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Abstract

In this paper, is proposed the existence and uniqueness of the solution of all fuzzy fractional differ-
ential equations, which are equivalent to the fuzzy integral equation. The techniques on Lp-spaces
are used, defining the LpF ([0, 1]) for 1 ≤ p ≤ ∞, its properties, and using the functional analysis
methods. Also the convergence of the method of successive approximations used to approximate
the solution of fuzzy integral equation be proved and an iterative procedure to solve such equations
is presented.

Keywords: Convergence; Existence; Fractional calculus; Korteweg-de Vries equation; The me-
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1. Introduction

Fuzzy differential and integral equations are one of the important parts of the fuzzy analysis theory,
that play major role in numerical analysis. Zadeh (1956) published his pioneering study in fuzzy
theory, the nature of uncertainty in the behavior of a given system processes in fuzzy, then stochas-
tic, nature. The idea of fuzzy derivatives was first established by Chang et al. (1972). Recently the
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study of the existence of solutions for nonlinear integral equations has been done by Mishra et al.
(2016) and the study of the existence of a unique solution for fuzzy integral equations using fixed
point theorems is carried out by Mordeson et al. (1995), Friedman et al. (1999), Park et al. (1999),
and Balachandran et al. (2005). Fuzzy fractional differential equations on Lp-spaces have not been
done.

The numerical methods for solving fuzzy integral equations involve various techniques. The
method of successive approximations and its iterative methods are applied by Friedman et al.
(1999), Bede et al. ( 2004), and Bica et al. (2008). We want to solve the fuzzy fractional Korteweg-
de Vries equation, which is denoted by FFKdVE in this paper.

We will show that the FFKdVE is equivalent to fuzzy integral equation. Since most of the methods
to solve integral equations lead to solving linear systems and the singularity of these systems may
be causing problems, using iterative methods based on successive approximations are very useful.
So we propose an efficient iterative method to solve FFKdVE. Also the existence and uniqueness
of the solution and convergence of the proposed method are proved in details on Lp-spaces.

The paper is organized as follows: in Section 2 we present some concepts and results about the
fuzzy number and some properties for fuzzy number valued functions and we give some definitions
about the method of successive approximations and Lp-spaces. The equivalency the FFKdVE to
the fuzzy integral equation with the conformable fuzzy fractional derivative is proved in Section 3.
Then the convergence of the method on Lp-spaces is discussed, where we define the LpF ([0, 1]) for
1 ≤ p ≤ ∞ and its properties and use the functional analysis methods. In Section 4, we derive the
proposed method to get numerical solutions of FFKdVE based on an iterative procedure. Finally,
we give some numerical examples.

2. Preliminaries

We now recall some definitions and symbols needed through the paper. We follow Zadeh et al.
(1974) in definitions and notations.

Definition 2.1.

A fuzzy number is a function u : R→ [0, 1] satisfying the following properties:

a. u is upper semicontinuous on R,
b. u(x) = 0 outside of some interval [c, d],
c. there are the real numbers a and b with c ≤ a ≤ b ≤ d, such that u is increasing on [c, a],

decreasing on [b, d] and u(x) = 1 for each x ∈ [a, b],

d. u is fuzzy convex set (that is, u(λx+ (1− λ)y) ≥ min {u(x), u(y)}, ∀x, y ∈ R, λ ∈ [0, 1]).

The set of all fuzzy numbers is denoted by RF .

2
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Definition 2.2.

For any u ∈ RF the α−cut set of u is denoted dy [u]α and defined by [u]α = {x ∈ R | u(x) ≥ α},
where 0 ≤ α ≤ 1. The notation,

[u]α = [uα, uα]; α ∈ [0, 1],

refers to the lower and upper branches on u, in other words,

uα = min{x | x ∈ uα}, uα = max{x | x ∈ uα}.

It is obvious that [u]0 = {x ∈ R | u(x) > 0} Yue et al. (1998).

An arbitrary fuzzy number u is represented, in parametric form, by an ordered pair of functions
u = (u, u), which define the end points of the α−cuts, satisfying the three conditions:

a. u is a bounded non-decreasing left continuous function on (0, 1], and right continuous at 0,
b. u is a bounded non-increasing left continuous function on (0, 1], and right continuous at 0,
c. u(r) ≤ u(r), 0 ≤ r ≤ 1.

For arbitrary u = (u, u), v = (v, v̄) and k ≥ 0, addition (u + v) and multiplication by k as
(u+ v)(r) = u(r) + v(r), (u+ v)(r) = u(r) + v̄(r), ku(r) = ku(r), ku(r) = ku(r), k ≥ 0 and
ku(r) = ku(r), ku(r) = ku(r), k < 0 are defined.

It is well-known that the addition and multiplication operations of real numbers can be extended to
RF . In other words, for any u, v ∈ RF and λ ∈ R, we define uniquely the sum u⊕ v and the product
λ� u by

[u⊕ v]α = [u]α ⊕ [v]α, [λ� u]α = λ[u]α, ∀α ∈ [0, 1].

	 is the Hukuhara difference (H-difference). It means that w 	 v = u if and only if u ⊕ v = w for
all u, v, w ∈ RF .

Definition 2.3.

For arbitrary fuzzy number u = (u(r), u(r)), v = (v(r), v(r)), the Hausdorff distance between these
fuzzy numbers, given by D : RF × RF → R+ ∪ {0},

D(u, v) = sup
r∈[0,1]

max{|u(r)− v(r)|, |u(r)− v̄(r)|},

where D is a metric on RF and has the following properties (Zadeh et al., 1965).

a. D(u⊕ w, ν ⊕ w) = D(u, ν),∀u, ν, w ∈ RF ,
b. D(k � u, k � ν) = |k|D(u, ν),∀k ∈ R, u, ν ∈ RF ,
c. D(u⊕ ν, w ⊕ e) ≤ D(u,w) +D(ν, e),∀u, ν, w, e ∈ RF ,
d. (D,RF ) is a complete metric space.
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Definition 2.4.

The function f : T ⊆ R −→ RF is called a fuzzy function.
So the α−cut set of f is represented by

f(x;α) = [f(x;α), f(x;α)]; ∀α ∈ [0, 1], t ∈ T.

A fuzzy function may have fuzzy domain and fuzzy range. So the function f : RF −→ RF is also
a fuzzy function.

Definition 2.5.

Let f : R→ RF be a fuzzy function. If for an arbitrary fixed number t0 ∈ R and ε > 0, there exists
δ > 0 such that

|t− t0| < δ =⇒ D(f(t), f(t0)) < ε,

then f is continuous at t0.

In the following, we consider the concept of integral of a fuzzy

Definition 2.6.

Let f : [a, b] −→ RF . For each partition p = {x1, x2, ..., xm} of [a, b] and for arbitrary

xi−1 ≤ ξi ≤ xi, 2 ≤ i ≤ m, let Rp = Σm
i=2f(ξi)(xi − xi−1).

The define integral of f(x) over [a, b] is,∫ b

a
f(x, y) = limRp, max |xi − xi−1| → 0,

provided that this limit exists in metric D.

If the function f is continuous, its definite integral exists Goetschel et al.(1986).

Furthermore: ∫ b

a
f(x;α)dx =

∫ b

a
f(x;α)dx,

∫ b

a
f(x;α)dx =

∫ b

a
f(x;α)dx.

More details about the properties of the fuzzy integral are given by (Goetschel et al., 1986).

Definition 2.7.

Let f : [a, b] −→ RF . The fuzzy β−fractional integral of fuzzy-valued function f is defined as
follows:

(Iβf)(x) =

∫ x

a

f(t)

t1−β
dt, x > a, 0 < β < 1.

Let us consider the α-cut representation of fuzzy-valued function f is f(x;α) = [f(x;α), f(x;α)],
for 0 ≤ α ≤ 1,. Then we can show the fuzzy β−fractional integral of fuzzy-valued function f based
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on its lower and upper functions as follows.

Theorem 2.1.

Let f : [a, b] −→ RF . The fuzzy β−fractional integral of fuzzy-valued function f can be expressed
as follows:

(Iβf)(x;α) = [(Iβf)(x;α), (Iβf)(x;α)], 0 < α < 1,

where

(Iβf)(x;α) =

∫ x

a

f(t;α)

t1−β
dt, (Iβf)(x;α) =

∫ x

a

f(t;α)

t1−β
dt.

Now, we introduce a new definition of fuzzy fractional derivative as follows (Khalil et al.2014).

Theorem 2.2.

For β ∈ [0, 1), and f : [a, b] −→ RF ,

Dβ
t f(t) = lim

ε→0

f(t+ εt1−β)	 f(t)

ε
.

For t > 0, β ∈ (0, 1).Dβ
t f(t) is called the conformable fuzzy fractional derivative of f of order β

(Abdeljawad et al., 2015).

Using this kind of fractional derivative and some useful formulas, it can be converted differential
equations into integer-order differential equations.

Some properties for the suggested conformable fuzzy fractional derivative given by Khalil et al.
(2014) are as follows,

Dβ
t (tγ) = γ tγ−β, γ ∈ R, (1)

Dβ
t (f(t)g(t)) = g(t)Dβ

t f(t) + f(t)Dβ
t g(t), (2)

Dβ
t f [g(t)] = f ′g[g(t)]Dβ

t g(t). (3)

Definition 2.8.

The fuzzy continuous function f : R −→ RF is called to be fuzzy bounded if there exists M > 0

such that ‖f‖F.u = supu∈RD(f(u), 0̂) 6M.

Theorem 2.3.

Let R0 = [x0, x0 + p] × B(y0, q), p, q > 0, y0 ∈ RF and f : R0 → RF be continuous such that
‖f(x, y)‖f ≤ M for all (x, y) ∈ R0 and f satisfies the Lipschitz condition D(f(x, y), f(x, z)) ≤ L.
D(y, z),∀(x, y), (x, z) ∈ R0 and D(y, z) ≤ q. If there exists d > 0 such that for x ∈ (x0, x0 + d) the
sequence given by y0(x) = y0, yn+1(x) = y0− (−1)�

∫ x0

x f(t, yn)(t)dt is defined for any n ∈ N, then

5
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the fuzzy initial value problem y′ = f(x, y), y(x0) = y0 has two solutions y, y : [x0, x0+r]→ B(y0, q)

where r = min{p, qM ,
q
M1
, d} and the successive iterations in

y0(x) = y0,

yn+1(x) = y0 ⊕
∫ x0

x
f(t, yn)(t)dt,

and

y0(x) = y0,

yn+1(x) = y0 − (−1)�
∫ x0

x
f(t, yn)(t)dt,

converge to these two solutions, respectively (Bede et al., 2005).

3. The fractional transfor

In this section, we reduce FFKdVE to an ordinary differential equation. Then we show that this
equation is equivalent to fuzzy integral equation.

We consider the FFKdVE with homogeneous Dirichlet boundary condition as follows,

∂βŨ(t, x)

∂tβ
+
∂Ũ(t, x)

∂x
+
∂3Ũ(t, x)

∂x3
= 0, 0 < t < 1, 0 6 x < 1, 0 < β 6 1, (4)

where β is a parameter describing the order of the fractional time derivative, and

Ũ(t, 0) = k̃(t), Ũx(t, 0) = h̃(t), 0 < x < 1,

where Ũ(t, x) : (0, 1)× [0, 1) −→ RF is fuzzy number-valued function and RF is the set of all fuzzy
numbers. The Korteweg-de Vries equation (KdVE) is involved in a range of physics phenomena
as a model for the evolution and interaction of nonlinear waves. It was first derived as an evolution
equation that governs a one-dimensional, small amplitude, long surface gravity waves propagating
in a shallow channel of water (Korteweg et al., 1895).

Subsequently the KdVE has arisen in a number of other physical contexts as collision-free hydro-
magnetic waves, stratified internal waves, ion-acoustic waves, plasma physics, lattice dynamics,
etc (Fung et al., 1997). Certain theoretical physics phenomena in the quantum mechanics domain
are explained by a KdVE model. It is used in fluid dynamics, aerodynamics, and continuum me-
chanics as a model for shock wave formation, soliton, turbulence, boundary layer behavior, and
mass transport.

All of the physical phenomena may be considered as nonconservative, so they can be described
using fractal differential equations. Therefore, it is important to develop numerical methods for
solving such equations.

Now, we introduce the following transformations,

U(t, x) = U(ξ), ξ = ax+
btβ

β
a, b > 0 a+

b

β
< 1.

6
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So, we can say that 0< ξ <1 by using (1) and (3) and, by substituting into equation (4), it is derived
that

bU
′
+ aU

′
+ a3U

′′′
= 0. (5)

Integrating (5) with respect to ξ, then we have,

(a+ b)U + a3U
′′

= R, (6)

where R is a constant of integration.

Now we show that this fuzzy equation is equivalent to fuzzy integral equation as the form

U
′′
(ξ) = f(ξ) =⇒ U

′
(ξ) = U

′
(0) +

∫ ξ

0
f(z)dz,

=⇒ U(ξ) = U(0) + U
′
(0)ξ +

∫ ξ

0

∫ ξ

0
f(z)dzdξ.

On the other hand, ∫ ξ

0
· · ·
∫ ξ

0
f(ξ)(dξ)n =

1

(n− 1)!

∫ ξ

0
(ξ − z)n−1f(z)dz.

Therefore,

U(ξ) = U(0) + U
′
(0)ξ +

∫ ξ

0

∫ ξ

0
(ξ − z)f(z)dz.

By substituting into equation (6) we have,

f(ξ) =

[
R− (a+ b)[U(0) + U

′
(0)ξ]

a3

]
︸ ︷︷ ︸

g(ξ)

+

∫ ξ

0

−(a+ b)(ξ − z)
a3︸ ︷︷ ︸

K(ξ,z)

f(z)dz = 0,

f(ξ) = g(ξ) +

∫ ξ

0
K(ξ, z)f(z)dz.

Similarly,

f(ξ) = g(ξ) +

∫ ξ

0
K(ξ, z)f(z)dz.

Existence and convergence analysis on Lp-spaces

Now, we prove the existence and uniqueness of the solution and convergence of the successive
approximations method on the Lp-spaces by using the following assumptions. We consider fuzzy
integral equations as follows,

f(ξ) = g(ξ) +

∫ ξ

0
K(ξ, z)f(z)dz,

where K is an arbitrary positive kernel on [0, 1] × [0, ξ] and functions f, g : [0, 1] −→ RF are
continuous fuzzy number-valued functions. We know that f, g can be represented as f = (f, f) and
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g = (g, g), which define the end points of the α-cuts. We assume that K is continuous and therefore
it is uniformly bounded, so there exists M1 > 0 such that

|K(ξ, z)| 6M1 0 6 ξ 6 1, 0 6 z 6 ξ.

Now for 1 ≤ p ≤ ∞ consider the set

LpF ([0, 1]) = {f = (f, f); f : [0, 1] −→ RF , f , f ∈ Lp([0, 1]× [0, 1])},

It is easy to see that LpF ([0, 1]) for 1 ≤ p ≤ ∞ is a vector space.

Now we put norm as follows,

‖f‖F.p = (‖f ‖pp +‖f ‖pp)
1

p ,

and for p =∞ the fuzzy norm with form

‖f‖F.∞ = max(‖f‖∞, ‖f‖∞).

We can see that they are normed vector space of fuzzy function.

‖.‖F.p for 1 ≤ p ≤ ∞ has the properties of a usual norm on RF , that is,

‖f‖F.p ≥ 0, ‖f‖F.p = 0 iff f = 0, ‖λ.f‖F.p =| λ | ‖f‖F.p

and

‖f + g‖F.p ≤ ‖f‖F.p + ‖g‖F.p,

for any f, g ∈ RF .

Now, we define the set

CF ([0, 1]) =

{
f = (f, f); f : [0, 1] −→ RF ; f is continuous

}
,

which is the space of fuzzy continuous function.

We define the fuzzy uniform norm with form

‖f‖F.u = sup
ξ∈[0,1]

D(f(ξ), 0̂).

It is obvious that for 1 ≤ p ≤ ∞, CF ([0, 1]) ⊆ LpF ([0, 1]).

In the next theorem we show that for 1 ≤ p <∞, CF ([0, 1]) with ‖.‖F.p is dense in LpF ([0, 1]).

Theorem 3.1.

(CF ([0, 1]), ‖.‖F.u) = LpF ([0, 1]) with ‖.‖F.p

8
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Proof:

Let f ∈ LpF ([0, 1]); each f can be represented by f = (f, f) such that f, f ∈ Lp([0, 1] × [0, 1]), so
there exists a sequence fn = (fn, fn) ∈ C([0, 1] × [0, 1]) which fn → f, fn → f with ‖.‖p, so for
ε > 0, there exist n ∈ N such that for n ≥ N we have

‖fn − f‖p <
ε

2
1

p

, ‖fn − f‖p <
ε

2
1

p

.

So we have,

‖fn − f‖F.p = (‖fn − f‖pp + ‖fn − f‖pp)
1

p

< (
εp

2
+
εp

2
)

1

p

< ε.

Consequently,

(fn, fn)→ (f, f) with ‖.‖p.

So we infer that LpF ([0, 1]) is a complete normed space so (LpF ([0, 1]), ‖.‖F.p) is a Banach space. �

Now in the following theorem we show that L∞F ([0, 1]) is a Banach space.

Theorem 3.2.

(L∞F ([0, 1]), ‖.‖F.∞) is a Banach space.

Proof:

Let fn be a Cauchy sequence of L∞F ([0, 1]). So there exist fn = (fn, fn) such that fn, fn ∈ L∞([0, 1]×
[0, 1]). We claim that for some f = (f, f), lim ‖ f − fn‖F.∞ = 0. As we know, L∞([0, 1] × [0, 1])

is a Banach space(Royden, 1963). So there exists some f, f ∈ L∞([0, 1]× [0, 1]) such that lim ‖f −
fn‖∞ = 0 and lim ‖f − fn‖∞ = 0, since

lim ‖f − fn‖F.∞ = max(‖f − fn‖∞, ‖f − fn‖∞).

This show that lim ‖f − fn‖F.∞ = 0 and the proof of the theorem is complete .

We define the operator T : LpF ([0, 1]) −→ LpF ([0, 1]) for 1 ≤ p ≤ ∞ by

T (f)(ξ) = g(ξ) +

∫ ξ

0
K(ξ, z)f(z) dz, ∀ξ ∈ [0, 1], ∀f, g ∈ LpF ([0, 1]), f, g : [0, 1]→ RF .

T (f)(ξ) can be represented as form T (f)(ξ) = (T (f)(ξ), T (f)(ξ)) which,

T (f)(ξ) = g(ξ) +

∫ ξ

0
K(ξ, z)f(z) dz, T (f)(ξ) = g(ξ) +

∫ ξ

0
K(ξ, z)f(z) dz.

Sufficient conditions for the existence of a unique solution for the above integral equation is given
in the following theorem. �
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Theorem 3.3.

let K = K(ξ, z) be continuous and positive for 0 6 ξ 6 1, 0 6 z 6 ξ and f, g : [0, 1] −→ RF
be fuzzy functions and belong to LpF ([0, 1]) for 1 ≤ p ≤ ∞. If B = M1ξ < 1, then the successive
approximate method

f0(ξ) = g(ξ),

fm(ξ) = g(ξ) +

∫ ξ

0
K(ξ, z)fm−1(z)dz, m > 1. (7)

converges to the unique solution f .

Proof:

At first we want to prove that T (LpF ([0, 1])) ⊆ LpF ([0, 1])) for 1 ≤ p ≤ ∞, therefore, we show that
for 1 ≤ p <∞,

‖T (f)‖F.p = (‖T (f)‖pp + ‖T (f)‖pp)
1

p <∞,

and for p =∞,

‖T (f)‖F.∞ = max(‖T (f)‖∞, ‖T (f)‖∞) <∞.

So it is enough to show that for 1 ≤ p < ∞, (‖ T (f)‖pp)
1

p < ∞ and (‖T (f)‖pp)
1

p < ∞ and for
p =∞, ‖T (f)‖∞ <∞ and ‖T (f)‖∞ <∞.

Consequently, for 1 ≤ p <∞,

‖T (f)‖p = ‖g(ξ) +

∫ ξ

0
K(ξ, z)f(z) dz‖p

≤ ‖ g(ξ)‖p + ‖
∫ ξ

0
K(ξ, z)f(z) dz‖p

= ‖ g(ξ)‖p + (

∫ 1

0
|
∫ ξ

0
K(ξ, z)f(z) dz |p dξ)

1

p

≤ ‖ g(ξ)‖p + (

∫ 1

0

∫ 1

0
| K(ξ, z) |p| f(z) |p dz dξ)

1

p

≤ ‖ g(ξ)‖p +M1(

∫ 1

0

∫ 1

0
| f(z) |p dz dξ)

1

p

= ‖ g(ξ)‖p +M1(

∫ 1

0
dξ)

1

p (

∫ 1

0
| f(z) |p dz)

1

p

≤ ‖ g(ξ)‖p +M1(1)
1

p ‖f‖p

= ‖ g(ξ)‖p +M1‖f‖p
<∞.

By the fact that f, g ∈ LpF ([0, 1]), the last relation is obvious.

Similarly, ‖T (f)‖p <∞. Thus, T (LpF ([0, 1])) ⊆ LpF ([0, 1]).
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For p =∞, since,

‖T (f)‖∞ = sup{|T (f)(ξ)|; ξ ∈ [0, 1]},

it is enough to show that |T (f)| ≤ ∞. Since f, g ∈ L∞F ([0, 1]), we infer that ∃M2 > 0 such that
| f |≤M2 and ∃M3 > 0 such that | g |≤M3,

| T (f)(ξ) | = |g(ξ) +

∫ ξ

0
K(ξ, z)f(z) dz|

≤ |g(ξ)|+ |
∫ ξ

0
K(ξ, z)f(z) dz|

≤ |g(ξ)|+
∫ ξ

0
| K(ξ, z) || f(z)| dz

≤M3 +M1 M2

∫ ξ

0
dz

= M3 +M1 M2 ξ

<∞.

Now, we show that the operator T is a contraction map. So for 1 ≤ p ≤ ∞ there exist, f, h ∈
LpF ([0, 1]) and ξ ∈ [0, 1],

D(T (f)(ξ), T (h)(ξ)) 6 D(g(ξ), g(ξ)) +D(

∫ ξ

0
K(ξ, z)f(z)dz,

∫ ξ

0
K(ξ, z)h(z)dz)

=

∫ ξ

0
|K(ξ, z)|D(f(z), h(z))dz

6M1

∫ ξ

0
D(f(z), h(z))dz

= M1ξD(f, h)

= BD(f, h).

Therefore,

D(T (f)(ξ), T (h)(ξ)) 6 B D(f, h).

Since B < 1, the operator T is a contraction on LpF ([0, 1]) for 1 ≤ p ≤ ∞.

Consequently, the Banach’s fixed point theorem implies that this integral equation has a unique
solution f in LpF ([0, 1]). �

4. Using the successive approximations method for FFKdVEn

In this section, we present an effective method for solving fuzzy linear Volterra integral equation
by using the successive approximations method.

Consider the following equation as form:

fm(ξ) = g(ξ) +

∫ ξ

0
K(ξ, z)fm−1(z)dz, m > 1,

11

Farahrooz et al.: On the Lp-spaces techniques in the existence and uniqueness

Published by Digital Commons @PVAMU, 2017



880 F. Farahrooz et al.

where

g(ξ) =
R− (a+ b)[U(0) + U

′
(0)ξ]

a3

and

K(ξ, z) =
−(a+ b)(ξ − z)

a3
.

We present this method in several steps:

• Step 1. Set n→ 0.

• Step 2. Calculate the recursive relations (7).

• Step 3. If D(f̃n+1, f̃n) < ε, then go to step 4, else n→ n+ 1 and go to step 2.

• Step 4. Print f̃n(ξ) as the approximation of the exact solution.

Since f0(ξ) = g(ξ), then

f1(ξ) = g(ξ) +

∫ ξ

0
K(ξ, z)f0(z)dz = A+Bξ +

AC

2!
ξ2 +

BC

3!
ξ3,

f2(ξ) = A+Bξ +
AC

2!
ξ2 +

BC

3!
ξ3 +

AC2

4!
ξ4 +

BC2

5!
ξ5,

f3(ξ) = A+Bξ +
AC

2!
ξ2 +

BC

3!
ξ3 +

AC2

4!
ξ4 +

BC2

5!
ξ5 +

AC3

6!
ξ6 +

BC3

7!
ξ7,

...

where

A =
R− (a+ b)U(0)

a3
,

B =
−(a+ b)U

′
(0)

a3
,

C =
−(a+ b)

a3
.

Now we give some numerical examples for fuzzy linear Volterra integral equation (7) when

• x = t = 0.5, a = b = 0.14, R = 0.

• u(0) = 0.1α, u(0) = −0.1α, u′(0) = 0.2α, u′(0) = −0.2α.
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Table 1: Numerical results for α = 0.2, β = 1
2 , ε = 10−8.

fn un un

f1 5.522200000 - 5.522200000

f2 0.615228100 - 0.615228100

f3 1.774414801 - 1.774414801

f4 1.625915144 - 1.625915144

f5 1.637819824 - 1.637819824

f6 1.637167094 - 1.637167094

f7 1.637193101 - 1.637193101

f8 1.637192313 - 1.637192313

f9 1.637192332 - 1.637192332

Table 1 shows that the approximations solution of the fuzzy linear Volterra integral equation is
convergent to the exact solution with 9 iterations by using the successive approximations method.

Table 2: Numerical results for α = 0.1, β = 1
4 , ε = 10−9.

fn un un

f1 18.57083333 - 18.57083333

f2 - 27.94484375 27.94484375

f3 16.54190011 - 16.54190011

f4 - 6.763676737 6.763676737

f5 0.9144724671 - 0.9144724671

f6 - 0.8204939397 0.8204939397

f7 - 0.5351268291 0.5351268291

f8 - 0.5708058636 0.5708058636

f9 - 0.5673013330 0.5673013330

f10 - 0.5675788580 0.5675788580

f11 - 0.5675607654 0.5675607654

f12 - 0.5675617532 0.5675617532

f13 - 0.5675617074 0.5675617074

f14 - 0.5675617093 0.5675617093

f15 - 0.5675617092 0.5675617092
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Table 2 shows that the approximations solution of the fuzzy linear Volterra integral equation is
convergent to the exact solution with 15 iterations by using the successive approximations method.

5. Conclusion

In this paper the FFKdVE is reduced to an ordinary differential equation, then the equivalency this
equation to the fuzzy integral equation is proved. The fuzzy Lp-spaces for 1 ≤ p ≤ ∞ is introduced.
Then the existence, uniqueness and convergence of the solution of this integral equation on Lp-
spaces are proved. So it is concluded that the FFKdVE has a unique solution. At the end the
successive approximation method is presented to get numerical solutions of this equation with
some numerical examples.

Acknowledgement:

The authors are very grateful to the referees for their valuable suggestions and opinions.

REFERENCES

Abdeljawad, T. Horani, M.A.L. and Khalil, R. (2015). Conformable fractional semigroup opera-
tors, J. Semigroup Theory Appl, Article ID. 7.

Abdeljawad, T. (2015). On conformable fractional calculus, J. Comput. Appl. Math, Vol. 279, No.
1, pp. 57–66.

Balachandran, K. and Kanajarajan, K. (2005). Existence of solutions of general nonlinear fuzzy
volterra-Fredholm integral equations, J. Appl. Math. Stochastic Anal, Vol. 3, pp. 333–343.

Bede, B. and Gal, S.G. (2005). Generalizations of the differentiability of fuzzy-number-valued
functions with applications to fuzzy differential equations, Fuzzy sets and Systems, Vol. 151,
pp. 581–599.

Bede, B. and Gal, S.G. (2004). Quadrature rules for integrals of fuzzy-number-valued functions,
Fuzzy Sets and Systems, Vol. 145, pp. 359–380.

Bica, A. M.(2008). Error estimation in the approximation of the solution of nonlinear fuzzy Fred-
holm integral equations, Information Sciences, Vol. 178, pp. 1279–1292.

Chang, S. L. and Zadeh, L. A. (1972). On fuzzy mapping and control, IEEE Trans Syst Man
Cybern, Vol. 2, pp. 30–34.

Friedman, M., Ma, M. and Kandel, A. (1999). On fuzzy integral equations, Fund. Inform, Vol. 37,
pp. 89–99.

Friedman, M., Ma, M. and Kandel, A. (1999). Solutions to fuzzy integral equations with arbitrary
kernels, International Journal of Approximate Reasoning, Vol. 20, pp. 249–262.

Fung, M. K. (1997). KdV equation as an Euler-Poincare’equation, Chinese J. Physics, Vol. 35, pp.
789–796.

Goetschel, R. and Voxman, W. (1986). Elementary calculus, Fuzzy Sets and Systems, Vol. 18, pp.
31–34.

14

Applications and Applied Mathematics: An International Journal (AAM), Vol. 12 [2017], Iss. 2, Art. 15

https://digitalcommons.pvamu.edu/aam/vol12/iss2/15



AAM: Intern. J., Vol. 12, Issue 2 (December 2017) 883

Khalil, R. A.H., M. Yousef, A. and Sababheh, M. (2014). A new definition of fractional derivative,
J. Comput. Appl. Math, Vol. 264, pp. 65–70.

Korteweg, D. J. and de Vries, G. (1895). On the change of form of long waves advancing in a
rectangular canal and on a new type of long stationary waves, Philosophical Magazine, Vol.
39, pp. 422–443.

Mishra, L. N. and Agarwal, R. P. (2016). On existence theorems for some nonlinear functional
integral equations, Dynamic Systems and Applications, Vol. 25, pp. 303–320.

Mishra, L. N., Agarwal, R. P. and Sen, M. (2016). Solvability and asymptotic behavior for some
nonlinear quadratic integral equation interval, Progress in Fractional Differentiation and Ap-
plications, Vol. 2, pp. 153–168.

Mishra, L. N., and Sen, M. (2016). On the concept of existence and local attractivity of solutions
for some quadratic Volterra integral equation of fractional order, Applied Mathematics and
Computation, Vol. 285, pp. 174–183. doi: 10.1016/j.amc.2016.03.002

Mishra, L. N., Sen, M. and Mohapatra, R.N. (2016). On existence theorems for some generalized
nonlinear functional-integral equations with applications, Filomat, accepted on March 21, in
press.

Mishra, L. N., Srivastava, H.M. and Sen, M. (2016). On existence results for some nonlinear
functional-integral equations in Banach algebra with applications, Int. J. Anal. Appl., Vol.
11, pp. 1–10.

Mordeson, J. and Newman, W. (1995). Fuzzy integral equations, Inf. Sci, Vol. 87, pp. 215–229.
Park, J. Y. and Jeong, J.U. (1999). A note on fuzzy integral equations, Fuzzy Sets and Systems,

Vol. 108, pp. 193–200.
Royden, H.L. (1963). Real Analysis, Macmillan Publishing Company, New York.
Yue, Z. Zhang, Q. and Guagyuan, W. (1998). Solving processes for a system of first-order fuzzy

differential equations, Fuzzy Sets and Systems, Vol. 95, pp. 333–347.
Zadeh, L. A. (1965). Fuzzy sets, Inf Control, Vol. 8, pp. 338–353.
Zadeh, L. A., Tanaka, K. and Shimura, M. (1974). Fuzzy sets and their applications to congnitive

and decision processes, The University Of California, Berkeley, California.

15

Farahrooz et al.: On the Lp-spaces techniques in the existence and uniqueness

Published by Digital Commons @PVAMU, 2017


	On the Lp-spaces techniques in the existence and uniqueness of the fuzzy fractional Korteweg-de Vries equation’s solution
	Recommended Citation

	tmp.1627159606.pdf.WB6Yj

