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a b s t r a c t 

We introduce a dominance intensity measuring method to derive a ranking of alternatives to deal with incomplete information in multi-criteria 
decision-making problems on the basis of multi-attribute utility theory (MAUT) and fuzzy sets theory. We consider the situation where there is 
imprecision concerning decision-makers’ preferences, and imprecise weights are represented by trapezoidal fuzzy weights. The proposed method is 
based on the dominance values between pairs of alternatives. These values can be computed by linear programming, as an additive multi-attribute 
utility model is used to rate the alternatives. Dominance values are then transformed into dominance intensity measures, used to rank the alternatives 
under consideration. Distances between fuzzy numbers based on the general-ization of the left and right fuzzy numbers are utilized to account for 
fuzzy weights. 

An example concerning the selection of intervention strategies to restore an aquatic ecosystem contaminated by radionuclides illustrates the 
approach. Monte Carlo simulation techniques have been used to show that the proposed method performs well for different imprecision levels in 
terms of a hit ratio and a rank-order correlation measure. 

1. Introduction 

Most complex decision-making problems involve imprecise 
information [58]. It is frequently impossible to predict with 
certainty the alternative performances, since as they often reflect 
social or environmental impacts or are taken from statistics or 
measurements, they may be intangible. 

Neither is it easy to elicit the relative importance of criteria by 
means of precise weights. Decision makers (DMs) may find it 
difficult to compare criteria or not want to reveal their prefer­
ences in public. Furthermore, in a group decision-making context, 
imprecision concerning preferences may be the result of a 
negotiation process. This situation is usually referred to as 
decision-making with imprecise information, with incomplete 
information or with partial information [49,50]. 

A number of papers on multi-attribute utility theory (MAUT) 
have dealt with incomplete information. For instance, Sage and 
White [54] proposed the model of imprecisely specified multi-
attribute utility theory (ISMAUT), where preference information 
about both weights and utilities is assumed not to be precise. 
Malakooti [38] suggested a new efficient algorithm for ranking 
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alternatives when there is incomplete information about the 
preferences and the value of the alternatives. Ahn [1] extended 
Malakooti’s work. 

More recently, Jime´nez et al. [29] accounted for missing 
information about some alternative performances. They proposed 
using the attribute range rather than redistributing the respective 
weights throughout the objective hierarchy. 

Another possibility for dealing with imprecision within MAUT 
described in the literature attempts to apply the concept of 
pairwise and absolute dominance to eliminate inferior alterna­
tives, leading to the so-called surrogate weighting methods [60,4], 
and adapted classical decision rules [46,56], respectively. 

Eum et al. provided linear programming characterizations of 
dominance and potential optimality for alternatives when informa­
tion about performances and/or weights is incomplete [21]. Lee et al. 
extended the approach to hierarchical structures [37], and Park 
developed the concepts of weak potential optimality and strong 
potential optimality [45]. In [39], the more general case considering 
imprecision, described by means of fixed bounds, appears in alter­
native performances, as well as in weights and utilities. 

More recently, different dominance measuring methods, 
which use information about each alternative’s intensity of 
dominance, have been proposed [2,41,40]. 

On the other hand, stochastic multi-criteria acceptability analysis 
(SMAA) is based on exploring the weight space in order to 
describe which scores would make each alternative the preferred 
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option. Inaccurate or uncertain criteria values are represented by 
probability distributions and partial preference information. The 
SMAA-2 me thod [34] extended t he original SMAA by considering 
all ranks in the analysis, and SMAA-O [36] was designed for 
problems whe re information for some or all criteria are ordinal. 
Different ways of handling dependent uncertainties within SMAA-
2 have been analyzed in [35] . 

Sarabando and Dias [57] gave a brief overview of approaches 
proposed within t he MAUT and MAVT (Multi-Attribute Value 
Theory) framework to deal wi th incomplete information. 

The analytical hierarchy process (AHP) is another popular 
method, apart from MAUT, w h e n t he information on criteria is 
mainly cardinal and where at t r ibutes are fully compensatory. 
Incomplete information within AHP has also been addressed in 
the li terature, such as [53], whe re an interval of numerical values 
is associated wi th each judgment in the pairwise comparisons or 
[33,25], dealing wi th missing data in AHP. 

Outranking methods [5,23,44] overcome the assumption that 
attributes are fully compensatory and there is a true ranking of 
alternatives just waiting to be discovered. The most widely used 
outranking methods are ELECTRE and PROMETHEE. ELECTRE III 
improved ELECTRE II to deal with inaccurate, imprecise, uncertain 
and ill-determined data, while PROMETHEE III is based on intervals. 

Studies concerning imprecision were also conducted using the 
theory of fuzzy sets [8,30], counting on the advances of research 
in ar i thmetic and the logical operators of fuzzy numbers , such as 
[62], suggesting t he comparison of fuzzy number s using a fuzzy 
measure of distance [17], proposing t he non-addit ive fuzzy 
integral w h e n there is dependence among criteria; or [43], 
introducing ordered weighted aggregation operators. 

A modified fuzzy version of TOPSIS was proposed in [11], 
whereas [47] introduced a n e w specification of a fuzzy model, the 
fuzzy utility model which is applied for road route choice. 

Preliminary works on the extension of AHP [13] to account for 
fuzzy numbers were proposed in [64,6]. A fuzzy integrated hierarch­
ical decision-making approach was developed in [13] to solve the 
distribution center location selection problem. A fuzzy extension of 
AHP, FEAHP, is provided in [12] to deal with the selection of global 
suppliers, where triangular fuzzy numbers are used in the DMs’ 
comparison judgements, whereas the final priority of the considered 
criteria is based on a fuzzy synthetic extent analysis [14]. 

Developments related to fuzzy outranking methods , such as 
the utilization of t he PROMETHEE method wi th trapezoidal fuzzy 
number s proposed in [24] are reviewed in [7] . More recently, an 
extension of t he ELECTRE I method for group decision-making in a 
fuzzy environment was introduced in [26] . 

In this paper we introduce a dominance measuring method that 
adapts the proposal in [41,27] to account for fuzzy weights, exploiting 
research reported in [62] on distances between fuzzy numbers based 
on the generalization of the left and right fuzzy numbers [19,3]. 

In Section 2 we review dominance-measuring methods proposed 
to deal with incomplete information within MAUT, which can be 
viewed as the groundwork of the proposed method. In Section 3 we 
outline the dominance-measuring method accounting for trapezoidal 
fuzzy weights. The approach is illustrated in Section 4 using an 
example concerning the selection of intervention strategies to restore 
an aquatic ecosystem. In Section 5, the performance of the proposed 
method is analyzed using Monte Carlo simulation techniques. Finally, 
some conclusions are discussed in Section 6. 

2 . D o m i n a n c e - m e a s u r i n g m e t h o d s 

As cited in t he previous section, one option described in the 
l i terature for dealing wi th imprecision within MAUT is t o elim­
inate inferior alternatives based on the concept of dominance. 

Let us consider a decision-making problem with m alterna­
tives, A, i = 1,...,m, and n attributes, X,, j = 1 , . . . , n , where 
incomplete information about input parameters was incorporated 
into the decision-making process. (i,- (U; = (ui1,... ,«;„) A (i;) define 
the feasible region for utilities associated with alternative Aj over 
each attribute. Different methods can be used to build utility 
functions depending on the level of knowledge and features of the 
attribute under consideration. When there is in-depth and precise 
knowledge about the attribute, the DM can directly construct a 
piecewise linear utility function by providing the best and the 
worst attribute values and some intermediate values with their 
respective imprecise utilities. Methods based on lotteries, such as 
fractile method and the extreme gambles method [22], are used 
when DMs have little knowledge about or are inexperienced in 
the domain. The GMAA decision support system, which includes 
the combination of two slightly modified standard procedures for 
utility assessment, is introduced in [28]. Incomplete information 
is entered as value intervals in response to the probability 
questions that the DM is asked, checking for consistency. 

On the other hand, W defines the feasible region for weights, 
representing the relative importance of criteria as follows: 

• ordinal relations, w A W = {w = (W1,... ,w„): W1 > W2 > ... > Wn}, 
• value intervals, w A W = {w = (W1,... ,w„) : w,- A [IA^,w|'],j = 1,... 

,n}, 
• intervals for weight ratios (trade-offs), w A W = {w = (W1,... 

,w„) : Wj/Wk A [wjĵ ,wj/j,j = 1,... ,n}, 
• linear inequality constraints for weights, w A W = {w = 

(W1,... ,w„) : Aw < c}, or 
• nonlinear inequality constraints for weights, w A W = {w = 

(W1,___,w„) : g(w) < 0}. 

There are many weighting methods that use different ques­
tioning procedures to elicit weights, such as SWING weighting and 
SMARTS [20], pricing out method and TRADEOFFS weighting [31], 
AHP [52], or preference programming [55]. Most are adapted to 
account for imprecision. 

We assume an additive model, which is considered a valid 
approximation in most real decision-making problems for the 
reasons described in [48,59] , and is widely used within MAUT, 

n 
u(Ai) = y ^ WjUij = w'^Uj. 

i — 1 

Given two alternatives Aj. and A/, the alternative Aj. dominates 
Ai if Did > 0, Dki being the optimum value of the optimization 
problem: 

DM = min{u(Ak)—u(Ai) 

s.t. Ufc A (ifc,Uj A Uj 

w A W . 

w'^(Uk-Uj)} 

(1) 

This concept of dominance is called pairwise dominance. 
Another type of dominance, known as absolute dominance, can 
be employed [56]. Absolute dominance considers the following 
optimization problems: 

(ifc = max{u(Ai() = w'̂ U/j | w A W,Ufc A (i/J and 

Lfc = min{u(Afc) = w'̂ U/j | w A W , ^ A (i/J. 

Alternative Aj. absolutely dominates Ai if I/; > (ij, i.e., the lower 
bound of Aii exceeds the upper bound of Ai. Note that if Aj. 
absolutely dominates Ai, then Ak dominates Ai, but the reverse 
does not hold. 

Note that this dominance approach often results in almost no 
prioritization of alternatives or too many non-dominated 



alternatives [32]. However, pairwise and absolute dominance 
values can be used to further prioritize competit ive alternatives, 
and hence recommend the best alternative and fully rank alter­
natives. An example of h o w these dominance values have been 
employed is t he adaptat ion of four classical decision rules to 
encompass an imprecise decision context [46,56]. 

A recent approach is to use information about each al terna­
tive’s intensity of dominance, known as dominance-measuring 
methods. The starting point for dominance-measuring methods 
is t he assessment of the so-called dominance matrix: 

— L/12 . . . i-'1m-1 ^1m 

O21 — • • • D2m-1 D2m 

O31 D32 — D3m-1 ^ 3 ^ 

^m1 ^m2 Dmm-1 

where Dkl values are computed from expression (1). 
The first t w o dominance-measuring methods were proposed 

in [2], where bo th dominating and dominated measures were 
computed from the paired dominance values, leading to a net 
dominance. This is used as a measure of t he s t rength of preference 
in t he sense that a greater net value is better . 

Two n e w dominance-measuring methods were proposed in 
[41] . The first one was based on the idea first suggested by Ahn 
and Park. Dominating and dominated measures are computed, 
bu t they are then combined into a preference intensity rather 
than a ne t dominance measure . In t he second method, al terna­
tives were ranked on the basis of a global preference intensity 
measure. Paired dominance values were first transformed into 
preference intensities depending on the preference for al terna­
tives Ak and Al. Then a global preference intensity measure was 
derived for each alternative Ak. This global preference intensity 
measure was calculated as t he s u m of the preference intensities of 
alternative Ak compared wi th t he other alternatives. This was 
used as the measure of s t rength of preference. 

The above four me thods could be applied for different repre­
sentat ions of imprecision concerning weights . Monte Carlo s imu­
lation techniques were applied to analyze and compare their 
performance wi th other approaches, such as surrogate weighting 
methods [60] and [4], and adapted classical decision rules for 
ordinal relations regarding at t r ibute weights, i.e., DMs ranked 
at t r ibutes in descending order of importance. The results showed 
tha t t he preference intensity measure based me thod performs 
bet ter than t he adaptat ion of classical decision rules in t e rms of 
t he identification of t he best alternative and the overall ranking of 
alternatives, closely rivaling t he rank-order centroid weights 
method, which was identified as t he best approach. 

Mateos e t al. consider different cases wi th incomplete infor­
mat ion about weights [40], specifically, weight intervals, weights 
fitting independent normal probability distributions or weights 
represented by triangular or trapezoidal fuzzy numbers . Monte 
Carlo simulation is again used to compare dominance-measuring 
methods wi th SMAA and SMAA-2 methods where intervals account 
for imprecision in weights . 

The dominance concept has also been used within fuzzy mul t i -
criteria analysis. Although t he mos t widely used definition is 
based on the max imum degree of membersh ip of t he t w o 
considered fuzzy numbers (see, e.g. [16,15]), other definitions 
have been proposed, such as t he comparison of overlapped and 
non-overlapped areas among the t w o fuzzy number s [61], or their 
ar i thmetic difference [67]. In [66], Yeh and Deng combine 
ari thmetic difference wi th t he notion of fuzzy reference set to 
address t he fuzzy ranking problem. 

The dominance-measuring me thod tha t w e introduce in this 
paper adapts t he proposal in [41,27] to account for fuzzy weights, 

exploiting research reported in [62] on distances be tween fuzzy 
numbers based on the generalization of the left and right fuzzy 
numbers [19,3]. 

3. A dominance-measuring method accounting for 
trapezoidal fuzzy weights 

First, let us review several concepts on fuzzy sets that will be 
used in the proposed method. A fuzzy set a = (01,02,03,04) is 
called a generalization of the left and right fuzzy numbers (GLRFN) 
when its membership function is defined as 

02-X 

fia(x)= 

L2—^ i f a 1 < x < 0 2 
Vo2-O1 

1 i f 0 2 < X < 0 3 

R 3 1 i f 0 3 < X < 0 4 
04-03 

otherwise, 

where L and R are strictly decreasing functions defined in [0,1] 
and satisfying the conditions: 

L(x) = R(x) = 1 if X < 0, 

L(x) = R(x) = 0 if X > 0. 

For 02 =03, we have the classical Dubois-Prade definition of 
right and left triangular fuzzy numbers [19]. Trapezoidal fuzzy 
numbers are a special case of GLRFN with L(x) = R(x) = 1 -x. A 
GLRFN is denoted as o =(01,02,03,04)̂ ^2_,JQ and a a -cut of a is 
defined as 

a(a) = (ai(a),ajj(a)) = (02-(02-O1)03Lg \a),03-(04-03)03^3 \a)) . 

Tran and Duckstein [62] define the distance between two 
GLFRN fuzzy numbers a and b as 

D 2a,b,f) 

ai(a)+aR(a) bi(a)+bR(a) 

+-
ai(a)+aR(a) bi{(i) + b R{(i) 

Kf{a)d a]/ f(a)d a. 

The function/(a), which serves as a weight function, is positive 
continuous in [0,1], the distance being computed as a weighted 
sum of distances between two intervals across all the a-cuts from 
0 to 1. DM participation is flexible thanks to the presence of 
function f. For example, when the DM is risk-neutral, /(a) = a 
seems to be reasonable. A risk-averse DM might want to attach 
more weight to information at a higher a level by using other 
functions, such as /(a) = a 2 or a higher power of a . A constant 
(/(a) = 1), or even a decreasing function f, can be utilized for a 
risk-prone DM. 

For the particular case of the distance of a trapezoidal fuzzy 
number a =(01,02,03,04) to a constant (specifically 0), we have 

1. If/(a) = a , then 

D 2 ( a , 0 , / ) = ( ' 2 ) 2 1 f ' ' ^ ) [ ( O 4 - O 3 ) - ( O 2 - O 1 ) ] 

2 /03-02\2 
3 2 9 

2 
1 ^03—02 

2 ^ 
[(04-03) + (02-O1)] 

D 

2 

2 
1 0 



+ TKaA-a-i) +(a2-a^) } - —\(a2-a^)(aA-a•i)^. 
18 18 

2. If /(a) = l , then 

D\a,QS) 
/a2 + a3\2 1 /a2 + a3 

+ 7 
6 
1 

2 2 
1 / a s - 0 2 

[ (a4-a3)- (a2-a i ) ]+^ 
1 /a3-a2\ 
3 

1 
[(a4-a3) + (a2-ai)]+^[(04-03) + ( a 2 - a i ) ] 

9 
[(a2-ai)(a4-a3)]. 

3. If /(a) = a 2, then 

D'(a,0, /) 
. 2 

^ y ^ + 4 ( ^ y ^ j [ ( a 4 - a 3 ) - ( a 2 - a i ) ] 

+ ( ^^ ^) ^ 1 2 ( ^2 ^)[(°"'~°3) + (°2-a i ) ] 

- ^nr^ [ (04-03)^ + (02 - f l l )^1 + [(02 - f l l )(a4 -As)!-
-^^^iv ' " 9 6 

element in t he dominance matr ix is a trapezoidal fuzzy n u m b e r : 

D — 
i-'21 — 

D31 D32 

Dml D„ 

Oim-1 Oim 

D 2m-1 D 2m 

D 

Next, w e compute the s t rength of dominance of alternative Ak 

by adding t he trapezoidal fuzzy numbers in the kth row of D 

dfc = (dfci,dfc2,dB,dt4)= V ^ D H = V ^ D H I , y^^wz, y^^ws, y^Oj 

Finally, a dominance intensity, DIk, for each alternative Ak is 
computed as t he proportion of t he positive par t of t he fuzzy 

~ 
number dk by the distance of t he fuzzy number to zero. Specifi­
cally, t he dominance intensity for alternative Ak is computed 

~ according t o t he location of dk a s follows: 

Let us now introduce the new dominance-measuring method. 
We now consider that imprecise weights are represented by 
trapezoidal fuzzy numbers Wj, j = l , . . . , n . Different direct and 
indirect methods for constructing fuzzy sets have been proposed 
for one and multiple experts in the literature [18]. In [9,10], the 
advantages, disadvantages and limitations of four elicitation 
methods are discussed, whereas [63[ reviews three basic views 
of the representation of membership functions, together with 
fundamental measurements of linguistic terms of linguistic 
variables. 

Then, the optimization problem (1) can be now represented by 

DH = min < ^Wj(Ufc-U()= y^(Wj-i,Wj2,Wj3,Wj4)(Ufc-U|) 
I j — 1 i — 1 

= (DHI,DM2,DM3,DH4)} 

S.t. Ufc A (ifc,U( A (i( 

wA W, (2) 

where w A W = {w = (Wi, . . . , w „ ) : Wjj= 1,.. . ,n,}, being Wj t rape­
zoidal fuzzy numbers . 

Then, the first step in the proposed method is to compute the 
above trapezoidal fuzzy numbers, see Fig. 1. Consequently, each 

1. If dfc is completely located at the left of zero, then DIk is minus 
the distance of d^ to zero, because there is no positive part 
in dfc. 

2. If dfc is completely located at the right of zero, then DIk is the 
distance of d^ to zero, because there is no negative part 
existing in d^. 

3. If dfc includes the zero in its base, then the fuzzy number will 
have a part on the right of zero that we denote d,̂  and another 
part on the left of zero that we denote d,j. DIk is the proportion 
that represents d,j with respect to d^ by the distance of d^ to 
zero less the proportion that represents 3,̂  with respect to d^ 
by the distance of d^ to zero. 

Next, we analyze each one of these cases in more detail: 

• If dfc4 < 0, see Fig. 2(a), then the dominance intensity of 
alternative Ak is defined as D/^ = -0(3^ ,0 , / ) . 

• If dfci > 0, see Fig. 2(b), then the dominance intensity of 
alternative Ak is defined as DIk =0(3^ ,0 , / ) . 

• If dfci < 0 and dfc2 > 0, see Fig. 2(c), the corresponding t rape­
zoidal fuzzy number is divided by the vertical axis (at zero) 
into two parts. The left part d,̂  represents the proportion: 

(4 i ) ' 
dk4+dk (44 + dk3 -dia -d/d )(dfc2 -dia) 

Fig. 1. Flowchart of the proposed method. 

whereas the right part 3,̂  represents the proportion 

4 4 + 4 3 - 4 2 - 4 i ( - 4 i ) ( - 4 i ) 
2 2(dfc2-4l) 4 2 ( - 4 2 + 4 3 + 4 4 ) - 4 l ( 4 3 + 4 4 ) 

dk4 + dk3-dk2-dk-i 

2 
(dk2 - 4 i )(dk4 + dk3 -dk2 - 4 i ) 

The dominance intensity of alternative Ak is defined as 

DIk = ^^^—''^ • ^ ' ! ^ — ' ^ — J ''^, J D(dk,Q,f) 
(dk2 -dfci )(dfc4 + dfc3 -dfc2 -dfci) 

(dk,f 
(dk4 + dk3 -dk2 -dfci )(dk2 - d / d ) 

D(dfc,0,/). 

• If dk3 < 0 and dk4 > 0, Fig. 2(d), the corresponding trapezoidal 
fuzzy number is again divided by the vertical axis into two 

D 



~ Fig. 2. Possible locations of dk 

~L ~ R 

parts , dk and dk , represented by the proport ions 

d 
k4 

" M 

dk4+dk3-dk2-dk\ dk4-dk3 
2 2 

dk4+dk3-dk2-dk^ 
2 

dk4(dk4-dk2 -dk\)-dk3 (dk3 -dki - 4 i ) 

("M + " B -dk2 - " k i )(ak4 - " B ) 

and 

d - 4 
( d n ) ' 

dk4 + dk3 -dki -dk\ (dk4 -dk3)(dk4 + d/a -d /a -dfci) 

respectively, and dominance intensity of alternative Ak is 

(d )^ 
DIk = T w ''"^j ^D(dk,0,f) 

(dk4-dk3)(dk4+dk3-dk2-dkd 

dk4 (dk4-dk2 -dk\)-dk3 (dk3 -dki -d /d) 
(dk4 + d/a -dki -dfci )(dk4 -d / a ) 

D(dkAf). 

• If dki < 0 and d/^ > 0, see Fig. 2(e), d,^ and 0,̂  are 

dk4—dk3 J 
+ dk3 £j I £j 

"k4 + " B -dki - " k l "M + d/a -afc2 -Ufci 

and 

dk2-d /d 
-d -d 

j j — , 

dfc4 + dB-afc2-"fci dk4 + dk3-dki-dk\ 

2 

respectively, and the dominance intensity of alternative Ak is 

DIk = fc2 M D(dfc,0,/)- ^—J^D(dk,0,f). 
dk4 + dk3 -dki - d / d dk4 + dk3 -dki - d / d 

Once the dominance intensity has been computed for each 
alternative Ak, DIk, the alternatives are ranked accordingly, where 
the best (rank 1) is the alternative with greatest DIk and the worst 
is the alternative with the least DIk. 
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Fig. 3. Objective hierarchy for lake Svyatoye. 

4 . Applicat ion t o t h e r e s to r a t i on of aqua t i c ecosys tems 

In this section w e illustrate t he application of t he proposed 
me thod to t he evaluation of intervention strategies for restoring a 
radionuclide contaminated aquatic ecosystem, lake Svyatoye, 
which was heavily contaminated after t he Chernobyl accident 
[51]. This is a complex decision-making problem simultaneously 
accounting for environmental , social and economic impact . 

Fig. 3 shows the objective hierarchy representing all t he 
relevant aspects to be considered in t he evaluation of t he inter­
vention strategies. 

Environmental Impact (Environ._Imp) is one of t he main objec­
tives of t he decision analysis. It was divided into Lake Ecosystem 
Index (LEI), a simple and rational approach for measuring the 
ecological status of a lake and Radiation Dose to Biota (Dose_to_Fish). 
Social Impact (Social_Imp.) was handled by two sub-objectives: 
Minimizing Impact on Health (Dose_to_Man) and Living Restrictions 
(Living_restr). 

Regarding dose to man , w e focused on the Dose to Critical 
Individuals (Dose Crit In), w h o should never receive radiation 
levels above thresholds for early heal th effects, and Collective Dose 
(Coll._Dose), which was linearly related to t he increase in t he risk 
of developing serious latent effects, mainly cancers. As regards 
living restrictions, o ther impacts were taken into consideration. 
These include countermeasures affecting t he direct consumption 
of fish for food or i ts processing in t he food industry, drinking 
water and wate r used by the food industry, t he use of wate r for 
crops irrigation and the recreational uses of wate r bodies. For all 
these objectives, t he at t r ibutes were t he Amount of Fish Affected by 
restrictions (Amount_fish), as well as the durat ion of such 
restrictions (Ban_Duration). 

Finally, Economic Impact (Economic_Im) was divided into 
Direct Effects (Direct_Eff.), more amenable to quantification, and 

kz 



Intangible Effects (Intang._Eff.), like loss-of-image and adverse 
market reactions for the concerned area, which could also be 
subjectively rated by the user. The direct effects include the costs 
generated by the different bans on or restrictions to normal living 
conditions, which can be sub-divided into Costs to the Economy 
(Cost_to_econ) and the more subjective costs of lost recreation, 
and Application Costs (Applic._Cost), i.e., costs of chemical and 
physical remedial countermeasures. 

Alternative performances were described under uncertainty by 
uniformly distributed intervals. On the other hand, imprecise 
component utilities were assessed, leading to classes of utility 
functions. Fig. 4 shows the corresponding weights, i.e., the 
indicators of the influence of the individual decision-making 
criteria. For more information about the problem, component 
utility and weight elicitation and the resulting ranking of alter­
natives, see [51]. 

The intervention strategies considered for evaluation are 
shown in Table 1, including the combination of chemical counter-
measures with fishing bans so as to reduce the radiological and 
environmental impact. 

The original imprecise weights elicited by DMs are shown in 
Fig. 4. The possibility of using trapezoidal fuzzy numbers rather 
than intervals was not considered at that time. However, DMs 
agreed at later meetings that trapezoidal fuzzy numbers would 
better reflect their preferences. As a starting point, weight inter­
vals were transformed into trapezoidal fuzzy numbers, 

where w~ AW, z •Id (4 2^) and 2^ is the optimum value of 
the following optimization problem: 

kij 

min Zuj=Uj(Xkj)-Uj(x,j) 

s:t: x^j < Xig < x,g-, j = 1,... ,n 

x | < Xjj < XK , J = 1,... ,n 

"]•(%) ^ WjC^) ^ wfC^), i = 1, • • • ,n 

wK^ij) ^ WjĈ ij) ^ wfC îj), i = 1,... ,n: (3) 

The optimal solution of problem (3) can be determined very 
simply for certain types of utility functions [42]. Specifically, if the 
utility function is monotonically increasing or decreasing, then 
z* = uj-(xt.)-u|'(x|^) or zf^y = u|'(x,^.)-uj-(xf.), respectively. 

The respective optimization problems were solved to compute 
the dominance matrix, and the strengths of dominance for each 
alternative are 

d 1 = (-0:1438,0:1334,0:4118,0:7174), 

d2 = (0:7752,1:0954,1:4157,1:7712), 

d 3 = (0:2493,0:4764,0:7035,0:9730), 

d 4 = (-0:1579,0:3522,0:8623,1:3958), 

(w,1,Wj2,Wj3,Wj4), as follows. Given an imprecise weight d 5 = (0:2725,0:5441,0:8158,1:1096), 
[iA^,w|'], the base of the trapezoid is an interval such as Wj1 
and Wj4 = wV, whereas the length of the lower base is a third part 
of the higher base, i.e., W2 = w?- + (w!^-w?-)/3 and Wj3=wV-
(wf-wf)/3. 

As performance intervals and classes of component utility 
functions are considered, the resolution of optimization problem 
(2) is equivalent to solving [42]: 

1 1 
lEcosystem Index 

|Cost ol Image 

|bose critical individual 

iDui^lion Re$tiictiQn$ 

|Cosl ol applicalion 

[Collective Dose 

|Co&l to econorriy 

[Dose to Fish 

[Amount Fish affected 

1 •. • 1 

0.112 D.15D 0.192 

0-048 0108 0-182 

0 1 1 2 0165 0-230 

O080 0 1 3 2 0.202 

0101 0 2 0 2 0.346 

O032 0055 0.086 

O014 0 0 5 0 0.115 

O032 0 0 5 0 0.072 

O048 0 0 7 2 0.144 

ILI'MZZA 

"xl 

1 [ 1 
* i 
^ i 
(p i 
* i 

d6 = (-0:7043,-0:3217,0:0609,0:4724), 

d 7 = (0:4777,0:7281,0:9782,1:2489): 

Finally, dominance intensities, DIk, are computed for each 
alternative Ai^ for the case of a risk-prone, neutral and risk-averse 
DM to obtain the corresponding ranking of alternatives, see 
Table 2. Table 2 also shows the ranking for the original problem 
in [51]. 

The three alternative rankings match the original ranking 
except for alternatives A5 (Lake liming) and A7 (Wetland liming), 
which switch positions in the ranking (second and third). This 
switch can be justified taking into account that the average 
overall utilities for both intervention strategies on which the 
ranking is based, are almost the same. Moreover, the upper 
overall utility for A7 is greater than for A5 [51]. 

To illustrate the assessment of dominance intensities listed in 
Table 2, we consider the case of the risk-prone DM and A1 (No 
action) alternative. As d 1 1 =-0:1438 < 0 and d12 =0:1334 4 0, 
then 

fl1 
(d11f 

(d14 + d13-d12-d11)(dfc2-dfc1) 
0:06534, 

Fig. 4. Imprecise attribute weights. 

d12(-d12 + d13 + d14)-d11(d13+d14) 
(d12-d11)(d14+d13-d12-d11) 

0:9346, 

Table 1 
Intervention strategies. 

Intervention strategies Description 

A1: No action 
A2: Potash 
A3: Fertilizer 
A4: Food ban 
A5: Lake liming 
A6: Sediment removal 
A7: Wetland liming 

Natural evolution of the situation without intervention 
15 tonnes of potassium chloride added to the lake in April 1987 
800 kg of fertilizer added to the lake between April and July 1987, 1988, 1989, 1990, i.e., 200 kg/month 
Automatic fish consumption ban when 137Cs content in fish is greater than 1000 Bq/kg 
15 tonnes of lime added to the lake in April 1987 
250,000 m 2 of sediments removed from the lake down to a depth of 10 cm from May to June 1990 
30 ton of lime added to the catchment in May 1987 



Table 2 
Dominance intensities and ranking of alternatives. 

Table 3 
Measures of efficacy using 5% imprecision level. 

Intervention Original Risk prone 
strategies 

Neutral Risk averse Alternatives Attributes Hit ratio Kendall’s t 

A1 

A2 

A3 

A4 

A5 

A6 

A7 

6 
1 
5 
4 
2 
7 
3 

ng 
DIk Ranking 

0.2853 6 
1.2798 1 
0.6174 5 
0.6546 4 
0.7055 3 
0.0837 7 
0.8719 2 

DIk Ranking 

0.2798 6 
1.2754 1 
0.6122 5 
0.6472 4 
0.7019 3 
0.0811 7 
0.8689 2 

DIk Ranking 

0.2850 6 
1.2763 1 
0.6129 5 
0.6571 4 
0.7041 3 
0.0864 7 
0.8702 2 

Fig. 5. Trapezoidal fuzzy number construction. 

and 

D/1 =d1 X D(d1,0,/)-d1 X D(d1,0,/) = 0:9346 X 0:1077-0:06534 

x0:1077 = 0:2853: 

5. Performance analysis based on monte carlo simulation 
techniques 

The performance of the proposed dominance measuring method 
accounting for fuzzy weights has been analyzed on the basis of Monte 
Carlo simulation techniques using two measures of efficacy: hit ratio 
and rank-order correlation [2,39]. The hit ratio is the proportion of all 
cases in which the method selects the same best alternative as in the 
TRUE ranking. Rank-order correlation represents how similar the 
overall structures ranking alternatives are in the TRUE ranking and 
in the ranking derived from the proposed method. It is calculated 
using Kendall’s T [65]: T = 1 - 2 X (number of pairwise preference 
violations)/(total number of pair preferences). 

Four different levels of alternatives (m = 3,5,7,10) and five 
different levels of attributes (n = 3,5,7,10,15) were considered in 
order to validate the results. Also, 20 000 trials were performed 
for each of the 20 design elements. For simulation purpose, 
different routines were implemented in Python v3.1.3, which 
provides the Mersenne Twister method pseudo-random number 
generator. It is one of the most extensively tested random number 
generators in existence and produces 53-bit precision floats and 
has a period of 2 1 1. 

First, component utilities for each alternative in each attribute 
are randomly generated from a uniform distribution in (0,1), 
leading to an mxn matrix. The columns in this matrix are 
normalized to make the smallest value 0 and the largest 1, and 
dominated alternatives are removed. 

Next, attribute weights representing the relative attribute impor­
tance are generated. These weights are the TRUE weights and the 
derived ranking of alternatives will be denoted as the TRUE ranking. 
Those weights are then transformed into trapezoidal fuzzy numbers 

Risk Neutral Risk Risk 
prone averse prone 

Neutral Risk 
averse 

3 
3 
3 
3 
3 

5 
5 
5 
5 
5 

7 
7 
7 
7 
7 

10 
10 
10 
10 
10 

3 
5 
7 

10 
15 

3 
5 
7 

10 
15 

3 
5 
7 

10 
15 

3 
5 
7 

10 
15 

99.67 
99.19 
98.39 
96.34 
90.69 

99.19 
98.80 
98.33 
97.44 
95.68 

98.98 
98.39 
97.74 
96.72 
95.30 

98.47 
97.82 
96.99 
95.95 
94.52 

99.67 
99.22 
98.40 
96.35 
90.70 

99.19 
98.84 
98.39 
97.53 
95.84 

98.98 
98.43 
97.82 
96.83 
95.68 

98.47 
97.85 
97.07 
96.15 
94.84 

99.68 
99.25 
98.43 
96.37 
90.76 

99.21 
98.85 
98.38 
97.59 
95.91 

98.99 
98.42 
97.83 
96.87 
95.75 

98.47 
97.87 
97.12 
96.16 
94.95 

99.60 
99.02 
98.05 
95.92 
89.65 

99.20 
98.48 
97.22 
94.03 
83.83 

99.14 
98.40 
97.10 
93.84 
83.36 

99.11 
98.27 
96.98 
93.58 
82.57 

99.61 
99.06 
98.07 
95.96 
89.70 

99.21 
98.51 
97.25 
94.07 
83.90 

99.15 
98.41 
97.13 
93.90 
83.44 

99.12 
98.29 
97.01 
93.64 
82.63 

99.61 
99.07 
98.10 
95.97 
89.73 

99.21 
98.51 
97.25 
94.07 
83.92 

99.15 
98.41 
97.13 
93.91 
83.46 

99.12 
98.30 
97.01 
93.65 
82.64 

Fig. 6. Hit ratio for 5%, 10%, 15% and 20% imprecision levels. 

taking into account different imprecision levels (5%,10%,15% and 20%), 
as shown in Fig. 5. Given a precise weight value wi and a imprecision 
level l%, the higher base of the trapezoid is [Wi-(//2)/100, 



Fig. 7. Kendall’s T for 5%, 10%, 15% and 20% imprecision levels. 

Table 4 
Average hit ratio and Kendall’s t values. 

Imprecision level (%) Hit ratio (%) 

5 97.32 
10 93.11 
15 87.85 
20 84.37 

Kendall’s t (%) 

94.91 
87.98 
82.35 
80.17 

Wi +(//2)/100], whereas the length of the lower base is a third of the 
length of the higher base, both centered at wi. 

Finally, the ranking of alternatives is computed and compared 
with the TRUE ranking. Table 3 exhibits the average hit ratio and 
Kendall’s T for each of the 20 design elements with a 5% imprecision 
level for the case of a risk-prone, neutral and risk-averse DM. 

We can conclude that the hit ratio and the correlation coefficient 
are very similar for all three cases. The hit ratio is greater than 90.69% 
for all the design elements, whereas Kendall’s T is greater than 
82.57%; and both measures are decreasing regarding the number of 
attributes and the number of alternatives. 

Figs. 6 and 7 illustrate the hit ratio and Kendall’s T, respec­
tively, for 5%, 10%, 15% and 20% imprecision levels for a risk-
prone, neutral and risk-averse DM. The hit ratio and the Kendall’s 
T are again very similar for all three cases (there is a large overlap 
in all cases). Both measures are decreasing regarding the number 
of attributes, and this decrease is more pronounced the greater 
the imprecision is. 

The hit ratio variability (the corresponding range for a given 
number of alternatives) is decreasing regarding the number of 

alternatives for 5%, 10% and 15% imprecision levels. On the other 
hand, Kendall’s t t ends to decrease wi th t he number of alter­
natives. Note tha t w h e n t he number of alternatives is low, then 
each wrongly ranked alternative leads to a s teep drop in Kendall’s 
t. On the other hand, w h e n t he number of alternatives is high, 
then several alternatives would have t o be wrongly ranked to 
have a big impact on Kendall’s t. 

Finally, Table 4 shows t he average hit ratio and Kendall’s t 
values for the imprecision levels and a neutral DM. Both measures 
decrease against t he level of imprecision, from 97.32% to 84.37% 
for t he hit ratio and from 94.91% to 80.17% for Kendall’s t. W e 
consider tha t values for a 20% imprecision level are rather good 
taking into account that this is qui te high imprecision. Moreover, 
these outcomes predictably outperforms t he results output in 
[40], since imprecision concerning weights is represented by 
weight intervals ra ther than fuzzy numbers in [40], i.e., less 
meaningful information about weights is available. On the other 
hand, if triangular rather than trapezoidal fuzzy weights are 
considered regarding weights [27] then hit ratio and Kendall’s t 
values improve wi th greater imprecision. 

6. Conclusions 

Dominance-measuring methods are becoming widely used in 
a decision-making context wi th incomplete information within 
MAUT and have been proved to outperform other approaches, like 
mos t surrogate weighting methods or t he modification of classical 
decision rules for application in an imprecise decision context. 

In this paper, a new dominance-measuring method has been 
proposed, in which weights representing the relative importance of 
decision-making criteria are described by means of trapezoidal fuzzy 
numbers. The method is based on pairwise dominances and on the 
distances between fuzzy numbers, using the generalization of the left 
and right fuzzy numbers. Moreover, the cases of risk-prone, neutral 
and risk-averse DMs have been considered and analyzed. Monte Carlo 
simulation techniques have been applied to analyze the performance 
of the proposed method on the basis of two measures of efficacy for 
different imprecision levels. Hit ratio and Kendall’s t values are very 
similar for the different types of DMs throughout the considered 
imprecision levels. The method performs well, the hit ratio and 
Kendall’s t values being higher than 84% and 80%, respectively, in 
the worst case (20% imprecision). As expected, the results are better 
than for similar studies accounting for weight intervals, whereas they 
are worse than when triangular rather than trapezoidal fuzzy weights 
are used, since triangular fuzzy weights provide more meaningful 
information about the weights. 

In future research we proposed to look at other ways of represent­
ing imprecision in the problem. For instance, fuzzy numbers could be 
also used to represent alternative performances. Moreover, the DM 
could just provide an alternatives ranking for each criterion under 
consideration rather than performances and their utilities (assess­
ment might be involved in real applications). 
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