D

(
tfD

t

tfD
t + k1 · ((1 − b) + b · dl

dlavg
)
· log(

N − dft + 0.5

dft + 0.5
) · tfQ

t)

(1)

where tfD
t is the frequency of a term t in D and tfQ

t is the frequency of the term
in the query Q. dl and dlavg are the length and average length of the documents
respectively measured in non-unique terms. N is the number of documents in the
collection and dft is the number of documents in which term t appears. k1 is the
term-frequency influence parameter which is set to 1.2 by default. The query
term weighting used here (tfQ

t) is slightly different to the original weighting
method proposed [9] but has been used successfully in many studies [5]. b is the
document normalisation influence parameter and has a default value of 0.75.

Analysis. It can be noted that the idf component in the BM25 (log(N−dft+0.5
dft+0.5))

function will return a negative value when dft > N
2 and thus violates constraint 1

and 3 in certain circumstances. However, this typically violates these constraints
when stop-word removal is not used, as very frequent terms would otherwise be
removed [5]. It can also be seen that the normalisation function used in this
function is linear. This suggests that it needs to be tuned on specific collections
as it may over-penalise long documents on certain collections.

3.2 Oren

One of the first approaches to evolve term-weighting schemes using GP was
conducted in [7, 8]. This approach used non-atomic features of the terms, doc-
uments, queries and the collection to evolve term-weighting functions for use

44

in IR. Using parts of existing functions as terminals in the GP can be viewed
as a type of seeding or biasing, as prior knowledge about what constitutes a
good ranking function is assumed. This type of approach can arbitrarily limit
the search space. This work uses a small document collection (1,239 documents)
and 70 queries to evolve functions using a population of 100 individuals run for
150 generations. It has been noted by the author that they believe that many of
their functions are non-generalisable. One of the schemes outlined in this work
[8] can be re-written as follows:

F1(D, Q) =
∑

t∈Q∩D

(
tfD

t

tfD
t + dft + dl · (1 + 0.436 ·

tfD
t

tfD
max

· (cfmax + log(cfmax)))
)

(2)
where tfD

max is the frequency of the most common term in D, cfmax is the
frequency of the most common term in the collection.

Analysis. This function can be written as
tfD

t

tfD
t +dft+dl·(1+tfD

t ·K1)
where K1 is

a constant such that K1 > 0, which can be rewritten as
tfD

t

tfD
t

·(1+dl·K1)+dft+dl
.

In this form it is easier to see that the equation satisfies constraints one and
three. An extra occurrence of a query term will always increase the weight of a
document and this increase in weight is sub-linear. Constraint two is also satisfied
as the weight of a document will always decrease as non-query terms are added.
However, it can be determined that the normalisation component is linear in
nature (i.e. the normalisation component dl is linear in the denominator). This
is probably due to the fact that it was learned on one collection.

3.3 Fan et al.

Another approach to evolving weighting schemes [4] which assumes a simplistic

query term weighting (i.e. tfQ
t) has also been attempted. In this research, a

term-weighting function was learned using short queries and a population of
200 individuals for 30 generations. The best functions outlined in [4] can be
re-written as follows:

F2(D, Q) =
∑

t∈Q∩D

(
log(tfD

t · X)

vl + 2 · tfD
max + 0.373

) · tfQ
t (3)

where

X = (tfD
avg +

tfD
t

log(tfD
t · 2 · tfD

avg)
+

tfD
t · N · tfD

avg · (tfD
max + vl)

df2
t

) (4)

where tfD
avg is the average term-frequency in D and vl is the length of the

document vector (unique terms).

45

Analysis. In this scheme, a new occurrence of a query term always increases
the weight of a document and this increase in weight is sub-linear. As a result
constraint 1 and 3 are satisfied. However, as the normalisation used is the number
of unique terms (vector length), the second and fourth constraints are violated.
Consider a non-query term, which has already appeared in the document. If
this term re-occurs, the weight of the document will not decrease as the vector
length remains unchanged. Even if the document length factor used was changed
to the document length including repetitions (i.e. dl), constraint 4 would still be
violated.

3.4 Trotman

An approach using primitive atomic features of terms, documents, queries and
the document collection has also been attempted [10]. This approach used a large
terminal and function set with little or no constraints on the search space. In
this approach a seeded population of 100 individuals (96 random and 4 existing
functions) was ran for 100 generations 13 times. One of the best performing
schemes (named run 5 in [10]) can be re-written as follows:

F3(D, Q) =
∑

t∈Q∩D

(log
2
|
N − log2 |N |

2 · dft

| ·
cft

dft

·
tfD

t · tf
Q
t

· cfmax

max(C3, C4 +
C1·(log|C2+tf

Q
t

|+cft)·dl

N·dlavg
) + tfD

t

) (5)

where cft is the frequency of t in the entire collection of N documents. C1, C2,
C3 and C4 are constants of value 33.40102, 23.94623, 1.2 and 0.25 respectively.

Analysis. Firstly, the log
2
|
N−log2 |N |

2·dft
| part can lead to a negative weight for

terms with a high document frequency. This leads to constraint 1 and 3 being
violated in circumstances similar to the BM25 scheme. Also, we can see that

when C3 > C4+
C1·(log|C2+tf

Q
t
|+cft)·dl

N ·dlavg
, which typically occurs when cft is low (i.e.

for rare terms), the within document part of the formula reduces to
tfD

t

1.2+tfD
t

which

is a primitive form of the BM25 local weighting. This form of the function has
no normalisation component and thus violates the second constraint. However,
this form conditionally satisfies the first and third constraints as adding a query
term to a document always increases its score (constraint 1) and is sub-linear
(constraint 3).

When C3 < C4 +
C1·(log|C2+tf

Q
t
|+cft)·dl

N ·dlavg
, which typically occurs when the

collection frequency for a term is high (i.e. more common terms) a different form

of the function is used. Consider a typical case when tfQ
t is 1 and N is large

(e.g. 100,000). In such a case, this reduces to approximately 0.25+ 3.2+cft

3000 · dl
dlavg

.

For high values of cft, this will exceed C3 (i.e. 1.2). Interestingly, this can be re-

written as
tfD

t

0.25+K2·
dl

dlavg
+tfD

t

(where K2 is a global constant for a particular term)

which contains a normalisation form similar to the BM25 scheme. When the

46

function takes this form all three original constraints [5] are satisfied. However,
the normalisation scheme is not sub-linear and thus does not conform to the
new constraint (constraint 4). An interesting aspect to note is the evolution of a
density measure (i.e. cft

dft
) which has been independently evolved in other work

[2].

3.5 Cummins-O’Riordan

In this approach, a three-stage incremental approach was used to develop an
entire term-weighting scheme by evolving, in turn, three constituent parts of a
function similarly to [3]. The term-discrimination (or global) part was developed
using a population of 100 for 50 generations, while the term-frequency and nor-
malisation parts were developed using a population of 200 for 25 generations
each. The following is a typical entire term-weighting scheme:

F4(D, Q) =
∑

t∈Q∩D

(
ntf

ntf + 0.45
·

√

cf3
t · N

df4
t

· tfQ
t) (6)

The term-frequency influence factor here (i.e. ntf

ntf+0.45) has been modelled to
reflect the effect of an evolved term-frequency influence function by measuring
the relative term-frequency as in [1]. The normalisation aspect was evolved on
three different collections (indexed seperately) with varying document length
characteristics as most normalisation functions (including BM25) tend to be
collection specific. One of the best normalisation functions found using this ap-

proach was
√

dl
dlavg

.

ntf =
tfD

t
√

dl
dlavg

(7)

Analysis. It can be seen that the term-discrimination part of this function
is always positive and the term-frequency is sub-linear. The normalised term-

frequency (ntf) is normalised as tfD
t /

√

dl
dlavg

. Thus, if a query term is added both

tfD
t and dl will increase by 1, thereby increasing the value of the ntf component.

As a result, constraint 1 and constraint 3 are satisfied. If a non-query term is
added, ntf will decrease in value as dl will increase by 1; this satisfies constraint
2. This normalisation factor is also sub-linear, which leads to constraint 4 being
satisfied.

3.6 Summary of Constraint Satisfaction

Table 1 shows the constraints that each scheme satisfies. The conditional satis-
faction (denoted Cond.) means that the constraint is satisfied in many circum-
stance (as previously noted) but does not unconditionally satisfy the constraint.
We have ranked these schemes based on how many constraints they satisfy. We

47

ranked BM25 and F3 ahead of F2 mainly due to the fact BM25 and F3 will
only violate constraint 1 and constraint 3 if stop-words are not removed which
is not typically the case in many IR systems. Thus, F2 will typically break
constraints more often than BM25 or F3 will.

Table 1. Constraints Satisfaction

Constraints

Rank Scheme One Two Three Four

1 F4(D, Q) Yes Yes Yes Yes
2 F1(D, Q) Yes Yes Yes No
3 BM25(D, Q) Cond. Yes Cond. No
4 F3(D, Q) Cond. Cond. Cond. No
5 F2(D, Q) Yes No Yes No

It should be noted that this ranking is coarse as we do not know if violations
of different constraints lead to equal levels of suboptimality. We are also unsure
if the schemes identified are specific to a type of query or indeed the specific
environment in which they were trained. Nonetheless, given these details of con-
straint satisfaction it seems an intuitive and possibly useful way of ordering the
schemes by expected performance.

4 Empirical Comparison

In this section we present experiments to empirically validate the previous analy-
sis. We tested these five schemes on different types of collections and queries
(topics) to measure the MAP (mean average precision) of each scheme. The use
of stop-word removal in our experiment leads to constraints 1 and 3 being satis-
fied for BM25 and F3 on the collections used herein. This has been determined
empirically.

4.1 Document Collections

We used the LATIMES and FT (years 1991 to 1993) collections from TREC disks
4 and 5 as test collections and topics 401 to 450. For each set of topics we create a
short query set, consisting of the title field of the topics, a medium length query
set, consisting of the title and description fields, and a long query set consisting
of the title, description and narrative fields. We also use documents from the
OHSUMED collection (years 1990 and 1991) as a test collection. We created
short queries for the OHSUMED collection by simply removing terms from the
description field of the 63 topics. Standard stop-words from the Brown Corpus1

are removed and remaining words are stemmed using Porter’s algorithm. We
also used the NPL2 collection as a smaller test collection on which to judge the
schemes.
1 http://www.lextek.com/manuals/onix/stopwords1.html
2 http://www.dcs.gla.ac.uk/idom/ir resources/test collections/

48

4.2 Experimental Results

Table 2. %MAP on four different collections

FT91-93 (401-450) OHSUMED (63) NPL (93) LATIMES (401-450)

#docs (138668) (148162) (11429) (131896)

Schemes short medium long short medium medium short medium long

F4 32.72 36.30 38.46 25.53 30.07 28.95 26.50 26.87 28.80
F1 23.13 23.40 18.92 17.70 13.51 25.76 15.40 13.73 11.83
BM25 31.27 35.33 35.35 25.54 28.08 28.74 24.85 26.73 28.86
F3 31.95 33.82 33.61 23.19 26.27 27.54 24.30 25.81 25.68
F2 26.61 15.40 08.00 06.90 01.23 02.80 12.56 08.74 02.59

The results (Table 2) show that F4 outperforms most of the other schemes
on the various test data. This provides evidence to validate our new constraint.
The remaining schemes tend to perform in accordance with the rank in Table
1. However, F1 is the exception to this rule. This scheme adheres to three of
the constraints but performs poorly on many of the collections. This scheme
was learned on a very small set of documents (1,239 documents) and it would
appear that this is not a suitable size collection to be generalisable. Indeed, it is
suggested by one of the scheme’s authors in [7] that this formula is not likely to
be generalisable to any degree.

4.3 Discussion

The existing axioms and the newly postulated axiom are useful estimators of
term-weighting optimality. As such, they can be useful in estimating the perfor-
mance of a scheme. An interesting result is that many of the learned approaches
conditionally adhere to some of the constraints. This would suggest that they did
indeed learn useful methods for weighting terms in their training environment
but that their training data is quite specific (i.e. the constraints are satisfied for
the characteristics on the training data but are not unconditionally satisfied).

These results can tell us something about how to learn term-weighting func-
tions. Small collections (less than 10,000 documents) should be avoided when
aiming to learn generalisable term-weighting schemes. Indeed, it has already
been shown in [2] that the term-discrimation (global) part of a term-weighting
scheme can indeed be learned on a small collection but it is typically the within-
document (local) part of these schemes that is not generalisable. Although the
solution learned from such an approach (F1) does indeed adhere to the three
original axioms it is not generalisable.

To overcome the collection dependance problem (which typically affects the
type of normalisation to use), it is advisable to use multiple varied training
collections indexed seperately in order to learn schemes that will adhere to the
constraint specified herein. On a related note, it can be determined that using

49

the vector length as a measure for document length will lead to two constraint
violations as outlined in section 3.3.

Furthermore, it is advisable to use medium or long queries when learning
such term-weighting schemes. Short queries (as used in [4]) do not provide as
much information about how terms should interact with each other (particularly
in a term-discrimination context). This will lead to an increase in training time.

5 Conclusions

A new axiom for information retrieval has been introduced. We have presented
four learned term-weighting schemes and one term-weighting scheme which was
analytically developed. Only one of the schemes is consistent with all four axioms.
Interestingly, this scheme is one of the learned schemes. An evaluation of the
term-weighting schemes validates the analysis.

An interesting future direction would be to constrain the search space using
the axioms and then use a learning technique to search this reduced space.

References

1. Ronan Cummins and Colm O’Riordan. An evaluation of evolved term-weighting
schemes in information retrieval. In CIKM, pages 305–306, 2005.

2. Ronan Cummins and Colm O’Riordan. Evolving local and global weighting
schemes in information retrieval. Information Retrieval, 9(3):311–330, June 2006.

3. Ronan Cummins and Colm O’Riordan. An axiomatic study of learned term-
weighting schemes. In SIGIR’07 workshop on learning to rank for information
retrieval (LR4IR-2007), pages 11–18, July 2007.

4. Weiguo Fan, Michael D. Gordon, and Praveen Pathak. A generic ranking function
discovery framework by genetic programming for information retrieval. Informa-
tion Processing & Management, 2004.

5. Hui Fang and ChengXiang Zhai. An exploration of axiomatic approaches to infor-
mation retrieval. In SIGIR ’05: Proceedings of the 28th annual international ACM
SIGIR conference on Research and development in information retrieval, pages
480–487. ACM Press, 2005.

6. H. S. Heaps. Information Retrieval: Computational and Theoretical Aspects. Aca-
demic Press, Inc., Orlando, FL, USA, 1978.

7. N. Oren. Re-examining tf.idf based information retrieval with genetic program-
ming. Proceedings of SAICSIT, 2002.

8. Nir Oren. Improving the effectiveness of informtation retrival with genetic pro-
gramming. Master’s thesis, Faculty of Science, University of the Witwatersrand,
South Africa, December 2002.

9. Stephen E. Robertson, Steve Walker, Micheline Hancock-Beaulieu, Aarron Gull,
and Marianna Lau. Okapi at TREC-3. In In D. K. Harman, editor, The Third
Text REtrieval Conference (TREC-3) NIST, 1995.

10. Andrew Trotman. Learning to rank. Information Retrieval, 8:359 – 381, 2005.

50

Evolutionary simulations of behaviours in a

common-pool resource problem

Dara Curran1, Colm O’Riordan2 and Humphrey Sorensen1

1 Department of Computer Science, University College Cork
2 Department of Information Technology, National University of Ireland, Galway

d.curran@cs.ucc.ie,

colm.oriordan@nuigalway.ie,

h.sorensen@cs.ucc.ie

Abstract. Issues regarding foraging in groups have been addressed and
researched in a range of domains. Questions arise regarding the bene-
fits to the group as a whole and the cost placed upon individual group
members. In this paper, we model the foraging problem as a common
resource pool problem and evolve populations in a range of scenarios.
In these simulations, agents (group members) forage for food, may con-
tribute to a common pool resource and may benefit from this group
resource. We present and discuss results illustrating the scenarios under
which agents evolve to behave for the common good of the group and its
effect on the survival and the fitness of the population.

1 Introduction

The importance of group behaviours has been addressed in a range of domains
including, among others, biology, anthropology, ecology and artificial life. Most
species exhibit some form of group behaviour. The advantages and benefits of
group membership include, among others, increased anti-predator vigilance[14],
conservation of energy[1], dilution of risk[15] and foraging benefits[4][13][17].
There are also potential costs associated with group membership; examples in-
clude potential theft of individual resources (klepoparasitism)[2] and interference
in foraging[12].

Several of the oft-cited examples of group behaviour represent social dilemma
problems where the optimal behaviour for the group differs from behaviours
that are best for the individual. Free-rider problems abound whereby individuals
may reap the benefit of group membership while avoiding the costs. The task
of foraging and hunting represents one such free-rider problem. In many cases,
foraging as a group confers an advantage to the members in the group. However,
there is a temptation to reap the rewards while attempting to avoid the costs.

There are many examples of group behaviour whereby members choose not
to free ride and instead choose the behaviour that is collectively rational [17].

Several of these examples can be modelled as a common resource pool prob-
lem, where participants may contribute to a common pool and may also utilise
this pool when required.

51

In this paper, we evolve populations of agents participating in foraging tasks
(in different environments). In this simulator, agents may contribute to a given
pool which may be used by all members.

The paper is structured as follows. The following section briefly discusses
some related work. Section 3 discusses our model and experimental setup. The
subsequent sections presents results, discussions and conclusions.

2 Related Work

2.1 Foraging and Groups

The majority of work undertaken in the study of foraging in groups has involved
empirical studies of species and their behaviours. There have been several stud-
ies on particular examples of cooperative group behaviour adopted in foraging.
These have involved: individuals working together to attack and kill a prey that
individually would have been impossible to kill [5]; sharing information regard-
ing the location of prey or food[16]; and sharing obtained food with other mem-
bers[17]. An oft-cited example of food sharing by contributing to a common pool
is that of the Aché tribe[7] whereby hunters donate all their gains to a common
pool and exclude themselves from sharing in their own hunted prey.

2.2 Social Dilemmas and Common Pool resource problems

Problems inherent in group foraging can be viewed as social dilemmas and free-
rider problems. In these problems, all group members benefit from whatever
utility or gain is earned by the group. However those that do not contribute to the
common pool effectively gain the most by not expending energy in contributing.
A well-known example is the Tragedy of the Commons[8]. In this dilemma, land
(the commons) is freely available for farmers to use for grazing cattle. For any
individual farmer, it is advantageous to use this resource rather than their own
land. However, if all farmers adopt the same reasoning, the commons will be
over-used and soon will be of no use to any of the participants, resulting in an
outcome that is sub-optimal for all farmers.

This is has been modelled in many ways including the N-player prisoner’s
dilemma and as common pool resource problems. In previous work, researchers
have investigated means which induce the optimal outcome for the group. Previ-
ous approaches include spatial constraints[9][3][6], tagging mechanisms[11] and
trust and reputation systems[10].

3 Model

The model consists of a population of agents that inhabit an environment where
they must forage for food to survive. Each agent is born with a certain amount
of energy that is expended during its life. The agent has a number of foraging
opportunities, each of which cost the agent one unit of life energy. If the agent

52

successfully finds food, its life energy is augmented. The likelihood of an agent
successfully finding food is controlled by a simple probability. This is a global
probability, meaning that all agents have the same probability of finding food.

Each agent also has an opportunity to donate foraged food to a common
pool. The amount of food that an agent will donate to the pool is determined by
its genetic makeup. Each agent has a chromosome of 20 bits which corresponds
to the amount of food that that agent will donate to the pool at the end of all
foraging turns.

Once all agents have foraged for the given number of foraging turns, the
pool is redistributed across the population. However, the pool is also allowed
to grow during this time, meaning that the amount distributed at the end of
each generation is larger than the amount that was placed in the pool. An
agent’s fitness is directly linked to its life energy and therefore, to the amount
of food it has been able to forage, plus the slice of the pool it receives. Mating
opportunities are proportional to fitness, but if an agent’s life force reaches 0 the
agent is considered to have died and is not capable of reproducing. It is therefore
possible for an entire population to become extinct.

The division of the common pool can be implemented in a number of ways.
In these experiments, we analyse the effects of two methods. The first, the equal
distribution method, divides the pool equally between those agents that are
still alive at the end of a generation. The second, the proportional distribution
method, divides the pool proportionally - in other words, an agent receives a
portion of the pool proportional to the amount of food it contributed.

The two distribution types equate to a population sharing its resources among
the whole population (benefiting free-riders) in the case of equal distribution,
and a population where resources are only given to those that contributed to the
resource pool. Thus the model can be seen as examining the effects of sharing
on populations.

In addition, we wish to examine the effect of altering the foraging success
of the population. This is also implemented in two ways. In the first we run a
number of separate experiments varying the foraging success probability from
0.2 to 0.8. In the second, we use a single population and we shift the foraging
success from 0.2 to 0.8 and back during the course of the experiment. Thus,
the first represents a series of static environments and the second a dynamic
environment.

Each set of results is averaged from 20 independent runs. The static envi-
ronment experiments are allowed to run for 500 generations, while the dynamic
environment experiment run for 2500 generations. Each use a population of 250
agents. Each generation of agents is allowed 10 foraging turns and the reward
for a successful foraging is 3 units of life energy. Finally, the common pool grows
to three times its size at each generation.

53

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300 350 400 450 500

A
v
e
ra

g
e
 F

it
n
e
s
s

Generations

Forage Sucess 0.2
Forage Sucess 0.3
Forage Sucess 0.4

Forage Sucess 0.5
Forage Sucess 0.6
Forage Sucess 0.7

Forage Sucess 0.8
Forage Sucess 0.9

Fig. 1. Average fitness in equal distribution population

4 Static Environments

The first set of experiments examine the effects of different forage success proba-
bility values on two populations: one distributing the common pool equally and
the other distributing it proportionally.

4.1 Equal Distribution

The first set of results illustrated in Figure 1 shows the fitness of each population
over time. As one would expect, the populations with the lowest probability of
foraging success have the lowest fitness. However, the populations with the high-
est probability of success do not have the highest fitness. Instead, it is population
with a success probability of 0.4.

The second figure illustrates the size of each population over time (Figure 2).
The largest populations are those with the highest foraging probability, although
even populations with lowest success probabilities are capable of maintaining up
to 80% of the original population. Therefore, the situation for the populations
with higher success probabilities is that they have large populations, but only
mediocre fitness. In contrast, the population with the highest fitness (success
probability 0.4) has a relatively small population.

The third set of results is the average percentage donators in the popula-
tion, illustrated in Figure 3. The populations with the fewest donators are those
with the lowest probabilities of foraging success (0.2 to 0.3). Again, this is un-
derstandable as they are not capable of finding food often, they are unlikely to
donate food to the common pool.

Populations with high foraging success (0.7 to 0.9) begin with many donators
but then decline over the course of the experiment. Clearly, the benefit received

54

190

200

210

220

230

240

250

0 50 100 150 200 250 300 350 400 450 500

P
o
p
u
la

ti
o
n

Generations

Forage Sucess 0.2
Forage Sucess 0.3
Forage Sucess 0.4

Forage Sucess 0.5
Forage Sucess 0.6
Forage Sucess 0.7

Forage Sucess 0.8
Forage Sucess 0.9

Fig. 2. Average population size in equal distribution population

from the common pool does not justify the expense of donating food and these
populations begin to lose donators.

The populations with the highest number of donators are those that are
exposed to foraging success approaching the median (0.4-0.5) and infact, the
highest of all is the population with foraging success of 0.5. Clearly, for these
populations it is advantageous to donate to the pool because the likelihood of
unsuccessful foraging is precarious enough for the common pool to be useful.
Equally, the likelihood of consistently finding food is low enough to allow the
common pool to be useful to successful foragers.

The final set of results shows the average amount donated by each population
and are illustrated in Figure 4. Once again, the same patterns emerge, with the
populations with the lowest probabilities of success donating the least, followed
by the populations with the highest probabilities of success. The most generous
population in terms of donations is the population with foraging success of 0.4.

To summarize, populations with high probabilities of foraging success tend
to be large, but with only mediocre fitness. While they initially contain a high
number of donators, this decreases dramatically over time and in any case, the
donations given to the common pool tend to be small. Populations with low
probabilities of foraging success tend to be relatively small, with low fitness and
contain few donators which donate very little to the common pool.

The most interesting results are those from populations with foraging success
probabilities that are around 0.4-0.5. These have smaller, more fit populations
that contain relatively many donators which donate generously to the common
pool. Thus, while these populations may not be able to sustain as many individ-
uals as those with more foraging success, it would seem that the individuals are
fitter on average (clearly as a result of the redistribution of the common pool).

55

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

%
 D

o
n
a
to

rs

Generations

Forage Sucess 0.2
Forage Sucess 0.3
Forage Sucess 0.4

Forage Sucess 0.5
Forage Sucess 0.6
Forage Sucess 0.7

Forage Sucess 0.8
Forage Sucess 0.9

Fig. 3. Average percentage donators in equal distribution population

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

P
o
o
l
s
iz

e

Generations

Forage Sucess 0.2
Forage Sucess 0.3
Forage Sucess 0.4

Forage Sucess 0.5
Forage Sucess 0.6
Forage Sucess 0.7

Forage Sucess 0.8
Forage Sucess 0.9

Fig. 4. Average amount donated in equal distribution population

56

4.2 Proportional distribution

The following set of results examine the effect of distributing the common re-
source pool among individuals in proportion to the donation an individual has
made. Thus, individuals that do not contribute to the pool do not receive a share
of the pool.

The first set of results, illustrated in Figure 6, shows the fitness of each
population over time. In contrast to the experiments where the common pool
is distributed equally across the population, the fitness of each population is
highly dependent on the forage success of each population. The most successful
population from the point of view of fitness is the one with a forage success of
0.9. This is followed by the populations with 0.8, 0.7 and so on. Thus, it can be
said that the common pool does not seem to have a large effect on the fitness of
the population, as the populations stratify according to forage success, just as
one would expect if no distribution were employed.

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300 350 400 450 500

A
v
e
ra

g
e
 F

it
n
e
s
s

Generations

Forage Sucess 0.2
Forage Sucess 0.3
Forage Sucess 0.4

Forage Sucess 0.5
Forage Sucess 0.6
Forage Sucess 0.7

Forage Sucess 0.8
Forage Sucess 0.9

Fig. 5. Average fitness in proportional distribution population

The second set of results, examining population size, are illustrated in Figure
6. The largest populations are those with highest forage success (0.6-0.9). Even
the population with only 0.5 forage success is capable of sustaining a relatively
large population. The worst performing population is that with forage success
of 0.2, which becomes extinct almost immediately. There is also a considerable
difference between the population with forage success of 0.3 and that with 0.4.

To understand these results, they must be examined in conjunction with the
amount of resources each population is contributing to the common pool. This
is illustrated in Figure 7. The first interesting aspect of these results is that the
population with forage success of 0.3 donates the largest amount of resources
to the common pool by a large margin. In contrast, the population with forage

57

0

50

100

150

200

250

0 50 100 150 200 250 300 350 400 450 500

P
o
p

u
la

ti
o
n

Generations

Forage Sucess 0.2
Forage Sucess 0.3
Forage Sucess 0.4

Forage Sucess 0.5
Forage Sucess 0.6
Forage Sucess 0.7

Forage Sucess 0.8
Forage Sucess 0.9

Fig. 6. Average population size in proportional distribution population

success of 0.2 is tied with the population with forage success of 0.6 with the
lowest contributions.

The difference between the 0.2 and 0.3 populations is striking. Clearly, the
risk of a population becoming extinct is high with a forage success of 0.2 and
is only slightly better with a forage success of 0.3. The population with forage
success of 0.3 is capable of foraging slightly more food on average than that of
the population with 0.2 forage success. However, if population invests heavily
in the common resource pool, it will be able to counter some of the effects of
unsuccessful foraging.

The remaining populations are clustered quite closely at a moderate level
of donation. Thus the most successful populations are those with high foraging
success. These tend to donate only moderately to the common resource pool.
The most interesting population is that with forage success of 0.3, which is
capable of staving off extinction only through heavy investment into the common
resource pool. The graph for the percentage donators in each population is not
shown because in each case, the percentage was 100%. In other words, in each
population every individual contributes something to the pool.

5 Discussion/Conclusion

The two experiments examine the difference between populations where a com-
mon resource pool is distributed equally, and one where the pool is distributed in
proportion to the amount each individual donated. There are a number of strik-
ing differences between the two populations. Firstly, the only extinction occurs
in the population employing proportional distribution. Not only do no extinc-
tions occur in the equal distribution populations, but the size of the smallest
population is around 200 individuals, only 20% smaller than the maximum.

58

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

P
o
o
l s

iz
e

Generations

Forage Sucess 0.2
Forage Sucess 0.3
Forage Sucess 0.4

Forage Sucess 0.5
Forage Sucess 0.6
Forage Sucess 0.7

Forage Sucess 0.8
Forage Sucess 0.9

Fig. 7. Average amount donated in proportional distribution population

In populations employing equal distribution, most populations converge to-
wards small donations given by a relatively small number of individuals. By
contrast, the populations employing proportional distribution, every individual
tends to donate larger amounts.

Finally, the fitness of the two populations is very different. The average fitness
of each population is considerably smaller in populations using proportional
distribution than in those that share the pool equally. Furthermore, the fitness
levels associated with the population employing proportional distribution are
stratified according to forage success. Thus it is likely that the population as
a whole gains little, if anything, from the distribution of the common resource
pool.

As a model of group foraging, our model explores outcomes in a range of
scenarios. Real world examples are far more complex than the abstract view
adopted in our work and the types of foraging are influenced by a number of
factors not considered in our model e.g. status of the individual in the society,
the presence of relations between members. Future work will involve further
investigation of foraging societies. In particular, we wish to extend the model
further to explain reported phenomena in the existing empirical studies.

References

1. R.V Andrews and R.W Belknap. Bioenergetic benefits of huddling in deer mice
(peromyscus maniculatus). Comparative Biochemistry and Physiology A, 85:775–
778, 1986.

2. M. Broom and G. D. Ruxton. Evolutionarily stable kleptoparasitism: consequences
of different prey types. Behavioural Ecology, 14(1):23–33, 2003.

3. Hauert C. Spatial effects in social dilemmas. Journal of Theoretical Biology,
240(4):627–36, June 2006.

59

4. S. Creel. Cooperative hunting and group size: assumptions and currencies. Animal

Behaviour, (54):1319–1324, 1997.
5. S. Creel and N.M Creel. Communal hunting and pack size in african wild dogs.

Animal Behaviour, (50):1325–1339, 1995.
6. U. Dieckmann, R. Law, and J.A.J. Metz, editors. Games on grids, pages 135–150.

Cambridge University Press, 2000.
7. M. Gurven. Reciprocal altruism and food sharing decisions among Hiwi and Ache

huntergatherers. Behavioral Ecology and Sociobiology, 56(4):366–380, 2004.
8. Garret Hardin. The tragedy of the commons. Science, 162:1243–1248, December

1968.
9. Kristian Lindgren and Mats G. Nordahl. Evolutionary dynamics of spatial games.

Phisica D, 75:292–309, 1994.
10. S. Ramchurn, D. Huynh, and N. Jennings. Trust in multi-agent systems. The

Knowledge Engineering Review, 19(1):1–25, 2004.
11. R. L. Riolo. The effects of tag-mediated selection of partners in evolving popula-

tions playing the iterated prisoner’s dilemma. Technical report, Santa Fe Institute
Working Paper 97-02-016, 1997.

12. G.D Ruxton. Foraging in flock-nonspatial models may neglect important costs.
Ecological Modelling, 82:235–53, 1993.

13. R.J Schmitt and S.W Strand. Cooperative foraging by yellowtail (seriola lalandei)
on two species of fish. Copeia, pages 714–717, 1982.

14. J.E. Treherne and W.A Foster. Group transmission of predator avoidance be-
haviour in a marine insect. Animal Behaviour, (28):1119–1122, 1980.

15. G.F Turner and T.J Pitcher. Attack abatement: a model of group protection by
combined avoidance and dilution. American naturalist, 35:228–240, 1986.

16. T.J Valone. Group foraging, public information and patch estimation. Oikos,
(56):357–363.

17. Gerald S Wilkinson. Reciprocal food sharing in the vampire bat. Nature, (308):181–
184, 1984.

60

Evolving Team Behaviours in Environments of

Varying Difficulty

Darren Doherty and Colm O’Riordan

Department Of Information Technology
National University Of Ireland, Galway.

darren.doherty@nuigalway.ie

colm.oriordan@nuigalway.ie

Abstract. This paper investigates how varying the difficulty of the en-
vironment in a 2-D combative gaming setting can affect the evolution
of team behaviour. The difficulty of the environment is altered by vary-
ing the field of view and viewing distance of the agents. The behaviours
of the agents are evolved using genetic programming (GP) techniques.
These experiments show that the level of difficulty of the environment
does have an impact on the evolvability of effective team behaviours; i.e.
simpler environments are more conducive to the evolution of effective
team behaviours than more difficult environments.

1 Introduction

In this paper, we investigate how the difficulty of the environment affects the
evolution of effective team behaviours in a combative 2-D gaming setting. The
environmental difficulty is varied by altering the field of view and viewing dis-
tance of the agents; thereby, varying their ability to perceive information from the
environment. Throughout these experiments, the same evolutionary algorithm
(EA) is used to examine the effect of varying the difficulty of the environment
on the fitness of the evolved teams. In previous work, we have evolved successful
teams in an environment where agents had perfect vision through a field of 180
degrees. In this work, we wish to test the robustness of this approach by vary-
ing the environmental difficulty. For these experiments, we explore team agents’
ability to evolve in eight different environmental settings. These range from very
restrictive environments, with short viewing distances and narrow fields of view,
to very unrestricted environments, with long viewing distances and wide fields
of view.

We hypothesise that the shorter the viewing distance and the narrower the
field of view, the more difficult it will be for the agents to evolve successful
behaviours as their perceptual abilities are more limited. Additionally, larger
viewing distances and wider angles enable the agents to perceive more of their
environment, which should be more conducive to the evolution of effective be-
haviours. We believe that these latter experiments should produce results com-
parable to our previous experiments in which agents had perfect vision through

61

a field of 180 degrees. Intermediate viewing distances may produce mediocre re-
sults as agents may find difficulty locating the enemy, weapons and health packs
on their own.

Another motivation for choosing to vary the perceptual capabilities of agents
to alter the level of difficulty of the environment is that of realism, as humans
have a limited field of view and viewing distance within which they can success-
fully classify objects. Altogether, eight experiments are undertaken over four
viewing distances and two fields of view and the results analysed.

In the remainder of this paper, the simulation environment, game agents and
the genetic program to be used in the evolution will be discussed, together with
the experimental setup and a discussion of the results of the experiments.

2 Related Work

In the past, GP techniques have been successfully used to evolve tactics and
strategies for groups of computer controlled agents in a number of different
domains. Richards et al. used a genetic program to evolve groups of unmanned air
vehicles (UAVs) to effectively and efficiently search an uncertain and/or hostile
environment [10]. Three different levels of environmental difficulty were used in
their experiments. The first two environments had rectangular search areas but
the second also had a single fixed hostile agent making it more difficult. The third
environment has two irregular shaped search areas and a no fly zone making it the
most difficult environment of the three. Their results show a correlation between
the fitness of the evolved flying strategies and the difficulty of the environment.
Pursuit strategies for predator-prey domains have also been evolved using GP
techniques [6, 8]. Luke et al. evolved predator strategies that enable a group
of lions to successfully hunt gazelle [8]. In order to vary the difficulty of the
environment, the lions were given different levels of sensing ability in each of
the experiments. This is a similar method of varying environmental difficulty to
the one used in this paper. In addition, GP has been used to successfully evolve
sporting strategies for teams of volleyball players [9] and teams of soccer players
[7]. Moreover, tactics for teams of armed forces in a combative, hostile setting
have been successfully evolved using GP techniques [3–5].

3 Simulation Environment

The environment used in this work is similar to that used in previous research [4,
5] (see Fig. 1). It consists of an open 2-dimensional space, enclosed by four walls
and is built on the 2-D Raven game engine [1]. The evolved team (consisting of
five agents) is pitted against a single powerful enemy agent. Items are placed on
the map at locations that are equidistant from both the team starting points
and the enemy starting point. These items consist of health packs and a range
of weapons.

62

Fig. 1. Simulation Environment Map

4 Game Agents

There are two types of agents in the simulation environment: team agents and
the single enemy agent. Both types of agent use the same underlying goal-driven
architecture to define their behaviour [2]. However, the methods used to decide
which goal to pursue at any given time are different. The single enemy agent
uses hand-coded desirability algorithms associated with each goal to decide on
its course of action, whereas team agents use an evolved decision-making tree to
decide which goal to pursue at any given time.

Team agents begin the game with the least powerful weapon in the environ-
ment but have unlimited ammunition for it, so agents always have the ability to
attack. The single enemy has five times the health of a team agent and the most
powerful weapon in the environment with infinite ammunition.

All agents have a limited range within which they can visually perceive infor-
mation from their environment. An agent’s visual capability is defined by a field
of view and a viewing distance. The fields of view of both agent types are equal
but the viewing distance of the enemy agent is twice that of the team agents.

Both types of agent have a memory which allows them to remember infor-
mation they perceive from their environment. Any dynamic information, such
as ally or enemy positions, is forgotten after a specified time (five seconds for
these experiments). However, static information, such as the location of items,
is not forgotten if perceived, as their location does not change for the duration
of the game.

63

As there is only one enemy agent, team agents do not have to worry about
selecting a target they wish to attack. The enemy agent chooses its target based
on distance, so if more than one team agent has been recently sensed, the agent
closest to the enemy is targeted.

5 The Genetic Program

The genetic program used to evolve the decision-making trees for the team agents
is similar to that used in our previous research [4, 5]. The entire team of five
agents is viewed as one chromosome, so team fitness, crossover and mutation
operators are applied to the team as a whole. Each of the five agents are derived
from a different part of the team chromosome, so evolved teams are heterogenous.

A strongly typed genetic program (STGP) is adopted. The same five node
sets applied in previous research [4, 5] are used: action, conditional, numerical,
environmental and positional. However, a number of new nodes have been added
to the node sets in order to accommodate the limited viewing capabilities of the
agents. For example, can see enemy node is added to allow an agent to make
decisions based on when the enemy has become visible to the agent. In total,
there are fifty nodes across the five node sets that can be used to comprise a GP
tree.

The fitness function takes into account: the length of time a game lasts, the
remaining health of both the enemy agent and ally team and the length of the
chromosome (to prevent bloating of the trees).

RawFitness =
AvgGameT ime

Scaling ∗ MaxGameT ime
+

(5 ∗ (Games ∗ TSize ∗ MaxHealth− EH) + AH)

Games ∗ TSize ∗ MaxHealth

where AvgGameT ime is the average duration of the evaluation games, Scaling

is a variable to reduce the impact of game time on fitness, EH and AH are the
total amount of health remaining for the enemy agent and for all five team
agents respectively, TSize is the number of agents in the evolving team (i.e.
five), Games is the number of games played per evaluation (in this work the
number of games per evaluation is set to twenty) and MaxHealth is the maxi-
mum health an agent in the game can have.

More importance is attached to the change in the enemy agent’s health than
the corresponding change in the team’s health as the tactics are evolved to
be capable of defeating the enemy. Longer games are also favoured to prevent
teams who are capable of surviving the enemy’s attack from dying off in the
earlier generations.

64

The length of the chromosome is taken into account and fitness values are
then inverted using the following formula such that values closer to zero are
better.

StdF itness = (MaxRF − RawFitness) +
Length

LengthFactor

where MaxRF is the maximum value possible RawFitness can hold and
LengthFactor is a parameter used to limit the influence the length of the chro-
mosome has on the fitness.

Team selection, crossover and mutation operators are identical to those used
in our previous work. For a detailed explanation of selection, crossover and mu-
tation operators used see [4, 5].

6 Experimental Setup

In these experiments, we investigate how varying the difficulty of the environ-
ment in a 2-D combative gaming setting can affect the evolution of team be-
haviour. The difficulty of the environment is varied by altering the evolving
agents’ perceptual capabilities. Experiments are set up for two fields of view (90
and 180 degrees) and four viewing distances (50, 200, 350 and 500 pixels). Eight
experiments are used to investigate the evolution of team behaviours in these en-
vironments. Maximum and minimum viewing distances can be calculated based
on the size of the grid. The maximum viewing distance of the agents in the
experiments is set to 500 pixels and the minimum viewing distance is set to 50
pixels for these experiments. Intermediate distances are then chosen as equally
spaced distances between 50 and 500 pixels.

The enemy viewing distance is scaled relative to the viewing distance of the
team agents. As there are five team agents and only the one enemy agent, the
collective viewing range of the team covers a much larger portion of the map than
that of a single agent. Therefore, it was decided to allow the enemy’s viewing
distance to be twice that of a team agent. Note that for a viewing distance of
1000 pixels, the enemy will have perfect vision within its field of view as 1000
pixels is greater than both dimensions of the map.

Twenty separate evolutionary runs are performed in each of the eight en-
vironments. In each of the runs, 100 team chromosomes are evolved over 100
generations. Each team evaluation comprises twenty games. The best perform-
ing team from each of the runs is recorded.

Each recorded team is then tested more extensively using a larger number
of games to obtain a more accurate measure of its performance. The validation
tests involve evaluating each recorded team’s performance over 1000 games and
basing the team’s fitness score on their average performance over the 1000 games.
The number of games won, lost and drawn are also recorded. Once these tests are
performed for each of the recorded teams, the maximum, minimum, average and
standard deviation of the team’s fitness and of the number of wins, losses and
draws are found for the twenty recorded teams in each of the eight experiments.

65

Fig. 2. Experimental setups for various fields of view and viewing distances

These results are then analysed to see if environmental difficulty has a significant
impact on the evolution of effective team behaviour.

66

7 Results

The results of the experiments show that the level of difficulty of the environment
does have an impact on the EA’s ability to evolve effective team behaviours. Fig.
3 shows the maximum, minimum, average and standard deviation of fitness for
the twenty runs in each of the eight environments over 1000 games.

Fig. 3. Validation results for team fitness over 1000 games

Note that fitness values closer to zero are better. As is evident from Fig. 3,
there is a correlation between the agent’s viewing range and the GP’s ability to
evolve effective team behaviours.

Fig. 4 shows the number of games won by the best performing recorded team
in each of the eight environments. The results follow a similar trend for both, the
environments where the field of view is 90 degrees and environments where the
field of view is 180 degrees. This is understandable as the field of view of both the
enemy and team agents are equivalent in each of the eight experiments. Thus,
varying the field of view does not have as much of a bearing on the difficulty
of the environment as varying the viewing distance. Generally, as the level of
difficulty of the environment decreases, the number of games won by the best
evolved team increases. This follows a similar trend to the fitness values shown
in Fig. 3. The best fitness in each of the environments gradually improves as the
environment becomes less difficult, i.e. as the viewing distance of agents increase.

67

Fig. 4. Maximum number of games won by a team in each environment

In the most difficult environments, where the viewing distance of agents is 50
pixels, the maximum number of games won by any of the recorded teams is
less than 8% of games played, less than 80 out of 1000 games. In contrast, the
maximum number of games won by the best evolved team in the least difficult
environments, is over 97% of games played.

As mentioned earlier, the results are comparable for both environments with
90 and 180 degree fields of view, as there is a steady increase in the number of
games won as the viewing distance of the agents in the environment increases.
Overall, the results of the experiments with the 180 degree field of view are
generally slightly better, with the exception of the experiment where the viewing
distance is 50 pixels. We believe this is because 50 pixels is too restrictive of
a distance to benefit from the larger viewing angle but the enemy’s viewing
distance of 100 pixels in this environment can benefit greatly from the larger
field of view making it easier for the enemy to dispose of the team. Hence, this
environment can be regarded as the most difficult of all eight environments.

Fig. 5 shows the average number of wins, losses and draws, out of 1000 games
for all twenty recorded teams in each of the eight environments. We can clearly
see a steady trend in the average number of wins, losses and draws of teams as
the environmental difficulty changes. In both, environments where team agents
have a field of view of 90 degrees and environments where the agents’ field of
view is 180 degrees, there is a steady increase in the average number of wins of
the evolved teams as the level of difficulty of the environment decreases.

68

Fig. 5. Average number of games won, lost and drawn by all recorded teams

8 Conclusions

In this paper, we explored how varying the level of difficulty of the environment
can affect the evolution of effective team behaviours in a combative 2-D gaming
environment. We discussed the simulation environment, game agents and genetic
program to be used in the evolution, together with the experimental setup and
the results of the experiments.

The results displayed in Fig. 3, Fig. 4 and Fig. 5, clearly indicate that the level
of difficulty of the environment affects the evolution of effective team behaviours.
The performance of evolved teams improves as the difficulty of the environment
decreases. In the very difficult environments, where agents’ viewing range is very
restricted, teams perform very poorly. The EA is unable to evolve good solutions
as the environment is too difficult. In contrast, in the less difficult environments,
the evolved teams perform very well as the EA is able to evolve effective team
behaviours.

In future experiments, we wish to explore the effects communication between
agents could play in the evolution of team behaviours, as communication would
be potentially very useful in environments where agents’ viewing range is more
restricted. Agents could share information and perceive the environment as a
team rather than individually. The position of the enemy or other game ob-
jects could be communicated amongst team agents, which could allow for much
more effective team behaviours to evolve. We also wish to analyse the actual

69

behaviours evolved to see if there are common properties in the behaviours of
teams evolved in similar environments.

Acknowledgment

The primary author would like to acknowledge the Irish Research Council for
Science, Engineering and Technology(IRCSET) for their assistance through the
Embark initiative.

References

1. Mat Buckland. Programming Game AI by Example, chapter Raven: An Overview,
pages 295–333. Wordware Publishing, Inc, 2005.

2. Mat Buckland. Programming Game AI by Example, chapter Goal-Driven Agent
Behaviour, pages 379–415. Wordware Publishing, Inc, 2005.

3. Darren Doherty and Colm O’Riordan. Evolving agent-based team tactics for com-
bative computer games. In AICS 2006 17th Irish Artificial Intelligence and Cog-

nitive Science Conference, 2006.
4. Darren Doherty and Colm O’Riordan. Evolving tactical behaviours for teams of

agents in single player action games. In CGAMES 2006 9th International Confer-

ence on Computer Games: AI, Animation, Mobile, Educational & Serious Games,
2006.

5. Darren Doherty and Colm O’Riordan. A phenotypic analysis of gp-evolved team
behaviours. In GECCO ’07: Proceedings of the 9th Annual Conference on Genetic

and Evolutionary Computation, pages 1951–1958, New York, NY, USA, 2007. ACM
Press.

6. Thomas Haynes and Sandip Sen. Evolving behavioral strategies in predators
and prey. In Sandip Sen, editor, International Joint Conference on Artificial

Intelligence-95 Workshop on Adaptation and Learning in Multiagent Systems,
pages 32–37, Montreal, Quebec, Canada, 20-25 1995. Morgan Kaufmann.

7. Sean Luke, Charles Hohn, Jonathan Farris, Gary Jackson, and James Hendler. Co-
evolving soccer softbot team coordination with genetic programming. In Interna-

tional Joint Conference on Artificial Intelligence-97 First International Workshop

on RoboCup, Nagoya, Japan, 1997.
8. Sean Luke and Lee Spector. Evolving teamwork and coordination with genetic

programming. In John R. Koza, David E. Goldberg, David B. Fogel, and Rick L.
Riolo, editors, Genetic Programming 1996: Proceedings of the First Annual Con-

ference, pages 150–156, Stanford University, CA, USA, 28–31 1996. MIT Press.
9. Simon Raik and Bohdan Durnota. The evolution of sporting strategies. In Russel J.

Stonier and Xing Huo Yu, editors, Complex Systems: Mechanisms of Adaption,
pages 85–92, Amsterdam, Netherlands, 1994. IOS Press.

10. Marc D. Richards, Darrell Whitley, J. Ross Beveridge, Todd Mytkowicz, Duong
Nguyen, and David Rome. Evolving cooperative strategies for uav teams. In
GECCO ’05: Proceedings of the 7th Annual conference on Genetic and evolutionary

computation, pages 1721–1728, New York, NY, USA, 2005. ACM Press.

70

Using User Model Information to Support

Collaborative Filtering Recommendations

Josephine Griffith1, Colm O’Riordan1, and Humphrey Sorensen2

1 Dept. of Information Technology,
National University of Ireland, Galway, Ireland

josephine.griffith@nuigalway.ie, colm.oriordan@nuigalway.ie
2 Dept. of Computer Science, University College Cork, Cork, Ireland

sorensen@cs.ucc.ie

Abstract. This paper considers some of the information that can be
captured about users and groups from a collaborative ¯ltering dataset
with the aim of using this information to provide a more personalised
recommendation experience. The idea is that features of users are used
to identify when a set of recommendations are formed using particularly
weak evidence or particularly strong evidence. This evidence will be re-
turned to a user together with a set of recommendations and will give the
user more information with which to judge if the recommendations are
likely to be accurate or of interest to the user, e.g., on occasion the user
may choose to discard the recommendations if they have been produced
by the system using a “weak” set of evidence.

1 Introduction

Collaborative ¯ltering systems automate the “word of mouth” process that com-
monly occurs within social networks [15], i.e. people will seek recommendations
from people with whom they share similar preferences in an area. Within the ¯eld
of collaborative ¯ltering many models and techniques have been proposed, tested
and compared. Additional features of users, items and the recommendation task
have also been considered (e.g., product information, demographic information,
time, trust). Studies involving new models, techniques and incorporating addi-
tional information often have di®erent foci where the aim has not always been to
improve performance. For example, various studies have focused on dealing with
scalability issues [5], dealing with the issue of dataset sparseness [7], including
additional information [1], incorporating trust [11] and dealing with noise [12].

Although collaborative ¯ltering is most frequently seen as a way to provide
recommendations to a set of users, collaborative ¯ltering datasets also allow
for the analysis of social groups and of individual users within a group, thus
providing a means for creating a new user model, group model or for augmenting
an existing user or group model. We believe that such analysis can also be used
to provide evidence of how accurate the system predictions are. Mirza et al. [10]
list four desirable aspects of recommendation:

71

1. “Recommendation is an indirect way of bringing people together.”
2. “Recommendation, as a process, should emphasize modeling connections

from people to artifacts, besides predicting ratings for artifacts.”
3. “Recommendations should be explainable and believable.”
4. “Recommendations are not delivered in isolation, but in the context of an

implicit/explicit social network.”

The approach taken here concentrates on making recommendations more
“explainable and believable” by providing users with information relating to
whether a recommendation may be accurate or not. The motivation for this
work is that although users are often clustered into groups based on ¯nding
“similar users” and much is known about the e®ect of various user, item and
group features on the accuracy of predictions, this information has not been used
to support the output of recommendation systems. Although it is unlikely that
sufficiently clear evidence can be found to support all user recommendations, it
could still be useful to highlight the cases when a set of recommendations are
formed using particularly weak evidence or particularly strong evidence.

In this work, six features that can be extracted from the collaborative ¯lter-
ing dataset are ¯rstly identi¯ed, de¯ned and analysed with respect to their e®ect
on recommendation accuracy. Some of these features are particular to the rec-
ommendation task while some features use measures from social network theory
and information retrieval. Each feature can provide one piece of “evidence” if
its values are above or below a certain threshold. Thresholds are chosen based
on the analysis of the e®ect of the features on prediction accuracy. The more
positive or negative pieces of evidence that exist for a given user, the more likely
that the recommendation results will be accurate (for positive evidence) or inac-
curate (for negative evidence). The paper outline is as follows: Section 2 presents
related work in collaborative ¯ltering. Section 3 outlines the methodology, pre-
senting the collaborative ¯ltering approach, specifying the user features which
are extracted from the collaborative ¯ltering dataset and summarises the e®ect
of the features on recommendation accuracy. The section also speci¯es how the
features are used to form positive or negative evidence. Section 4 discusses the
experiments performed, the experimental set-up and presents results. Conclu-
sions are presented in Section 5.

2 Related Work

Collaborative ¯ltering techniques produce recommendations for some active user
using the ratings of other users, where these users have similar preferences to the
active user. Collaborative ¯ltering datasets can be predominantly distinguished
by the fact that they are both large and sparse, i.e. in a typical domain, there
are many users and many items but ratings only exist for a small percentage of
all items in the dataset. The problem space can be viewed as a matrix consisting
of the ratings given by each user for the items in a collection, i.e. the matrix
consists of a set of ratings ra,i, corresponding to the rating given by a user a
to an item i. The problem space can equivalently be viewed as a graph where

72

nodes represent users and items, and nodes can be linked by weighted edges in
various ways (e.g., user-item links; user-user links).

There has been much work undertaken in investigating weighting schemes
for collaborative ¯ltering where these weighting schemes typically try to model
some underlying bias or feature of the dataset in order to improve prediction
accuracy. For example, in [2] and [18] an inverse user frequency weighting was
applied to all ratings where items that were rated frequently by many users were
penalised by giving the items a lower weight. In [6] and [18] a variance weighting
was used which increased the in°uence of items with high variance and decreased
the in°uence of items with low variance. The idea of a tf-idf weighting scheme
from information retrieval was used in [9] (using a row normalisation) and in [16]
(using a probabilistic framework). More recent work in [3], [8] and [13] involve
learning the optional weights to assign to items. In [11] a higher weighting is
given to user neighbours who have provided good recommendations in the past
(this weight is calculated using measures of “trust” for users) and in [4] items
which are recommended more frequently are given a higher weighting (where the
weight is calculated using an “attraction index” for items).

In general, although some of the weighting schemes for items have shown im-
proved prediction accuracy (in particular those involving learning), it has proven
difficult to leverage the feature information to consistently improve results. There
may be a number of reasons for this including the fact that the dataset is sparse
and also that the data may not always be correct. Even if the data is correct the
underlying preferences that the data “describes” may not always be consistent
as user tastes and opinions may change over time.

3 Methodology

In this paper, the focus is to extract implicit user and group information avail-
able from the collaborative ¯ltering dataset to form a user model for each user
and to use this model to provide evidence as to whether the system recommen-
dations are accurate, or not, for a user. The implicit information extracted from
the dataset is based on simple features which can be extracted from any rec-
ommendation dataset (e.g. number of items rated, average rating value) as well
as extracting features which are based on measures from social network theory
(degree, clustering coefficient) and from information retrieval (tf-idf).

3.1 Collaborative filtering approach

The collaborative ¯ltering problem space is often viewed as a matrix consisting
of the ratings given by each user for some of the items in a collection. Using this
matrix, the aim of collaborative ¯ltering is to predict the ratings of a particular
user, a, for one or more items not previously rated by that user. Memory-based
techniques are the most commonly used approach in collaborative ¯ltering al-
though numerous other approaches have been developed and used [2]. Generally,
traditional memory-based collaborative ¯ltering approaches contain three main
stages (for some active user a):

73

– Find users who are similar to user a (the neighbours of a).
– Select the “nearest” neighbours of a, i.e. select the most similar set of users

to user a.
– Recommend items that the nearest neighbours of a have rated highly and

that have not been rated by a.

Standard statistical measures are often used to calculate the similarity between
users in step 1 (e.g. Spearman correlation, Pearson correlation, etc.) [14]. In this
work, similar users are found using the Pearson correlation coefficient formula.

3.2 User and group features

A user model is de¯ned which consists of six features. For some user a the
features are de¯ned as follows:

– rated is the number of items rated by the user a.
– avg-rating is the average rating value given to items by the user a.
– std-dev is the standard deviation of the ratings of user a.
– influence is a measure of how in°uential a user is in comparison to other

users. As also considered in [13] and in [10], influence is de¯ned in this work
by using measures from social network theory. In particular, the idea of
degree centrality is used where the dataset is viewed as a graph (or social
network) where nodes represent users and the values of weights on edges
between users are based on the strength of similarity of users to each other
(as shown in Fig. 1 with users linked if their Pearson correlation value is
above 0.25). Degree centrality is then measured by counting the number of
edges a node has to other nodes. Essentially this is a count of the number
of neighbours (above a correlation threshold of 0.25) a user has.

– clustering-coeff is also a measure taken from social network theory and mea-
sures how similar users in a group are to each other using the clustering
coefficient measure. This measures how connected the neighbours of the user
a are to each other using the graph representation in Fig. 1. For example, if
none of user a’s neighbours are connected to each other, the clustering co-
efficient is 0, whereas if this sub-graph has a clustering coefficient of 1 then
all of user a’s neighbours are connected to each other.
The clustering coefficient is calculated by dividing the number of actual
links (actual) by the number of possible links between neighbour nodes for
all neighbour nodes with degree greater than 1. Only user nodes that are
connected to each other with a correlation value greater than 0.25 are con-
sidered neighbour nodes. For the collaborative ¯ltering case, commonly used
correlation measures are not commutative so therefore in the representation
used, two edges can exist between two users. Therefore the total number of
possible links that can exist between n nodes is (n2 − n).
In addition, in the collaborative ¯ltering case it is possible that small sub-
groups (small values of n) will have high clustering coefficients and therefore
comparisons using clustering coefficient values may not always be meaning-
ful. To overcome this the formula is extended to also include the active user

74

w
eight

a,f (correlation
value)

usere

usera

userd

userb

userc

userf

Fig. 1. Graph representation of users and their similarity.

in the calculation [17]. Thus the formula for the clustering coefficient for a
user a with degree, deg(a), and n neighbour nodes with degree greater than
1 becomes (1):

actual + deg(a)

n(n + 1)
(1)

Considering the graph shown in Fig. 1 with the active user being usera who
has three neighbours (b, e and f): user e is connected to user f and user b is
connected to user f . Therefore the number of actual links is 2. The degree
of the active node a is 3, therefore the clustering coefficient for this group is
0.42.

– importance: Some collaborative ¯ltering weighting schemes incorporate the
idea from Information Retrieval of a term frequency, inverse document fre-
quency (tf-idf) weighting [9],[16]. The idea in information retrieval is to ¯nd
terms with high discriminating power, i.e. terms which “describe” the doc-
ument well and also distinguish it from other documents in the collection.
Mapping the idea of tf-idf to collaborative ¯ltering, a “term” can be viewed
as a user with associated ratings for M distinct items. The more ratings a
user has the more important the user is, unless the items that the user has
rated have been rated frequently in the dataset. Note that the value a user
gives an item is not a frequency or a weight - it is an indication that the item
has been rated and thus the actual rating value is not used in the following
formula(2). The formula used to calculate the importance, wi, of a user i is:

wi =
1

M
×

M∑
j=1

(
1 + log

n

nj

)
(2)

where n is the total number of users in the dataset; M is the number of
ratings by user i and nj is the number of users who rated item j.

3.3 User and group features and their effect on accuracy

In this section the relative performance of a collaborative ¯ltering approach is
tested using di®erent sets of users for each of the six features. A set of users

75

consists of the users who have the same value, or nearly the same value, for an
identi¯ed feature. The aim is to ascertain which sets of users will be more likely
to have better or worse predictions (measured using the mean absolute error
(MAE) metric). For each feature, the range of values for that feature (e.g. [0,1]
for the std-dev feature) is broken into regular intervals (typically 8 intervals) and
users belong to a particular interval based on their value for that feature. All
users in a particular interval then form a set. Intervals are chosen such that the
set size (the number of users in each interval) is at least 100.

For testing, a standard subset of the Movie Lens dataset is considered. For
each run, 30 users are chosen randomly from each set as the test users and 10%
of their ratings for items are removed to yield the items to test (i.e. the system
should return predictions for these items). In addition, for each feature a control
set of 30 users is chosen randomly from the entire dataset as test users (i.e. the
users are chosen without considering the feature value of these users). Results
are averaged over 10 runs for each set of users, for each feature.

Fig. 2(a) shows the MAE results when the rated feature was analysed for
eight sets of users. The rated value ranges from 0 to 668. The users in the ¯rst
set (0-24 interval) have rated 0-24 items; the users in the second set (25-30
interval) have rated 25-30 items; etc. The random group of 30 users (which are
not included on the graph), with varying rated values, have an average MAE
value of 0.7624 (over 10 runs). As expected, the worst MAE value for any set
was for the users in the set who have rated between 0 and 24 items, i.e. these
users have provided the very minimum number of ratings. Although we would
expect that the accuracy should steadily increase as the number of ratings users
have given increases, this was not necessarily the case. However, users who have
rated close to the maximum number of items have the best MAE values.

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0
-2

4

2
5-

3
0

3
1-

5
0

5
1-

7
4

7
5-

1
1
1

1
12

-1
63

1
64

-2
22

2
23

+

Number of Items Rated Ranges

M
A

E

(a) rated

0.6

0.65

0.7

0.75

0.8

0.85

0
-3

.0
3

3
.0

4-
3
.2

7

3
.2

8-
3
.4

1

3
.4

2-
3
.5

6

3
.5

7-
3
.7

1

3
.7

2-
3
.8

5

3
.8

6-
4
.0

9

4
.1

0+

Average Value Ranges

M
A

E

(b) avg-rating

Fig. 2. rated and avg-rating MAE analyses.

Fig. 2(b) shows the MAE results when the avg-rating feature was analysed
for eight sets of users. The MAE value for the randomly chosen users is 0.7321.
The users with lowest averages (from the minimum to 3.03) have the worst MAE
values and the users with the highest averages have the best MAE values.

Fig. 3(a) shows the MAE results when the standard deviation feature (std-
dev) was analysed for eight sets of users. The std-dev value ranges from 0 to 1.718.

76

The users with low standard deviation (< 0.778) exhibited the best MAE values
(average of 0.5595 in comparison to the MAE average of the randomly selected
group which is 0.7779) while the users with the highest standard deviation had
the worst MAE values. This suggests that better recommendations can be found
for users with lower variance in their ratings.

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0
-0

.7
7
8

0
.7

79
-0

.8
47

0
.8

48
-0

.9
33

0
.9

34
-0

.9
9

1
.0

-1
.0

7

1
.0

8-
1
.1

1

1
.1

2-
1
.2

1
.2

09
+

Standard Deviation Value Ranges

M
A

E

(a) std-dev

0.6

0.65

0.7

0.75

0.8

0.85

0
-1

.9
5

1
.9

6
-6

.5
2

6
.5

3
-1

9
.5

1
9
.6
-3

9
.1

3
9
.2
 -

7
8
.3

7
8
.4
 -
 1

2
5
.3

1
2
5
.4

 -
 1
7
6
.3

1
7
6
.4

+

Influence (Degree) Value Ranges

M
A

E

(b) influence

Fig. 3. std-dev and influence MAE analyses.

Fig. 3(b) shows the MAE results when the influence feature was analysed for
eight sets of users. An influence value of 0 means that a user has no neighbours.
As expected, the users with fewest neighbours (0 or 1) have the worst MAE values
and as the neighbourhood size grows there is a general trend towards lower MAE
values. The average MAE value of the random group is 0.7508.

0.65

0.7

0.75

0.8

0.85

0.9

0
.0

-0
.0

8
0

0
.0

81
-0

.1
61

0
.1

62
-0

.2
42

0
.2

43
-0

.3
23

0
.3

24
-0

.4
04

0
.4

05
-0

.4
85

0
.4

86
-0

.5
66

>
=
0
.5

67

Clustering Coefficient Value Ranges

M
A

E

(a) clustering-coeff

0.7

0.72

0.74

0.76

0.78

0.8

0
.0

-0
.0

2

0
.0

2
3
1
-0

.0
3
1

0
.0

3
1
1
-0

.0
4
7

0
.0

4
7
1
-0

.0
6
3

0
.0

6
3
1
-0

.1
1
0

0
.1

1
1
-0

.1
6
4

0
.1

6
4
1
-0

.2
6
9

0
.2

6
9
1
-1

.4
9

importance(tf-idf) Value Ranges

M
A

E

(b) importance

Fig. 4. clustering-coeff and importance (tf-idf) MAE analyses.

The clustering coefficient feature (clustering-coeff) was analysed for eight sets
of users with values ranging from 0 to 0.864 where a value of 0 means that none
of the active user’s neighbours are linked to each other (with a correlation value
above 0.25). As can be seen in Fig. 4(a), as the clustering-coeff value increases
towards the maximum (i.e. the active user’s neighbours are more similar to each
other) the prediction accuracy very slightly improves. The poorest results are
seen for users who have very low clustering coefficient values. The average MAE
value of the random group is 0.7479.

77

The user importance feature (tf-idf) was also analysed for eight sets of users
(see Fig. 3(b)). Results were poorer when a user has a low tf-idf weighting value
and results are better when a user has a high tf-idf weighting value. The average
MAE value of the random group is 0.725.

3.4 Forming the evidence

Based on the graphs in the previous section, thresholds were set for each of
the features where, for each feature, a evid-feature parameter is set to 0 if the
evidence is weak; evid-feature is set to 1 if the evidence is strong; and evid-
feature is set to -1 otherwise, i.e., in this case it is not possible to clearly say
whether this feature will have an e®ect on recommendation accuracy. Therefore
some users may receive item recommendations along with an indication that
the recommendations have been formed with mostly weak evidence (where evid-
feature is mostly 0) or mostly strong evidence (where evid-feature is mostly 1) or
there may be no indication of strong or weak evidence if the evid-feature values
are mostly -1 or there is a mixture of values for evid-feature.

4 Experiments and Results

The testing methodology involved checking if the evidence generated by the
system, in terms of weak and strong evidence, is supported by the MAE results
for users and per run, calculating:

– the percentage of users identi¯ed as having weak or strong evidence and
the average MAE value of the users in both sets (the set of users identi¯ed
as having weak evidence and the set of users identi¯ed as having strong
evidence).

– the percentage of users not identi¯ed as having weak or strong evidence and
the average MAE of these users.

We suggest that it is equally important to know when predictions have been
formed using weak evidence as to know when predictions have been formed us-
ing stronger evidence. In order to test whether the system had correctly identi¯ed
users with weak and strong evidence, the mean absolute error (MAE) metric was
used to analyse results where the MAE value of each user was used to measure
whether there is sufficient evidence in the dataset to form good recommenda-
tions. A user with an MAE value below the average MAE value is considered
to have strong evidence and a user with an MAE value above the average MAE
value is considered to have weaker evidence.

In the experiments performed, the Movie Lens dataset is used with 10% of
users chosen randomly as test users and 10% of their items chosen randomly as
test items. A nearest neighbour collaborative ¯ltering approach using Pearson
correlation is used to produce recommendations for all users and items in the
test set. In addition, the system indicates whether weak or strong evidence exists
for the user.

78

Fig. 5 summarises the results for 10 runs. On average, 32.87% of users (with
average MAE of 0.86) were identi¯ed as having weak evidence. 37.77% of users
(with average MAE of 0.61) were identi¯ed as having strong evidence. 29.36%
of users (with average MAE of 0.78) in the test set were not identi¯ed as having
weak or strong evidence. This shows that those users identi¯ed as having weak
evidence have higher MAE values and thus are being given less accurate recom-
mendations. Conversely, those users identi¯ed as having strong evidence have
lower MAE values and thus are being given more accurate recommendations.

run

%users
identified
with weak
evidence

avg. MAE

(weak

evidence)

%users
identified
with
strong
evidence

avg. MAE

(strong

evidence)

%users
not
identified

avg. MAE

(not

identified)

1 30.85 0.86 37.23 0.60 31.91 0.77

2 28.72 0.81 40.43 0.61 30.85 0.75

3 41.49 0.91 37.23 0.61 21.28 0.79

4 36.17 0.86 36.17 0.59 27.66 0.84

5 29.79 0.88 47.87 0.64 22.34 0.84

6 32.98 0.88 40.43 0.65 26.60 0.76

7 29.79 0.87 39.36 0.67 30.85 0.73

6 35.11 0.93 28.72 0.57 36.17 0.77

9 31.91 0.82 37.23 0.59 30.85 0.84

10 31.91 0.82 32.98 0.57 35.11 0.72

average 32.87 0.86 37.77 0.61 29.36 0.78

Fig. 5. Summary of results over 10 runs.

5 Conclusions and Future Work

In this paper the idea proposed is that a collaborative ¯ltering system often has
the information available to provide evidence as to whether the recommenda-
tions produced by the system are likely to be weakly or strongly supported. A
user can thus be provided with more information with which to judge the rec-
ommendations which have been produced. The information used to obtain this
evidence is already available in the collaborative ¯ltering dataset and some of
the information is calculated as part of the recommendation process. This infor-
mation includes: the number of ratings given by a user, the average rating value
given by a user, the standard deviation of user ratings, the number of neighbours
a user has, the clustering coefficient value of a user and the importance of a user
(using a tf-idf measure).

Results show that a large percentage of users are correctly identi¯ed as having
weak or strong evidence. However further sample runs need to be performed and
further analysis performed for the cases that were incorrectly identi¯ed. Future
work will also consider the parameters and thresholds in more detail.

79

References

1. M. Balabanovic and Y. Shoham. Fab: Content-based, collaborative recommenda-
tion. Communications of the ACM, 40(3):66–72, 1997.

2. J. Breese, D. Heckerman, and C. Kadie. Empirical analysis of predictive algorithms
for collaborative ¯ltering. In Uncertainty in Artificial Intelligence, 1998.

3. K. Cheung and L.F. Tian. Learning user similarity and rating style for collaborative
recommendation. Information Retrieval, 7:395–410, 2004.

4. A. deBruyn, L. Giles, and D.M. Pennock. O®ering collaborative-like recommen-
dations when data is sparse: The case of attraction-weighted information ¯ltering.
In Adaptive hypermedia and adaptive web-based systems, 2004.

5. T. George and S. Merugu. A scalable collaborative ¯ltering framework based on
co-clustering. In Fifth International Conference on Data Mining, 2005.

6. J. Herlocker, J. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for
performing collaborative ¯ltering. In SIGIR, pages 230–237, 1999.

7. R. Hu and Y. Lu. A hybrid user and item-based collaborative ¯ltering with smooth-
ing on sparse data. In 16th Intl. Conf. on Artificial Reality and Telexistence, 2006.

8. R. Jin, J.Y. Chai, and L. Si. An automatic weighting scheme for collaborative
¯ltering. In SIGIR, 2004.

9. G. Karypis. Evaluation of item-based top-n recommendation algorithms. In CIKM,
2001.

10. B. Mirza, B. Keller, and N. Ramakrishnan. Studying recommendation algorithms
by graph analysis. Journal of Intelligent Information Systems, 20:131 – 160, March
2003.

11. J. O’Donovan and B. Smyth. Trust in recommender systems. In Proceedings of the
10th International Conference on Intelligent User Interfaces, pages 167–174, 2005.

12. M.P. O’Mahony, N. Hurley, and G.C.M. Silvestre. Detecting noise in recommender
system databases. In Proceedings of the 11th International Conference on Intelli-
gent User Interfaces, pages 109–115, 2006.

13. A.M. Rashid, G. Karypis, and J. Riedl. In°uence in ratings-based recommender
systems: An algorithm-independent approach. In SIAM International Conference
on Data Mining, 2005.

14. P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grouplens: An
open architecture for collaborative ¯ltering of netnews. In Proceedings of ACM
Conference on CSCW, pages 175–186. Chapel Hill, 1994.

15. U. Shardanand and P. Maes. Social information ¯ltering: Algorithms for automat-
ing word of mouth. In CHI ’95, pages 210–217, 1995.

16. J. Wang, A. deVries, and M. Reinders. Unifying user-based and item-based collab-
orative ¯ltering approaches by similarity fusion. In SIGIR, pages 501–508, 2006.

17. D.D. Wu and X. Hu. Mining and analyzing the topological structure of protein-
protein interaction networks. In Symposium on Applied Computing, pages 185–189,
2006.

18. K. Yu, X. Xu, J. Tao, M.E. Kri, and H.-P. Kriegel. Feature weighting and instance
selection for collaborative ¯ltering: An information-theoretic approach. Knowledge
and Information Systems, 5(2), 2003.

80

Evaluating Communication Strategies in a Multi
Agent Information Retrieval System

David Lillis1, Rem Collier1, Fergus Toolan2, and John Dunnion1

1 School of Computer Science and Informatics
University College Dublin

{david.lillis, rem.collier, john.dunnion}@ucd.ie
2 Faculty of Computing Science

Griffith College Dublin
fergus.toolan@gcd.ie

Abstract. With the complexity of computer systems increasing with
time, the need for systems that are capable of managing themselves has
become an important consideration in the Information Technology in-
dustry. In this paper, we discuss HOTAIR: a scalable, autonomic Multi-
Agent Information Retrieval System. In particular, we focus on the incor-
poration of self-configuring and self-optimising features into the system.
We investigate two alternative methods by which the system can config-
ure itself in order to perform its task. We also discuss the Performance
Management element, whose aim is to optimise system performance.

1 Introduction

Complexity is a serious issue with modern computer systems. As hardware has
improved dramatically to facilitate the development of more and more powerful
systems, the complexity of the software that runs on it has increased accordingly.
As a result of this, the costs associated with administrating such systems has
become a serious issue in the Information Technology industry.

This has resulted in a push towards the development of software systems
that are capable of managing themselves, in order to reduce the input required
from human administrators. Research in this area has come to be referred to
as Autonomic Computing, a term coined by IBM in 2001 [1]. Essential features
of an autonomic computing system include self-configuration, self-optimisation,
self-protection, self-healing and a number of others [2–4].

In addition to these hardware and software changes, another feature of the
computer industry in recent years has been the widespread adoption of the World
Wide Web. This has resulted in a dramatic increase in the quantity of informa-
tion being made available, through such things as news articles, blog entries and
forum postings. As a result, Information Retrieval (IR) systems must be capable
of dealing with more and more information, which has resulted the need for more
sophisticated systems. Efficiency and scalability have been of increasing concern
in the IR community, along with the presentation of high-quality results.

81

The development of IR systems using multi-agent techniques is not a new
phenomenon [5–7]. Indeed, the aim of our work on HOTAIR (Highly Organ-
ised Team of Agents for Information Retrieval), a multi agent IR system with
autonomic features [8], is not to demonstrate innovation in the development of
multi-agent IR systems, but rather to investigate a range of techniques that will
enhance the robustness and scalability of large-scale agent systems. Here, we
focus on two approaches to agent interaction that facilitate self-configuration.

Accordingly, Section 2 outlines reasons why IR is an ideal testbed for an Auto-
nomic Computing System. Section 3 presents a general overview of the HOTAIR
architecture, of which two versions have been developed. The first incorporates
a Broker agent which maintains a centralised view of the entire system and man-
ages the behaviour of other agents. An alternative architecture allows individual
agents more autonomy by allowing them to gather more knowledge about their
environment. Each version features a Performance Manager to provide elements
of self-optimisation. Section 4 outlines experiments carried out to compare the
performance of these two architectures. Finally, we include our conclusions and
ideas for future work in Section 5.

2 Information Retrieval as an Autonomic Computing
Testbed

An IR system is an ideal testbed for autonomic computing for a number of
reasons. Firstly, a number of essential features of autonomic computing systems
that have great relevance to IR systems:

– Self-Configuration: As more and more information becomes available to be
processed by IR systems, it becomes necessary for the systems themselves to
grow accordingly. This necessitates the introduction of additional hardware
into the system, to cope with the increased workload. As it would be unfea-
sible to merely transfer the data from one system to another, it is necessary
to add this hardware while the system is running. A self-configuring system
would be capable of incorporating these additional resources into the system
and make use of them, without intervention by a human administrator.

– Self-Optimisation: As with any large-scale system, optimal use of the avail-
able resources is an important aim. A self-optimising system will monitor its
own use of resources and can react immediately to exploit any opportunities
for greater performance that may arise.

– Self-Healing and Self-Protection: Recovery from failures and protection
from external attack are essential to ensure reliability in any large-scale
system, including an IR system. Given the huge revenues that are earned
in advertising alongside, for example, online searches, prolonged downtime
could have disastrous consequences for popular IR systems.

In addition to the above, the IR domain is an attractive one in which to
carry out research on autonomic computing. The barriers to entry are low, as
an IR system can be run on a cluster of low-end desktop computers. Also, the

82

existence of open source IR libraries such as Lucene3 and Xapian4 mean that
the learning curve in setting up an IR system is relatively shallow in comparison
to some other domains.

3 The HOTAIR Architecture

HOTAIR is an Information Retrieval system developed as a Multi-Agent System.
It is written in the AFAPL2 agent programming language [9] and runs within
the Agent Factory framework, a FIPA-compliant runtime environment for agents
[10, 11]. The aim of the HOTAIR project is the development of a reliable and
scalable agent-based search engine architecture. As discussed in Section 2, this
application domain was chosen because we believe that IR is a problem that
offers significant challenges in terms of the scale of the applications, which invites
the use of autonomic features. Consistent with a typical IR system, HOTAIR
consists of two distinct subsystems:

The Indexing Subsystem is reponsible for identifying new documents to make
available to users, whether from the World Wide Web, an FTP site, a ZIP
archive, a file share or some other source. These documents must be added to a
searchable index from which results will be extracted to be presented to users.

The Querying Subsystem is responsible for accepting queries from users,
running those queries against the index built up by the Indexing Subsystem and
returning those results to the user.

Fig. 1. Flow of documents through the HOTAIR Indexing System

The focus of this paper is on the Indexing Subsystem. In order for a docu-
ment to be added to the index, it must go through three stages, illustrated in
Figure 1. Each of these three steps is carried out by what is referred to as a “core
agent”. DataGatherer agents are responsible for identifying and collecting new
documents for inclusion in the index. These documents may be taken from any
number of sources and may be in a variety of file formats. Translators are neces-
sary to interpret the documents of various file types that have been collected by
the DataGatherers. These are converted into a common file type, known as the
HOTAIR Document Format (HDF), which maintains an XML representation of
the document contents. Indexers represent the final step that a document must
go through in order to be included in the system’s index. Indexer agents accept
3 http://lucene.apache.org
4 http://www.xapian.org

83

HDF documents as their inputs, extract the contents from these documents and
save this data in the index. In order to reduce the amount of communication
necessary between agents, documents are not processed individually, but rather
in bundles of 20. We refer to these bundles as “jobs”.

Initially, core agents are not aware of the location of other core agents. The
discovery of, and interaction with, other relevant core agents is an element of
self-configuration which we aim to introduce in the following sections. During
the development process, two versions of the HOTAIR architecture were created.
The principal difference between these is the way in which agents gain knowledge
about their environment and discover other agents with which they must interact
in order to carry out their tasks. Section 3.1 describes the basic workflow of the
system, which both architectures share. Of the two architectures, the “broker
architecture” uses a Broker agent to micro-manage the behaviour of the core
agents. This is presented in Section 3.2. Section 3.3 presents the alternative
“broadcast architecture”, in which the core agents have more control over their
own behaviour, as they have access to more information about the state of
other agents and of the system as a whole. Finally, section 3.4 describes the
performance management features that are applicable to both architectures.

3.1 Indexing System Workflow

This section describes the workflow of the HOTAIR Indexing Subsystem: how
the core agents interact with one another in order to include documents in the
index. Activities discussed in this section are carried out by core agents in both
the brokered and broadcast architectures. We use the term “Processor” to de-
scribe any agent that receives jobs from another agent and processes them in
some way (i.e. Translators process jobs taken from DataGatherers and Indexers
process jobs taken from Translators). “Provider” is a generic term to refer to
any agent that provides jobs for a Processor (i.e. DataGatherers provide jobs for
Translators, which in turn provide jobs for Indexers).

At any given time, each Processor is assigned to a single Provider, from
which it receives documents for processing. The way in which this assignment
takes place is the fundamental difference between the brokered and broadcast
architectures and is discussed in detail in the following sections.

The actual flow of jobs through the system then follows a pull-style pattern.
When a Processor has the capacity to process a job, it requests a job from
the Provider to which it is assigned. Each Provider maintains an output queue,
which contains jobs on which it has completed its own processing. It is from
this queue that a job is taken and forwarded to the Processor that requested
it. If the Provider’s output queue is empty, it will reply with that information,
at which time the Processor must be reassigned to an alternative Provider. The
Performance Manager (discussed in Section 3.4) is charged with ensuring that
the system is balanced so there are always documents available for processing.

Once the Processor has finished processing the job, it adds the job to its
output queue if it is also a Provider. Indexers do not have output queues, as
they represent the final stage of processing a document must undergo.

84

3.2 Brokered Architecture

The Brokered version of HOTAIR employs a Broker agent to aid the core agents
in the discovery of the other core agents with which they need to communicate
and interact. Brokers have long been seen as a useful design pattern for creat-
ing more open agent systems [12, 13]. Here, the core agents have no first-hand
knowledge of their environment other than the location of the Broker agent.

Fig. 2. Communication in the Brokered Architecture

Figure 2 illustrates the communications between agents in the Brokered Ar-
chitecture. For simplicity, only one agent of each type is shown, though many
DataGatherers, Translators and Indexers may exist in practice. Upon creation,
each new core agent must register with the Broker (shown as communication (1)
in Figure 2) and is included in the model the Broker uses to assign Processors
to Providers. Each Provider periodically contacts the Broker to inform it of the
number of jobs currently contained in its output queue (2). This allows the Bro-
ker to build a model of the amount of work being created for each category of
Processor.

In order to find jobs to process, a Processor must contact the Broker and
request that it be assigned to a Provider (3). The Broker then makes use of
its knowledge of the output queue status of the relevant Providers and of the
assignments it has already made to make the most appropriate assignment (4).
A Processor will continue requesting jobs from the same Provider (5,6) until
either the Broker reassigns it to a different Provider (7) or the Provider informs
it that its output queue is empty (8). In the latter case, the Processor must
re-contact the Broker to be reassigned to an alternative Provider.

A key advantage of such an architecture is that all agent assignments are
made with full knowledge of the state of the system as a whole. Thus, the
allocation of agents can at all times be balanced so as to ensure that all Providers
will eventually have Processors assigned to them. Assuming the Broker is using
an appropriate assignment algorithm, this has the effect that jobs cannot become

85

held up in a situation where they are located in the output queue of a Provider
that never has a Processor assigned to it.

This form of Broker agent does, however, introduce a single point of failure
into the system. If Broker fails or becomes uncontactable, the system as a whole
will also fail. Core agents will no longer be able to identify Providers, as they will
not have a method of finding their location. As the Broker is also the sole agent
that is aware of the type, location and status of the core agents, this information
is also lost if the Broker fails. In order to overcome this limitation, work has
been carried out on the development of robust brokered architectures in order
to maintain system performance in the event of the failure of the Broker [14].

3.3 Broadcast Architecture

The second version of the HOTAIR architecture involved Providers broadcasting
the state of their output queues to all other core agents, rather than just to a
centralised Broker agent. Specifically, a wild card (“*”) was introduced into
the agent name component of the FIPA agent identifiers allowing the partial
specification of receiver agents. An example of this would be the agent identifier
agentID(ind∗, addresses(http : //localhost : 444/acc))5, which could be used to
send a message to all agents on the specified agent platform whose name beings
with “ind” (which, in conjunction with an appropriate naming scheme, could be
used to contact all Indexer agents). Furthermore, replacing “ind*” with “*” is
akin to a broadcast to all agents on the specified agent platform. Following this, a
UDP multicast Message Transport Service was introduced, which, together with
the wild card, allowed broadcasting of message to all agents on all platforms that
are listening via the relevant UDP agent communication channel.

By introducing the above message broadcasting mechanism, and allowing
Providers to broadcast their state, the need for the Broker agent is removed.
Each core agent can build its own model of its environment and decide for itself
which Provider from which it will request jobs. Perhaps the key issue in employ-
ing a UDP-based agent communication channel is that agent communication is
no longer guaranteed. However, so long as the approach is used judiciously (e.g.
repeated broadcasting of status updates) and in conjunction with guaranteed
communication mechanisms (e.g. for job requests) the overall behaviour of the
system can be guaranteed without affecting the robustness of the system. For
some tasks, however, it would be useful to have the ability to broadcast reli-
ably, and so we intend to investigate alternative methods of broadcasting using
XMPP-based technologies such as Jabber6.

The broadcasts made by core agents include information about the length
of their output queue, the number of documents in jobs processed and the time
taken to perform this processing. In addition to being used by other core agents
to support the system workflow, it is also possible for a Performance Manager
to make use of this information to influence its management decisions.
5 This identifier is specified in the format that is employed by the AFAPL programming

language
6 http://www.jabber.org

86

Using this broadcast architecture, assignment of Processors to Providers is
carried out by the Processors themselves. By default, agents assign themselves
to the Provider that has most recently broadcasted the largest output queue.
This self-assignment allows the agents to maintain the functioning of the system
even in the absence of any management agents, thus removing the single point
of failure without the need to introduce additional strategies to improve the
robustness of the Broker. This self-assignment can, however, be overridden by
instructions from a Performance Manager agent to assign it to another Provider.
Once a Processor has assigned itself to a provider, it requests jobs in the same
way as in the Brokered Architecture. On receipt of a message to inform it that
its Provider no longer has any jobs available for processing, a Processor will
reassign itself to another Provider.

3.4 Performance Management

Self-optimisation of the system is carried out by a centralised Performance Man-
ager. The aim of this manager is to maximise throughput. In order to carry
out this task, it has a number of actions available to it so as to alter system
behaviour.

Agent Reassignment: In the broadcast architecture, agents will by default
assign themselves the Provider with the greatest number of outstanding jobs.
However, this does not necessarily lead to optimal system performance as it
is not optimised for the system as a whole. The Performance Manager may
override this default behaviour so as to improve system efficiency. In the brokered
architecture, all agent assignments are performed by the Broker, which doubles
as the Performance Manager.

Group Halting/Resumption: Whenever a Provider group processes jobs
quicker than the agents assigned to it, the Performance Manager may instruct
members of that group to temporarily cease processing jobs, so as to allow the
backlog to be cleared.

Agent Creation: Initially, the system begins with a small agent community.
Once the system is running, the Performance Manager incrementally increases
the size of the agent community by creating agents for the group it believes will
benefit most by the creation of an additional agent.

Agent Destruction: When the system reaches its maximum capacity (i.e.
no more agents can be created), the Performance Manager investigates whether
it is possible to create free space for new agents by destroying unnecessary agents,
or agents from overpopulated groups.

4 Experiments and Evaluation

In order to compare the performance of the brokered and broadcast architecture,
a number of experiments were run. Each time the system was run, three Data-
Gatherers were created, each gathering documents from a different document

87

Fig. 3. Document Indexing Speed

collection. The collections used were Cranfield, NPL and the 2Gb Web Track
collection from the TREC conference.

The number of machines available to the system was increased so as to eval-
uate the scalability of each of the two architectures. Each machine is a standard
desktop computer running an Agent Factory agent platform, on which the agents
run. The creation of agents on any of these platforms was the decision of the
Performance Manager, which was present for both architectures. In the brokered
architecture, the Performance Manager also took on the the role of a Broker.
The maximum number of agents that could be created on each platform was
manually set at 15. Systems were evaluated by their performance in success-
fully indexing 3,000 documents. As the document collections contain more than
3,000 documents, in each case all elements of the system were still running on
the termination of the experiment. The results of running these experiments on
between 1 and 4 machines are displayed in Table 1 and Figure 3. In each case,
the system was run three times and all values used are the average of these three
runs. Figure 3 shows the number of documents indexed by each system configu-
ration over time. Table 1 shows the overall time taken to complete the indexing
of the 3,000 documents.

For each configuration of the system, the broadcast architecture outper-
formed the brokered architecture to a large degree. The extent of this difference

88

Table 1. Time to index 3,000 documents (in milliseconds)

Broker Broadcast % difference

1 machine 987849 585957 -40.68%
2 machines 551573 400895 -27.32%
3 machines 418200 274210 -34.43%
4 machines 365612 259286 -29.08%

was always in excess of 27%. The addition of an extra machine reduced the to-
tal processing time in each case, as expected. An interesting feature to note is
that the impact of the addition of the fourth machine was not as dramatic as
that of the second or third machines. This would suggest that the Performance
Manager is not currently making full use of the resources being made available
to it. Although this is an interesting observation, it does not affect the compari-
son between the brokered and broadcast architectures, as the same performance
management strategy was used in both.

5 Conclusions and Future Work

This paper evaluates two approaches to agent interaction that have been em-
ployed in the HOTAIR architecture. The first approach, which is presented in
Section 3.2, is based on best practices and employs a Broker as a middle agent,
which manages interactions between the underlying core agents (DataGatherers,
Translators and Indexers) through the maintenance of a model of the current
state of the system. In contrast, the second approach, which is presented in Sec-
tion 3.3, removes the need for a broker through the introduction of a UDP-based
broadcast mechanism and the incorporation of a partial system model internally
within each core agent.

Central to both architectures is the Performance Manager, builds an ex-
tended model of the system state that includes location and assignment infor-
mation. The Performance Manager performs periodic analysis of the current
system state, modifying the assignments between core agents in order to im-
prove the performance of the system. It is also empowered with a number of
other actions it can take to optimise system performance.

As is shown through the results presented in Section 4, the broadcast ar-
chitecture consistently outperforms the broker architecture by more than 27%.
This is in addition to the advantages it provides in terms of robustness.

Future work will involve further investigation on the scalability of the system
on larger clusters of machines. Additionally, we aim to focus on the development
of appropriate self-optimisation algorithms, which will make best use of the
available performance management actions (outlined in Section 3.4) so as to
increase system throughput. Another key element of autonomic computing which
we aim to address is self-healing, which should ensure that the system should be

89

capable of tolerating and recovering from agent failures, while ensuring that all
documents are successfully indexed.

References

1. Horn, P.: Autonomic computing: IBM’s perspective on the state of information
technology. Manifesto, IBM Research (October 2001)

2. Ganek, A.G., Corbi, T.A.: The dawning of the autonomic computing era. IBM
Systems Journal 42(1) (2003) 5–18

3. Sterritt, R., Bustard, D.W.: Autonomic computing - A means of achieving de-
pendability? In: ECBS, IEEE Computer Society (2003) 247–251

4. Hanson, J.E., Whalley, I., Chess, D.M., Kephart, J.O.: An architectural approach
to autonomic computing. In: ICAC ’04: Proceedings of the First International
Conference on Autonomic Computing (ICAC’04), Washington, DC, USA, IEEE
Computer Society (2004) 2–9

5. Lazarou, V., Clark, K.: A multi-agent system for distributed information retrieval
on the world wide web (1997)

6. McDermott, P., O’Riordan, C.: A system for multi-agent information retrieval.
In: AICS ’02: Proceedings of the 13th Irish International Conference on Artificial
Intelligence and Cognitive Science, London, UK, Springer-Verlag (2002) 70–77

7. Odubiyi, J.B., Kocur, D.J., Weinstein, S.M., Wakim, N., Srivastava, S., Gokey,
C., Graham, J.: Saire-a scalable agent-based information retrieval engine. In:
AGENTS ’97: Proceedings of the first international conference on Autonomous
agents, New York, NY, USA, ACM Press (1997) 292–299

8. Peng, L., Collier, R., Mur, A., Lillis, D., Toolan, F., Dunnion, J.: A self-configuring
agent-based document indexing system. In: Proceedings of the 4th International
Central and Eastern European Conference on Multi-Agent Systems (CEEMAS
2005), Budapest, Hungary, Springer-Verlag GmbH (2005)

9. Ross, R., Collier, R., O’Hare, G.: Af-apl bridging principles & practice in agent
oriented languages. In: Proceedings of the First International Workshop on Pro-
gramming Multiagent Systems, Languages and Tools - PROMAS 2004, New York,
USA (2004)

10. Collier, R., O’Hare, G., Lowen, T., Rooney, C.: Beyond prototyping in the factory
of agents. In: Proceedings of the 3rd International Central and Eastern European
Conference on Multi-Agent Systems (CEEMAS 2003), Prague, Czech Republic,
Springer-Verlag GmbH (2003) 383

11. Collier, R.: Agent Factory: A Framework for the Engineering of Agent-Oriented
Applications. PhD thesis, University College Dublin (2001)

12. Decker, K., Sycara, K., Williamson, M.: Middle-agents for the internet. In:
Proceedings of the 15th International Joint Conference on Artificial Intelligence,
Nagoya, Japan (1997)

13. Kolp, M., Do, T.T., Faulkner, S., Hoang, T.H.: Introspecting Agent-Oriented De-
sign Patterns. In: Handbook of Software Engineering and Knowledge Engineering.
Volume 3: Recent Advances. World Scientific (2005) 105–134

14. Kumar, S., Cohen, P.R.: Towards a fault-tolerant multi-agent system architec-
ture. In: AGENTS ’00: Proceedings of the fourth international conference on
Autonomous agents, New York, NY, USA, ACM Press (2000) 459–466 Reference
for robust Broker-based system.

90

One-Class Support Vector Machine Calibration Using

Particle Swarm Optimisation

Yang Liu, Michael G. Madden

Department of Information Technology,

National University of Ireland, Galway, Ireland
sharkyangliu@yahoo.co.uk; michael.madden@nuigalway.ie

Abstract. Population-based search methods such as evolutionary algorithms,

shuffled complex algorithms, simulated annealing and ant colony search are

increasingly used as automatic calibration methods for a wide range of

numerical models. This paper proposes the use of particle swarm optimisation

to calibrate the parameters a one-class support vector machine. This approach is

developed and tested in the calibration of a one-class SVM, applied to several

data sets. The results indicate that the proposed method is able to match or

surpass the performance of a one-class SVM with parameters optimized using a

standard grid search method, with much lower CPU time required.

1 Introduction

During the past two decades, a great deal of research has been devoted to the

development of traditional classification methods (binary and multi-class

classification) for pattern recognition [1]. Such research has focused primarily on four

issues: (1) Determination of appropriate quantity and most informative kind of data

(feature selection); (2) Dimension reduction for high dimensional features (feature

selection); (3) Search for a classifier that can reliably solve linear or non-linear

classification problems; and (4) Validation for the classifier. Non-linear classification

methods such as Support Vector Machines (SVMs), K-Nearest Neighbour (KNN)

classifier, Decision Tree and Artificial Neural Networks (ANNs) are widely used

traditional classification problems.

However, for a significant number of practical problems, traditional

discriminating classifiers that are trained using positive and negative examples are not

directly applicable, because negative examples may be either rare, entirely

unavailable or statistically unrepresentative. Such problems include industrial process

control, text classification and image analysis. One-Class Classification (OCC) is

emerging as a solution, which characterizes the target class, seeking to distinguish one

class from the universal set of multiple classes.
One class classification (OCC) algorithms are receiving increasing interest

both in the academia and industry [2, 3]. In some real-world applications, negative

examples are hard or expensive to collect and label. Either a negative doesn’t exist, or

collection and label of the negative is computationally very expensive. In an example

of diagnosis of a disease, positive data are easy to access (e.g., all patients who have

disease) and unlabeled data are abundant (e.g., all patient), but negative data are

expensive if detection tests for the disease are expensive since all patients in the
91

database cannot be assumed to be negative samples if they have never been tested.

The second example is system intrusion data. Historical data of system intrusion

cannot be used to recognise new kinds of assault. An effective security tool would be

one designed to recognise assaults as they occur through the understanding and

comparison of the current behaviour against nominal systems activity. Another

example is the tool break detection problem. The challenge of the tool break detection

problem lies in the break data is relative scarcity compared with normal cutting data

since it is difficult and costly to obtain especially for new tool types and cutting tasks.

In both cases, it is necessary to estimate the test example by constructing a new

classifier which does not depend on such negative examples would be especially

desirable.

The One-Class Support Vector Machine is a general purpose learning

method designed to handle the various one-class classification problems [4, 5]. The

algorithm maps the data into the feature space corresponding to the kernel, with the

outliers mapped to a small region enclosing the origin, and target class instances are

separated from the origin with maximum margin. For a new point x, the value f(x) is

determined by evaluating which side of the hyperplane it falls on, in feature space.

To turn the one class SVM algorithm into an easy-to-use black-box method

for practitioners, questions about the selection of parameters (such as the width of a

Gaussian kernel, and the upper bound on the fraction of training errors and the lower

bound of the fraction of support vectors ν) must to be tackled [4, 5]. The method

proposed in this paper investigates the use of automatic calibration of one-class SVM

to find the optimal parameters. Calibration is the process of modifying the input

parameters to a numerical model until the output from the model matches an observed

set of data [6]. In automatic calibration, parameters are adjusted automatically

according to a specified search scheme and numerical measures of the goodness-of-fit.

Compared to manual calibration, automatic calibration is faster while being less

dependent on individual skill and effort, and relatively easy to implement. Previous

work has involved the development and application of optimization algorithms for

automatic model calibration, with the proposed methodology being demonstrated on

numerical model calibration applications [6].

This paper proposes a novel approach that combines particle swarm

optimization (PSO) with one-class SVM, called the PSO-One-Class SVM (POCS)

hybrid algorithm. The proposed methodology is demonstrated on several applications,

showing that the proposed POCS method possesses better ability to find good

parameters (λ and ν) using one-class SVM in some applications. Performance

comparison between PSO and a basic grid search approach is then presented.

2 One-Class Support Vector Machine

Schölkopf et al. have proposed a strategy of mapping the target-class data into the

feature space corresponding to the kernel and to separate them from the origin using a

boundary with maximum margin [4, 5]. The algorithm is an extension of the binary

support vector algorithm to the case of one-class data. As described by Manevitz and

Yousef [3], it is supposed that there is a dataset drawn from an underlying probability

92

distribution P, and one needs to estimate a “simple” subset S of the input space such

that the probability that a test point from P lies outside of S is bounded by some a

prior specified as (0,1)v . The solution for this problem is obtained by estimating a

function f which is positive on S and negative on the complement SC [4, 5]. This is

illustrated in Figure 1 in which target class data are labelled as +1 and outliers are

labelled as -1. The origin is the only original point that is not a member of the target

class, but the algorithm relaxes this constraint to return a function f that has the value -

1 in a restricted region around the origin and +1 elsewhere.

To separate the data from the origin, we solve the following quadratic program:

l

i
i

vl 1

12

2

1
min (1)

subject to

 ix))((li ,...,2,1 0i (2)

where and are hyperplane parameters, is the map from input space to feature

space, is the asymptotic fraction of outliers allowed, l is the number of training

instances, and is a slack variable. For solutions to this problem, and , the

decision function

)))((()(xsignxf (3)

specifies labels for test examples, e.g., -1 for outliers.

Two commonly used kernel functions are the Gaussian Radial Basis

Function (RBF) kernel)exp(),(
2

21 yxxxk and the polynomial

kernel dcyxxxk),(21
, where the free parameter d is the degree of the

polynomial kernel.

3 Particle Swarm Optimisation

Kennedy and Eberhart developed particle swarm optimisation based on the analogy of

swarming animals, such as a flock of birds or school of fish [7]. . In each iteration,

Figure 1: One-class SVM Classifier (Source: Manevitz and Yousef [3]).

93

each agent is updated with reference to two “best” values: pbest is the best solution (in

terms of fitness) the individual particle has achieved so far, while gbest is the best

obtained globally so far by any particle in the population. Each agent seeks to modify

its position using the current positions, the current velocities, the distance between the

current position and pbest, and the distance between the current position and gbest.

The velocity of each agent is modified by the following equation:

)](())(()[21

1 k

i

k

ii

k

i

k

i sgbestrandcspbestrandcvKv (4)

 42

2

2
K where 21 cc 4 (5)

A modification, the constriction factor approach, can generate higher quality

solutions than the conventional PSO approach [8]. Here, the current position can be

modified by the following equation:

11 k

i

k

i

k

i vss (6)

Compared to genetic algorithm optimisation, there are not many parameters

that need to be tuned in PSO. The parameters are: the number of particles; weighting

factors; and the maximum change for a particle. It is generally found that operation is

not very sensitive to parameter settings. For the number of particles, the typical range

is 20 – 40 [9]. The weighting factors, c1 and c2, are often to 2 [9], though other

settings are used in different papers, typically with c1 = c2 and in the range [0, 4] [9].

4 Automatic Calibration Scheme

The general flow chart for the calibration process using PSO is presented below and

illustrated in Figure 2:

Step 1: Generation of initial condition of each agent

We begin with initial population and velocities sampled randomly from the feasible

space.

Step 2: Evaluation of search point for each agent

The objective function value is calculated by running one-class SVM model.

Step 3: Modification of each searching point

The current searching point of each agent is changed using (4) and (5). If the value is

better than the current pbest of the agent, pbest is replaced by the current value. If the

best value of pbest is better than the current gbest, gbest is replaced by the best value.

Step 4: Stop.

As the standard PSO’s search progresses, the entire population tends to converge

towards the global optimum. This process is continued until a satisfactory condition is
94

met. The termination criterion is determined according to whether the maximum

number of generations or a designated value of fitness is reached.

5 Evaluation

5.1 Fitness Function

In order to obtain successful calibration by using automatic optimisation routines, it is

necessary to formulate the calibration objective. The fitness function is formulated as

follows (minimisation of fitness is assumed):

tePositiveRa

f

1

1
),((7)

setin test targetsTotal

 classifiedcorrectly Targets
tePositiveRa (8)

For maximization problems, the fitness can be calculated as the reciprocal of the

objective function value so that solutions with larger objective function value get

smaller fitness.

Initialise population

Run One-class SVM

Evaluation

Modification of each agent

Condition?

 Start

 Stop

Figure 2: Outline of PSO for Optimisation Problems

95

5.2 Datasets

In order to test the validity of the proposed methodologies, the POCS method was

applied to the following datasets:

Tremor Dataset: (The Tremor dataset from Exeter University, UK)1.

For the calibration, 89 positive examples and 90 negative examples were used for

training. In order to evaluate the performance of the calibrated models, test data (45

positive examples and 46 negative examples) and validation data (44 positive

examples and 43 negative examples) were used.

Diabetes dataset (The Pima Indians Diabetes Database from UCI)
2

.

For the calibration, 185 positive examples and 327 negative examples were used for

training. In order to evaluate the performance of the calibrated models, test data (34

positive examples and 95 negative examples) and validation data (49 positive

examples and 78 negative examples) were used.

Vehicle dataset (The vehicle dataset from Statlog, to recognize a vehicle from its

silhouette). 2
 For the calibration, 219 positive examples and 63 negative examples

were used for training. In order to evaluate the performance of the calibrated models,

test data (202 positive examples and 80 negative examples) and validation data (213

positive examples and 69 negative examples) were used.

When negative examples (objects which should be rejected) are available, they can be

used during the training to improve the performance [2].

5.3 Experiment Setup

In our research we used the OSU SVM (version 3.0). The OSU SVM Support Vector

Machine Toolbox for MATLAB uses the LIBSVM packag3. The relevant experiment

parameters using the PSO for one-class SVM calibration are listed in Table 1.

Table 1: Experimental Parameters

Parameter Description Range

λ Kernel parameter [0.0001 100]

ν
Fraction of outliers and

support vectors
[0.01 0.3]

1c Weighting factor 1 2.5

2c Weighting factor 2 2.5

G The total iterations 30

P The number of particles 60

1 The dataset is available at http://www.dcs.ex.ac.uk/studyRes.
2 The dataset is available at http://www-it.et.tudelft.nl/~davidt/occ/index.html.
3 OSU SVM 3.0 is available at http://svm.sourceforge.net/download.shtml. 96

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://svm.sourceforge.net/download.shtml

The results, including the optimal parameters, positive rate, best and worst calibration

results, average values, and the standard deviations using PSO for the objective

function after 30 generations with a population size 60, are listed in Table 2. Table 2

also shows the validation result results of applying the calibrated parameter set to the

validation dataset. From Table 2, it can be seen that PSO is able to find optimal

calibration parameters of one-class SVM with good positive rates of the 10 random

runs, and all the negative examples can be classified (negative rate =100%) in the ten

random runs. The negative rate is formulated as follows:

 Outliers correctly classified

Total outliers in test set
NegativeRate (9)

The small standard deviations of fitness by the PSO imply that the method

POCS is stable.

Table 2: One-Class SVM Calibration and Validation Results Using PSO

Calibration and validation results using PSO for the tremor dataset

Trial

Optimal

Parameter

λ

Optimal

Parameter

ν

Calibration Result Validation Result

Positive Rate (%) Positive Rate (%)

Best 0.0054 0.02 100 88.64

Worst 0.1371 0.01 91.11 88.64

Mean 97.111 87.048

STD 3.4831 2.6368

Calibration and validation results using PSO for the diabetes dataset

Trial

Optimal

Parameter

λ

Optimal

Parameter

ν

Calibration Result Validation Result

Positive Rate (%) Positive Rate (%)

Best 0.0001 0.03 100 100

Worst 0.0001 0.04 100 100

Mean 100 100

STD 0 0

Calibration and validation results using PSO for the vehicle dataset

Trial

Optimal

Parameter

λ

Optimal

Parameter

ν

Calibration Result Validation Result

Positive Rate (%) Positive Rate (%)

Best 4.0090 0.01 99.50 99.06

Worst 0.0285 0.03 99.01 98.12

Mean 99.402 98.872

STD 0.2066 0.3963

Figure 3 shows an example that entire population converged around the

global optimum after 3 generations using PSO with the population size of 60 for the

tremor dataset, so a fixed number of iterations or generations (G=30) has been

suggested as a stopping criterion in the calibration process for the three test datasets.

97

Figure 3: Iteration process using PSO

5.4 Comparison with Grid Search

For the purposes of comparison with PSO, we perform an standard grid search over

the same range of parameters and with the same increments; i.e. λ = 0.0001, 0.1001,...,

100 and ν = 0.01,0.03,…, 0.3. Thus, for the grid search, the number of model

evaluations equal to 15×1000. The grid search method is simply an exhaustive search

to determine the global optimum among those at each point on the grid of parameter

values. Clearly, it is not very efficient, but is deterministic and reliable. If n is the

number of parameters, the method employs a moving n-dimensional grid with spacing

determined by the increment specified. The algorithm tries to centre the grid around

the minimum point for each dimension (parameter), moving in an appropriate

direction during each iteration. The optimization is successful when the grid becomes

centered on a minimum point across all dimensions. Table 3 also shows the results of

using the basic grid search to find that the best (λ, ν) and calibration and validation

results.

From Tables 2 to 3, it is seen that the results of PSO and grid search are very

close. Thus, it is clear that the PSO optimisation framework considered here is

capable of searching more efficiently than the standard grid method on the objective

function under a limited computational budget (60×30 evaluations). The above results

indicate the number of function evaluations using PSO is around 88 percent less than

grid search. This implies that we get a considerable advantage by using PSO.

Table 3: One-class SVM Calibration and Validation Results Using grid search

Calibration and validation results using grid search method for the tremor data

Evaluations Optimal Optimal Calibration Result Validation Result

98

Parameter

λ

Parameter

ν
Positive Rate (%) Positive Rate (%)

15×1000 0.0001 0.2 100 88.64

Calibration and validation results using grid search method for the diabetes data

Evaluations

Optimal

Parameter

λ

Optimal

Parameter

ν

Calibration Result Validation Result

Positive Rate (%) Positive Rate (%)

15×1000 0.1001 0.1 85.29 85.71

Calibration and validation results using grid search method for the vehicle dataset

Evaluations

Optimal

Parameter

λ

Optimal

Parameter

ν

Calibration Result Validation Result

Positive Rate (%) Positive Rate (%)

15×1000 3.7001 0.01 99.06 99.50

6 Concluding Remarks

When using one-class SVM for classification problems, it is difficult to decide the

width of a Gaussian kernel λ, and the upper bound on the fraction of training errors

and the lower bound of the fraction of support vectors ν. To tackle this problem, an

automatic calibration scheme has been formulated that considers the calibration

problem in a general single objective framework. The scheme seeks to optimise the

true positive rate. The hybrid method POCS was presented that can find good

parameters for a one-class SVM. It has been shown that the proposed method

performed more efficiently when compared with traditional grid search method. The

simulation results indicated that the proposed method was able to reduce the required

simulation runs to 12% of grid search while achieving comparable calibration and

validation results. The results provide us with confidence that the proposed method is

indeed a viable method to reduce the computation effort required in calibrating one-

class SVM model.

Acknowledgments. The authors are grateful for the support of Enterprise Ireland

under Project CFTD/05/222a. The second author also acknowledges the support of a

Marie Curie Transfer of Knowledge Fellowship of the European Community’s Sixth

Framework Programme, Contract MTKD-CT-2005-029611. Both authors thank

Shehroz Khan for his comments and input.

References

1. Bishop C.M.: Neural Networks for Pattern Recognition, Clarendon Press, Oxford, 1995.

2. Tax D.M.J. and Duin R.P.W.: Support vector domain description, Pattern Recognition

Letters, 20 (1999), 1191-1199.

3. Manevitz L. M. and Yousef M.: One-class SVMs for Document Classification, Journal of

Machine Learning Research, 2(2001), 139-154.

99

http://ict.ewi.tudelft.nl/~davidt/papers/prl_99_svdd.pdf

4. Schölkopf B., Williamson R., Smola A., Shawe-Taylor J., Platt J.: Support Vector Method

for Novelty Detection. Advances in Neural Information Processing Systems. 12(2000) 582-

588.

5. Schölkopf B., Williamson R., Smola A., Shawe-Taylor J., Platt J.: Estimating the Support

of a High-dimensional Distribution, Neural Computation, 13 (2001) 1443-1471.

6. Liu Y., Khu S.T.:, Automatic Calibration of Numerical Models Using Fast Optimisation by

Fitness Approximation. 2007 International Joint Conference on Neural Networks (IJCNN).

(2007).

7. Kennedy J., and Eberhart R.: Particle Swarm Optimisation, in Proc. of the IEEE Int. Conf.

on Neural Networks, (1995) 1942–1945.

8. Eberhart R., Shi Y.: Comparing inertia weights and constriction factors in particle swarm

optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation.

Washington, DC, (2000) 84-88.

9. Hu X.H.: Particle Swarm Optimisation tutorial, www.swarmintelligence.org/tutorials.php,

available online on 26th, Jun. 2007.

10. Hsu C.W, Chang C.C and Lin C, J.: A Practical Guide to Support Vector Classification,
Department of Computer Science, National Taiwan University.

100

http://www.swarmintelligence.org/tutorials.php

Increasing the Coverage of Decision Trees
through Mixed-Initiative Interaction

David McSherry

School of Computing and Information Engineering, University of Ulster
 Coleraine BT52 1SA, Northern Ireland
dmg.mcsherry@ulster.ac.uk

Abstract. Inadequate coverage of problems that can be solved by other
methods without knowing the result of a test that carries high risk or cost is a
serious limitation of decision trees. We present an approach to increasing
coverage by a mixed-initiative approach to problem solving in which the user
can answer unknown to any question in the decision tree or answer questions
anywhere in the decision tree without waiting to be asked. However, the
potential benefits of allowing problem-solving dialogues to continue when
relevant test results are not available must be balanced against the risk that no
solution may be possible no matter what additional information the user can
provide. This problem is addressed in our approach by using meta-level
reasoning to recognize when no solution is possible.

Keywords: intelligent systems, decision trees, coverage, mixed-initiative
interaction, meta-level reasoning

1 Introduction

Benefits of mixed-initiative interaction in intelligent systems include involving the
user more closely in the problem-solving process and the ability to adapt more easily
to the experience level of the user [1-4]. Problem-solving efficiency may also benefit
from the experience and knowledge that users can often bring to bear [5]. As we
show in this paper, increased coverage of problems for which a complete description
is not available is another potential benefit of mixed-initiative interaction.
 Fig. 1 shows an example decision tree based on the contact lenses dataset, a
simplified version of the real-world problem of selecting a suitable type of contact
lenses for an adult spectacle wearer [6]. The attributes are tear production rate (TPR),
astigmatism, age, and spectacle prescription. The outcome classes are no contact
lenses (N), soft contact lenses (S), and hard contact lenses (H). The traditional
approach to problem solving based on such a decision tree is to ask the user a
sequence of questions, starting at the root node, and following the path determined by
the user’s answers until a leaf node is reached. The solution is the outcome class at
the leaf node.
 However, no solution is possible if the user is unable to answer a question that
must be answered to reach a leaf node. This is a serious limitation when the problem
can be solved by other methods without knowing the result of a test that carries high
risk or cost (e.g., TPR in the contact lenses decision tree). Cendrowska [6] proposes

101

an approach to addressing this issue in which maximally general (MG) rules are
induced from the contact lenses dataset instead of a decision tree. The MG rules often
enable a solution to be reached when the TPR, or another test result, is unknown.
However, the approach requires access to the original data, which is not an option for
a decision tree constructed by a domain expert. It also leaves open the question of
how to apply the MG rules in interactive problem solving. Another approach that
requires access to the original dataset is dynamic (or lazy) induction of decision trees
[5, 7]. In this approach, the system delays commitment to the most useful question
until it has determined that the user can provide an answer. If not, the dialogue moves
on to the next best question.
 McSherry [4] proposes a different approach in which a committee of classifiers is
applied to the sub-trees for all possible values of an attribute whose value is unknown
to the user. The idea is that if all classifiers return the same outcome class, then the
attribute whose value is unknown cannot affect the solution. As demonstrated in a
mixed-initiative intelligent system called Confirm, the approach has the advantage
that access to any data used to construct a decision tree is not required. However, an
important issue not addressed in this and other approaches is the risk that if a relevant
test result is not available, then no solution may be possible no matter what additional
information the user can provide. Thus allowing a problem-solving dialogue to
continue when relevant tests are not available may result in frustration for the user as
well as needlessly incurring the risks and costs of additional tests.
 To address these issues, we present a mixed-initiative approach to problem
solving based on decision trees in which meta-level reasoning [8-10] is used to ensure
that a problem-solving dialogue is allowed to continue only if a solution may still be
possible. Our approach also differs from previous work [4] in that the solution of
problems for which a complete description is not available is guided by rules in the
decision tree rather than exploration of sub-trees. In Sections 2 and 3, we present the
theory on which our approach is based. In Section 4, we demonstrate our approach in
a mixed-initiative intelligent system called Confirm-2. In Section 5, we investigate
the coverage benefits of mixed-initiative interaction in the contact lenses domain, and
our conclusions are presented in Section 6.

2 Confirming an Outcome Class

Often in mixed-initiative intelligent systems, a query (or problem description) is
incrementally elicited (or extended) with the aim of minimizing the number of
questions (or tests) required to reach a solution [2-5, 7, 11-13]. The approach we
present in this paper assumes the existence of a decision tree D that the system uses to
guide its selection of questions when given the initiative by the user. In the traditional
approach to problem solving based on decision trees, the dialogue continues until a
leaf node is reached. However, this simple stopping criterion does not apply in a
mixed-initiative dialogue in which the user can answer unknown to any question
and/or volunteer information without waiting to be asked. In this section, we describe
the criteria used in our approach to recognize when an incomplete problem
description provides sufficient evidence for the dialogue to be successfully
terminated.

102

 Rule

pre-presbyopic
N

H

H

S

N

S

myope

yes

hypermetrope

Tear
production

rate?

N

S
young

pre-presbyopic

reduced

normal
Astigmatism?

young

Age?

Spectacle
prescription?

presbyopic

no
Age?

hypermetrope

Spectacle
prescription?

myope

N

N1

S1

S2

N2

S3

H1

H2

N3

N4
presbyopic

Fig. 1. A decision tree based on the contact lenses dataset

Definition 1. We denote by AD the set of attributes in the decision tree D.

Definition 2. A query is a set of attribute-value pairs Q = {a1 = v1, a2 = v2, ..., an =
vn} such that ai ∈ AD and vi ∈ domain(ai) ∪ {unknown} for 1 ≤ i ≤ n.

Definition 3. We denote by AQ the set of attributes, if any, in a given query Q and for
each a ∈ AQ, we denote by πa(Q) the value of a in Q.

 Each path from the root node of a decision tree to a leaf node provides a rule for
the outcome class at the leaf node. For example, one of the nine rules (N1-N4, S1-S3,
and H1-H2) in the contact lenses decision tree (Fig. 1) is:

S1: if TPR = normal and astigmatism = no and age = young then S

Definition 4. We denote by rules(D) the set of rules in D.

103

Definition 5. For each R ∈ rules(D), we denote by AR the attributes in the rule, by
conditions(R) its conditions, and by conclusion(R) its conclusion.

Definition 6. For each R ∈ rules(D), and a ∈ AR, we denote by πa(R) the required
value of a in R.

 Some of the questions in a decision tree may be meaningful only in the context of
the user’s answers to previous questions. However, we assume in this paper that any
combination of values of attributes in the decision tree is possible. We also assume
that the question at a non-leaf node asks the user for the value of an attribute with a
limited number of values, and each of the attribute’s values leads to another question
node, or to a leaf node at which a solution to the problem is provided. Such a decision
tree provides full coverage of the problem space defined by the product of its attribute
domains. That is, for any problem ,)(

D
∏ ∈∈ Aa adomainP there exists a unique rule RP

∈ rules(D) such that conditions(RP) ⊆ P. We will refer to conclusion(RP) as the
“standard” decision-tree solution for P.
 However, if an attribute value required to reach a leaf node of the decision tree is
unknown to the user, there can be no rule R ∈ rules(D) such that conditions(R) ⊆ P,
where P is the partial description of the problem that is known to the user. For
example, the problem represented by the following query cannot be solved by the
traditional approach using the decision tree in Fig. 1:

Q° = {TPR = normal, astigmatism = yes, spectacle prescription = unknown, age = young}

 Our approach to increasing coverage of problems for which a complete
description is not available is based on the idea that a solution may be possible by
using more than one of the rules in rules(D). Our criterion for a successful solution is
that the incomplete problem description provides sufficient evidence to confirm one
of the outcome classes in the decision tree. For an outcome class to be confirmed, it
must be the standard decision-tree solution for all complete problem descriptions that
include all the known facts. That is, any attributes that do not have known values
cannot affect the solution.

Definition 7. A query Q* is a completion of a given query Q if AQ* = AD, πa(Q*) ∈
domain(a) for all a ∈ AQ*, and πa(Q*) = πa(Q) for all a ∈ AQ such that πa(Q) ≠
unknown.

Definition 8. An outcome class G is confirmed by a given query Q if G is the
standard decision-tree solution for all completions Q* of Q.

 In Theorem 1, we present a necessary and sufficient condition for an outcome
class to be confirmed by a given query which does not require exhaustive search over
all possible completions of the query to determine if a solution has been reached.
Instead, it is necessary only to identify “matching” rules for the given query and their
conclusions. The proofs of Theorems 1-5 are omitted because of limited space.

Definition 9. For any query Q, we define matching-rules(Q) = {R ∈ rules(D) : πa(R)
= πa(Q) for all a ∈ AR ∩ AQ such that πa(Q) ≠ unknown}.

Definition 10. For any query Q, we define competitors(Q) = {conclusion(R) : R ∈
matching-rules(Q)}.

104

Theorem 1. An outcome class G is confirmed by a given query Q if and only if
competitors(Q) = {G}.

 For the example query Q°, it can be seen from Fig. 1 that matching-rules(Q°) =
{H1, H2}. As competitors(Q°) = {H}, it follows from Theorem 1 that the evidence
provided by Q° is sufficient to confirm H in our approach. Thus a problem that
cannot be solved by the traditional decision-tree approach can now be solved by
making use of two of the rules available in the decision tree. In Section 5, we
empirically investigate the overall increase in coverage provided by our approach
when applied to the contact lenses decision tree (Fig. 1).

3 Recognizing Non-Confirmable Outcome Classes

In this section, we present our approach to recognizing when no outcome class can be
confirmed no matter what additional information the user can provide. An important
benefit is that the user can be informed at the earliest possible stage when a solution
cannot be reached, and thus avoid the risks and costs of additional tests. We begin by
introducing the concepts on which our approach is based, such as matching rules that
are open and closed with respect to a given query, and the supporters and opposers of
an outcome class among the matching rules for a given query.

Definition 11. A query Q is inconclusive if |competitors(Q)| > 1.

Definition 12. A query Q+ is an extension of another query Q if Q ⊆ Q+.

Definition 13. For any query Q and R ∈ matching-rules(Q), we denote by QR the
extension of Q such that AQR = AQ ∪ AR and πa(QR) = πa(R) for all a ∈ AR - AQ.

Definition 14. For any query Q, we define closed(Q) = {R ∈ matching-rules(Q) : AR
⊆ AQ} and open(Q) = {R ∈ matching-rules(Q) : AR - AQ ≠ ∅}.

Definition 15. For any outcome class G and query Q, we define supporters(G, Q) =
{R ∈ matching-rules(Q) : conclusion(R) = G} and opposers(G, Q) = {R ∈ matching-
rules(Q) : conclusion(R) ≠ G}.

 In Theorem 2, we present criteria which sometimes enable non-confirmable
outcome classes to be easily identified, but which cannot be guaranteed to identify all
such outcome classes.

Theorem 2. An outcome class G can be confirmed by extending an inconclusive
query Q only if it is supported by an open rule and not opposed by any closed rule.

 As an example of how Theorem 2 can be used to recognize when no outcome
class can be confirmed, consider the query Q1 = {age = young, TPR = unknown}. It
can be seen from Fig. 1 that matching-rules(Q1) = {N1, S1, H1, H2}, competitors(Q1)
= {N, S, H}, closed(Q1) = {N1}, open(Q1) = {S1, H1, H2}, supporters(N, Q1) =
{N1}, opposers(S, Q1) = {N1, H1, H2}, and opposers(H, Q1) = {N1, S1}. By
Theorem 2, neither H nor S can be confirmed by extending Q1 as they are both
opposed by the closed rule N1. Also by Theorem 2, N cannot be confirmed as there is
no open rule that supports it.

105

 The conditions in Theorem 2 are necessary but not sufficient for an outcome class
to be confirmable by extending an inconclusive query. For example, it can be seen
from Fig. 1 that for Q2 = {TPR = normal, astigmatism = unknown}, matching-
rules(Q2) = open(Q2) = {S1, S2, N2, S3, H1, H2, N3, N4}, competitors(Q2) = {N, S,
H}, and closed(Q2) = ∅. Thus N, S, and H are all supported by open rules and
unopposed by any closed rule. As will be seen from Theorem 3, however, no
outcome class can be confirmed by extending Q2.

Theorem 3. An outcome class G can be confirmed by extending an inconclusive
query Q if and only if there exists R ∈ supporters(G, Q) ∩ open(Q) such that QR
confirms G or can be extended to confirm G.

 For example, supporters(S, Q2) ∩ open(Q2) = {S1, S2, S3}, and it can be seen
from Fig. 1 that Q2

S1 = Q2 ∪ {age = young}, Q2
S2 = Q2 ∪ {age = pre-presbyopic},

and Q2
S3 = Q2 ∪ {age = presbyopic, spectacle prescription = hypermetrope}. Table 1

shows all matching, closed, and open rules for Q2
S1, Q2

S2, and Q2
S3. It is clear that S

is not confirmed by Q2
S1, Q2

S2, or Q2
S3 as they all have two or more competing

outcome classes. It can also be seen from Theorem 2 that none of Q2
S1, Q2

S2, Q2
S3 can

be extended to confirm S as none of them has an open rule that supports S. It follows
from Theorem 3 that no extension of Q2 can confirm S. It can similarly be verified
that neither N nor H can be confirmed by extending Q2. The user can thus be
informed that no solution is possible because astigmatism is unknown.

Table 1. Matching, closed, and open rules for Q2

S1, Q2
S2, and Q2

S3

Extension Matching Rules Closed Rules Open Rules
Q2

S1 {S1, H1, H2} {S1} {H1, H2}
Q2

S2 {S2, H1, N3} {S2} {H1, N3}
Q2

S3 {S3, N4} {S3, N4} None

 For an inconclusive query Q and outcome class G that is supported by an open
rule R but not confirmed by QR, it is immediate from Theorem 2 that QR cannot be
extended to confirm G if no rule that is open with respect to QR supports G, or if G is
opposed by a rule that is closed with respect to QR. If neither condition holds, it
remains to be determined if G can be confirmed by extending QR. In Theorem 4, we
show how this task can be formulated as a search for a sequence of rules that
confirms G. It is worth noting that the search involves only open rules that support G.

Theorem 4. An outcome class G can be confirmed by extending an inconclusive
query Q if and only if there exists R1 ∈ supporters(G, Q) ∩ open(Q) such that QR1
confirms G or a sequence of rules R1, ..., Rk ∈ supporters(G, Q) ∩ open(Q) such that
Ri ∈ supporters(G, QR1 ... Ri-1) ∩ open(QR1 ... Ri-1) for i ≥ 2 and QR1 ... Rk confirms G.

 In the final theorem of this section, we show that any competing outcome class
(Section 2) can be confirmed for a query in which all attributes have known values.

Theorem 5. If all attributes in an inconclusive query Q have known values, then an
outcome class G can be confirmed by extending Q if and only if G ∈ competitors(Q).

106

4 Mixed-Initiative Interaction in Confirm-2

We now use the contact lenses decision tree (Fig. 1) to demonstrate our approach in
Confirm-2, a mixed-initiative intelligent system in which the user can provide an
initial query, answer unknown to any question, and volunteer additional information
at any stage without waiting to be asked. Questions are selected by Confirm-2 with
the goal of confirming a target outcome class. In the problem-solving cycle shown in
Fig. 2, the identification of confirmable outcome classes (Step 2) is guided by meta-
rules based on the theoretical results presented in Section 3:

Meta-Rule 1: if all attributes in Q have known values and G ∈ competitors(Q)
 then G can be confirmed
Meta-Rule 2: if G is opposed by a closed rule then G cannot be confirmed
Meta-Rule 3: if G is not supported by an open rule then G cannot be confirmed
Meta-Rule 4: if no sequence of open rules confirms G then G cannot be confirmed

 If there is at least one confirmable outcome class, then the one supported by most
rules that match the current query is selected as a target outcome class (Steps 4-5).
The open rule with fewest conditions among those that support the target outcome

 __
Algorithm: Mixed-Initiative(Q)
Repeat Steps 1-10 until one of the stopping criteria in Steps 1 and 3 is satisfied:

1. If competitors(Q) = {G}, where G is a single outcome class, then inform the user
that G has been confirmed and stop

2. Identify all confirmable outcome classes in competitors(Q):
targets(Q) ← {G ∈ competitors(Q) : Q can be extended to confirm G}

3. If targets(Q) = ∅ then inform the user that no outcome class can be confirmed and
stop

4. Identify the outcome classes in targets(Q) that are supported by most rules in
matching-rules(Q):

best-targets(Q) ← {G* ∈ targets(Q) : |supporters(G*, Q)| ≥
|supporters(G, Q)| for all G ∈ targets(Q)}

5. Select any G* ∈ best-targets(Q) as the target outcome class
6. Identify the open rules in supporters(G*, Q) that have fewest conditions:

best-rules(G*) ← {R* ∈ supporters(G*, Q) ∩ open(Q) : |conditions(R*)| ≤
|conditions(R)| for all R ∈ supporters(G*, Q) ∩ open(Q)}

7. Select any R* ∈ best-rules(G*) as the most useful rule
8. Select the first attribute a* in R* such that a* ∉ AQ as the most useful attribute
9. Ask the user for the value of a*

10. If v* is the value of a* reported by the user then Q ← Q ∪ {a* = v*} else if the
value of a* is unknown to the user then Q ← Q ∪ {a* = unknown} else if v is the
value of another attribute a reported by the user then Q ← Q ∪ {a = v}

__

Fig. 2. The problem-solving cycle in Confirm-2

107

class is selected as the most useful rule (Steps 6-7). The first attribute in this rule that
is not already in the current query is selected as the most useful attribute (Step 8).
When asked for the value of the selected attribute, the user can answer unknown or
select another attribute whose value she wishes to report (Steps 9-10).
 Fig. 3 shows a Confirm-2 dialogue in which the initial query is Q1 = {age =
presbyopic}. It can be seen from Fig. 1 that matching-rules(Q1) = open(Q1) = {N1,
N2, S3, H1, N4}, so competitors(Q1) = {N, S, H}. As all attributes in Q1 have known
values, it follows from Meta-Rule 1 that N, S, H can all be confirmed by extending
Q1, and so targets(Q1) = {N, S, H} (Step 2). As N, S, and H are supported by 3, 1,
and 1 matching rules respectively, best-targets(Q1) = {N} (Step 4) and the target
outcome class is G* = N (Step 5). As supporters(N, Q1) ∩ open(Q1) = {N1, N2, N4}
and N1, N2, and N4 have 1, 4, and 4 conditions respectively, best-rules(N) = {N1}
(Step 6) and the most useful rule is R* = N1 (Step 7).
 As the only attribute in N1 is a* = TPR, the user is now asked for the TPR (Step
9). As the TPR is unknown to the user (Fig. 3), the problem-solving cycle is repeated
with Q2 = {age = presbyopic, TPR = unknown} as the current query. From Fig. 1,
matching-rules(Q2) = {N1, N2, S3, H1, N4}, closed(Q2) = {N1}, and open(Q2) =
{N2, S3, H1, N4}. As S and H are now opposed by the closed rule N1, it follows
from Meta-Rule 2 that they cannot be confirmed. However, N is confirmable by Q2

N2

= {age = presbyopic, TPR = unknown, astigmatism = no, spectacle prescription =
myope} as matching-rules(Q2

N2) = {N1, N2} and competitors(Q2
N2) = {N}. So

targets(Q2) = {N}, best-targets(Q2) = {N}, and G* = N. As supporters(N, Q2) ∩
open(Q2) = {N2, N4} and N2 and N4 both have 4 conditions, best-rules(N) = {N2,
N4}. With R* = N2 now as the most useful rule, the most useful attribute is a* =
astigmatism.
 The user is now asked if astigmatism is present (Fig. 3), and a third cycle begins
with Q3 = {age = presbyopic, TPR = unknown, astigmatism = no} as the current
query. In this cycle, matching-rules(Q3) = {N1, N2, S3}, competitors(Q3) = {N, S},
closed(Q3) = {N1}, open(Q3) = {N2, S3}, targets(Q3) = best-targets(Q3) ={N}, G* =
N, best-rules(N) = {N2}, R* = N2, and a* = spectacle prescription. The user is now
asked for the patient’s spectacle prescription, and the dialogue enters a fourth cycle
with Q4 = {age = presbyopic, TPR = unknown, astigmatism = no, spectacle
prescription = myope} as the current query. As matching-rules(Q4) = {N1, N2} and
competitors(Q4) = {N}, the user is informed that N (no contact lenses) has been
confirmed and the problem-solving process is successfully terminated (Step 1).

no

Question:
Astigmatism?

unknown Question:
TPR?

myope Solution:
No contact lenses

Question:
Prescription?

Fig. 3. Example dialogue with Q1 = {age = presbyopic} as the initial query in Confirm-2

108

5 Empirical Study

Our evaluation focuses on the coverage benefits of mixed-initiative problem solving
based on the contact lenses decision tree (Fig. 1) in comparison with the traditional
decision-tree approach. A problem for which a complete description is not available
can be solved in the traditional approach if the incomplete description known to the
user includes all the conditions of one of the rules in the decision tree. It can be
solved in our mixed-initiative approach if all rules in the decision tree that match the
incomplete problem description have the same conclusion. Initially we compare the
percentages of successful solutions over all possible problem descriptions, both
complete and incomplete, in the two approaches. Attributes in the domain and their
numbers of values are TPR (2), astigmatism (2), age (3), and spectacle prescription
(2). The number of problem descriptions in which the values of one or more attributes
may be unknown is therefore: (2 + 1) × (2 + 1) × (3 + 1) × (2 + 1) = 108.
 All such problem descriptions were automatically generated and tested for the
existence of a unique solution in the two approaches. As shown by the results for all
problem descriptions (n = 108) in Fig. 4, mixed-initiative interaction increases the
percentage of successful solutions from 47% to 52%. However, as problems for
which a complete description is available (n = 24) can always be solved in both
approaches, the benefits of mixed-initiative interaction can be seen more clearly from
the results for incomplete problem descriptions. For incomplete problem descriptions
(n = 84), mixed-initiative interaction increases the percentage of successful solutions
from 32% to 38%, which amounts to a relative increase in coverage of 19%.

0

25

50

75

100

All Problem
Descriptions

Incomplete Problem
Descriptions

Su
cc

es
sf

ul
 S

ol
ut

io
ns

 (%
)

Traditional Decision-Tree Approach
Mixed-Initiative Problem Solving

Fig. 4. Problems in the contact lenses domain that can be solved by the traditional

decision-tree approach and by mixed-initiative problem solving

6 Conclusions

We have presented a mixed-initiative approach to increasing decision-tree coverage
of problems for which a complete description is not available. In the classification
task that we studied, mixed-initiative interaction was shown to increase coverage of
problems for which the user is unable to provide a complete description by 19%.

109

However, a potential risk in allowing problem-solving dialogues to continue when
relevant test results are not available is that no solution may be possible no matter
what additional information the user can provide. Our solution to this problem is
based on the use of meta-level reasoning to identify outcome classes that cannot be
confirmed by extending the user’s current query. As shown by our theoretical results,
this enables the user to be informed at the earliest possible stage when a solution
cannot be reached, thus avoiding the risks and costs of additional tests.
 In future work, we will investigate the coverage benefits of mixed-initiative
interaction when applied to more complex decision trees. Of course, our approach can
be expected to provide little or no increase in coverage if most or all of the outcome
classes at the leaf nodes of the decision tree are distinct. However, the ability to
recognize when no solution is possible (Section 3) remains an important benefit of
our approach even when the achievable coverage gains are small.

References

1. Allen, J.E.: Mixed-Initiative Interaction. IEEE Intelligent Systems 6 (1999) 14-16
2. Cheetham, W.: A Mixed-Initiative Call Center Application for Appliance Diagnostics.

In: Aha, D.W., Tecuci, G. (eds.): Proceedings of the AAAI-05 Fall Symposium on
Mixed-Initiative Problem-Solving Assistants. AAAI/MIT Press (2005)

3. Göker, M.H.: Adapting to the Level of Experience of the User in Mixed-Initiative Web
Self-Service Applications. ICCBR-03 Workshop on Mixed-Initiative Case-Based
Reasoning (2003)

4. McSherry, D.: Mixed-Initiative Intelligent Systems for Classification and Diagnosis.
Proceedings of the 14th Irish Conference on Artificial Intelligence and Cognitive
Science (2003) 146-151

5. McSherry, D.: Interactive Case-Based Reasoning in Sequential Diagnosis. Applied
Intelligence 14 (2001) 65-76

6. Cendrowska, J.: PRISM: an Algorithm for Inducing Modular Rules. International
Journal of Man-Machine Studies 27 (1987) 349-370

7. Bergmann, R., Cunningham, P.: Acquiring Customers’ Requirements in Electronic
Commerce. Artificial Intelligence Review 18 (2002) 63-193

8. Cox, M.: Metacognition in Computation: A Selected Research Review. Artificial
Intelligence 169 (2005) 104-141

9. Lenat, D., Davis, R., Doyle, J., Genesereth, M., Goldstein, I., Schrobe, H.: Reasoning
about Reasoning. In: Hayes-Roth, F., Waterman, D. Lenat, D. (eds.): Building Expert
Systems. Addison-Wesley, Reading, Massachusetts (1983)

10. McLaren, B., Ashley, K.: Helping a CBR Program to Know What it Knows. In: Aha,
D.W., Watson, I. (eds.): Case-Based Reasoning Research and Development. LNAI, Vol.
2080. Springer, Berlin (2001) 377-391

11. Aha, D.W., McSherry, D., Yang, Q.: Advances in Conversational Case-Based
Reasoning. Knowledge Engineering Review 20 (2005) 247-254

12. Shimazu, H., Shibata, A., Nihei, K.: ExpertGuide: a Conversational Case-Based
Reasoning Tool for Developing Mentors in Knowledge Spaces. Applied Intelligence 14
(2001) 33-48

13. Thompson, C.A., Göker, M.H., Langley, P.: A Personalized System for Conversational
Recommendations. Journal of Artificial Intelligence Research 21 (2004) 393-428

110

Evolving a Hybrid Deceptive Strategy for the
Repeated English Auction

Pilib Ó Broin and Colm O’Riordan

Dept. of Information Technology,
National University of Ireland, Galway,

pilib@zig.it.nuigalway.ie, colm.oriordan@nuigalway.ie

Abstract. Understanding issues of trust and deception are key to de-
signing robust, reliable multi-agent systems. This paper builds on previ-
ous work which examined the use of auctions as a model for exploring the
concept of deception in such systems. We have previously described two
forms of deceptive behaviour which can occur in a simulated repeated
English auction. In this work we examine the potential shortcomings
of those two strategies and investigate whether or not their individual
strengths can be combined to produce a successful hybrid deceptive strat-
egy.

1 Introduction

Deception can play a role in any form of interaction, especially when the interac-
tion involves two or more self-interested parties. Recent research has shown that
in online interactions the temptation to deceive is particulary strong, as users
feel protected by anonymity [1]. In open multi-agent systems, where autonomous
agents are often required to try and maximize their own utility, there are many
motivations to deceive [2].

Auctions have previously been used to examine the behaviour of rational
trading agents [3] and represent an interesting real-world model which has be-
come increasingly popular in recent years due to the success of websites such as
Ebay and Amazon. Deception in real-world auctions is surprisingly common and
interested readers are directed to [4] which describes some of the many different
forms of deception which can occur. Deception is also an important research
topic in multi-agent systems, examples of which can be seen in [2][5].

Previously we have shown how auctions can be used as a simple mechanism
for investigating notions of deception in a multi-agent system [6]. We have ex-
amined two forms of deceptive behaviour which can evolve in a repeated English
auction setting — sniping and antisocial bidding.

In this paper we investigate whether or not a combination of these two strate-
gies can produce a hybrid strategy which will perform better than either (or
both) of its predecessors. As before, we will examine both the placement of the
individual strategy types in the population fitness rankings as well as the overall
societal fitness over time.

111

The next section briefly describes the two strategies previously implemented
and outlines their respective limitations. Section 3 deals with the experimen-
tal setup including game design and strategy implementation, while Section 4
presents the results of the experiments and their analysis. The final section in-
cludes a summary and general discussion and outlines future work.

2 Deceptive Strategies

2.1 Sniping and Antisocial Bidding

Sniping, or late bidding, provides a means for an agent to hide information about
its true valuation for an item, while simultaneously allowing it to win items at a
price below that which it would normally be forced to pay had a ‘Näıve’ (honest)
strategy been employed. Much recent research has focussed on sniping which is
widespread in real-world online auctions such as ebay [7][8].

Antisocial bidding was first introduced in [9]. Based on the notion of relative
fitness (concentrating not only on maximzing one’s own fitness, but also on
minimizing that of other agents), strategies employing antisocial bidding place
‘false bids’ (bids for items which they do not wish to acquire). These bids, when
placed on an item, serve to ensure that, over time, an opponent will be forced to
pay an amount increasingly close to their private valuation in order to win that
item. This has the net effect of reducing the payoff for the agent who wins that
item1 and thus reducing their chance of survival. Previous results showed that
antisocial bidders, (herefter refered to as Dec2), effectively reduce the payoffs
of competitors to zero on many items [6]. A form of antisocial bidding has also
been documented in the real world where sellers in online auctions use multiple
accounts to uncover buyers’ private valuations for items and then place false
or ‘shill’ bids just below those private valuations in order to increase their own
profit. The authors in [4] term this behaviour ‘squeezing’.

Both the sniping and Dec2 strategies were shown to achieve higher payoffs
than the test population of Näıve strategies into which they were introduced.
These high levels of payoff ensured that the deceptive strategies were selected
for reproduction and quickly spread among the Näıve agents. In co-evolutionary
settings, snipers were seen to be somewhat robust to the profit-reducing effect
of the Dec2 strategy and populations usually converged to the former within 15
generations. This result coincides with the findings in [4], which indicate that
sniping is a possible best response to the real-world scenario of ‘squeezing’.

2.2 Motivation for Hybrid Strategy

Although both types of strategy successfully exploit Näıve populations, they
each implement only one form of deception. Snipers, while winning items for
which they do not possess the highest private valuation, do nothing to reduce
1 Payoffs are calculated as the difference between an agent’s private valuation for an

item and the price actually paid to win that item.

112

the profits of their opponents. This is a missed opportunity for increasing their
relative fitness.

Dec2 bidders, on the other hand, focus solely on decreasing their opponents’
profit, they do not try to use late bidding in order to win items they wish to
acquire at lower prices. A successful hybrid strategy would need to incorporate
both types of deception in order to fully exploit the weaknesses of its opponents.

3 Experimental Setup

This section examines the game model including the auction mechanism used
and the strategy set design.

3.1 Game Design

As before, agents compete in a repeated English auction (incremental bidding)
with hard close (fixed end time). Each agent is assigned the same budget and
a random subset of the complete set of auction items, this is refered to as the
agent’s goal list. Each item on this list is randomly assigned a portion of the
agent’s budget which corresponds to the agent’s private valuation for that item.
Each auction has ten timeslots in which bids can be placed on any item. At the
end of an auction agents are assigned fitness scores based on their level of profit
relative to the profit of their opponents.

A single game in the simulator consists of seven auctions, and the agents
partake in 500 games per generation. Different goal lists are assigned to the
agents in each game, ensuring that strategies must be able to compete effectively
accross a wide variety of auction scenarios.

3.2 Strategy Design

The bidding behaviour of Näıve agents is encoded by so-called näıve genes. These
three genes — rand, linear and dyn control the agressiveness of bidding in the
Näıve strategy.

The behaviour of a strategy defined as being deceptive is based on three
additional deceptive genes. The first deceptive gene – dec, represents the type
of deception used by the agent. In experiments with a single type of deceptive
agent, a value for this gene of less than 0.5 indicates a Näıve strategy, while
anything above this value indicates a deceptive one. When more than one type
of deceptive strategy is involved in an experiment, the dec gene range ([0..1])
is split three ways, allowing us to encode each of the three types of deceptive
strategy.

The remaining two deceptive genes code for the behaviour of the Sniper (or
Hybrid strategy which incorporates sniping). These genes – bid-time and bid-
amount, control how late in the auction bids are placed (i.e. a bid-time of 0.7
indicates bidding in the seventh timeslot), as well as the value of those bids. The
Dec2 strategy ignores the bid-time and bid-amount genes and instead uses its

113

näıve genes for bidding on items on its goal list. Its additional data structures
allow it to maintain a limited bid history which it uses to calculate the false bids
that it will place.

4 Results and Analysis

The Hybrid strategy is tested against our three previous strategies (Näıve, Sniper
and Dec2). We begin by testing the performance of the Hybrid strategy against
Näıve bidders in both non-evolutionary and evolutionary settings. We then show
the results following a single generation of introducing one Hybrid strategy into
populations of Snipers and Dec2 ’s. Finally, we examine the performance of the
Hybrid strategy in a population consisting of an equal mix of all three deceptive
strategies which is allowed to evolve over 500 generations.

4.1 Hybrid vs. Näıve

Non-evolutionary Setting We begin by testing our Hybrid strategy against
Näıve bidders in a non-evolutionary environment to ascertain its position in
the fitness rankings after one generation. The test population consits of nine
randomly initialized Näıve agents and one Hybrid agent playing 500 games with
a goal list of five items each from a complete auction set of ten items. The Hybrid
agent has a deceptive gene value of 0.75, while the Näıve strategies’ deceptive
genes are set to zero. The Hybrid strategy has a bid-time of 1 (indicating that
it will bid in the last possible timeslot), and a bid-amount of 0.1.

As we can see in Table 1, the Hybrid strategy (bold) receives a fitness score
0.42 while the next fittest strategy receives a score of 0.17. This fitness is higher
than a Sniper (.21) and comparable to a Dec2 agent (.43) in a similar scenario.

Table 1. Hybrid Position in Näıve Fitness Rankings

Rand Linear Dyn Bt Ba Dec Fitness

0.47 0.95 0.05 0.55 0.42 0 0.0183
0.25 0.80 0.51 0.27 0.29 0 0.0310

.

.
0.39 0.26 0.85 0.03 0.76 0 0.0742
0.07 0.03 0.29 0.82 0.32 0 0.1749
0.14 0.58 0.44 1 0.1 0.75 0.4280

In a population of fit (pre-evolved) Näıve strategies, the Hybrid’s ability to
reduce the profit of its opponents is limited due to the Näıve strategies’ use of
small bid increments which cause them to reach their true valuations more slowly.
The Hybrid strategy’s use of sniping, however, ensures that it still consistently
achieves the highest fitness score. This is a marked improvement on the Dec2
strategy’s performance demostrated in [6].

114

Evolutionary Setting Next, we examine the representation of the different
strategies in the population as well as the societal fitness over 500 generations
for the test population used above.

Fig. 1. Strategy Count with Näıve and Hybrid Strategies

Fig. 2. Societal Fitness with Näıve and Hybrid Strategies

115

Figure 1 shows the number of Näıve and Hybrid strategies in the population
at each generation. The Hybrid strategy quickly spreads and dominates the pop-
ulation for the remainder of the run despite a few Näıve strategies reappearing
through mutation.

The effect of this spread of the Hybrid strategy on societal fitness is seen
in Figure 2. The sharp rise in the first ten generations is a result of more and
more of the agents in the population adopting a Hybrid approach to bidding.
As previously seen in the case of Snipers, late bidding means a decrease in
the amount paid to win an item and thus a corresponding increase in profit
and overall societal fitness. The remainder of the run sees the societal fitness
fluctuate as the bid-amount gene undergoes a process of genetic drift as outlined
in [6].

4.2 Hybrid vs. Sniper

Table 2. Hybrid Position in Sniper Fitness Rankings

Rand Linear Dyn Bt Ba Dec Fitness

0.48 0.69 0.11 1 0.1 0.17 0.0920
0.24 0.73 0.79 1 0.1 0.17 0.0967

.

.
0.12 0.64 0.58 1 0.1 0.17 0.1024
0.75 0.62 0.17 1 0.1 0.17 0.1057
0.51 0.35 0.66 1 0.1 0.83 0.1094

Table 2 shows the fitness rankings after a single generation (500 games) when
one Hybrid strategy is introduced into a population of nine Snipers. In this
experiment the deceptive gene was used to encode the three different deceptive
strategies (Snipers >0, Dec2 >.33, Hybrid >.66). As such, the strategies were
assigned a deceptive gene value roughly halfway through the range of values
encoding their individual behaviour (i.e. 0.17 for Snipers and 0.83 for Hybrids).
Both the Snipers and Hybrids had a bid-time of 1 and a bid-amount of 0.1.

The Hybrid strategy achieves a slightly higher fitness score (.109) than the
fittest Sniper (.105). The sniping of the Hybrid strategy puts it on a par with
the Snipers in terms of winning items for which it has a private valuation greater
than zero, while the Dec2 behaviour of placing false bids reduces its opponents’
profit. The net result is that the Hybrid strategy wins items at a rate similar to
Snipers, but reduces the Snipers’ profit while its own remains unaffected thus
achieving a higher relative fitness.

4.3 Hybrid vs. Dec2

In these experiments, Dec2 strategies were assigned a deceptive gene value of
0.5, while Hybrid strategies were again encoded by a value of 0.83. The Hybrid

116

Table 3. Hybrid Position in Dec2 Fitness Rankings

Rand Linear Dyn Bt Ba Dec Fitness

0 0.02 0.02 0.65 0.05 0.5 0.0871
0 0.02 0.02 0.24 0.60 0.5 0.0888
.
.
0 0.02 0.02 0.90 0.17 0.5 0.0979
0 0.02 0.02 0.09 0.30 0.5 0.0991

0.52 0.28 0.67 1 0.1 0.83 0.1536

strategy had a bid-time of 1 and a bid-amount of 0.1. The Dec2 startegy had its
näıve genes set to the final values which were observed in Näıve strategies which
were evolved for 500 generations.

As we would expect the Dec2 strategies have the usual effect on one another
(and on the Hybrid strategy) of decreasing an opponent’s profit. The Hybrid
strategy, however, achieves a higher fitness score due to its use of sniping. As
previously shown, the Dec2 strategy is not as effective in reducing the profit
of Snipers as it is in the case of Näıve bidders. This means that the sniping
behaviour of the Hybrid strategy gives it an advantage over the Dec2 strategies
in this scenario.

4.4 All Three Deceptive Strategies

This section provides the results of an experiment involving a population of 30
agents consisting of 10 Dec2, 10 Sniper and 10 Hybrid strategies.

In the fitness rankings after one generation, the Dec2 strategy type (deceptive
gene value of 0.5) performs the worst, with the ten seeded strategies achieving
the ten lowest scores. The Sniper (deceptive gene value of 0.17) and Hybrid
(deceptive gene value of 0.83) strategies are randomly ordered in the top 20
positions. This may seem odd considering that the Hybrid strategy achieved the
highest score when seeded in a population of snipers, but can be explained by
the presence of further Hybrid (as well as Dec2) strategies.

When our Hybrid strategy beat each of its sniping competitors in the non-
evolutionary setting, it was the only strategy which was placing false bids to
decrease it opponents’ profit. Since there is more than one strategy incorporating
this kind of bidding in this new population, the Hybrid strategies also have their
profit reduced. This, in effect, negates the benefit of the Dec2 component of
the Hybrid strategy leaving its success dependent solely on its sniping genes. In
essence, this means that a Hybrid strategy in a population with fellow Hybrids,
or indeed with Dec2 ’s will perform as though it were simply a Sniper.

Since Snipers with the same bid-time place bids in a random order2, their
success in winning items and thus their fitness is also random. This accounts for

2 The equivalent of 30 people placing a bid in an online auction at the exact same
time

117

Table 4. All Three Deceptive Strategies – Fitness Rankings

Rand Linear Dyn Bt Ba Dec Fitness

0 0.02 0.02 0.20 0.78 0.5 0.0124
0 0.02 0.02 0.56 0.22 0.5 0.0135
0 0.02 0.02 0.12 0.56 0.5 0.0145
.
.

0.56 0.95 0.46 1 0.1 0.83 0.0430
0.12 0.92 0.32 1 0.1 0.17 0.0432
0.68 0.24 0.31 1 0.1 0.17 0.0439
0.42 0.78 0.22 1 0.1 0.17 0.0440
0.89 0.85 0.19 1 0.1 0.83 0.0445
0.21 0.01 0.37 1 0.1 0.17 0.0463
0.12 0.72 0.45 1 0.1 0.83 0.0468

the mix of Sniper and Hybrid strategies in the top 20 positions in the fitness
rankings. The effect that this has on the representation of the various strategies
in the population over time is shown in Figure 3.

Fig. 3. Strategy Count with All Three Deceptive Strategies

Since the Dec2 ’s consistently achieve the lowest fitness scores, they die off
within the first ten generations and do not gain a foothold for the remainder of
the run. As the fitness values of the Sniper and Hybrid agents are essentially the
same, the population does not fully converge to either of these strategies, but
instead fluctuates between the two. In the example shown, the Hybrid strategy

118

places highest in the fitness rankings after the first generation and so dominates
intially. If mutation introduces enough Snipers, or if several Snipers are highly
placed in the fitness rankings, then a ‘critical mass’ is reached in which the evolu-
tionary pressure switches from Hybrids to Snipers (as happens at approximately
generation 375). This cycle will continue as long as the population is allowed to
evolve and ultimatley neither strategy will remain indefinitely stable.

The societal fitness for this population intially increases as the Dec2 strate-
gies change to either the Sniper or Hybrid strategies within the first 10-15 gen-
erations. After that point the average fitness fluctuates similarly to that of a
population consisting entirely of Snipers, although the inclusion of some Dec2 ’s
sees a slight reduction in the average fitness due to their decreasing of opponents’
profits.

Fig. 4. Societal Fitness with All Three Deceptive Strategies

5 Summary and Conclusions

Understanding issues relating to trust and deception is vital not only in the field
of multi-agent systems, but also in areas such as sociology, political science and
business, or indeed any other field which involves predicting or reasoning about
the behaviour of self-interested parties.

The examining of these concepts can lead, not only to better understanding of
their function in a social context, but also, in technological terms, to the design of
more reliable systems which would be robust to misuse by malicious behaviour.
Any multi-agent system which is designed to constrain deceptive behaviour is
inherently more likely to elicit a higher level of trust and confidence in its users.

119

This paper has examined the limitations of previously discussed deceptive
strategies for the repeated English auction. We have proposed a Hybrid de-
ceptive strategy incorporating successful elements from both of these strategies
and tested its performance against both Näıve strategies and previous deceptive
strategies in an evolutionary setting. The Hybrid strategy was found to have
advantages over the Sniper and Dec2 strategies individually over a single gen-
eration, but suffered from the same problem as Dec2 in an evolutionary setting
i.e. when faced with an opponent using the same profit-reducing technique, its
performance was diminished. This being said, the Hybrid strategy proved more
successful than the Dec2 strategy and equally as successful as the Sniper in evo-
lutionary settings, with populations converging to the Hybrid strategy in 50%
of experiments and to the Sniper strategy in the remaining 50%. The experi-
ment can also be seen as a confirmation of the robust, effectiveness of the Sniper
strategy, which can be seen as having the advantages of less complex behaviour
and fewer resource requirements.

Future work will focus on examining types of deception possible in alternative
auction protocols as well as exploring the possibility of allowing Dec2 / Hybrid
strategies to recognize one another and thus implement bidder collusion in an
attempt to address their shared weakness.

References

1. Cristiano Castelfranchi. The role of trust and deception in virtual societies. In
Proceedings of the 34th Hawaii International Conference on System Sciences, 2001.

2. S. D. Ramchurn, T. D. Huynh, and N. R. Jennings. Trust in multi-agent systems.
The Knowledge Engineering Review, 2004.

3. Michael P. Wellman and Peter R. Wurman. A trading agent competition for the
research community. In Proceedings of the International Joint Conference on Ar-
tificial Intelligence, Workshop on Agent-Mediated Electronic Trading. AAAI Press,
1999.

4. Salvatore Barbaro and Bernd. Bracht. Shilling, squeezing, sniping: Explaining late
bidding in online second-price auctions. University of Mainz, working paper (this
version: January 31, 2006).

5. C. Castelfranchi, R. Falcone, and F. de Rosis. Deceiving in golem: How to strate-
gically pilfer help. In Deception, Fraud and Trust in Multiagent Systems. Kluwer
Publishing, 1998.

6. Pilib Ó Broin and Colm O’Riordan. Decption in multi-agent auctions: An evolution-
ary approach. In 17th Irish Artificial Intelligence and Cognitive Science Conference
(AICS2006), 2006.

7. A. E. Roth and A. Ockenfels. Last-minute bidding and the rules for ending second-
price auctions: Evidence from ebay and amazon auctions on the internet. American
Economic Review, 92:1093–1103, 2002.

8. A. E. Roth and A. Ockenfels. Late bidding in second price internet auctions: Theory
and evidence concerning different rules for ending an auction. Games andEconomic
Behavior, 50, 2005.

9. F. Brandt. Antisocial bidding in repeated Vickrey auctions. Technical Report FKI-
241-00, Department of Computer Science, Technical University of Munich, 2000.
ISSN 0941-6358.

120

Analogy and Sense Extension

Dervla O’Keeffe and Fintan Costello

School of Computer Science and Informatics,
University College Dublin ⋆

dervla.okeeffe@ucd.ie, fintan.costello@ucd.ie

Abstract. We describe an experiment designed to investigate the rela-
tionship between sense extension and analogy. Previous accounts of sense
extension have been based on the generative lexicon, but it is difficult
to see how those accounts explain the everyday apparently analogical
sense extensions we see around us. The results of the experiment sug-
gest that the analogical process plays an important role in a type of
sense extension, identified by us as analogical sense extension. A positive
correlation was found between mappings constructed for analogies and
the occurence of sense extension. We did not find evidence of a prim-
ing effect when participants were asked to perform analogical processing
on the experimental materials prior to answering questions about sense
extension.

1 Introduction

Sense extension is the process of extending the meaning of a word to a new
domain or area of discourse, so that the word takes on a new meaning. Sense
extension is a familiar and integral part of language growth, and results in words
having multiple meanings or senses. In this paper we investigate the idea that
some forms of sense extension involve the construction and use of analogies.

As an informal example, consider the words associated with aircraft. It may
be noticed that many of these words are also used for seacraft. The galley in
both an airplane and a ship is the place where food is prepared. A steward on an
airplane looks after the food requirements of the passengers, as would a steward
on a ship. In both a plane and a ship the cargo is stored in an area known
as the hold. An airplane docks at a pier in an airport, and a ship docks at a
pier in a port. It seems apparent that the meaning of many of these words has
been extended from the domain of seacraft to the domain of aircraft. This sense
extension may be enabled because of the analogy between aircraft and seacraft,
allowing the words originally used for ships to be used in relation to airplanes.

Current explanations of sense extension, however, are not based on the exis-
tence of an analogy between domains, but instead are based on the application of

⋆ This research was supported by the FP6 NEST Programme of the European Com-
mission (ANALOGY: Humans the Analogy-Making Species: STREP Contr. No.
029088)

121

specific lexical rules. It is, however, difficult to see how they can be applied sat-
isfactorily to the apparently analogical sense extension as described above. Our
particular aim in this paper, therefore, is to examine the relationship between
analogy and sense extension in the context of these lexical rules.

The structure of the paper is as follows. In Section 2 we provide the necessary
background information concerning sense extension and analogy. The experiment
is described in Section 3. This experiment investigates the role of analogy in
the sense extension of nouns from one domain to another. The results of this
experiment and a discussion of the implications of these results are presented in
Section 4.

2 Background

2.1 Sense Extension

Polysemy The term sense extension is very broad, and is used to describe
various different ways in which words can take on new meanings. One type of
sense extension is called regular polysemy[1, 2], and involves particular standard
forms of sense extension such as metonyom and synecdoche. Metonymy is the
use of a single characteristic to identify a more complex entity. For example,
the use of the word “dish” to refer to a meal, not just the delph it was served
in. Metonomy is considered semantically regular as there is always a strong
association between concepts related in this way. Synecdoche is often regarded
as a subtype of metonymy. It is based on a part-whole or whole-part relation
between the concepts involved; for example, saying ‘I’ll have the chicken’ to refer
to a meal which has chicken as a constituent element. Other examples of sense
extension, including what we term analogical sense extension, are referred to as
irregular polysemy.

Lexical Rules Most research on sense extension has taken place within the
linguistic framework of the generative lexicon developed by Copestake[3, 4]. In
the generative lexicon framework, both metynomic and metaphorical (irregular)
sense extension are handled by lexical rules. These rules are expressive enough
to cover a number of forms of sense extension, and allow for productivity within
specified parts of the lexicon[5].

One of the suggested rules for sense extension within this framework is called
grinding. Grinding allows the word for a countable noun object; for example, “an
airplane”; to refer in a mass sense to some substance derived from that object;
for example, “after the crash, there was airplane all over the field”. Another
lexical rule that impacts sense extension is what is known as the blocking rule,
which imposes the constraint that a sense cannot be extended if there already
is an existing word covering that extension. For example, by the grinding rule
described above we should be able to use the word “pig” to refer to both the
animal; for example, “a pig”; and the substance derived from that animal; for
example, “I love sweet and sour pig!”. However, the fact that there is already an

122

existing word for the substance derived from pig, “pork”, blocks the extension
in this case. The dative construction rule is another relevant rule.

The lexical rule account is intended to explain both metynomic and metaphoric
sense extension. However, it is difficult to see how such rules can explain the ap-
parent importance of structural matching or similarity between domains in sets
of extended senses as seen in the aircraft and seacraft example. We will call
this type of sense extension analogical sense extension. Lakoff[6] has provided a
discussion of sense extension based on metaphor and analogy.

2.2 Analogy

Analogy Analogy is the process of understanding something new in terms of
something familiar[7]. The new domain is called the target analog, and the famil-
iar domain is called the base analog. An analogy maps elements from the source
domain to elements of the target domain, although elements of both domains
may remain unmapped.

A classic example of an analogy is the analogy between the atom and the
solar system. There are many reasons for thinking that the atom “is like” the
solar system: the electrons orbit the nucleus, and the planets orbit the sun; the
mass of the nucleus is greater than the mass of the electrons, and the mass of the
sun is greater than the mass of the planets; the positive charge of the nucleus
attracts the negatively charged electrons, and gravity attracts the planets to
the sun. Certain elements may be put into correspondence between the two
domains: electrons and planets; the sun and the nucleus; the sun’s gravity and
the opposing charges of the electrons and the nucleus.

Analogy may be used as both an aid to memory, and to understanding.
Conjectures about unfamiliar domains may also be triggered by analogy. These
conjectures are often referred to as inferences, or candidate inferences.

Structure-Mapping Theory The Structure-Mapping Theory (SMT) of anal-
ogy[8] was first described by Gentner in 1983. This theory states that it is the
relations between the elements of the target domain and elements of the base
domain that provide the most important type of similarity for the mapping in
analogy-making. This property of similarity of relations is known as structural

similarity. A consequence of this is that the properties of the elements of the
domains themselves are far less important for the mapping process, as these
properties only govern appearance similarity. The different types of similarity
considered by the SMT are shown in Table 1.

The Structure-Mapping Engine[9] (SME) provides a computational model of
the SMT. SME is capable of taking a description of a base and a target domain,
and generating conjectures about the target domain by drawing inferences from
the base domain. For the atom and solar system example, introduced in Section
2.2, SME is presented with a “complete” description of the base analog (the
solar system) which includes the fact that the planets revolve around the sun
due to the difference between the mass of the sun and the mass of the plan-
ets, and because of gravity. SME then produces a series of possible mappings

123

Table 1. The Different Types of Similarity for Analogical Mapping

Type of Similarity Important Factor(s) for Mapping

Structural Similarity Relations between elements.
Literal Similarity Relations between elements, and properties of elements.
Appearance Similarity Properties of elements.

between the two domains. Each possible mapping is given a rating based on ei-
ther the structural, literal, or appearance criteria. The mapping with the highest
score is considered the “best” mapping. For this example, the structural similar-
ity mapping produces a candidate inference for explaining the revolution of the
electrons around the nucleus in terms of the revolution of the planets around
the earth. The candidate inference suggests that it may be because of the differ-
ence in mass between the nucleus and the electrons, and because of the mutual
attraction between the nucleus and the electrons that the electrons in the atom
revolve around the nucleus. The importance of structural, as opposed to appear-
ance, similarity becomes clear in this case; it does not matter that the nucleus is
not a giant burning ball of gas, what matters are the relations that hold between
the nucleus and the other elements in the atom. This example shows how a more
complete understanding of a target domain may be obtained via the process of
analogical comparison with a more fully understood base domain.

Analogy and Language The role of analogy in language-learning has recently
been studied. Gentner and Namy[10] provided evidence for the argument that
language may be acquired through the use of domain-general learning mech-
anisms (with analogy as one of these mechanisms) rather than through some
language-specific acquisition mechanism. Their work, however, uses young chil-
dren as subjects, and does not investigate how adults learn and extend words.
The main finding of the paper is that children initially use perceptual match-
ing when comparing objects if they only have one exemplar, but can use rela-
tional matching if they are provided with enough perceptually different exem-
plars which share conceptual relations. A child presented with a bicycle as an
example of a “blicket”, and asked to choose as another “blicket” either a pair
of glasses (perceptually similar) or a skateboard (conceptually similar), chooses
the pair of glasses. A child presented with both a bicycle and a tricycle as exam-
ples of “blickets”, however, chooses the skateboard. This work suggests a strong
connection between the analogical process and language in general. It has also
been suggested that analogical mapping contributes to the learning of grammar.

2.3 Questions about Analogy and Sense Extension

Although Lakoff does provide an explanation of sense extension in terms of
analogy, we have been unable to locate literature describing experimental work
carried out to verify this theory. It seems likely that the extension of meaning

124

Fig. 1. Results of Pretest Check for Existence of Analogy between Passages

from one domain to another, in some cases at least, depends on the existence
of an analogy between the domains. In the experiment described in Section 3
we investigate if such a relationship between analogy and sense extension exists.
We are also interested in any other factors which may interact with analogy in
this type of sense extension. For example, the blocking rule from the generative
lexicon account of sense extension may disallow the extension of a word because
a second name for something would most likely be redundant. It is possible that
the commonality or generality of words may also influence the ease with which
they can be extended.

3 Experiment

The aim of the experiment was to investigate the relationship between analogy
and sense extension. A pretest was carried out before the main experiment to
check assumptions made in the main experiment. Both the pretest and the main
experiment were paper-based.

3.1 Pretest

In the pretest, the participants were presented with six pairs of passages to
read. Each passage in the test describes a particular domain. The passages were
custom-written for the test, and cover various scientific and technological topics.
We had judged there to be an analogy present between the constituent passages
for three of the pairs, and no analogy between the passages in the remaining
three pairs. The pretest was carried out to check this judgement, and the test
involved seven native English-speaking participants.

The order of the pairs of passages was randomly selected for each participant.
Participants were asked to read each pair of passages and then indicate if they
thought there was an analogy between the domains or not, as shown in the first
question in Figure 2. They were then asked to provide details of the mappings
in the analogy, as shown in the second question of Figure 2, if they judged there

125

to be one present. The results of the pretest, as shown in Figure 1, confirmed
our initial judgements about the existence of analogies between the pairs of
passages. For the analogous pairs, there were 17 “correct” mappings suggested
by the participants. Of these, 12 were considered strong mappings as they were
suggested by all the participants, and 5 were considered weak mappings as they
were suggested by only a subset of the participants. This distinction between
strong and weak mappings was used in the design of the main experiment.

3.2 Main Experiment

Experimental Design The same six pairs of passages used in the pretest
were used in the main experiment. All participants were asked to read each
pair of passages, and to answer subsequent questions asking them to judge the
acceptability of extending words between the domains. There were two groups
of participants in the experiment: an analogy group, and a non-analogy group.

In the analogy group, the participants were encouraged to think about possi-
ble analogies by giving them the pretest task to perform prior to answering the
questions regarding the acceptability of sense extension between the domains.
In the non-analogy group, the word “analogy” was not mentioned at all in the
experimental materials, and the participants were simply asked to read the pas-
sages and answer the questions about sense extension.

The analogy group was primarily useful for investigating the possible rela-
tionship between the noting of an analogous mapping and it’s subsequent use in
sense extension. As the participants in the non-analogy group were not asked to
provide details of any analogy they perceived between the passages this analy-
sis was not possible with this group. The two groups also enabled investigation
into the possibility of priming for sense extension by drawing the participants’
attention to the idea of looking for analogies between the passages.

Participants Twenty native English-speakers participated in the experiment.
The participants were not a homogenous group, but were a varied group includ-
ing teachers, engineers, students, accountants, and architects. The participants
were randomly assigned to either the analogy group or the non-analogy group.
The experiment was balanced by placing ten people in each group.

Materials Figure 2 shows an example of a pair of passages from the experi-
ment, along with the accompanying questions, as presented to the analogy group
in the main experiment. The example pair is the “sewers and veins” example.
The first two questions are the pretest tasks, and the remainder are the ques-
tions asking about the acceptability of sense extension between the domains of
the passages. The first prestest question asked the participants to judge if they
thought there was an analogy between the passages on a five-point scale: Def-
initely Not, Probably Not, Don’t Know, Probably, and Definitely. The second

126

Read the following two short passages carefully, and answer the related questions.

Passage A

In humans, veins are blood vessels that carry blood from organs toward the heart, and arteries

are blood vessels that carry blood away from the heart. Systemic veins carry deoxygenated

blood containing CO2 and cellular waste. The pulmonary vein is the exception; it carries highly

oxygenated blood from the lungs to the heart. In the lungs oxygen is picked up and CO2 is given

up. As blood pressure is lower in veins than in arteries, veins have venous valves to prevent

blood flowing backwards due to other forces; for example, gravity.

Passage B

Ideally a sewer system would be completely gravity-powered. The sewerage pipes from buildings

feed into sewer mains. Sewer mains flow into progressively larger pipes until they reach a

wastewater treatment plant. This plant is usually located in a low-lying area to aid the flow of

wastewater. Often a grinder-pump or a lift-station must be used to move the wastewater; for

example, over a hill. Sewers have valves to stop the backflow of waste; for example, floating ball

valves and swinging check valves.

Questions

1. Do you think there is an analogy between the subject(s) described in Passage A and the

subjects(s) described in Passage B? Circle your answer.

Definitely Not Probably Not Don’t Know Probably Definitely

2. If you think there is, or may be, an analogy:

Please draw lines connecting the analogous elements from the two passages. Each

connecting line must connect an element from Passage A to an element from Passage B.

Note that not all elements must be connected, and that an element may be connected to

multiple other elements.

Systemic Vein Wastewater

Venous valve Treatment plant

Artery Floating ball valve

Pulmonary vein Sewer

Deoxygenated blood Grinder-pump

Heart Swinging check valve

Lungs Low-lying area

3. Which of the following words do you think would be an acceptable alternative name for

the venous valve in Passage A? Circle your answer.

Grinder-pump Floating ball valve Sewer None of these

4. Which of the following words do you think would be an acceptable alternative name for

the systemic vein in Passage A? Circle your answer.

Grinder-pump Wastewater Sewer None of these

5. Which of the following words do you think would be an acceptable alternative name for

the lungs in Passage A? Circle your answer.

Low-lying area Treatment plant Sewer None of these

Fig. 2. Example Pair of (Analogous) Passages for Analogy Group in Main Experiment

127

Fig. 3. Non-Analogy Group Results for Sense Extension Questions

pretest questions list some items from both domains and ask the participants to
draw lines connecting the analogous elements.

There are three sense extension questions. For the analogous pairs of pas-
sages, two of these questions were based on strong mappings, and one was based
on a weak mapping (as defined in Section 3.1). Each of the sense extension ques-
tions has four possible answers. One of these is the element for the target domain
from the “expected mapping” (from the pretest). Two others are items from the
target domain that a mapping is not “expected” for given the particular item
from the source domain that the question is being asked about. The final op-
tion in all cases is “None of These”. The order of the expected and unexpected
mappings is random in all questions.

For half of the pairs the questions were asked with Passage A as the source,
and Passage B as the target, and the other half were the reverse. The participants
in each group were given the six pairs of passages in a random order, with the
same random order used for both the analogy group and the non-analogy group.

3.3 Results

Non-Analogy Group The results of the experiment for the non-analogy group
are shown in Figure 3. A tendency to choose acceptable alternative names based
on analogous mappings between the passages in the cases where the pair of
passages are analogous is apparent. When the pair of passages are not analogous,
participants were most likely to reject all the suggested alternative names in
favour of the “None of These” option.

Analogy Group The results of the experiment for the analogy group are shown
in Figure 4. These results show a very similar pattern to the results of the
non-analogy group in Figure 3. Additional analysis of the data for the group is
possible due to the information gathered about the analogies perceived by partic-
ipants in the pairs of passages. For each sense-extension question per participant

128

Fig. 4. Analogy Group Results for Sense Extension Questions

Fig. 5. Analogy Group Results for Expected Mapping and Expected Sense Extension

it was noted if the participant perceived the “expected” mapping, and if they
made the “expected” sense extension. Figure 5 shows the results of this analysis
for the analogous passages. The “expected” mapping is represented in Figure 5
by M , and an unexpected mapping or no mapping is represented by M̄ . The
“expected” sense extension, based on the “expected” mapping is represented in
Figure 5 by E, and an unexpected extension or no extension is represented by
Ē. It can be seen in Figure 5 that in the cases where participants made the
“expected” mapping they tended to use this mapping to extend the sense of the
word in question, and when they did not perceive the “expected” mapping they
did not make the extension. From these results it seems clear that the analogous
mapping is what enables the sense extension to occur in these cases. The cor-
relation coefficient for the data is 0.63, and this indicates a correlation between
M and E. (Sign test: (N+ = 74, N− = 14, p < 0.0001))

It can be seen from Figures 3 and 4 that there is no overall evidence of priming
as regards sense extension occuring in the analogy group. In fact it looks as if

129

the opposite is true, but this is misleading as, due to the small sample size of
ten people in this group, the difference is in fact not significant. There was no
significant difference found between the proportion of “expected” answers given
to the questions based on strong mappings and the same proportion given to the
questions based on weak mappings.

4 Conclusions

We have described an experiment which shows that analogical sense extension is
a reality. In the analogy group, where such data was available, we found a positive
correlation of 0.63 between M and E, where M is a binary variable representing
the detection of the analogous match, and E is a binary variable representing
the extension of the word indicated by the analogous match. This means that
generally participants in our experiment extended the sense of words only when
they had identified the mapping that the extension was based on. These results
imply that the analogical process plays an important role in sense extension.

Future work on this topic could include the construction of a computer model
capable of identifying analogous domains in a knowledge base, and suggesting
sense extensions based on these analogies. The sense extensions could then be
rated by people to verify the validity of the predictions made by the model.

In this exploratory work, we failed to find a priming effect when participants
were asked to perform analogy-making tasks with the passages before answering
the sense extension questions. An extended study, with a larger sample size,
would be of great help in investigating this further.

References

1. Apresjan, J.: Regular Polysemy. Linguistics (142) (1973)
2. Nunberg, G.: Transfers of Meaning. Journal of Semantics (12(1)) 109–132
3. The Semi-Generative Lexicon: Limits on Lexical Productivity. In: Proceedings of

the First International Workshop on Generative Approaches to the Lexicon. (2001)
4. Pustejovsky, J.: The generative lexicon. (1995)
5. Copestake, A., Briscoe, T.: Semi-productive Polysemy and Sense Extension. Jour-

nal of Semantics 12 (1995) 15–67
6. Lakoff, G.: The Contemporary Theory of Metaphor. Metaphor and Thought (1993)

202–251
7. Gentner, D., Holyoak, K.J.: Reasoning and Learning by Analogy: Introduction.

American Psychologist 52 (1997) 32–34
8. Gentner, D.: Structure-mapping: A Theoretical Framework for Analogy. Cognitive

Science 7 (1983)
9. Falkenhainer, B., Forbus, K.D., Gentner, D.: The Structure-Mapping Engine: Al-

gorithm and Examples. Artificial Intelligence 41 (1989) 1–63
10. Gentner, D., Namy, L.L.: Analogical Processes in Language Learning. Current

Directions in Psychological Science 15(6) (2006)

130

Evaluating the Robustness of
Collaborative Web Search

Michael P. O’Mahony and Barry Smyth

School of Computer Science and Informatics,
University College Dublin, Ireland

{michael.p.omahony,barry.smyth}@ucd.ie
http://casl.ucd.ie

Abstract. Collaborative web search utilises past search histories in a
community of like-minded users to improve the quality of search results.
Search results that have been selected by community members for past
queries are promoted in response to similar queries that occur in the fu-
ture. The ISPY system is one example of such a collaborative approach
to search. As is the case with all open systems, however, it is difficult to
establish the integrity of those who access a system and thus the potential
for malicious attack exists. In this paper we investigate the robustness
of the ISPY system to attack. In particular, we consider attack scenar-
ios whereby malicious agents seek to promote particular result pages
within a community. In addition, we analyse robustness in the context
of community homogeneity, and we show that this key characteristic of
communities has implications for system robustness.

Key words: Collaborative Web search, personalisation, malicious at-
tack, robustness

1 Introduction

Traditional search engines operate in a “one-size-fits-all” manner and return
the same search results for the same query, irrespective of the interests and
needs of those individuals using the service. The rationale for collaborative Web
search (CWS) lies in the query repetition and selection regularity that exists
in the searches of communities of like-minded users. The ISPY system is one
example of such a collaborative approach to search [9]. ISPY is a meta-search
framework where submitted queries are first passed to base-level search engines
(e.g. Google, Yahoo! etc.). The result lists obtained are then adapted and re-
ranked by ISPY according to the heuristic that results which have been selected
for similar queries in the past are also likely to be relevant for other community
members. In previous work, the benefits of this collaborative approach to search
has been established [8, 9].

The relatively uniform interests and needs that exist in community domains
can also, however, be exploited by malicious agents seeking to manipulate search
output. For example, users may seek to promote their own work to other commu-
nity members in order to enhance their reputation or to achieve financial gain.

131

In related work, the lack of robustness exhibited by collaborative recommender
systems against attack has been highlighted [3, 5, 6]. It has been shown that at-
tacks on these systems are capable of significantly biasing the recommendations
that are made for target items. These systems are vulnerable given the open
manner in which they operate. Since it is practically impossible to assess the
integrity of those who use a system, there is no guarantee that the data inserted
into a system’s database is an accurate reflection of true user preferences.

In this paper we examine the robustness of the ISPY system against attack.
We introduce attack models that are designed to associate target result pages
with the query-space of particular communities, with the objective of promoting
such pages in the result lists of future search sessions initiated by community
members. In addition, we analyse the robustness of collaborative search in terms
of community homogeneity. This is a key characteristic of communities and de-
pends on such factors as the maturity of communities, user participation levels
and community focus. Some communities will naturally have a tight focus (e.g.
communities catering for such niche-interests as military history, model aviation
etc.) while others will have a broader focus. By definition, all communities strive
for a certain degree of speciality in order to satisfy members’ interests and needs
and it is clearly important to gain an understanding of the relationship between
community focus and robustness against attack.

The paper is organised as follows. Section 2 presents an overview of the ISPY
system architecture. Attack models are described in Section 3 and an empirical
evaluation of these models is provided in Section 4. We discuss the implications
of our findings in Section 5 and conclusions are presented in Section 6.

2 Collaborative Web Search Architecture

The collaborative search technique implemented in the ISPY system is conceived
of as a form of meta-search. Each new user query, qT , is submitted to a set of
underlying search engines and their results are combined to form a meta-search
result-list, RM . ISPY then processes RM to produce a new result-list, RT , which
reflects the learned preferences of a community of like-minded users. This is
achieved by recording the page selections made for past search queries, thereby
enabling such pages to be promoted when similar queries are submitted in future.
(For a more comprehensive description of the ISPY system, refer to [9].)

The key data structure used in the ISPY system is the community hit-matrix,
H, where Hij represents the number of times that page pj has been selected as
a result for query qi. Thus, the rows of H correspond to the (unique) queries
submitted by community members and maintain an account of all page selec-
tions made for each query. Note that no record is maintained of which user
selected which page; in effect, the hit-matrix serves as an anonymous account of
community preferences.

The similarity between a new query, qT , and a query, qi, from the hit-matrix
is calculated using the Jaccard index (Equation 1), which measures the term
overlap between queries. ISPY selects those rows from the hit-matrix whose

132

corresponding query has a similarity to qT that exceeds a specified threshold.
The pages associated with these rows are called promotion candidates.

Sim(qT , qi) =
|qT ∩ qi|
|qT ∪ qi|

(1)

The relevance of page pj to query qi is calculated as the relative number of
times that pj has been selected for qi; see Equation 2. Further, the relevance
of pj to qT is a combination of Relevance(pj , qi) for all qi’s (q1, ..., qn) deemed
similar to qT , as shown in Equation 3, where Exists(pj , qi) = 1 if Hij > 0, and
0 otherwise. Each Relevance(pj , qi) is weighted by Sim(qT , qi) to discount the
relevance of results from less similar queries.

Relevance(pj , qi) =
Hij∑
∀j Hij

(2)

WRel(pj , qT , q1, ..., qn) =
∑

i=1...n Relevance(pj , qi)× Sim(qT , qi)∑
i=1...n Exists(pj , qi)× Sim(qT , qi)

(3)

This weighted relevance metric is used to rank-order the promotion candi-
dates. These ranked pages are then listed ahead of the remaining meta-search
results, which are themselves ranked according to a standard meta-search scoring
metric, to give RT .

3 Attack Methodology

We assume that the objective of attacks is to promote a single target page within
a particular ISPY community. For example, consider the author of a Web page
related to the Java programming language, who seeks to promote his page above
others for all relevant search sessions. In order to ensure successful promotions in
the context of the ISPY system, the key requirement for attackers is to associate
the target page in the system’s hit-matrix with queries that are representative
of community search activity. We refer to such queries as attack queries.

To illustrate the above process, consider an attack that seeks to promote a
particular target page, pT . Once registered with an ISPY community, attackers
can insert any number of attack queries into the community hit-matrix by simply
selecting pT from the result-lists returned from multiple search sessions. Each
search session can involve different combinations of query terms (assuming that
the target page is indexed by such terms by the underlying search engines),
thereby permitting the target page to be associated with a diverse range of
queries within the hit-matrix.

By definition, given the focused nature of typical communities, the selection
of suitable terms with which to form attack queries should not pose a signif-
icant challenge. For example, queries formed using terms such as php, mysql,
C++ etc. would be good candidates in the case of a technology-related com-
munity. By using such popular or frequently occurring terms, high similarities

133

(Equation 1) between new search queries submitted by community members and
attack queries can be achieved, thereby increasing the weighted relevance and
ranking (Equation 3) of the associated target page in the search results.

Note that the effort involved in implementing attacks is unlikely to be high,
since the insertion of queries into the ISPY system can be readily automated,
thereby enabling a large number of such insertions using many combinations of
query terms to be made. Further, the fact that ISPY maintains an anonymous
database of community preferences is beneficial for attackers since checks on
individual user activity are consequently not possible. Thus, in this paper, we
consider attack cost solely as a function of the number of queries that are inserted
in the course of an attack, and the number of terms that are present in each.

We propose two attack models which are described in the following sections.
In each case, we assume that full knowledge concerning the distribution of query
term usage in a community is known to attackers. While this assumption is
favourable from the attacker’s perspective, search engines often provide such
information (to some degree) to users. For example, the popular search queries
that relate to particular query terms are listed on result pages obtained using
the Google search engine.

3.1 Promote-Always Attack

This attack model seeks to promote a particular target page for all searches
submitted by community members, irrespective of the actual search terms that
are used. Define attack query size, or the number of terms included in attack
queries, as l. In order to ensure maximal coverage of the community query-space,
the most frequently-used search terms are selected for attack queries. If multi-
ple attack queries are inserted, each consists of a different combination of query
terms. The first attack query consists of those l terms with the highest combined
frequency of occurrence, the second attack query consists of those l terms with
the second-highest combined frequency of occurrence, etc. For example, if java,
oracle and linux were the three most frequently occurring query terms (in de-
scending order) in a particular community, the first two attack queries of size
l = 2 would be {java, oracle} and {java, linux}.

3.2 Term-Specific Attack

The objective of this attack is to promote a particular target page when a specific
term is used in search queries. Attack queries are comprised of the specific term
in question, along with combinations of l − 1 other terms which are selected so
as to optimally cover the query-space as described above.

4 Evaluation

In this section, we evaluate the attack models described above. We begin by
providing details on the configuration parameters used in ISPY, the evaluation
dataset and the experimental methodology and metrics used in the analysis.

134

4.1 ISPY Configuration

ISPY was configured to display a maximum of 10 search results on each results
screen, of which at most 3 were promoted results. For example, if the system was
able to make 5 promotions for a particular search query, the top-3 promotions
would be displayed at the top of the first screen and the remaining 2 would be
displayed at the top of the second screen.

ISPY’s query-similarity threshold was set to 0.5, so that only those past
queries that shared more than 50% of query terms with the current query would
be considered to be similar for the purposes of result promotion (see Section 2).
The motivation for this relatively high threshold value is to avoid spurious
matches between unrelated queries; for example the queries {jaguar, automo-
biles} and {jaguar, wildlife} have a similarity of 0.33 but are clearly unrelated.

4.2 Dataset

The dataset used in our evaluations was obtained from a trial of the ISPY sys-
tem which took place over an extended period among the 50 staff members of
a local software company. ISPY was configured to draw on Google and Hot-
Bot as a source of search results. A new community hit-matrix was created for
participants, which was trained on search log data prior to the start of the trial.

The dataset consists of 4,744 queries, of which 2,256 were unique, and asso-
ciated result pages (URL’s), of which 3,587 were unique. The total number of
unique query terms in the dataset was 2,673.

4.3 Metrics & Methodology

For both attack models, the objective was to promote a new target page which
was not already present in the community hit-matrix. Consequently, no promo-
tions were possible for the target page pre-attack. We evaluate the effectiveness
of attacks using the hit ratio metric [5], which measures the percentage of times
that a target page appears in top-N promotions. Unless stated otherwise, we set
N = 3 in our evaluations since, from an attacker’s perspective, the promotion
of the target page to the first screen of search results represents optimal attack
success.

The following experimental methodology was employed. For the Promote-
Always attack, test and training sets consisting of randomly selected percentage
of queries and associated result selections were drawn from the dataset. Attack
queries were added to the training set and the average hit ratio for the target
page was calculated over all test set queries. Test set size was 10% and a 10-fold
cross validation was performed.

In the case of the Term-Specific attack involving a particular specific term, t,
the test set consisted of all dataset queries that contained term t. These test set
queries were submitted in turn to the full dataset (with attack queries inserted),
and the average hit ratio for the target page was calculated. This procedure was
then repeated for all the unique query terms contained in the dataset, and the
average hit ratio over all such terms was calculated.

135

Chart5

Page 1

0

0.03

0.06

0.09

0.12

0.15

1-2 1 2 3 4 5

Query Terms

H
it

 R
a
ti

o

0

0.2

0.4

0.6

0.8

1

C
D

F

Hit Ratio

CDF

Fig. 1. Hit ratios achieved for the Term-Specific attack model versus attack query size.
The cumulative distribution function (CDF) of genuine query sizes is also shown.

4.4 Results – Attack Models

We first examine the effect of attack query size on robustness. Results are shown
in Figure 1 for the Term-Specific attack, for a fixed quantity (12) of attack queries
inserted. The highest hit ratios were achieved for query sizes of l = 1 or l = 2
terms, with the greatest effect observed when a 50%-50% combination of these
query sizes was used (labeled “1-2” in the figure). Attack queries formed using 3
or more terms had little effect. The cumulative distribution function of genuine
query sizes is also shown in Figure 1, which shows that 70% of queries consisted
of 3 terms or less. (Genuine queries consisted of 3 terms on average, with a
standard deviation of 1.3.) Given the relatively stringent overlap criteria imposed
by the high query-similarity threshold value of 0.5, attack queries consisting of
smaller combinations of frequently occurring terms had a greater probability
of exceeding the similarity threshold with genuine queries. A similar result was
found for the Promote-Always attack. In the remainder of this section, attacks
are implemented using the combination of query sizes discussed above.

We now compare the performance of the two attack models at various attack
sizes (expressed as a percentage of the number of attack queries inserted to
the total number of genuine queries present in the dataset). In the case of the
Promote-Always, a hit ratio of only 7% (Figure 2) was achieved when the largest
quantity (20%) of attack queries was inserted, which indicates that ISPY proved
to be quite robust to this form of attack. Given the frequency of occurrence of
query terms in the dataset follows a Zipfian distribution (i.e. only a small number
of terms appear frequently in search queries; see Figure 3) and the high query-
similarity threshold used, the difficulty of creating attack queries that effectively
span the entire query-space becomes apparent. The robustness of ISPY is further
enhanced by limiting the number of promotions to be displayed on the first
results screen to 3, thereby providing an additional challenge for attackers.

136

0

0.1

0.2

0.3

0.4

0 0.04 0.08 0.12 0.16 0.2

% Attack Queries

H
it

 R
a
ti

o

P-A

T-S

Fig. 2. Hit ratios achieved for the Promote-Always (P-A) and Term-Specific (T-S)
attack models versus the quantity of attack queries inserted.

In contrast, the Term-Specific attack performed significantly better, achiev-
ing hit ratios of 14% at the smallest attack size (0.25%, or 12 attack queries
inserted) and 35% at the largest attack size (20%). The improved performance
of this attack model was to be expected, given its more focused nature, where
promotions were attempted only in cases where a particular target term was
used in search sessions. This attack was also very straightforward to implement
since 50% of the attack queries created consisted of only 1 term – the target
term, with the remaining 50% consisting of combinations of the target term
plus only a single additional term. Thus, we can conclude that ISPY was in-
deed vulnerable to this particular form of attack, given that small numbers of
easily-created attack queries were capable of significantly biasing the output of
the system. In addition, these findings have significance from the perspective of
attack detection, where the correct classification of relatively small quantities of
attack data is likely to prove problematic.

4.5 Community Homogeneity

Different communities have varying degrees of homogeneity, i.e. the degree of
regularity and repetition that exists in the searches of like-minded community
members. A key measure of homogeneity is the distribution of search terms
in the query-space. As mentioned above, the distribution of the lowest 500-
ranked query terms (the most significant part of the distribution since lower-rank
query terms have the highest frequency of occurrence) in the dataset is Zipfian,
with an exponent of ≈ -0.65 (Figure 3). While we do not have data from other
ISPY communities with different degrees of homogeneity, it is, however, possible
to simulate community homogeneity by varying the distribution of query term
frequency of occurrence.

In the following experiments, we maintained the same number of queries
and result pages (URL’s) as before, and randomly assigned terms to queries

137

Exp. = -0.65

R
2
 = 0.99

1

10

100

1000

1 10 100 1000 10000

Query Term Rank

F
r
e
q

u
e
n

c
y

Series1

Series2

Power (Series1)

Fig. 3. The frequency of occurrence of query terms in the dataset. The distribution of
the lower-ranked query terms is Zipfian, with an exponent of ≈ -0.65

according to Zipfian distributions. We conducted experiments with exponents
ranging in values from -0.2 to -1.4. Exponents closer to zero resulted in more
uniform distributions of query terms (i.e. more heterogeneous communities).

Results are shown in Figure 4 for Promote-Always attacks for attack sizes of
10%, which were implemented as described previously. It is clear that robustness
deteriorated substantially as community homogeneity increased. For example, a
hit ratio of 5.8% was achieved for an exponent of -0.6, compared to a hit ratio of
12.7% for an exponent of -1.0 (Top-3). The deterioration in robustness was also
evident at higher top-N values. Robustness began to improve for exponents < -1,
which is explained by the large increase in the total number of promotions that
ISPY was able to make for test queries. For example, 77 and 273 promotions were
made for exponents of -1.2 and -1.4, respectively, compared to 19 promotions
made for an exponent of -1. Consequently, it became much more difficult for
target pages to be promoted into one of the top-N rankings at the highest
exponent values.

Note that, in practice, the task of identifying query terms that effectively
span the query-space in more homogeneous communities is likely to be straight-
forward, with the result that attacks against such communities become both
easier and less costly, in the sense that fewer attack queries are required to cover
the query-space, to implement.

5 Discussion

In this paper we have examined the robustness of the one particular approach to
collaborative Web search. In related work [1], the robustness of several navigation-
orientated web personalisation algorithms was investigated. This research indi-
cates that some commonly-used algorithms were vulnerable to attacks created

138

0

0.06

0.12

0.18

0.24

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2

Exponent

H
it

 R
a
ti

o

0

50

100

150

200

250

300

#
 P

r
o

m
o

ti
o

n
s

Top-3

Top-6

Top-9

Top-12

Promotions

Fig. 4. Hit ratios and the number of promotions made by the ISPY search engine when
subjected to a Promote-Always attack versus query term distribution.

by generating false clickstreams designed to promote particular target pages.
Further, the lack of robustness exhibited by collaborative recommender systems
against attack has been well-highlighted in the literature [3, 6]. Recently, an
analysis of tagging systems [2] has found that these systems are also prone to
manipulation by malicious agents.

All of the above systems rely on data that is gathered explicitly or implic-
itly from users in order to make recommendations or to facilitate search and
navigation. Given this open manner of operation, these systems are readily sus-
ceptible to manipulation. Users are unlikely to remain loyal if it is perceived
that recommendations of suspect quality are being made and thus, the integrity
of these systems is of prime importance. In this regard, recent research which
proposes techniques to improve the robustness of collaborative recommender
systems against attack [4, 7], is of interest. These and other techniques provide
a useful basis for future work on attack detection in related systems.

6 Conclusions

Collaborative Web search leverages the search histories of communities of like-
minded users to adapt and re-rank search results to satisfy the needs of com-
munity members. Results that have been selected for queries in the past are
promoted when similar queries are submitted in future search sessions.

The repetitive nature of community search activity can also, however, be
usefully exploited by malicious agents in order to to bias search output. In this
paper, we have introduced attack models which seek to promote target pages
within communities by linking such pages with frequently-used search terms.
Our findings, based on real-world community data collected from a local software
company, indicate that ISPY exhibited a significant degree of robustness against

139

the more general Promote-Always attack model, but was susceptible to low-cost
Term-Specific attacks consisting of small numbers of attack queries.

In addition, we analysed the robustness of collaborative search in terms of
community homogeneity. Different communities will naturally vary in focus, and
we have shown, through simulation, that more specialised communities proved
significantly more vulnerable to attack. Clearly, it would be useful, if data were
available, to establish the range of homogeneity and robustness exhibited by
diverse, real-world, communities. One approach we are currently investigating is
to perform a cluster analysis of our existing dataset to discover groups of related
queries, and thereby obtain sub-communities with different degrees of focus.

In future work we also will expand our robustness analysis to other adaptive
systems. In addition, we will investigate techniques that provide for the effective
detection and elimination of attack data.

Acknowledgments. This work was carried out with the support of Science
Foundation Ireland under Grant No. 03/IN.3/I361, which is gratefully acknowl-
edged. We would also like to thank our reviewers for their valuable comments.

References

1. R. Bhaumik, R. Burke, and B. Mobasher. Effectiveness of crawling attacks against
web-based recommender systems. In Proceedings of the 5th Workshop on Intelligent
Techniques for Web Personalization (ITWP-07), (To Appear).

2. G. Koutrika, F. A. Effendi, Z. Gyongyi, P. Haymann, and H. Garcia-Molina. Com-
bating spam in tagging systems. In Proceedings of 3rd International Workshop on
Adversarial Information Retrieval on the Web (AIRWeb’07), May 8 2007.

3. S. K. Lam and J. Riedl. Shilling recommender systems for fun and profit. In
Proceedings of the 13th International World Wide Web Conference, pages 393–402,
May 17–20 2004.

4. B. Mehta, T. Hofmann, and P. Frankhauser. Lies and propaganda: Detecting spam
users in collaborative filtering. In Proceedings of the 12th Internation Conference
on Intelligent User Interfaces (IUI-07), pages 14–21, January 28–31 2007.

5. B. Mobasher, R. Burke, R. Bhaumik, and C. Williams. Effective attack models
for shilling item-based collaborative filtering system. In Proceedings of the 2005
WebKDD Workshop (KDD’2005), 2005.

6. M. P. O’Mahony, N. J. Hurley, and G. C. M. Silvestre. Recommender systems:
Attack types and strategies. In Proceedings of the 20th National Conference on
Artificial Intelligence (AAAI-05), pages 334–339, July 9–13 2005.

7. M. P. O’Mahony, N. J. Hurley, and G. C. M. Silvestre. Detecting noise in rec-
ommender system databases. In Proceedings of the International Conference on
Intelligent User Interfaces (IUI’06), pages 109–115, Jan 29–Feb 1 2006.

8. B. Smyth, E. Balfe, O. Boydell, K. Bradley, P. Briggs, M. Coyle, and J. Freyne. A
live-user evaluation of collaborative web search. In Proceedings of the 19th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-05), pages 1419–1424,
2005.

9. B. Smyth, E. Balfe, J. Freyne, P. Briggs, M. Coyle, and O. Boydell. Exploiting query
repetition & regularity in an adaptive community-based web search engine. User
Modeling and User-Adapted Interaction: The Journal of Personalization Research,
14:383–423, 2004.

140

Finding the Most Satisfiable Maximal Relaxation in
Over-Constrained Problems

Alexandre Papadopoulos and Barry O’Sullivan

Cork Constraint Computation Centre
Department of Computer Science, University College Cork, Ireland

{a.papadopoulos|b.osullivan}@4c.ucc.ie

Abstract. We consider the problem of generating maximal relaxations in the
context of large real-world configuration problems. We focus on an automaton-
based approach because it is becoming standard in real-world configuration. Two
novel algorithms are presented. The first algorithm finds from amongst the longest
relaxations to a set of inconsistent user constraints, the one that is consistent with
the largest number of solutions; this algorithm is linear in the size of the automa-
ton. The second algorithm finds from amongst the set of maximal relaxations, the
one that is consistent with the largest number of solutions. While this algorithm
is not polynomial in the size of the automaton, we show that in the average it is
more than 500 times faster than a current state-of-the-art algorithm. Results are
reported on a large configuration problem from the automotive industry.

1 Introduction

We consider a configuration tool where a user can specify preferences for options. These
preferences are expressed as constraints. When preferences conflict, we want to help the
user find which preferences to relax. In an iterative process, the user might relax con-
straints until at least one consistent solution is found. Alternatively, the user might wish
to be told which particular subsets of his constraints can be satisfied. Most current ap-
proaches to explanation generation in constraint-based settings are based on the notion
of a (set-wise) minimal set of unsatisfiable constraints, also known as a minimal conflict
set of constraints. To demonstrate the concepts, we provide a simple example.

Example 1 (Car Configuration). Consider a simple car configuration problem, based on
an example in [8], with the following set of options; the Boolean variable xi ∈ {0, 1}
indicates whether constraint ci is in the current set of active constraints or not:

Constraint Option Selector Cost
c1 Budget x1 = 1

P
i∈{2,...,5}(ki · xi) ≤ 3000

c2 Roof Rack x2 = 1 k2 = 500
c3 Convertible x3 = 1 k3 = 500
c4 CD Player x4 = 1 k4 = 500
c5 Leather Seats x5 = 1 k5 = 2600

Assume that the technical constraints of the configuration problem forbid convertible
cars having roof racks, therefore, constraints c2 and c3 form a conflict. Note that, given
the budget constraint, if the user selects option c5, it is not possible to have any of the
options c2, c3, c4. N

141

The set of all minimal conflicts for this example are: {c2, c3}, {c1, c2, c5}, {c1, c3, c5},
and {c1, c4, c5}. As explanations, these conflicts are sufficient to explain, using a subset
of the user’s constraints, why all constraints cannot be satisfied simultaneously. Based
on the set of minimal conflicts we can compute the set of set-wise maximal relaxations
showing which of the user’s constraints can be satisfied. Table 1 presents the set of
all maximal relaxations, each showing how the user can satisfy at least some of his
constraints. For example, consider Explanation I: we can simultaneously satisfy the
constraints in {c3, c4, c5}, but we must exclude c1 and c2.

Table 1. The maximal relaxations and minimal exclusion sets for the over-constrained problem
presented in Example 1. We show both the subset of the constraints in the relaxation (marked
with a X) and those in the exclusion set, i.e. those that must be removed (marked with a ×).

Constraints
Exp. c1 c2 c3 c4 c5 Relaxation Exclusion Set

I × × X X X {c3, c4, c5} {c1, c2}
II × X × X X {c2, c4, c5} {c1, c3}
III X × X X × {c1, c3, c4} {c2, c5}
IV X X × X × {c1, c2, c4} {c3, c5}
V X × × × X {c1, c5} {c2, c3, c4}

In some applications we may have to choose a single relaxation to present to the
user. The question is, which one should we select? The obvious response would be to
select the relaxation that cannot be extended using any of the user’s choices without
eliminating all solutions – this is the standard notion of a maximal relaxation. Amongst
the set of maximal relaxations we might prefer to select the one that is longest on the
basis that it includes the largest number of user constraints. However, an alternative is
to present the relaxation that is consistent with the highest number of solutions to the
problem, while remaining maximal. This is the question we address in this paper.

We consider the problem of generating the most soluble maximal relaxation in the
context of large real-world configuration problems. As a running example, we consider
an industrial sized configuration problem, based on the Renault Mégane car. In Sec-
tion 2 we summarise the preliminary concepts required in this paper and present results
from a motivating experiment showing that the number of solutions consistent with a
maximal relaxation is not correlated with its length. We also present some theoretical
results on the properties of maximal relaxations. In Section 3 we summarise the basics
of automaton-based configuration. We focus on an automaton-based approach because
it is becoming standard in practice. In Section 4 we present two novel algorithms. The
first algorithm finds from amongst the longest relaxations to a set of inconsistent user
constraints, the one that is consistent with the largest number of solutions; this algo-
rithm is linear in the size of the automaton. The second algorithm finds from amongst
the set of maximal relaxations, the one that is consistent with the largest number of
solutions. While this algorithm is not polynomial in the size of the automaton, we show
that in the average it is more than 500 times faster than a state-of-the-art algorithm.

142

Our experiments are summarised in Section 5. We discuss related work in Section 6,
and conclude in Section 7.

2 Preliminaries on Maximal Relaxation

We focus on constraint satisfaction problems in this paper, but the results hold for many
other settings in which consistency is monotonic. This property holds whenever the set
of solutions to a set of constraints C is a subset of the solutions to any set of constraints
that is a subset of C.

In addition, we focus on constraint satisfaction problems that are solved in an inter-
active manner, e.g. product configuration problems. It is useful to distinguish between
a background set of constraints, B, that cannot be relaxed, and a set of constraints, U ,
that are added by the user as he finds a preferred solution to B by finding a solution to
B ∪ U , the constraint problem we denote as P def= 〈B,U〉.

A set of constraints is consistent if it admits a solution. We will assume that the
set of background constraints, B, admits at least one solution. If a set of constraints
does not admit a solution, at least one constraint must be excluded in order to recover
consistency. Specifically, we are interested in finding maximal relaxations of P .

Definition 1 (Maximal Relaxation). Given a constraint problem P def= 〈B,U〉 that
is inconsistent, a subset R of U is a relaxation of P if B ∪ R admits a solution. The
relaxation R is a maximal relaxation if ∀R′ ⊃ R, B ∪R′ is inconsistent.

While intuitively we might believe that longer relaxations have fewer solutions, the
story is not so simple. In Figure 1 we show the results of a simple experiment on the
Renault Megane configuration problem [1], which has been compiled in an automaton.
This problem has 99 variables and about 2.8×1012 solutions. We built inconsistent user
queries that instantiated 40 randomly chosen variables with a random value. We ran 20
such queries. For each query, we generated the complete set of maximal relaxations
using the Dualize & Advance algorithm [2]. Using the automaton we could efficiently
count the number of solutions consistent with each relaxation. In Figure 1 we plot,
for each maximal relaxation, its length and the number of solutions of the problem
consistent with it. It is clear from this figure that the number of solutions of a maximal
relaxation is not necessarily correlated with its length.

Of course, theoretically, there is no reason why the number of solutions of two max-
imal relaxations should be similar. The following example shows they can be arbitrarily
different. We have the variables x0, . . . , xn with respective domains D(x0) = {0, 1}
and D(xi) = {0, . . . , d}, i > 0, and the constraints x0 < xi,∀i > 0, x0 > xi,∀i > 0
and x0 = 0. This problem is inconsistent, and R1 = {x0 < xi,∀i > 0}∪{x0 = 0} and
R2 = {x0 > xi,∀i > 0} are two maximal relaxations of the constraints. The number
of solutions to R1 is dn, while there is only one solution to R2.

The problem of selecting the maximal relaxation consistent with the largest set of
solutions is intractable, in general. The basic decision problem involved is as follows:

Given an inconsistent set U of constraints and a maximal relaxation R ⊆ U ,
does another maximal relaxation R′ ⊆ U , R′ 66= R, exist such that the number
of solutions of R′ is greater than the number of solutions of R?

143

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 10 15 20 25 30 35

n
u
m

b
e
r

o
f
s
o
lu

ti
o
n
s
 (

lo
g
s
c
a
le

)

length of relaxation

Fig. 1. Results from a simple experiment showing that number of solutions of a maximal relax-
ation is not necessarily correlated with its length.

Although no formal proof of the complexity of this problem has been established, this
problem is highly combinatorial; consider that the number of maximal relaxations is
exponential in the number of constraints, and counting the number of solutions to a
maximal relaxation is #P-Complete. However, we will present an algorithm that can
find the maximal relaxation consistent with the largest set of solutions very quickly, in
practice, for interactive applications.

3 The Basics of Automaton-based Configuration

In a configuration context, a typical approach is to compile the problem into an automa-
ton in order to facilitate interactive solving [1,15]. In this case many operations become
tractable in practice. Let us focus, therefore, on the case where we have a compiled form
of a problem, and the user chooses only unary constraints, i.e. assignments or disjunc-
tions of assignments to the variables. A query will be composed of a set of constraints,
each constraint ci of which holds on a variable xi.

An automaton gives a compact way of representing the set of solutions to a problem.
Informally, an automaton can be seen as a representation of the search tree on which
minimisation allows us to reduce its size. This automaton only recognises words of
the same length, and each recognised word corresponds to a solution of the problem, a
particular ordering on the variables having been fixed in advance.

The incoming and outgoing transitions of a state q are denoted by in(q) and out(q),
respectively. The origin and destination state of a transition t are denoted by in(t) and
out(t), respectively. The initial and the final states (or the source and the sink) are
denoted by I and F , respectively. The level of a state q is the length of the words from I
to q. The set of all states of level i is noted Q(i). The level of a transition t is the level of

144

out(t). Each level greater than 0 corresponds to a variable of the problem. Thus, each
transition t provides a support for the instantiation of the variable of its level with the
value labelling t.

0

1
2
3

0
1

x2x1x0

1
0

2

0

2

Fig. 2. An example automaton defined on three variables.

Figure 2, for example, shows the automaton for a problem on three variables x0, x1

and x2. This problem has 13 solutions, some of which are 001, 002, 102, etc.

4 Algorithms

We now present two novel algorithms for finding relaxations that are consistent with the
largest number of solutions, based on an automaton representation of the configuration
problem. For a particular user query, comprising a set of unary constraints that restrict
the domain of each variable, a valuation φ(t) is associated with each transition t of the
automaton: φ(t) = 0 meaning that this transition supports a valid instantiation (i.e. is
labelled by an allowed value) and φ(t) > 0 meaning it does not. Thus, to each complete
path from I to F there corresponds a relaxation of the user’s constraints, composed of
the user’s constraints supported by the transitions of the path with a valuation of 0.

If we restrict the valuation of the transitions only to 1 in case of a violation, the
cost of a path from the source to the sink, which is the sum of the valuations of the
transitions it is composed of, corresponds to the number of user constraints violated. If
no such path of cost 0 exists, then the set of user constraints is inconsistent. A procedure
is described in [1] that associates with each transition t of an automaton a cost cost(t)
of the best path (i.e. of minimal cost) of the automaton that uses t. This allows us to
explore only the shortest paths in the automaton and, thus, only the longest relaxations
of the user’s constraints. Therefore, this can give our first exact algorithm (Algorithm 1)
that finds, amongst all the longest relaxations, the one that is consistent with the largest
number of solutions, in time linear in the size of the automaton.

This algorithm works by associating with each state q′ of the automaton, the most
soluble longest relaxation restricted from I to q′ (the automaton “to the left of” q′),
stored in relax (q′), with nsols(q′) storing the corresponding number of solutions. The
set candidates , after the iteration (starting at line 6), will contain all the longest relax-
ations ending at q′. At this point, we can choose the most soluble relaxation, as a less
soluble one could not result in a longer relaxation globally more soluble. As the size
of candidates is bounded by the number of states of the previous level, this algorithm
runs in time linear in the size of the automaton.

145

Algorithm 1: Finding a most soluble longest relaxation.
Data: An automaton updated for a user query.
Result: A most soluble longest relaxation.

relax (I)← ∅1
nsols(I)← 12
for i← 1 to n do3

forall q′ ∈ Q(i) do4
candidates ← ∅5
forall t ∈ in(q′) s.t. t is optimal do6

q ← in(t)7
if φ(t) = 0 then R← relax (q) ∪ {ci}8
else R← relax (q)9
candidates ← candidates ∪ {R}10
nsols(R)← nsols(R) + nsols(q)11

nsols(q′)← maxR∈candidates nsols(R)12
relax (q′)← R ∈ candidates s.t. nsols(R) = nsols(q′)13

return relax (F)14

However, restricting to the longest relaxation can prove to be too strong. For exam-
ple, the plot in Section 2 (Figure 1) suggests that there is quite a concentration of long
maximal relaxations, but very few of maximum length. Focusing on candidates amongst
the maximal (by inclusion) relaxations seems to be a good trade-off between solubility
and maximality. Therefore, we can adapt the previous algorithm to explore the whole
automaton so as to consider all relaxations. The difference is that we cannot now greed-
ily keep partial optimal solutions, because what is locally a maximal relaxation may not
eventually be maximal.

For example, in the automaton of Figure 2, suppose we want every variable to be 0.
Two maximal relaxations start in the second state of level 1: c1 and c2. The first has 3
solutions while the second has only 2. But the first will be, at the next step, included in
the relaxation c0c1, which has 3 solutions, while c2 will still be a maximal relaxation,
but with 4 solutions. Therefore, we need to maintain for each state the list of all the
maximal relaxations. This procedure has, therefore, a complexity linear in the size of
the automaton times the number of maximal relaxations.

The corresponding modification is presented in Algorithm 2. This is essentially
an ad-hoc procedure that lists all the maximal relaxations of a query. However, being
specifically designed for our context, it can be more efficient than generic algorithms,
such as Dualize & Advance [2], and gives, at the same time, the number of solutions of
each relaxation. In this algorithm relax (q) is now a set of relaxations, and for each of
them, say R, nsols(q, R) stores its corresponding number of solutions. At lines 12 and
13, any relaxation that is a subset of another is removed, so as to keep only the maximal
elements. As the size of the list relax (q) is bounded by the total number of relaxations,
the complexity is linear in the size of the automaton times the number of relaxations.

146

Algorithm 2: Finding a most soluble maximal relaxation.
Data: An automaton updated for a user query.
Result: A most soluble maximal relaxation.

relax (I)← {∅}1
nsols(I, ∅)← 12
for i← 1 to n do3

forall q′ ∈ Q(i) do4
forall t ∈ in(q′) do5

q ← in(t)6
forall R ∈ relax (q) do7

if φ(t) = 0 then R′ ← R ∪ {ci}8
else R′ ← R9
relax (q′)← relax (q′) ∪ {R′}10
nsols(q′, R′)← nsols(q′, R′) + nsols(q, R)11

Sort relax (q′) by decreasing cardinality12
forall R ∈ relax (q′) do Remove in relax (q′) subsets of R13

return relax (F)14

5 Empirical Evaluation

The objective of our experimental evaluation was to demonstrate the effectiveness of
Algorithm 2 against a state-of-the-art algorithm for enumerating all maximal relax-
ations, and a number of obvious heuristic methods. We did not evaluate Algorithm 1
since it is an exact algorithm, linear in the size of the automaton.

As mentioned in Section 2, we based our experiments on the Renault Mégane Prob-
lem, also introduced in [1], which was compiled to an automaton. This problem has 99
variables and over 2.8×1012 solutions. Based on this benchmark, we built inconsistent
user queries that instantiated 40 randomly chosen variables with a random value. We
ran 20 such queries. For each query, we generated the complete set of relaxations using
the state-of-the-art Dualize & Advance algorithm [2], for finding all maximal relax-
ations in a constraint satisfaction context, and compared its performance against that of
Algorithm 2 from this paper. For both algorithms, we recorded the time each required
to find the most satisfiable maximal relaxation.

In addition to comparing Algorithm 2 against Dualize & Advance, we compared
three heuristic techniques in terms of the number of solutions of the best relaxation
they found. These heuristic methods were:

1. We considered two heuristics for deciding which user constraints to add first in
order to compute a maximal relaxation based on standard search ordering heuris-
tics. The objective of standard variable orderings is to fail as early as possible, so
we considered their anti-heuristics. The anti-heuristics we considered were: choose
the next assignment whose pre-assignment domain was largest (max-dom); and
choose the next assignment with largest ratio of its pre-assignment domain divided
by the number of constraints connected to this variable (max-(dom/deg)).

147

2. The third heuristic chose as its next assignment the one that would reduce the
number of solutions of the remaining problem by the least amount (minimise
solution loss).

The key measurements taken in each case were the number of solutions of the relaxation
found as well as the time taken to find that relaxation.

In Figure 3 we compare each method in terms of the solubility of the best relaxation
each found based on each query; note that we sorted the queries by the solubility of
the most satisfiable relaxation for the purposes of clarity. We observe that, with the
exception of the heuristic that minimises solution loss at each step, the other heuristics
performed very poorly, because they never found the best relaxation, and often selected
a significantly sub-optimal one.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 2 4 6 8 10 12 14 16 18

n
u
m

b
e
r

o
f
s
o
lu

ti
o
n
s
 (

lo
g
s
c
a
le

)

query

max-dom first
max (dom/degree) first

min solution loss
most soluble maximal relaxation

Fig. 3. Solubility of the best relaxation found by each method.

Concerning running time, the time taken to find one relaxation using the max-dom
and max-(dom/deg) heuristics is very fast, but they were not effective at finding op-
timally soluble relaxations. Therefore, we do not present time results for these heuris-
tics. On the other hand, using the heuristic that minimises the solution loss, minimise
solution loss, was prohibitively slow. We, therefore, do not discuss time results
for this option either.

The most interesting comparison regarding time is between the Dualize & Advance
algorithm and our exact algorithm (Algorithm 2) for finding the most soluble maximal
relaxation. Our results, summarised in Table 2, show the obvious advantage of our al-
gorithm. Not only does our algorithm guarantee that it will find the maximal relaxation
consistent with the most solutions of the problem, it is over 500 times faster than a
current-state-of-the-art algorithm. Also, the minimum/maximum and average time re-

148

Table 2. Running times in seconds for both algorithms

times (seconds)
Algorithm minimum maximum average

Dualize and Advance [2] 255 726 416
Most soluble maximal relaxation (Algorithm 2) 0.4 1.3 0.8

quired by Algorithm 2, is of the order of one second, which is ideal for interactive
applications.

6 Related Work

There have been many technical papers about explanation in the context of constraints [1,
3,5,6,8,11,13,14]. The dominant approach to explanation in configuration is based on
computing minimal conflicting sets of constraints, which is related to the problem of
finding all maximal relaxations. Approaches to finding the most preferred relaxations
are well-known [8]; ILOG’s Configurator product has an explanation generation algo-
rithm based on finding preferred conflicts/relaxations. However, very little has been said
about how to choose from amongst the set of all explanations, or how to select amongst
equally preferred explanations. We address this problem by proposing that we select the
most soluble maximal relaxation as our explanation.

Approaches have been proposed that attempt to be more “helpful” by presenting
users with partial consistent solutions [13], or advise on how to relax constraints in order
to achieve consistency [11, 12]. Our approach is complementary to these by providing
a basis for selecting from amongst the set of alternative explanations.

Recent work has focused on finding minimal unsatisfiable subproblems in temporal
problems [9], satisfiability [7, 10] and type error debugging [2]. These techniques find
all minimal unsatisfiable sets of constraints, which can be exponential in the number
of constraints. Our work can be seen as a generalisation of these algorithms to the case
where consistency is determined using an automaton.

7 Conclusions

We have considered the problem of generating maximal relaxations that are consistent
with the largest number of solutions to the original problem. We studied this in the con-
text of product configuration, where the constraint model of the configuration problem
has been compiled into an automaton.

Two novel algorithms were presented. The first algorithm finds from amongst the
longest relaxations to a set of inconsistent user constraints, the one that is consistent
with the largest number of solutions; while the second finds from amongst the set
of maximal relaxations, the one that is consistent with the largest number of solu-
tions. Based on experiments on a large real-world automotive configuration problem
we demonstrated the value of our approach.

149

In the future we intend to study how our algorithms generalise to more compact
compiled representations of configuration problems, such as Decomposable negation
normal form (DNNF) [4]. DNNF encodings can be exponentially more compact than
an automaton, and since the time complexity of our algorithms depends on the size
of the compiled form, there are obvious opportunities for our approach. We also plan
to implement our approach in a real-world configurator, so that user-studies can be
performed. We will also combine our approach with a preference-based approach to
explanation [8].

Acknowledgements

This work was supported by Science Foundation Ireland (Grant No. 05/IN/I886).

References
1. Jérôme Amilhastre, Hélène Fargier, and Pierre Marguis. Consistency restoration and expla-

nations in dynamic CSPs – application to configuration. Artif. Intell., 135:199–234, 2002.
2. James Bailey and Peter J. Stuckey. Discovery of minimal unsatisfiable subsets of constraints

using hitting set dualization. In PADL, pages 174–186, 2005.
3. James Bowen. Using dependency records to generate design coordination advice in a

constraint-based approach to concurrent engineering. Computers in Industry, 22(1):191–
199, 1997.

4. Adnan Darwiche and Pierre Marquis. A knowledge compilation map. J. Artif. Intell. Res.
(JAIR), 17:229–264, 2002.

5. Eugene C. Freuder, Chavalit Likitvivatanavong, Manuela Moretti, Francesca Rossi, and
Richard J. Wallace. Computing explanations and implications in preference-based configu-
rators. In Recent Advances in Constraints, LNAI 2627, pages 76–92, 2003.

6. Gerhard Friedrich. Elimination of spurious explanations. In Proceedings of ECAI, pages
813–817, 2004.

7. Eric Gregoire, Bertrand Mazure, and Cedric Piette. Boosting a complete technique to find
mss and mus thanks for a local search oracle. In Proceedings of IJCAI, pages 2300–2305,
2007.

8. Ulrich Junker. QuickXplain: preferred explanations and relaxations for over-constrained
problems. In Proceedings of AAAI, pages 167–172, 2004.

9. Mark H. Liffiton, Michael D. Moffitt, Martha E. Pollack, and Karem A. Sakallah. Identifying
conflicts in overconstrained temporal problems. In Proceedings of IJCAI, pages 205–211,
2005.

10. Mark H. Liffiton and Karem A. Sakallah. On finding all minimally unsatisfiable subformulas.
In Proceedings of SAT, pages 173–186, 2005.

11. Barry O’Callaghan, Barry O’Sullivan, and Eugene C. Freuder. Generating corrective expla-
nations for interactive constraint satisfaction. In Proceedings of CP, pages 445–459, 2005.

12. Barry O’Sullivan, Alexandre Papadopoulos, Boi Faltings, and Pearl Pu. Representative ex-
planations for over-constrained problems. In AAAI, pages 323–328, 2007.

13. Pearl Pu, Boi Faltings, and Marc Torrens. Effective interaction principles for online product
search environments. In Web Intelligence, pages 724–727, 2004.

14. Mohammed H. Sqalli and Eugene C. Freuder. Inference-based constraint satisfaction sup-
ports explanation. In Proceedings of AAAI, pages 318–325, 1996.

15. Nageshwara Rao Vempaty. Solving constraint satisfaction problems using finite state au-
tomata. In AAAI, pages 453–458, 1992.

150

Using Support Vector Machines and Acoustic
Noise Signal for Degradation Analysis of

Rotating Machinery?

Patricia Scanlon and Susan Bergin

Bell Labs Ireland - Alcatel Lucent
Blanchardstown Industrial Park, Dublin 15, Ireland

{scanlon,bergin}@alcatel-lucent.com

Abstract. An automated approach to degradation analysis is proposed
that uses a rotating machines acoustic signal to determine Remaining
Useful Life (RUL). High resolution spectral features are extracted from
the acoustic data collected over the entire lifetime of the machine. An
information theoretic feature subset selection method is applied to re-
move redundant and irrelevant features. Using subsets of the feature
space, multi-class linear and Radial Basis Function (RBF) Support Vec-
tor Machine (SVM) classifiers are developed and a comparison of their
performance is provided. Performance of all classifiers is found to be very
high, 85% to 98%, with RBF SVMs outperforming linear SVMs when a
smaller number of features are used. As larger numbers of features are
used for classification, the problem space becomes more linearly separa-
ble and the linear SVMs are shown to have comparable performance. A
detailed analysis of the misclassifications is provided and an approach to
better understand and interpret costly misclassifications is discussed.

Key words: Support Vector Machines, Degradation Analysis, Acoustic
Signal Processing, Feature Selection

1 Introduction

Automated monitoring of machines typically involves the detection and diagno-
sis of defects. However in industry, there is an increasing demand for machine
reliability and optimal management of spare parts inventory to prevent ma-
chine downtime. This demand requires such machine monitoring systems to also
predict the Remaining Useful Life (RUL) of the machine in order to schedule
materials, logistics and maintenance.
Machine monitoring systems reported in the literature are predominantly focused
on defects developing in the components of Rolling Element Bearings (REBs).
Detecting and diagnosing defects in REBs by manual visual inspection of the
vibration or acoustic measurements has been reported in the literature [1–3].
However, such manual approaches are inefficient, require expert training and are
? This work was supported by IDA Ireland.

151

subjective.
Automated approaches to machine monitoring have been the focus of much
research in recent times. These approaches can be broadly divided into detec-
tion, diagnosis and degradation analysis. Defect detection is a dual case problem
where the classifier determines whether a defect exists or not. Defect diagnosis
is a multi-class problem which attempts to classify which type of defect exists
[4, 5]. Degradation analysis is also approached as a multi-class problem where
developing defects are classified to several ‘wear states’ in order to determine the
RUL of the machine [6].
Artificial neural networks (ANNs) have been applied in automated detection and
diagnosis of machine faults [5] and degradation analysis for determining a bear-
ings RUL [6]. In [4] Euclidean, Mahalanobis, and Bayesian distance classifiers,
learning vector quantization (LVQ) classifier and the fuzzy gradient classifier are
used for classification of various defects in washing machines vibration signals.
Recent work in machine fault detection has employed the use of SVMs with RBF
kernel [5, 7]. In this work the task of determining the RUL of rotating machinery
is approached using SVM classifiers using both linear and RBF kernels.
Some early studies used sound pressure signals to explain the mechanism of
vibration and noise generation in bearings [8, 9]. Several studies have shown
that sound intensity, sound pressure and vibrational data measurements provide
enough information to manually differentiate between ‘good’ and ‘bad’ bearings
using spectral analysis [1] and statistical analysis [2]. An indepth review is given
in Tandon [9] on the application of vibration measurements to both manual
and automated machine monitoring systems as well as studies which examine
acoustic measurements for manual defect detection. While vibrational signal
measurements have been used in automated approaches to machine monitoring,
to the best of our knowledge, no automated approach to defect detection, di-
agnosis or degradation analysis using acoustic measurements has been reported
in the literature. Note that while vibrational analysis requires contact with the
machine being monitored, acoustic analysis is advantageous as it allows for re-
mote monitoring.
Various signal analysis techniques have been used in condition monitoring on
both acoustic and vibrational data. These can be broadly classified into time
domain techniques such as root-mean-square, crest factor, and statistical param-
eters such as mean, variance, skewness and kurtosis [9, 2] and frequency domain
techniques such as cepstral, Short Time Fourier Transform (STFT), Wavelet
Transform (WT) and envelope detection [10, 3, 9].
The studies on machine monitoring reported in the literature describe interest-
ing approaches to this problem. However, the focus of the research described in
this paper is an automated approach to machine monitoring using acoustic noise
measurements to determine the RUL, which has not been addressed before in
the literature. This study focuses on two key aspects of this novel system: first
the selection of relevant spectral features extracted from the machines acoustic
noise signal and second, the application of SVM classifiers with linear and RBF
kernels to the multi-class classification problem of determining the RUL.

152

As spectral feature extraction results in irrelevant, noisy parts of the spectrum
being included in the feature vector, an information theoretic approach to feature
subset selection is employed to remove noisy features and select a compact and
relevant feature set for classification. This approach does not require a-priori in-
formation regarding the spectral location of potential defects. This feature subset
is used as input to multi-class linear and RBF SVM classifiers and a comparison
of their performance is provided.
The following section describes the characteristics of bearing noise and how
degradation might affect the noise is described as well as the feature extraction
and feature subset selection. Section 3 describes the SVM classifiers used in the
experiments. Section 4 describes the experimental setup and implementation and
Section 5 describes and discusses the results of the experiments.

2 Acoustic Signal Processing

Rotating machinery is comprised of several moving parts including one or more
Rolling Element Bearings (REB). Each element of the REB has a character-
istic rotational frequency, when a defect develops on a particular element this
frequency may get excited and energy increases at this spectral location. In nor-
mal operating conditions it is generally not known a-priori which defects will
develop, whether multiple defects will develop and the severity of manufactur-
ing variances. As a result the theoretical and actual defect frequencies will vary.
Therefore, the development of a feature selection technique that does not require
a-priori knowledge as to the spectral location of defect frequencies, such as the
one described in the following section, is highly suitable to the task of Rotating
Machine Monitoring.

2.1 Feature extraction

Spectral analysis decomposes the acoustic noise signal into frequencies so the
influence of individual mechanical components can be ascertained as each type
of fault has it’s own characteristic spectral signature. A compact and relevant
representation of the acoustic data is required as input to the classifier in order
to determine the RUL of the machine. Conventional spectral features are first ex-
tracted from the data. The acoustic data is split into windowed non-overlapping
time frames and spectral components are extracted using the Fast Fourier Trans-
form (FFT) which results in an estimate of the short-term, time-localized fre-
quency content of the acoustic signal. The spectral features are averaged over
20ms of acoustic data. The duration of the window has a pronounced effect on
the nature of the features. A short duration window will result in good time
resolution but yet degraded frequency resolution and the converse is also true
Given the steady state nature of the signal acquired from the rotating machinery
being monitored, time resolution is less significant than frequency resolution for
degradation analysis.

153

As defects develop, the amplitude at the location of the defect frequency in-
creases. If the frequency resolution is too coarse, this may cause relevant defect
frequency information to be hidden during the early stages of defect develop-
ment. However increasing frequency resolution increases dimensionality of the
feature vector. While the relevant information may be uncovered, a considerable
amount of irrelevant features will be included in the feature vector. Therefore, in
order to effectively detect defects and yet eliminate irrelevant noisy features, fea-
ture subset selection is required to extract a limited number of relevant features
for degradation analysis in order to determine the RUL.

2.2 Feature Subset Selection

Mutual Information (MI) can be used as a basis for selecting particular features
to optimize the choice of inputs to a classifier [11]. MI can be defined as the
reduction in entropy of one variable once another is known. The entropy of a
random variable is a measure of its unpredictability. Specifically, if a variable X
can take on one of a set of discrete values {xi} with a probability Pr(X = xi)
then its entropy is given by:

H(X) = −
∑

x∈{xi}

Pr(X = x) log Pr(X = x) , (1)

If a second random variable C is observed, knowing its value will in general alter
the distribution of possible values for X to a conditional distribution, p(x|C = c).
Because knowing the value of C can, on average, only reduce our uncertainty
about X, the conditional entropy H(X|C) is always less than or equal to the
unconditional entropy H(X). The difference between them is a measure of how
much knowing C reduces our uncertainty about X, and is known as the Mutual
Information (MI) between C and X, I(X;C) = H(X) − H(X|C) = H(C) −
H(C|X).
Further, 0 ≤ I(X;C) ≤ min{H(X),H(C)} , and I(X;C) = 0, if and only if
X and C are independent. To obtain estimates of the MI values, the histogram
approach was used to approximate the density functions required to estimate
p(X|C) and p(X). The number of bins used was determined using Doane’s rule
[12], K = log2 n + 1 + log2(1 + k̂

√
n/6). In this rule, k̂ is the estimate of the

kurtosis of the magnitudes of the spectral components (i.e., of random variable
X), and n is the total number of training samples.
To compute an MI estimate for each candidate feature the class labels of the data
are required. However, in the task of Machine Monitoring, data is acquired over
the lifetime of the machine. The data can be divided into gradually increasing
stages of wear or classes C. However, the location in time of the boundaries
between these classes is unknown. Only the condition of the machine at the
beginning and end of the lifetime are certain, in between is a progression of
failure. To remove any a-priori decisions regarding class boundaries and also
take advantage of the fact that there is a chronological order to the collected
data samples, classes C are defined as the set of short fixed length overlapping

154

time frames over the lifetime of the machine. This novel approach computes
the average local entropy from the entropy of each overlapping time frame over
the lifetime and subtracted from the global entropy (over the entire lifetime) to
obtain the MI estimate for each feature. The most relevant features are selected
based on the highest MI criterion, and MI is computed for each spectral feature
in isolation. While increasing dimensionality is desirable to uncover the relevant
defect frequencies for monitoring, too high a resolution will result in features that
are highly correlated with their immediate spectral neighbours. This can lead to
redundant features in the final feature vector used as input to the classifier.

3 Classification

Support Vector Machines (SVMs) are a relatively recent set of supervised ma-
chine learning algorithms that have been shown to have either equivalent or
significantly better generalization performance than other competing methods
on a wide range of classification problems [13]. They can be used to classify lin-
early separable data using the original input space or non-linearly separable data
by mapping to a higher dimensional feature space in which a linear separator
can be found.
In a typical binary classification problem composed of a training dataset {(x1,y1),
(x2,y2), ..., (xm,ym)} where xi ∈ <d and yi ∈ {±1}, SVMs seek a solution to the
following Lagrangian optimization function:

W (α) =
m∑

i=1

αi −
1
2

m∑
i,j=1

αiαjyiyjK(xi,xj) (2)

subject to the following constraints

C ≥ αi ≥ 0 ∀i and
m∑

i=1

αiyi = 0. (3)

C is an optional parameter that controls the trade off between allowing training
errors and forcing rigid margins. That is, it represents a soft margin that allows
some misclassifications which can be beneficial in noisy datasets. Where a soft
margin is not allowed, the constraint is simply αi ≥ 0. K represents the kernel
function and numerous choices exist, including:

– linear: K(xi,xj) = (xT
i · xj + 1)

– Polynomial: K(xi,xj) = (xi · xj + 1)d

– Radial Basis Function: K(xi,xj) = exp(−γ||xi − xj ||2), γ > 0.

Once an optimal solution is found, the decision function for a new point z is
given by

f(z) = sign

(
m∑

i=1

yiαiK(xi, z) + b

)
. (4)

155

z is a training example, b is the bias and non-zero αi values represent support
vectors, the points that lie closest to the hyperplane.
In this study two SVM kernels are implemented - a linear SVM and an RBF
SVM. Linear SVMs have very fast training times and do not require any pa-
rameter tuning (except C when soft margins are used). Moreover, if the samples
can be correctly classified using a linear decision boundary the computational
complexity associated with non-linear kernels can be avoided. RBF SVMs are
currently the most popular choice of non-linear SVM and thus are an appropri-
ate algorithm for a first experiment in this problem space [13], [14].
A number of approaches have been proposed to extend SVMs to handle multi-
class classification problems, for example, one-against-all, one-against-one and
directed acyclic graph SVM (DAGSVM). ‘One-against-one’ [15] is implemented
in this study as it has been shown to have comparable if not better generalized
accuracy than alternative techniques and requires considerably less training time
[16], [17]. The method consists of constructing an SVM for each pair of classes.
Thus for a problem with n classes n(n − 1)/2 SVMs are trained to distinguish
between the samples of one class form the samples of another class. For an un-
known pattern, each SVM votes for one class and the class with the highest
number of votes is chosen.

4 Experimental Setup and Implementation

Acoustic data was collected from a rotating machine running at approximately
2200RPM in high heat conditions to accelerate failure over a period of approxi-
mately 6 months. The final failure was due to complete bearing seizure. Acoustic
data was acquired at a sampling rate of 50,000 samples/second over the lifetime
of the machine. Short-term log-spectral features were extracted from the acous-
tic signal using 1024 point FFT to provide sufficiently high frequency resolution
to uncover the relevant information required for effective automated monitoring
that would otherwise be hidden using a coarser resolution. This resultant spec-
tral features span the entire spectrum from 0-25kHz. Information pertinent to
machine monitoring occurs at localised spectral locations across the spectrum.
The rest of the spectrum contains background noise that is irrelevant to machine
monitoring. To remove such noisy components the MI approach to feature sub-
set selection is employed. The average MI over the entire 513 extracted spectral
features is approximately 0.5 with a standard deviation of 0.25, maximum MI
is 1.6. Therefore, only the 200 features with a MI value above the mean were
considered for use in classification. To investigate smaller sets of features that
could be used to predict RUL with high accuracy, subsets of 25, 50, 100 and 150
features were also examined.

In order to perform degradation analysis a classification approach is pro-
posed that determines what state of degradation, or ‘wear states’, the machine
is currently in. In this paper 10 wear states are used to predict the RUL. The
degradation of the machine progresses through several stages of physical wear.
As the exact location in time where such degradation events occur is difficult to

156

ascertain, it is assumed that the machines degradation is a progression of wear
and the data is divided into 10 equal segments for labeling. Each segment or
wear state represents a different time interval over the lifetime of the machine
from 1 to 10, where 1 is new and 10 is approaching failure.

The procedure taken to implement the linear SVMs was as follows. First
the attributes are scaled to avoid attributes in greater numeric ranges dominate
those in smaller numeric ranges. A fixed penalty parameter (C) of 1.0 was used.
This is important, if high performance results can be achieved using this default
value, then lengthy parameter tuning can be avoided. Generalization accuracy
was determined using 10-fold stratified cross validation. In this procedure, data
is randomly split into 10 parts, with each part representing the same propor-
tion of each class or wear state. Each part is held out in turn and the learning
scheme is trained on the remaining nine parts. The error rate is calculated on
the holdout (test) set. The procedure is executed 10 times on different train-
ing sets and the results are averaged over all of the testing datasets. Although
this approach is more computationally intensive than the commonly used ‘hold
out’ method, all examples in the dataset are used for training and testing and
thus confidence on the generalisability of the results is increased. In addition the
stratification process improves the representativeness of each fold as the process
seeks to represent the same proportion of each class in a fold as is in the original
full dataset.
The implementation process for the RBF kernel was more involved as two pa-
rameters (γ, the kernel parameter and C) are required. First, the attributes are
scaled. Then a grid search using 10-fold cross validation was performed to find
the best γ and C parameters. The identified values were then used to train 66%
of the training set and the generalization accuracy rate was determined using
the remaining test instances.

5 Results and Discussion

The results from the two SVM procedures outlined in the previous section are
provided in Table 1. From Table 1 it can be seen that when fewer features
(n = 25, n = 50, n = 100) are used the RBF SVM significantly outperforms the
linear SVM. However, the difference is far less pronounced where more features
are used (n = 150, n = 200). It appears that the problem becomes more linearly
separable as more features are included. Furthermore, the training time of the
linear kernel is significantly less than that of the RBF kernel, for example on the
200 feature set problem, the RBF takes approximately 25 times longer to run on
the same machine where no other processes were active. Although, both provide
very high performance, this paper promotes the use of a linear SVM using 200
features for several reasons. First, it is far less computationally intensive than
the RBF SVM and achieves comparable results. Second, as outlined earlier,
it has a considerably faster training time. This is an important consideration
from a company perspective where delays in deploying a monitoring component
in the field potentially results in increased costs and lost revenue. Third, it is

157

intuitively easier to understand and interpret the problem space and solution.
However, additional studies evaluating alternate classifiers in this problem space
are warranted. All further results discussed in this paper are based on the 200-
feature linear SVM.

Further analysis of the results is valuable to augment preventative mainte-
nance scheduling and machine replacement. In terms of misclassification, pre-
dicting something is going to fail earlier than it truly will, results in, at worst, a
waste of resources, for example preventive maintenance or machine replacement
happens earlier than necessary. The cost incurred is a function of how early this
maintenance or replacement takes place, for example, replacing a machine one
time-interval before it would have failed is much more cost-efficient than replac-
ing the machine six time-intervals before it might have failed. On the other hand,
predicting something is likely to fail later than it actually does could be far more
serious, causing, for example, machine down-time and customer dissatisfaction.
To this end, an analysis of how ’inaccurate’ the misclassifications are is a worthy
addition to this study. As illustrated in Table 2, 47.6% of failures are predicted
as happening earlier (1 time-interval earlier) than they truly do and as such
are not considerably costly. Furthermore, the 2.4% predicted to have failed two
time-intervals earlier than they truly would is arguably insignificant given how
small an error this is. Thus, the real cost of misclassification is the 50.8% that
are predicted as happening later than when they actually do and further analysis
is required. Although SVMs typically only output a target label for each input,

Table 1. Comparison of linear and RBF kernel Support Vector Machine classifiers
using subsets of the spectral, features based on the Mutual Information criteria

no. of features Linear SVM (%) RBF Kernel (%)

25 84.86 92.37

50 91.69 96.39

100 94.68 97.48

150 96.06 97.52

200 96.29 97.93

Table 2. Misclassification Analysis

Description misclassified (#) misclassified (%)

failed 1 time-interval later than predicted 179 47.6%

failed 2 time-interval later than predicted 6 1.6%

failed 3+ time-intervals later than predicted 0 0%

failed 1 time-intervals earlier than predicted 179 47.6%

failed 2 time-intervals earlier than predicted 9 2.4%

failed 3+ time-intervals earlier than predicted 3 0.8%

Total % of samples misclassified 376 (3.7%)

158

an extension to the algorithm is possible to generate probability estimates for
each sample. The estimates are based on the distance each test point is from the
separating hyperplane, the further the point is from the hyperplane, the higher
the probability it belongs in the class [18]. Analysis of the probabilities reveals
that for 94% of the misclassified instances the actual class had the next highest
probability to the predicted class. This is very important as it provides a mea-
sure of confidence for the predicted RUL and allows preventative maintenance
and replacement to be scheduled in a more knowledgeable fashion.
Further analysis of results in Table 2 were carried out to determine exactly where
in time misclassifications were made. Most of the misclassifications appeared
around the middle and late classes or time-intervals and this suggests that equal
time segmentation is not the most suitable technique for class boundaries in
these regions. A more sophisticated separation of the class boundaries, for ex-
ample using a clustering technique, could further improve this misclassification
error.

6 Conclusion

Commonly employed machine monitoring techniques, such as measuring changes
in speed and current are only useful in indicating when failure is imminent. In
order to the RUL of the machine to increase reliability and decrease machine
downtime more sophisticated measurements such as vibrations and acoustic noise
can be used. Employing the use of acoustic noise measurements as opposed to
the commonly used vibrational signal allows for remote, non-contact, monitoring
of the machine. Automated machine monitoring using the acoustic noise signal
to determine RUL, to the best of our knowledge, has not been attempted before
in the literature.
The results of the experiments described in this paper have indicated that there
exists sufficient information in the acoustic noise signal of rotating machines in
order to effectively determine the RUL. A novel approach to feature subset se-
lection on a high dimensionality spectral feature vector was proposed in order to
remove noisy spectral components before classification using MI without class
boundary labels. In addition this approach does not require spectral locations
of the defect frequencies to be defined a-priori. In addition, the detailed misclas-
sification analysis provides valuable knowledge and a measure of confidence in
the predictions that can be used to further optimize preventative maintenance
scheduling and machine replacement. Finally, it is hypothesised that further im-
provements in performance can be achieved, for example, by using an automated
clustering approach to determine the wear state boundaries for classification.

References

1. N. Tandon and B. Nakra, “The application of the sound intensity technique to
defect detection in rolling element bearings,” Applied Acoustics, vol. 29:3, pp. 207–
217, 1990.

159

2. R. Heng and M. Nor, “Statistical analysis of sound and vibration signals for mon-
itoring rolling element bearing condition,” Applied Acoustics, vol. 53, pp. 211–
226(16), 1998.

3. D. Shi, W. Wang, and L. Qu, “Defect detection for bearings using envelope spectra
of wavelet transform,” Journal of Vibration and Acoustics, vol. 126:4, pp. 567–573,
2004.

4. S. Goumas, M. Zervakis, and G. Stavrakakis, “Classification of washing machines
vibration signals using discrete wavelet analysis for feature extraction,” IEEE
Trans. on Instrumentation and Measurement, vol. 51:3, pp. 497–508, 2002.

5. B. Samanta, K. Al-Balushi, and S. Al-Araimi, “Artificial neural networks and
support vector machines with genetic algorithm for bearing fault detection,” En-
gineering Applications of Artificial Intelligence, vol. 16:7, pp. 657–665(9), 2003.

6. H. Lao and S. Zein-Sabatto, “Analysis of vibration signal’s time-frequency patterns
for prediction of bearing’s remaining useful life,” Proc. of the 33rd Southeastern
Sym. on System Theory, vol. 1, pp. 25–29, 2001.

7. A. Rojas and A. Nandi, “Detection and classification of rolling-element bearing
faults using support vector machines,” IEEE Workshop on Machine Learning for
Signal Processing, pp. 153 – 158, 2005.

8. V. Jayaram and F. Jarchow, “Experimental studies on ball bearing noise,” Wear,
vol. 46, pp. 321–326, 1978.

9. N. Tandon and A. Choudhury, “A review of vibration and acoustic measurement
methods for the detection of defects in rolling element bearings,” Tribology Inter-
national, vol. 32, pp. 469–480, 1999.

10. P. McFadden and J. Smith, “Vibration monitoring of rolling element bearings by
the high frequency resonance technique a review,” Tribology International, vol.
17:1, pp. 1–18, 1984.

11. P. Scanlon, D. Ellis, and R. Reilly, “Using broad phonetic group experts for im-
proved speech recognition,” IEEE Trans. on Speech and Audio Processing, vol.
15:3, pp. 803–812, 2007.

12. D. Doane, “Aesthetic frequency classifications,” The American Statistician, vol. 30,
pp. 181–183, 1985.

13. C. Burges, “A tutorial on support vector machines for pattern recognition,” Knowl-
edge Discovery and Data Mining, vol. 2, no. 2, pp. 121–167, 1998.

14. B. ScholKopf and A. J. Smola, Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond. MIT Press, 2002.

15. S. Knerr, L. Personnaz, and G. Dreyfus, “Single-layer learning revisited: a step-
wise procedure for building and training a neural network,” Neurocomputing: Al-
gorithms, Architectures and Applications, 1990.

16. C.-W. Hsu and C.-J. Lin, “A comparison of methods for multiclass support vector
machines,” IEEE Transactions on Neural Networks, vol. 13, no. 2, pp. 415–425,
2002.

17. J. Milgram, M. Cheriet, and R. Sabourin, “‘one against one’ or ‘one against all’:
Which one is better for handwriting recognition with svms?” Tenth International
Workshop on Frontiers in Handwriting Recognition, 2006.

18. J. Platt, “Probabilistic outputs for support vector machines and comparison to
regularized likelihood methods,” Advances in Large Margin Classifiers, pp. 61–74,
2000.

160

Constructive vs Perturbative Local Search

for General Integer Linear Programming

Stefania Verachi and Steven Prestwich

Cork Constraint Computation Centre
Department of Computer Science, University College, Cork, Ireland

{s.verachi,s.prestwich}@cs.ucc.ie

Abstract. Most local search algorithms are “perturbative”, incremen-
tally moving from a search state to a neighbouring state while performing
noisy hill-climbing. An alternative form of local search is “constructive”,
repeatedly building partial solutions using greedy or other heuristics.
Both forms have been combined with constraint propagation, and they
can be hybridised with each other by perturbing partial solutions. We
design a new hybrid constructive local search algorithm for general inte-
ger linear programs, combining techniques from constraint programming,
boolean satisfiability, numerical optimisation and scheduling. On a hard
design problem it scales better to large instances than both a perturba-
tive algorithm and a Benders decomposition algorithm.

1 Introduction

A currently active area of research is the hybridisation of constraint programming
(CP) techniques with those of artificial intelligence (AI) and operations research.
By combining their different strengths we may solve problems that are considered
otherwise practically unsolvable. One branch of this research aims to combine
the space-pruning ability of constraint propagation with the scalability of local
search. For example replacing systematic backtracking by a non-systematic form
called Incomplete Dynamic Backtracking (IDB) boosts scalability to equal that
of local search [16], and in fact is claimed to be local search in a different search
space. IDB has been implemented mainly using variations on forward checking
(FC). Another example is Decision-Repair [10], designed for constraint satisfac-
tion problems (CSPs) and applied to open shop problems. It uses learning and
has heuristics such as clause weighting, a TABU list and greedy hill climbing.

However, there are drawbacks with these hybrids. Like most local search algo-
rithms, they are perturbative: they incrementally move from one search state to
another, while combining hill-climbing with noise and other heuristics. Unfortu-
nately, incrementally maintaining consistency can be quite complex and require
expensive data structures, especially for higher forms of consistency. An alter-
native constructive form of local search has received relatively little attention
[8] but is a promising approach to hybridisation. (For the rest of this paper we
shall abbreviate constructive local search to CoLS and perturbative local search

to PeLS .) CoLS algorithms behave like backtracking algorithms until the first

161

backtrack would normally occur, at which point they restart the search. This
repeated construction of partial solutions may be combined with a variety of
techniques including greedy algorithms, constraint propagation and relaxation.
An advantage of CoLS over PeLS is that it is much easier to hybridise with
constraint propagation techniques, because exactly the same implementation
techniques can be used. A disadvantage is that frequent restarting incurs sig-
nificant overheads, but despite this CoLS has been shown to pay off on several
problems. For example Squeaky Wheel Optimization (SWO) beat TABU search
on a set of scheduling problems, and it beat TABU and three specialised local
search algorithms on graph colouring problems [9]; a version of SWO also beat a
version of IDB on some generalised graph colouring instances though IDB won
on other instances [18]; and UnitWalk [7] beat several perturbative algorithms
on industrial benchmarks in SAT solver competitions.

Besides the obvious algorithmic differences, there is another important dif-
ference between local search and CP algorithms, leading to a design decision
regarding hybrids. With most forms of propagation we must represent entire
variable domains in order to keep track of pruned values. In contrast, most local
search algorithms do not maintain domains but simply remember the current
value of each variable. Their memory requirements are therefore independent
of the domain sizes, which is a significant advantage for problems with large
domains. In order to combine the power of constraint propagation with the low
memory requirements of local search, we use only a restricted form of consis-
tency: bounds consistency (BC). This restriction has the advantage that for each
integer variable we maintain only an upper and a lower bound denoting the val-
ues currently in the domain, making the memory requirement independent of
domain size. BC also has the advantage of cheap propagation algorithms [24].

Another design decision is the choice of constraint language, and we choose
general Integer Linear Programming (ILP). Many theoretical and real-world
combinatorial problems have elegant ILP models, so local search algorithms for
ILP immediately have potential applications. ILP also fits very well with the
choice of BC: though BC is generally a rather weak form of consistency, in the
special case of linear inequalities (and for a more general class of monotonic

constraints) it is equivalent to generalised arc (or hyper-arc) consistency (GAC)
[28]. GAC is a strong form of consistency that is much used in CP, so for this
restricted class of problems we can design a hybrid local search algorithm that
maintains a high level of consistency. Any equality constraints in an ILP can
be reduced to inequalities: this weakens the propagation but it is impractical to
achieve BC on equalities, which is an NP-hard problem [28].

Thus the proposed algorithm has a combination of features that should make
it a useful tool for a range of large structured problems: low memory require-
ments, powerful but cheap constraint propagation, local search scalability, no
novel implementation techniques, and a well-known and reasonably expressive
modelling language. The paper is structured as follows: Section 2 describes our
algorithm, Section 3 reports the results of experiments, Section 4 describes re-
lated work, and Section 5 concludes the paper and discusses future work.

162

2 The Algorithm

Our algorithm, which we call BOLOS (Bounds-Oriented LOcal Search), is similar
in structure to Adaptive Iterated Construction Search [8]. Its original inspira-
tion was the UnitWalk algorithm for SAT [7] but it also takes ideas from other
algorithms including SWO [9]. An outline of the core of BOLOS, which finds
feasible solutions to a problem π, is shown in Fig. 1 (we discuss solution quality
below).

procedure BOLOS-feasible(π):
s← ∅, w← 0
make π locally consistent
if inconsistent then return “no solution”
while not feasible(π, s)

s← construct(π, w, s)
s← perturb(π, s)
w ← prioritise(π, s, w)

return s

Fig. 1. BOLOS core for finding feasible solutions

The initial partial solution is empty. With each problem variable is associated
a weight, and the weights are initialised to zero. Constraint propagation is ap-
plied before search begins to enforce local consistency, in this case Bounds Consis-
tency (BC). If BC establishes unsolvability then the algorithm terminates. Each
iteration has three phases: firstly a partial candidate solution s is constructed,
guided by the weights and the previous partial solution; secondly perturbative
local search is applied to improve s; thirdly the weights w are adjusted. Ter-
mination occurs when all constraints are satisfied. Section 2.1 describes partial
solution construction, Section 2.2 perturbative local search, Section 2.3 variable
prioritisation by weight adjustment, and Section 2.4 the extension to optimisa-
tion problems.

2.1 Construction

A partial solution is constructed by selecting a variable, assigning a value to it,
propagating the result to the other variable domains, and repeating until either
no unassigned variables remain or domain wipeout occurs (constraint propaga-
tion reduces the domain of at least one variable to the empty set, implying that
the partial solution cannot be extended to a full solution). If domain wipeout
occurs then the variable whose assignment led to the wipeout, and the variables
whose domains were wiped out, are labelled as troublemakers , and this informa-
tion is used during prioritisation (see Section 2.3). Apart from the troublemaker
heuristic, this is identical to the behaviour of a standard constraint solver prior
to its first backtrack.

163

Variables are selected first by smallest domain size (a common CP heuristic),
ties are broken by prioritisation using the dynamic weights (see Section 2.3), and
further ties are broken randomly. The value selected for each variable is, where
possible, the same value used in the previous iteration after perturbation (ran-
dom values are assumed before the first iteration). If this value is not currently
in the variable domain then another value is chosen as follows: if the current
lower bound is greater than the previous value then the lower bound is used;
otherwise, if the current upper bound is smaller than the previous value then
the upper bound is used.

The form of constraint propagation used is BC, which can be applied to
many types of constraint problem. BC has low computational overhead, since
each domain is represented only by its lower and upper bound. There is more
than one BC algorithm even for the case of linear inequalities on integer vari-
ables [6, 28], and it is also possible to perform a weaker form of consistency called
Bounds Propagation (BP) which is a form of forward checking using bounds rea-
soning. The difference in the implementation between BC and BP is that BC
requires a queue for arc revision, to maintain the violated constraints that must
be revisited whenever a bounds update will be made. BP only propagates to
future (currently unassigned) variables and does not require a queue, so it sacri-
fices some propagation but reduces runtime overhead. It is known that stronger
forms of consistency pay off in some cases [22] but not others [11], and we have
found that BC is sometimes worthwhile and sometimes not; in this paper we
actually use BP.

2.2 Perturbation

To improve the quality of a partial solution we apply a simple perturbative
local search algorithm to try to reduce the number of constraint violations.
Perturbative local moves are usually cheap compared to constructive iterations
so this adds relatively little runtime overhead. We also execute the perturbation
phase once at the start of the algorithm, to provide a reasonable initial state.

In local search for CP and SAT, in which we try to remove violations, pertur-
bative moves are usually applied to complete variable assignments. In BOLOS
we only have partial assignments, but we overcome this problem by constructing
a total assignment consisting of the current assignments plus the most recent
assignments of the unassigned variables. The perturbation works by randomly
selecting a constraint that is violated under this total assignment, randomly se-
lecting a variable in the constraint, and reassigning that variable so that the
constraint is just satisfied. If no domain value satisfies the constraint then either
the upper or lower bound (whichever is best) is used to reduce the degree of
violation. The resulting values are used as the default values in the next iter-
ation. This Gauss-Seidel-like technique was taken from numerical optimisation
(see standard textbooks in this area). A design decision concerns how long to run
the perturbation phase. We apply it in a limited way, visiting each constraint at
most once, and ignoring any new violations generated during perturbation.

164

We also apply a form of noise by randomising the assignment of a randomly-
chosen variable — in this paper we do this every 10 iterations (UnitWalk only
does this on detecting that no variable was reassigned during an iteration). We
also apply an extreme form of perturbation: random restarts . New random values
for all variables are generated after k iterations, where k is a runtime parameter
tuned by the user for each problem. In this paper we set k = 2000.

2.3 Prioritisation

As mentioned in Section 2.1 some variables are labelled as “troublemakers” dur-
ing the construction phase, and we hope that by focusing attention on these
variables we can more quickly move toward a solution. This kind of dynamic
prioritization is used in several AI algorithms, including some scheduling algo-
rithms and the VSIDS branching rule in some complete SAT algorithms. Each
variable has an associated weight that changes dynamically during search. Large
weights denote more troublesome variables, and during construction these vari-
ables are preferred.

We use a simple scheme to update the weights: they are all initially 0, and on
defining a new set of troublemakers their weights are assigned to n (the number
of variables in the problem), and all other weights are decremented by 1 (unless
they are already 0). However, for the problem described in this paper, we found
that a variant in which the weights are not decremented worked better. This has
the effect of prioritising variables during the first few iterations, but not later
when all variables have been assigned top priority. For most of the search the
variables are therefore ordered using only the smallest-domain branching rule.

2.4 Optimisation

If (as is usual) the ILP has a linear objective function then BOLOS as described
above must be extended. Assuming without loss of generality that the function
is to be minimised, we use a simple approach: start with a very high (or infinite)
upper bound on the objective, expressed as another linear constraint; solve the
feasibility problem using BOLOS; then tighten the constraint and repeat, until
reaching either a known optimum cost, or timing out, or the initial application of
BC detects infeasibility. Variable assignments and priorities are retained between
iterations so that the search for a new solution starts in the neighbourhood of
the last solution. We also use a form of intensification described in [2, 8]: every f

iterations (for some user-defined integer f) we return to the last feasible solution
found. In this paper we set f = 130.

3 Application to Stochastic Template Design

The original template design problem was first described by Proll & Smith [20]
who observed it at a local colour printing firm producing a variety of products
from thin board, including cartons for human and animal food and magazine

165

inserts. The problem is described as follows. Given a set of variations of a design,
with a common shape and size and such that the number of required pressings

of each variation is known. The problem is to design a set of templates, with a
common capacity to which each must be filled, by assigning one or more instances
of a variation to each template. A design should be chosen that minimises the
total number of runs of the templates required to satisfy the number of pressings
required for each variation. As an example, the variations might be for cartons
for different flavours of cat food, such as fish or chicken, where ten thousand fish
cartons and twenty thousand chicken cartons need to be printed. The problem
would then be to design a set of templates by assigning a number of fish and/or
chicken designs to each template such that a minimal number of runs of the
templates is required to print all thirty thousand cartons. Proll & Smith [20]
address this problem by fixing the number of templates and minimising the
total number of pressings.

The problem was extended to demand uncertainty via scenarios by Tarim
& Miguel [25]. They used a probabilistic model in which demands are random
variables, and added scrap cost and shortage cost . They proposed a certainty-
equivalent, non-linear model for this generalised problem, in which they minimise
the expected total cost. They solved the problem using a Benders decomposition
algorithm (with single cuts) that was shown to be superior to two other versions
(with complete and multiple cuts) and to a stochastic constraint programming
method. Prestwich, Tarim & Hnich [19] later linearised this model and solved it
using a local search algorithm (VWILP) for ILP models, obtaining better results
as the allowed number of templates increased.

We applied BOLOS to the same benchmark set as [19, 25] using the same
ILP model as [19] (details omitted for space reasons) and under the same exper-
imental conditions: for each problem instance the algorithm was run once with
a cutoff time of 1 hour, and the cost of the best solution found in that time
recorded along with the actual time taken to find it. The results from [19] used a
2 GHz Intel Centrino, 1 GB RAM machine, and we normalised our runtimes to
that machine by comparing runtimes for our algorithm on that machine and ours
(a 2.8 GHz Pentium (R) 4 with 512 RAM), which was almost exactly 3 times
faster. We compare the complete Benders algorithm with VWILP and BOLOS.
The results are shown in Tables 1 and 2 for two, three and four templates. Lowest
costs in each case are shown in bold.

Clear patterns emerge over the 60 instances: for 2 templates the winner is
Benders, for 3 templates VWILP, and for 4 templates BOLOS. As noted in
[19], as the number of templates increases Benders finds poorer solutions within
the cutoff time, though the optimal solution can only get better and the local
search algorithms do find better (optimal or suboptimal) solutions. Comparing
VWILP and BOLOS only: with 2 templates VWILP wins in 15 cases and BOLOS
in 1 case; with 3 templates VWILP wins in 10 cases and BOLOS in 7 cases;
with 4 templates VWILP wins in 5 cases and BOLOS in 14 cases. In summary,
despite BOLOS’s greater runtime overhead than VWILP, it scales better to more
templates, and beats 5 other known algorithms applied to these benchmarks.

166

Benders VWILP BOLOS
no cost time cost time cost time

1 285.00 10 285.00 230 285.00 25
2 285.00 8 285.00 990 285.00 1107
3 480.00 62 480.00 4 562.50 303
4 332.50 41 332.50 6 412.50 195
5 322.50 190 322.50 196 332.50 513
6 401.00 3400 365.00 140 365.00 114
7 308.00 670 315.00 570 327.50 180
8 310.00 820 312.50 170 317.50 102
9 308.00 1800 310.00 1500 319.00 3582

10 326.00 2900 310.00 1680 316.00 216
11 333.00 480 339.00 3500 342.00 1998
12 354.00 1100 362.00 47 362.00 705
13 374.00 190 379.50 2 384.50 696
14 393.50 1300 396.00 420 399.50 783
15 407.00 800 414.50 3000 423.75 795
16 432.50 3600 433.25 44 474.00 1662
17 398.25 540 400.75 220 435.75 267
18 377.75 290 380.75 740 392.50 390
19 396.75 1200 414.25 1700 413.25 2484
20 406.75 400 409.25 110 425.50 2682

Benders VWILP BOLOS
no cost time cost time cost time

1 295.50 68 285.00 160 285.50 1914
2 305.50 110 285.00 440 285.50 3150
3 309.00 3600 307.50 2100 307.50 681
4 462.00 110 310.00 99 332.50 423
5 465.00 440 310.00 690 309.50 2406
6 481.00 180 365.00 310 365.00 378
7 805.00 1100 307.50 1600 314.00 1683
8 464.50 1100 312.50 230 305.50 2151
9 471.00 1600 312.50 390 306.00 1578

10 775.00 1500 310.00 3100 307.50 1203
11 770.00 620 333.00 87 342.00 3042
12 747.25 630 361.75 3300 362.25 348
13 557.00 290 372.00 2200 370.75 549
14 522.25 420 393.50 1300 393.50 540
15 531.25 410 407.00 570 408.00 3282
16 544.25 820 428.25 2900 447.00 498
17 526.50 300 399.50 2200 400.75 2283
18 512.75 220 375.75 3000 378.75 1737
19 530.75 620 399.25 880 398.00 2868
20 547.25 660 408.00 2900 407.75 1197

Table 1. Results with two (left) and three (right) templates

4 Related Work

A simple form of CoLS is Iterative Sampling [12] which simply restarts a back-
track-style algorithm at every dead end. Allowing a number of backtracks is
known as random restarting [5]. This can be made complete and works well on
many problems, but does not scale in a similar way to local search. UnitWalk [7]
is a CoLS algorithm for SAT that uses unit propagation. It starts in the same
way as a backtracker, selecting a variable, assigning a value to it, propagating
where possible, and repeating, until a dead end is reached. It then restarts using a
slightly different variable ordering. It has also been hybridised with perturbative
local search to improve its performance on some benchmarks. SWO [9] is a CoLS
algorithm that operates in two search spaces: a solution space and a prioritisation
space. Both searches influence each other: each solution is analysed and used to
change the prioritisation, which guides the search strategy used to find the next
solution, found by restarting the search. Other examples of CoLS cited in [8] are
a stochastic tree search algorithm [3] and Adaptive Probing [21], and it can also
be viewed as a special case of Ant Colony Optimisation.

A few (mainly perturbative) local search algorithms for forms of integer pro-
gram have been reported. General Purpose SIMulated ANnealing (GPSIMAN)
[4] is an early algorithm for 0/1 problems using Simulated Annealing (SA). From
a feasible assignment a variable is selected and its value flipped (reassigned from

167

Benders VWILP BOLOS
no cost time cost time cost time

1 295.50 860 285.00 470 285.50 279
2 545.00 82 286.00 3100 292.00 3162
3 2128.00 2100 310.00 35 305.00 2976
4 468.00 1100 307.50 2300 305.00 783
5 3478.00 0.0 310.00 210 309.50 423
6 481.00 93 365.00 430 365.00 1413
7 855.50 650 307.50 950 305.50 1308
8 2563.00 140 312.50 1700 307.50 1458
9 3478.00 0.0 312.50 320 306.50 909

10 3476.00 0.0 310.00 2200 306.00 2358
11 770.00 3300 335.00 1700 333.50 3255
12 1569.50 380 357.00 1900 351.00 819
13 557.00 1500 372.00 1200 370.75 3138
14 522.25 2200 393.50 1100 400.50 612
15 531.25 2200 407.00 2700 406.75 1713
16 2003.75 220 433.25 2400 428.25 786
17 526.50 1500 397.00 3200 402.00 2232
18 512.75 1100 379.50 1500 377.50 2535
19 530.75 3600 399.25 780 403.75 2397
20 1747.50 170 411.75 650 410.50 777

Table 2. Results with four templates

0 to 1 or vice-versa), then SA is used to restore feasibility. This approach was
generalised to integer variables in [1]. Pedroso [15] describes an evolutionary
algorithm for MIP that searches on the integer variables, then uses linear relax-
ation to fix the continuous variables. A related approach used a version of the
Greedy Randomised Adaptive Search Procedure (GRASP) [14] for MIP. TABU
search has also been applied to MIP, for example see [13]. Filled function meth-
ods are similar to perturbative local search and have also been used to solve ILPs
[23]. Some SAT local search algorithms have been adapted to integer programs.
WSAT(PB) [26] is a generalisation of the WalkSAT algorithm that applies to
0/1 problems, and WSAT(OIP) [27] is a further generalisation to integer vari-
ables. Saturn [17] is a hybrid of local search and constraint propagation for 0/1
problems, generalised from an earlier SAT algorithm. The closest algorithm to
BOLOS is GRASP (see [14] and other works), a meta-heuristic that alternates
constructive phases to find good solutions with local search phases to find locally
optimum solutions.

5 Conclusion

We presented a hybrid constructive/perturbative local search algorithm for ILP
and showed that, on a design problem, it scales up better than the best known

168

complete algorithm and a recently published perturbative algorithm. The algo-
rithm contains a novel combination of techniques from constraint programming,
SAT, numerical optimisation and scheduling.

We envisage several directions for future work. Firstly, like most local search
algorithms, BOLOS has several runtime parameters and optional heuristics. In
this paper we chose values for a given class of problems after some experimenta-
tion, but in future work we hope to freeze the choice of heuristics and eliminate
at least some of the parameters. Secondly, we aim to improve BOLOS’s heuris-
tics, perhaps by extension to a population-based search such as an evolutionary
or ant colony algorithm. Thirdly, we plan to make BOLOS applicable to a wider
range of problems by extending its use of bounds consistency to other constraints
besides linear inequalities, for example to more general monotonic constraints, or
to global constraints such as alldifferent. Fourthly, we could extend BOLOS
to MIP by applying the Simplex method to the continuous variables after fixing
the integer variables, as in [14, 15].

Acknowledgements This material is based upon works supported by the Sci-
ence Foundation Ireland under Grant Nos. 04/BR/CS0355 and 00/PI.1/C075.

References

1. D. Abramson, M. Randall. A Simulated Annealing Code for General Integer Linear
Programs. Annals of Operations Research 86:3–24, 1999.

2. J. C. Beck. Solution-Guided, Multi-Point Constructive Search. Journal of Artificial

Intelligence Research, 2007 (to appear).
3. J. L. Bresina. Heuristic-Biased Stochastic Sampling. 13th National Conference on

Artificial Intelligence, AAAI Press / The MIT Press, 1996, pp. 271–278.
4. D. Connolly. General Purpose Simulated Annealing. Journal of the Operational

Research Society 43:495–505, 1992.
5. C. P. Gomes, B. Selman, K. McAloon, C. Tret. Randomization in Backtrack Search:

Exploiting Heavy-Tailed Profiles for Solving Hard Scheduling Problems. 4th Inter-

national Conference on Artificial Intelligence Planning Systems, Pittsburgh, PA,
1998.

6. W. Harvey, J. Schimpf. Bounds Consistency Techniques for Long Linear Con-
straints. Workshop on Techniques for Implementing Constraint Programming Sys-

tems, 2002.
7. E. A. Hirsch, A. Kojevnikov. UnitWalk: A New SAT Solver That Uses Local Search

Guided by Unit Clause Elimination. Annals of Mathematics and Artificial Intelli-

gence 43(1–4):91–111, 2005.
8. H. H. Hoos, T. Stützle. Stochastic Local Search: Foundations and Applications.

Morgan Kaufmann, San Francisco, CA, USA, 2004.
9. D. E. Joslin, D. P. Clements. Squeaky Wheel Optimization. Journal of Artificial

Intelligence Research 10:353–373, 1999.
10. N. Jussien and O. Lhomme. Local Search With Constraint Propagation and

Conflict-Based Heuristics. Artificial Intelligence 139(1):21–45, 2002.
11. V. Kumar. Algorithms for Constraint Satisfaction Problems: a Survey. AI Magazine

13(1):32–44, 1992.

169

12. P. Langley. Systematic and Nonsystematic Search Strategies. 1st International

Conference on Artificial Intelligence Planning Systems, 1992.
13. A. Løkketangen, F. Glover. Tabu Search for Zero-One Mixed Integer Programming

with Advanced Level Strategies and Learning. International Journal of Operations

and Quantitative Management 1(2):89–108, 1995.
14. T. Neto, J. P. Pedroso. GRASP for Linear Integer Programming. Metaheuristics:

Computer Decision-Making. Kluwer Academic Publishers, 2004, pp. 545–574.
15. J. P. Pedroso. An Evolutionary Solver for Linear Integer Programming. BSIS Tech-

nical Report 98-7, Riken Brain Science Institute, Wako-shi, Saitama, Japan, 1998.
16. S. D. Prestwich. Local Search and Backtracking vs Non-Systematic Backtrack-

ing. AAAI Fall Symposium on Using Uncertainty within Computation, Technical
Report FS-01-04, AAAI Press, 2001, pp. 109–115.

17. S. D. Prestwich. Incomplete Dynamic Backtracking for Linear Pseudo-Boolean
Problems. Annals of Operations Research 130:57–73, 2004.

18. S. D. Prestwich. Generalized Graph Colouring by a Hybrid of Local Search and
Constraint Programming. Discrete Applied Mathematics (to appear).

19. S. D. Prestwich, S. A. Tarim, B. Hnich. Template Design under Demand Un-
certainty by Integer Linear Local Search. International Journal of Production Re-

search 44(22/15):4915–4928, 2006, Special Issue on Advances in Evolutionary Com-
putation for Design and Manufacturing Problems.

20. L. Proll, B. M. Smith. Integer Linear Programming and Constraint Programming
Approaches to a Template Design Problem. INFORMS Journal of Computing

10:265–275, 1998.
21. W. Ruml. Incomplete Tree Search Using Adaptive Probing. 17th National Joint

Conference on Artificial Intelligence, Morgan Kaufmann, 2001, pp. 235–241.
22. D. Sabin, G. Freuder. Contradicting Conventional Wisdom in Constraint Satisfac-

tion. 11th European Conference on Artificial Intelligence, 1994, pp. 125–129.
23. Y.-L. Shang, L.-S. Zhang. A Filled Function Method for Finding a Global Min-

imizer on Global Integer Optimization. Journal of Computational and Applied

Mathematics 181(1):200–210, 2005.
24. C. Schulte, P.J. Stuckey. When do Bounds and Domain Propagation Lead to the

Same Search Space. ACM Transactions on Programming Languages and Systems

27(3):388–425, 2005.
25. S. A. Tarim, I. Miguel. A Hybrid Benders’ Decomposition Method for Solving

Stochastic Constraint Programs with Linear Recourse. Lecture Notes in Artificial

Intelligence 3978:133–148, Springer-Verlag, 2006.
26. J. P. Walser. Solving Linear Pseudo-Boolean Constraint Problems with Local

Search. 14th National Conference on Artificial Intelligence and Ninth Innovative

Applications of Artificial Intelligence Conference, AAAI Press / MIT Press, 1997,
pp. 269–274.

27. J. P. Walser, R. Iyer, N. Venkatasubramanyan. An Integer Local Search Method
with Application to Capacitated Production Planning. 15th National Conference

on Artificial Intelligence, AAAI Press, 1998, pp. 373–379.
28. Y. Zhang, R. H. C. Yap. Arc Consistency on n-ary Monotonic and Linear Con-

straints. 6th International Conference on Principles and Practice of Constraint

Programming, Lecture Notes In Computer Science 1894:470–483, 2000.

170

An Evaluation of Dimension Reduction
Techniques for One-Class Classification

Santiago D. Villalba and Pádraig Cunningham

School of Computer Science and Informatics, University College Dublin
{Santiago.Villalba,Padraig.Cunningham}@ucd.ie

Abstract. Dimension reduction (DR) is important in the processing
of data in domains such as multimedia or bioinformatics because such
data can be of very high dimension. Dimension reduction in a supervised
learning context is a well posed problem in that there is a clear objective
of discovering a reduced representation of the data where the classes are
well separated. By contrast DR in an unsupervised context is ill posed
in that the overall objective is less clear. Nevertheless successful unsu-
pervised DR techniques such as Principal Component Analysis (PCA)
exist – PCA has the pragmatic objective of transforming the data into a
reduced number of dimensions that still captures most of the variation in
the data. While one-class classification falls somewhere between the su-
pervised and unsupervised learning categories, supervised DR techniques
appear not to be applicable at all for one-class classification because of
the absence of a second class label in the training data. In this paper we
evaluate the use of a number of up-to-date unsupervised DR techniques
for one-class classification and we show that techniques based on cluster
coherence and locality preservation are effective.

1 Introduction

In recent years, the traditional distinction in machine learning between super-
vised and unsupervised techniques has been blurred due to the emergence of
real-world problems that sit somewhere between these two extremes. In super-
vised classification problems, discriminating classifiers are trained using positive
and negative examples. However, for a number of practical problems, counter-
examples are either rare, entirely unavailable or statistically unrepresentative.
Such problems include industrial process control, text classification and analysis
of chemical spectra.

One-class classifiers (OCCs) have emerged as a set of techniques for situ-
ations where labelled data exists for only one of the classes in a classification
problem. For instance, in industrial inspection tasks, abundant data may only
exist describing the process operating correctly. It is difficult to gather training
data describing the myriad of ways the system might operate incorrectly. A re-
lated problem is where negative examples exist, but their distribution cannot
be characterised. For example, it is reasonable to provide characteristic exam-
ples of family pictures but impossible to provide examples of pictures that are

171

“typical” of non-family pictures. One-class classifiers are emerging as a solution,
which characterises the target class, to distinguish it from all other classes.

In practice, one-class problems are typically of high dimension so DR is an
important pre-processing step. Indeed the evaluation presented by Manevitz and
Yousef [1] shows that one-class Support Vector Machine (SVM) performance is
quite sensitive to the number of features used. This contrasts with two-class
SVMs which are generally considered to be robust to high data dimensionality.
This provides additional justification for DR in one-class classifier construction.
However, the absence of counter-examples means it is difficult to identify a fea-
ture subset that encodes a discriminating description of the concept.

In this paper we review a range of unsupervised DR techniques and evaluate
their performance on a number of OCCs. We find that DR based on locality
preservation and cluster coherence principles seem particularly promising for
OCC. However locality preservation is only effective when there are no irrele-
vant features in the full feature set; i.e. locality in the original space must be
meaningful.

In the next section we provide an overview of OCC and describe the OCC
techniques included in the evaluation. In section 3 we describe the DR techniques
considered in the evaluation – the evaluation is presented in section 4. The paper
concludes with a summary and some proposals for further research.

2 One-Class Classifiers

Traditionally machine learning tasks are divided into supervised and unsuper-
vised categories. Roughly speaking, in unsupervised learning we are provided
with a dataset (set of examples describing a real world concept) and the ob-
jective is to uncover some structure in the data. In supervised learning we are
provided with a dataset where the information to be modeled is explicitly stated
in the form of a label (a “class” label in the case of so called “classification prob-
lems”) and the task is to predict the label for new (as yet unseen) examples.

One-class classification, also referred to as novelty or outlier detection, is
sometimes thought of as a weaker form of supervised classification, where the
only information we are given about the training examples is that they belong
to the same class, arbitrarily called “positive” or “target”. The task here is to
accept or reject unseen examples depending on their similarity to the known
positive examples. OCC approaches consequently can operate with very few,
or no, negative training examples. In other words, one-class learning handles
the “no-counter-example” and “imbalanced-data” problems by considering only
positive examples. When unlabeled examples and/or small (or large) amounts
of negative examples are available for training, several OCC techniques can also
use them to fine-tune their performance.

In the current study we choose four different one class classifiers (Support
Vector Data Description (SVDD), a k-Nearest Neighbours approach, a k-Means
Clustering approach and a Gaussian Model), all of them available in the Data

172

Description toolbox [2], an open source Matlab software library of one-class
classification tools.

Support Vector Data Description [3, 4]: The SVDD learns the hyper-
sphere, defined by a center a and a radius R, that encloses (almost) all the
training set while covering as little volume as possible. It can employ the kernel
trick for learning more flexible boundaries, and the solution is found by solving
a convex quadratic optimization problem analogous to the one found in Support
Vector Machines.

Clustering (k-Means): Another approach to one-class classification is that
of learning clusters, modeling the target class as a reduced set of cluster proto-
types or centers onto which new examples are projected. Examples of clustering
methods that can be used are the Self Organizing Map, Learning Vector Quan-
tization or k-Means, the one we choose here [3, 5]. When a new example is to
be classified, its distance to the nearest prototype is used to score the extent to
which it is an outlier.

Lazy learning (k-Nearest-Neighbours): The Nearest Neighbour approach
can be used for constructing one-class classifiers. The training data is stored and
an outlierness criterion is calculated for new examples based on their nearest
neighbours, i.e. their position relative to the seen examples. Several criteria have
been proposed to measure the outlierness of an example [6, 7]. Here we use γ [6]
which is the average of the distances to the k nearest neighbours.

Density estimation (Gaussian model) [3, 5]: The Gaussian model is a
simple parametric one-class classifier which models the training data under the
assumption that it comes from a unimodal multivariate normal distribution.
These assumptions fit a lot of natural processes, but when they are violated this
model introduces a large bias. The mean and the covariance matrix are estimated
using an Expectation-Maximization approach and the Mahalanobis distance is
used as the resemblance criterion.

We selected these OCC strategies and not others because of their conceptual
simplicity, their well established properties and because we wish to explore the
hypothesis that local learners are particularly well suited to one class problems.
All bar SVDD are local learners.

3 Dimension Reduction Techniques

Research on dimension reduction has itself two dimensions. The first design
decision is whether to select a subset of the existing features or to transform to
a new reduced set of features. The other dimension in which DR strategies differ
is the question of whether the learning process is supervised or unsupervised (see
Figure 1). For OCC problems it seems that both feature selection and feature
transformation strategies are relevant. However, given that labelled data is only
available for one class, it seems that supervised DR techniques cannot be directly
applied to OCC problems.

In supervised learning the objective of DR is to optimize the performance
of the final system, that is, minimize the classification error. However, in one-

173

class classification performance estimation is difficult because the absence of
counterexamples makes the estimation of the false positive rate hard. This makes
it difficult also to tune the bias of the classifier and the best strategy to address
this problem depends on the specifics of the data available.

(a) (b)Unsupervised Supervised

Fig. 1. In unsupervised DR (a) the “best” that can be done is to find a representation
that maximises the variance in the data. When the data is labelled (b) a representation
can be sought that improves the separation in the data.

A sensible approach is to try to synchronize the assumptions of both DR and
classification. In our evaluation we consider four DR techniques; the first two
are Principal Component Analysis and the Q-α algorithm presented by Wolf
and Shashua [8]. The final two are based on the principle of locality preservation
and these are described in section 3.1. We believe that locality preservation is
of particular relevance to DR in the OCC domain because, usually one class
classifiers rely on local neighbourhood relationships (see section 2).

Principal Component Analysis (PCA): PCA is the most commonly
used technique for unsupervised dimensionality reduction [9]. It aims at finding
the linear projections that best capture the variability of the data. In this study
we use the common approach of keeping those directions that explains most of
the variance. In [10] it is shown that retaining the high variance dimensions is
not always optimal for one-class classification, so a minor components analysis
(use the smallest variance directions) can be better under some circumstances.

The Q-α Algorithm: A well motivated criterion of cluster quality is cluster
coherence, in graph theoretic terms this is expressed by the notion of objects
within clusters being well connected and individual clusters being weakly linked.
The whole area of spectral clustering captures these ideas in a well founded family
of clustering algorithms based on the idea of minimising the graph-cut between
clusters [11].

The principles of spectral clustering have been extended by Wolf and Shashua
[8] to produce the Q− α algorithm that simultaneously performs feature subset
selection and discovers a good partition of the data. As with spectral clustering,
the fundamental data structure is the affinity matrix A where each entry Aij

captures the similarity (typically as a dot-product) between data points i and j.
In order to facilitate feature selection the affinity matrix for Q− α is expressed
as Aα =

∑p
i=1 αimimT

i where mi is the ith feature vector in the data matrix
that has been normalised so to be centered on 0 and be of unit L2 norm (this is

174

the set of values in the data set for feature i). mimT
i is the outer -product of mi

with itself. α is the weight vector for the p features – ultimately the objective is
for some of these weight terms to be set to 0.

In spectral clustering Q is an n×k matrix composed of the k eigenvectors of
A corresponding to the largest k eigenvalues. Wolf and Shashua show that the
relevance of a feature subset as defined by the weight vector α can be quantified
by:

Rel(α) = trace(QTAT
αAαQ) (1)

They show that feature selection and clustering can be performed as a single
process by optimising:

max
Qα

trace(QTAT
αAαQ) (2)

subject to αTα = 1 and QTQ = I.
Wolf and Shashua show that this can be solved by solving two inter-linked

eigenvalue problems that produce solutions for α and Q. They show that a
process of iteratively solving for α then fixing α and solving for Q will converge.
They also show that the process has the convenient property that the αi weights
are biased to be positive and sparse, i.e. many of them will be zero.

So the Q − α algorithm performs feature selection in the spirit of spectral
clustering, i.e. it discovers a feature subset that will support a partitioning of
the data where clusters are well separated according to a graph-cut criterion.

3.1 Locality Preservation

Locality preservation in dimensionality reduction techniques refers to the aim of
keeping neighbourhood properties, e.g. objects that are close in the input space
should also be close in the reduced space. Several linear and nonlinear techniques
exploiting this criterion have recently been proposed. For the OCC problem it is
rational to think that a locality preserving dimension reduction technique would
be more practical in some cases than a global based one. Locality and density
are frequently used in the OCC literature and both are present in the locality
preservation bias.

Locality Preserving Projections (LPP): The idea behind LPP is that
of finding subspaces which preserve the local structure in the data [12, 13]. Given
a matrix A (symmetric, positive, invertible and, usually, sparse) which captures
information about the relationships between the data points, for example the
similarity in a neighbourhood, LPP finds the optimal linear embedding that
respects the structure present in that matrix. LPP preserves cluster structures
when clustering is based on locality, such as in the k-means algorithm, which
renders an attractive quality for being used together with cluster analysis based
OCCs. The details of LPP are described in Algorithm 1.

The embedding is defined by the bottom eigenvectors in the solution of equa-
tion 3. The construction of the weighted graph in the first and second steps of

175

Algorithm 1: LPP computation [12]
Construct the adjacency graph: let S be the training set and G denote a
graph with |S| nodes. We put an edge between nodes i and j if xi and xj are
”close”. There are two variations:

– ε-neighbourhoods (parameter ε ∈ R). Nodes i and j are connected if
‖xi − xj‖2 < ε where the norm is the usual Euclidean norm in RdX .

– k nearest neighbours (parameter k ∈ N). Nodes i and j are connected if i is
among the k-nearest neighbours of j or viceversa.

Choose the weights for the graph edges: Here, as well, we have two
variations for weighting the edges. A is a sparse symmetric |S| × |S| matrix
with Aij having the weights of the edge joining vertices i and j, and 0 if there is
no such edge.

– Heat kernel (parameter t ∈ R). When nodes i and j are connected put

Aij = e
‖xi−xj‖

2

t

– Simple minded (no parameter). When nodes i and j are connected,
put Aij = 1.

Eigenmaps: Compute the eigenvectors and eigenvalues for the generalized
eigenvector problem:

SLSTa = λSDSTa (3)

where D is a diagonal matrix whose entries are column sums of A,
Dii =

P
j Aji. L = D−A is the Laplacian matrix.

Algorithm 1 can be accomplished using any criterion. This permits more utilitar-
ian approaches to be used by including a priori information about the problem.

Laplacian Score for Feature Selection (LS): The same criterion of lo-
cality preservation found in LPP can be applied in the feature selection context,
where the merit of each feature is measured according to its locality preservation
power [14].

As with Q−α, there is no explicit enumeration of the feature subsets. Rather
a nearest neighbour based graph is constructed from the training set and its spec-
trum is analysed to rank each variable. The first two steps of the algorithm are
identical to those of LPP (Algorithm 1). For ranking each feature, its Laplacian
score is computed. For the i-th feature we define:

m̃i = mi −
mT
i D1

1TD1
1 (4)

where 1 = [1, · · · , 1]T

176

The Laplacian Score (LSi) for the i-th feature is:

LSi =
m̃T
i Lm̃i

m̃T
i Dm̃i

(5)

4 Evaluation

In this study we use the three biomedical datasets summarized in Table 1. One
difficulty in assessing the performance of the combination of OCC and DR tech-
niques on these datasets is the parameter optimisation (model selection) required
for the different techniques. We followed a simple approach of fixing the values
of the parameters to sensible values: k = 6, the number of clusters for k-means
and neighbours for k-NN and the rest of the are left to the dd tools default
values. For computing the threshold of the resemblance function we set a 90%
of training objects to be accepted (i.e. we consider that a 10% of the training
examples are outliers).

Table 1. Summary of the three datasets used in the evaluation.

Dataset n# Examples n# Features Target Class (n#) Source

Bronchiolitis 118 22 1-Day (37) [15]

Arrhythmia 452 279 Normal (245) [16]

TIS-5% 668 927 TIS (178) [17]

As parameters for the dimension reduction techniques, when applicable, we
follow the principle of using the same parameters used in the couterpart classi-
fiers. For example, the same value of k in the k-nearest neighbour is used when
constructing the adjacency graph for LPP and LS, and the value of k in the
k-means algorithm is set as the target number of clusters for Q-α. In both LPP
and LS the “simple minded” weighting approach is followed. No further model
selection is done and we also fix the rest of the parameters to a priori defined
default values. The choice of target dimensionality is also an important issue. In
this case we just explored all possibilities, from dimensionality 1 to the original
dimensionality in feature selection or to the maximum defined by the feature
transformation embedding.

In addition to the techniques described in section 3, we add two dimension
reduction methods; a random feature selection process to provide a baseline and
a supervised ranking of the features using information gain over the original
multiclass datasets (this is “cheating”). In this way we try to establish if using a
supervised feature selection criterion provides an upper bound for the accuracy
of the dimension reduction system for one-class tasks.

The results are shown in Table 2. The Balanced Accuracy Rate, defined as the
average of the true positive rate (sensitivity) and true negative rate (specificity),

177

is estimated by 10-fold cross validation. The figures shown are those obtained
by the winning target dimensionality in each case (in parenthesis).

Table 2. Evaluation of the DR-OCC combinations. Balanced Accuracy Rate esti-
mations for the winning dimensionality (in brackets) for each classifier / dimension
reduction technique pair. In italics the cheating supervised feature selection. In bold-
face the unsupervised winning dimension reduction techniques for each classifier. It is
clear that they are beneficial over the No DR case.

(a) Bronchiolitis

No DR IG Random Q-α LS LPP PCA

Gauss 0.64(22) 0.72(12) 0.67(16) 0.73(7) 0.68(13) 0.72(13) 0.73(17)

KMeans 0.73(22) 0.71(20) 0.67(18) 0.75(15) 0.70(19) 0.70(15) 0.72(19)

KNN 0.66(22) 0.70(16) 0.66(21) 0.66(21) 0.68(21) 0.72(12) 0.65(20)

SVDD 0.65(22) 0.72(1) 0.68(19) 0.67(16) 0.70(20) 0.64(20) 0.67(16)

(b) Arrhythmia

No DR IG Random Q-α LS LPP PCA

Gauss 0.55(279) 0.78(57) 0.71(83) 0.71(167) 0.70(167) 0.68(30) 0.76(24)

KMeans 0.68(279) 0.77(28) 0.70(195) 0.74(167) 0.68(279) 0.68(139) 0.72(20)

KNN 0.67(279) 0.77(35) 0.68(223) 0.71(167) 0.67(279) 0.68(139) 0.70(20)

SVDD 0.68(279) 0.75(83) 0.68(167) 0.70(167) 0.66(279) 0.65(167) 0.69(29)

(c) TIS

No DR IG Random Q-α LS LPP PCA

Gauss 0.54(927) 0.83(3) 0.54(463) 0.82(27) 0.70(18) 0.54(185) 0.77(4)

KMeans 0.45(927) 0.79(3) 0.49(1) 0.67(18) 0.56(6) 0.52(3) 0.74(4)

KNN 0.45(927) 0.81(5) 0.49(4) 0.70(19) 0.55(19) 0.54(3) 0.77(2)

SVDD 0.38(927) 0.82(2) 0.49(32) 0.69 (3) 0.59 (1) 0.49 (3) 0.72(2)

In Table 2 dimension reduction is beneficial in all cases. This is not surprising
since we chose datasets that require dimension reduction to achieve good results
in a supervised setting. In most cases the supervised DR technique provide an
upper bound for the performance. Q-α is very promising, it gives high scores to
relevant features and yields consistent improvements.

In the case of the Arrhythmia and especially the TIS dataset the locality
preserving principle of LPP is not competitive with the rest of the unsupervised
criteria. This is due to the fact that the presence of a lot of irrelevant features in
the full feature set renders locality in that space inappropriate. Further, when
used with a non-local learner such as SVDD, LPP compares adversely even with
the random feature selection criterion.

In Figure 2 we show the evolution of the sensitivity / specificity tradeoff for
two dataset / classifier combinations: k-means in TIS and k-NN in Bronchiolitis.
For locality-based classifiers it usually holds that the more the dimensionality is

178

reduced, the better the sensitivity and the worse the specificity. This is due to
the fact that computing description of objects in low dimensional spaces is easier
while discriminative power is lost, so descriptions also capture outliers. When the
dimensionality is high the descriptions become inaccurate and so the classifiers
become accept-all or, more often, reject-all machines. This phenomenon is more
significant in the case of LPP.

Fig. 2. Evolution of Sensitivity (up) vs Specificity (bottom) tradeoff with increasing
target dimensionality. On the left applying k-NN to the bronchiolitis dataset. On the
right, applying k-means to the TIS dataset with dimensionality varying from 1 to 59.
(This figure is best viewed in colour).

5 Conclusions

This paper reports progress in research on the applicability of DR techniques
(specifically techniques from unsupervised learning) for OCC problems. At this
stage we feel there are two key findings:

– We have demonstrated the potential improvements to be had by applying
carefully selected DR techniques prior to one-class classification.

– In some circumstances techniques based on cluster coherence and locality
preservation are particularly effective. We believe that LP-based techniques
are appropriate when there are few irrelevant features in the data set, i.e. in

179

order for locality to be meaningful in the original feature space it is necessary
for most if not all of the features to be relevant.

As already stated, locality preservation seems an appropriate criterion for
OCC tasks but it contains the implication that none of the input features are
irrelevant; they may be just redundant. The key issue here is how meaningful the
distance functions are. We encounter the paradoxical situation that for reducing
the dimensionality of the data one needs to rely on distance measures which, most
probably, are not meaningful in the original high dimensional space. How to learn
a proper metric from the data itself instead of imposing a pre-specified one is an
active research field in several areas of classification. For one-class classification,
once again, the current techniques are not directly applicable because they use
information from both sides of the classification boundary. However, related
techniques could lead to useful one-class metric learning techniques.

References

1. Manevitz, L.M., Yousef, M.: One-class SVMs for document classification. Journal
of Machine Learning Research 2 (2001) 139–154

2. Tax, D.M.J.: DDtools, the Data Description Toolbox for Matlab (April 2007)
3. Tax, D.M.J.: One-class classification. Concept learning in the absence of coun-

terexamples. PhD thesis, Delft University of Technology (2001)
4. Tax, D.M.J., Duin, R.P.W.: Support vector data description. Mach. Learn. 54(1)

(January 2004) 45–66
5. Juszczak, P.: Learning to recognise, a study on one-class classification and active

learning. PhD thesis, Delft University of Technology (2006)
6. Harmeling, S., Dornhege, G., Tax, D., Meinecke, F., Muller, K.R.: From outliers to

prototypes: Ordering data. Neurocomputing 69(13-15) (August 2006) 1608–1618
7. Rieck, K., Laskov, P.: Language models for detection of unknown attacks in net-

work traffic. Journal in Computer Virology 2(4) (February 2007) 243–256
8. Wolf, L., Shashua, A.: Feature selection for unsupervised and supervised infer-

ence: The emergence of sparsity in a weight-based approach. Journal of Machine
Learning Research 6 (2005) 1855–1887

9. Jolliffe, I.T.: Principal Component Analysis. Springer (October 2002)
10. Tax, D., Muller, K.R.: Feature extraction for one-class classification. In:

ICANN/ICONIP 2003, Springer Berlin / Heidelberg (2003) 342–349
11. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algo-

rithm. In Dietterich, T.G., Becker, S., Ghahramani, Z., eds.: Advances in Neural
Information Processing Systems. Volume 14. (2001)

12. He, X., Niyogi, P.: Locality preserving projections. In: NIPS: Advances in Neural
Information Processing Systems. (2003)

13. He, X.: Locality Preserving Projections. PhD thesis, University of Chicago (2005)
14. He, X., Cai, D., Niyogi, P.: Laplacian score for feature selection. In: NIPS: Advances

in Neural Information Processing Systems. (2005)
15. Doyle, D.: A Knowledge-Light Mechanism for Explanation in Case-Based Reason-

ing. PhD thesis, University of Dublin, Trinity College (2005)
16. Bay, S.D., Hettich, S.: The UCI KDD archive [http://kdd.ics.uci.edu] (1999)
17. Liu, H., Wong, L.: Data mining tools for biological sequences. J Bioinform Comput

Biol 1(1) (April 2003) 139–167

180

Computational Modelling of Switching Behaviour in

Repeated Gambles

Jiaying Zhao1, and Fintan Costello1

1School of Computer Science and Informatics,

University College Dublin, Belfied, Dublin 4, Ireland.

Abstract. In this paper we present a computational model which predicts
people’s switching behaviour in repeated-choices gambling scenarios.

Specifically, the model suggests that people switch away from an
option due to the amount and the probability of losses experienced
compared to wins, and also due to the number of decisions people have
made consecutively in that option. Results obtained so far suggest that
our model gives more accurate predictions than the previous Bayesian-
EU model and expectancy-valence model.

Keywords: Switching, Repeated Gambles, Iowa Gambling Task.

1 Introduction

Making a good decision is crucial to human survival. Most studies on decision
making have typically used single-choice scenarios. For example, the decision maker
has to choose either winning $500 for sure or a 0.5 chance of winning $1,000 [1].
However, in real life people often make a number of choices. By making repeated
choices they tend not to stick with one option but to switch between available choices
[2,3]. For example, people switch between different stocks and choose the one that
gives the best return. By investigating such switching behaviour we can offer a more
in-depth view of the decision process involved in making repeated choices.

In this paper we attempt to clarify the following questions: what causes us to
switch between choices; and what factors are involved in such switching, by
modelling people’s switching behaviour in a gambling task. The study will examine
task factors (e.g. contingencies of wins and losses) in people’s switching behaviour in
the task. The Iowa Gambling Task (IGT) designed by Bechara and colleagues [4] is
used for our investigation, as firstly the task has been well established in the decision
literature and secondly it provides a paradigm for investigating switching behaviour in
repeated choices. The main interest of the current paper is to focus on the switching
behaviour of healthy participants.

181

2 The Iowa Gambling Task

The IGT paradigm resembles real-world contingencies [4]. The task consists of four
decks of cards (labelled as A, B, C, and D), each containing 40 cards. The participant
is asked to choose a total of 100 cards from the four decks and to maximise their gain.
The participant can select any deck and is free to switch among the decks at any time.
The payoff schedule for each deck is pre-arranged but is not explicitly told to the
participant.

Every card in the four decks gives a definite win but some cards also give an
unpredictable loss. In deck A, every card gives a definite $100 win but there are 50%
of the cards, each of which also gives an average $250 loss. This means that the
average net payoff per card in deck A is a $25 loss (0.5*100-0.5*(250-100)). In deck
B, every card gives a definite $100 win but there are 10% of the cards, each of which
also gives a $1250 loss. This means that the average net payoff per card in deck B is a
$25 loss (0.9*100-0.1*(1250-100)). In other words, decks A and B are
disadvantageous as choosing decks A and B would eventually lead to an overall loss
in the long run. In deck C, every card gives a definite $50 win and there are 50% of
the cards, each of which also gives an average $50 loss. Thus, the average net payoff
per card in deck C is a $25 gain (0.5*50-0.5*(50-50)). In deck D, every card gives a
definite $50 win and there are 10% of the cards, each of which also gives a $250 loss.
That is, the average net payoff per card in deck D is a $25 gain (0.9*50-0.1*(250-50)).
In other words, decks C and D are advantageous since choosing decks C and D would
lead to an overall gain in the long run.

A typical finding reported with this task is that healthy control participants
gradually learn to favour the advantageous decks, but people with orbitofrontal frontal
cortex damage persist in choosing the disadvantageous decks [4,5,6]. Damasio [7]
proposes somatic marker hypothesis to account for the results. It postulates that
somatic markers that are bodily reactions to environmental stimuli trigger and
associate emotions with the outcomes obtained from previous experiences through
learning, and they serve as an alarm bell that leads to the rejection of the negative
course of action but as an incentive that promotes the pursuit of the positive course of
action. In other words, negative emotions are associated with the losses generated by
the disadvantageous decks and people resist future choices in those decks as an
avoidance of negative feelings; positive emotions are linked with the gains produced
by the advantageous decks and thus direct more choices to be made in those decks as
a pursuit of happy feelings.

According to this hypothesis, one would expect that after a loss negative
emotions (e.g. sadness) will occur which trigger(s) people to switch away from the
deck and after a gain positive emotions (e.g. happiness) will occur which cause(s)
them to stay at the deck. However, this might not always be the case. For example, we
observed from Bishara and colleagues’ [8] data on healthy participants that people do
not necessarily switch away from a deck after a loss occurs. Specifically, we found
that people tend to stay at the advantageous decks even though a loss has occurred
(around 76% of the times they stayed after getting a loss), and people tend not to stay
at the disadvantageous decks when a loss occurs (around 12% of the times they stayed
after a loss). Interestingly, we also observed that 55% of the times that they switch
away from a deck are when no loss occurs on the previous choice. In other words,

182

more than half of the times people switch away from a deck when no loss occurs
previously.

If no loss occurs why do people switch away? There are several explanations.
Some authors have indicated that people making repeated choices among a limited set
of alternatives often switch away from optimal options to other options from which
they expect to derive less pleasure [9,10]. Levine, Mills, and Estrada [11] suggest that
people might choose different decks occasionally to ‘try their luck’, or switch to other
decks simply due to fatigue or boredom. We postulate that the reason for switching
away from a deck with no loss involved is the fear or nervousness of obtaining a loss
on the next choice. For example, a participant who has won on five consecutive cards
in a deck may believe that a loss is more likely on the sixth card, and therefore he (she)
might switch away. We suggest that, the longer people have stayed at a deck, the
more afraid (nervous) they are about getting a loss on the next card in that deck, thus
the more likely they are to switch away from that deck. Therefore, the reason for
switching away is mainly due to two factors: one is obtaining a loss, and the other is
the fear or nervousness of obtaining a loss. We also postulate that if people were to
switch away from a deck, they would switch to a deck which gives the largest wins
and also the highest probability of winning.

3 Cognitive Models of the IGT

To the best of our knowledge, only a handful of cognitive models have been
developed to account for the results in the IGT to date [11,12,13]. Among those, even
fewer are developed to account for people’s switching behaviour. Previous models
primarily focus on people’s overall preference for specific decks but ignored the exact
details of how people choose and how they switch among the four decks. In this paper
we argue that the factors responsible for switching are the contingencies of wins and
losses and the fear or nervousness of getting a loss. Before presenting our model, two
prominent models, Bayesian-expected utility model and expectancy-valence learning
model [12], are examined first which serve as a basis for our model.

3.1 Bayesian-Expected Utility Model

The Bayesian-expected utility (EU) model operates under the principle that people
use bounded rational decision strategies to make their choices [12]. Details of the
model are not described here (see Busemeyer and Stout [12]). The model claims that a
deck should be chosen if it has the maximum EU. This is conducted in several steps.
Firstly, the probability of losses is calculated for each deck chosen; secondly, the
utility of the net payoff of each choice is calculated; thirdly, the expected utility of a
deck is computed; and finally, the deck should be chosen on the next pick if it has the
maximum EU. If the preferred deck is exhausted then the deck with the next highest
EU will be chosen.

This model is adequate at capturing the rational aspect of people’s choices.
That is, a win increases the EU of a deck and suggests that people should stay with

183

that deck. In contrast, a loss decreases the EU of the deck and suggests people might
switch to another deck if it has the maximum EU.

However, there are two limitations with this model. Firstly, if a large loss is
encountered (for example, in deck B), the EU decreases dramatically and it may drop
to so small that the deck may be unlikely to be chosen again. However, people still
choose deck B quite often despite a previous large loss. Levine et al. [11] suggest that
people’s preference of deck B is due not only to the certainty effect (there is 90%
chance of winning in deck B), but also to their tendency to underweight rare events
[14]. The Bayesian-EU model fails to capture this aspect of people’s choices.
Secondly, in terms of switching behaviour this model only predicts that the deck with
the maximum should be chosen. It cannot explain the situations when people choose a
deck which does not have the maximum EU, for example, when people switch away
from a deck when no loss occurs.

3.2 Expectancy-Valence Learning Model

Details of the expectancy-valence learning model are not described here (see
Busemeyer and Stout [12]). The model assumes that people integrate the wins and
losses experienced on each pick into a single affective reaction called a valence. The
expected valence for a deck is updated by an adaptive learning mechanism. The
choice made on each pick is a probabilistic function of the expected valence
associated with each deck, which is an increasing function of the expectancy for that
deck and a decreasing function of the expectancies for the other decks.

If the preferred deck is exhausted then the deck with the next highest
probability will be chosen. According to Busemeyer and Stout [12], this model gives
the best fit for the IGT data. They find that the model can provide the best match to
the observed data in terms of the proportion of people’s choices made from
advantageous decks. This model has similar limitations to the Bayesian-EU model: if
a large loss is encountered, the expected valence drops significantly, and so does the
probability of choosing that deck, thus the deck may be never chosen again; and it
cannot capture people’s switching tendency when no loss is involved. Both of the
models give logical explanations but do not necessarily reflect how people choose.

3.3 Assessing the Models

Since both models operate upon certain learning mechanisms, it is safe to assume that
neither of the models can work without seeing a number of choices first. Thus, the
models cannot make predictions without having a certain amount of experiences.
 A fair way to assess the cognitive models would be to give the models the
first n choices and then ask the model to predict the n+1 choice. In this way the
models makes the prediction based on the same experiences shared with the decision
maker. The n can vary from 1 to N-1 (N is the total number of cards to be picked) and
the model can at most make N-1 predictions. The prediction accuracy is calculated as
the number of accurate predictions divided by the total number of predictions.

184

 The two models were tested on the set of data obtained by Bishara and
colleagues [8] on 31 healthy participants using a modified IGT task in which a total of
120 cards were chosen. A JAVA program was written to conduct the assessment of
the two models. The models were tested for each participant.

It was found that the Bayesian-EU model gave an average of 47.13
(SD=20.15) accurate predictions out of 119 total predictions made (see Fig. 2). The
accuracy was 0.396 which means that the Bayesian-EU model predicted accurately
39.6% of the times. The expectancy-valence learning model gave an average of 48.45
(SD=21.93) accurate predictions out of 119 predictions. The accuracy was 0.407
which means that the expectancy-valence learning model predicted accurately 40.7%
of the times. Since the criterion for judging accuracy is 25% (1 in 4 decks), the model
prediction accuracy for each participant was compared to 0.25. It was found that the
Bayesian-EU prediction accuracy was significantly higher than 25% (t=.803; df=30;
p<0.05); and the expectancy-valence learning model prediction accuracy was also was
significantly higher than 25% (t=4.748; df=30; p<0.05). This means that both models
could predict more accurately than random guessing.

4 A Computational Model of Switching Behaviour

As seen the Bayesian-EU model and the expectancy-valence learning model were
relatively inadequate at predicting the choices people made. We propose a
computational model which examines task factors in people’s choices in the IGT task.
More importantly, our model predicts whether people should switch away from or
stay at a deck at a given point of the task, and it also predicts if switch, to which deck
people switch. There are two task factors that determine switching. These two factors
are calculated mathematically. Factor one (F1) describes the task factor which
includes the contingencies of winning and losing and factor two (F2) represents the
length of time people have stayed in a deck.

4.1 Task Factors

For F1 it is assumed that the probability of switching away is an increasing function of
the probability of losing multiplied by the amount of losses and a decreasing function
of the probability of winning multiplied by the amount of wins. The estimated
probability of a loss is the same as the one in the Bayesian-EU model, which is an
estimated probability PD(t) given that deck D is chosen on trial t using a beta prior
distribution updating rule:

 . (1)

185

where fD(t) is the number of cards producing a loss experienced by choosing deck D
up to and including trial t; nD(t) is the total number of trials that deck D was chosen;
and f(0) and n(0) reflect the prior estimates before any experience.

The amount of losses L[D(t)] is instantiated as the average of total losses
experienced by choosing deck D up to and including time t:

 . (2)

where N is the total number of cards chosen so far in deck D. The probability of
winning is simply 1- PD(t), which means the probability of cards producing a net win.
The amount of wins R[D(t)] is instantiated the same way as the losses, which is the
average of total wins experienced by choosing deck D up to and including time t:

 . (3)

where N is the total number of cards chosen so far in deck D. Therefore, F1 is denoted:

 . (4)

We predict that F1 will be positively correlated with the switching probability. That is,
the larger the probability of losing and the average losses of a deck, and the smaller
the probability of winning and the average wins of the deck, the more likely people
are to switch away from that deck on the next choice. If people do switch (out of their
own will or if the preferred deck is exhausted), they would choose the deck with the
maximum (1- PD(t)) × R[D(t)].
 F2 is denoted as n/N, where n is the number of continuous picks in a deck
and N is the number of total picks in a deck. It is assumed that F2 will be positively
correlated with the switching probability, since the longer people stay in a deck
consecutively, the more likely they are to switch away from that deck. The probability
of switching away from a deck is a multiple regression predictor equation computed
as follows. Multiple regression produces the best fit with F1 and F2 as the predictor
variables, and switching probability as the dependent variable.

 . (5)

186

4.2 Assessing the Model

The switching probability was calculated as a probability function which was the
number of switches in every N choices (N could be from 2 to the total number of
picks, and in our case N=10). For example, if there were 7 times of switching in the
first 10 picks, the switching probability of the first 10 picks was 0.7. The values of F1
and F2 were calculated for each pick for each participant. To match the switching
probability data we averaged the values of F1 and F2 in every N choices.

Fig.1. The graph shows the switching probability and the values of F1 and F2 as the task
proceeds. The x axis shows the task process in which the 120 choices in the IGT are broken
down to 12 blocks of 10 choices.

In Fig. 1 we can see that the switching probability decreased in the task, which means
that as people have more experiences with the four decks they gradually develop a
preference for a specific deck(s), therefore they do not switch as much as they used to.
The values of F1 and F2 followed the same trend as the switching probability. Thus,
we had good support that the coefficients a and b would both be positive.

We then ran multiple regression across all individual participants in the data
of Bishara and colleagues [8]. The assessment was conducted using a JAVA program.
The two coefficients were compared to 0 using one-sample t-test. We found that the
mean of coefficient a was 0.146 and was significantly above 0 (t=2.456; p<0.05). We
also found that the mean of coefficient b was 0.151 and was also significantly above 0
(t=2.243; p<0.05).

187

We further tested the model using the next-choice-prediction method. The
means of the coefficients (a=0.146, b=0.151) were put into the equation: S = a × F1 +
b × F2. We set the threshold for switching to 0.5, arbitrarily. This means that if the S
value was below 0.5, then the model should stay with the same deck as before; if the S
value was equal to or greater than 0.5, the model should switch to another deck with
the maximum (1- PD(t)) × R[D(t)]. The threshold for switching was also tested, using
0.1, 0.3, 0.5, 0.7, 0.9, and we found that 0.5 gave the highest prediction accuracy.
 Using the next-choice-prediction method it was found that the average
correct predictions were 75.90 (SD=18.16) out of 119 predictions, which means that
our model could predict accurately people’s choices at 63.8% of the times. It was
found that the accuracy was significantly higher than 25% (t=14.148; df=30; p<0.01).

Figure 2 shows the prediction accuracy of our model and competing models
during the task. In general it showed that the accuracy increased as the task proceeded.
Furthermore, it could be seen that after some point in the middle of the task, the
accuracy persisted above 0.7. This means that after almost half of the IGT task, the
model could predict people’s choices with 70% accuracy, which is well above the
random criterion (25%). Our model prediction accuracy for each participant was
compared to those of the two competing models, and it was found that our model
gave significantly more accurate predictions than the other models (F=20.169; df=2;
p<0.001). Thus, we concluded that our model was superior to the pervious models.

Fig.2. The prediction accuracy for the three models as the task proceeds. The x axis shows the
task process in which the 120 choices in the IGT are broken down to 12 blocks of 10 choices.

188

5 Discussion

Results obtained so far suggest that our computational model fares better than the
previous Bayesian-EU model and expectancy-valence model. Our model provides an
account of how and why people switch among their choices. Specifically, it claims
that people switch away from an option due to the amount and the probability of
losses experienced compared to wins (F1), and also due to the number of decisions
they have made consecutively in that option (F2). To our knowledge no model so far
has included a factor that represents the number of decisions people make in an option.
In our model F2 gives an account of people’s tendency to switch away from a deck
even though no loss occurs previously.
 Although our model can predict with 63.8% accuracy on average, which is
much higher than the previous models, there is still more than 30% chance that our
model cannot predict. We suggest that the remaining percentage might be due to the
randomness inherent in people’s choices, especially during the beginning of the task
when people have no idea about their options.
 Previously we suggest that the longer people have stayed at a deck, the more
afraid (nervous) they are about getting a loss in that deck. This idea is not tested in the
current analysis, since with the available data we have no access to people’s
emotional states during the task. Thus, for future work we suggest that the emotional
states can be examined. In fact, we propose that there are two emotional factors (E1
and E2), each of which corresponds to the task factors (F1 and F2). Another
experiment on the IGT is to be conducted with two purposes: firstly, our model can be
tested in this experiment; secondly, the two emotional factors can be examined.
 E1 represents the level of happiness after choosing a card. We assume that
the happier people are about their choices, the less likely they are to switch away. E2
represents the level of nervousness or fear after choosing a card but before seeing the
results of that card. We assume that the more nervous or afraid people are about their
choices, the more likely they are to switch away from that deck.
 It should be pointed out that our model aims to explain people’s switching
behaviour in the IGT, but not to provide an algorithm for making advantageous
choices. Past research on the IGT has shown that people unanimously prefer the two
advantageous decks. Our model can predict people’s choices relatively accurately,
thus it should also generate a preference for the advantageous decks.

6 Conclusion

We have presented a computational model which examines two task factors in
people’s switching behaviour in the IGT task, and claims that people switch away
from a deck not only because of the characteristics of the task (contingencies of wins
and losses), but also because of the number of choices they have made continuously
in the deck. Using the next-choice-prediction method, it is found that our model
predicts with 63.8% accuracy on average, which is much higher than the previous
models. Our model and the proposed emotional factors will be further examined in
the forth-coming experiment.

189

References

1. Kahneman, D., Tversky, A.: Prospect Theory: An Analysis of Decisions under Risk.

Econometrica, 47, 263--291 (1979)
2. Coombs, C.H., Meyer, D.E.: Risk-preference in Coin-toss Games. J. Mathematical

Psychology, 6, 514--527 (1969)
3. Keren, G., Wagenaar, W.A.: Violation of Utility Theory in Unique and Repeated Gambles.

J. Experimental Psychology: Learning, Memory and Cognition, 13, 387--391 (1987)
4. Bechara, A., Damasio, H., Tranel, D., Anderson, S.W.: Insensitivity to Future

Consequences Following Damage to Human Prefrontal Cortex. Cognition, 50, 7--15
(1994)

5. Bechara, A., Damasio, H., Damasio, A.R., Lee, G.P.: Different Contributions of the
Human Amygdala and Ventromedial Prefrontal Cortex to Decision-making. J.
Neuroscience, 19, 5473--5481 (1999)

6. Bechara, A., Damasio, H., Tranel, D., Anderson, S.W.: Dissociation of Working Memory
from Decision Making within the Human Prefrontal Cortex. J. Neuroscience, 18, 428--
437 (1998)

7. Damasio, A.R.: Descartes’ Error: Emotion, Reason, and the Human Brain.
Grosset/Putnam, New York (1994)

8. Bishara, A.J., Pleskac, T.J., Fridber, D.J., Yechiam, E., Lucas, J., Busemeyer, J.R., Fin,
P.R., Stout, J.C.: Models of Risky Decision-making in Marijuana and Stimulant Users.
Unpublished Manuscript (2006)

9. Kahn, B.E., Ratner, R.K., Kahneman, D.: Patterns of Hedonic Consumption over Time.
Marketing Letters, 8, 85--96 (1997)

10. Ratner, R.K., Kahn, B.E, Kahneman, D.: Choosing Less-preferred Experiences for the
Sake of Variety. J. Consumer Research, 26, 1--15 (1999)

11. Levine, D.S., Mills, B., Estrada, S.: Modeling Emotional Influences on Human Decision
Making under Risk. In: Proceedings of Internal Joint Conference on Neural Networks,
pp.1657--1662, IEEE Press, Montreal (2005)

12. Busemeyer, J.R., Stout, J.C.: A Contribution of Cognitive Decision Models to Clinical
Assessment. Psychological Assessment, 14, 253--262 (2002)

13. Fum, D., Stocco, A.: Memory, Emotion, and Rationality: An ACT-R Interpretation for
Gambling Task Results. In: Schunn, C.D., Lovett, M.C., Lebiere, C., Munro, P. (eds.).
Proceedings of the Sixth International Conference on Cognitive Modelling, Lawrence
Erlbaum, pp. 211--216. Mahwah, NJ (2004)

14. Barron, G., Erev, I.: Small Feedback-based Decisions and Their Limited Correspondence
to Description-based Decisions. J. Behavioral Decision Making, 16, 215--233 (2003)

190

Recurrent Progressive Deepening with Pruning.

Arthur W. S. Cater

School of Computer Science and Informatics, UCD Dublin, Belfield, Dublin 4.

arthur.cater@ucd.ie

Abstract.

Progressive deepening (PD; also known as Iterative deepening), a common
variant of Minimax search, can readily be adapted to search of AND/OR trees
using 3-valued logic where terminal nodes may have values ‘True’ and ‘False’
and non-terminal nodes may also have value ‘Unknown’. When an interior OR
or AND node has a daughter node with value determined as True or False
respectively, its remaining daughters need not be evaluated (“pruning”).
Unknown values arising when the search is too shallow to reach terminal nodes
also allow pruning at interior nodes. In game trees with generally good move
ordering this is likely to save considerable effort especially at AND nodes. The
paper shows how such pruning can cause difficulties in PD in the specific case
where an AND node’s daughter with a previously Unknown value acquires a
True value, especially when using a transposition table to record results of
subtree searches. The impact can be managed by the novel but simple
‘Recurrent Progressive Deepening’ technique. The finding generalizes to the
more common case typical of alpha-beta search where evaluations are numeric
rather than Boolean.
Key words: Iterative deepening, and/or game trees, pruning.

§1. Introduction

Minimax is the most basic algorithm used in searching large game trees, such as those
that arise in play of Chess, Go, Draughts, Othello, and many other two-player games.
Many variations of Minimax are commonly used, notably alpha-beta pruning.
Progressive Deepening (PD; also known as Iterative Deepening) is a well established
technique [1] useful with basic Minimax, with or without alpha-beta, and with or
without numerous other refinements and variations. PD involves conducting the
Minimax (or other: see [2]) search in depth-first fashion to some shallow depth, then –
if time allows and no move is incontrovertibly best – repeatedly searching to ever
greater depths. At first sight this seems wasteful since the top levels of the tree are
regenerated over and over again at successive iterations. However the wasted effort is
typically only a small fraction of the overall effort, and there are three notable
compensating advantages which make it well worth while. The waste is small because

191

the branching factor b is typically quite high1 and so the effort wastefully expended in
searching to some depth d is around 1/b of the effort at depth d+1. With this
investment three advantages may be won. First, it is possible to find shortest winning
sequences as with breadth-first search, but without its exponential memory
requirement. Second, it is possible to have flexible time control for tournament
situations, since the approximate results of a fairly deep search are available if a still
deeper search cannot be completed in time. Third, the principal variation found by
shallower searches can be used to order moves in the upper part of the game tree in a
manner approximating best-move-first, which pays huge dividends when pruning
techniques such as alpha-beta are also used [3].

Game tree search is usually concerned with finding ‘the best move’. Since in many

interesting games the game tree is so large as to be in practice inexhaustible, it is
normal to use Minimax with an evaluation function that produces a numerical
estimate of the goodness of a position from some player’s perspective: high values
correspond to positions good for the “maximizing player”. However it is sometimes
useful for a game-playing program to search instead for a sequence of moves to
guarantee some specific objective against any defence. In such cases the game tree is
more like an AND/OR tree. One player, the “achiever”, is satisfied to find one move
that cannot be refuted2: positions arising from his possible moves are grouped under
an OR node. The opponent is overcome if all his moves allow the objective to be
attained: positions arising from his moves are grouped under an AND node.

Programs for playing Go commonly search this type of tree for achieving an

objective, partly because it is extraordinarily difficult to fashion a sufficiently reliable
whole-board evaluation function for that game [4]. Figure 1 shows an extract from an
example position (on a small board), where a program may wish to determine whether
the black player could accomplish a goal of separating certain white stones. Programs
for playing Chess, which is likely familiar to more readers, seldom search such trees
and seldom pose themselves that kind of objective. Nevertheless, consider the
situation of an advanced passed White pawn in Chess: can it be promoted to a Queen?
See Figure 2. This kind of question could be answered by searching a tree of possible
White moves and possible Black counter moves. At any node where the pawn has
been promoted to a Queen, the valuation is True; at any node where the pawn has
been captured or either king checkmated or stalemated, the valuation is False. At any
other node, the valuation depends on the values of daughter nodes combined
appropriately. If the search is not deep enough the value is Unknown. The technique
of Proof Number Search [5] is employed in numerous game playing programs for
searching such trees. The present paper is concerned however with depth-first search
enhanced with both progressive deepening and pruning.

1 In Chess the branching factor b is estimated at around 35; in full-size Go it is around 200 for

whole-board searches; in Arimaa it is in the thousands.
2 The player may in practice wish to select among several irrefutable moves if more than one

exists. That issue is beyond the scope of this paper. 192

 Good move ordering is known to be beneficial for speeding search with alpha-beta
pruning [3]. Perfect move ordering is unachievable; if it were possible no search
would be needed. In AND/OR trees the three values {True, Unknown, False} can be
ordered exactly as numbers can be, and used by a trivial variation of alpha-beta
pruning. Good move ordering for the achiever will favour those moves which lead to
the goal being not only achieved, but achieved in the fewest steps against strongest
opposition. Good move ordering for the opponent will favour any moves which deny
the goal, or when none exist, those that delay the goal as long as possible. When
search is being conducted to some horizon therefore, the effect of perfect move
ordering for the opponent is to place the successor nodes of OR nodes so that
successors provably False (if there are any) precede those Unknown, which precede
those provably True (all proofs being within the horizon). Good move ordering will
approximate this pattern.

Figure 1:

Go, Black to play. Can the connection
of the marked stones be prevented?

Figure 2:
Chess, White to play. Can the pawn
on d5 be promoted to a queen?

Searching deeper (as in PD) may resolve an Unknown result into a True or False.

§2 shows that this can result in a burst of activity in what will be termed ‘First Order
Progressive Deepening’ or ‘FOPD’. §3 explains the difficulty this causes, and how it
may be easily resolved by a refinement called ‘Recurrent Progressive Deepening’ or
‘RPD’. §4 discusses refinements applicable both to FOPD and RPD, namely the
established use of Transposition Tables to bypass goal evaluations, and the less
established notion of deepening schedules. §5 offers conclusions, particularly the
claim that RPD is just as applicable and just as desirable in conventional numeric
alpha-beta as it is in the special case of AND/OR game trees with three-valued logic.

193

§2. Burst of activity

Figure 3 shows an example of a partially evaluated and/or tree (unrelated to the Chess
or Go questions of figures 1 and 2, and with generally low branching factor for the
sake of a small size of figure). Layers consisting of ‘Or’ nodes alternate with layers
consisting of ‘And’ nodes. ‘And’ nodes have a bar across the downward links to their
successors. Leaf nodes that have a definite ‘true’ or ‘false’ value are shown as T or F
respectively; interior nodes which acquire a ‘true’ or ‘false’ value by virtue of the
subtrees they dominate are shown as ‘t’ or ‘f’ respectively; and nodes whose value is
not yet known are shown as ‘u’. Several of these unknown nodes may stay unknown,
because there is already sufficient information to assign ‘true’ or ‘false’ to a parent
‘Or’ or ‘And’ node respectively. That is, the search of those subtrees may be pruned.

Figure 3:

Example of partially evaluated and/or tree.

Pruning is beneficial because it saves the generation and evaluation of whole

subtrees of a game tree. The savings can be dramatic. For simplicity imagine a typical
branching factor b at interior nodes, and a typical number p of the daughter nodes of
an interior node that are terminal. In a subtree dominated by an interior node there
will typically be (b-p)^h nonterminal nodes and p.(b-p)^(h-1) terminal nodes at the
h’th generation after the subtree’s root. At a limited depth there is a finite number of
nodes in a subtree, and furthermore search at non-leaf nodes may be locally curtailed
in several circumstances: when any daughter, terminal or otherwise, of an OR node is
found to have value True; and when any daughter of an AND node is found to have
value False or value Unknown. If the k’th daughter of a node N is found to have such
a value, then it is unnecessary to evaluate the remaining (b-k) subtrees each of typical
size (b-p)^g + p.(b-p)^(g-1), where g is the number of generations (i.e., additional
levels of tree) that might have been explored beneath N.

194

In progressive deepening, only nodes with value Unknown need to be regenerated

and reevaluated, using a greater value of h. In the case of an OR node, all daughters
must either have value False or Unknown. Only the Unknown daughters need to be
regenerated and their subtrees searched again. If any one of them is found to be True,
the others may be ignored forever after. In the case of an AND node, all daughters
must either have the value True or Unknown. Where the node has previously been
searched, h>0, one daughter will be Unknown because a previous search was too
shallow to reveal its proper value, and there may or may not be other daughters whose
value is Unknown because they were not searched at all due to curtailment arising
from that first Unknown.

When the deepened search of the first Unknown daughter of an AND node is

performed, it has the potential to reveal one of the values True or False, or to leave it
still Unknown. In the event of a False or Unknown value, remaining daughters need
not be searched. But when the hitherto Unknown daughter is found to have value
True, it is necessary to perform search on the remaining daughters also, until one of
three eventualities comes to pass: either some remaining daughter is found to have
value False, in which case remaining daughters may be permanently ignored and the
parent node assigned value False; or some daughter is found to have value Unknown,
in which case remaining daughters may be temporarily ignored and the parent node
assigned value Unknown; or no daughters remain and the value True can be attributed
to the AND node parent.

Discovering by search that a hitherto Unknown node is in fact True may trigger a

cascade of evaluations of its sister nodes and their dominated subtrees. Where the
search is allowed to proceed to depth h from the AND node parent, and it is the k’th
daughter that has upgraded from Unknown to True, there will be unleashed a burst of
activity with potentially (b-k) evaluations of subtrees of height (h-1). In Figure 3, for
example, the search of node D (the second daughter of Node B) has just gone deep
enough to reveal a ‘True’ value for it. Until then, there is no point3 in evaluating the
remaining daughters. But when this ‘True’ value is established, there is no longer any
justification for pruning the search of B’s next daughter, and it (and indeed possibly
all remaining daughters) may need to have their subtrees expanded and evaluated.

§3. Recurrent Progressive Deepening search of the logjam

These subtree evaluations may be computationally expensive. This has the
undesirable consequence that the time-control benefit of progressive deepening may
be compromised. Time control is typically exercised by extrapolating from the pattern

3 Evaluation of the remaining daughters does have the potential to reveal a ‘False’ value.

However, if move ordering is believed to be good, the earlier daughters are the ones most
likely to provide false values, that is, refutations by the opponent of a line of play. 195

of time usage and the observed branching factor on the levels of search conducted so
far, to determine whether there is sufficient time remaining to search at least one level
deeper. However it is possible that the burst of activity following the upgrading of just
one interior node involves more, perhaps far more, computational effort than
anticipated, fatally invalidating the prediction of the sufficiency of time available. For
example, in figure 3, the cost of expanding two nodes at depth 4 (shown on grey
background) and evaluating a condition at two nodes at depth 5 (on grey) provides no
guide whatsoever as to the potential cost of expanding and evaluating to depth 5 the
subtrees dominated by the third fourth and fifth daughters of Node B.

A second concern is that deep but futile searches may be performed that could and

should be pruned. An interior AND node may be reckoned False if just one daughter
is False, similarly an OR node True with just one daughter True. While a shallow
search of some later daughter might be sufficient to provide such a result (if the move
ordering is not optimal), this will not be known in time for the earlier daughters’
subtree searches. But when a depth-first search is performed to a depth limit
exceeding 1, time will be spent on fully exploring the first branch before the later
branches are considered at all, and opportunities for pruning will be squandered.

The situation overall may be likened to a blockage that is suddenly cleared. A

solution to the difficulties is simple and obvious. The tap should be opened slowly;
the searches of the subtrees now eligible to be searched should be conducted in a
progressive-deepening fashion, rather than being allowed to proceed immediately to
the full depth (h-1). The burst of activity should be undertaken but in a controlled and
moderated fashion.

By using progressive deepening in this way, time control can be exercised at each

successively deeper level of the unexplored part of the subtree, preventing an
irrevocable commitment to an arbitrarily large search. Pruning of futile branches may
occur naturally also. Furthermore, in the event that move ordering at the parent node
proved to be suboptimal, shorter refutation sequences are likely to be found sooner.

The traditional use of progressive deepening may be characterized as “First Order

Progressive Deepening” (FOPD): the tree is searched to a succession of depths, with
subtree searches being curtailed when demonstrably unnecessary. The term “Second
Order Progressive Deepening” might be applied to the algorithm suggested above,
where upgrading one daughter of an AND node exposes the forest of remaining
daughters to FOPD. Clearly however this can be and should be generalized. With
mere Second Order Progressive Deepening, the same problems could arise in the
search of hitherto unexplored subtrees as arise in the FOPD case. Figure 4 shows an
example of the sort of subtree that might be dominated by Node B in Figure 3,
suppressing the detail of the first two daughters already shown in Figure 3, and also of
one interior node whose value is still unknown after search to the depth of nodes D
and E. FOPD would immediately commit to searching the entire subtrees shown,
which would fail to exploit the opportunities for pruning afforded by the T values
shown on a grey background, and might also overrun time controls. Second Order
Progressive Deepening would search B’s third subtree to depth 1, then 2, then 3, and

196

would run into exactly the same issues at Node E and its siblings such as Node F as
have been noted for Node B and its siblings. While it may not be immediately
apparent with the low narrow trees it is practical to show in this paper, it should be
clear that these problems could be serious in the deeper bushier trees that game
programs typically work with.

Figure 4

Second Order Progressive Deepening is not enough

“Recurrent Progressive Deepening” consists of searching a forest of trees (initially

the trivial one-tree forest) to a succession of depths, curtailing tree and subtree
searches where they are unnecessary. When an earlier shallower search on one tree
had produced an Unknown result that curtailed search of its siblings (which constitute
a forest), and a deeper search now produces an upgraded result that requires search of
that forest, it too is searched using Recurrent Progressive Deepening4 (RPD).

§4. Refinements: Transposition Tables and Deepening Schedules

Transposition tables (TTs) are well known to offer enormous speedups in game tree
searches [6]. Their primary purpose is to store results of searches on positions, so that
if a position can be reached by several different sequence of moves (a ‘transposition’)
the subtree of moves and countermoves arising from it need not be searched more
than once. Typically TTs are organized as hash tables, using numeric keys generated
from positions by a fast method such as that of [7]. Numerous principled policies exist
for handling the problem of collision, where several positions happen to be

4 The term “Recursive Iterative Deepening” has been used [8] to denote a kind of proof-number

search [5] in which progressive deepening (in a sense where ‘depth’ is taken to mean a
limiting threshold on proof and disproof numbers) is performed not only at the root node, but
also at every interior OR node. 197

represented by the same numeric key. One quite effective optimistic policy is to use
large tables (a quarter of a million entries or more) and large keys (64 bits typically),
and rely on the fact that collisions are then very rare in practice.

Transposition tables may store additional information serving various secondary
purposes, such the depth of search that was conducted from a position to establish the
main result, the best known move from a position, and indeed others. In Progressive
Deepening, the depth of search that has yielded an unknown result can be compared
to the current mandated depth of search: if the previous search was shallower, then a
deeper search must be performed and the TT entry updated. Naturally a search to the
mandated depth must also be performed if no record of the position exists, and a TT
entry created. At the frontier of search most positions will not have been visited
before, so TT entries will have to be created, evaluated as True or False or Unknown-
with-zero-search as the case may be.

On occasions when the search horizon deepens beyond a node and that node still

has an Unknown result, it will be visited again on a later iteration unless (a) search is
terminated due to timeout or (b) a definitive result is found elsewhere in the tree.
Then the TT may be used in a variety of ways. It may for instance provide the first of
the daughters that provided an Unknown result; in the event that the node is an AND
node and that wayward daughter is still unknown at the next depth of search, the cost
of move generation to recover other daughter nodes is avoided. (Likewise, if an OR
Node has only one Unknown daughter, and the TT records that fact, the cost of move
generation may be avoided.) It may alternatively provide a list of all the moves
leading to Unknown results, but the cost of this often outweighs the benefits. Or
thirdly, move generation may produce the moves, the lookup keys for the resulting
positions may be generated without necessarily first producing the positions
themselves, and the TT may be consulted with the keys for the daughter nodes. This
may well be a poor trade of computation time for a reduction in the size of TT entries
unless move generation, key generation and lookup are all extremely quick.

Progressive deepening is conducted according to some deepening schedule, which

specifies how many more levels are searched on one iteration than on its predecessor.
Normally this schedule is not explicitly considered, and the frontier simply advanced
by one generation (one ply). In goal-oriented searches of AND/OR game trees
however this may not be the only sensible choice. It may be the case that only moves
made by the achiever (opponent) have the potential to directly yield a True (False)
result. In the Chess pawn-promotion example of figure 1 earlier, this is not quite so5.
But in the Go stone-connection example, only achiever moves can achieve the goal,
only opponent moves can frustrate it. In such cases, rather than evaluating every leaf
node hoping to determine its value as True or False, it may be preferable to test AND
nodes only to see if the goal has been achieved, and test OR nodes only to see if it has
been frustrated. This is cheaper particularly when the logic of the tests is nontrivial.

5 The fly in the ointment is that checkmate or stalemate by the achiever, or promotion of the

pawn to some piece other than Queen, should cause False results. 198

This asymmetry may be exploited in a deepening schedule which advances the
horizon of search by a double ply (moves plus responses). Such searches will always
reach maximum depth at nodes of the same kind. If maximum depth is always
reached at AND nodes, say, then the logic for testing achievement of the goal need
only be applied at the limiting depth of search (depth remaining = 0), and the logic for
testing frustration need only be applied at the level immediately before (depth
remaining = 1). This optimization depends however on the assumption that in an
progressive-deepening search the results for more distant ancestor nodes have been
first stored in a transposition table, and then been retrieved and found to be Unknown.

If ‘recurrent progressive deepening’ has been used this assumption will hold. In

contrast, the burst of activity characteristic of FOPD may result in many levels of a
subtree being visited for the first time. This may result in moves and countermoves
being tried well after the goal has been definitively achieved or definitively frustrated,
which would be wasteful and could even lead to misleading search results.

It is sensible to consider double ply deepening schedules only when the branching

factor is fairly low, since the number of new distinct nodes at level d+2 is greater than
the number at level d by a factor of order b^2 (transposition tables may reduce the
number below a simple factor of exactly b^2). If the branching factor is very low (as
in the case of ladder capture in Go where it is usually little more than 1.0) then it may
even be appropriate to consider many-ply deepening schedules. In cases of very low
branching factor, the naïve intuition that progressive deepening is wasteful is quite
correct: a considerable fraction of the total effort is expended on re-generating the
upper levels of a tree. Where many-ply deepening schedules are in use, with limit =
2.n plies, the test for goal achievement should be done at every remaining-depth level
d where d is even and d < limit, and the test for goal frustration when d is odd and d <
limit. Further, when a burst of activity is being moderated through recurrent
progressive deepening, the depth limits of successive searches should be synchronized
with those that would have pertained if the subtree searches had never been curtailed.

§5. Conclusions

It has been argued here that there is a problem with First Order Progressive
Deepening of a depth-first search of an AND/OR game tree. Specifically, when a
relatively shallow search of a branch of any AND node has yielded an inconclusive
result, the search of later branches can profitably be curtailed. If some subsequent
deeper search establishes that branch as True, then the searches of remaining branches
should go ahead. However, searching them may lead to a sudden burst of activity as
they are each searched to possibly great depth. This compromises one important
advantage of progressive deepening, namely its time control affordance; it also may
result in unnecessary effort expended in that search, since sufficient proofs or
refutations that might be discovered in later branches at shallow levels must wait to be
discovered after deep searches of early branches.

199

The simple technique of recurrent progressive deepening is proposed to overcome

these difficulties. It consists of managing the burst of activity, with searches of the
remaining branches being performed according to the same deepening schedule as if
they had never been curtailed at all, including the use of recurrent progressive
deepening if similar situations should arise during those searches. Future work is
required in order to determine quantitatively how much calculation is thereby saved,
and how frequently in practice an unmanaged burst of activity invalidates the time
control decision making that is part of the attraction of progressive deepening.

The argument has been presented in the context of searches of AND/OR trees,

where the issues are particularly clear cut. However, any depth-first search technique
that uses pruning of any kind and also uses progressive deepening will be susceptible
to the same problems and the same remedy. When an alpha-beta search determines a
backed up value for a successor node which exceeds its local beta parameter, the
search of other successor nodes is curtailed. If the same node is revisited, and a deeper
search reveals a backed up value not exceeding the local beta (whether changed or
unchanged is irrelevant), then the subtrees of the other successor nodes will be
searched. This search, if carried out to the currently permitted search depth, will
manifest exactly the same problems as are seen in AND/OR trees. The remedy of
recurrent progressive deepening should be widely applied.

References

1. Scott, J.J. 1969. A chess-playing program. In Machine Intelligence 4, B. Melzer and D.
Michie (eds), pp255-265. Edinburgh University Press., Edinburgh, Scotland.

2. Reinefeld, A. and Marsland, T.A. 1994. Enhanced Iterative-Deepening Search. IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol 16 no 7, pp701-710.

3. Knuth, D.E. and Moore, R.W. 1975. An analysis of Alpha-Beta Pruning. Artificial
Intelligence 6, pp293-326.

4. Fotland,D. Computer Go Design Issues. Retrieved 10 August 2007.
 http://www.inventivity.com/OpenGo/Papers/Zipped/KnowldgeRep-Fotland.txt.zip

5. Allis, V. Proof-Number Search. Artificial Intelligence 66 no 1, pp91-124, 1994.

6. Marsland, T.A. The Anatomy of Chess Programs. Retrieved 10 August 2007.
 http://www.cs.ualberta.ca/~tony/ICCA/anatomy.html

7. Zobrist, A.L. 1970. A new hashing method with applications for game playing. Tech. Report

88, U. Wisconsin. Reprinted in 1990 in International Computer Chess Association Journal,
vol 13 no 2, pp69-73.

8. Seo, M., Iida, H., and Uiterwijk, J. 2001. The PN*-search algorithm: Application to tsume-
shogi. Artificial Intelligence 129 pp253-277.

200

Reasoning about Durative Action

Karl Devooght1,2 and Marc Guyomard2

1 France Tlcom R&D
2, avenue Pierre Marzin, 22300 Lannion

2 LLI-IRISA, 6, rue de Kerampont, 22300 Lannion
karl.devooght@orange-ftgroup.com

Abstract. Traditionally, existing logics for agency, particularly modal
logics, are based on actions that are atomic. Atomic actions are actions
which are executed without any account of possible interferences from
the environment and have no duration. In this paper, we aim at provid-
ing logical supports for reasoning with another kind of actions: durative
action. A durative action is basically an action which takes time to be
executed. In this view, we propose to extend the Propositional Dynamic
logic (PDL) in order to reason with both atomic and durative actions.

———————————–

1 Introduction

Traditionally, existing logics for agency, particularly modal logics, are based on
actions that are atomic. Atomic actions are actions which are constrained by the
two following hypotheses:

– they are executed without taking into account of possible interferences from
the environment,

– they have no duration.

However, several real-time applications domains, namely in Artificial Intelligence
(e.g. agent programming) and in Databases (e.g. transactions management) re-
quires logical support for durative action. Durative actions are actions which
take time to be executed.

Let us give a concrete example. Consider an autonomous robot which has to
do different mechanical tasks. Among these tasks, it needs to rotate its metallic
arm by 90 degrees. Suppose that executing the action of rotating takes ten
seconds. In a real-time environment, it is quite intuitive there may be an event
that hampers the execution of this action. For example, some events may arrest
the agent’s arm during its movement. It would be useful it could abort its action
in these conditions.

This simple example suggests that modeling the action of rotating as an
atomic action is improper. That is, such an action violates both hypotheses con-
straining atomic action: it takes ten seconds and some interference may appear

201

during its execution. To our knowledge, the common given response3 is to break
such an action up in atomic actions. More precisely, a durative action is seen as a
sequence of atomic actions. Thus, if one wants to express some conditions which
occur during the execution, one must consider them as pre-conditions of a com-
pounding atomic action. But what level of refinement does it require in order for
an agent to be sufficiently reactive during an execution? More important, let’s
suppose one finds such a refinement, why does one complicate an agent model
with additional actions to represent ultimately a basic mechanical action as the
action of rotating?

It appears that an agent is required to deal with the continuity of certain
actions. In other words, we need a richer logical system which allows an agent
to reason with durative actions. For atomic actions, the Propositional Dynamic
Logic (PDL) [4] is a natural candidate. In this paper, we propose to extend this
logic for durative action and to augment it with two new modalities such that one
may reason with both atomic and durative action. The first modality expresses
what is true whenever a durative action is being executed. The second one says
that after each ongoing execution of durative action, something is true. We argue
that both modalities point out the striking features about the phenomenology of
durative actions while they present themselves as natural extensions of existing
PDL operators for atomic actions.

The paper is structured as follows. Section 2 informally introduces the notion
of durative actions. A formal account of durative actions is given in section 3
as part of a logic extending PDL. The proposed logic is sound. We illustrate
it with our introductory example. In section 4, we compare our approach with
some recent works on durative actions.

2 Reasoning about Durative Actions

In agency analysis, two classes of examples are used concerning actions [6]. On
the one hand, consider the following examples (inspired from Davidson’s work
[2]):

– The doctor removed the patient’s appendix.
– John will fly to the north pole.

On the other hand, in intention [1], Anscombe mostly uses similar examples of
the following kind:

– Mary is peeling an apple.
– When Mary is peeling an apple, she may cut her finger with a knife.

In Davidson-type examples, the past and future tenses are used. In this case,
action is considered in the perfective aspect (from a point of view after the
action is/will be finished). Anscombe, however, uses the present tense. This
involves considering action in the imperfective aspect (from a point of view

3 Some exceptions will be discussed in the Related works section.

202

while the action is occurring). Analytical investigations of agency have mostly
been concerned with Davidson’s examples. In fact, most of action logics follow
in this manner. In these approaches, logical supports relate actions to both the
states of affairs before and after their execution. Thus, a natural hypothesis is
to see actions as atomics. For instance, consider apple peeling. In this case,
the situation is simple enough. First, the apple is not peeled, then the apple is
peeled. Although this account of action is efficient in many cases, Anscombe-type
examples of durative actions need to be covered for some real-time agent-based
applications (as one described in section 1).

While an agent is acting, the phenomenology of durative actions is different
from atomic actions. A durative action such as apple peeling may be described
as follows:

– Some time in the past, the agent decided and then started to peel the apple.
– He was peeling up to now.
– By default, he tends to peel until he reaches a state of affairs where his apple

is peeled.

In accordance with this description, we propose to characterize informally an
execution of durative action as follows:

1. A particular atomic action causes the beginning of action execution.
2. There is some course of actions during the ongoing execution.
3. After which, one is in a state of affairs from which a particular atomic action

involves the end of action execution.

As for atomic actions, an execution of a durative action is bounded i.e. by the
states before and after its execution. In our approach, the fundamental difference
between them is that the spent time or more precisely the number of actions
occurred during the execution of a durative action is neither nil nor fixed.

Besides, in regard of this characterization, crucial aspects for durative action
have to be highlighted. First, an agent needs to be aware about some knowl-
edge and events which may be stated during an action execution. Intuitively,
getting this information is important for the agent since it may influence his
future choices. Knowing what may happen during an action execution may lead
an agent deciding whether to execute it or not. For example, suppose that an
agent knows that while he is rotating his metallic arm, an event may trouble
its execution. Then, he may decide not to do it in a situation where this event
has a strong chance of appearing. Second, while the agent is peeling an apple
for instance, this does not strictly imply that this apple will actually be peeled.
There are various reasons which force the agent to abort the execution of his
action. For instance, cutting his finger with a knife may be a good example.
In linguistics, one calls it the imperfective paradox. However, the default agent
choices during the action execution are made in order to reach a state of affairs
where the apple is peeled. It involves that to be performing is goal-directed in
some sense.

Modeling logically an account of durative action requires to explicitly char-
acterize these aspects. We argue that reasoning with durative actions needs to

203

support at least two kinds of modalities. The first one denotes what is true
whenever an agent is executing an action. This modality allows an agent to rea-
son about what happens during the execution of some action (even if he is not
actually executing it). Thus, an agent may prevent interferences from his envi-
ronment during his ongoing action. For example, cutting his finger when he is
peeling an apple may be envisioned. In addition, it is evident that the first hy-
pothesis on atomic actions is not valid for durative actions with the existence of
such a modality. The second modality says that after each ongoing execution of a
durative action, something is true. This states that a durative action takes time.
This invalidates the second hypothesis on atomic actions for durative action.
Moreover, this modality underlies there are some expected future states towards
which an agent is acting. For example, this modality allows us to express that
an agent is peeling an apple in such a way that the apple is peeled afterwards.

3 Extending PDL with durative action

In this section, we propose a logic for reasoning about durative actions. More
precisely, this logic extends the Propositional Dynamic Logic (PDL) in order to
reason about both atomic and durative actions.

3.1 Syntax

Let us start with the syntax of our logical language L which is basically a re-
stricted PDL language augmenting by two new modalities {ad} and 2ad2. {ad}φ
means that φ is true whenever the durative action a is being executed. 2ad2φ
means that after each ongoing execution of durative action ad, φ is true. The
language L contains a set of propositional variables P, a set of atomic actions
Aa and a set of durative actions Ad. We denote A the set of all actions i.e. the
union of Aa and Ad. Formulae φ and actions a of L are then defined as follows:

φ ::= > | p | φ ∨ φ | ¬φ | [α]φ | {ad}φ | 2ad2φ

α ::= a | ad | α;α

where p∈ P, a∈ Aa and ad∈ Ad. > denotes the logical truth.
Other formula operators can be introduced as abbreviations: φ∧ψ := ¬(¬φ∨

¬ψ, φ⇒ ψ := ¬φ ∨ ψ, < a > φ := ¬[a]¬φ and ⊥ := ¬>. The formula < a > >
is traditionally read as an execution of action a is possible. In addition, we set
�ad � φ := 2ad2φ which means that there is an ongoing execution of durative
action ad after what φ is true. Thus, �ad �> is understood as action ad is being
executed. On the contrary, 2ad2⊥ means that action ad is not being executed

Actions can be primitive i.e. atomic or durative, or complex i.e. a sequence of
atomic or durative actions. In addition, for each durative action ad∈ Ad, there
exists three related atomic actions b(ad), e(ad) and ab(ad) in Aa. Action b(ad)
(respectively e(ad)) begins (respectively ends) the execution of action ad. Action
ab(ad) aborts its execution.

204

3.2 Semantics

Traditionally, PDL formulas are interpreted over Kripke models [5]. We follow
this way by considering Kripke models M = (S, a→ | a∈ A, Dad

| ad∈ Ad, Ead

| ad∈ Ad, Ip | p∈ P). These models consist of (1) a set of state of affairs S, (2)
a→ for each action a ∈ A is a binary relation from states before the execution of
a to those afterwards, (3) Dad

for each ad ∈ Ad is a binary accessibility relation
to states where the agent is executing ad,(4) Ead

for each ad ∈ Ad is a binary
accessibility relation from states where ad is being executed to states after its
execution, and (5) Ip:2S an interpretation of the proposition p in M.

The semantics of a sequence of actions and a durative action can be explained
by induction on actions. Let s,t ∈ S.

s
a1;a2→ t iff ∃u ∈ S s.t. s a1→ u and u a2→ t

s
ad→ t iff ∃u, v ∈ S s.t. s

b(ad)→ u, Ead
(u, t), and v

e(ad)→ t

This semantics meets our point about durative action discussed in section
two. An execution of a durative action ad is characterized by the execution of
action b(ac) beginning after which ad is being executed. The ongoing execution
of ad is then directed towards a state to which it has been ended by action e(ad).
In particular, we do not require to explicitly specify the course of actions during
an execution of durative action.

Now, we may define the satisfiability relation |=. Let φ be a well-formed
formula (wff) of L, M a model, and s a state of S. M,s|=φ stands for φ is
satisfied (i.e. is true) in the state s of M. φ is valid iff M,s|=φ for all pairs
(M,s). The satisfiability relation |= is thus recursively defined as follows:

– M,s|= >;
– M,s|= p iff s ∈ Ip;
– M,s|= ¬φ iff M,s6|= φ;
– M,s|= φ ∨ ψ iff M,s|= φ or M,s|= ψ;
– M,s|= [a]φ iff ∀t ∈ S s.t. s a→t, M,t|=φ;
– M,s|= {ad}φ iff ∀t ∈ S s.t. Dad

(s,t), M,t|=φ
– M,s|= 2ad2φ iff ∀t ∈ S s.t. Ead

(s,t), M,t|=φ

Note that the traditional dynamic operator [a] can be applied on both atomic
and durative actions.

In terms of semantic constraints, we impose each relation Dad
to be:

– serial: ∀s ∈ S, ∃t ∈ S s.t. Dad
(s,t),

– transitive: ∀s, t, u ∈ S s.t. Dad
(s,t) and Dad

(t,u), Dad
(s,u),

– euclidian:∀s, t, u ∈ S s.t. Dad
(s,t) and Dad

(s,u), Dad
(t,u).

But no particular constraint is required on relations Ead
.

205

3.3 Axiom system

We propose an axiom system for our logic. In regard of semantic constraints,
the modal operator {ad}φ is a KD45-operator while the operator 2ad2φ is a
K-operator. Existing PDL axioms for operator [a] are still valid in our approach.
The rules of our logic are Modus Ponens (MP), and Necessitation rules for each
modal operators.

If ` φ then ` [a]φ
If ` φ then ` {a}φ
If ` φ then ` 2ad2φ

If ` φ and ` φ→ ψ then ` ψ

All axioms of propositional logic
` [a]φ ∧ [a](φ→ ψ) → [a]ψ
` [a1; a2]φ→ [a1][a2]φ
` {ad}φ ∧ {ad}(φ→ ψ) → {ad}ψ
` {ad}φ→ ¬{ad}¬φ
` {ad}φ→ {ad}{ad}φ
` ¬{a}φ→ {a}¬{a}φ
` 2ad2φ ∧2ad2(φ→ ψ) → 2ad2ψ

In regards of the definition of ad→, this kernel of axioms do not suffice to get
a more precise account of durative action. What follows are considerations of
further axioms and their semantic counterparts.

First, there is a strong link between operators 2ad2 and [a] (where a is a
durative action). Suppose that after each execution of a durative action φ is true.
What we may say is that φ is true after each ongoing execution of this action as
well. We have the following axiom and its semantic counterpart:

` [ad]φ→ 2ad2φ

∀s,t ∈ S s.t. Ead
(s, t), ∃s′ ∈ S s.t. s′ ad→ t

Second, it sounds like a tautology that a durative action is being executed
whenever it is being executed. We obtain:

` {ad} � ad � >
∀s,t ∈ S s.t. Dad

(s, t), ∃t′ ∈ S s.t. Ead
(t, t′)

Third, since we work with action-types and not action tokens, overlapped
executions of the same action need to be avoided. To do so, we require that after
each execution of durative action, it is not being executed:

` [ad]2ad2⊥

∀s,t ∈ S s.t. s ad→ t, 6 ∃t′ ∈ S s.t. Ead
(t, t′)

206

From this axiom and axiom [ad]φ→ 2ad2φ, we may easily infer that being act-
ing is always expected to reach a state where one is not acting i.e. 2ad22ad2⊥.

Fourth, the particular atomic actions b(ad), e(ad) and ab(ad) have systematic
effects related to the fact of being acting or not. We may sum up it as follows:
(1) if one has just started executing a durative action, one is acting and (2) if
one has just ended or finished, one is not acting. In addition, if an execution
of a durative action is possible, that implies that it is possible to launch this
execution. We have the following axioms:

`< ad > > →< b(ad) > > ∧ [b(ad)] � ad � >

This axiom comes from the definition of ad→
`< e(ad) > > → �ad � > ∧ [e(ad)]2ad2⊥

∀s,t ∈ S s.t. s
e(ad)→ t, ∃t′ ∈ S s.t. Ead

(s, t′) and 6 ∃t” ∈ S s.t. Ead
(t, t”)

`< ab(ad) > > → �ad � > ∧ [ab(ad)]2ad2⊥

∀s,t ∈ S s.t. s
ab(ad)→ t, ∃t′ ∈ S s.t. Ead

(s, t′) and 6 ∃t” ∈ S s.t. Ead
(t, t”)

Finally, operators {ad} and 2ad2 are naturally related. If one is acting and
some φ is true whenever one is acting, φ is then true. The following axiom is
considered:

` �ad � > ∧ {ad}φ→ φ

∀s,t ∈ S s.t. Ead
(s, t), Dad

(s, s)

So, this means that operator {ad} is also used in order to contextually infer some
facts i.e. the context of being acting.

Considering all these rules and axioms, soundness for this logic can be easily
proven by induction on the size of formula and by using all the semantical
counterparts. A completeness result is planned for further works.

3.4 Example

We illustrate the logic with our introductory example. Consider an autonomous
robot whose task is to rotate its metallic arm horizontally by 90 degrees. Suppose
that this task takes ten seconds. While he is acting, some event may cause its arm
to be arrested. Our logic allows to express different scenarios involving durative
actions.

Consider turning and removing as durative actions meaning the actions of
rotating its arm and removing what arrests the robot’s arms during its rotation.
Consider also the propositional constants arrested meaning that the robot arm
is arrested, and turned meaning that the robot arm has been rotated horizontally
at 45 degrees.

Let us imagine some situations that our logic can express. First of all, there
may exist some conditions which allows the robot to successfully end his action

207

of rotating. Suppose that this is the case whenever the propositional constant
turned is true. Formally, we described it as follows:

{turning}(turned→< e(turning) > >)

More important are the cases when the robot’s arm is arrested while he is ro-
tating it. For example, a particular action may imply arrested to be true. One
may suppose that gives the agent a possibility to abort his action:

{turning}(arrested→< ab(turning) > >)

This case is pretty optimistic since, for instance, this action may imply a strong
consequence: the agent is not rotating anymore. Let us call this action arresting.
We describe such a scenario by:

{turning}(< arresting > > ∧ [arresting]2turning2⊥)

On the contrary, there may be a back-up action which enables an agent to
remove what arrests its arm. We called this action removing. So, during the
agent’s arm rotation, the action removing is possible and if the arm is arrested,
the agent may remove what is wrong:

{turning}(< removing > > ∧ (arrested
→ [removing]¬arrested ∧2turning2>))

Note that this scenario shows the possibility of concurrent executions of two
durative actions i.e. �turning � > ∧ �removing � >.

Suppose now that one does not want the robot to rotate its arm if there is
a possibility that it is arrested, and in this case, to cause the impossibility to
execute the action of rotating. Such a situation may definitely be expressed with
our logic as follows:

({turning} < arresting > >) → [turning]⊥

This is a typical example of the usefulness to know before what may happen
during the execution.

4 Related works

The phenomenology of durative actions is the object of studies in different fields
like in philosophy e.g. Searle’s work [7] and in linguistics e.g. Vendler’s work
[12]. In artificial intelligence, namely in agent modeling, there are two kinds
of approaches depending on the representation of time. In the first approach,
time is continuous and explicitly represented in the semantical model [3,8,9].
So, all actions take time and formulas are evaluated at time points and may
be interpreted over time intervals. In the second approach, time is discrete and
generally implicitly represented. Our work follows this way and intends to show

208

that reasoning about durative actions does not especially require to consider
neither syntactically nor semantically explicit duration of an action.

Since very recently, one finds formal accounts of logical modalities related
to durative action. In particular, Müller’s [?] and Troquard’s [10,11] works have
investigated this research avenue.

As part of a STIT-frameworks i.e.See To It That, Müller introduces a modal
operator istit. The operator istit means that an agent is seeing to it that. The
semantics of istit is based on the notion of strategy. A strategy is basically a
subset of agent’s default choices leading him towards particular agent’s futures.
Then, for a particular propositional constant φ, an agent is seeing to it that φ is
true if and only if (1) φ is true in all the future states of affairs reachable by fol-
lowing the agent’s strategy, and (2) there exists a future state of affairs in which
φ is not satisfied. The second condition of the definition is called the counter con-
dition. Müller’s approach is quite different from ours. First, in STIT-framework,
action is implicitly represented. So, an example like ”Mary is peeling an apple”
cannot be logically expressed (but rather ”Mary is seeing to it that the apple
is peeled”). Second, we do not impose a counter condition since our operators
are assigned to a more generic interpretation i.e. being executing. Nevertheless,
it is possible to extend our logic with an istit-like operator defined as follows:
an agent is seeing to it with an action ad that φ is true if and only if (1) he is
executing ad after what φ is true, and (2) there is a possible action involving φ
false e.g. aborting ad.

Troquard’s works go a step further. They combine STIT and PDL logic.
They refine the operator [β : a]φ with the following meaning: an agent a starts
performing the action β and φ is true after the execution of β. Similarly, our
approach requires a durative action to be related to an atomic action beginning
its execution. Then, Troquard characterizes the durative aspect of action with
particular (atomic) actions, called continuations of an action. These actions are
introduced as an artefact in order for an agent to control the durative execution
of his action. Their possible execution also underlies that an agent is actually
executing his action. So, if this action is not possible, that implies that an agent
is not executing it anymore. We believe that it is unclear to what these actions
relate to. First, if they correspond to concrete agent observations of the action
execution, we argue that this characterization of durative action is too strong.
Indeed, that underlies to break a durative action up as a sequence of atomic
actions (see section 1). Second, if these actions allows an agent to know that he
is acting, it is more intuitive and expressive to define a modal operator dedicated
to this role (e.g., the operator �ad � >). Third, if they correspond to actions
allowing an agent to end its execution, one requires only a particular action
terminating it effectively (e.g, for a durative action ad, an atomic action e(ad)).

5 Conclusion

In this paper, we proposed a formal account of durative action. In particular,
we introduced two modal operators as part of a proposed logic extending PDL.

209

The first operator says that something is true whenever an agent is executing a
durative action. It enables us to mention facts appearing during the action exe-
cution. More precisely, interferences from the environment during the execution
may be expressed. The second operator says that an agent is executing an action
and something is true afterwards. It underlies that some actions may take time.
Besides, it means that when an agent is acting, he tends to reach some particular
futures states by default. But, as we showed, executions of durative action can
be aborted intentionally with a particular action ab(ad) or not. Furthermore, we
have shown that our logic enables a reasoning with both atomic and durative
actions.

The area of perspectives is open. It would be interesting for example to study
traditional complex actions as sequences of actions or actions-loop with regard
to durative action. In the field of planning, operator 2ad2 can be used in order
to keep a track of the ongoing agent plan. Suppose that the sequence of action
a1; a2 is considered as a durative action. A formula like 2a1; a22 involves the
agent to be aware about the plan that he is carrying out. Furthermore, reasoning
with concurrent actions is a subject of much interest in the scope of our logic.

References

1. G.E.M. Anscombe. Intention.. 2nd ed., Oxford, 1963.
2. D. Davidson. The Logical Form of Action Sentences. In his Essays on Actions and

Events, pp 105–122,Oxford, 1967.
3. E. Davis. Branching Continuous Time and the Semantics of Continuous Action. In

proceedings of Artifical Intelligence Planning System, pp 231–236, 1994.
4. D. Harel. Dynamic logic. MIT Press, 2000.
5. S.A. Kripke. Semantical Considerations on Modal logic. In Acta Philosophica Fen-

nica, Vol. 24, pp 83–94, 1963.
6. T. Müller. On the Formal Structure of Continuous Action. In Advances in Modal

Logic, King’s College Publications, 2004.
7. J. Searle. Rationality in Action. MIT Press, Cambridge, MA, 2001.
8. M.P. Singh. Formalizing Actions in Branching-Time: Model-Theoretic Considera-

tions. In proceedings of 2nd Workshop on Temporal Representation and Reasoning,
Melbourne Beach, Florida, USA, 1995.

9. M.P. Singh. Towards a Model Theory of Actions: How Agents do it in Branching-
Time. In Computational Intelligence, 1998.

10. N. Troquard, R. Trypuz and L. Vieu. Towards an ontology of agency and ac-
tion: From STIT to OntoSTIT. In proceedings of International Conference on
Formal Ontology in Informational Systems, Baltimore, Maryland, USA, B.Bennett,
C.Fellbaum (Eds), IOS Press, Frontiers of Artificial Intelligence and Applications,
pp 179–190, 2006.

11. N. Troquard and L. Vieu. Towards a Logic of Agency and Actions with Durations.
In proceedings of European Conference on Artificial Intelligence, Riva Del Garda,
Italy, pp 775–776, IOS Press, 2006.

12. Z. Vendler. Verbs and Time. In philosophical Review, Vol. 56, pp 143–160, 1957.

210

A Combinational Creativity Approach to Composing
Traditional Irish Reels

Nan Zheng1 , Bryan Duggan1

1 School of Computing, Dublin Institute of Technology, Kevin St., Dublin 8, Ireland

nan.zheng1@student.dit.ie, bryan.duggan@dit.ie

Abstract. In this paper we describe a system that uses a corpus of 864
traditional Irish reels as input into an algorithm that composes new tunes. The
system performs a structural analysis of the tunes in the corpus and also counts
n-gram note sequences in the tunes. It then recombines n-gram note sequences
together in structures from the corpus to generate new tunes. We further present
our evaluation of the generated tunes as performed by 29 domain experts.

Keywords: Irish traditional music, reel, algorithmic composition, stochastic
sampling, n-grams.

1 Introduction

The most common forms of traditional dance music are reels, double jigs and
hornpipes. Other tune types include marches, set dances, polkas, mazurkas, slip jigs,
single jigs and reels, flings, highlands, scottisches, barn dances, strathspeys and
waltzes [1]. These forms differ in time signature, tempo and structure. A reel is
generally played at a lively tempo and is in 4/4 time (although played and transcribed
as 8 quavers in a bar). Most tunes have a structure consisting of two “parts” (of length
eight bars each) called the A part and B part. In a double reel, each part is played
twice and then the entire structure is repeated up to three times. Typically within each
part there is a certain amount of repetition, which usually occurs in half bar phrases.

[2] describes combinational creativity as “novel combinations of old ideas”.
It is clear from any analysis of a corpus of traditional music that there are many
examples of combinational creativity. The tunes “The Bag of Spuds” and “Down the
Broom” have very similar B parts for example while the tunes “Sleepy Maggie” and
“Jenny’s Chickens” share very similar A and B parts. In this paper we describe our
work in developing a combinational creativity algorithm that can compose new reels
by first analysing the structure of tunes from a corpus and then recombining n-grams
of notes from the corpus to create new reels. Our system takes advantage of the fact
that half bars in tunes from the corpus often occur several times in a tune to create
structures that should sound correct. The fact that note sequences in the generated
tunes come from n-grams of notes in the corpus should also mean that the generated
melodies are plausible. Our system generates any number of new tunes. To test the
system, we generated one hundred new tunes using our algorithm and selected nine at

211

random for evaluation by domain experts. We included one human composed tune for
comparison and asked the experts to try and guess which tune was composed by a
human.

Section 2 presents background information on the corpus that we used as input to
our system and presents the ethnographic context of the corpus. Section 3 of this
paper describes related work in the field of algorithmic composition focusing of
systems that purport to create folk melodies. Section 4 of this paper describes our
algorithm in detail. Section 5 of the paper presents an evaluation of the generated
tunes performed by 29 domain experts, while section 6 presents conclusions and
future work.

 2 Background

Current estimates suggest there are at least seven thousand traditional tunes in
existence [3]. One of the main reasons proposed for the existence of such a wide
repertoire is the geographic isolation of rural Irish communities in the centuries
preceding the twentieth century [4]. It is proposed that many isolated rural
communities developed their own repertoire of tunes and that widespread knowledge
of a common repertoire did not occur until the publication of catalogues of traditional
tunes such as O’Neill’s The Music of Ireland in 1903. In his seminal work, O’Neill
collected 1850 tunes played by emigrant Irish musicians in Chicago at the time.
Several of the tunes in the catalogue are variations of the same tune.

 In 1991, the ABC music notation language was introduced by Chris
Walshaw [5]. The format was designed primarily for folk and traditional tunes of
Western European origin which can be written on one stave in standard classical
notation [5]. ABC files are ASCII text files and so can be edited by any text editor,
without the necessity for special software. Each file (known as a tune book) can
contain multiple tunes. File sizes are typically measured in kilo-bytes and this
facilitates easy transmission by electronic means.

Figure 1 is the tune “Contentment is Wealth” in the ABC format. Each tune
consists of a header section and a tune body. The header section contains amongst
other fields, the title, com-poser, source, tempo, key signature, geographical origin
and transcriber [6]. As tunes can have several titles, the title field can be repeated for
a given tune.

X:11
T:Contentment is Wealth
R:jig
M:6/8
K:Edor
GFG Eed|BAB EFG|FAF DdB|AFD D2f|gfe edB|BAB ~d3|BdB

DFA|GED E3:|
|:ede Beg|bge gfe|dcd Adf|afd fed|ede Beg|bge gfe|BdB

DFA|GED E3:|

Figure 1: The tune "Contentment is Wealth" in the ABC format.

212

The tune body contains the notation for the tune. The body encoding supports such
features as ornaments, bar divisions, sharps, flats, naturals, repeated sections, key
changes, guitar chords, lyrics and variations. Between 1997 and 2000, a group of
musicians under the leadership of Dan Beimborn and John Chambers, undertook a
grass roots project to transcribe three of O’Neill’s books to electronic format using the
ABC music notation language. As copyright had expired on O’Neill’s original books,
they made their work freely available on the internet [7].

 Many of the tunes from O’Neill’s books are played differently by musicians
today, as is normal with a living tradition. Around the same period (the late 1990’s)
Henrik Norbeck collected nearly 2000 tunes in ABC format from various sessions and
recordings. Again this collection was made freely available on the internet. This
collection contains many modern settings of tunes from O’Neill’s books [8] Our
system uses a corpus of 864 reels in ABC format drawn from Henrik Norbeck’s
transcriptions.

3 Related Work

[9] describes the CONCERT system. CONCERT is first trained on melodies
represented as a sequence of note pitch names, durations and chords. Various corpora
were used to train CONCERT including sets of J. S. Bach pieces and traditional
European folk melodies. Internally, CONCERT uses a recurrent network architecture
that learns to behave as an autopredictor. A melody is presented to it, one note at a
time, and its task at each point in time is to predict the next note in the melody.

The author reports that while the system performed well on simple,
structured, artificial sequences, the architecture failed to capture global musical
structure. He reports that few listeners were fooled into believing that the pieces had
been composed by a human and describes the output of his model as “music only its
mother could love”.

In [10], the authors describe a novel system that uses a neural network
trained on one thousand traditional Irish tunes (jigs, reels and slow airs) and that uses
Irish rainfall data as input to generate new melodies. They first convert the training set
to MIDI and truncate each of the tunes to be less than 128 note events. They used two
back propagation neural networks, one for pitch and one for duration and trained the
networks to recognise each of the 1000 tunes from the training set. They then forced
the normalised rainfall data upon the inputs to the neural networks, which resulted in
the networks producing output vectors of 128 note events. As they had data for one
year, they generated 365 note sequences. They developed a windowing system that
extracted sequences of the generated melodies in order and re-sequenced them to
form a playable melody. The authors provide no validation of the quality of the
generated melody, but the generated melody was played by the Irish Chamber
Orchestra and was chosen to be one of the centrepieces in the Irish Pavilion at
EXPO2000 in Hanover. To our ear, the melody sounds atonal and lacking in musical
structure however and quite unlike the tunes from the corpus.

In [11] the authors describe a system that identifies long timescale musical
structures in MIDI data generated from ABC files. Further, their system uses

213

knowledge learned about musical structure to generate new melodies. Firstly, they
take a corpus of 435 reels transposed into the same key and generate MIDI from these
tunes. They then use a meter extraction algorithm which returns a series of timelags
corresponding to multiple levels in the metrical hierarchy. The melodies and the
meters are fed into a special type of recurrent neural network called a Long Short
Term Memory Network (LSTM) which is trained to predict over all possible notes at
time t using as input the note (and chord) values at time t −1. The authors claim the
advantage of using a LSTM network is that it can learn long timescale (global)
musical structure. They generate new tunes by presenting the network with the first
few notes of a new tune (not from the corpus) and using it to predict the subsequent
notes. They subjectively claim that their system generates “new and interesting”
melodies, but present no experimental validation of the generated melodies.

Our system uses a simpler approach to generating new melodies that takes
advantage of the fact that the input corpus is a text based markup language for
musical scores. This facilitates the use of string comparisons in the analysis of the
structure of the scores in our corpus. We also present an evaluation by 29 domain
experts of the melodies generated using this approach.

4 A Pattern-based Sampling Approach

Figure 2 is a high level diagram describing the processes in our system.

Figure 2: High level diagram of the composition system

In the analysis of tunes in the corpus, the system looks at both the structure of each
tune and also the note sequences in each tune. We first apply an algorithm to reveal
repeated patterns and these pattern structures will be used later during the stochastic
sampling process used to generate new tunes. This is one way to overcome the
limitations with purely n-gram models of music composition [12].

Tune Composition

Tune Analysis

Corpus

Structure
Analyse

Notes
Analyse

Database

Composition
Algorithm

Thousands of
New tunes

Analysis

Composition

214

For each tune, we create an abstraction of the tune based on reoccurring tokens in
the tune. There are various ways in the ABC language to represent repeats and these
are considered by the system in generating a structure. Each half bar (4 quaver
sequence) is considered to be a token.

BG~G2 BGcG|BG~G2 Bdgd|BG~G2 BdcB|1

ADFG ABcA:|2 AGFG ABcA||
~g3d BGBd|~g2eg faaf|g2gd BddB|ADFG

ABcA|
~g3d BGBd|~g2eg fa~a2|bgaf gedB|AGFG

ABcA||
Bdgd Bdgd|Bdgd BG~G2|Ac=fc Acfc|Ac=fc

BG~G2|
Bdgd Bdgd|Bdef ~g3a|bgaf gedB|AGFG
ABcA||

1 2 |1 3 |1 4
|5 6 |
1 2 |1 3 |1 4
|7 6 |
8 9 |10 11 |12
13 |5 6 |
8 9 |10 14 |15
16 |7 6 |
3 3 |3 1 |17 18
|17 1 |

Figure 3: Original ABC notation of the tune "The Flogging Reel" and the
structure of the tune based on reoccurring 4-gram tokens

We assign a number to each unique token in the tune body. The first token number
is 1. If the second token differs from the previous token then the number 2 is assigned
to it. The algorithm then compares the third token with the previous two and if it is
the same token as a previous token, it is assigned the same number. If not, a new
number will be assigned and so the algorithm continues until the end of the tune is
reached.

Symbol Interpretation

BG~G2 A roll. ~ ignored.
Ac=fc An accidental. = is ignored
(3BAG dB
cAFA

A triplet, three notes in the time of two. (3BAG is considered
to be a block that takes up two places. (3BA should not be
separated

BG~G2 G2 is a G played with a length of two notes, so that it should
not be separated. This means the G2 should be used as one
block and takes up 2 places.

C’ABA c’ is considered to be one note and should not be separated
from the note before it.

D,ACA D, is considered to be one note and not separated from the
note before it

Figure 4: ABC Language features that complicate the generation of n-grams

The whole tune is then converted to a sequence of token numbers. This abstracts
the tune structure from the notes played in the tune. As some of the structures in the
corpus are shared by several tunes we generate roughly 800 tune structures. Figure 3
is an example of the original ABC notation for the tune “The Flogging Reel” and the
structure generated by our analysis. The algorithm then stores the tunebook location
and name, the number of the tune in the tunebook, the name of the tune and the
abstract structure represented by a sequence of token numbers in a database.

215

We then analyse note sequences in the corpus using n-grams. With different n
values, n-gram analysis will generate note combinations for every possible
combination of n notes in a tune. There are additional symbols in the ABC language
that complicate the generation of n-grams. These symbols are summarised in Figure 4.

Along with the n-gram, the key of the source tune that the n-gram occurred in is
also stored. This is because the key of the source tune will determine the actual note
combinations in the tune. The key is then an identifier to identify musical phrases that
occur in a particular key.

The system is flexible and supports any value of n but currently for ease of
composition, the system counts 4-gram musical phrases. With n value equals to 4,
there are 220,000 4-grams in the corpus. Figure 5 is an example of n-grams generated
from the start of the tune “The Flogging Reel”.

Figure 5: Example n-grams generated from the start of the tune "The

Flogging Reel"

To generate a new tune, the system first takes a structure at random from the

database. Based on the key of the structure, the algorithm fetches an appropriate
number of n-grams from the database and fills in an n-gram token into each token in
the sequence. For each structure, a user configurable number of new tunes can be
generated.

5 Evaluation

In order to evaluate our approach, we generated one hundred tunes and selected nine
at random from the generated tunes for testing purposes. To the nine generated tunes,
we added one human composed tune. MIDI renderings of the tunes were created so
that subjects could listen to the tunes. We created an online survey using phpESP and
asked subjects to rate each tune on a scale from one (poor) to five (excellent) in three
categories:

1. Originality – To what extent the tunes differed from tunes already in the
repertoire of the subject.

2. Aesthetic value – Did the subject like the tune.
3. Correctness – Did the tune sound right or did the tune sound odd.

We asked each subject three additional questions:
1. How long they had been playing music for?
2. Which of the ten tunes was their favourite?

216

3. Which one of the ten tunes was composed by a human?
We also left a freeform field on the survey and invited subjects to comment on the

test. We posted an invitation to complete the survey on two popular web discussion
forums used by traditional musicians [13, 14].

Within two days, the survey had been filled out by twenty nine subjects and our
invitation had triggered a lively discussion as to which was the human composed tune
on one of forums.

The average rating for each of the ten tunes in each of the three categories is
presented in Figure 6.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

1 2 3 4 5 6 7 8 9 10

Originality

Aesthetic Quality

Correctness

Figure 6: Average results for originality, aesthetic quality and correctness of

the ten tunes in the test

On average, subjects rated the computer generated tunes 3 for originality, 2.2 for
aesthetic quality and 2.3 for correctness. By contrast, subjects rated the human
generated tune on average 3.0 for originality, 3.9 for aesthetic quality and 4.4 for
correctness. This was not surprising as many of the computer generated tunes
although they repeated in the correct places, contained unusually large pitch intervals
that lent the tunes a somewhat atonal quality. This could have been corrected by
“improving” the algorithm by filtering large pitch intervals, forcing the melodies to
resolve or adding rules, however we judged that the tunes had a unique value due to
this atonal quality that might be eliminated if the algorithm was too “constrained”.

Most subjects (72%) correctly identified tune eight as being the human composed
tune and similarly most subjects (58%) chose the human generated tune as their
favourite from the selection. 13% of the subjects judged tune one to be their favourite,
which was the favourite tune of the authors.

Most interesting from the survey was the feedback received in freeform comments
submitted by subjects. Some of the subjects felt that many of the tunes combined
interesting and aesthetically appealing phrases with atonal and unusual phrases. Pitch
intervals in some of the tunes were unusually large for traditional tunes, with subjects
commenting that many of the tunes had a modern feel reminiscent of modern Scots
piping tunes. Many of the subjects commented that had the tunes been worked on by
and played by a human rather than the MIDI rendering, the perceived imperfections
could have been eliminated.

217

6 Conclusions

In this paper we presented our system that combined n-grams of notes together from a
corpus into tune structures derived from the corpus to compose new tunes. We
evaluated the generated tunes and had subjects try and tell the human composed tune
from the generated tunes. From our evaluation it was clear that most subjects
preferred the human composed tune to the tunes generated by our system. The tunes
generated by our system, because they are structurally based on a tune from the
corpus, usually repeat in the correct places and so often sound as though there was
some planning in their construction. We feel that although many of the tunes have a
strange atonal quality we are reluctant to dismiss them, because in our opinion some
of the tunes possess interesting chord progressions and are curiously pleasing
although they are in many ways different to what most listeners would classify as
traditional reels. On the other hand we conclude that our use of random n-grams from
the corpus needs further work if we are to improve the perceived correctness and thus
the aesthetic quality of the tunes. The tunes used in this test can be listened to here:
http://www.bryanduggan.com/phpESP/public/survey.php?name=GeneratedTunes.

References

1. Vallely F. The Companion to Irish Traditional Music: New York University
Press; 1999.

2. Boden MA. Dimensions of creativity. Cambridge, Massachusetts: MIT
Press; 1996.

3. Wallis G, Wilson S. The Rough Guide to Irish Music. First Edition ed.
London: Rough Guides; 2001.

4. Vallely F. Flute Routes to 21st Century Ireland: National University of
Ireland; 2004.

5. Walshaw C. The ABC home page. 2007 [cited; Available from:
http://www.walshaw.plus.com/abc/

6. Mansfield S. How to Interpret ABC Notation. 2007 [cited; Available
from: http://www.lesession.co.uk/abc/abc_notation.htm

7. Chambers J. O' Neills Books. 2007 [cited; Available from:
http://trillian.mit.edu/~jc/music/book/oneills/

8. Norbeck H. ABC Tunes. 2007 [cited; Available from:
http://www.norbeck.nu/abc/index.html,

9. Mozer MC. Neural network music composition by prediction: Exploring the
benefits of psychoacoustic constraints and multiscale processing. Connection
Science 1994.

10. Fernström M, Griffith N, Taylor S. BLIAIN LE BAISTEACH -
SONIFYING A YEAR WITH RAIN. In: Proceedings of the 2001
International Conference on Auditory Display; 2001 July 29-August 1, 2001;
Espoo, Finland; 2001.

218

11. Eck D, Lapamle J. Learning Musical Structure Directly from Sequences of
Music. In: University of Montreal, Department of Computer Science, CP
6128, Succ. Centre-Ville, Montreal, Quebec H3C 3J7 Canada; 2006.

12. Conklin D. Music Generation from Statistical Models. Proceedings of the
AISB 2007.

13. Chiff&Fipple. Chiff & Fipple Forums. 2007 [cited; Available from:
http://chiffboard.mati.ca/

14. thesession.org. The session.org Forums. 2007 [cited; Available from:
http://www.thesession.org

219

Using Computer Vision to Create a 3D Representation
of a Snooker Table for Televised Competition

Broadcasting

Hao Guo and Brian Mac Namee

School of Computing, Dublin Institute of Technology, Kevin St., Dublin 7, Ireland

{Brian.MacNamee@comp.dit.ie}

Abstract. The Snooker Extraction and 3D Builder (SE3DB) is designed to be

used as a viewer aid in televised snooker broadcasting. Using a single camera

positioned over a snooker table, the system creates a virtual 3D model of the table

which can be used to allow audiences view the table from any angle. This would

be particularly useful in allowing viewers to determine if particular shots are

possible or not. This paper will describe the design, development and evaluation

of this system. Particular focus in the paper will be given to the techniques used

to recognise and locate the balls on the table.

1. Introduction

When watching televised snooker competitions it is often hard to see whether it is
possible for a player to make a particular shot unless we can see the table from the
player’s point of view. Unfortunately, television cameras cannot always disturb the
player to get the correct viewing angle. This paper will describe the Snooker Extraction
and 3D Builder (SE3DB) a system developed to generate a 3D model of a snooker table
from an overhead image of the table. This 3D model could be used in television
broadcasting to allow viewers view the layout of the balls from any angle and so
determine whether or not the tough shot the player is eyeing up is really possible.

Technology has been creeping into sports broadcasting more and more over the past
number of years, and the following section will describe some notable examples of this
to serve as a background for the discussion of our system. Next, the system itself will be
described, including an overview of the digital image processing techniques utilized to
extract the positions of the balls and a particular observation which makes this possible.

220

Finally, we will describe an evaluation that has been carried out on the system and
suggest the directions in which we expect the work to go from here.

2. Background

Computer vision, coupled with technologies such as augmented reality (AR), has
high potential for enabling a new class of application in television broadcasting [6].
Effects such as highlighting particular players, displaying team logos and illustrating
distances have now become commonplace. One of the earliest examples of AR being
used in sports broadcasting is the FoxTrax system [1]. This system was developed to
highlight the location of the puck in televised ice hockey games. As the puck can be
extremely hard for viewers to see when moving at high speeds across the ice, Foxtrax
added a virtual glow and a comet trail to it. To achieve this, the developers of Foxtrax
created an instrumented puck which emitted infra red pulses which were captured by
cameras positioned around the ice rink. This system used 10 cameras, each of which
focussed on a particular portion of the field, meaning that during a match, the puck was
always in view of at least one camera. While the Foxtrax system was highly successful,
drawbacks include the large amount of hardware required and the fact that
modifications had to be made game equipment itself, which is not always possible.

The Hawk-eye system (www.hawkeyeinnovations.co.uk) [5] is another example of
vision-based technology used in sports broadcasting. Originally developed for use in
cricket matches, the Hawk-eye system creates a 3D virtual simulation of a sporting
event which can then be played back and viewed from any angle to review the action.
Since its original deployment Hawk-eye has gone on to be used in tennis and, more
recently, snooker. Interestingly, in tennis Hawk-eye is not only used in broadcasting,
but also by match officials to review calls on whether a ball is in or out.

Hawk-eye is particularly interesting in relation to the work being presented in this
paper. Not only does Hawk-eye have similar goals to our own work (to create a virtual
representation of a sports event) but it also focuses on the same sport (snooker).
Unfortunately, as Hawk-eye is a commercial product there is very little information
available in the literature about how it works.

As augmented reality has been used more and more in broadcasting, people have
become more demanding in terms of quantity and quality of the visual information.
Also, viewers want to interact with the content or influence the presented material on

221

TV. PISTE [2] is a system aimed at addressing all of these needs, providing
broadcasters with the tools necessary to create enhanced content at transmission time,
and the viewers with set-top-box technology capable of handing requests for
interaction personalization. This system is capable of performing measurements, frozen
shot display and comparison of different attempts displayed simultaneously.

3. Development

The purpose of this system is to extract information about the contents of a snooker
table, and from this information build a virtual model of the table. Snooker is a
particularly attractive sport for this kind of application as the contents of the
environment are entirely controlled, and a large amount of information is fixed – e.g.
the relative dimensions of the table and the balls. The development of our system
involved the creation of a series of prototypes which attempted to create a virtual 3D
model of a snooker table. This task can be divided into identifying the boundaries of the
table itself and identifying the positions and colours of the balls on the table. The
development of our system will be described in these two parts. Our system assumes
that a human operator determines when a picture of the table should be taken and a
subsequent 3D model created. The operator should only do this when the image of the
table is clear of players, snooker cues, rests etc, and so we do not consider the presence
of any of these objects.

In developing this system OpenCV (sourceforge.net/projects/opencvlibrary) was
used for most of the computer vision algorithms used and OpenGL (www.opengl.org)
was used for the display of the virtual table.

Extracting Table Boundaries

Detecting the boundaries of a snooker table is a relatively straightforward task as so
much is known about what we expect to see in a typical snooker scene. In our system
the boundaries of the table are extracted through edge detection using the Canny edge
detector [7] followed by the Hough transform [3]. The results of a Hough transform is a
set of candidate edges for the table boundary. From this candidate set of edges a
representation of the table boundary can be extracted by using domain information
about how we expect a table to appear. Figure 3 shows a series of images which

222

illustrate the steps required in identifying the table boundaries from an image of a
snooker table.

 (A) (B)

 (C) (D)

Fig. 1. (A) The original image, (B) the edge detection result, (C) the results of a Hough transform
super-imposed on the original image and (D) the final extracted table boundary super-imposed
on the original image.

Identifying Snooker Balls

The first prototype developed to identify the balls on the snooker table used a very
simple approach which performed an edge detection on the image of the table and used
a circle-based Hough transform to extract the outlines of the balls. Unfortunately, the
Hough transform did not perform particularly well. It is believed that the reasons for
this are that the image was too noisy and that the circles extracted from the edges of the
snooker balls were too far from perfect circles which caused problems for the OpenCV
implementation of the Hough transform used.

The second prototype developed used a little more of the domain information
available to us. This time it was realised that since the baize of the table was known to

223

be green it was obvious that the balls should stand out prominently from it. Hence, by
using a simple flood fill algorithm [3, 4] the ball positions could be extracted without
having to rely on edge detection. From this result, connected components can be
identified as the balls on the table. Unfortunately, while some success was achieved
using this technique, this prototype suffered from the fact that a number of the balls (in
particular the blue and green balls) were particularly close to the colour of the baize and
so were not identified successfully.

While developing the second prototype the key observation which resulted in the
success of the final system was made. It was noticed that there is a strong specular
reflection (a very bright spot) on the surface of each snooker ball. An example of this is
shown in figure 2. This appears reliably in images of snooker tables, including those
broadcast on TV. It was decided to take advantage of these bright spots to detect the
balls using simple thresholding [3]. By converting the captured image of a snooker
table into a grey-level image it is a straightforward task to set a threshold value which
will extract only specular reflections (plus occasionally the white and yellow balls).

Fig. 2. A greyscale image of a snooker table which shows an obvious specular reflection on the
surface of each ball.

Figure 3 shows an image of a snooker table, the results of thresholding and the final
identified snooker balls. From figure 3 (B) it can be seen that, even though most of
them are just tiny points, the specular reflections on the surface of each ball are
particularly obvious. After the image is thresholded connected components analysis is
used to extract each specular reflection, the centroid of which is considered to be the
location of the ball. The white and yellow balls appear as particularly large objects in

224

the thresholded image. This is not a problem, however, as the centroid of these objects
still gives a good position for the ball.

(A)

 (B) (C)

Fig. 3. (A) The original image. (B) The results of thresholding. (C) The final set of detected balls
highlighted with green dots.

From figure 3 (B) it can be seen that there are some spurious results in the
thresholded image around the pockets of the table. These are the result of specular
reflections arising from the material used to coat the insides of the pockets. These
results were omitted from the final ball identification result (as shown in figure 3 (C))
by simply creating a rectangular region around each pocket in which specular
reflections were ignored.

After detecting the positions of each ball, ball colours must be determined. Again the
fact that the environment of a snooker table is closed is an advantage here as there are
only a small set of possible colours that can be present (white, red, yellow, green,
brown, blue, pink and black). The average RGB colour in the environs of each detected

225

ball is calculated and compared against a look-up table to determine the colour of each
ball. The values in the look-up table were determined through experimentation.

Creating A Virtual Snooker Table

OpenGL (www.opengl.org) was used to create the virtual model of a snooker table
used as part of this system. Figure 4 shows screenshots of an empty table and a table
containing snooker balls which were created using simple OpenGL primitives. This is
one aspect of the project which needs a considerable amount of further work as will be
discussed in section 4.

Fig. 4. The simple virtual snooker table used, shown empty and with balls.

4. Evaluation

In order to evaluate our system we performed a series of experiments in which
various situations were set up on a small demonstration snooker table and the resultant
virtual model produced by the system was compared against the real situation. This
comparison sought to answer the following three questions:

• Did the system recognise all of the balls?
• Did the system recognise any spurious non-existent balls?
• Did the system get all ball colours correct?

226

In this evaluation 13 situations were used. Figure 5 shows a selection of these
evaluation situations and the resultant 3D models. As can be seen, both situations
likely to arise in a typical frame of snooker, and more exotic situations were used.

In the 13 evaluation situations used a total of 181 balls appeared. In all of these
situations only one ball was not detected. The reason for this was that the missing ball
was placed too close to the pocket area. The system was designed to filter out balls
located close to the pockets as these were expected to be spurious reflections caused
by the material inside the pockets. The solution to this is to use a more realistic shape
around the pocket region rather than the rectangle used at present.

Over the course of the 13 situations evaluated two spurious extra balls were
detected. The cause of these was dirt lying on the surface of the table. It is believed
that by adding some more domain information to the detection system these mistakes
could be avoided – or possibly the table could be kept clean!

Colour detection performed reasonably well, only making a mistake in 3 out of 181
detection tasks. The performance of the colour detection system could very easily be
improved by reviewing the look-up table and making it more comprehensive.

227

Fig. 5. Examples of images of a snooker table and the resulting virtual representation.

5. Conclusion

This paper has described the design, development and evaluation of the Snooker
Extraction and 3D Builder (SE3DB) system, a system created to create a virtual 3D
representation of a snooker table from a single overhead image of the table. The aim of
the system is to render a 3-D model which can be used in televised snooker competition
broadcasting to allow audiences view a rendering of the table from any angle. In
developing the system, the key observation which made it possible was the realisation
that each ball has a strong specular reflection that is very easily identified. The system
has been evaluated and in most cases performs to an acceptable level of accuracy.

In the future we would hope to improve the system in the following ways:
• Create more realistic pocket regions so that balls placed next to pockets will

not be filtered out as noise.

228

• Improve the colour detection system by improving the quality of the
look-up table used to assign identified balls a colour.

• Create a much more visually appealing table model for the virtual 3D table
renderings.

• Perform evaluations on a genuine competition snooker table.
• Add a calibration step to the system so that the system will cope with a

camera positioned at any position and differences in specular reflection
positions for balls on different parts of the table.

References

[1] Cavallaro, R. “The FoxTrax Hockey Puck Tracking System”, IEEE CG&A. vol. 17, no. 2,

March/April, 1997

[2] Demiris, A. M.; Traka, M.; Reusens, E.; Walczak, K.; Garcia, C.; Klein, K.; Malerczyk, C.;

Kerbiriou, P.; Bouville, C.; Boyle, E.; Ioannidis, N., “Enhanced sports broadcasting by means

of augmented reality in MPEG-4”, In Proceedings of the International Conference on

Augmented Virtual Environments and Three-Dimensional Imaging, 2001.

[3] Gonzalez, R.C.; Woods, R. E .“Digital image processing”, Prentice Hall, 2002.

[4] Khudeev, R., “A new flood-fill algorithm for closed contour”, In Proceedings of the IEEE

International Siberian Conference on Control and Communications (SIBCON '05),

pp172–176, 2005.

[5] Owens, N.; Harris C.; Stennett, C. “Hawk-eye tennis system”, In Proceedings of the

International Conference on Visual Information Engineering: Ideas, Applications, Experience

Visual Information Engineering (VIE2003), pp182-185, 2003.

[6] Pingali, G.; Opalach, A.; Jean, Y., “Ball Tracking and Virtual Replay for Innovative Tennis

Broadcasts”, Pattern Recognition, In Proceedings. of the 15th International Conference on

Pattern Recognition, Volume 4, pp152-156, 2000.

[7] Sharifi, M.; Fathy, M.; Mahmoudi, M.T.; “A classified and comparative study of edge

detection algorithms”, In Proceedings of the International Conference on Information

Technology: Coding and Computing, pp117–120, 2002.

229

A Kelly Criterion Approach to Dynamic
Algorithm Portfolio Balancing

Alan Holland

Cork Constraint Computation Centre,
Department of Computer Science,
University College Cork, Ireland.

a.holland@4c.ucc.ie,
http://www.4c.ucc.ie/~aholland

Abstract. In this work we posit that the Kelly Criterion for maximis-
ing compound growth in investments can be used to optimise dynamic
rebalancing of algorithm portfolios. We use pari-mutuel gambling as a
metaphor for determining how much CPU resources should be invested
in various algorithms during execution. In this model we rely on informa-
tion gleaned from past performance of these algorithms on similar prob-
lems and also current performance on the problem instance. In gambling
parlance this lets us determine the edge and the odds for each algorithm
during a given time period. We derive a formula for optimal investment
of CPU resources so that the long-term expected search rate of a de-
terministic algorithm is maximised. Therefore, the main objective is to
accelerate a systematic search technique as much as possible by allo-
cating some of its CPU resources to non-deterministic search when the
expected future gains outweigh the short-term costs in terms of time.

1 Introduction

Improving solution techniques for hard computational problems presents one of
the most critical areas of research in computer science. Such problems pervade
a diverse range of fields that include the frequency channel assignment [11],
auction clearing [7, 18, 17], and determining the shortest route for a traveling
salesperson [5, 1, 13]. Solution times for such NP-complete problems may grow
exponentially in the size of the problem. This militates against solving large in-
stances in a timely manner. Many non-deterministic search algorithms involving
intelligent heuristics have been developed to address this difficulty so that good
quality solutions can usually be found quickly. However, guarantees of optimality
may not be achieved in such a context. Furthermore, randomisation can lead to
large variability in the performance of the search algorithm [4]. It often occurs
that there is a low correlation between the performance of different search tech-
niques. This offers the prospect of combining various search mechanisms so that
we form a portfolio of algorithms amongst which computing resources are shared
so that there is a balance between risk (the variability in search performance)
and reward (the expected search performance). Our work investigates dynamic

230

algorithm portfolio balancing during run time so that we can allocate comput-
ing resources to those algorithms that will induce the best short-term gain so
that the expected long-term performance over some fixed period of computation
can be maximised. The rationale for this is that there are dependencies between
the performance of algorithms. For example, if a local search algorithm finds a
near optimal solution, this can dramatically improve the search rate of a deter-
ministic search that makes use of the lower bound to backtrack from provably
non-optimal sub-trees.

This paper is organised as follows. Section 2 describes previous work in al-
gorithm portfolio design. Section 3 presents our approach and describes the
Kelly criterion for weighting bets in pari-mutuel gambling events. This is used
as a metaphor for our computing-resource allocation scheme that is described
therein. Sections 4 and 5 discuss necessary future work to further evaluate our
proposed framework and concluding remarks, respectively.

2 Related Work

Previously, Huberman et al. [9] developed a theory of algorithm portfolio design
that employed an economics-based approach in an effort to balance risk and
reward. Theirs was a general method for combining existing programs in a static
portfolio so that the combinations were unequivocally superior to any of the
individual algorithms. They employed Modern Portfolio Theory, as described by
Harry Markowitz [15] to model the efficient frontier. An efficient portfolio is one
that has the highest possible reward for a given level of risk, or the lowest risk
for a given reward. Figure 1 illustrates an example of an efficient frontier with a
bold red line.

Fig. 1. An efficient frontier describing the weighting of assets in a portfolio of financial
assets[19].

231

In all of these cases, the unpredictable variation in performance can be char-
acterized by a distribution describing the probability of obtaining each possi-
ble performance value. The mean or expected values of these distributions are
usually used as an overall measure of quality. They outline how expected per-
formance is not the only relevant measure of the quality of an algorithm. The
variance of a performance distribution also affects the quality of an algorithm
because it determines how likely it is that a particular runs performance will
deviate from the expected one. However, Markowitz’s Model does not provide
any indication of how to best exploit information gained during search. Dynamic
re-balancing can be more effective because additional information can be used
to good effect.

Previous work on dynamic algorithm selection includes Horvitz et al.’s algo-
rithm recommendation based on the performance of the candidate algorithms
during a predefined amount of time, called the observational horizon [8]. In any-
time algorithm monitoring [6], the dynamic performance profile of a planning
technique is updated according to its performance, in order to stop the planning
phase when further improvements in the actions planned are not worth the time
spent in evaluating them. Using a reinforcement learning approach, Lagoudakis
and Littman [12] showed how algorithm selection can be formulated as a Markov
Decision Process with sequences of recursive algorithms formed dynamically at
run-time. A variation of Q-learning is used to find an online algorithm selection
policy. Most prior work on algorithm portfolios focus on choice criteria for build-
ing the set of candidate solvers whose performance on specific instances exhibit
low correlation. The portfolio is then executed in parallel or used as a pool of
potential algorithms for selection [14].

3 Our Approach: Betting on Algorithm Performance

We argue that just as fund managers continually balance risk and expected
reward in a portfolio of financial assets, so too should an algorithm portfolio
respond to events and re-balance accordingly. The requirement for re-balancing
in algorithm portfolios is even greater because of the dependencies between the
outcomes of some search techniques. Pertinent events during a search process
include the discovery of tighter upper or lower bounds on the optimal solution.
The effectiveness of some algorithms is greatly enhanced by such discoveries
whilst the performance of some search heuristics may be unaffected. Therefore,
following the discovery of useful information it makes sense to increase the com-
putational resources assigned to algorithms that benefit from such information.
The key question remains as to how we should divide our computing resources
amongst the possible algorithms.

We draw an analogy between pari-mutuel gambling on a random event such
as a horse race and weighting ones’ computational resources on the probabilistic
performance of algorithms. The goal in pari-mutuel gambling is to judge the true
probabilities of different outcomes more accurately than the implied probabilities
of the odds provided by the bet-takers.

232

3.1 Pari-mutuel Betting System

Pari-mutuel betting is most commonly found in horse racing so we use this
setting in Example 1 to describe how it works.

Example 1 Consider a horse-racing event with four runners and thus four pos-
sible winners as outcomes. Each horse has received a certain amount of backing,
or money wagered:

– Horse 1 $130.00
– Horse 2 $270.00
– Horse 3 $50.00
– Horse 4 $450.00

Thus the total pool of money wagered on this horse race is $900.00. Once
the race has started, bets are stopped. Once the event is finished and, say, the
winning outcome is determined to be Horse 3 with $50.00 wagered. The payout is
calculated as follows. First the commission for the “bookie” or company accepting
bets is deducted from the pool. For example, given a commission rate of 15% the
remaining pool of money to be distributed among winning bettors is: $900−(0.15∗
$900) = $765. In this case, this money is now distributed amongst those who bet
on Horse 3: $765/$50 = $15.30 per $1.00 wagered. So Horse 3 is said to pay out
$15.30.

We draw an analogy between the likelihood of a horse winning a race and the
likelihood of an algorithm, ai, discovering valuable information in a time window
tj . We assume that these time windows are short so that the probability of such
is a discovery is directly proportional to the time invested in the algorithm. We
also assume that the search rate of deterministic algorithms depends on present
information, i.e. a tighter bound on the optimal solution will increase the search
rate.

3.2 The Kelly Criterion

The Kelly Criterion is a technique best known in gambling and finance for max-
imising the long-term growth rate of repeated plays of a given gamble that has
positive expected value. John L. Kelly first described the technique in a 1956
issue of the Bell System Technical Journal [10]. More precisely, the formula
specifies the fraction of an existing monetary fund (or bankroll) that should be
invested (or wagered) during each instance of a game. In addition to maximizing
the long-term growth rate, the formula allows for a zero risk of ruin in the-
ory. This is only true, however, when there is no minimum bet amount and the
currency is infinitely divisible.

The Kelly Criterion is sometimes referred to as Fortune’s Formula and has
been used to maximize returns from stock market investments [16]. If you are
betting on a football match or horse race in which you have some inside infor-
mation you would seek to maximize this advantage that involves more accurate

233

knowledge of the true probability and odds such that each bet has a positive
expectation. The Kelly Criterion is a formula for determining the optimal per-
centage of the bankroll that should be invested in this gamble, given the objective
is to maximise compound growth over many such events without exhausting the
bankroll.

For simple bets with two possible outcomes, one incurring a complete loss of
the entire wager and the other involving winning the bet amount multiplied by
the payoff odds, the Kelly Criterion specifies that the optimal fraction, f∗K of the
current bankroll to wager is:

f∗K =
p(v + 1)− 1

v
, (1)

where v is the odds received on the wager, p is the probability of winning and q
is the probability of losing (1 - p) in this case.

Example 2 Consider a gambler with a bankroll of $100. He receives odds of 5-
to-1 on a horse winning a race. Given that the gambler has received information
that is not publicly available, he estimates the likelihood of the horse’s success at
35%. The optimum fraction of his bankroll he should place on this gamble is

f∗ =
(0.35 ∗ 5)− 0.65

5
= 0.22.

So, given that his bankroll is $100, the gambler should invest $22 in this bet to
maximise expected compound growth in his wealth according to the Kelly Crite-
rion.

Note that the Kelly criterion allows one to bet on multiple different winners
if more than one horse has a positive edge over the listed odds.

3.3 Dynamic Algorithm Portfolio Design using the Kelly Criterion

We use the pari-mutuel gambling metaphor to decide how we distribute our re-
sources (computing time) amongst various non-deterministic algorithms whose
performance in the event (search instance) is probabilistic. Any CPU resources
not invested will instead be used by a deterministic search algorithm that seeks
an optimal solution. Firstly, we outline what aspects of algorithm performance
that are relevant for this metaphorical viewpoint. Axiom 1 makes the assump-
tion that if new information is supplied to a deterministic search algorithm,
backtracking is possible at an earlier stage in the search tree. The axiom sup-
poses that the search rate in terms of nodes per second improves in proportion
to the amount of information supplied.

Axiom 1 New information, I, provided by the results of a non-deterministic
search algorithm (e.g. a new constraint) can increase the search rate of a deter-
ministic search algorithm. We assume the increase in search rate, ∆S, is directly
proportional to the amount of information provided,

∆S ∝ I.

234

Axiom 2 assumes that we can distribute computing resources in as granu-
lar a manner as we wish. Modern CPU management facilities allow program
developers to allocate resources for processes in an arbitrary manner [2].

Axiom 2 Computing resources are infinitely divisible and can be shared among
an arbitrary number of search processes.

The currency in use is search rate (nodes per second) by time (seconds) whose
units are therefore nodes in the deterministic search tree. When we divert our
search effort to a non-deterministic algorithm we are doing so at the expense of
searching more nodes in a tree systematically. By diverting some CPU resources
to a non-deterministic search we slow the systematic search in the hope that
valuable information is attained that will accelerate the deterministic algorithm
in subsequent time periods. However, as the deterministic search rate increases
the investment in time becomes more expensive. For now we wish to know how
much time we should invest in a set of search techniques so that the long-term
compound search rate of a deterministic algorithm is maximised.

The Kelly Criterion specifies the fraction of an existing monetary fund that
should be invested or wagered during each instance of a game. For the case of dy-
namic algorithm portfolios we examine how CPU resources should be distributed
amongst a portfolio of algorithms at regular time intervals. In this portfolio we
assume that there is a set of non-deterministic algorithms and a single deter-
ministic algorithm whose performance can be improved via the outputs from the
other algorithms. The problem is to decide how much time to invest in utilising
these algorithms that alone will never provide a guarantee of optimality but can
enhance the performance of systematic search.

Let us first assume that the deterministic search rate is S nodes per second.
We assume that from prior analysis of similar problems that we can learn rele-
vant values that guide our investment decisions. In particular, during any time
period ti the execution of the various algorithms we need to inform our portfolio
rebalancing routine about the probabilities pik of each search algorithm finding
useful information for the deterministic search. In other words, for each time
period ti we require the probability of a “win” for each algorithm k. A win cor-
responds to finding new information that accelerates deterministic search, such
as an improved bound or a learned constraint.

In this work we assume this is a blackbox entity comprising a previously
learned prediction system such as a neural network or bayes net. Further expo-
sition of this entity is left for future work. This system will also need to inform
us of the likely significance of any additional information attained from a search
routine in that time period. The odds generated are a function of the value of the
information gained with respect to the value that could be gained from determin-
istic search. As it is repeatedly used in a dynamic manner during search it should
make use of instance specific performance up to that point. This facilitates diver-
sification of search so that the initial focus is on those non-deterministic search
techniques with the best expected performance and then gradually switches to
those that return useful information less often but whose performance exhibits
low correlation with previously used techniques. Thus, we can take advantage of

235

the heavy-tailed distribution behaviour of search performance as described by
Gomes et al. [3]. The advantage of our dynamic approach is that it can be done
in a reactive manner when necessary rather than committing to a computing
schedule in advance of run time.

We denote the expected improvement in the systematic search rate due to
information provided by the non-deterministic search routine k in time period
ti as vik. In betting terms, this is the odds as expressed v− to− 1. In algorithm
portfolio terms this is the expected gain relative to that of the deterministic
search. If the probability of algorithm k providing information is low and the
expected value of this information is not attractive, then it is likely that we will
not wish to invest any CPU resources in this routine. However, as time passes
and the results of other more promising non-deterministic algorithms prove to
be unsuccessful our blackbox advisory system may inform us that due to the low
correlation in performance it may become an increasingly attractive possibility.

Theorem 1. Given Axioms[1-2], the fraction of CPU resources during time
period ti diverted to non-deterministic search algorithm k in order to provide
information that maximally increases the compound growth in the deterministic
search rate is given by

f∗ik =
pikvik − 1
vik − 1

.

Proof: We take a bet (or investment of search effort), f ×S for time period ti,
with odds of v-to-1. This means that if the algorithm finds useful information in
that period, the fractional improvement in the deterministic search rate is linear
in the amount of time invested in that search should there be an improvement.
The bettor’s search rate is adjusted as follows.

S′ =
{

S × (1 + (v − 1)f) in the event of a successful search
S × (1− f) in the event of an unsuccessful search,

This differs slightly from the betting metaphor because the original wager is
not returned. The CPU resources expended on finding information relevant to
aid the deterministic search cannot be recovered. If the above process is repeated
n times we say there are w occasions when the bettor wins and, therefore, n−w
instances where losses occur. The new search rate is

S′ = S[(1 + (v − 1)f)w ∗ (1− f)n−w].

Hence, the increase in search rate per individual betting event is

g = n

√
S′

S
= n

√
(1 + (v − 1)f)w(1− f)n−w.

To maximise the expected growth in the search rate we choose a value of f so that
g(f) is maximised. This is also the same value for which ln |g(f)| is maximised.

ln |g(f)| = 1
n

[w ln |1 + (v − 1)f |+ (n− w) ln |1− f |]

236

We differentiate this equation and set to zero:

δ ln |g(f)|
δf

=
(v − 1)w

n(1 + (v − 1))f
− n− w

n− nf
= 0.

Solving for f∗ to maximise the growth in search rate, we find

(v − 1)wn− nf∗(v − 1)w = n2 − nw + n2(v − 1)f∗ − nw(v − 1)f∗,

f∗ =
wv − n

n(v − 1)
.

Letting w
n = p, the probability of a win event,

f∗ =
pv − 1
v − 1

. (2)

Equation 2 specifies the proportion of CPU resources during a particular
time period to dedicate to a particular non-deterministic search algorithm. So,
in general, for time period ti given inputs vik and pik from a blackbox system
the regarding expected performance for algorithm k the optimal Kelly CPU
allocation is

f∗ik =
pikvik − 1
vik − 1

, (3)

¥
We see from Equation 3 that it is very similar to that of the Kelly Criterion

(Equation 1). The key difference is that the odds returned are 1 less than that
in Kelly betting. This occurs because the original wager (investment of CPU
resources) is not returned following a successful search by a non-deterministic
algorithm.

4 Discussion and Future Work

The Kelly system in practice has advantages and disadvantages. In betting and
financial circles its usage guarantees that you will never lose all your bankroll
(by assuming an infinitely divisible currency and no minimum bet amounts).
However, it does not guarantee that you will not lose money. The chance of the
bankroll of dropping to 1

n of the original is 1
n . In terms of algorithm portfo-

lios, this means that there is considerable volatility in the attained search rates
even though on average they are maximimsed. Possible ways of reducing such
volatility is to bet “fractionally-Kelly”. The expected rate of compound growth
is reduced but volatility is also significantly reduced.

There are many possible directions for future work in terms of this nascent
research topic. Firstly, there is the key issue of designing the blackbox advisor
system to inform the Kelly portfolio rebalancing of algorithms’ probabilities
of discovering useful information and its likely value. When setting the odds

237

on returns, these must be benchmarked according to the expected returns for
the deterministic algorithm. In case the expected value of the information gain
for a non-deterministic algorithm is inferior, then Kelly betting stipulates that
no investment is made in that search routine. We plan to investigate different
approaches to designing such a system that will possibly incorporate machine
learning techniques such as neural networks or bayes nets to determine values
for pik and vik.

We also intend to conduct an experimental study of how such a system per-
forms in practice and compare performance with individual algorithms and static
portfolios of algorithms. This is an important step in validating the aforemen-
tioned theory.

5 Conclusion

Dynamic algorithm portfolio balancing is an important area of research in com-
puter science as it addresses one of the foremost research problems, that of
minimising the time required to solve NP-complete problems optimally. Our
objective is to maximise the compound growth in search rate for a deterministic
algorithm with the aid of non-deterministic search routines that provide infor-
mation that can accelerate this search. However, the computing resources must
be shared, thus leading to a competition.

We derived a formula for deciding on the maximally aggressive strategy for
increasing the rate of search for a deterministic algorithm via information gain
from non-deterministic algorithms. This approach is similar to that of maximally
aggressive betting that adopts to Kelly criterion. Our approach requires inputs
from historical data regarding the probabilistic performance of such search rou-
tines and the added value of the information at different time periods. Although
the approach is as yet untested and further work is required to empirically verify
its applicability, we believe that its novelty constitutes a significant contribution
to the important field of algorithm portfolio design and opens up many interest-
ing avenues for further study.

References

1. N.L. Biggs, E.K. LLoyd, and R.J. Wilson. Graph Theory 1736-1936. Clarendon
Press, 1976.

2. Walter Binder and Jarle Hulaas. A Portable CPU-Management Framework for
Java. IEEE Internet Computing, 08(5):74–83, 2004.

3. Carla P. Gomes, Bart Selman, Nuno Crato, and Henry Kautz. Heavy-Tailed Phe-
nomena in Satisfiability and Constraint Satisfaction Problems. Journal of Auto-
mated Reasoning, 24(1):67–100, 2000.

4. Carla P. Gomes, Bart Selman, and Henry Kautz. Boosting Combinatorial Search
through Randomization. In Proceedings of the Fifteenth National Conference on
Artificial Intelligence (AAAI’98), pages 431–437, Madison, Wisconsin, 1998.

5. G. Gutin and A. P. Punnen. The Traveling Salesman Problem and Its Variations.
Springer, 2006.

238

6. Eric A. Hansen and Shlomo Zilberstein. Monitoring and control of anytime algo-
rithms: a dynamic programming approach. Artif. Intell., 126(1-2):139–157, 2001.

7. Alan Holland. Risk Management for Combinatorial Auctions. PhD thesis, Univer-
sity College Cork, Ireland, July 2005.

8. Eric Horvitz, Yongshao Ruan, Carla P. Gomes, Henry A. Kautz, Bart Selman,
and David Maxwell Chickering. A bayesian approach to tackling hard computa-
tional problems. In UAI ’01: Proceedings of the 17th Conference in Uncertainty
in Artificial Intelligence, pages 235–244, San Francisco, CA, USA, 2001. Morgan
Kaufmann Publishers Inc.

9. Bernardo E. Huberman, Rajan M. Lukose, and Tadd Hogg. An Economics Ap-
proach to Hard Computational Problems. Science, 275:51–54, 1997.

10. John L. Kelly Jr. A new interpretation of information rate. Bell System Technical
Journal, 35:917–926, 1956.

11. I. Katzela and M. Naghshineh. Channel Assignment Schemes for Cellular Mobile
Telecommunications: A comprehensive survey. IEEE Personal Communications,
pages 10–31, 1996.

12. Michail G. Lagoudakis and Michael L. Littman. Algorithm selection using rein-
forcement learning. In ICML ’00: Proceedings of the Seventeenth International
Conference on Machine Learning, pages 511–518, San Francisco, CA, USA, 2000.
Morgan Kaufmann Publishers Inc.

13. E. L. Lawler, Jan Karel Lenstra, A. H. G. Rinnooy Khan, and D. B. Shmoys. The
Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. John
Wiley & Sons, 1985.

14. Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham. Learning the Empir-
ical Hardness of Optimization Problems: The Case of Combinatorial Auctions. In
CP ’02: Proceedings of the 8th International Conference on Principles and Practice
of Constraint Programming, pages 556–572, London, UK, 2002. Springer-Verlag.

15. Harry M. Markowitz. Portfolio selection. Journal of Finance, 7(1):77–91, 1952.
16. William Poundstone. Fortune’s Formula: The Untold Story of the Scientific Betting

System That Beat the Casinos and Wall Street. Hill and Wang, New York, 2005.
17. Michael H. Rothkopf, Aleksander Pekec̆, and Ronald M. Harstad. Computationally

Manageable Combinatorial Auctions. Management Science, 44(8):1131–1147, 1998.
18. Tuomas Sandholm. Algorithm for Optimal Winner Determination in Combinato-

rial Auctions. Artificial Intelligence, 135(1-2):1–54, 2002.
19. Paul Wilmott. Paul Wilmott Introduces Quantitative Finance. John Wiley & Sons,

West Sussex, England, 2001.

239

The Evolution of a Kernel-Based Distance Metric for
k-NN Regression

Tom Howley and Michael G. Madden

National University of Ireland, Galway,
thowley@vega.it.nuigalway.ie, michael.madden@nuigalway.ie

Abstract. k-Nearest Neighbours (k-NN) is a well understood and widely-used
approach to classification and regression problems. In many cases, such applica-
tions of k-NN employ the standard Euclidean distance metric for the determina-
tion of the set of nearest neighbours to a particular test data sample. Thispaper
investigates the use of a data-driven evolutionary approach, named KTree, for the
automatic construction of akernel-based distance metric as an alternative to Eu-
clidean distance. The key idea behind this approach is that a different distance
metric is generated for a particular data domain. The performance of k-NN with
the standard Euclidean distance measure is compared with that of k-NN based on
a kernel-based distance metric evolved by KTree. This comparison is based on
experiments on both synthetic and real-world datasets.

1 Introduction

k-Nearest Neighbours (k-NN) is a well understood techniquethat is widely used in
many classification and regression problems [1]. In many applications of k-NN, the Eu-
clidean distance is used to determine thek nearest neighbours to a particular test sample,
the resulting prediction depending directly on the particular set of neighbours chosen.
As noted by Yuet al. [2], the conventional k-NN can perform well with non-linear
problems, but loses its power with some complicated problems, especially when the
sample distribution is arbitrary. However, if an appropriate kernel is chosen to reshape
the distribution of samples, akernelisedk-NN algorithm may improve its performance.
This is an example a kernel-based learning method, in which akernel function is used
to transform the original data into a new feature space. The choice of kernel and as-
sociated kernel parameters is a key step in the application of any kernel method, such
as kernelised k-NN, to a problem. Previous research carriedout by the authors demon-
strated that an evolutionary approach, named KTree, was effective in the automatic
construction of kernels in Support Vector Machine (SVM) classification [3]. This paper
investigates the use of the KTree approach to evolve a kernel-based distance metric for
k-NN regression.

The paper begins in Section 2 with an overview of kernel methods, kernel functions
and the kernelised k-NN algorithm. Section 3 then describesthe KTree algorithm. Ex-
perimental results and analyses are presented in Section 4.Section 5 evaluates research
related to this work and Section 6 presents the main conclusions.

240

2 Kernel Methods, Kernel Functions & k-NN

In kernel methods for classification or regression, the kernel function is used to recode
the data into a new feature space that may reveal regularities in the data that were not
detectable in the original representation. This allows theuse of algorithms based on
linear functions in the new feature space; such linear methods are both well understood
and computationally efficient. With kernel functions, no explicit mapping of the data to
the new feature space is carried out – this is known as thekernel trick. A kernel function,
K(x, z), calculates the dot-product of two data samples,x andz, in the feature space,
φ, that the kernel defines:K(x, z) = 〈φ(x), φ(z)〉

2.1 Kernelised k-NN

A machine learning algorithm may be “kernelised” by first reformulating the algorithm
so that all data enters it in the form of dot-products of sample pairs. Each dot-product
calculation in the algorithm is then replaced by a kernel function, thus transforming
the algorithm into the feature space defined by that kernel. The classic example of a
kernel method is the SVM [4]. However, other machine learning algorithms can be
reformulated as a kernel method, one example being k-NN, a method that can be used
in both classification and regression settings. There have been many variants of the k-
NN algorithm, but the basic idea is as follows: the distance between the test sample
and each sample in the training set is calculated to determine thek samples that are
closest to the test sample; in classification, the majority class of these nearest samples
(or nearest single sample whenk = 1) is returned as the prediction for that test sample;
in regression, the (possibly weighted1) average value of the dependent variable for the
k nearest samples is returned as the prediction.

Thek nearest samples are often determined using the Euclidean distance,d = ||x−

z||. With kernel methods, the kernel’s feature space is known asa dot product space
and therefore has a naturally defined norm:||x|| = 〈x, x〉. Any norm defines a metricd
via [5]:

d(x, z) = ||x − z||

=
√

〈x − z, x − z〉

=
√

〈x, x〉 + 〈z, z〉 − 2〈x, z〉

(1)

A kernel distance metric is therefore defined as:

dK(x, z) =
√

K(x, x) + K(z, z) − 2K(x, z) (2)

The above equation can be used to derive distance measures from any kernel, which
can substitute the Euclidean distance measure in a k-NN algorithm2.

1 The k-NN implementation used for the experiments reported in this paper does not employ a
distance-weighting mechanism.

2 In this work, a distinction is made between the Euclidean distance measure and kernel-based
distance measures. We use the term ‘Euclidean distance’ to refer to the conventional k-NN dis-
tance measure defined in the original input space and we use the term ‘kernel-based distance’
to refer to the Euclidean distance as defined in the kernel transformed space.

241

2.2 Kernel Function

As with any kernel method, a key step in the application of kernel k-NN is kernel selec-
tion. With SVMs, for example, typical choices for kernels are the Linear, Polynomial,
RBF and Sigmoid kernels. One alternative to using these standard kernels is to employ
a kernel that has been customised for a particular application domain, e.g. the string ker-
nel of Lodhiet al. [6] and kernels for protein classification [7]. Whether building com-
plex kernels from simpler kernels, or designing custom kernels, there are conditions that
the kernel must satisfy before it can be said to correspond tosome feature space. Firstly,
the kernel must be symmetric, i.e.K(x, z) = 〈φ(x), φ(z)〉 = 〈φ(z), φ(x)〉 = K(z, x).
Typically, kernels are also required to satisfy Mercer’s theorem, which states that the
matrix K = (K(xi, xj))

n
i,j=1

must be positive semi-definite, i.e. it has no negative
eigenvalues [4].

3 KTree

As previously highlighted, a critical stage in the use of kernel-based algorithms is kernel
selection, as this can be shown to correspond to the encodingof prior knowledge about
the data [8].

Evolving KTree Kernel Population

Final Kernel
Method Model

After Convergence:Select
Fittest Kernel

KTree
Kernel

Evaluate Kernel Method on
Training Data

KTree
Kernel

K(x,z) =

Training Dataset

Build Kernel
Method model

with KTree
Kernel

Set
Fitness

As the KM model is being built, the kernel is
calculated for different pairs of training samples

1,1.7,62,99,9..., -1

Sample X
10,4.5,3,0..., -1

Sample Z
19,2.2,7,8..., +1

17,7.5,3,1.2,0..., +1

57,7.9,6,6.2,3..., -1

5,70.9,11,32,3..., +1

4,14.7,22,12,9..., +1

KTree
Kernel

KTree
Kernel

KTree
Kernel

KTree
Kernel

Crossover/
Mutation

KTree
Kernel

KTree
Kernel

1. Create a random population of
KTree kernels.
2. Evaluate each kernel:
incorporate a kernel method
method and test on training data.
3. Select fitter KTree kernels as
parents for recombination.
4. Randomly mutate offspring.
5. Replace old population with
offspring.
6. Repeat Steps 2 to 5 until
convergence.
7. Build final kernel method model
using the fittest KTree kernel tree
found.

Ktree: Main Steps

Fig. 1. KTree algorithm

Kernel method users can select from one of the standard kernels, construct new ker-
nels using simpler kernels as building blocks, e.g. the kernel, K(x, z) = K1(x, z) +
K2(x, z), or customise a kernel for a particular problem. Ideally, a kernel is selected
or customised based on prior knowledge of the problem domain, but it is not always

242

possible to make the right of choice of kernela priori. KTree addresses this prob-
lem by using the evolutionary technique of Genetic Programming (GP) to discover a
suitable kernel for a particular problem. KTree has been previously demonstrated with
SVM classifiers [3], but this approach can be used with other kernelised pattern anal-
ysis algorithms. The aim of KTree is the discovery of new kernels that best represent
the underlying data from a particular problem domain; in thecontext of kernel k-NN,
KTree allows for the discovery of a new distance metric for a particular data domain.
With KTree, a tree structure, known as aKTree kernel(see Figure 2) is used to represent
a kernel function. The objective of KTree is to find a KTree kernel that best represents
the data. An overview of the KTree algorithm is shown in in Figure 1.

3.1 KTree Kernel Representation

The KTree kernel used to represent a kernel function must take two data samples as
inputs and provide a scalar value as output. An example of a KTree kernel is shown in
Figure 2.

x[….]

x[….]

z[….]

-
+

<,>

fv(x,z)

x
58.35

22.15

27.01
x

/ exp K(x,z)

Vector Tree Scalar Tree

fv(x,z)

K(x,z) = exp((<(x+x)-z, (z+z)-x>)*58.35)/(22.15*27.01)

z[….]

z[….]

x[….]

-
+

R
e
fl

e
c

te
d

 v
e

rs
io

n
s

 o
f

s
a
m

e
 t

re
e

Fig. 2. Example KTree Kernel

The diagram shows that the KTree kernel is split into two parts, the vector and the
scalar tree. The inputs to the vector tree are the two samples, x andz, for which the
kernel is being evaluated. These inputs are passed through vector operators, such as
addor subtract, which in turn pass vectors onto the next node. To ensure thatthe output
of this tree is symmetric, the entire vector tree is evaluated twice, swapping the inputsx
andz for the second evaluation. The final output of the vector tree, fv(x, z), is the dot
product of these two evaluations. This output becomes an input, along with randomly
generated constant terminals, for the scalar tree. This design was chosen to allow for
the use of complex mathematical operators, such asexp andtanh, in the scalar tree.
Applying these operators directly to the vector inputs could result in overly complex
and unusable kernels. A second motivation for this design isthat it is also capable of
representing the standard kernels used in SVMs, e.g. the RBFkernel and Polynomial

243

kernel. Although symmetry is satisfied, this kernel design is not guaranteed to produce
Mercer kernels. However, non-Mercer kernels are filtered out (see Section 3.2).

A specification of the KTree kernel is given in Table 1, showing the input terminals
and operators used for the vector and scalar tree parts of a KTree kernel. The vector
tree is a GP tree, where the input terminal set comprises the two vector inputs to the
kernel function,x andz. The operators of the vector tree take two vectors as an input
and return a single vector as output. A vector operator is calculated as follows:

[x1, x2, . . . , xm] op [z1, z2, . . . , zm] = [x1 op z1, x2 op z2, . . . , xm op zm] (3)

whereop is one of the operators listed for the vector tree in Table 1 and m is the length
of the vector inputs. For example, an addition in the vector tree is calculated as follows:

[x1, x2, . . . , xm] + [z1, z2, . . . , zm] = [x1 + z1, x2 + z2, . . . , xm + zm] (4)

The scalar tree of a KTree kernel is a GP tree, where the input terminal set comprises
the output of the vector tree, denoted asfv(x, z), and a set of randomly generated
constants. Note thatfv(x, z) may occur multiple times in a scalar tree. The set of scalar
operators (unary and binary) used in the scalar tree is listed in Table 1. Note that while
the use of constants in the scalar tree of the kernel influences the decision boundary of
an SVM classifier, it has no bearing on the ordering of neighbours for k-NN without
distance-weighting.

Table 1. KTree kernel specification

Vector Tree

Input Terminals:x[..], z[..]
Operators: add, subtract, multiply

Scalar Tree

Input Terminals:const, fv(x, z)
Operators: add, subtract, multiply, divide,

exp, power, tanh

As shown in Figure 1, the first step of the KTree algorithm is tocreate a random
population of kernels. For this initial population, each KTree kernel (both vector and
scalar parts) is generated by randomly creating a root node and by growing a tree from
this node until either no more leaves can be expanded (i.e. all leaves are terminals) or
until a presetinitial maximum depth has been reached (2 for the experiments reported
here). The evolutionary process shown in Figure 1 involves the application of mutation
and crossover operators on selected KTree kernels. For mutation, a point in either the
vector or scalar tree is randomly chosen and the sub-tree at that point is replaced with
a newly generated tree (vector or scalar, depending on wheremutation occurred). Mu-
tation of individual nodes (e.g. constant terminals) is notemployed. Crossover between
two KTree kernels begins with the selection of a random pointfrom either the vector or
scalar part of the first KTree kernel. The location of the crossover point on the second

244

KTree kernel is constrained so that crossover does not occurbetween the scalar part of
one KTree kernel and the vector part of another. Rank-based selection was employed
for the selection of the candidates for crossover. To prevent the proliferation of massive
tree structures, pruning is carried out on KTree kernels after mutation, maintaining a
maximum depth of 12 (for either the vector or scalar part). A population of 500 KTree
kernels was used for all experiments.

3.2 Fitness Function

As with any evolutionary algorithm, a key element of KTree isthe choice of fitness
function. In previous work on the use of KTree for SVM classification [3], the authors
investigated a number of fitness functions and found that thebest results were achieved
with a fitness function based on an internal cross-validation (3-fold) coupled with a
tiebreaker fitness that favours smaller KTree kernels. Thisinvestigation also found that
the stability of KTree was improved by the use of aMercer filter. Furthermore, a non-
Mercer kernel does not define a distance metric as described in Section 2.1. The Mercer
filter estimates the Mercer condition of a kernel by calculating the eigenvalues of the
kernel matrix over the training data; if any negative eigenvalues are discovered, the
kernel is marked as non-Mercer and is assigned the worst possible fitness, e.g. a cross-
validation error of 100%. To reduce the computational cost when dealing with larger
datasets, the kernel matrix is based on only a subset of the training data; this subset is
randomly selected and the same subset is used in each kernel evaluation. For the exper-
iments reported here, the kernel matrix was limited to a maximum size of 250x250.

4 Experimental Results

The goal of the experiments presented here is to determine ifKTree can evolve kernel-
based distance metrics that improve on the standard Euclidean distance when embedded
in a k-NN regression algorithm. The next two sections describe experiments based on
synthetic and real-world data and discuss the results.

4.1 Synthetic Dataset

A synthetic dataset, namedFeatureSpace, was devised to comprise two predictor at-
tributes and one dependent attribute, the value of which is to be predicted using k-NN re-
gression.FeatureSpaceis based on a specified feature mapping from a two-dimensional
to a three-dimensional space. To create this dataset, 1000 two-dimensional points were
randomly generated. The following feature space mapping was then applied to each
point,xi:

φ1(xi) = (xi1 − xi2)
2

φ2(xi) = (xi1 + xi2 + 1)3

φ3(xi) = xi1xi2

(5)

wherexi1 is the value of the first attribute of samplexi, xi2 is the value of the
second attribute of samplexi, andφp(xi) is the value of the mapping ofxi along the

245

p-th axis in the new feature space. To generate the value of thedependent variable for
each sample,yi, for each sample, the following simple function is used:

yi = f(xi) = φ1(xi) + φ2(xi) + φ3(xi) (6)

Table 2 compares the performance of k-NN on the FeatureSpacedataset with differ-
ent distance metrics. This experiment uses 200 samples of the FeatureSpace dataset for
training and the remainder of the dataset as the test set. Table 2 shows the root relative
squared error of prediction [9] achieved by k-NN with each distance metric on the test
set. This table also shows the fitness of the final kernel selected by KTree and compares
this with the ‘fitness’ of the two other distance metrics; thefitness of the Euclidean and
FeatureSpace kernel distance is calculated using the same evaluation function as used
by KTree, i.e. the average root relative squared error over a3-fold cross-validation run
on the training subset3. The results indicate that 3-NN with a distance metric basedon
the evolved KTree kernel improves on the performance of 3-NNwith the standard Eu-
clidean distance, both in terms of test error and fitness on the training data. Note that
the higher errors over the training set may be due to the smaller training set used within
the 3-fold fitness evaluation than that used for the test set.

Table 2. Results of 3-NN with different distance metrics on the FeatureSpace dataset. Both fitness
and error values are the root relative squared error of prediction achieved by k-NN using each
distance metric. Fitness is the 3-Fold CV root relative squared error over the training subset.

Distance Metric Training Set Fitness Test Set
(3-Fold CV Error) Error

Euclidean 17.61% 14.51%
KTree 15.56% 11.15%
FeatureSpace Kernel 11.81% 6.54%

The final row of Table 2 shows the fitness and test error for 3-NNbased on the Fea-
tureSpace kernel. This kernel explicitly maps its two inputs according to the mapping
defined in Equation 5 to generate two vectors of length 3, and then returns the dot-
product of these two vectors. Using 3-NN with the FeatureSpace kernel is equivalent
to operating 3-NN in the original three-dimensional feature space, in which the target
function was defined. This result represents the best resultthat could be achieved with
3-NN. Note that the FeatureSpace kernel does not achieve 0% error as the training set
does not provide 100% coverage of the target function; this was confirmed by calcu-
lation of the minimum theoretical error for 1-NN with the same training and test sets,
which was found to be 5.16%. The results show that the performance of KTree on the
test set is roughly half-way between that of the Euclidean distance and the FeatureSpace
kernel distance. Despite the good performance of KTree relative to the benchmark of
the Euclidean distance, the FeatureSpace kernel distance result shows that better ker-
nels could possibly be found, e.g. by increasing populationsize or by increasing the
maximum number of generations allowed.

3 Since fitness is computed using an error measure, lower fitness values are better.

246

4.2 Real-world Datasets

To extend the results of KTree with k-NN on the synthetic dataset, a similar compar-
ison of KTree with Euclidean distance was carried out, usinga number of real-world
regression datasets [10]. Table 3 shows the average error from a single 10-fold cross-
validation run over 10 regression datasets; due to the relatively large size of the Abalone
dataset (4177 instances) and the resultant significant increase in computation that would
be required for KTree, a single subset of 250 instances was used for the training phase
with the remainder being used as the test set. This table shows the results for 3-NN
based on Euclidean distance and the results for 3-NN based ona KTree-evolved kernel
distance. The lowest numerical test error on each dataset ishighlighted in bold.

Table 3. k-NN regression 10-fold CV error rates (RMSEP): KTree-evolved distance vs. Euclidean
distance. *The errors reported for this dataset are based on a single train/test split. Table also
includes the number of samples and attributes of each dataset.

No. Samples No. Attributes Average Test Error
Euclidean KTree

Auto-MPG 398 8 2.86±0.47 2.58±0.51
CPU 209 7 0.04±0.04 0.03±0.03
Boston-Nox 506 14 0.04±0.01 0.036±0.01
Boston-Price 506 14 4.18±1.14 3.45±1.11
Octane 82 5 0.61±0.16 0.62±0.24
Deathrate 60 16 46.79±14.89 46.63±10.49
Bodyfat 252 15 2.87±0.36 2.75±0.45
Houseprice 117 7 212.97±62.89210.31±70.73
Tecator 240 101 2.47±0.48 2.35±0.38
NO2 500 7 0.56±0.08 0.55±0.08
Abalone* 4177 11 2.69 2.60

For these experiments, the error is the root mean squared error of prediction (RM-
SEP). 3-NN using KTree achieves the lowest numerical test error on all datasets, except
for the Octane dataset. A pairwise comparison over all datasets based on a Wilcoxon
Signed Rank test [11] at a confidence level of 5% shows that 3-NN based on KTree
outperforms the standard 3-NN. This demonstrates the ability of KTree to derive new
distance metrics for a given data domain. In a similar analysis to that carried out for the
synthetic dataset, the average fitness (based on 3-fold cross-validation RMSEP) of the
Euclidean distance and KTree-evolved kernel distance was compared; the results are
shown in Table 4. As was previously found with KTree for SVM classification, KTree
is the clear winner in terms of the fitness of the distance metric it derives; this is also
confirmed by the Wilcoxon Signed Rank test at a confidence level of 5%.

Overall, the results on both synthetic and real datasets demonstrate the effectiveness
of the data-driven evolutionary approach of KTree when applied to a k-NN regression
task. KTree is capable of evolving a kernel-based distance metric that is suited to a
particular dataset. Distance metrics evolved by KTree could be used in library search
applications, where the goal is to search for a list of the closest matches to a test sample.

247

Table 4. Average fitness (based on 3-fold CV RMSEP): KTree-evolved distance vs. Euclidean
distance. *The fitness values reported for this dataset are based on a single train/test split.

Average Fitness on Training Data Average Fitness on Training Data
Euclidean KTree Euclidean KTree

Auto-MPG 3.07±0.06 2.57±0.07 Bodyfat 3.44±0.12 2.99±0.19
CPU 0.06±0.01 0.04±0.00 Houseprice 221.38±13.42 176.35±11.23
Boston-Nox 0.05±0.00 0.04±0.00 Tecator 2.57±0.1 2.44±0.1
Boston-Price 5.12±0.21 4.14±0.44 NO2 0.57±0.01 0.55±0.01
Octane 0.71±0.04 0.67±0.043 Abalone* 2.48 2.27
Deathrate 48.82±3.27 41.07±2.02

5 Related Research

Some previous work on the use of evolutionary algorithms with kernel-based learning
has focussed on the optimisation of a single kernel, e.g. theRBF kernel for SVM clas-
sification [12]. In Lessmannet al. [13], a GA is used to optimise a set of parameters for
five kernel types and the SVMC parameter, and is also used to determine how the result
of each kernel is combined (addition or multiplication) to give the final kernel output.
This approach is guaranteed to produce Mercer kernels, provided the Sigmoid kernel
component setting does not break Mercer’s condition. In comparison with KTree, how-
ever, the approach of Lessmannet al. is significantly restricted in the range of kernels
that it can generate.

In more recent research, Gagneet al. [14] have proposed an approach for evolving
kernels for a k-NN classifier. This approach is called the Evolutionary Kernel Machine
(EKM). Although EKM bears some similarity to KTree in its useof GP to evolve a
kernel, it differs considerably in a number of areas, including the kernel function repre-
sentation and fitness measure used to evaluate candidate kernels. Their approach does
not guard against non-Mercer kernels and the fitness function is based on k-NN specif-
ically, i.e. the same fitness could not be used with SVMs, as isthe case with the fitness
function of KTree. Furthermore, EKM uses a co-evolutionaryframework to evolve two
subsets of the training dataset, afitnessand aprototypeset, which are used in the fitness
measure (see Gagneet al. for more details on this fitness measure). The authors do note
that this competitive co-evolution can be problematic in that there is a danger of the
fitness subset capturing noisy examples, thus resulting in apoor final model.

6 Conclusions

This paper has demonstrated the use of KTree to evolve a kernel-based distance metric
for use in a k-NN regression algorithm. Experiments on both synthetic and real-world
data showed that KTree is capable of evolving a distance metric that can improve on
the widely used Euclidean distance. This represents a novelapproach that facilitates
the automatic discovery of a custom distance metric for a particular data domain. In
building on previous work with KTree, these results also demonstrate that KTree can

248

be applied to different kernel methods and to different machine learning problems, i.e.
classification and regression. One of the great advantages in the use of kernel methods
is that they are easily adapted to work with different types of data; provided a kernel
function can be defined for comparing two data objects, any kernel method can be
applied to this data and a kernel-based distance metric may also be derived. Future
work could investigate the use of KTree in structured data domains, such as the protein
structure classification problems tackled by Wang & Scott [7]. The extension of this
KTree research to tackle such problems may require the definition of new operators for
the KTree kernel, which would allow it to manipulate structured data objects.

Acknowledgements

This first author’s research has been funded by Enterprise Ireland’s Basic Research
Grant Programme. The second author acknowledges the support of a Marie Curie Trans-
fer of Knowledge Fellowship of the European Communitys Sixth Framework Pro-
gramme, Contract MTKD-CT-2005-029611. The authors are also grateful to the High
Performance Computing Group at NUI Galway, funded under PRTLI I and III, for pro-
viding access to HPC facilities.

References

1. Karakoc, E., Cherkasov, A., Cenk Sahinalp, S.: Distance basedalgorithms for small
biomolecule classification and structural similarity search.22 (2006)

2. Yu, K., Ji, L., Zhang, X.: Kernel Nearest-Neighbour Algorithm. Neural Processing Letters
15 (2002) 147–156

3. Howley, T., Madden, M.G.: An evolutionary approach to automatic kernel construction. In:
Proceedings of the International Conference on Artificial Neural Networks (ICANN). (2006)

4. Cristianini, N., Shawe-Taylor, J.S.: An Introduction to Support Vector Machines. (2000)
5. Scholkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization,

Optimization, and Beyond. MIT Press (2002)
6. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classification

using string kernels. Journal of Machine Learning Research2 (2002) 419–444
7. Wang, C., Scott, S.D.: New Kernels for Protein Structural Motif Discovery and Function

Classification. In: Proc. of the 22nd International Conference on Machine Learning. (2005)
8. Cristianini, N., Shawe-Taylor, J.: Kernel Methods for Pattern Analysis. (2004)
9. Witten, I., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques with

Java Implementations. Morgan Kaufmann Publishers (2000)
10. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of machine learning

databases (1998)
11. Demsar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Ma-

chine Learning Research7 (2006) 1–30
12. Friedrichs, F., Igel, C.: Evolutionary Tuning of Multiple SVM Parameters. In: Proc. of the

12th European Symposium on Artificial Neural Network. (2004) 519–524
13. Lessmann, S., Stahlbock, R., Crone, S.: Genetically constructedkernels for support vector

machines. In: Proc. of General Operations Research (GOR). (2005)
14. Gagne, C., Schoenauer, M., Sebag, M., Tomassini, M.: GeneticProgramming for Kernel-

based Learning with Co-evolving Subsets Selection. In: Parallel ProblemSolving from Na-
ture (PPSN IX). (2006)

249

A Study of Syntactic Information Retrieval

Chang Liu, Hui Wang, Sally Mcclean, Jun Liu, Shengli Wu

School of Computing and Mathematics, Faculty of Engineering, University of Ulster,
Jordanstown, Shore Road, Newtownabbey, Northern Ireland, BT37 0QB
changliuuk@yahoo.co.uk, {h.wang, si.mcclean, j.liu, s.wu1}@ulster.ac.uk

Abstract. Natural language processing (NLP) techniques are believed to have
the potential to aid information retrieval (IR) in terms of retrieval accuracy. In
this paper we report a proof of concept study on a new approach to NLP-based
IR that we proposed. Documents and queries are represented as syntactic parse
trees, which are generated by a natural language parser. Based on this tree
structured representation of documents and queries, the matching between a
document and a query is executed on their tree representations, with tree
comparison as the key operation. A classification experiment is designed to test
if this approach is feasible. Experimental results show that this approach is
promising and has the potential to significantly outperform the standard bag-of-
word approach to information retrieval.

1 Introduction

Nowadays, natural language processing (NLP) techniques are increasingly applied to
Information Retrieval (IR) to supplement the existing IR techniques. Most
contributions of NLP to IR mainly concentrate on document representation and
compound term matching strategies [4]. Researchers have noted that the simple term-
based vector representation of document content is usually inadequate for accurate
discrimination. For example, the Boolean IR model and the vector space model,
usually called "bag-of-words" models of IR, can’t tell the difference between the
sentences “Mary is faster than John” and “John is faster than Mary”. “Bag of words”
IR models represent documents by a structure based only on a set of words and do not
allow modeling of relationships between subsets of words. However, though much
research has been done in order to represent documents by more accurate
linguistically motivated content indicators [4], the matching strategy over documents
and queries still cannot go beyond traditional statistical techniques that measure term
co-occurrence characteristics and proximity in analyzing text structure.

In this paper, a new IR strategy is proposed with NLP techniques involved at the
syntactic level. Within this proposed IR strategy, documents and the query are
represented on the basis of a syntactic data structure of the natural language text –
syntactic parse tree. Once this tree structured representation of documents and query
is built, the matching between a document and a query is executed directly on the
graph representation level, with the method of comparing trees as the key operation. It

250

mailto:changliuuk@yahoo.co.uk

is expected that the matching between documents and query over their tree structured
representation will lead to reasonable improvement of the retrieval performance.

The organization of this paper is as follows: in the next section, we will give an
overview of IR models as well as the NLP techniques used in IR which are relevant to
our approach. In section 3, our syntactic IR approach is presented. In section 4, we
describe a data classification experiment that is based on the matching of document
titles extracted from the TREC dataset is designed and implemented to evaluate
whether our approach (with different tree comparison methods) will outperform the
traditional vector space IR model.

2 Background

2.1 Information Retrieval Model

Fundamentally, various IR systems are built upon on different IR models. The three
classic models of IR are Boolean, vector space, and probabilistic IR models [3].
Variations of these models have also been developed over the years. Normally, IR
models can be characterized into several categories [3]: document representation;
query representation; a framework for modelling document and query representations
and their relationships; and a ranking function which associates a real number to
every document and query pairs [3]. This number is the measure of relevance and is
determined by an incorporated matching strategy. Based on this number, the
ordering/ranking among the documents with regard to the query can be defined.

The Boolean IR model is still the dominant model in the IR field. In the Boolean
model, documents and queries are represented by a set of terms, which is the most
basic and still remains the major way for representing documents. Strictly speaking,
the Boolean model is not a “ranked retrieval model” such as the vector space model
[1]. The Boolean model performs set operations over the documents and query
representation (terms) and uses term co-occurrence characters to determine the
retrieved list. On the other hand, the vector space IR model is an IR model that has a
framework for ranking documents based on a similarity measure (partial matching)
over documents and query. Once vectors have been computed for each document and
query, the next step is to compute a numeric “similarity” between each pair. After
sorting the resulting similarity scores, we can get the retrieved documents in a ranking
list.

2.2 Natural Language Processing in Information Retrieval

The Natural Language Processing (NLP) approach to IR embraces all methods based
on knowledge of the syntax and/or semantics of the natural language in which
document text is written [2]. Such approaches attempt to address the structure and
meaning of textual documents directly, instead of merely using statistical measures as

251

surrogates [2]. Most contributions of NLP to IR mainly concentrate on document
representation and compound term matching strategies [4]. In response to the
weakness of the bag of words model, much research work has been done to extract
and make use of the syntactic structure information for representing documents and
queries. The syntactic phrase is the logical representation view that straightforwardly
comes into people’s mind. The term syntactic phrase refers to “any set of words that
satisfy certain syntactic relations or constitutes specified syntactic structures make up
a phrase” [5]. As syntactic phrases capture actual linguistic relations between words
rather than the single words (also better than the simple juxtaposition of words), they
are regarded as a tool for increasing retrieval precision. For example, consider the
query “river pollution”. An IR system using natural language understanding would
not retrieve a document saying “near to the river, air pollution is a major problem”
with regard to the query that phrase indexed by “river pollution”; however, this
document would be retrieved if the query is only indexed by single words “river” and
“pollution”, even though the document is obviously not about “river pollution”.
Syntactic phrases can be extracted from natural language sentences by NLP tools such
as the constituent parser [11]. This parser can break a sentence into smaller syntactic
phrases with respect to a given formal grammar, such as Noun Phrase, Verb Phrase,
etc. The Noun Phrase is the syntactic phrase that is most used for phrase indexing in
IR experiments [6][5][7].

2.3 Syntactic Parse Tree

Another data structure which captures the syntactic structure of the tokens in the
textual sentence is the parse tree. There are two ways to describe the syntactic
structure of natural language sentences in the form of “tree”: phrase structure (PS-)
trees and dependency (D-) trees [8]. A phrase structure (PS-) tree is generated by
breaking up the sentence into constituents (phrases) according to a given formal
grammar. Actually, the Noun Phrase or Verb Phrase are the constituents and are
structured as the part of the phrase structure tree before they are extracted and used in
the phrase based document representation. Figure 1 includes an example of the phrase
structure (PS-) tree of the sentence “This is an example of dependency grammar”. The
dependency (D-) tree is an alternative way to describe syntactic structure of sentences
in terms of dependencies between words. If two words are connected by a
dependency relation, the dependent is generally the modifier, object, or complement;
the head usually plays the larger role in determining the behaviour of the pair. A
dependency tree is a set of links connecting heads to dependents which can easily
form a tree. An example of the dependency tree of the same sentence “This is an
example of dependency grammar” [9] is shown in Figure 1.

Mittendorfer and Winiworter [10] presented an algorithm for information retrieval
that makes use of the syntactic structure of a query by exploiting its analyzed phrase
structure trees. In their experiment, the query was split into sentences and parsed by
the Link Grammar Parser (LGP) [11]. For each sentence, the LGP provides a set of
possible phrase structure trees, which are combined into a parse lattice to be a graph

252

representation of the query. From this representation, an IR structure component
computes a measure of connectedness c for each pair of words in the query. This
quantity measures how strongly two words are bound together by the syntactic
structure of the query and is taken as part of the formula for matching one document
and the query.

 Phrase Structure (PS-) Tree Dependency Tree

Fig. 1. Two ways of describing the syntactic structure of sentence “This is an example of
dependency grammar”

3. Syntactic Information Retrieval – our approach

Within the trend of applying Natural Language Processing (NLP) techniques in
Information Retrieval (IR), we aim to explore a different IR strategy in which the
document and query representation are built on the basis of the syntactic parse trees
and the matching function measures the similarity between document and query on
their graph representation level (Figure 2). As we can see in the project [10], the
query is represented as a combination of phrase structure trees parsed by Link
Grammar Parser (LGP) [11]. In our project, instead of only parsing the query, we
parse both sides of the query and documents by a selected parser (e.g. Minipar [12])
and create logical graph representations for both the document and query by exploring
and making use of their analyzed syntactic parse trees. A framework will be built to
transform the parse trees into an appropriate format for representing the documents
and query as well as the later matching function. The format is a structured tree at
this research stage. Given the parse tree based document and query representation, we
propose a new matching strategy which measures the similarity between a document
and a query directly on their graph (structured tree) level. A method of measuring the
similarity between trees will be the major determinant in the overall matching
strategy. For each document, a similarity score can be calculated from this matching

253

strategy and the retrieved documents will be ranked in the decreasing order of the
similarity scores. With this different IR strategy based on parse trees and method for
comparing trees, we expect it can improve the overall retrieval performance.

A set of parse trees

Graph representation

Documents

Suitable indexing techniques

Graph representation

Parsing (Minipar)

A set of parse trees

Query

Matching function
Key operation: tree

comparison method

Retrieved documents (a ranked list)

Fig. 2. Proposed syntactic information retrieval strategy

3.1 Documents and Query Representation Based on Parse Tree

In order to represent the documents and query on the basis of parse trees, the first task
is to parse the natural language text from documents and query and then get a set of
original parse trees. In our work, we plan to produce the dependency tree from the
natural language documents and query text because we think dependency tree, which
has fewer nodes than it peer phrase structure tree, is more clear and appropriate in the
time consuming task such as IR. Minipar [12] is selected as the parser to perform this
parsing task because the output of Minipar is a dependency tree. Minipar is a
principle-based, broad-coverage parser for English [13] [12] and is available on
Internet. It transforms a sentence as a network of nodes and links, where the nodes
represent grammatical categories and the links represent types of syntactic
dependency relationships. Minipar parses newspaper text at about 300 words per
second on a Pentium-II 300 with 128MB memory [12]. An evaluation with the
SUSANNE corpus shows that Minipar achieves about 88% precision and 80% recall
with respect to dependency relationships [12].

254

As Minipar parse natural language text on the unit of sentence, a set of “raw” parse
trees can be output after parsing a whole document text. The next step is to construct
data structure of trees from the raw output of Minipar and then apply necessary
techniques to these trees. The trees need to be modified into an appropriate graph
representation format of the documents and queries for later matching on the graph
level. This process is similar to the traditional document indexing procedure. A
framework will be built for performing this task and it is one of the key tasks in this
work.

3.2 Matching between the parse tree based documents and queries

Given a graph representation of the documents and queries on the basis of
dependency trees, an IR matching strategy is proposed to measure the similarity
between the documents and queries directly on their graph representations. The main
operation in this matching strategy is the method of measuring similarity between
trees. Two candidate methods have been selected so far and evaluated in the
experiment. One is the Tree Edit Distance (TED) algorithm [14] and another is a
recent algorithm, the All Common Subtrees (ACT) algorithm [18].

The TED is well known algorithm for comparing trees. Let T be an ordered rooted
tree with vertex labels. Some edit operations on T can be defined as follows: (1)
relabel: change the label of a node v in T; (2) delete: delete a non-root node v in T,
then the children of v become the children of v’s parent in T; (3) insert: inset a node v
as a child of vv in T, making v the parent of a consecutive subsequence of the
children of v [14]. Let T1 and T2 be two ordered, labeled trees, then each edit
operation is associated with a cost. A cost C is the sum of the costs of a sequence of
edit operations transforming T1 to T2. The TED between T1 and T2 is defined to be
the minimum cost C of transforming T1 to T2, which can be used to measure the
similarity score between T1 and T2. Several research groups have contributed to
implementation algorithms for computing the TED. Shasha and Zhang [15]’s
algorithm is the most cited one and is based on dynamic programming. Klein [16] and
[17] also developed a TED algorithm based on dynamic programing which
performance is better in terms of the worse case.

The ACT is a recent algorithm aimed at measuring the similarity between trees [18].
It advocates counting the number of all common subtrees as a way of comparing
trees. The more the number of common subtrees of a pair of trees, the more one tree is
similar to the other. ACT is theoretically inspired from the concept of Neighbourhood
Counting Measure (NCM) [19]. NCM is a generic concept for measuring the
similarity of two data points. It states that, give two data items (sets, vectors,
sequences or trees), the number of their common neighbourhoods is an indication of
the similarity between them. In ACT, the notion of a neighbourhood is interpreted as
subtrees in terms of NCM. Consequently, the NCM becomes the counting of the
number of all common subtrees. The authors of [18] have designed two ACT
algorithms for computing the number of ACTs. One is a recursive algorithm based on

255

dynamic programming. It is easy to understand but less easy to control as is the case
for all recursive algorithms [18]. This algorithm is polynomial in both time and space.
The other algorithm is non-recursive with the time complexity O (|T1| × |T2| × min
(|T1|, |T2|) × max {depth (T1); depth (T2)}) and space complexity O (|T1| × |T2|).

By using tree comparison method as a key operation in the IR matching strategy, we
aim to measure the similarity between documents and queries on their graph
representations. For each document, a similarity score can be calculated from this
matching strategy and the retrieved documents will be ranked in the decreasing order
of the similarity scores.

4. Experimental evaluation

We designed and implemented an experiment to determine whether our syntactic IR
approach can outperform the conventional vector space IR model, and also to
determine which method of measuring similarity between trees perform better, TED
or ACT. In the following discussion, ACTIR is an acronym for our syntactic IR
approach using ACT as the matching function; TEDIR refers to our syntactic IR
approach using TED; VSM is for the traditional vector space IR model. The
methodology used in the experiment to evaluate the three IR approaches is data
classification and we assume it has the same effect as the real IR experiment at this
early research stage. By taking VSM as the benchmark, we can tell whether our
syntactic IR approach will get higher accuracy, and at the same time, whether ACT
performs better TED by comparing the accuracy of ACTIR and TEDIR.

Experimental set up

The data set used in this experiment is built upon a TREC data collection, Text
Research Collection Volume 2, Revised March 1994, which includes material from
the Wall Street Journal (1990, 1991, and 1992). The TREC data collections are
produced by the TREC conference and each of the TREC data collections consists of
a set of documents, a set of topics (queries), and a corresponding set of relevance
judgments (right answers). In this experiment, based on the relevance judgments file,
we selected 70 documents which are relevant to the topic 251, 70 documents which
are relevant to topic 289 and 60 documents which are relevant to the topic 291.
Therefore, an initial data set of 200 documents is created. Then, we extracted the title
of each of the 200 documents and built a data set of 200 document titles, called T. In
T, we assume that each title, which is a sentence or phrase, is able to represent the
original document at this early research stage and is assigned a class label which is the
topic the document is relevant to. Consequently, samples in T are classified into three
groups: 70 samples belong to the group of topic 251; another 70 samples belong to the
group of topic 289; the remaining 60 samples group the topic 291.

Once the data set T was constructed, we proceeded to build corresponding document
representations according to the three IR approaches, ACTIR, TEDIR and VSM. For

256

ACTIR and TEDIR, we parsed the 200 document titles using Minipar [12] and
obtained 200 corresponding dependency trees for representing the document titles.
The implementation of Minipar we used in our experiment was extracted from GATE
[22]. For VSM, we first built a simple terms dictionary from the 200 document titles.
Then, 200 vectors were built for the 200 document titles based on the dictionary.

The next step was to design three different KNN classifiers [21] with regards to
ACTIR, TEDIR and VSM. The major factor that distinguishes the three KNN
classifiers is the method for calculating the distance between data samples. In the
KNN classifiers of ACTIR, we use ACT [18] as the method to measure the distance
between two dependency trees; For TEDIR, we use TED instead. Here, we use the
TED function from Simpack [23] as our implementation of the TED. Cosine
similarity [20] was used in the KNN classifier of VSM to measure the distance over
vectors. In addition to the difference in distance metric, we also applied a small
weighting scheme inspired by the Boolean IR model to the original distance values in
the ACTIR and TEDIR classifiers. As the entire document title corpus is relevant to
the three topics 251, 289 and 291, we defined a set of keywords for each topic. For
example, the keyword of the topic 291 is “tax” and the keywords of the topic 289 are
“Health”, “Medical” and “Hospital”. When the classifier of ACTIR or TEDIR
calculates the distance between samples, a weight is put on the original distance value
computed from ACT or TED if two samples both share the keywords from one topic.

Finally, we use leave-one-out [24] to estimate the three KNN classifiers in the task of
classification. We take ACTIR as an example to explain the experiment procedure: in
each iteration i within the leave-one-out method, applying the modified KNN
classifier, we calculated the distance between the reserved test sample and the
reaming 99 samples by using ACT [18]. If we assign K=3 in the first place, we chose
3 samples with the biggest 3 weighted ACT values among the 99. Then, the reserved
test sample is grouped into the simple majority of the topic group of the three
samples. If the classified topic group of the reserved test sample is the same as its
original topic, we say the classifier for this iteration I, or for this reserved sample is
correct. The accuracy is the overall number of correct classifications from the 200
iterations, divided by 200, the total number of samples in T. If the accuracy of ACTIR
is higher than the one of VSM, we say our approach can outperform than VSM. If
ACTIR has higher accuracy than TED in this experiment, we conclude ACT is a
better method of measuring similarity between trees.

Experimental Results

The table below shows the experimental results when K is assigned from 1 to 8:

 ACTIR TEDIR VSM

K Correct
Classificat
ions

accur
acy

Correct
Classificat

ions

accur
acy

Correct
Classificat

ions

accur
acy

257

1 173 86.5% 83 41.5% 172 86%
2 173 86.5% 83 41.5% 172 86%
3 173 86.5% 75 37.5% 166 83%
4 171 85.5% 76 38% 166 83%
5 171 85.5% 70 35% 168 84%
6 170 85% 70 35% 168 84%
7 163 81.5% 72 36% 167 83.5%
8 162 81% 72 36% 165 82.5%

Table 1. Comparison of Experiment Result

Analysis of Experiment

We can see from Table 1 that ACTIR has slightly higher accuracy values than VSM,
while the accuracy values of TEDIR are significantly lower. For ACTIR and TEDIR,
All Common Subtree (ACT) and Tree Edit Distance (TED) is taken as the key
operation of matching among documents titles, while the small weighting scheme
inspired by the Boolean IR model has the positive effect on increasing the accuracy.
Results of this study show that our approach can outperform the standard bag-of-word
approach, although we have not post-processed the parse trees at all. We believe that
if the parse trees are processed properly the performance of our approach could be
higher. It is our opinion that this approach is promising and has great potential.

5. Conclusion and Future Work

In this paper we present a proof of concept study of a new NLP-based approach to IR.
In this approach documents and queries are represented as syntactic parse trees, which
are generated by a language parser, and document ranking is achieved by computing
the similarity between a query tree and a document tree. In this study we used
Minipar as the language parser, which produces dependency trees (a form of parse
tree) for documents. Additionally we considered two tree similarity measures, the
well know tree edit distance (TED) and the new all common subtrees (ACT)
similarity recently developed in our group [18]. We used an implementation of the
vector space IR model as our benchmark. We experimented on a selection of TREC
data and we found that (1) ACT is much better than TED on this task (2) our syntactic
IR model can outperform the vector space model. These findings give us confidence
in our syntactic IR model.

We plan to improve our implementation of the syntactic IR model in the following
ways:

1. Prune the parse trees so that the retrieval accuracy is optimal

258

2. Index the parse trees so that the model can be scaled to large collections of
documents.

References:

1. C.D. Manning, P. Raghavan, H. Schütze, Introduction to Information Retrieval. Cambridge

UP, 2007, Draft.
2. Ed Greengrass, Information Retrieval: A Survey, 2000.
3. R. Baeza-Yates, B. Ribeiro-Neto, Addison-Wesley, Modern Information Retrieval. 1999.
4. Tomek Strzalkowski, Natural Language Information Retrieval, GE Corporate Research &

Development, Schenectady, NY, USA
5. Mandar Mitra, Chris Buckley, Amit Singhal, Claire Cardie, An Analysis of Statistical and

Syntactic Phrases, Proceedings of RIAO-97, 5th International Conference ``Recherche
d'Information Assistee par Ordinateur'',1997

6. David A. Evans, Chengxiang Zhai, Noun-Phrase Analysis in Unrestricted Text for
Information Retrieval, Proceedings of the ACL-96, 34th Annual Meeting of the Association
for Computational Linguistics, 1996

7. Arampatzis, A. T., Tsoris, T., Koster, C. H., and Van Der Weide, T. P. 1998. Phrase-based
information retrieval. Inf. Process. Manage. 34, 6 (Nov. 1998), 693-707.

8. Melcuk, I. A. Dependency Syntax: Theory and Practice, State University of New York Press,
1988.

9. Michael A. Covington, A Fundamental Algorithm for Dependency Parsing, 2000
10. Mittendorfer, M. and Winiwarter, W. 2002. Exploiting syntactic analysis of queries for

information retrieval. Data Knowl. Eng. 42, 3 (Sep. 2002), 315-325.
11. Sleator, D., Temperley, D., Parsing English with a Link Grammar. In: Proc. 3rd Intl.

Workshop on Parsing Technologies, 1993.
12. Minipar Home Page, see http://www.cs.ualberta.ca/~lindek/minipar.htm
13. Lin, D., Principle-based parsing without overgeneration, In 31th Annual Meeting of the

Association for Computational Linguistics (ACL 1993), 112-120, Columbus, 1993.
14. Bille, P. 2005. A survey on tree edit distance and related problems. Theor. Comput. Sci.

337, 1-3 (Jun. 2005), 217-239.
15. K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between trees and

related problems. SIAM Journal on Computing, 18:1245{1262, December 1989.
16. P.N. Klein. Computing the edit-distance between unrooted ordered trees.In Proceedings of

the 6th annual European Symposium on Algorithms (ESA) 1998., pages 91–102. Springer-
Verlag, 1998.

17. Erik Demaine, Shay Mozes, Benjamin Rossman , Oren Weimann, "An Optimal
Decomposition Algorithm for Tree Edit Distance". In Proceedings of the 34th International
Colloquium on Automata, Languages and Programming (ICALP 2007). To appear.

18. ACT: All Common Subtrees. Technical Report, University of Ulster, Submitted, 2007.
19. H. Wang. Nearest neighbors by neighborhood counting. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 28(6):942-953, 2006.
20. Salton, G., McGill, M.J. Introduction to Modern Information Retrieval, McGraw Hill

Publishing Company, New York, 1983.
21. T. Mitchel, Machine Learning. USA: McGraw-Hill Education, 1997.
22. GATE Home Page, see http://gate.ac.uk/
23. Simpack Project Page, see http://www.ifi.unizh.ch/ddis/simpack.html
24. J. Han and M. Kamber, Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000.

259

http://www.cs.ualberta.ca/~lindek/minipar.htm
http://gate.ac.uk/
http://www.ifi.unizh.ch/ddis/simpack.html

Rule-Based Khmer Part-of-Speech Tagging with
Generalized Unknown Word Handling

Chenda NOU and Wataru KAMEYAMA

 Graduate School of Global Information and Telecommunication Studies
WASEDA University

1011 Nishi-Tomida, Honjo-shi, Saitama-ken, 367-0035, Japan
chendanou@fuji.waseda.jp, wataru@waseda.jp

Abstract. Part-of-speech tagging is a fundamental step in natural language
processing system. It is required to achieve high accuracy to be used in other
high-level language processing works. In this paper, we propose some
modifications on transformation-based approach to obtain higher accuracy than
our previous work. In addition, to handle the unknown word problems, we
introduce an automatic rule generation method to extract feature rules from
training corpus. The tagger achieves 94.83% and 90.70% of tagging accuracy
on the training and test data respectively.

Keywords: Khmer POS tagging, transformation-based tagging, corpus-based,
automatic rule generation, unknown word POS guessing

1 Introduction

Part-of-speech (POS) tagging makes sentences easier to parse by computer, and is
therefore a preprocessing step frequently required in natural language processing
system.

Two main approaches for this task are stochastic approach [4], [8] and rule-based
[1], [5], [6] approach. Stochastic approaches had often been preferred to rule-based
because of their automatic training capabilities. This was the case for POS tagging
until Brill introduced a rule-based tagger [1] by inferring rules from a training corpus
and achieved as high accuracy as the stochastic approaches. Anyway, Brill’s
approach, the transformation-based approach, provides the ease of adjusting to new
languages such as: i) templates of the rules can be defined based on sentence structure
and characteristics of the languages, ii) a small set of human readable rules provide
the ease of finding problems that affect the tagging accuracy and implementing the
improvement.

In our previous work [3], we have proposed the initiative POS tagger for Khmer
by using transformation-based approach. The work achieves 96.1% and 95.12% of
tagging accuracy on the training and test data respectively without considering
unknown word problems.

In order that the result of tagging will be useful for high-level language processing
researches, high accuracy with considering unknown word problems is required.

260

Therefore in this paper, we propose some modifications on transformation-based
approach to reduce the tagging error. Furthermore, we present the automatic feature
rule extraction and ranking methods for the task of unknown word POS guessing.

2 Characteristics of Khmer Language and Background

2.1 Characteristics of Khmer Language

Khmer, one of the prominent Austro-Asiatic languages, has different characteristics
from English language. The list below shows the characteristics of Khmer that must
be considered for POS tagset and tagging system design, especially for solving
unknown words.
• It is written continuously without delimiter and no capitalized structure. The

collocation and the boundary between compounds and phrases are fuzzy.
• Basically, it is a subject-verb-object language but has relatively free word order as

compared to English. For instance, an adjective is placed directly after its subject
without linking verb.

• It is devoid of inflection in either nouns or verbs.
• Nouns and verbs are not gender-sensitive.
• A word is a combination of consonants, vowels, subscripts (sub-consonants), and/or

diacritics. A sub-consonant, a vowel, and a diacritic cannot stand alone without a
consonant. Thus, the length of a word is calculated by the number of clusters not
the number of characters. A cluster must have one consonant, and/or subscripts,
and/or vowel, and/or diacritic. e.g. ┬̋Ύ₣ “In” has two clusters: the first cluster “ ┬̋Ύ” is
a combination of the consonant “˝” , the subscript “˘ ┬”, and the vowel “˘ Ό”, while the
second cluster has only one consonant “₣”.

• Different ways of writing: some words with the same pronunciation and the same
meaning, but can be written in various ways. e.g. Πħ▄, Ǿ█, ǻ█ [oy] “Give, Let”

• The prefix can give more accurate information about the word than the suffix does.
• A word can be a combination of many words.
 e.g. Ģ┤-ř˝ ̦ -⌐Ω┤Ỳŀ [noun+verb+noun] “Truck”
• The same pattern of word has many different POS. For example, POS of words

which are a combination of “verb+ noun” can be adjective, adverb, noun, or verb.
• The longer prefix or suffix can give more accurate information about POS of the

word than the shorter ones.

2.2 Khmer Unknown Words

Unknown words are words which don’t exist in the lexicon. In general, there is no
new word invented in closed word classes such as preposition, determiners or

261

conjunctions. Therefore, we consider unknown words fall under 9 open word classes:
noun, adjective, verb, adverb, acronym, proper name, participle, ordinal number, and
exclamation word. Khmer unknown words are categorized into the following 6 types:

1. acronym, a shorten form of long names or phrases,
2. transformed words, words that are transformed from other words by using

prefixes or suffixes. e.g. ករសំេរចចិត “decision” is a combination of ករ and
សំេរចចិត “to decide”. ករ is a prefix used to change the word from verb to
noun,

3. proper nouns include names of people, locations, and organizations,
4. compound words consist of more than one stem, e.g. េ កក-េឡង “get up, or

stand up”, ទី-២ “2nd, second”, បន-ល “well”,
5. reduplicating words to make plural noun or emphasize the meaning of the

word by using the “ៗ” symbol, e.g. េកមង-ៗ [kmeng kmeng] “kids, where េកមង
[kmeng] means kid or young”, ដែដល-ៗ [dordel dordel] “always the same,
where ដែដល [dordel] means the same” ,

6. new words or loan words, currently don’t exist in our wordlist, e.g. កំពយទ័រូ
“computer”, បឺស “bus”.

2.3 Background

In our previous work [3], we have proposed the first Khmer POS tagger by using
transformation-based approach. Due to the lack of resources in Khmer, we have setup
some resources such as tagset, tagged corpus, and lexicon.

In this paper, we use the same tagset, corpus, and lexicon in our previous work [3].
The tagset contains 27 tags which have been shown to be useful in other natural
language processing systems. The lexicon consists of 32,000 words which are tagged
with the defined tagset. The corpus includes 37,452 words (1102 sentences) retrieved
from Kohsantepheap daily [7], one of the famous newspapers in Cambodia.

 In order to avoid the domain-based results, in this paper, we add some more data
retrieved from various domains such as Khmer legends, letters, etc. into the testing
corpus.

To segment a sentence into words, we use segmentation API provided by PAN
[2]. In our previous work [3], we have added some modules to reduce the
segmentation errors. In this paper, we conduct experiments on the segmented corpus,
thus errors caused by segmentation are not considered.

3 Khmer POS Tagging System

Fig. 1 shows the architecture of the tagging system. First, the tagger looks into the
lexicon and defines the most frequent tag to each word. If the word is not found in the
lexicon, it is passed to the guesser. The guesser will define the most likely tag to the
unknown word. Finally in the transformation process, the tagger may change some

262

 known word unknown word

Annotated text

given tags if the context of the words match to criteria of any transformation rules.
The transformation rules can be extracted automatically from the training corpus by
rule learning process.

Fig. 1. Architecture of the system

3.1 Rule Learning

We adopt Brill’s algorithm [1] to automatically learn the error-correcting rules from
the annotated corpus. The procedure of the learning algorithm is summarized as
follows:

a. Initial tagging
b. Automatic rules generation based on predefined

templates
c. Getting the rule which causes the best improvement
d. Applying the best improvement rule on the training

corpus
e. Saving the best improvement rule
f. Repeating step b to e, until the best improvement

rule cannot meet the predefined threshold

Fig. 2. Learning Algorithm

We have defined 32 transformation templates in [3] based on the study of tagging

errors obtained from the initial tagging phase and the characteristics of Khmer
language. There are two categories of the templates:
Category 1: Change tag from A to B if conditions are fulfilled
Category 2: Change tag from A to B if current word is W and conditions are fulfilled

The following are some examples of the templates:

Unannotated text

Initial State Lexicon

Guesser

Annotated text

Transformation Process

263

i) ý↑θ[PN]ΠřΙ▲[V]Π│[V]Ĉ☻[N]Б

ii) ý↑θ[PN]▲↑θ[V]╩˝[V]╚⌠έ[N]Б

ii) ý↑θ[PN]ş₣θ[V]⌐Ỳŀ[V]Ģ┤[N]Б

Change tag A to B when:
Previous tag is X and next tag is Y

 Current word is W and any of two next tags is X

3.2 Transformation Process

The transformation process is a process to apply the learned rules obtained from the
learning process to reduce errors caused by the initial tagging. The rules are to be
applied in the form of the two categories templates.

 Two types of unexpected errors may occur after applying a transformation rule: 1)
the new tag (destination tag of the rule) is one of tags associated to the word, but it is
not a correct tag in a context, 2) the new tag is not one of tags associated to the word,
and it is also not a correct tag in a context. The error 1) and 2) may appear when
applying the rules in category 1. The rules in category 2 have been restricted on a
specific word, thus only error 1) may appear.

 As an example of the second type error, a rule “change verb to preposition if
previous tag is verb” is learned and 3 input sentences with initial tagging are:

PN: Pronoun, V: Verb, N: Noun
 The condition of the rule is matched to all the example sentences on the italic

words. But, the rule is applicable only to i) and ii), because in these cases, Π│ and

╩˝ function as a preposition “to”. If they are not preceded by a verb, they function as

verbs which Π│ means “go” and ╩˝ means “come”. The rule is not applicable for iii).

Because ⌐Ỳŀ “buy” is always a verb, and cannot be a preposition. Thus, if the rule
is applied directly when the contextual conditions are fulfilled, the rule will change
the tag of ⌐Ỳŀ from the correct tag to the wrong tag.

 We can easily avoid this kind of errors by looking at the tags information
associated to the word in the wordlist. In the wordlist, the word ⌐Ỳŀ contains only one
tag, verb.

 Due to this problem, we propose a change on applying rule algorithm: a rule is to
be applied to only any word that is in the context of the rule and the destination tag is
one of the tags associated to the word. If the destination tag is not in the tag set of the
word, we can know that it is an incorrect tag although the word is in the context of the
transformation rule.

 However, not all proper noun and participle tags are attached to their associated
words in our wordlist. Therefore, if the destination tag of a rule is a proper noun, the
criterion is changed to: the transformation rule is to be applied, if word is in the
context of transformation rule, and one of the tags associated to the word in the
lexicon is {Noun, Adjective, Verb, Adverb, or Numeric}. This is because in Khmer,

264

only the word that belongs to noun, adjective, verb, adverb, or numeric class can be a
proper name.

If the destination tag of a rule is a participle, then the criterion is changed to: the
transformation rule is to be applied, if word is in the context of transformation rule,
and one of the tags associated to the word in the lexicon is verb.

The algorithm of the method is roughly described as follows:

Fig. 3. Applying rule algorithm

Of course, the proposed method is not a complete solution to eliminate all errors
created by applying transformation rules, but it can reduce many errors caused by the
change from a correct tag to an incorrect one.

The same problem also happens in applying rules in the learning process. Thus, this
algorithm is also applied to step d (Applying the best improvement rule on the training
corpus) in Fig.2.

4 Unknown Word POS Prediction

Rule-based approach is one of the effective approaches to predict the POS of
unknown words. This approach predicts the most likely tag for unknown words based
on the internal structure of words such as suffix, prefix, word-form (e.g. noun + verb,
adjective + noun, etc.).

Three main problems of this approach are: how to create the rules, how to rank the
rules, and how to apply those rules effectively. It is quite difficult and time consuming
to write down all possible rules. Thus, we propose a learning algorithm to learn rules
automatically from corpus. Then, the rules are ranked based on the ranking method by
considering the characteristics of the language. Finally, the rules are applied based on
the precision of each rule type.

ApplyingRule (rule)
 {
 Q= all possible tags of the current word
 P= {noun, verb, adj, adv, numeric}
 tag=destination tag of the rule
 if (current word is in context of the rule) AND
 ((tag ∈ Q) OR
 (tag=ProperNoun AND (P ∩ Q) !={∅}) OR
 (tag=Participle AND (Verb ∈ Q))
)
 Apply rule

 }

265

4.1 Rule Generation

To generate all feature rules for predicting the POS of the unknown words, we
propose a simple algorithm to learn the rules automatically based on our pre-defined
templates. The process of the algorithm is roughly described as follows:

for t=1 to No. of Templates
 for each open-class word in training data

Create all possible feature rules based on
Templates[t]

 Calculate the frequency of each rule
 Get only rules with frequency >=Minimum frequency
 Order the rules based on the ranking method
 Save rules to rule list[t]

Fig. 4. Feature rules generation algorithm

 In general, features that rarely appear in the training data are statistically

unreliable and often decrease the performance of the system. Thus, only the rules with
frequency larger than or equal to the minimum frequency are saved to the rule list.
The minimum frequency should be set in accordance with the size of the training
data. The value of the minimum frequency can affect the accuracy and performance
of the guesser. The low minimum frequency may result in some unreliable rules.
Anyway, the performance of guessing is slow as the guesser has to check a lot of
rules. If the minimum frequency is too high, some valid rules might not be saved but
the performance of the guessing is faster. Due to the small size of the training data,
we set the minimum frequency to 1 in this paper. The accuracy of POS guessing by
various frequencies is shown in Section 5.

The allowable transformation templates 1 to 5 are listed below:
 Attach tag X to an unknown word if:
1. If the word contains any symbol {., -, /, _ } and/ or numeric
2. If first (last) (1,2,3) clusters of the word are w and other clusters results in a word whose tag

is x
3. If first (1,2,3) clusters results in a word whose tag is x, and next (1,2,3) clusters results in a

word whose tag is y, and the other clusters results in word whose tag is z
4. If first (1,2,3) clusters results in a word whose tag is x and other clusters results in a word

whose tag is y
5. If first (last) (1,2,3) clusters of the word are w and results in a word

w is a part of a word, suffix, or prefix. x, y, and z are one of the 27 defined tags.

4.2 Rule Ranking Method

The rules in each template are ranked by frequency in descending order. Based on the
characteristics of Khmer, all the prefix rules have higher priority than the suffix rules.
The 3-cluster rules have higher priority than the 2-cluster rules, and sequentially.

266

4.3 Applying Rule

The order in which the rules in each set are applied is crucial for dealing with
ambiguous cases. The problem can be solved, if the highest reliable rules are applied
first. Thus, we define the order of applying rule based on precision of each template
in the task of guessing the unknown words. We apply all rules in each template to
predict the POS of 1,872 unknown words in the training data. The precisions of
guessing unknown words by rules in each template are shown in Table 1.

 As shown in Table 1, the rules in the first template gain the highest precision.
Therefore, the rules in template 1 should be applied first, and sequentially followed
by rules in template 2, 3, 4, and 5.

Table 1. Precision of guessing POS of unknown words by rules in each template

Template 1 2 3 4 5
Precision% 100 94.95 91.98 86.75 85.90

5 Experiments

5.1 Experiments Setup

We divide the corpus into two: 32,088 words (47% are ambiguous words) for training
and 8,969 (48.4% are ambiguous words) for testing. All the training data are from
only one source, Kohsantepheap newspaper [7]. The test data are retrieved from two
different sources: 60% is from the same newspaper as the training data, hereafter Test
Data 1, and other 40% are from various domains, hereafter Test Data 2.

 For the experiments on handling of unknown word, we delete 2,681 open class
words which appear only once in the training and test corpus from the wordlist. Thus,
5.83 % of words (1,872 words) in the training corpus and 9% of words (809 words) in
the test corpus are unknown words. The distribution of unknown words in each word
class is shown in Table 2.

. Table 2. Distribution of unknown words in each word class

Tag Description Training
data Test data

N Noun 1,143 390
PN Proper noun 23 15
V Verb 385 203

Adj Adjective 130 92
Adv Adverb 141 81
ORD Ordinal number, a combination of characters and number. e.g. ទី5 32 22
AC Acronym 10 4
PP Participle verb 7 0
EX Exclamation word 1 2

 Total 1,872 809
267

 All the experimental results are calculated as recall(R), precision (P), and F-score
(F) which are defined as follows:

R= Total relevant records retrieved / All relevant records

P= Total relevant records retrieved / All records retrieved

F= (2* R * P) / (R+P)

5.2 Results and Discussions

To show the effectiveness of the modification on applying rule algorithms, we
conduct experiments by using transformation-based approach: i) without any
modification, ii) modify the applying rule algorithms. The tagging results (without
unknown words) in Table 3 show that the proposed modifications doesn’t improve
much accuracy on the training data, but it can effectively improve the accuracy of test
data, especially the Test Data 2 which is from different domain with the training data.

Table 3. Accuracy of Brill’s technique and proposed technique

Recall Training Data Test Data 1 Test Data 2 Test Data 1+ Test Data 2
Brill’s 96.10% 95.12% 93.58% 94.35%

Proposed 96.16% 95.64% 94.56% 95.10%

Table 4 shows the accuracy of unknown word POS prediction by rule-based

approach with different minimum frequencies (MF). The approach achieves highest
recall when the MF is set to one. But, the test data obtains the highest precision when
MF is set to 5, and the precision of MF 5 is also higher than the precision of MF 3 in
the training data. These results illustrate that with the high MF, we can obtain more
reliable rules. However, we may also lose some valid rules which have lower
frequencies.

Table 4. Accuracy of unknown word POS guessing by different minimum frequencies

Training Data Test Data 1 +Test Data 2 Minimum
Frequency

No. of rules
obtain R% P% F% R% P% F%

1 9629 87.66 93.87 90.65 64.40 71.66 67.83
3 961 67.30 82.46 74.11 55.62 74.62 63.72
5 412 62.12 84.15 71.47 51.42 77.61 61.86

We combine the proposed tagging technique with unknown word handling method

to tag the training and test data in which 5.8% and 9% of words respectively are
unknown. Table 5 illustrates the overall tagging accuracy of both data. The recall of
unknown word on the test data has been slightly improved after applying the
transformation process.

268

Table 5. Overall tagging accuracy by proposed technique with rule-based unknown word POS
prediction

Recall Known word Unknown word Overall
Training data 95.27% 87.66% 94.83%

Test Data 1 + Test Data 2 93.30% 64.41% 90.70%

6 Conclusion

Based on the study of tagging errors obtain in our previous work [3] and specific
characteristics of Khmer language, we have proposed some modifications on applying
rule algorithm with the limitation that: the transformation rule is to be applied only
when the word is in the context of the rule and destination tag of the rule is one of the
tags associated to the word. The proposed technique has been proven to be effective
in reducing tagging errors especially when tagging unseen texts from various
domains.

To handle the unknown word problems, we propose the automatic rule generation
method to extract the feature rules from the training data. The approach achieves very
encouraging results. However, the rule-based approach makes use only of the internal
structure of the words. It seems to neglect the advantages of contextual information
such as surround tags and words information which also can contribute to this work.

Therefore to obtain a higher accuracy in predicting POS of unknown words, we are
going to combine the rule-based and statistical approach which makes use of the
contextual information for this task. The combination approach combines the
strengths of both approaches and is expected to achieve higher accuracy than any
single approach.

References

1. Eric Brill: Transformation-based error-driven learning and natural language processing: a
case study on part of speech tagging. Computational Linguistics, vol. 21, n.24 (1995)

2. CHEA Sok Huor, TOP Rithy, ROS Pich Hemy: Detection and correction of homophonous
error word for Khmer language. Ref. No. PANL10n/Admn/RR/.

3. Chenda NOU, and Wataru KAMEYAMA: Transformation-based Khmer part-of-speech
tagger. In The 2007 International Conference on Artificial Intelligence, WORLDCOMP’
07. Las Vegas, US. Vol.1, pp. 581-587 (2007).

4. Cutting Doug, Julian Kupiec, Jan Pederson, and Penelope Sibun: A Practical Part-of-
Speech Tagger. In Proceedings of the Third Conference on Applied Natural Language
Processing, ACL (1992)

5. Green, B. and Rubin, G.: Automated Grammatical Tagging of English. Department of
Linguistics, Brown University (1971)

6. Klein, S. and Simmons, R.F.: A Computational Approach to Grammatical Coding of
English Words. JACM 10: 334-47 (1963)

7. Kohsantepheap Newspaper. July, 2006. Available: http://www.kohsantepheapdaily.com.kh
8. Thorsten Brants : TnT – A Statistical Part-of-Speech tagger. In Proceedings of the 6th

Conference on Applied Natural Language Processing, pages 224-231 (2000)
269

Sticking with a Winning Team: Better
Neighbour Selection for Conversational

Collaborative Recommendation?

Rachael Rafter, Lorcan Coyle, Paddy Nixon, and Barry Smyth

Adaptive Information Cluster,
School of Computer Science and Informatics,

UCD Dublin, Ireland
firstname.lastname@ucd.ie

Abstract. Conversational recommender systems have recently emerged
as useful alternative strategies to their single-shot counterpart, especially
given their ability to expose a user’s current preferences. These systems
use conversational feedback to hone in on the most suitable item for
recommendation by improving the mechanism that finds useful collab-
orators. We propose a novel architecture for performing recommenda-
tion that incorporates information about the individual performance of
neighbours during a recommendation session, into the neighbour retrieval
mechanism. We present our architecture and a set of preliminary evalua-
tion results that suggest there is some merit to our approach. We examine
these results and discuss what they mean for future research.

1 Introduction

Traditionally, collaborative recommender systems are based on a single-shot
model of recommendation where a single set of recommendations is generated
based on a user’s (past) stored preferences [1]. Such systems assume that users
have stable preferences which can be represented with a static user profile that
grows over time. However, content-based recommender system research has be-
gun to look towards more conversational models of recommendation, where the
user is actively engaged in directing search at recommendation time [2–4].

Previously we have proposed adopting a similar model for collaborative rec-
ommendation [5] where recommendations are made in a cyclical process, and
the user provides preference-based feedback [6] on the suitability of the items
recommended after each cycle. This feedback is used to model the user’s cur-
rent short-term preferences. This has been motivated by our belief that a user’s
current preferences are influenced by her current mood, and moreover that they
may deviate from her regular movie preferences. Hayes and Cunningham [7]
have similarly pointed out that Collaborative Recommendation can lack sensi-
tivity to a user’s current interests and may cause frustration and distrust. They
? This work is partially supported by Science Foundation Ireland under grant number

04/RPI/1544 “Secure and predictable pervasive computing”.

270

propose to boost collaborative recommendations with a more knowledge-heavy
approach than ours, that incorporates context or task driven information into
the recommendation process. Although it could be argued that this conversa-
tional approach imposes a burden on the user to provide feedback, we would
maintain that it can also help the user to explore the information space in a
more useful manner.

Recent results from our research [5] have already indicated that this con-
versational model of recommendation has advantages over its static single-shot
counterpart. Bridge and Kelly [8], went further and incorporated diversity into
the recommendation process which improved results. In this paper, we focus on
enhancing the selection of nearest neighbours (NNs) which is crucial to any rec-
ommender system. We propose that the feedback provided by the user during a
session, can not only be used to model the user’s current preferences, but also to
identify those neighbours that are performing best as recommendation partners
for the target user, given her current preferences.

Our contributions in this article are twofold. We propose a novel component
called the Sticky Layer that controls the promotion and demotion of neighbours
based on their performance to date during a recommendation session; this layer
performs a type of “recommendation priming” that is guided by the recommen-
dation session. We also propose an extension of Hayes et al.’s [9] Case Retrieval
Net (CRN) implementation of k-NN retrieval for Automated Collaborative Fil-
tering, which takes the effectiveness of an individual user’s past recommenda-
tions in the current recommendation session into account, when retrieving new
recommendations. The CRN is supported by the Sticky Layer.

The rest of this paper is organised as follows: In Section 2 we provide some
background. In Section 3 we discuss the novel aspects of our system. In Section 4
we discuss some preliminary evaluation results, and in Section 5 we conclude and
propose future research. We should note here that the work presented in this ar-
ticle is still not fully mature, and our evaluation reflects ongoing work. However,
these preliminary results present some interesting ideas that have emerged from
a considerable amount of research. We try to raise some open questions, which
we hope will stimulate interesting future research.

2 Background

In this section we discuss collaborative recommendation and conversational rec-
ommendation in brief, and then we provide some background on Case Retrieval
Nets and how they can be used for collaborative recommendation.

2.1 Collaborative Recommendation

Single-shot Collaborative Recommendation (SS-CR) is a content-free recommen-
dation strategy based on the premise that similar users like similar items. Recom-
mendations are compiled for the target user based on the profiles of her nearest
neighbours (NNs). Importantly, the profile only contains information about the

271

user’s long-term preferences, and ignores any short-term preference differences
that the user may have. Therefore user profiles where both short-term and long-
term preferences of the user are represented, have been proposed, e.g. [10, 11].

In Conversational Collaborative Recommendation (C-CR) [5] the standard
long-term profile from the single-shot model, is complemented by a short-term
profile which models the user’s more current (and possibly transient) preferences.
Here, cycles of k item recommendations are made to the user; after each cycle
she is asked to indicate which recommendation would be most suitable, or else
indicate that none are suitable (by selecting one recommendation, or by rejecting
all of them, respectively). This feedback is then incorporated into her short-term
profile and used to alter the similarity retrieval process. This process is repeated,
with new items being recommended to the user each time based on the updated
profile, until the user finds an item with which she is satisfied. We refer to the
entire set of cycles resulting in a satisfactory recommendation as a session.

2.2 CRNs for Collaborative Recommendation

Hayes et al. [9] pointed out the similarities between Collaborative Recommenda-
tion and Case-Based Reasoning (CBR). Core to the CBR methodology is the use
of a similarity retrieval mechanism for finding the k nearest neighbours (k-NN)
to the current problem (or target) case. Case Retrieval Nets (CRNs) have been
used to implement k-NN similarity retrieval due to their ability to efficiently
and flexibly retrieve similar cases [12]. CRNs outperform the standard k-NN
approach in domains where there is feature-value redundancy or domains with
many missing feature-values.

Hayes et al. proposed that CRNs could be used to perform collaborative rec-
ommendation (or Automated Collaborative Filtering) by treating a user profile
like a case and the user recommendations on individual items as case features [9].
These cases are usually sparse, playing to the strengths of the CRN, and allowing
for efficient retrieval of the most similar users to the current target case. Infor-
mation from the NNs that emerge can then be used to make a recommendation
to the target user. This approach had two major limitations:

– Features are represented as item recommendation pairs (IEs), whereby the
CRN typically contains more than one IE for each item, (one IE for every
distinct recommendation score for that item).

– Similarity measures need to be explicitly defined between IEs. This typically
means that a domain expert must specify how any two features relate to
each other. This implies a knowledge-intensive approach.

To overcome these limitations, we take inspiration from the work of Delany
et al. [13] on using CBR in the spam filtering domain. They used CRNs for
retrieving similar e-mails to classify a target e-mail. The spam-filtering domain
is interesting for CRN development since all features are binary — spam features
just represent words in an e-mail, each feature is true if the word it represents
is present in an email, and false otherwise. With binary features, the CRN can

272

be connected in such a way that calculating similarity is not necessary (the
assumption is that similarities between features are always zero).

Given that the use of the CRN structure comes from the CBR field it should
be pointed out that the process of incorporating user feedback into a similarity
retrieval process as we do has an analogue there. Richter [14] has proposed that
CBR has four distinct knowledge containers (the case-base, vocabulary used,
similarity measure, and solution transformation) and that it may be advanta-
geous to move knowledge between them. The CBR analogue to our work would
be a system that moved (or incorporated) knowledge from the solution transfor-
mation to the similarity measure.

3 Implementation

Recommendations are generated using user profiles retrieved from a novel rep-
resentation of a CRN called a Collaborative Case Retrieval Net (CCRN). Our
CCRNs are an adaptation of the CRN similarity retrieval implementation from
the Fionn CBR framework [15].

Traditional CRNs are made up of the following components (the differences
between CRNs and CCRNs are also outlined), which are illustrated in Fig. 1:

– Nodes represent stored CBR cases (traditional CRNs call these case nodes).
CCRN nodes represent individual user profiles.

– Traditionally, Information Entities (IEs) represent feature-value pairs within
cases. CCRN IEs represent items that are available for recommendation.

– Relevance Arcs link case nodes with the IEs that represent them. Typically
they have weights that capture the importance of the IE to the connecting
node. CCRNs use these to capture both the items that were preferred by
the user as part of their permanent profile and items that were preferred by
a target user during a recommendation session.

– Similarity Arcs connect IEs that refer to the same features, and have weights
relative to the similarity between connected IEs. CCRNs makes the assump-
tion that similarities between IEs are always zero, and so these are not
included. It should be noted that in Figure 1 only six similarity arcs are
shown - a typical CCRN should contain (n− 1)! arcs for every n IEs.

When performing collaborative recommendation, the user who is seeking a
recommendation is presented to the CCRN as a target node (T in Figure 1).
User T has previously liked item 2, which was also liked by User a so those
lines have arrows reflecting permanent activation; in the current recommenda-
tion cycle User T has liked item 4, which was also liked by users a and c, so
those relevance arcs are darker and have arrows to reflect temporary activation.
As the recommendation session continues, further relevance arcs will be created
to express new preferences. Activation is spread across the net structure (shown
by the arrowed relevance arcs) and accumulated at the neighbouring nodes. In
the example diagram, neighbour a would be returned as the target user’s NN
with an activation of 2 (c would be in second place with an activation of 1).

273

1 2 3 4 5 6 7

T a b c

Fig. 1. CCRN Architecture. The diamonds at the top are nodes representing users,
where T is the target user. Squares 1 to 7 are IEs representing 7 items that are available
for recommendation. The lines connecting IEs to Nodes are relevance arcs, relating
items to users that liked them in the past; the broken arrows below the IEs represent
similarity arcs from IE 4 to all other IEs in the net, which only exist in traditional
CRNs and are shown here only for comparative illustration.

This architecture provides behaviour that is no different from typical collabora-
tive recommendation approaches. However, because of the nature of the CRN
structure, it is possible to inject additional information into the retrieval process.
We inject information about useful users for recommendations into the “Sticky
Layer” of the CCRN.

3.1 The Sticky Layer

Our hypothesis is that in order to maintain a consistent recommendation process
towards a stated goal, it is best to reuse recommendations from users that have
proven to be responsible for good recommendations during a session so far. The
analogy would be that the user is taking advice from a subset of the users that
are providing recommendations and following these trusted users’ advice over a
number of cycles. Thus, the CCRN incorporates a measure of context at each
cycle in the recommendation process.

We use a feedback mechanism called the Sticky Layer, which makes good
neighbours stick, so they are more likely to be re-chosen as recommendation
partners for the target user during a given recommendation session. This layer
adds a memory to the recommendation session and performs a priming function
with respect to neighbour selection. The job of the Sticky Layer is to promote or
demote neighbours based on their performance as recommendation partners to
date in a session. At the end of each cycle, every NN to the target user in that
cycle, receives a sticky boost, (positive or negative), depending on the quality of
the neighbour’s contribution to the recomendations in the cycle. Sticky boosts
are currently in units of 1. The sticky boost can be updated in three ways:

274

– if the target user selects one of the recommended items as preferable in a
cycle and a NN has contributed to that item being recommended (that item
is in her profile) we increment her sticky boost (by 1).

– Similarly, we can decrement the sticky boost of a NN if she did not contribute
to that item being recommended.

– We can also decrement the sticky boost of a NN if she contributed to a set of
recommendations made in a cycle in which all of the (bad) recommendations
were rejected by the target user.

This boost is incorporated at the Sticky Layer of the CCRN, where it is
added to the similarity returned from the CCRN. In this way, neighbours are
retrieved from the CCRN using a combination of their weight from the CCRN
and their sticky boost. By using both negative and positive contributions to
control the boost levels of neighbours we are assuring that only neighbours that
are consistently performing well will be promoted. Of course the sticky boost
levels (as well as the short-term profile, or temporary activations in the CCRN),
only stay active during a recommendation session.

4 Evaluation

Our preliminary evaluation aims to eexamine the methods described in this
paper, and in particular how (if) the Sticky Layer is helping neighbour selection.
The experiments are based on the 100,000 MovieLens Dataset [16], which consists
of 100,000 ratings for 1682 movies by 943 users. We select 100 of these users at
random as our target users. Each profile consists of a list of movies that the
user has seen and a corresponding set of ratings on a scale of 1 - 5, (1 meaning
the user did not like the movie and 5 meaning they liked it a lot). This is the
same dataset used by Bridge and Kelly [8]. Currently we are using a measure of
profile overlap as our profile similarity metric. 1 Since the overlap measure does
not require user ratings, we have simplified the MovieLens data by removing all
(disliked) profile items with a rating < 3. Therefore each profile is simply a list
of previously liked movies. The average profile size is 88 items. This is also in
keeping with our previous research that found that negative preferences are not
necessarily as useful as positive ones [5]. Of course, the disliked movies would be
retained in a real world system to ensure that they would not be recommended.

4.1 Methodology

In this evaluation we make use of simulated artificial users as a real user trial has
not been possible yet. The MovieLens dataset contains genre information (lists

1 This is in contrast to our previous research and indeed much of collaborative rec-
ommendation research where the Pearson Correlation Coefficient is used. However
we have found that we actually achieve better results using just overlap. This may
mean that the ratings in the MovieLens dataset are not reliable, or the reason may
lie elsewhere, but certainly this issue deserves further investigation.

275

of categories, e.g. “comedy, romance”), for the movies, which we use to simulate
user feedback in our evaluation, (though of course genre information is not used
to generate recommendations). A (simulated) user will select the item with the
highest overlap of genre categories with the target item as the best recommended
item. The user can select an item so long as it has a genre category overlap > 0.
Otherwise, if all recommended items in a cycle have a genre category overlap
of 0, the user will reject them all. Essentially we are modelling a user’s current
mood based on genres. Of course there could be many other factors that influence
a user’s current mood and preferences, genre information is used here because
it was a viable way to do the simulation. A leave-one-out test is employed to
evaluate the search for specific target items in each evaluation trial. In each
trial every item in the user profile is in turn used as the target item (during
which time it is removed from the profile). In each cycle 3 recommendations are
made, from the profiles of 50 NNs. We evaluate the CCRN and the Sticky Layer
methods we propose, using a number of different trials:

CCRN Only (CCRN) In this trial we use the CCRN by itself with no Sticky
Layer. This performs equally to the standard conversational collaborative
recommendation which is to be expected, and serves as our benchmark here.

CCRN with Sticky Layer (CCRN + S) Here we examine using the Sticky
Layer in conjunction with the CCRN, and consider different combinations of
rewards and penalties for neighbour contributions in a recommendation ses-
sion. We look at four variations, the first where neighbours are only rewarded
(CCRN + Srewards), the second where the neighbours are both rewarded,
and penalised if they contribute to a set of bad items being recommended
(CCRN + SrewardsAndPenaliseBadItems), the third when the neighbours are
both rewarded, and penalised if they don’t contribute to a liked item being
recommended (CCRN +SrewardsAndPenaliseGoodItem), and finally the fourth
where all three are combined (CCRN + SrewardsAndAllPenalties). Note that
when we refer to CCRN+S we are referring to all four techniques in general.
Refer to Section 3.1 for more details.

Bootstrapped Sticky Layer(S) Here we use the Sticky Layer by itself with-
out the CCRN, except at the very start of a session when we use the CCRN
until 5 pieces of information have been added to the Sticky Layer, in order
to avoid it having to choose neighbours completely at random. So although
the Sticky Layer in these experiments receives some help at the start, we
would argue that this bootstrapping is minimal. Note that we would not ex-
pect this technique to perform better than the ones always using the CCRN
since it cannot use any of the main long-term profile information contained
in the CCRN. We test it by itself here to gain a more exact idea of how it
performs. As with the combined CCRN and Sticky Layer approach we again
test four variations of this technique (Srewards, SrewardsAndPenaliseBadItems,
SrewardsAndPenaliseGoodItem, and SrewardsAndAllPenalties), (and S refers to
all four techniques in general).

CCRN with Persistent Sticky Layer (CCRN + SPersist) This uses a Sti-
cky Layer that is persistent across sessions. Instead of clearing the sticky

276

information after a given session it is retained for future sessions. This is
testing how strong our theory is that a user’s current preferences are con-
trolled by her current mood and that certain information is only relevant for
a limited amount of time.

Random (SS − CRRandom) Here we run a trial where the NNs are selected
at random and the results are averaged over 10 runs (SS-CR = C-CR if
neighbours are selected at random). We use this as a final lower benchmark.

In each version the system is evaluated according to three different search
criteria. Each one measures the average session length, which equates to recom-
mendation quality.

Item the actual target item needs to be found (recommended) in order to count
as a success, i.e. in order for a session to be completed satisfactorily.

Genre an item with the same genre categories as the target item needs to be
found.

SimGenre an item with similar genre categories to that of the target needs to
be found. (We define two sets of genre categories to be similar if they have
an overlap value of >= 0.5).

4.2 Results

The results for each of our different system variations, against each of our differ-
ent success criteria, are presented in Table 1. They report the average length of
session needed before the success criterion is found (smaller values are better).
The results show that there is little or no difference between the trials that use
a Sticky Layer with the CCRN (CCRN + S), and the baseline trial that only
uses the CCRN, (CCRN). This is disappointing as we would have expected
that the Sticky Layer would improve the quality of the neighbours selected and
ultimately reduce the session lengths. However, this may be due to the Sticky
Layer not being given enough influential weight.

When we compare the trial where the Sticky Layer is persistent (CCRN +
SPersist) to when it is not, we find that it performs significantly worse. This is to
be expected and further supports our argument that a user’s current preferences
can be different from her more long-term static preferences [5].

If we compare how the Boostrapped Sticky Layer (S), performs (with little
influence from the CCRN) two things are clear. Firstly, penalising users be-
cause they did not contribute to a liked item being recommended is too harsh
a strategy to be effective. This is evident from looking at the techniques that
penalise neighbours for not contributing to a liked item being recommended
(SrewardsAndPenaliseGoodItem and SrewardsAndAllPenalties) which perform no bet-
ter than the random technique. Conversely, if we don’t penalise users in this
manner in the Sticky Layer (Srewards and SrewardsAndPenaliseBadItems), we can
achieve results that far outperform the random technique, and that are similar
to CCRN + S techniques. So although the addition of the Sticky Layer is not
improving the CCRN results, there is certainly some value in using it. Moreover,

277

Table 1. Experimental Results

Item Genre SimGenre

CCRN 162.2 53.92 11.98

CCRN + Srewards 161.91 53.95 12.01

CCRN + SrewardsAndPenaliseBadItems 160.62 53.46 11.93

CCRN + SrewardsAndPenaliseGoodItem 163.22 53.89 11.98

CCRN + SrewardsAndAllPenalties 162.05 53.43 11.89

Srewards 162.98 53.69 11.97

SrewardsAndPenaliseBadItems 164.47 54.36 12.7

SrewardsAndPenaliseGoodItem 220.94 65.37 12.21

SrewardsAndAllPenalties 220.28 64.97 12.78

CCRN + SPersist 180.52 60.19 13.03

SS − CRRandom 223.85 68.68 14.94

the very fact that the Sticky Layer can achieve results comparable the CCRN
may be promising in dealing with the cold-start problem faced by collaborative
recommender systems [17]. The problem arises when a new user starts to use the
system and there is no preference information for her yet, making recommenda-
tion difficult. Similarily, our temporary CCRN activations (short-term profile)
and Sticky Layer are both empty too at the start of a recommendation session.

5 Conclusions

We propose that sticking with users that are contributing positively to the rec-
ommendation process is a novel and useful way of increasing recommendation
accuracy and reducing session length. Our preliminary evaluations have shown
that Sticky Layer recommendation performs better than random recommen-
dation and confirms that our approach has merit. While our results are not
overwhelmingly successful, we propose that it may have some value in the cold-
start problem of initial recommendations (even if it requires some minimal boot-
strapping, it could help speed up the delay while a user is building up enough
preference history).

The second contribution of this work is the implementation of a novel data
structure called the Collaborative Case Retrieval Net (CCRN) for retrieving NNs
for collaborative recommenders. This work follows on from earlier work in the
CBR and ACF fields by Hayes et al. [9] and Delany et al. [13]. CCRNs offer an
efficient and fast way of retrieving useful neighbours and allow the incorporation
of additional context data into the recommendation process. We demonstrate
this with the sandwiching of the Sticky Layer onto the CCRN.

In the future we will investigate the individual usefulness of the Sticky Layer
and the temporary and permanent components of the CCRN, by adjusting their
relative weights. We will also investigate the use of a decay function to prevent
certain users from leading the recommendation process after they have outlived
their usefulness. Finally a live user trial is in the pipeline.

278

References

1. Rafter, R., Bradley, K., Smyth, B.: Automated Collaborative Filtering Applications
for Online Recruitment Services. In: Proceedings of the International Conference on
Adaptive Hypermedia and Adaptive Web-based Systems, Trento, Italy, Springer-
Verlag (2000) 363 – 368

2. Bridge, D.: Towards Conversational Recommender Systems: A Dialogue Grammar
Approach. In: Proceedings of the Workshop in Mixed-Initiative Case-Based Rea-
soning, Workshop Programme at the Sixth European Conference in Case-Based
Reasoning, Aberdeen, Scotland (2002) 9–22

3. Goker, M., Thompson, C.: The Adaptive Place Advisor: A Conversational Recom-
mendation System. In: Proceedings of the 8th German Workshop on Case Based
Reasoning, Lammerbuckel, Germany (2000)

4. Aha, D.W., Breslow, L.A., Muñoz-Avila, H.: Conversational Case-based Reason-
ing. Applied Intelligence 14(1) (2001) 9–32

5. Rafter, R., Smyth, B.: Conversational Collaborative Recommendation - An Ex-
perimental Analysis. Artificial Intelligence Review 24(3–4) (2005) 301 – 308

6. McGinty, L., Smyth, B.: Evaluating Preference-Based Feedback in Recommenda-
tion Systems. In: Proceedings of the 13th Irish Conference on Artificial Intelligence
and Cognitive Science (AICS 2002), Limerick, Ireland, Springer-Verlag (2002) 209–
214

7. Hayes, C., Cunningham, P.: Context Boosting Collaborative Recommendations.
Knowledge-Based Systems 17(2–4) (2004) 131–138

8. Bridge, D., Kelly, J.P.: Ways of Computing Diverse Collaborative Recommen-
dations. In Wade, V., Ahsman, H., Smyth, B., eds.: Adaptive Hypermedia and
Adaptive Web-Based Systems, Springer (2006) 41–50

9. Hayes, C., Cunningham, P., Smyth, B.: A Case-Based Reasoning View of Au-
tomated Collaborative Filtering. In: ICCBR ’01: Proceedings of the 4th In-
ternational Conference on Case-Based Reasoning, Vancouver, British Columbia,
Canada, Springer-Verlag (2001) 234–248

10. Billsus, D., Pazzani, M.: A Hybrid User Model for News Story Classification. In:
Proceedings of 7th International Conference On User Modelling (UM99), Banff,
Canada (1999) 99–108

11. Widyantoro, D.H., Ioerger, T.R., Yen, J.: An Adaptive Algorithm for Learning
Changes in User Interests. In: Proceedings of the Eighth International Conference
on Information and Knowledge Management (CIKM ’99), Kansas City, Missouri,
ACM Press (1999) 405–412

12. Lenz, M., Auriol, E., Manago, M. In: Diagnosis and Decision Support. Springer
(1998) 51–90

13. Delany, S., Cunningham, P., Coyle, L.: An Assessment of Case-Based Reasoning
for Spam Filtering. Artificial Intelligence Review 24(3–4) (2005) 359–378

14. Richter, M.M.: Introduction. In Lenz, M., Bartsch-Spörl, B., Burkhard, H.D., Wess,
S., eds.: Case-Based Reasoning Technology, From Foundations to Applications,
Springer (1998) 1–16

15. Doyle, D., Loughrey, J., Nugent, C., Coyle, L., Cunningham, P.: FIONN: A Frame-
work for Developing CBR Systems. Expert Update 8(1) (2004) 11–14

16. GroupLens: MovieLens Dataset. (http://www.grouplens.org/)
17. Shardanand, U., Maes, P.: Social Information Filtering: Algorithms for Automating

Word of Mouth. In: Proceedings of the ACM SIGCHI Conference on Human
Factors in Computing Systems, Denver, Colorado, ACM Press (1995) 210–217

279

 Author Index

Bergin, Susan 151
Brew, Anthony 1
Brown, Kenneth N. 11
Burke, David A. 11
Cambazard, Hadrien 21
Cater, Arthur 191
Church, Karen 31
Collier, Rem 81
Costello, Fintan 121, 181
Coyle, Lorcan 270
Cummins, Ronan 41
Cunningham, Pádraig 1, 171
Curran, Dara 51
Devooght, Karl 201
Doherty, Darren 61
Duggan, Bryan 211
Dunnion, John 81
Griffith, Josephine 71
Grimaldi, Marco 1
Guo, Hao 220
Guyomard, Marc 201
Holland, Alan 230
Howley, Tom 240
Kameyama, Wataru 260
Lillis, David 81
Liu, Chang 250
Liu, Jun 250
Liu, Yang 91
Mac Namee, Brian 220
Madden, Michael G. 91, 240

McClean, Sally 250
McSherry, David 101
Nixon, Paddy 270
Nou, Chenda 260
Ó Broin, Pilib 111
O’Riordan, Colm 41, 51, 61,
 71, 111
O’Keeffe, Dervla 121
O’Mahony, Michael P. 131
O’Sullivan, Barry 21, 141
Papadopoulos, Alexandre 141
Prestwich, Steven 161
Rafter, Rachael 270
Scanlon, Patricia 151
Smyth, Barry 31, 131, 270
Sorensen, Humphrey 51, 71
Toolan, Fergus 81
Verachi, Stephania 161
Villalba, Santiago D. 171
Wang, Hui 250
Wu, Shengli 250
Zhao, Jiaying 181
Zheng, Nan 211

	Proceedings of the 18th Irish Conference on Artificial Intelligence and Cognitive Science
	Recommended Citation

