664 research outputs found

    Fuzzy Multiattribute Utility Analysis for Collective Choice

    Get PDF
    An extension of multiattribute utility analysis for the multiple-agents decision problem is presented. Although multiattribute utility analysis is concerned with decisionmaking under uncertainty, assessment of parameters of the multiattribute utility functions is actually performed deterministically by the single decisionmaker. This paper is concerned with fuzzy evaluation of the multiattribute utility function, which is based on a fuzzy preference ordering and scaling constants using membership functions of the fuzzy set theory. The fuzzy approach treats a conceptual imprecision that accrues from a multiplicity of evaluation. A fuzzy multiattribute utility function with multiple-agents evaluation is derived. A computer package ICOPSS/FR for assuring the transitivity of collective preference ordering in an agreement level is demonstrated for assessment of the fuzzy multiattribute utility functions

    Modelling and optimizing multiple attribute decisions by using fuzzy sets

    Get PDF
    The purpose of this paper is to present a coherent perspective of modeling and optimizing multiple attribute decisions by using fuzzy sets. In management practice we face most of the time the situation in which a problem have several possible solutions and each solution can be analyzed using multiple criteria models. In the same time, in real life decision making process there is a given level of uncertainty which makes difficult a clear cut analytical analysis. The object of this article is to build a model approach for making multiple criteria decision using fuzzy sets of objects. Elaborating multiple attribute decisions involves performing an assessment and selecting from a given and finite set of possible alternative courses of action in the presence of a given and finite, and usually conflicting set of attributes and criteria.decision making, fuzzy sets, modeling, multiple criteria optimization.

    Dominance intensity measure within fuzzy weight oriented MAUT: an application

    Get PDF
    We introduce a dominance intensity measuring method to derive a ranking of alternatives to deal with incomplete information in multi-criteria decision-making problems on the basis of multi-attribute utility theory (MAUT) and fuzzy sets theory. We consider the situation where there is imprecision concerning decision-makers’ preferences, and imprecise weights are represented by trapezoidal fuzzy weights.The proposed method is based on the dominance values between pairs of alternatives. These values can be computed by linear programming, as an additive multi-attribute utility model is used to rate the alternatives. Dominance values are then transformed into dominance intensity measures, used to rank the alternatives under consideration. Distances between fuzzy numbers based on the generalization of the left and right fuzzy numbers are utilized to account for fuzzy weights. An example concerning the selection of intervention strategies to restore an aquatic ecosystem contaminated by radionuclides illustrates the approach. Monte Carlo simulation techniques have been used to show that the proposed method performs well for different imprecision levels in terms of a hit ratio and a rank-order correlation measure

    A General Overview of Multi-objective Multiple-participant Decision Making for Flood Management

    Get PDF
    Decision-making problems in water resources are often associated with multiple objectives and multiple stakeholders. To enable more effective and acceptable decision outcome, it is required that more participation is ensured in the decision making process. This is particularly relevant for flood management problems where the number of stakeholders could be very large. Although application of multi-objective decision-making tools in water resources is very wide, application with the consideration of multiple stakeholders is much more limited. The solution methodologies adapted for multi-objective multi-participant decision problems are generally based on aggregation of decisions obtained for individual decision makers. This approach seems somewhat inadequate when the number of stakeholders is very large, as often is the case in flood management. The present study has been performed to have an overview of existing solution methodologies for multi-objective decision making approaches in water resources. Decision making by single and multiple stakeholders has been considered under both deterministic and uncertain conditions. It has been found that the use of fuzzy set theory to represent various uncertainties associated with decision making situations under multi-objective multiple-participant environment is very promising. Coupled with multi-objective methods (e. g. compromise programming and goal programming), fuzzy approach has also the ability to support group decisions, to reflect collective opinions and conflicting judgments.https://ir.lib.uwo.ca/wrrr/1003/thumbnail.jp

    REVIEW OF MODELING PREFERENCES FOR DECISION MODELS

    Get PDF
    A group decision problem is set in environments where there is a common issue to solve, a set of possible options to choose, and a set of individuals who are experts and express their opinions about the set of possible alternatives with the intention to reach a collective decision as the unique solution of the problem in question. The modeling of the preferences of the decision-maker is an essential stage in the construction of models used in the theory of decision, operations research, economics, etc. On decision problems experts use models of representation of preferences that are close to their disciplines or fields of work. The structures of information most commonly used for the representation of the preferences of experts are vectors of utility, orders of preference and preference relations. In decision problems, the expression of preferences domain is the domain of information used by the experts to express their preferences, the main are numerical, linguistic, and intervalar stressing the multi-granular linguistic. This paper is a review of these concepts. Its purpose is to provide a guide of bibliographic references for these concepts, which are briefly discussed in this document

    Conflicting Objectives in Decisions

    Get PDF
    This book deals with quantitative approaches in making decisions when conflicting objectives are present. This problem is central to many applications of decision analysis, policy analysis, operational research, etc. in a wide range of fields, for example, business, economics, engineering, psychology, and planning. The book surveys different approaches to the same problem area and each approach is discussed in considerable detail so that the coverage of the book is both broad and deep. The problem of conflicting objectives is of paramount importance, both in planned and market economies, and this book represents a cross-cultural mixture of approaches from many countries to the same class of problem

    Multi-criteria analysis: a manual

    Get PDF

    Cognitive Best Worst Method for Multiattribute Decision-Making

    Get PDF

    Intertemporal Choice of Fuzzy Soft Sets

    Get PDF
    This paper first merges two noteworthy aspects of choice. On the one hand, soft sets and fuzzy soft sets are popular models that have been largely applied to decision making problems, such as real estate valuation, medical diagnosis (glaucoma, prostate cancer, etc.), data mining, or international trade. They provide crisp or fuzzy parameterized descriptions of the universe of alternatives. On the other hand, in many decisions, costs and benefits occur at different points in time. This brings about intertemporal choices, which may involve an indefinitely large number of periods. However, the literature does not provide a model, let alone a solution, to the intertemporal problem when the alternatives are described by (fuzzy) parameterizations. In this paper, we propose a novel soft set inspired model that applies to the intertemporal framework, hence it fills an important gap in the development of fuzzy soft set theory. An algorithm allows the selection of the optimal option in intertemporal choice problems with an infinite time horizon. We illustrate its application with a numerical example involving alternative portfolios of projects that a public administration may undertake. This allows us to establish a pioneering intertemporal model of choice in the framework of extended fuzzy set theorie
    • 

    corecore