4,920 research outputs found

    Hand gesture recognition based on signals cross-correlation

    Get PDF

    A brief network analysis of Artificial Intelligence publication

    Full text link
    In this paper, we present an illustration to the history of Artificial Intelligence(AI) with a statistical analysis of publish since 1940. We collected and mined through the IEEE publish data base to analysis the geological and chronological variance of the activeness of research in AI. The connections between different institutes are showed. The result shows that the leading community of AI research are mainly in the USA, China, the Europe and Japan. The key institutes, authors and the research hotspots are revealed. It is found that the research institutes in the fields like Data Mining, Computer Vision, Pattern Recognition and some other fields of Machine Learning are quite consistent, implying a strong interaction between the community of each field. It is also showed that the research of Electronic Engineering and Industrial or Commercial applications are very active in California. Japan is also publishing a lot of papers in robotics. Due to the limitation of data source, the result might be overly influenced by the number of published articles, which is to our best improved by applying network keynode analysis on the research community instead of merely count the number of publish.Comment: 18 pages, 7 figure

    A novel Big Data analytics and intelligent technique to predict driver's intent

    Get PDF
    Modern age offers a great potential for automatically predicting the driver's intent through the increasing miniaturization of computing technologies, rapid advancements in communication technologies and continuous connectivity of heterogeneous smart objects. Inside the cabin and engine of modern cars, dedicated computer systems need to possess the ability to exploit the wealth of information generated by heterogeneous data sources with different contextual and conceptual representations. Processing and utilizing this diverse and voluminous data, involves many challenges concerning the design of the computational technique used to perform this task. In this paper, we investigate the various data sources available in the car and the surrounding environment, which can be utilized as inputs in order to predict driver's intent and behavior. As part of investigating these potential data sources, we conducted experiments on e-calendars for a large number of employees, and have reviewed a number of available geo referencing systems. Through the results of a statistical analysis and by computing location recognition accuracy results, we explored in detail the potential utilization of calendar location data to detect the driver's intentions. In order to exploit the numerous diverse data inputs available in modern vehicles, we investigate the suitability of different Computational Intelligence (CI) techniques, and propose a novel fuzzy computational modelling methodology. Finally, we outline the impact of applying advanced CI and Big Data analytics techniques in modern vehicles on the driver and society in general, and discuss ethical and legal issues arising from the deployment of intelligent self-learning cars

    A Sign Language to Text Converter Using Leap Motion

    Get PDF
    This paper presents a prototype that can convert sign language into text. A Leap Motion controller was utilised as an interface for hand motion tracking without the need of wearing any external instruments. Three recognition techniques were employed to measure the performance of the prototype, namely the Geometric Template Matching, Artificial Neural Network and Cross Correlation. 26 alphabets from American Sign Language were chosen for training and testing the proposed prototype. The experimental results showed that Geometric Template Matching achieved the highest recognition accuracy compared to the other recognition techniques

    Interpretation of overtracing freehand sketching for geometric shapes

    Get PDF
    This paper presents a novel method for interpreting overtracing freehand sketch. The overtracing strokes are interpreted as sketch content and are used to generate 2D geometric primitives. The approach consists of four stages: stroke classification, strokes grouping and fitting, 2D tidy-up with endpoint clustering and parallelism correction, and in-context interpretation. Strokes are first classified into lines and curves by a linearity test. It is followed by an innovative strokes grouping process that handles lines and curves separately. The grouped strokes are fitted with 2D geometry and further tidied-up with endpoint clustering and parallelism correction. Finally, the in-context interpretation is applied to detect incorrect stroke interpretation based on geometry constraints and to suggest a most plausible correction based on the overall sketch context. The interpretation ensures sketched strokes to be interpreted into meaningful output. The interface overcomes the limitation where only a single line drawing can be sketched out as in most existing sketching programs, meanwhile is more intuitive to the user

    Framework of active robot learning

    Get PDF
    A thesis submitted to the University of Bedfordshire, in fulfilment of the requirements for the degree of Master of Science by researchIn recent years, cognitive robots have become an attractive research area of Artificial Intelligent (AI). High-order beliefs for cognitive robots regard the robots' thought about their users' intention and preference. The existing approaches to the development of such beliefs through machine learning rely on particular social cues or specifically defined award functions . Therefore, their applications can be limited. This study carried out primary research on active robot learning (ARL) which facilitates a robot to develop high-order beliefs by actively collecting/discovering evidence it needs. The emphasis is on active learning, but not teaching. Hence, social cues and award functions are not necessary. In this study, the framework of ARL was developed. Fuzzy logic was employed in the framework for controlling robot and for identifying high-order beliefs. A simulation environment was set up where a human and a cognitive robot were modelled using MATLAB, and ARL was implemented through simulation. Simulations were also performed in this study where the human and the robot tried to jointly lift a stick and keep the stick level. The simulation results show that under the framework a robot is able to discover the evidence it needs to confirm its user's intention
    corecore