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Abstract. In this paper, we establish the existence and uniqueness results to the Cauchy
problem posed for a fuzzy fractional Volterra-Stieltjes integrodifferential equation. The
method of successive approximations is used to prove the existence, whereas the contrac-
tion theory is applied to prove the uniqueness of the solution to the problem.
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1. Introduction

The theory of integral operators of all kinds generates an important branch
of regenerative nonlinear functional analysis. The theories of linear integral op-
erators (Friedholm, Volterra) and the theories of different types of nonlinear in-
tegral operators (Hammerstein, Orison) have many applications in mathematics,
physics, chemistry, biology and engineering. Many of the above integral opera-
tors can be treated as special cases of Stieltjes integral operators with the kernel
dependent on two variables [6, 7, 9].
The idea of fuzzy group was created by Zadeh [25] as a mathematical solution to
represent fuzziness in daily life. In 1965, Zadeh put forward the concept of fuzzy
groups. Subsequently, the application of this fuzzy group in modelling gradually
appeared. Thus, the development and application of fuzzy differential equations
(FDEs) has increased rapidly in the past 50 years [4]. In order to use the Zadeh
concept in topology and functional analysis, many scholars have defined fuzzy
metric spaces in several ways [2, 10, 18]. Georg and Ferramani [12] modified the
concept of fuzzy metric space introduced by Kramusel and Michalck [18] and were
also successful in defining the Hausdorff topology in such a fuzzy metric space that
it is often used in current research nowadays and is used in this research work as
well. The power of fuzzy mathematics lies in its clear and fruitful applications in
practical life. Many interesting examples of fuzzy scales in the sense can be read
in [8,13] given by George and Viramani and such fuzzy scales have also been used
to process color images.
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In recent years the theory of fuzzy fractional integral equations has developed
rapidly. The concept of fuzzy integral equation was studied in 2011 by Allahvi-
ranloo [4]. They considered two new uniqueness results for fuzzy fractional equa-
tion with two type of conditions Naqumo and Krasnoselskii-Krein by using the
methods of successive approximation and contraction principle. In 2013 Allahvi-
ranloo [5] have used the fuzzy Caputo derivatives under generalized Hukuhara
difference to introduce fuzzy fractional Volterra-Fredholm integral equations and
they proved the existence and uniqueness of the solutions for this class of equa-
tions using the methods of successive approximation and contraction principle
respectively. In the same year Robab and Fariba [3] investigate the solutions to
the same kind of equations employing the method of upper and lower solutions.
Nagarajan and Radhakrishnan [20] in 2022 introduced the uniqueness of solution
for Sobolev fuzzy integral equation with nonlocal condition also by using the idea
of contraction theory.
In this paper, we prove the existence and uniqueness theorems of solutions to the
fuzzy fractional Volterra- Stieltjes integrodifferential equation:

cD
β,g(t,s)
0+

y(t) = Q(t, y(t)),

y(0) = y0 = �O.
(1.1)

Where y(t) ∈ J ⊂ En,J is closed and bounded domain, En = {u : Rn → [0, 1]},
Q(t, y(t)) : [0, T ] × En → En is levelwise continuous, defined on the domain
J1 = {(t, y), t ∈ [0, T ], y ∈ En}, s, t ∈ [0, T ], 1 < β ≤ 2, g(t, s) : [0, T ]× [0, T ] → R
is continuous and differentiable given function such that for all t, s ∈ [0, T ], |t−s| ≤
h, and g�(t, s) ≤ K ∈ R+, �O ∈ En, such that �O(t) = 1 for t = 0, 0 otherwise , and
D(Q, �O) ≤ η for any (t, y) ∈ J1 and η ∈ R+, {D is defined below}.

2. Preliminaries

Let FC (Rn) denote the family of all nonempty compact convex subsets of Rn

and define the addition and scalar multiplication in FC (Rn) as usual. Let M and
N be two nonempty bounded subsets of Rn. The distance between M and N is
defined by the Hausdorff metric

d(M,N ) = max

�
sup
m∈M

inf
n∈N

�m− n�, sup
n∈N

inf
m∈M

�m− n�
�
,

where �.� denotes the usual Euclidean norm in Rn. Then it is clear that (FC (Rn) , d)
becomes a metric space [1].

Let T = [c, d] ⊂ R be a compact interval and denote En = {u : Rn → [0, 1] | u
satisfies (1− 4) below }
1. u is normal, i.e., there exists an x0 ∈ Rn such that u (x0) = 1,
2. u is fuzzy convex,
3. u is upper semicontinuous,
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4. [u]0 = cl {x ∈ Rn : u(x) > 0} is compact.

For 0 < α ≤ 1, denote [u]α = {x ∈ Rn : u(x) ≥ α}, then from (1-4), it follows
that the α - level set [u]α ∈ FC (Rn) for all 0 < α ≤ 1.

Define D : En × En → R+ ∪ {0} by the equation

D(u, v) = sup
α∈[0,1]

d ([u]α, [v]α) ,

where d is the Hausdorff metric define in FC (Rn). We list the following properties
of D(u, v) :
1. D(u+ w, v + w) = D(u, v), and D(u, v) = D(v, u),
2. D(λu,λv) = λD(u, v),
3. D(u, v) ≤ D(u,w) +D(w, v),
for all u, v, w ∈ En and λ ∈ R [19].

Definition 2.1. [16]. A mapping f : T ×En → En is called levelwise continuous
at point (t0, x0) ∈ T × En provided, for any fixed α ∈ [0, 1]. and arbitrary � > 0,
there exists a ζ(�,α) such that:

d ([f(t;x)]α, [f (t0;x0)]
α) < �,

whenever |t− t0| < ζ(�,α) and ([f(t;x)]α, [f (t0;x0)]
α) < ζ(�,α) for all t ∈ T,

x ∈ En.

Definition 2.2. [22]. A mapping F : T → En is called levelwise continuous at
t0 ∈ T if the set valued mapping Fα(t) = [F(t)]α is continuous at t = t0 with
respect to the Hausdorff metric d for all α ∈ [0, 1].

A mapping F : T → En is called integrally bounded if there exists an integrable
function h(t) such that �x� ≤ h(t) for all x ∈ F0(t).

Definition 2.3. [23]. A mapping F : T → En is called fuzzy Hukuhara dif-
ferentiable at t0 ∈ T if, for any α ∈ [0, 1], the set valued mapping Fα(t) =
[F(t)]α is Hukuhara differentiable at point t0 with DHFα(t0) and the family
{DHFα(t0)| α ∈ [0, 1]} define a fuzzy number F(t0) ∈ En.
If F : T → En is differentiable at t0 ∈ T , then we say that F(t0) is the fuzzy
derivative of F(t) at the point t0 .

Definition 2.4. [14]. The Riemann-Liouville fractional integral of order q is
defined by

Iqf(t) =
1

Γ(q)

ˆ t

0
(t− s)q−1f(s) ds,

q > 0, provided the integral exists.
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Definition 2.5 ( [15]). The Riemann-Liouville fractional derivative of order q is
defined by

Dqf(t) =
1

Γ(n− q)

�
d

dt

�n ˆ t

0
(t− s)n−q−1f(s) ds,

n−1 < q ≤ n, q > 0, Provided the right-hand side is pointwise defined on (0,+∞).

Theorem 2.1 ( [24]). The metric space (FC (Rn) , d) is complete and separable.

Theorem 2.2 ( [17]). If f(x) is continuous and α�(x) is Riemann integrable over
the specified interval, then

ˆ b

a
f(x)dα(x) =

ˆ b

a
f(x)α�(x)dx.

Theorem 2.3 ( [22]). Let F,G : T → En be integrable, and λ ∈ R. Then

1.
ˆ

T
(F(t) +G(t)) dt =

ˆ

T
F(t) dt+

ˆ

T
G(t) dt,

2.
ˆ

T
λF(t) dt = λ

ˆ

T
F(t) dt,

3. D(F,G) is integrable,

4. D

�
ˆ

T
F(t) dt,

ˆ

T
G(t) dt

�
≤
ˆ

T
D(F(t),G(t)) dt.

Theorem 2.4 ( [21]). If u ∈ En, then

1. [u]α ∈ FC (Rn) for all 0 ≤ α ≤ 1,

2. [u]α1 ⊂ [u]α2 for all 0 ≤ α1 ≤ α2 ≤ 1,

3. if {αc} ⊂ [0, 1] is a nondecreasing sequence converging to α > 0, then

[u]α =
�

c≥1

[u]αc ,

Conversely, if {Aα : 0 ≤ α ≤ 1} is a family of subsets of Rn satisfying (1 − 3),
then there exists u ∈ En such that

[u]α = Aα for 0 ≤ α < 1,

[u]0 =
�

0≤α<1

Aα ⊂ A0.
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3. Main Result

Consider the fuzzy fractional integral equation (1.1) where y0 ∈ En, we define
the nonempty set JQ = J − ηKTβ

Γ(β+1) . A mapping y : J → En is a solution to the
problem (1.1) if it is levelwise continuous and satisfies the integral equation

y(t) = y0 ⊕
1

Γ(β)

ˆ t

0
(t− s)β−1Q (s, y(s)) dsg(t, s).

According to the method of successive approximation, let us consider the sequence
{yn(t)} such that

yn(t) = y0 ⊕
1

Γ(β)

ˆ t

0
(t− s)β−1Q (s, yn−1(s)) dsg(t, s), n = 1, 2, ... (3.1)

Theorem 3.1. Assume that Q : [0, T ] × En → En is levelwise continuous, and
satisfies Lipschitz condition, such that for any pair (t, y1) , (t, y2) ∈ J1

D (Q (t, y1) , Q (t, y2)) ≤ LD (y1, y2) . (3.2)

where L > 0. Then there exists a unique solution y(t) of (1.1) defined on the
domain J . Moreover, there exists a fuzzy set-valued mapping y(t) : J → En such
that D (yn(t), y(t)) → 0 on J as n → ∞, provided that Kn+1 = 1

LnT (n+1)β .

Proof. Let t ∈ [0, T ], from (3.1), it follows that, for n = 1,

y1(t) = y0 ⊕
1

Γ(β)

ˆ t

0
(t− s)β−1Q (s, y0(s)) dsg(t, s).

which proves that y1(t) is levelwise continuous on J . Moreover, using theorem
(2.3), for any α ∈ [0, 1], we have

d ([y1(t)]
α , [y0]

α) = d

��
ˆ t

0

(t− s)β−1

Γ(β)
Q (s, y0(s)) dsg(t, s)

�α
, �O

�
,

≤
ˆ t

0

(t− s)β−1

Γ(β)
d
�
[Q (s, y0(s))]

α , �O
�
dsg(t, s),

D (y1(t), y0) ≤
ˆ t

0

(t− s)β−1

Γ(β)
D
�
Q (s, y0(s)) , �O

�
dsg(t, s),

≤ η

ˆ t

0

(t− s)β−1

Γ(β)
dsg(t, s) ≤ η

ˆ t

0

(t− s)β−1

Γ(β)
g�(t, s) ds ≤ ηKT β

Γ(β + 1)
.
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That is y1(t) ∈ JQ, from (3.1), we deduce that yn(t) is levelwise continuous
and

d ([y2(t)]
α , [y0]

α) = d

��
ˆ t

0

(t− s)β−1

Γ(β)
Q (s, y1(s)) dsg(t, s)

�α
, �O

�
,

D (y2(t), y0) ≤
ˆ t

0

(t− s)β−1

Γ(β)
D
�
Q (s, y1(s)) , �O

�
dsg(t, s) ≤

ηKT β

Γ(β + 1)
,

D (yn(t), y0) ≤
ˆ t

0

(t− s)β−1

Γ(β)
D
�
Q (s, yn−1(s)) , �O

�
dsg(t, s) ≤

ηKT β

Γ(β + 1)
.

Consequently, we conclude that {yn(t)} consists of levelwise continuous map-
pings on J and yn(t) ∈ JQ, n = 1, 2, . . ., for all t ∈ [0, h].

Now we prove that there exists a fuzzy set-valued mapping y(t) : [0, T ] → En

such that D (yn(t), y(t)) → 0 uniformly on J as n → ∞. For n = 2

y2(t) = y0 ⊕
1

Γ(β)

ˆ t

0
(t− s)β−1Q (s, y1(s)) dsg(t, s).

from (3.1) and (3.2) we have

y1(t) =

ˆ t

0

(t− s)β−1

Γ(β)
Q (s, y0(s)) dsg(t, s),

y2(t) =

ˆ t

0

(t− s)β−1

Γ(β)
Q (s, y1(s)) dsg(t, s),

d
�
[y2(t)]

α , [y1(t)]
α � ≤

ˆ t

0

(t− s)β−1

Γ(β)
d ([Q (s, y1(s))]

α , [Q (s, y0(s))]
α) dsg(t, s),

D (y2(t), y1(t)) ≤
ˆ t

0

(t− s)β−1

Γ(β)
D (Q (s, y1(s)) , Q (s, y0(s))) dsg(t, s)

≤ L
ˆ t

0

(t− s)β−1

Γ(β)
D (y1(s), y0(s)) dsg(t, s)

≤ ηKT β

Γ(β + 1)

ˆ t

0

(t− s)β−1

Γ(β)
g�(t, s) ds

≤ ηLK2T 2β

(Γ(β + 1))2
.

Assume that

D (yn(t), yn−1(t)) ≤
ηLn−1KnTnβ

(Γ(β + 1))n
.

Indeed, from (3.1) and condition (3.2), it follows that
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yn(t) =

ˆ t

0

(t− s)β−1

Γ(β)
Q (s, yn−1(s)) dsg(t, s), (3.3)

yn+1(t) =

ˆ t

0

(t− s)β−1

Γ(β)
Q (s, yn(s)) dsg(t, s), (3.4)

d ([yn+1(t)]
α , [yn(t)]

α) ≤
ˆ t

0

(t− s)β−1

Γ(β)

× d ([Q (s, yn(s))]
α , [Q (s, yn−1(s))]

α) dsg(t, s), (3.5)

D (yn+1(t), yn(t)) ≤
L

Γ(β)

ˆ t

0
(t− s)β−1

×D (Q (s, yn(s)) , Q (s, yn−1(s))) dsg(t, s),

≤ L
ˆ t

0

(t− s)β−1

Γ(β)
D (yn(s), yn−1(s)) g

�(t, s) ds

≤ ηLnKnTnβ

(Γ(β + 1))n

ˆ t

0

(t− s)β−1

Γ(β)
g�(t, s) ds

≤ ηLnKn+1T (n+1)β

(Γ(β + 1))n+1
. (3.6)

Rewrite {yn(t)} as

y0 ⊕
∞�

n=1

[yn(t)− yn−1(t)] . (3.7)

From (3.6), according to the convergence criterion of Weierstrass, it follows
that the series (3.7) having the general term yn(t)−yn−1(t), soD(yn(t), yn−1(t)) →
0 uniformly on J as n → ∞, hence, there exists a fuzzy set-valued mapping
y(t) : J → En such that D(yn(t), y(t)) → 0 on J as n → ∞ .

To prove that this solution is unique, let χ(t) be another solution of (1.1) on
J , that is

χ(t) = χ0 ⊕
1

Γ(β)

ˆ t

0
(t− s)β−1Q(s,χ(s)) dsg(t, s),

χ(0) = χ0 = �O,

then setting

χ1(t) =

ˆ t

0

(t− s)β−1

Γ(β)
Q (s,χ0(s)) dsg(t, s),

y1(t) =

ˆ t

0

(t− s)β−1

Γ(β)
Q (s, y0(s)) dsg(t, s),
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we obtain

d ([χ1(t)]
α , [y1(t)]

α) ≤
ˆ t

0

(t− s)β−1

Γ(β)
d ([Q (s,χ0(s))]

α , [Q (s, y0(s))]
α) dsg(t, s),

D (χ1(t), y1(t)) ≤
ˆ t

0

(t− s)β−1

Γ(β)
D (Q (s,χ0(s)) , Q (s, y0(s))) dsg(t, s),

≤ L
Γ(β)

ˆ t

0
(t− s)β−1D (χ0(s), y0(s)) dsg(t, s). (3.8)

Since D (χ0(s), y0(s)) = 0, then the right-hand side in (3.8) tend to 0, hence
χ1(t) = y1(t). Assume that χn−1(t) = yn−1(t). Then

χn(t) =

ˆ t

0

(t− s)β−1

Γ(β)
Q (s,χn−1(s)) dsg(t, s),

yn(t) =

ˆ t

0

(t− s)β−1

Γ(β)
Q (s, yn−1(s)) dsg(t, s),

d ([χn(t)]
α , [yn(t)]

α) ≤ L
Γ(β)

ˆ τ

0
(t− s)β−1D (χn−1(s), yn−1(s)) dsg(t, s) = 0.

Hence, χn(t) = yn(t). This proves the uniqueness of the solution for (1.1).

Theorem 3.2. Let Q in (1.1) be a continuous function, satisfies Lipschitz con-
dition, such that for any pair (t,χ), (t, y) ∈ J1, L > 0, we have

D(Q(t,χ), Q(t, y)) ≤ LD(χ, y).

Then the IVP (1.1) has a unique solution, provided that LKTβ

Γ(β+1) < 1.

Proof. Define G : C ([0, T ],FC) → C ([0, T ],FC) as:

Gy(t) = y0 ⊕
1

Γ(β)

ˆ t

0
(t− s)β−1Q(s, y(s)) dsg(t, s).

Since Q and g are continuous functions and t ∈ [0, T ] then the right-hand side
generates a continuous fuzzy number valued function on [0, T ] and hence it’s well
defined. Now, consider the following

d ([Gχ(t)]α , [Gy(t)]α)

= d

��
ˆ t

0

(t− s)β−1

Γ(β)
Q(s,χ(s))dsg(t, s)

�α
,

�
ˆ t

0

(t− s)β−1

Γ(β)
Q(s, y(s)) dsg(t, s)

�α�
,

≤
ˆ t

0

(t− s)β−1

Γ(β)
d([Q(s,χ(s))]α, [Q(s, y(s))]α) dsg(t, s),
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D(Gχ(t),Gy(t)) ≤
ˆ t

0

(t− s)β−1

Γ(β)
sup

α∈[0,1]
d([Q(s,χ(s))]α, [Q(s, y(s))]α dsg(t, s)),

≤
ˆ t

0

(t− s)β−1

Γ(β)
D (Q(s,χ(s)), Q(s, y(s)) dsg(t, s) ,

D (Gχ(t),Gy(t)) ≤ LD(χ, y)

Γ(β)

ˆ t

0
(t− s)β−1g�(t, s) ds ≤ LKT β

Γ(β + 1)
D(χ, y).

For LKTβ

Γ(β+1) < 1, implies that G is a contraction, and so the prove complete.

4. Conclusion

In this paper, we have obtained under the suitable restrictions on the function
Q the existence and uniqueness result of a fuzzy fractional Volterra-Stieltjes in-
tegral equation. We have used Picard’s successive approximation method for the
existence, and Banach contraction principle for the uniqueness.
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