1,017 research outputs found

    An Empirical Model for Thyroid Disease Classification using Evolutionary Multivariate Bayseian Prediction Method

    Get PDF
    Thyroid diseases are widespread worldwide. In India too, there is a significant problems caused due to thyroid diseases. Various research studies estimates that about 42 million people in India suffer from thyroid diseases [4]. There are a number of possible thyroid diseases and disorders, including thyroiditis and thyroid cancer. This paper focuses on the classification of two of the most common thyroid disorders are hyperthyroidism and hypothyroidism among the public. The National Institutes of Health (NIH) states that about 1% of Americans suffer from Hyperthyroidism and about 5% suffer from Hypothyroidism. From the global perspective also the classification of thyroid plays a significant role. The conditions for the diagnosis of the disease are closely linked, they have several important differences that affect diagnosis and treatment. The data for this research work is collected from the UCI repository which undergoes preprocessing. The preprocessed data is multivariate in nature. Curse of Dimensionality is followed so that the available 21 attributes is optimized to 10 attributes using Hybrid Differential Evolution Kernel Based Navie Based algorithm. The subset of data is now supplied to Kernel Based NaEF;ve Bayes classifier algorithm in order to check for the fitness

    Soft clustering using real-world data for the identification of multimorbidity patterns in an elderly population: Cross-sectional study in a Mediterranean population

    Get PDF
    The aim of this study was to identify, with soft clustering methods, multimorbidity patterns in the electronic health records of a population =65 years, and to analyse such patterns in accordance with the different prevalence cut-off points applied. Fuzzy cluster analysis allows individuals to be linked simultaneously to multiple clusters and is more consistent with clinical experience than other approaches frequently found in the literature.Peer ReviewedPostprint (published version

    Neural Network Based Fuzzy C-MEANS Clustering Algorithm

    Get PDF
    In this paper, fuzzy c-means algorithm uses neural network algorithm is presented. In pattern recognition, fuzzy clustering algorithms have demonstrated advantage over crisp clustering algorithms to group the high dimensional data into clusters. The proposed work involves two steps. First, a recently developed and Enhanced Kmeans Fast Leaning Artificial Neural Network (KFLANN) frame work is used to determine cluster centers. Secondly, Fuzzy C-means uses these cluster centers to generate fuzzy membership functions. Enhanced K-means Fast Learning Artificial Neural Network (KFLANN) is an algorithm which produces consistent classification of the vectors in to the same clusters regardless of the data presentation sequence. Experiments are conducted on two artificial data sets Iris and New Thyroid. The result shows that Enhanced KFLANN is faster to generate consistent cluster centers and utilizes these for elicitation of efficient fuzzy memberships

    Combined Multimorbidity and Polypharmacy Patterns in the Elderly: A Cross-Sectional Study in Primary Health Care

    Get PDF
    1) Background: The acquisition of multiple chronic diseases, known as multimorbidity, is common in the elderly population, and it is often treated with the simultaneous consumption of several prescription drugs, known as polypharmacy. These two concepts are inherently related and cause an undue burden on the individual. The aim of this study was to identify combined multimorbidity and polypharmacy patterns for the elderly population in Catalonia. (2) Methods: A cross-sectional study using electronic health records from 2012 was conducted. A mapping process was performed linking chronic disease categories to the drug categories indicated for their treatment. A soft clustering technique was then carried out on the final mapped categories. (3) Results: 916,619 individuals were included, with 93.1% meeting the authors' criteria for multimorbidity and 49.9% for polypharmacy. A seven-cluster solution was identified: one non-specific (Cluster 1) and six specific, corresponding to diabetes (Cluster 2), neurological and musculoskeletal, female dominant (Clusters 3 and 4) and cardiovascular, cerebrovascular and renal diseases (Clusters 5 and 6), and multi-system diseases (Cluster 7). (4) Conclusions: This study utilized a mapping process combined with a soft clustering technique to determine combined patterns of multimorbidity and polypharmacy in the elderly population, identifying overrepresentation in six of the seven clusters with chronic disease and chronic disease-drug categories. These results could be applied to clinical practice guidelines in order to better attend to patient needs. This study can serve as the foundation for future longitudinal regarding relationships between multimorbidity and polypharmacy

    A survey on artificial intelligence based techniques for diagnosis of hepatitis variants

    Get PDF
    Hepatitis is a dreaded disease that has taken the lives of so many people over the recent past years. The research survey shows that hepatitis viral disease has five major variants referred to as Hepatitis A, B, C, D, and E. Scholars over the years have tried to find an alternative diagnostic means for hepatitis disease using artificial intelligence (AI) techniques in order to save lives. This study extensively reviewed 37 papers on AI based techniques for diagnosing core hepatitis viral disease. Results showed that Hepatitis B (30%) and C (3%) were the only types of hepatitis the AI-based techniques were used to diagnose and properly classified out of the five major types, while (67%) of the paper reviewed diagnosed hepatitis disease based on the different AI based approach but were not classified into any of the five major types. Results from the study also revealed that 18 out of the 37 papers reviewed used hybrid approach, while the remaining 19 used single AI based approach. This shows no significance in terms of technique usage in modeling intelligence into application. This study reveals furthermore a serious gap in knowledge in terms of single hepatitis type prediction or diagnosis in all the papers considered, and recommends that the future road map should be in the aspect of integrating the major hepatitis variants into a single predictive model using effective intelligent machine learning techniques in order to reduce cost of diagnosis and quick treatment of patients

    Clustering Approaches for Evaluation and Analysis on Formal Gene Expression Cancer Datasets

    Get PDF
    Enormous generation of biological data and the need of analysis of that data led to the generation of the field Bioinformatics. Data mining is the stream which is used to derive, analyze the data by exploring the hidden patterns of the biological data. Though, data mining can be used in analyzing biological data such as genomic data, proteomic data here Gene Expression (GE) Data is considered for evaluation. GE is generated from Microarrays such as DNA and oligo micro arrays. The generated data is analyzed through the clustering techniques of data mining. This study deals with an implement the basic clustering approach K-Means and various clustering approaches like Hierarchal, Som, Click and basic fuzzy based clustering approach. Eventually, the comparative study of those approaches which lead to the effective approach of cluster analysis of GE.The experimental results shows that proposed algorithm achieve a higher clustering accuracy and takes less clustering time when compared with existing algorithms

    Molecular subtyping of bladder cancer using Kohonen self-organizing maps

    Get PDF
    Kohonen self-organizing maps (SOMs) are unsupervised Artificial Neural Networks (ANNs) that are good for low-density data visualization. They easily deal with complex and nonlinear relationships between variables. We evaluated molecular events that characterize high- and low-grade BC pathways in the tumors from 104 patients. We compared the ability of statistical clustering with a SOM to stratify tumors according to the risk of progression to more advanced disease. In univariable analysis, tumor stage (log rank P = 0.006) and grade (P < 0.001), HPV DNA (P < 0.004), Chromosome 9 loss (P = 0.04) and the A148T polymorphism (rs 3731249) in CDKN2A (P = 0.02) were associated with progression. Multivariable analysis of these parameters identified that tumor grade (Cox regression, P = 0.001, OR.2.9 (95% CI 1.6–5.2)) and the presence of HPV DNA (P = 0.017, OR 3.8 (95% CI 1.3–11.4)) were the only independent predictors of progression. Unsupervised hierarchical clustering grouped the tumors into discreet branches but did not stratify according to progression free survival (log rank P = 0.39). These genetic variables were presented to SOM input neurons. SOMs are suitable for complex data integration, allow easy visualization of outcomes, and may stratify BC progression more robustly than hierarchical clustering
    corecore