13 research outputs found

    The science-policy interfaces of the European network for observing our changing planet : From Earth Observation data to policy-oriented decisions

    Get PDF
    This paper reports on major outcomes of the ERA-PLANET (The European network for observing our changing planet) project, which was funded under Horizon 2020 ERA-net co-funding scheme. ERA-PLANET strengthened the European Research Area in the domain of Earth Observation (EO) in coherence with the European partici-pation to Group on Earth Observation and the Copernicus European Union's Earth Observation programme. ERA -PLANET was implemented through four projects focused on smart cities and resilient societies (SMURBS), resource efficiency and environmental management (GEOEssential), global changes and environmental treaties (iGOSP) and polar areas and natural resources (iCUPE). These projects developed specific science-policy workflows and interfaces to address selected environmental policy issues and design cost-effective strategies aiming to achieve targeted objectives. Key Enabling Technologies were implemented to enhancing 'data to knowledge' transition for supporting environmental policy making. Data cube technologies, the Virtual Earth Laboratory, Earth Observation ontologies and Knowledge Platforms were developed and used for such applications.SMURBS brought a substantial contribution to resilient cities and human settlements topics that were adopted by GEO as its 4th engagement priority, bringing the urban resilience topic in the GEO agenda on par with climate change, sustainable development and disaster risk reduction linked to environmental policies. GEOEssential is contributing to the development of Essential Variables (EVs) concept, which is encouraging and should allow the EO community to complete the description of the Earth System with EVs in a close future. This will clearly improve our capacity to address intertwined environmental and development policies as a Nexus.iGOSP supports the implementation of the GEO Flagship on Mercury (GOS4M) and the GEO Initiative on POPs (GOS4POPs) by developing a new integrated approach for global real-time monitoring of environmental quality with respect to air, water and human matrices contamination by toxic substances, like mercury and persistent organic pollutants. iGOSP developed end-user-oriented Knowledge Hubs that provide data repository systems integrated with data management consoles and knowledge information systems.The main outcomes from iCUPE are the novel and comprehensive data sets and a modelling activity that contributed to delivering science-based insights for the Arctic region. Applications enable defining and moni-toring of Arctic Essential Variables and sets up processes towards UN2030 SDGs that include health (SDG 3), clean water resources and sanitation (SDGs 6 and 14).Peer reviewe

    Essential earth observation variables for high-level multi-scale indicators and policies

    Get PDF
    Several holistic approaches are based on the description of socio-ecological systems to address the sustainability challenge. Essential Variables (EVs) have the potential to support these approaches by describing the status of the Earth system through monitoring and modeling. The different classes of EVs can be organized along the environmental policy framework of Drivers, Pressures, States, Impacts and Responses. The EV concept represents an opportunity to strengthen monitoring systems by providing observations to seize the fundamental dimensions of the Earth system The Group on Earth Observation (GEO) is a partnership of 113 nations and 134 participating organizations in 2021 that are dedicated to making Earth Observation (EO) data available globally to inform about the state of the environment and enable data-driven decision processes. GEO is building the Global Earth Observation System of Systems, a set of coordinated and independent EO, information and processing systems that interoperate to provide access to EO for users in the public and private sectors. The progresses made in the development of various classes of EVs are described with their main policy targets, Internet links and key references The paper reviews the literature on EVs and describes the main contributions of the EU GEOEssential project to integrate EVs within the work plan of GEO in order to better address selected environmental policies and the SDGs. A new GEO-EVs community has been set to discuss about the current status of the EVs, exchange knowledge, experiences and assess the gaps to be solved in their communities of providers and users. A set of four traits characterizing an EV was put forward to describe the entire socio-ecological system of planet Earth: Essentiality, Evolvability, Unambiguity, and Feasibility. A workflow from the identification of EO data sources to the final visualization of SDG 15.3.1 indicators on land degradation is demonstrated, spanning through the use of different EVs, the definition of the knowledge base on this indicator, the implementation of the workflow in the VLab (a cloud-based processing infrastructure), the presentation of the outputs on a dedicated dashboard and the corresponding narrative through a story map. The concept of EV started in the climate sphere and spread to other domains of the earth system but less so in socio-economic activities. More work is therefore needed to converge on a common definition and criteria in order to complete the implementation of EVs in all GEO focus areas. EVs should screen the entire Earth's social-ecological system, providing a trusted and long-term foundation for interdisciplinary approaches such as ecological footprinting, planetary boundaries, disaster risk reduction, and nexus frameworks, as well as many other policy frameworks such as the SDG

    Green Infrastructures and Essential Variables Workflows towards SDG 15

    Get PDF
    The Sustainable Development Goals (SDGs) established to be achieved by 2030 are an ensemble of 17 goals to address global environmental and social economic concerns [1]. SDG 15 concerns the protection of terrestrial ecosystems to halt biodiversity loss. Target 15.9 states that by 2020, ecosystem and biodiversity values should be integrated into national and local planning, and is related to Aichi Biodiversity Target 2 of the Strategic Plan for Biodiversity 2011-2020, which also involves integrating biodiversity values into national accounting and reporting systems [2]. The importance of maintaining ecosystem integrity is becoming widely recognized, not only to halt biodiversity loss, but also to preserve Nature’s benefits to human well-being, and has been included in many other targets such as the EU 2020 Biodiversity Strategy’s target 2, which requires the restoration of at least 15% of degraded ecosystems as well as the establishment of green infrastructures to enhance ecosystem services (ES) [3]. The Green Infrastructures (GI) framework is used as a policy tool and promotes the multi-functional use of landscapes to improve biodiversity conservation and benefits to society. It is formulated as a “strategically planned network of natural and semi-natural areas” [4] and is based on three main pillars: key habitats for target species, connectivity and ES [5]. As part of ERA-PLANET’s GEOEssential project (Essential Variables workflows for resource efficiency and environmental management), our study aims at demonstrating how the GI framework can be implemented at any geographical area or time-period through reproducible modeling workflows from field data to Essential Variables (EV) data products and policy relevant indicators to monitor and inform advances towards environmental targets. A proof of concept workflow was already set in place for computing the indicator 15.1.2: Proportion of important sites for terrestrial and freshwater biodiversity that are covered by protected areas, by ecosystem, while other workflows will follow. The execution platform is the GEOEssential Virtual Laboratory, a cloud-based virtual platform which enables access to, and execution of workflows for the ecosystem science community of practice and even more. REFERENCES: 1. UNSD, 2016. Sustainable Development Goals Report. https://unstats.un.org/sdgs/report/2016/ (accessed 18 May 2018). 2. CBD Secretariat, 2010. The Strategic Plan for Biodiversity 2011-2020, and the Aichi Biodiversity Targets. Secretariat of the Convention on Biological Diversity, Nagoya. 3. European Commission, 2011. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions - Our life insurance, our natural capital: an EU biodiversity strategy to 2020, Brussels. 4. European Commission, 2013. Green infrastructure (GI) - Enhancing Europe’s Natural Capital, Brussels. 5. Liquete, C., Kleeschulte, S., Dige, G., Maes, J., Grizzetti, B., Olah, B., & Zulian, G., 2015. Mapping green infrastructure based on ecosystem services and ecological networks: A Pan-European case study. Environmental Science & Policy, 54, 268–280

    Geospatial User Feedback: how to raise users’ voice and collectively build knowledge at the same time

    Get PDF
    Geospatial data is used not only to contemplate reality but also, in combination with analytical tools, to generate new information that requires interpretation. In this process data users gain knowledge about the data and its limitations (the user side of data quality) as well as knowledge on the status and evolutions of the studied phenomena. Knowledge can be annotations on top of the data, responses to questions, a careful description of the processes applied, a piece of software code or scripts applied to the data, usage reports or a complete scientific paper. This paper proposes an extension of the current Open Geospatial Consortium standard for Geospatial User Feedback to include the required knowledge elements, and a practical implementation. The system can incrementally collect, store, and communicate knowledge elements created by users of the data and keep them linked to the original data by means of permanent data identifiers. The system implements a Web API to manage feedback items as a frontend to a database. The paper demonstrates how a JavaScript widget accessing this API as a client can be easily integrated into existing data catalogues, such as the ECOPotential web service or the GEOEssential data catalogue, to collectively collect and share knowledge

    Introducing the Mangrove Microbiome Initiative: Identifying Microbial Research Priorities and Approaches To Better Understand, Protect, and Rehabilitate Mangrove Ecosystems

    Get PDF
    Mangrove ecosystems provide important ecological benefits and ecosystem services, including carbon storage and coastline stabilization, but they also suffer great anthropogenic pressures. Microorganisms associated with mangrove sediments and the rhizosphere play key roles in this ecosystem and make essential contributions to its productivity and carbon budget. Understanding this nexus and moving from descriptive studies of microbial taxonomy to hypothesis-driven field and lab studies will facilitate a mechanistic understanding of mangrove ecosystem interaction webs and open opportunities for microorganism-mediated approaches to mangrove protection and rehabilitation. Such an effort calls for a multidisciplinary and collaborative approach, involving chemists, ecologists, evolutionary biologists, microbiologists, oceanographers, plant scientists, conservation biologists, and stakeholders, and it requires standardized methods to support reproducible experiments. Here, we outline the Mangrove Microbiome Initiative, which is focused around three urgent priorities and three approaches for advancing mangrove microbiome research

    Tech4SDG : die Verwendung von Raumdaten fĂĽr nachhaltiges Investieren in KMU zu SDGs

    Get PDF
    In der durch den Menschen und dessen Tätigkeiten beeinflussten Welt bedarf es dringend einer nachhaltigen Entwicklung. Für diese gibt es nicht einen allgemeingültigen Weg, in diversen Bereichen und auf verschiedenen Ebenen muss Veränderung geschehen. Mit der monetären Kraft beispielsweise lässt sich die Bewegung Richtung nachhaltiger Entwicklung fördern, indem Investitionen in KMU mit positivem Wirkbereich auf SDGs sowie als Treiber der Wirtschaft getätigt werden. Wertungen der Firmen auf ihre Auswirkungen auf die Umwelt, Soziales sowie Unternehmensführung sind bis heute nicht verlässlich, so dass Geodaten eine Ergänzung oder gar ein Ersatz für herkömmliche Beurteilungsmethoden sein könnten. Die vorliegende Arbeit geht dieser Thematik nach, indem in einem ersten Schritt eine Literaturrecherche über die Verwendung räumlicher Informationen für die Beurteilung der SDGs 1 bis 8 oder Unternehmungen mit Einfluss auf diese Ziele passiert. Ausserdem wird nach geeigneten Geodaten im globalen Kontext wie auch für den Subkontinent Indien geforscht und deren Eigenschaften werden mit eigentlichen Anforderungen an ebendiese in einen Vergleich gesetzt. Zur praktischen Anwendung der gefundenen Daten und zur Erkennung von möglichen Methoden, die Geodaten in Verbindung mit Aktionsräumen von Unternehmen zu bringen, findet eine Fallstudie über das Land Indien unter Einbezug zweier Firmen statt. Unter anderem lässt sich eine inhomogene Datenverfügbarkeit zu den SDGs im globalen Raum sowie auf subnationaler Stufe des indischen Subkontinentes konstatieren. Diese Diskrepanzen betreffen insbesondere die räumliche Auflösung, die Wiederholrate sowie die Aktualität der Daten. So ist auch der Einbezug von Unternehmungen und eine eindeutige Beurteilung deren Aktivitäten innerhalb ihrer Aktionsräume erschwert. Anhand der Fallstudie kann zum einen gezeigt werden, dass GIS zu visuell aussagekräftigen Darstellungen verhelfen kann. Zum anderen bieten Berechnungen und weitere Darstellungen mittels Excel gute Möglichkeiten zur genaueren Einordnung der Werte. Geodaten sollen und können zur Beurteilung von SDG-Faktoren, welche unter anderem durch Unternehmen beeinflusst werden, verwendet werden. Zunächst bedarf es allerdings grösseren Datenmengen und einem verbesserten Datenmanagement. Dies schliesst eine sich lohnende Kommunikation zwischen Geoinformatik-, Statistik- und Erdbeobachtungsagenturen mit ein.In the world influenced by man and his activities, sustainable development is urgently needed. There is not one universal way to achieve this, change must happen in different areas and at different levels. The power of money, for example, can drive the movement towards sustainable development by investing in SMEs with a positive impact on SDGs and as drivers of the economy. Assessments of companies' environmental, social and governance impacts are not yet reliable, so geospatial data could be a complement or even a substitute for traditional assessment methods. This paper addresses this issue by first conducting a literature review on the use of spatial information for the assessment of SDGs 1 to 8 or enterprises with an impact on these SDGs. Furthermore, suitable geodata in the global context as well as for the subcontinent India will be researched and their characteristics will be compared with the actual requirements for them. For the practical application of the found data and for the identification of possible methods to relate the geodata to the action spaces of companies, a case study on the country of India will take place with the involvement of two companies. Among other things, an inhomogeneous data availability on the SDGs can be observed in the global area, but also at the subnational level of the Indian subcontinent. These discrepancies relate in particular to the spatial resolution, the repetition rate as well as the topicality of the data. Thus, the inclusion of companies and a clear assessment of their activities within their action areas is also difficult. On the one hand, the case study shows that GIS can help to create visually meaningful representations. On the other hand, calculations and further representations using Excel offer good possibilities for a more precise classification of the values. Geodata should and can be used to assess SDG factors that are influenced by companies, among others. First, however, larger data volumes and improved data management are needed. This includes a worthwhile communication between geoinformatics, statistics and earth observation agencies

    New Pathways to support social-ecological Systems in Change

    Get PDF
    Klimawandel und Biodiversitätsverlust sowie Verstädterung und demografischer Wandel haben tiefgreifende Auswirkungen auf Städte und ihre Ökosysteme und damit auf die Lebensbedingungen der Mehrheit der Menschheit. Die Geschwindigkeit des Wandels und die Dringlichkeit der Folgen macht Umweltmonitoring zu einem potentiell interessanten Tool für nachhaltige und resiliente Stadtentwicklung. Der erste Artikel gibt einen Überblick über den aktuellen Stand der Fernerkundung in Bezug auf Stadtökologie und zeigt, dass Fernerkundung relevant für nachhaltige Stadtplanung ist. Es bestehen jedoch bestehen Mängel, da viele Studien nicht direkt umsetzbar sind. Der zweite Artikel zeigt, dass eine wachsende Stadt Möglichkeiten für den Ausbau der grünen Infrastruktur bieten kann. Im dritten Artikel wird untersucht, wie sich die städtische Dichte auf die Bereitstellung von Ökosystemdienstleistungen der grünen Infrastruktur auswirkt. Es wird gezeigt, dass eine hohe Siedlungsdichte nicht zwangsläufig zu einem geringeren Biodiversitätspotenzial oder einer geringeren Kühlkapazität führt. Allerdings sind dicht bebaute Gebiete mit geringer Vegetationsbedeckung besonders auf grüne Infrastruktur angewiesen. Der vierte Artikel befasst sich mit der Frage, wie naturbasierte Lösungen durch eine bessere Vernetzung der Beteiligten gestärkt werden können. Auf der Grundlage einer gezielten Literaturrecherche über Informationstechnologie zur Unterstützung sozial-ökologischer Systeme wird ein Instrument zur Entscheidungshilfe entwickelt. Dieses kombiniert ökologische und soziale Indikatoren, um Klimawandeladaption in Übereinstimmung mit den sozio-ökologischen Bedingungen entwickeln zu können. Der fünfte Artikel bietet eine grundsätzliche Perspektive zur Unterstützung der städtischen Nachhaltigkeit, die auf dem ökologischen-Trait Konzept basiert. Zusammen bieten die fünf Artikel Wege für die Fernerkundungswissenschaft und die angewandte Raumplanung für nachhaltige und resiliente Entwicklungen in Städten.Climate change and biodiversity loss, as well as urbanisation and demographic change, are major global challenges of the 21st century. These trends have profound impacts on cities and their ecosystems and thus on the living conditions of the majority of humanity. This raises the need for timely environmental monitoring supporting sustainable and resilient urban developments. The first article is an overview of the state of the art of remote sensing science in relation to urban ecology. The review found that remote sensing can contribute to sustainable urban policy, still insufficiencies remain as many studies are not directly actionable. The second article shows that a growing city can provide opportunities for an increase in green infrastructure. Here, remote sensing is used for long-term analysis of land-use in relation to urban forms in Berlin. The third article examines how urban density affects ecosystem service provision of urban green infrastructure. It is shown that residential density does not necessarily lead to poor biodiversity potential or cooling capacity. However, dense areas with low vegetation cover are particularly dependent on major green infrastructure. The fourth article explores ways to reinforce nature-based solutions by better connecting and informing stakeholders. Based on a focussed literature review on information technology supporting urban social-ecological systems, a decision support tool is developed. The tool combines indicators based on ecological diversity and performance with population density and vulnerability. This way, climate change adaptation can be developed in accordance with socio-ecological conditions. The concluding fifth article offers an outlook on a larger framework in support of urban sustainability, based on the ecological trait concept. Together the five research papers provide pathways for urban remote sensing science and applied spatial planning that can support sustainable and resilient developments in cities

    GEOEssential-mainstreaming workflows from data sources to environment policy indicators with essential variables

    No full text
    When defining indicators on the environment, the use of existing initiatives should be a priority rather than redefining indicators each time. From an Information, Communication and Technology perspective, data interoperability and standardization are critical to improve data access and exchange as promoted by the Group on Earth Observations. GEOEssential is following an end-user driven approach by defining Essential Variables (EVs), as an intermediate value between environmental policy indicators and their appropriate data sources. From international to local scales, environmental policies and indicators are increasingly percolating down from the global to the local agendas. The scientific business processes for the generation of EVs and related indicators can be formalized in workflows specifying the necessary logical steps. To this aim, GEOEssential is developing a Virtual Laboratory the main objective of which is to instantiate conceptual workflows, which are stored in a dedicated knowledge base, generating executable workflows. To interpret and present the relevant outputs/results carried out by the different thematic workflows considered in GEOEssential (i.e. biodiversity, ecosystems, extractives, night light, and food-water-energy nexus), a Dashboard is built as a visual front-end. This is a valuable instrument to track progresses towards environmental policies
    corecore