4,113 research outputs found

    On the Lp-spaces techniques in the existence and uniqueness of the fuzzy fractional Korteweg-de Vries equation’s solution

    Get PDF
    In this paper, is proposed the existence and uniqueness of the solution of all fuzzy fractional differential equations, which are equivalent to the fuzzy integral equation. The techniques on LP-spaces are used, defining the LpF F ([0; 1]) for 1≤P≤∞, its properties, and using the functional analysis methods. Also the convergence of the method of successive approximations used to approximate the solution of fuzzy integral equation be proved and an iterative procedure to solve such equations is presented

    A survey on fuzzy fractional differential and optimal control nonlocal evolution equations

    Full text link
    We survey some representative results on fuzzy fractional differential equations, controllability, approximate controllability, optimal control, and optimal feedback control for several different kinds of fractional evolution equations. Optimality and relaxation of multiple control problems, described by nonlinear fractional differential equations with nonlocal control conditions in Banach spaces, are considered.Comment: This is a preprint of a paper whose final and definite form is with 'Journal of Computational and Applied Mathematics', ISSN: 0377-0427. Submitted 17-July-2017; Revised 18-Sept-2017; Accepted for publication 20-Sept-2017. arXiv admin note: text overlap with arXiv:1504.0515

    Status of the differential transformation method

    Full text link
    Further to a recent controversy on whether the differential transformation method (DTM) for solving a differential equation is purely and solely the traditional Taylor series method, it is emphasized that the DTM is currently used, often only, as a technique for (analytically) calculating the power series of the solution (in terms of the initial value parameters). Sometimes, a piecewise analytic continuation process is implemented either in a numerical routine (e.g., within a shooting method) or in a semi-analytical procedure (e.g., to solve a boundary value problem). Emphasized also is the fact that, at the time of its invention, the currently-used basic ingredients of the DTM (that transform a differential equation into a difference equation of same order that is iteratively solvable) were already known for a long time by the "traditional"-Taylor-method users (notably in the elaboration of software packages --numerical routines-- for automatically solving ordinary differential equations). At now, the defenders of the DTM still ignore the, though much better developed, studies of the "traditional"-Taylor-method users who, in turn, seem to ignore similarly the existence of the DTM. The DTM has been given an apparent strong formalization (set on the same footing as the Fourier, Laplace or Mellin transformations). Though often used trivially, it is easily attainable and easily adaptable to different kinds of differentiation procedures. That has made it very attractive. Hence applications to various problems of the Taylor method, and more generally of the power series method (including noninteger powers) has been sketched. It seems that its potential has not been exploited as it could be. After a discussion on the reasons of the "misunderstandings" which have caused the controversy, the preceding topics are concretely illustrated.Comment: To appear in Applied Mathematics and Computation, 29 pages, references and further considerations adde

    Well-posedness and stability for fuzzy fractional differential equations

    Get PDF
    In this article, we consider the existence and uniqueness of solutions for a class of initial value problems of fuzzy Caputo–Katugampola fractional differential equations and the stability of the corresponding fuzzy fractional differential equations. The discussions are based on the hyperbolic function, the Banach fixed point theorem and an inequality property. Two examples are given to illustrate the feasibility of our theoretical results

    Existence and Uniqueness Solutions of Fuzzy Fractional Integral Equation of Volterra-Stieltjes Type

    Get PDF
    In this paper, we establish the existence and uniqueness results to the Cauchy problem posed for a fuzzy fractional Volterra-Stieltjes integrodifferential equation. The method of successive approximations is used to prove the existence, whereas the contraction theory is applied to prove the uniqueness of the solution to the problem
    corecore