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ABSTRACT 


1 


In recent years, cognitive robots have become an attractive research area of Artificial 

Intelligent (AI). High-order beliefs for cognitive robots regard the robots' thought I 

about their users' intention and preference. The existing approaches to the I 
I 

. I 
development of such beliefs through machine learning rely on particular social cues or I 

specifically defined award functions . Therefore, their applications can be limited. 

This study carried out primary research on active robot learning (ARL) which 

facilitates a robot to develop high-order beliefs by actively collecting/discovering 

evidence it needs. The emphasis is on active learning, but not teaching. Hence, social 

cues and award functions are not necessary. In this study, the framework of ARL was 

developed. Fuzzy logic was employed in the framework for controlling robot and for 

identifying high-order beliefs. A simulation environment was set up where a human 

and a cognitive robot were modelled using MATLAB, and ARL was implemented 

through simulation. 

Simulations were also performed in this study where the human and the robot tried to 

jointly lift a stick and keep the stick level. The simulation results show that under the 

framework a robot is able to discover the evidence it needs to confirm its user's 

intention. 

Keywords: cognitive robot, high-order beliefs, robot active 

control, MATLAB modelling 
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CHAPTERl. INTRODUCTION 

1.1 Motivation 

Robots are automatic devices and are widely used in various areas since 1959 when 

American scientists developed the first robot in the world. They can be divided into 

three generations according to automatic control methods used. The first generation of 

robots do not have sensing devices and uses sequence control method. A user can 

teach the robot how to complete a task by programming. Those robots are designed to 

fulfil the heavily repeat tasks. The second generation of robots are equipped with 

different kinds of sensing devices such as position sensors, velocity sensors, force 

sensors, etc. The robots are controlled by computers and can perform more complex 

tasks. The second generation robots also have the ability of self-adjusting and self-

adaptive capacity. The third generation of robots have some more complex sensory 

devices which make the robots able to recognise objects in surrounding environments. 

The third generation robots also have autonomous decision-making ability and self-

learning ability which can make the robot "intelligent". 

Cognitive robots are the third generation robots. They are usually used in 

rehabilitation, home care, therapy, rescue, inspection, maintenance and construction. 

They will need to autonomously co-work with humans in a sensible and adaptable 

manner which requires the robot able to recognize their users' intentions and 

preferences. This means that these robots are expected to possess cognitive 

capabilities such as knowledge, believes, preference and motivational attitudes. 
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Robot learning plays an important role in knowledge acquisition, motivation 

establishment and preference identification. The current robot learning approaches 

include the imitation learning and reinforcement learning. The imitation based 

learning uses social cues such as pointing and gazing to indicate what the user 

intended to do next (Dillmann 2004, Breazeal et al. 2005, Calinon and Billard 2006). 

The user first teaches a robot by demonstrating gestures, for example, pointing to and 

gazing an object, to the robot. These gestures serve as social cues of his interest on the 

object. Then the robot imitates the gestures for the user's approval. This imitation 

process enables the robot to recognise the user's intention when it captures the same 

gestures. This imitation based approach has two limitations. First, it only allows the 

robot to learn the user's intention passively. Second, the users must give exactly the 

same gestures as they act at the teaching stage to make sure the robot could pick up 

their intentions. 

Tapus and Mataric (2007) proposed a reinforcement learning process for medical care 

robots. This approach uses the introversion-extroversion level to consider the patients' 

preference and employs an award function. The award function is defined over the 

robot's behaviour space. When local optima of this function are reached the robot will 

be awarded. The award function has become the key to the success of this approach. 

The use of the award function, on the other hand, limits the application of this 

approach because the definition depends on how a robot's behaviour is parameterised. 

For different tasks, this function may have to be defined differently. 

An approach which does not rely on social cues and not require specifically defined 

award functions is needed for robots to develop their cognitive capabilities. 
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Discovering learning III education, also known as "learn by doing", encourages 

learners to discover knowledge through performing supervised experiments by 

themselves. Inspired by the discovering learning, this study proposed an approach of 

active robot learning CARL). The proposed ARL allows a robot to perform test actions 

to its user and to identify the user's intention/preference by analysing herlhis 

responses to the test actions. ARL does not rely on social cues and on explicitly 

defined award functions. ARL also is an active learning approach. This means that the 

robot decides when to learn and what to learn. 

1.2 	 Aim and Objectives 

This study aims at the development of the framework for ARL, including the 

components and the relationship between the components. This study also sets up a 

stick-lifting scenario to test the framework. 

Objectives are in the following: 

o 	 To investigate the existing methods of the development of cognition 

capability for robots and their applications through a literature review 

o 	 To decide what functions/components are required by ARL 

o 	 To decide the relationship between the components 

o 	 To develop mathematical models for robot and human in order to test the 

ARL framework 

o 	 To develop a local fuzzy control algorithm for the robot model to perform 

the task of object lifting 
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o 	 To implement the prototype of the ARL framework 

o 	 To integrate the prototype with the robot and human models as well as 

fuzzy control algorithms 

o 	 To test the prototype in a simple stick-lifting scenario. 

1.3 	 Structure of Dissertation 

Chapter 2 provides the survey of state-of-the-art approaches in the area of cognitive 

robots. This chapter describes four main research areas of cognitive robot and 

investigates the major approaches in these areas. The four areas are: the structure of 

cognitive robot, how to let robot comprehend user's intention, the task planning and 
j

the environment recognition. 

i 
'" 

Chapter 3 gives the mathematical model of an industrial robot arm which was used in 

this study for the purpose of simulation. Manutec r3 industrial robot arm was used as 

a benchmark to build the dynamic model of the robot arm used in simulation. The 

robot arm has four links and they are connected by rotational joints. Each link is 

driven by an electric motor and a gearbox consisting of steel gear wheels embedded in 

the link. The position and rate of each motor are measured by a tachometer on the 

motor's axis. The angle between two links can be calculated from the motor position 

and gear ratio of the corresponding gearbox. Chapter 3 describes the development of 

the dynamic model of Manutec r3 using MATLAB and SIMULINK, and the setting 

of parameters. 
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Chapter 4 presents details of fuzzy logic control system (FLCS) development. The 

FLCS is used to control the robot arm model (described in Chapter 3) to cooperate 

with a human, which was modelled by a second robot arm that act according to a 

predefined trajectory, in lifting a stick and keeping the stick level. The FLC consists 

of two fuzzy logic controllers. One is to control the robot arm to cooperate with the 

human model. The other is designed for the purpose of keeping the stick level after 

the human model stops moving. A switcher is used to switch the two controllers. 

Chapter 5 introduces the framework of ARL, including concepts, simulation results 

and implementation. The framework consists of five components, namely an action 

bank, an interface engine, a moment determination mechanism, an intention 

identification mechanism and an intention model. The action bank stores test actions 

that can be taken to test its cooperative partner. The inference engine reasons about 

what actions to be taken for a specific purpose. The moment determination 

mechanism decides the moment of test. The intention identification mechanism 

interprets responses of the users and identifies intention and preference. The intention 

model represents intentions to support the intention identification. Testing results are 

also given in this chapter. 

Chapter 6 gives conclusions and further work. 
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CHAPTER 2. LITERATURE REVIEW 


2.1 The Structure of Cognitive Robot 

2.1.1 Three-layer structure 

Most of the cognitive robotic system comprises functions of perception, memorising 

and learning, problem-solving (task planning), motor control and communication. The 

very first cognitive robots can only be able to perform task planning based on sensor 

readings. The problems these cognitive robots suffer are the long response time and 

the poor expression of environment. Albus (2000) (also see Burghart et al. (2005)) 

tried to solve these problems by introducing a three-layer structure cognition system 

for cognitive robots, as shown in Figure 2.1. 

Global knowledge database 

Task High-levelTop-level: 
planning Dialogue 

manager 

TaskMid-level: 
coordination 

Active 
ModelsBottom- Task 

level: execution perception 

Figure 2.1 Three-layer structure of cognitive robot 
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The bottom layer consists of a low-level perception module and a task execution 

module for fast responding. The low-level perception collects sensor readings. Those 

sensor readings that are relevant to low-level control of the robot will be passed to the 

task execution module for giving a fast response to the environmental changes. The 

rest will be sent to the middle layer. 

The middle layer consists of a mid-level perception module and a task coordination 

module. The mid-level perception module comprises various recognition components. 

These components have the function of multimodal recognition such as audio-visual 

speaker tracking and have access to the database for using background knowledge 

stored in the database. The task coordination module receives a sequence of actions 

which are planned at the top layer. It coordinates the running of all tasks and sends the 

I 

I 


I 


final correctly parameterized and deadlock free flow of actions to the task execution 

module at the bottom layer. ~I 

The top layer comprises a high-level perception module and a task planning module. 

The high-level perception module contains all understanding components such as 

single modality understanding, multimodal fusion, and situation recognition. It 

interprets actions by the user and creates a situational representation and interpretation 

for having a high-quality expression of the environment. The task planning module 

operates in a real-time manner using task knowledge stored in the database. The 

planning process starts when a desired task has been successfully interpreted out of 

the data passed from the high-level perception module. A plan consists of a sequence 

of actions which the task planner selects from a knowledge base. The task planning 
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module assembles the plan for the intended task and adapts the free parameters to the 

given task. 

In addition to the modules included in the three layers, the structure proposed by 

Burghart et al. also consists of active models, a dialogue manager, and a global 

knowledge database. The active models serve as a short time memory and provide 

current environmental information, as well as information about objects in the focus 

of attention. The dialogue manager communicates with the user and interpretation of 

communicative events. It can be initiated by the system to request infonnation by the 

user. The global knowledge database contains object models, environment model, 

task knowledge, gesture library, person library, dialogue library, sound library and 

Hidden Markov Model (HMM). 

2.1.2 Eyemind structure 

Some cognitive robot structures are based on the "sense-think-action" such as the 

three-layer structure model described in the previous sub-section. Some others are 

based on "behaviour". Behaviour based approaches have been successfully applied to 

dynamic environments. The character of the behaviour based robots is that the robots 

are self-motivated, that is, the robots desire to explore enviromnents. 

Maes (1994 ) (also see Petitt and Braunel (2003)) introduced a behaviour based 

cognitive robot structure called Eyemind. It divided a robot's mind model into three 

classes, nanlely, Id, Ego and Super-ego, as shown in Figure 2.2. 
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Id: management Ego: Super-ego: an 

of sensor, simulation of 

"""-
interface to 


actuator and 
~ 

human mental high-level 

behaviour activities algorithms 


Figure 2.2 Mind model of Eyemind structure 


The Id provides the functionality required for managing all the sensors and actuators. 


It can access actuators and sensors. Based on this accessibility, the Id manages the 


current behaviours of a robot. Behaviour refers to a mapping from a sensor input to a 


motor output. The Id allows a robot to combine simple behaviours to assume more I:'" 


complex behaviours. For example, a robot that is able to perform light-beams­

following can be deployed to maze solving and navigation in dynamic environments. 


In the Id, behaviour can be suppressed or excited by a feedback loop between their 


sensors and actuators. When the behaviour is excited, the excitation value generated is 


added to the current excitation value, which is itself the result of previous excitation 


events. If the new excitation value is greater than a threshold, then the behaviour is 


activated. The activation of behaviour can take many forms, from creating an output 


signal for an actuator, requesting sensor input, to triggering other behaviours. 


The Id retains a list of up to 16 'root' behaviours. Each of these behaviours is' excited 


by the timer processor unit (TPU) at set intervals. The TPU interrupts the CPU and 


causes the CPU to execute the list of root behaviours. The root behaviours then either 


do nothing, or execute their specific fire function. 
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The Ego simulates human's mental activities. For example, when someone wants to 

open a door, he will decide to push or rotate the handle in a very short period of time. 

If the door didn't open, he will do it in another way. The Ego module acts similarly to 

this logic which is illustrated in the following pseudo-code: 

while (desired_states) 

for each state 

if Criticise (past_states, current_states, desired_states) 

LeamBad (superego); 


RemoveState (state); 


else if Satisfied (id) 

LeamGood (superego); 


RemoveState (state); 


} 


else state->Satisfy 0; 


Superego->CreateStrategy 0; 

Figure 2.3 Pseudo-code of the Ego 

The key in the Ego is the Criticise ( ) function. This function tests whether the current 

state reaches the desired state in the specified period of time. When the desired state is 
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reached, the robot will continue to do the task. If the current time exceed the desired 

time of task finished, the system will send back an error signal and reform the strategy. 

The Super-ego houses no real information, but provides an interface with higher-level 

algorithms, such as expert system and adaptive critics. When the Create Strategy ( ) 

function is called, a list of states which correspond to the strategy is appended to the 

list of desired states. 

2.1.3 iCub cognitive system structure 

Sandini et al. (2006) developed a cognitive structure for iCub, an open platform for 

robot simulation. The structure has three parts, namely, a network of perceptuo-motor 

circuits, a modulation circuit which affects homeostatic actions selection by 

disinhibiting the perceptuo-motor circuits, and a system to affect anticipation through 

perception-action simulation. 

The anticipatory system allows a cognitive robot to rehearse hypothetical scenarios 

and in turn to influence the modulation of the network of perceptuo-motor circuits. 

Each perceptuo-motor circuit has its own limited representational framework and 

together they constitute the phylogenetic abilities of the system. The modulation 

circuit carries out self-modification in terms of parameter adjustment of the 

phylogenetic skills through learning and developmental adjustment of the structure 

and the organization of the robot. This enables the cognitive robot to alter its own 

dynamics based on experience, to expand its repertoire of actions, and thereby adapt 

itself to new circumstances. 

I 
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The iCub cognitive architecture is illustrated in Figure 2.4. 

Simulated sensory signals 

Motor/Sensory Sensory/Motor 

circuit 
Motivation Action 


Selection 


Auto-associative 
Memory 

Auto-associative 
Memory 

Auto-associative 
Memory 

Prospected by 
action simulation 

Modulation 

Perceptuo­
motor circuits 

Figure 2.4 iCub cognitive architecture 

2.1.4 Behaviour based hierarchical structure 

Arkin (1998) interpreted behaviour as a pair of attention and intention. Attention 

prioritises tasks and provides some organization in the use of sensorial resources. 

Intention, on the other hand, determines the behaviours to be activated. 

Based on Arkin's interpretation, Duro et al. (2003) developed a behaviour based I 
hierarchical structure for cognitive robots. In this structure, behaviours are classified 

I 
into two categories: lower-level behaviours and higher-level ones (also known as 

complex behaviours). This structure uses the concept of attention to prioritise a task 

and then form a higher-level controller. This controller, based on the concept of 
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intention, is able to choose lower-level behaviours to form a complex behaviour. This 

process can be described as following: A designer must provides the robot with 

whatever behaviours he or she decides that may be useful. This initial behaviour set 

may not be complete and may include unnecessary behaviours. The high-level 

controller uses the data from sensors, which reflect the state of the environment, and 

other controllers to choose behaviours. 

To prevent the problem of the designers having to determine all the necessary lower 

level behaviours, this approach includes the possibility of cooperatively coevolving 

lower and higher level behaviours. That is, a higher-level behaviour may be evolved 

by itself using previously evolved lower level behaviours, or it may be coevolved with 

part of the lower level behaviours and use the previously evolved ones. When the 

designer is faced with a problem where he is only able to identify part of the 

behaviours that may be involved, the unidentified ones will be evolved at the same i 

:t~1 
time as the higher-level controller. This is illustrated in Figure 2.5. "1 

r'li 
~: 

Previously Environment 

evolved 


behaviours 


New higher 

level 


behaviour 


New lower 
level 

behaviour 

Figure 2.5 New behaviours evolution 
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2.2 User Intention Cognition through Learning 

2.2.1 Learn by imitation 

Robot learning plays an important role in background knowledge building, motivation 

establishment and preference identification. The current robot learning approaches 

include imitation learning. The imitation based learning uses social cues such as 

pointing and gazing to indicate what the user intended to do next (Dillmann 2004, 

Breazeal et al. 2005, Calinon and Billard 2006). The user first teaches a robot by 

demonstrating gestures, for example, pointing to and gazing an object, to the robot. 

These gestures serve as social cues of his interest on the object. Then the robot 

imitates the gestures for the user's approval. This imitation process enables the robot 

to recognise the user's intention when it captures the same gestures. 

tl 
Experiments carried out in Calinon and Billard (2006) can be described as below: 

During a first phase of the interaction, the designer demonstrated a gesture in front of 
.~. 

a robot. The robot then observed the designer's gesture. Joint angles trajectories are 

collected from a motion sensor. The second phase was begun when the robot collected 

the different movements of user. The robot compared the gesture it collected with the 

gesture stored earlier and finds the cues of them. Then the robot pointed at an object 

that the user most likely to be interested. The robot then turned to user for evolution 

of its selection. The designer signals to the robot whether the same object has been 

selected by nodding/shaking hislher head. 



In the imitation learning, a Hidden Markov Model (HMM) with full covanance 

matrix is used to extract the characteristics of different gestures which are used later 

to recognise gestures from the user. The characteristic of a gesture is expressed by 

transition across the state of the HMM. Using such a model requires the estimation of 

a large set of parameters. An Expectation-Maximisation (EM) algorithm is used to 

estimate the HMM parameters. The estimation starts from initial estimates and 

converges to a local maximum of a likelihood function. It first performs a rough 

clustering. Next, EM is carried out to estimate a Gaussian Mixture Model (GMM). 

Finally, the transitions across the states are encoded in a HMM created with the GMM 

state distribution. 

2.2.2 Learn by conversation 

The most direct way to let the robot to understand the users' intention is conversation. 

Hassch et al. (2004) developed a Bielefeld Robot Companion (BIRON) which is a 

robot who accompanies to a human. It consists of cameras, microphones, laser range 

finder, speech recognition system, and other components. This robot is able to 

understand its users' intention through oral instructions and observation of the user's 

sight. 

BIRON employs a human concern system to decide which user is interested by the 

robot. When someone is talking while watching the robot, the robot's attention will be 

transferred to this people. When individuals are talking at the same time and no one is 

watching the robot, the robot will pay attention to the people who has not been 

concerned for the longest time. 
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I 
A Dialogue Manager is also included in the robot, which is responsible for receiving 

Ithe instructions from users. The Dialogue Manager could interact with users and solve 

some ambiguous question by asking them. I 
A speech recognition system is used to understand users' intention by analysing 

received sound information from the microphone. The two major challenges of the 

speech recognition system are: 

o 	 The speech recognition has to be performed on distant speech data recorded 


by two microphones 


o 	 Speech recognition has to deal with spontaneous speech phenomena. 

The recognition of distant speech with two microphones is achieved by reconstructing 

a single channel representation of the speech originating from a known location on the 

basis ofthe different channels recorded by the microphones (Leese 2002). 

The speech understanding components deals with spontaneous speech phenomena in 

conversations between a user and the robot. For example, large pauses and incomplete 

utterances can occur in such task oriented and embodied communication. However, 

missing information in an utterance can often be acquired from the scene. For 

example the utterance "Look at this" and pointing gestures to the table concludes to 

the meaning "Look at the table". 
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2.2.3 Reinforcement learning system 

Tapus and Mataric (2007) proposed a reinforcement learning based approach to robot 

behaviour adaptation. The aim of this approach is to develop a robotic system capable 

of adapting its behaviours according to the user's personality, preference, and profile 

in order to provide an engaging and motivating customised protocol. 

In this learning approach, a robot incrementally adapts its behaviour and its expressed 

personality as a function of the user's extroversion-introversion level and the amount 

ofperformed exercises. Then the robot attempt to maximize that function. 

The learning process consists of the following steps: 

o 	 Pararneterisation of the behaviour 

o 	 Approximation of the gradient of the reward function in the parameter 

space 

o 	 Movement towards local optimum. 

The main goal of this robot behaviour adaptation system is to optimise three main 

parameters (interaction distance, speed, and verbal cues) that define the behaviour of a 

robot, so that the robot can adapt itself to the user's personality and improve its task 

performance. Task performance is measured as the number of exercises performed in 

a given period of time. The learning system changes the robot's personality which is 

expressed through the robot's behaviour to maximise the task performance. 
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2.3 Task Planning of Cognitive Robot 

2.3.1 Forward model 

Hashimoto et al. (1992) (also see Dearden and Demiris (2005)) developed a system 

that enables a robot to autonomously learn a forward model with no prior knowledge 

about its motor system and about external environment. Information about the effects 

of the robot's actions is captured by a vision system. The vision system generates a 

cluster of image features and the robot will automatically find and track moving 

objects in a scene. 

At the beginning, the robot generates random motor commands to its motor system 

and receives information back from the vision system. The information is used to 

learn the structure and parameters of a Bayesian network which represents the 

forward model. This model can then be used to enable the robot to predict the effects 

of its actions. The robot learning process is shown below: 

Motor Motor system Computer 

Commands vision system 
~~ environment 

~ Learning 
system 

Figure 2.6 Robot learning process 

The Bayesian network is an ideal way to represent forward model. The foundation of 

the Bayesian network is based on the state of a robot, the robot's motor commands 

- 18 ­



I 
I 

:> 

and the observations of the robot's states that are received from the vision system. 

The learning system of the robot is aimed at learning the casual associations between 

them. The structure of the Bayesian network is shown in Figure 2.7. The question 

marks in the diagram represent parameters to be detemlined through the learning 

process. 

Motor commands 

Robot state 

Observation 

Figure 2.7 Bayesian network structure 

No prior information about what to track is available at the beginning of the learning 

process as the environment is unknown. The robot needs to find and track the moving 

objects by capturing their positions and velocities using its vision system. After the 

observations are received, the robot can then realise how its motor commands interact 

with the state and adjusts the parameters of the Bayesian network using the difference 

between the actual state and the desired state. 

" ! 
U 

2.3.2 Inverse dynamics robot trajectory learning 

The approach of inverse dynamics robot trajectory learning was developed by Robbe! 

and Vijayakumar (2007). The key to the success of this approach is the generation of 
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a smooth trajectory for robot arms with different degrees of freedom. Most of the 

current studies are based on the storage of multiple trajectories and employ a training 

system to choose one of the trajectories and to amend the parameters to achieve a 

given goal. 

In order to get a highly effective inverse dynamic robot arm trajectory exploration 

strategy, Robbel and Vijayakumar developed the robot learning system. It consists of 

a feed-forward model of the inverse dynamics and a corrective PID controller. The 

difficulties with data selection for robot control are in twofold. First, points cannot be 

chosen freely from the input distribution. Second, the inverse dynamics of a system 

cannot be learnt easily online. 

The learning process of this system can be described as below: 

1. At every time step, model prediction and prediction confidence for the current 

query point Xq are manually determined. The model generalization error is 

also postulated manually by the size of the confidence intervals. 

2. If the confidence is above a threshold, the model prediction is applied as a 

control signal to all joints and continues with step 1. Otherwise, set the last 

trusted pointxq _l , which the model predicts, as a set point. 

3. Execute a number of directed exploratory actions around xq_1 to reduce the 

confidence interval size. Those actions are followed by resetting the arm to the 

set point via PID control. Then continue with step 1. 
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2.4 Environment Recognition 

2.4.1 Map building 

Robots are expected to work at humans' home in the future. This requires the robots 

to develop abilities to understand, interpret and represent environments where they are 

deployed. Vasudevan et al. (2006) developed a probabilistic approach which is able to 

represent in-door environments. This approach is based on the location of objects and 

the relationship between objects. A global presentation consists of a number of local 

representations which represent places. Objects in a place are detected and used to 

build a local map (representation) in the form of a local probabilistic object graph. 

Doors are identified and used as links to connect the local ones to form the global 

representation. 

The process of building up a global map (representation) can be shown in Figure 2.8. 

The process begins with local representation development, including object detection, 

recognition and probabilistic object graph development. When a local map is built up, 

the process starts to extract doors (also known as high-level features). It then moves to 

a new place and develop a new local map which is connected to the doors identified. 

This representation must consider and handle uncertainties existing in the perception 

of a robot. For this reason, the representation is probabilistic. "Existential" beliefs are 

obtained for each object that is observed. Simultaneously, precision beliefs are 

maintained in the form of covariance matrices. These beliefs are based on detailed 

mathematical formulations given below: 
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I 
(2.1) 

= M Ro X MCR , MRo stands for transformation between robot frame and Iwhere f 

absolute reference, and MeR stands for transformation between camera frame and 

I 
i" 

robot frame. 

A precision belief is presented in the form of a covariance: 

, I I
Fa =F;~F; + F;~F2 (2.2) 

X 2 = (Xe,Ye,Oc) stands for object position in camera frame, p" is the covariance 

matrix which represents uncertainty in robot position, P2 is the covariance matrix 

which represents uncertainty in the object position, F; is the Jacobian of "/' with 

respect to Xl' and F2 is the Jacobian of',/' with respect to X 2 • 

The belief representation for relationships between objects is shown below: 

spatial information between the two objects, ~ and P2 stands for uncertainty in 

object positions (covariance matrices). 

The precision belief is defined as: 

, 
Bell (f) = F..~F.. + F2~F2 (2.3) 


where Fj =J Xl (f) & F2 = J X2 (f) are the Jacobian of ''/' with respect to Xl and X 2 


respectively and existential belief BeVf) =min (belief in existence of objects). 
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Figure 2.8 Map building process 

Local Map Building 

Create new place 

Learn about last place 
- Object occurrence 

statistics 

W 

I 


I 


Figure 2.9 shows the place cognition process using the created maps, where C 

represents "Change" and R represents "Recognition". The first step of reasoning 

process is place classification. The robot uses the object it perceives to classify the 

place into one of its known place categories (office, kitchen etc.). Next step is 

recognizing specific instants of the place it is aware of (place recognition). 

Accordingly map update or adding of new place is done. 

I 

I 

I 

I 

I 
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Figure 2.9 Place recognition process 
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2.4.2 Dynamic environment modelling 

Benjamin et al. (2007) developed a cognitive structure called Adaptive Dynamics and 

Active Perception for Thought (ADAPT). ADAPT uses Ogre3D, an open source 

gaming platform, and Soar, a problem-solving tool which is able to perform symbolic 

reasoning, to develop the model of a dynamic environment, called world model. The 

ADAPT's environment modelling system enables a robot to model its environment. 

The structure of this system is illustrated in Figure 2.10. 

ADAPT's world model is a graphic view of the environment. It is saved in Orge. This 

world model is not directly connected to the real world. Instead, it is linked to Soar 

which has a connection to cameras, as can be seen from Figure 2.10. 
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Figure 2.10 Environment modelling system 

Orge embodies the graphical and dynamic aspects of the world model and Soar 

contains the symbolic part of the world model. The way in which the system works 

can be explained using the following example. When Soar recognises a person sitting 

in a chair (image captured by cameras), it will construct virtual copies of the chair and 
:::::1 

" 
the person in Orge and create symbolic structures in Soar's working memory pointing 

to them, as well as a symbol structure for the relationship of sitting. Orge serves as the 

model that interprets the symbols in Soar's working memory. The relationships 

between the Soar and Orge parts of the world model are updated automatically each 

Soar cycle. 

The dynamics is modelled in the way that Soar continuously tests for significant 

differences between the expected view and the actual view. After the graphic of the 

environment in Orge is segmented and placed into Soar's working memory, Soar 

starts to operate such tests. If a new object appears, Soar will propose a new operation 

to a robot to look at this object and try to recognise it. The robot will then turn its 

cameras towards this object and then call its recognition software to process a visual 

field that contains the object. 
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Once the object is recognised, a virtual copy is created in Orge. lfthe object from the 

visual field approximately match one of the expected objects from Orge, ADAPT 

assumes it is the same object. Otherwise, the object will be added to the world model. 
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CHAPTER 3. THE DYNAMIC MODEL OF THE ROBOT ARM 


3.1 Siemens Manutec r3 Robot Arm 

Siemens Manutec r3 is an industrial robot arm. It is often used for computer aided 

control system design and dynamic trajectory planning. The robot arm is shown in 

Figure 3.1. Siemens Manutec r3 robot arm can simulate a number of physical effects, 

such as the robot arm movement, friction, elasticity and damping. The links of the 

robot arm is driven by motors and the motors are controlled by controllers. 

Figure 3.1 Siemens Manutec r3 robot arm 
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3.1.1 Dynamic model of Siemens Manutec r3 robot arm 

The dynamic model of the entire robot arm is shown as below: 

r d'l'q 
q,­

d, dt"""- dtdt controller + Rotor + 
~ 

motor eel.) gear 

"F Q.F 

d"q Q. d Q.qQ. d Q.q a 'I' 

q,­q'dtqd'-- L.... dtcontra lIer + Rotor +dt .. 
motor eel.) gear 

Q."F 

Q. , , - ­
qa,-- dt dtcontroller + Rotor +dt .. 

-"'­

motor eel.) gear 
rF Q.F 

" d"q d~Q. dQ.q d Q.q,-­q'dtqa'-- .... dtcontroller + Rotor +dt iii' 
motor (el.) gear 

Figure 3.2 Dynamic model of Siemens Manutec r3 robot arm 

The meanings of the parameters shown in Figure 3.2 are: 


a qd is the desired angle of revolute joint in [rad] 


"q is the angle of revolute joint in [rad] 


r q is the angle of rotor in [rad] 


dcaqd)/dt is the desired angular rate of revolute joint in [rad/s] 


d(Uq)/dt is the angular rate of revolute joint in [rad/s] 


deq)/ dt is the angular rate of rotor in [rad/s] 


(4) 

(3) 

~1 ::: 
"Itl 

tllll 
'1Il) 

'Il/' 

!\;; 
ii 

(2) 
"',..I. 

I 
II 
I,
I' 

(1) 
, 
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p is the gear ratio, i.e. if elasticity is neglected in the joint, q =p.a q 

r F is the torque in air gap of motor in [Nm] 

a F is torque injoint in [Nm] 

The robot arm has four links. They are connected by rotational joints. Each link is 

driven by electric motor and a gearbox consisting of steel gear wheels embedded in 

the link. The position and rate of each motor is measured by an encoder amounted on 

the motor's axis. The angle between two adjacent links is calculated from the motor 

position and gear ratio of the corresponding gearbox. Thus the position of the end-

effector can be measured. Every joint of the robot arm is driven by a torque (QF), 

which is produced by the corresponding motor and transformed to the joint via a 

gearbox. To simplify the dynamic model, the rotor of the motor and the gear wheels 

are treated as one rigid body with rotational symmetry, called rotor. It is assumed that 

the complete friction is acting at the rotor. Further more, there is no dynamic coupling 

between the rotors and the links of the robot in the model. 

The current of motor is controlled by "controller+motor (el.)". The module of 

"rotor+gear" contains the mechanical part of motor and gearbox. The internal forces 

of the motor and the gear are described by rotor. To simplify the model, the elastic 

deformation of the links can be ignored. 

The motors and the controllers inside the joints of the robot arm have the same 

structure but with different parameters. The motor is an electric rectifier synchronous 

motor. Because the robot arm uses electric rectification and current control, the 

dynamics model of motor is the same as a DC motor. The angle and angular rate of 
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the rotor are measured by an incremental encoder. The module also includes a low 

pass filter. The entire dynamic model of motor is a three-input structure. The 

rotational rate measured by a tachometer is sent to the input of rate controller. The 

angle of the rotor is sent to the position controller as an input. The outputs of the 

position controller and the rate controller are converted by DIA converter and the 

sampling interval is 0.008s. The maximum torque of the motor is IrF Imax =9Nm. The 

maximum of continuous working torque is Ir F Inom= 4Nm. The maximum rotational 

rate Irq I 	is about 3000 to 3500 revolutions per minutes (around 315 to 366rad/s). The 

electrical part of the motor and the controller are shown in Figure 3.3. 

controller + motor 

lltorward." .. ----- -.. ------- -_ ...... ---- -- .. __ .. -- -- --- ------., , 
: motor and current controller i 
: :r----- ------------: : 	 N~ ,, , : NLI , ,, , 

; sTO+ 1 : 
K -"---t-'t-{ !, 1 2 K;OI 1 ~. 1 IF;ft. 4 ~ 

s slsTe+1) 	
, 

" ~s+ -Sf .b 45° :,
1 .4So 	 (l)j (1)1 1i, 1,. .. ___ .............. ___ .. ____ .... __ .... ____ .. ___ .... ______ .. __ 1 
, 

,, 
.____ 	 : i·-------------- .. ---------------- ...... ·: 

:u :It KT : 
I t' ­ I 

, : ( 1 2 	 2Do )( 1 1)f+:-:----+­T 1 " 	 . 7,;"] s+ --" s+1 - s+, :
L-.....s~b+_....J l 1 Wp (I) O)e : ! 

I I I I 
, I I I 

: rate.. _______________ controller:: ________________tachogenerator II ::~_ , !.. .. __________________ rq 

,, 
.. .. __ .... .... v." ______ .... ____ ...... __________ W_m _________ - - -. _______ --- ... ------------ - ­~ ~_~ _~ ... -------------------------­

Figure 3.3 Electrical part of the motor and controller 

The parameters of the controller and the electrical part of motor are given in Table 3.1: 

An actuator drives a rotor to produce torque. The angular velocity of the rotor is 

transfonned to low.speed by gear box and drives the link of robot arm. ,The rotor, 
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gearbox and actuator all have friction. The first thr l'nk f hee 1 sot 	e robot arm have a 

certain amount of damping and backlash. In the last actuator, the backlash is 

comparatively small, such that it can be neglected. 

Table 3.1 The parameters ofthe controller and the electrical part of motor 

unit Arm1 Arm2 Arm3 Arm4 

Position Kv ­ OJ 


Controller 

Feed- Kf) - 0.03 


forward 

Controller 


Rate Ks - 340.8 

Controller 
 sTo 9.95* 10-3 

Te 	 s 0.56* 10-3 


s
Ta 40* 10-3 


s
Tb 20.2* 10-3 


Tacho Vslrad 0.03
Kr 
generator 

OJ p 	 lis 2014 

Dp 	 - 0.294 lIU'j
i:,=:" 
'II; 

CiJe lis 1180 
' 

Motor and 	 NmlV 1.1616 1.1616 1.1616 0.2365KM 
Current lis 4590 5500 5500 6250OJ,

Controller 
Di 	 - 0.6 0.6 0.6 0.55 

a - 0.094 0.094 0.094 0.022 

b - 9.0 
Nm 9.0IrFlmax 

Nm 4.0


Ir Flnom 
rad/s 315 315 315 335

Ir 4imax I 
Gear ratio p - -105 210 60 -99 

I 
To simplify the dynamic model, the motor and the gearbox can be seen as a rotational 

rigid body, called rotor. Furthermore, it is assumed that the complete friction of the 

.:1 
actuator is acting at the rotor. Besides, the coordinates of first three joints' rotation 

axis are established according to the entire world rather than the former links' end. 
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There is no dynamic coupling between two links and the centrifugal force and gravity 

are also neglected so the dynamic model of robot ann is greatly simplified. 

The dynamic functions of the Manutec r3 robot arm are given in the following: 

aiFaaM, arM. Gh i aFi 
lj lj 1 r.. j = + i,j = 1,2,3,4 (3.1)arM, rrM, -,' q rh i _aF i ' 
Jl lj pJ 

(3.2) 


rr M, ={pj . rJ j .pi for i = j 
(3.3) 

lj 0 for i :;t j 

where 

aqJ is the angular acceleration ofjoint j 

r q) is the angular acceleration of rotor j with respect to the link the rotor resides 

pJ is the gear ratio of the actuator driving joint j 

r J J is the moment of inertia of rotor j with respect to its axis of rotation 

a iii is a unit vector which lies in the axis of rotation ofjoint i 

r ii' is a unit vector which lies in the axis of rotation of rotor j 

a F' is the applied torque acting in joint i 

o is the scalar product of two vectors 

a N is the friction acting in joint i 

r hi is the friction acting in rotor i. 

After neglecting the term p' rJ for every actuator, the off-diagonal terms arMji 's 

magnitudes are smaller than the dialogue terms (pj)2. rp due to the high gear 
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ratios pj. The model equations simplify considerably, because the equations of the 

robots become decoupled from the rest of the multi body system. Furthermore, the 

friction torques only appear in the rotor equations and thereby are also decoupled 

from the rest of the multi body system. 

For the last link of the robot arm, since the elasticity in the corresponding gearboxes is 

neglected in the model the joint and rotor angles are rigidly coupled by the equation 

below: 

(3.4) 


Figures 3.4 and 3.5 show the structures of the rotors and gearboxes. a L in Figure 3.5 

represents the coupling torque due to the movement of other joints. The 

corresponding model parameters are given in Table 3.2. Due to the elasticity, a spring 

constant c and a damping factor d are presented. 

r--------·-··-·--.·-·---···---···-···-···· -- .............-.--...-..... -..-.- .........----.-] U
 

j rotor + gear p : 
q 

rq i i 
drqj :~ 
~dt~!____r-________~~__~~~~~~ 

'F 

1 

l 

! 
jOF 

! 
j

L____ •_________ .. ______________ •_________ •___ .... __ •__...___________ .. __________________________ ! 

Figure 3.4 The rotor and gear model structure ofjoint actuators 1,2, and 3 
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Figure 3.5 The gear model structure ofjoint actuator 4 

Table 3.2 Rotor and gear parameters 

unit Arm 1 Arm 2 

'J kgm2 0.0013 0.0013 
c 0.01 0.06rad 
C Nmlrad 43 8.0 
d Nmslrad 0.005 0.01 
p -105 210-

'Mh Nm 0.4 0.5 

'M1 Nm 0.4 0.5 
dql / dt radls 0 0 

'M2 Nm 0.53 0.6 
dq2 / dt radls 160 130 

rM 
3 Nm - 0.7 

dq3 / dt radls - 360 

3.1.2 Friction model ofjoint 

Arm 3 Arm 4 

0.0013 ­
0.0 ­
58 ­

0.04 	 ­
60 -99 
0.7 0.27 

0.7 	 0.22 
0 0 

0.9 0.52 
130 300 

- 1.0 
360 ­

The friction model has discontinuous and nonlinear characteristic. If the angular rate 

of the rotor is rq::j:. 0, friction acts as an applied torque rM according to a nonlinear 
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function which is approximated by two or three linearly interpolated points. If the 

angular rate is r q= 0 , two possibilities exist: the friction acts as constraint torque rM , 

for example it compensates the sum of all other torques acting on the rotor ( =rF -1' ) 
and it forces r q= 0 , so the friction torque it provided is less than or equal to the upper 

limit rM h • 

If IrF -1'I>rMh the friction remains an applied torque but switched to the opposite 

branch of the nonlinear function. This effect can be explained as follows: assume that 

r q becomes zero from the positive side, the only possibility is r q~ 0, therefore 

rF _1'<rM . On the other hand, for IrF -1'I>rMh , rF -1' <_rM h is true. This makes 

rq remains less than zero, and therefore, angular rate ' q may become negative. The 

flow-diagram for the computation of friction is shown in Figure 3.6 (±rMl is the 

value of the sliding friction at zero angular rate). 

no 

Sliding friction 

Figure 3.6 Flow-diagram for the computation of friction 
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In simulation, friction should be handled by state events in the following way: If the 

angular rate of the rotor r q :;i: 0, the angular rate is then used as an indicator function. 

If this function passes through zero, the crossing time point is determined by the 

integrator and the integration is stopped to check whether the simulation has 

continued with sticking or sliding functions. Then the integration restarted. In the case 

of sticking friction, the function r Mh -I rl is used as an indicator for the next state r F ­

event to switch back to the sliding friction model. 

3.2 	 Mathematical Model for Siemens Manutec r3 Robot Arm 

3.2.1 Mathematical model development 

SIMULINK is a software package that is used for building up mathematic models for 

dynamic systems and system simulation. It can be used to build a linear/non-linear 

system or continuous/discontinuous system. The SIMULINK can also be used to 

build systems with different sampling rates. 

In SIMULINK, a mathematical model is represented in the form of block diagram . 
. 

SIMULINK provides various blocks for modelling a system. Regarding to modelling 

a robot arm, SIMULINK provides the following blocks: 

o 	 Body block: Represents a user-defined rigid body. Body defined by mass, 

inertia tensor and coordinate origins and axes for centre of gravity and other 

user specified body coordinate systems 

I 
I 

I 
I 
I 
I 
I 

, I 
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--
o 	 Inertial frame block: Grounds one side of a joint to a fixed location in the 

world coordinate system 

o 	 Environment block: Defines the mechanical simulation environment for the 

machine to which the block is connected. The settings include gravity, 

dimensionality, analysis mode, constraint solver type tolerance, 

linearization and visualization 

o 	 Rotational freedom block: Represents one rotational degree of freedom. 

The follower body rotates relative to the base body about a single rotational 

axis going through collocated body coordinate system origins 

o 	 Coulomb friction block: Actuates ajoint primitive with friction force/torque. 

Lock if static friction remains within the range of forward and reverse 

friction limits. 

The model of Siemens Manutec r3 robot arm was developed using SIMULINK. The 

block diagram of this model is given in Figure 3.7. 

Follower m .. per =Base .. Base Follower h-. 
per --= Base Follower ~ ,.... Base Follower m Follower m 

F 

robot base 	 Body2 Body3 Body48ody1 

Figure 3.7 Mathematical model of Siemens Manutec r3 robot arm (block diagram) 

The robot arm has four bodies and a base. Each body consists of a link and a joint. 

The bodies and the base are connected together in the way shown in Figure 3.7. 
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The details ofthe base are shown in Figure 3.8. 

." 

Figure 3.8 Structure of the base 

The base consists of an environment block, an inertial frame block, a weld block, a 

bodyO block and a connecting point (Follower). The BodyO block defines the position, 

weight, and shape information of the base. The base is a 40kg homogeneous 

hexahedral. The settings of the shape parameters of the base are given in Table 3.3. 

Table 3.3 Parameters of the base 

o 
o 
o 
o 
o 
o 
o 
o 
o 
o 

I Ihtib . .1T. ;~-~~~~. - c. ~-.r.. 
m :'1.World V World v,: 

.m V World v JWorld v ' 

m ---;;IWorld v World v 

m v World ·v World I 
V !, 

m v World v World v : 

v lWorid .V! 

v lWorld V i 

V World v 

v World V I 

v World V 
I 

~ IWorld v i 

The Origin Position Vector column shows the position parameters of the base and all 

of the reference points are translated from the origin of world coordinator. 
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The weld block is used to connect the base and ground. It can be consider as a joint 

with zero degree of freedom. The inertial frame block defines a fixed point in absolute 

space. All the movement of objects in this space is referred to this point. The inertial 

frame block can never be able to move. Sensors cannot be connected to this block. 

The environment block defines the settings of environment. These settings include: 

o 	 Settings that control how the model is simulated and define the gravity, 


system dimensionality, analysis mode and tolerance 


o 	 Settings that control how constraints are interpreted 

o 	 Settings that control how linearization is implemented and define the type h'_i 

and size of perturbation 

o 	 Settings that decide whether the machine is displayed in SIMULINK 
.. i 

visualization. 

I jl 

.. , 

"IAny of the bodies consists of a body block, a driver module, an acceleration block and 

a pair of connecting points (Follower and Base). The details of a body are shown as 

below: 

CS1 ~CS2¢~ 	 ~ ..., 
£. 

CD '0 	 0­colU 	
0 aVI ~.

It-	 a. ~ It­ '<=:...:.. ..... 

Figure 3.9 Structure of a body 
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The body block defines the position, weight, and shape information of the 

corresponding linle The settings of parameters are given in Table 3.4. 

Table 3.4 Parameters of the body block 

S~Il~ " ' i J~()rt ·· >' N~m'~ ":O.rigihP()iitionUnits , : Tr~n;slatedJr~lri i CortlPonentiin ·· 
k Port -Side ' ',.·. > , :j::V~ctor rxyzl ·;': !" .OriQit.of,:i::, Axesof ',: 
I~ Bottori'" CG',:,,',L- [()-'q:';75P+0:;2512 0 m .... World :;:;;','-i"~i i ' •.~. Wo'rld : "" ~ ..f 
17 Botton.= C51 [0 -0.1750 0] m.... World ..:.. World ~. 
7 Top ... C52 .=. World ..::. 
II"- Top ... CS3 ..... CG..: ­

Top ... C54 ....,. CG-
Top ... C55 .... CG- """" ­
Top ... C56 ,

y , CG 

Top ... C57 .... CG
- .:..... 

Top ... C58 '.... CG 

Top ... C59 ... CG
-
Top .-... C510 .... CG 

Input signals are often connected to the acceleration block. The input signals can be in 

the form of curve, constant, as well as the signal from controller. 

3.2.2 Actuator and friction modelling 

Actuator and friction within a driver were also modelled. The actuator contains a rotor, 

a motor and a gearbox. The settings of parameters are based on Manutec r3 industrial 

robot arm_ The description of Manutec r3 robot arm is given in the previous section of 

this chapter. The actuator was modelled using an actuator block (known as Motor 

circuitry bock in SIMULINK) and the friction was modelled using a friction block 

(known as Coulomb friction block in SIMULINK), as illustrated in Figure 3.10. 
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Figure 3.10 Structure of a driver which contains actuator and friction 

It can be seen from Figure 3.10 that the actuator model of the robot arm has three 

main blocks. They are controller block, motor circuitry block, and input rotation 

freedom block which represent gearbox. Trajectory commands are filtered and 

converted into control signals (current) by the controller block. The control signals are 

the inputs to the motor. The gearbox is driven by the motor. The coulomb friction 

block produces friction of the actuator. 

In order to simulate the effect of friction, the coulomb friction block had been added 

into the actuator module. The joint state changing flow can be illustrated in Figure 

3.11. 

The variables v and a are the velocity and acceleration along or around a joint 

primitive axis. These quantities are relative between the two bodies at the joint ends 

and signed ± to indicate forward or reverse. The joint directionality is set by the base­

to-follower sequence of bodies attached to the joint primitive being actuated. 

t ] 
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Figure 3.11 State changing flow of a joint 

If a joint is moving in continuous motion, during this motion, there are two kinds of 

torque applied to the joint primitive, they are: 

o Kinetic friction torque FK (FK < 0 retards forward motion, FK > 0 retards 

reverse motion) 

o External, non-frictional torque Fext • 

Besides its continuous motion mode, the joint has two other discrete modes, namely, 

locked and unlocked modes. The coulomb friction block switches a joint primitive 

between these two modes. In the locked mode, the joint locks rigidly. In the unlocked 

mode, it moves with the kinetic friction and external non-frictional torques applied. 

The joint can also be in a wait mode, between the locked and the unlocked modes. 

The unlocked mode is specified by a two-condition threshold, they are: 

o Joint unlocking threshold velocity V th > 0 
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I 

I 
o Static friction limits F/ < 0 and Fs' > 0 for forward and reverse motion. I 

I 
In the locked mode, v and a of the joint are zero. The static computed torque Fs at the I 
joint is internally computed to maintain the following equitation: I 

(3.5) 


where Fp and FE are the torques on the base and follower bodies apart from those 

torques acting at the joint. The joint remains locked as long as F/ < F:est < F/ . 

If the static test friction Prest leaves the static friction range [F/, Fs'], the joint 

satisfies the first condition for unlocking and enters the wait mode, suspending the 

mechanical motion. A search begins for a consistent state of the joint in the model. 

The potential direction of motion after unlocking is determined by all the non­

frictional forces on the bodies. During the search, the net torque at the joint primitive 

is computed by the following equation: 

(3.6) 


where FK is the kinetic friction. 

At this stage a is determined. For potential motion in the forward (reverse) direction, 

if a<O (a>O), the search returns to the locked mode. Once a consistent state for the 

joint is found, mechanical motion restarts. The simulation integrates a to obtain v. 

When Ivl exceeds vth ' the joint unlocks. 
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In the unlocked mode, the joint primitive moves are actuated by the sum of the 

external, non-frictional torque Fext and the kinetic friction FK • The wait mode 

prevents infinite cycling between locked and unlocked modes. 
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CHAPTER 4. COOPERATION BETWEEN TWO ROBOTS 

4.1 Introduction to Fuzzy Logic and Fuzzy Logic Control 

The development of Artificial Intelligent enables computers to have certain level of 

intelligence such as thinking, decision-making, creativity, and the adaptation to 

complex environments. Fuzzy logic is tightly integrated with the computer science. 

The fuzzy logic based computer programs which simulate the process of human 

reasoning, are widely used in various areas, such as automatic tank driving, furnace 

smelting automatic control, biology, medical diagnosis, economics and social sciences. 

Fuzzy logic, also known as fuzzy set theory, differs from traditional set theory. Fuzzy 

set theory deals with vagueness, a type of uncertainty. For example, between the 

concepts of "young" and "old", there is no actual criterion from where "young" stops 

and "old" starts in human reasoning. Zadeh (1965) defined two fuzzy sets for the 

concepts of "young" and "old", as shown in Figure 4.1. It can be seen that the fuzzy 

sets allow their elements (age) to partially belong to them and they overlap with one 

another around the age of 50. 

Human being's daily actions can also be vague from human reasoning point of view. 

For example, when a human picks up a book from a desk, he does not need to 

calculate a precise force he should apply to the book. The vagueness of the daily 

actions inspires the development of fuzzy logic control. It has been found that 

sometimes traditional controllers are difficult to develop in order to control highly 
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non-linear and highly complex processes. On the other hand, a well trained human 

50 

operator can finish very complex tasks based on his experience. Engineers can sum up 

the worker's experience to a group of fuzzy rules and develop a fuzzy logic controller 

which uses the group of fuzzy rules as a key component. The controller is able to 

finish complex tasks in the same way that the human operator does. 

When a human operator operates a machine, the operator and the machine are 

cOlUlected to form a closed-loop system as illustrated in Figure 4.2. This system can 

also be called a "human-machine system". 

" 
y " !~: :o :'"'1.0 r---------, , .. 

. i 

0.0 "---__--'__---..Jc:::-_______ Age 


25 
 100 

Figure 4.1 Fuzzy sets representing "young" and "old" 

Input Output
Sound. Light Operator Controller :tvlachine 

}'·'lonitor f--+ f---+ 
 ~ 

Figure 4.2 A human-machine control system 

Firstly, the operator uses eyes and ears to acquire information from the output of the 

machine in the forms of sound, light and digital/analogous display. The information 

may include "the pressure is high" or "the changing of temperature is small". He then 
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converts the information into fuzzy information. Next, the operator uses the fuzzy 

information and his experience to make control decisions. Apparently, the information 

in the operator's mind is fuzzy. 

The operators experience can be summarised and represented in the form of fuzzy 

rules. The fuzzy rules can be saved on computers. In addition, human reasoning 

process can also be simulated using computer programs. Computers, once equipped 

with the fuzzy rules and the human reasoning programs, can then make fuzzy 

decisions when provided fuzzy information to achieve a given goal. 

Fuzzy rule 
base 

1 
Fuzzification Inference Defuzzification 

f--­interface engine interface 

Figure 4.3 Structure of fuzzy logic controller 

In Figure 4.3, the fuzzification block represents the process of converting precise 

input information to fuzzy input information. Whilst, the defuzzification block stands 

for the process of converting fuzzy decision (output) into precise control signals. 

Fuzzy rules are stored in the fuzzy rule base. The fuzzy inference engine is a 

computer program which mimics the process of human reasoning. 

Three basic variables are in concern when human operators control a machine. They 

are errors (e), differences between the desired output and the actual output of the 
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controlled machine, the changing rate of the differences (c) and the control action (u). 

The fuzzification block converts the precise values of e and c into fuzzy values. This 

process is performed based on fuzzy sets which are pre-defined for these two 

variables. The simplest fuzzification process is called fuzzy singleton, illustrated in 

Figure 4.4. In the example shown in this diagram, A and B are two fuzzy sets, defined 

for the variable e. ep is a precise value of e. Fuzzy singleton converts ep into 

0.4 0.6 
-+-. 
A B 

B 


o 1 2 3 3.6 
y=1.6 

Figure 4.4 Fuzzy singleton 

The defuzzification block converts the fuzzy values of u into precise values. The most 

commonly used defuzzification strategy is Centre of Gravity (CoG). CoG can be 

formulised below: 

1=1 

(4.1) 


where Wj stands for the support value at which the membership function !lew) 

reaches the maximum value, and Zo is the precise value resulted from the 

defuzzification process. 
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The fuzzy rule base contains a group of logic rules which are obtained by generalising 

human operators' experience. Fuzzy rules are normally expressed in the form of 

"If ... then ... "). For example, "If e is A and c is B, then u is C', where A, B and C are 

three fuzzy sets defined for e, c and u, respectively. 

Fuzzy inference is the process of mapping from given inputs to an output based on 

fuzzy rules. The mapping then provides a basis from which decisions can be made, 

that is, a control action can be decided. The fuzzy inference engine is an 

implementation of the fuzzy inference process. 

4.2 Fuzzy Logic Controller Design Using MATLAB 

4.2.1 Fuzzy logic controller in MATLAB 

The Fuzzy Logic Toolbox within MATLAB contains five operations which are 

needed for implementing a fuzzy logic controller. They are fuzzification, fuzzy 

composition rule of inference, fuzzy implication, aggregation of the consequents 

across the rules, and defuzzification. 

Fuzzification takes the inputs and determines the membership degrees to which they 

belong to each of the fuzzy sets defined for the inputs via membership functions. It 

gives out a set of degrees of membership in [0, 1] of the corresponding fuzzy sets. The 

fuzzification process is illustrated in Figure 4.5. 

, 'r 
,I 
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input 


Figure 4.5 Fuzzification process in MATLAB 

Mamdani-type fuzzy inference is the most commonly used fuzzy inference method in 

automatic control. It was developed when Mamdani (1974) designed the first fuzzy 

logic control system to control a steam engine and boiler combination. In Mamdani­

type fuzzy inference, the composition rule of inference is implemented using "super­

min" to activate fuzzy rules, fuzzy AND operator is then applied to implement fuzzy 

implication, also known as fuzzy mapping, and finally fuzzy OR operator is applied to 

the consequence of the rules for aggregation. In the Fuzzy Logic Toolbox, because of 

the use of fuzzy singleton, "super-min" becomes simple and straightforward. Fuzzy 

AND is implemented by point-wise minimum and fuzzy OR by point-wise maximum. 

Mamdani-type fuzzy inference can be illustrated in Figures 4.6 and 4.7. 

Defuzzification strategy used in the Fuzzy Logic Toolbox is the Centre of Gravity, 

which returns the centre of area covered by a fuzzy set. This process is illustrated in 

Figure 4.8. 

I 
I 
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Figure 4.7 Aggregation process 

I Oefuzzify the 
aggregate output 
(centroid).-10 10 

Iforce = 1. 6 

Result of 

de fuzzification 

Figure 4.8 Defuzzification process 

- 51 ­



4.2.2 Fuzzy logic toolbox 

The Fuzzy Logic Toolbox provides graphical user interface (QUI) tools for the design 

of fuzzy logic controller. The followings are five primary QUI tools for building, 

editing, and viewing a fuzzy logic controller: 

o Fuzzy Inference System (FIS) Editor 

o Membership Function Editor 

o Rule Editor 

o Rule Viewer 

o Surface Viewer 

These QUI tools are interconnected. If any change is made to a fuzzy logic controller 

through one of them, all other QUI tools will make the corresponding changes. The 

connections among the QUI tools are illustrated in Figure 4.9. 

FIS Editor 

Membership 
Rule Editor Function Editor 

, - ' - i Read-only

.";11 
 tools 
" ~; 1 

Rule Viewer Surfilce Viewer 

Figure 4.9 Interconnected primary QUI tools in Fuzzy Logic Toolbox 

- 52 ­



The names and the number of input/output variables of a fuzzy logic controller are 

defined in the FIS Editor. The Membership Function Editor is used to define 

membership functions of all fuzzy sets associated with each variable. The Rule Editor 

is for editing fuzzy rules. The Rule Viewer and the Surface Viewer are used to display 

all fuzzy rules in either "If. .. Then ... " format or graphically. They are strictly read­

only tools. 

The five primary GUI tools can all interact and exchange information. Anyone of 

them can read from and write to the workspace and to a file (the read-only viewers 

can still exchange plots with the workspace and save them to a file). For any fuzzy 

inference system, any or all of these five GUI tools may be open. If more than one of 

these editors is open for a single system, the various GUI windows are aware of the 

existence of the others, and, if necessary, update the related windows. Thus, if the 

names of the membership functions are changed using the Membership Function 

Editor, those changes will be reflected in the rules shown in the Rule Editor. The 

editors for any number of different FIS systems may be open simultaneously. The FIS 

Editor, the Membership Function Editor, and the Rule Editor can all read and modify 

the FIS data, but the Rule Viewer and the Surface Viewer do not modify the FIS data 

in any way. 

4.3 Development of Fuzzy Logic Controllers for Robot Arm Cooperation 

The aim of developing fuzzy logic controllers for a robot arm is to enable it to 

cooperate with a human in lifting a light-weight stick and keeping the stick level 
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during the course of lifting. The stick is light weight and flexible so force control is no 

considered to the end-effectors. The two robot arms each of which holds one end of a 

stick are illustrated in Figure 4.10. 
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Figure 4.10 Two robot arms holding a stick 

Fuzzy logic controllers were designed for robot arm on the left, RI. Robot arm, R2, is 

a normal industrial robot arm the motion of which follows a pre-defined trajectory. 

Two fuzzy logic controllers were developed for RI. One is for cooperating with R2 in 

lifting the stick, and the other is for keeping the stick level when R2 stops moving. 

4.3.1 Designing fuzzy logic controller to following the motion ofR2 

The fuzzy logic controller for RI to follow R2'S motion has two inputs. One is the 

angle between the stick and the ground, as this angle tells whether R2's motion is 

followed. The other is the change rate of R2'S lifting speed. This signal helps RI to 

predict R2' s next movement. A positive value of this signal indicates that R2 will 

continually lift the stick, whilst a negative value means R2 is going to stop. 
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Assigning the robot anus a reference system, as displayed in Figure 4.11, the height 

of the end-effector of R" y" and that of R2, Y2, can be measured. The position of the 

end-effector of R, along X-axis, x" as well as that of R2, X2, can also be measured. 

The angle B, can then be calculate as the following: 

(4.2) 


This equation can also be implemented in SIMULINK in the way shown in Figure 

4.12. 
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Figure 4.11 Reference system assigned to the robot arms 
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Figure 4.12 Calculation of the angle Bin SIMULINK 

The change rate of R2's lifting speed, .6.V, can be calculated using the following 


equation: 


.6.v = dY2 (t) _ dYa(t - .6.t) 

(.6.1 =O.1s) (4.3)dt dt 

This equation can also be implemented using SIMULINK, as illustrated in Figure 

4.13. 

4 

Out4 

Body Sensor 

3 

Out3 

prediction 

dY/dt 

Figure 4.13 Calculation ofthe change rate ofR2's lifting speed in SIMULINK 

The membership functions of these inputs are defined based on experience and 

simulation. The membership function of the first input "angle" is given in Figure 4.14. 

- 56­



r --~--'-------'----'---"'-----'r-"--..,---,­

negtive zero positive 

. "." ., . , +.~~~" j ___L .."(I __ . .~.I • _ 1...."....,,, 


. 11) " t . ·4 ,2 I) 2 4 
 10 
input variable "angle" 

Figure 4. 14 Membership function of "angle" 

In order to let the Rl respond quickly, the membership function for "negative" and 

"positivc" fuzzy sets wcre defined having the shape of "trapezoid" and that for the 

'zero' fuzzy set was in Gaussian shape. 

The membership function of the input "the change rate of lifting speed" is shown in 

Figure 4.15. 'rhe membership functions for all fuzzy sets are in Gaussian shape. 

ne ive zero pos ive 

Q ~~~~~~~--~~~~~==~~ 
8 10.11) ·8 .~ .4 ·2 o 2 4 6 

Input variable "Prldlctloo" 

Figure 4 .1 5 Membership f\mction of "change rate of lifting speed" 
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The design of fuzzy rules is based on experience. For example, if the end-effector of 

R2 is higher than that of Rl and the change rate of R2's lifting speed decreases, then 

the controller should keep the current lifting torque and wait. The fuzzy rule base of 

the fuzzy logic controller is given in Figure 4.16. It can also be viewed in the input-

output space, as shown in Figure 4.17. 

1 . -If -en ie is ositi've ' and ( redlctlon is "osijive) then force is" zreo (1) 
2. It (angle is positive) and (prediction is zero) then (torce is positive) (1) 
13. It (angle is positive) and (prediction is negtive) then (force is positive) (1) 
4. If (angle is zero) and (prediction is posijive) then (torce is negtive) (1) 

:5. If (angle is zero) and (prediction is zero) then (force is zreo) (1) . 


16. If (angle is zero) and (prediction is negtive) then (force is positive) (1) ~ 

,7. If (angle is negtive) and (prediction is positive) then (force is negtive) (1) . " 

i8. If (angle is negtive) end (prediction is zero) then (force is negtive) (1) 

i9. It (angle is negtive) and (prediction is negtive) then (force is zreo) (1) 


v; . 
- ' ~-"'. '~ ."" ~'." - ---"--- -- -.-~--- -~. --- . ,- ,-.~~,-,-.,.--."...- ..-,.-------- -­-

Figure 4.16 Fuzzy rule base 
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Figure 4.17 Mapping from inputs to output 
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These two inputs are fed into a fuzzy inference engine which is provided by the Fuzzy 

Logic Toolbox. Based on the fuzzy rules, the inference engine can produce a lifting 

torque which is the output of the controller. The fuzzy sets of this output are defined 

as shown in Figure 4.18. 

Membership fundlon plots 

neptlv(! zreo positive 

Figure 4.18 Membership function of "lifting torque" 

The controller can now be shown in Figure 4.19. 

The :an.gle between 
the stick and ground 

1 MAI---r­
~ control signal 

Fuzzy Logic

Robotarm2's lifting speed changing rate 
 Contro II er 

with Ruleviewer 

Figure 4.19 Fuzzy logic controller for R\ to follow the motion ofR2 

As described in the last chapter, the robot ann has four links. In order to get best 

control results, all the control signals are sent to the actuator between linkl and link2 
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(as can be seen from Figure 4.l 0). The output ofthe controllers will be transformed to 

current signals and applied directly to the joint between the two links. 

4.3.2 Designing fuzzy logic controller for keeping the stick level 

In order to keep the stick level after R2 stops moving, an additional fuzzy logic 

controller was added for RI . This controller also has two inputs and a single output. 

The two inputs of this controller are the angle eand the RI 's lifting speed. The output 

is the lifting torque. 

The fuzzy rules of this additional controller are given in Figure 4.20. The fuzzy rules 

were also obtained based on experience. For example, when the angle is positive and 

the lifting speed of R, is also positive, that means the stick will tend to level, then R\ 

should keep the current torque and wait. 

r.If (engle Is posttive) a~d ( velocity is positive) then (force Is zreo) (1) " 
2. If (angle IS positive) and (velocity is zero) then (force is positive) (1) 
3 . If (engle is pos~ive) (lind (velocity is negtive) then (force is positive) (1 ) 
4 . If (angle is zero) and (velocity is positive) then (force is negtive) (1) 
15. If (angle is zero) end (velocity is zero) then (force is zreo) (1) 
6 . lf (angle is zero) end (velocity is negtive) then (force is positive) (1) 
7 . If (engle is negtive) end (velocity is positive) then (force is negtive) (1) 
18. If (engle is negtive) end (velocity is zero) then (force is negtive) (1) 

[ " (,ng. is ne~Ne) : ~v:~~y i~ne:~~:n (f~" iH_r_eO-,),-(1_)___."...,-__ 
v 

Figure 4.20 Fuzzy rules developed for the additional controller 

The mapping of the controller' s inputs and output is illustrated in Figure 4.21. 
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Figure 4.21 Mapping of the inputs to the output of the additional controller 

A switcher is designed to switch between the two fuzzy logic controllers. The switch 

nonnally switches on the first controller. When the switcher detected no further 

movement of R2, which is done by measuring the height of the end-effector of R2, 

then the switch switches the additional controller. The switcher is illustrated in Figure 

4.22. 

Switcher 

3 )-------t~ Inl 

Actuator of 
102 Outl I--~~ Robotannl 

1n3 

Conlrolltr1 

the height of robobrm2's end 

Fu::zy Logic 

Fu::zy Logic 
Controllta 

Figure 4.22 The switcher to switch on controller2 
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4.4 Simulation Results 

R2's motion trajectory is shown in Figure 4.23. X axis represents time and Yaxis 

represents the height of the end-effector of R2. The robot arm lifted the stick to the 

height of O.Sm in 2.Ss. RJ was controlled by the fuzzy logic controllers. RJ's 

movement is illustrated in Figure 4.24. In this diagram, X axis represents time and Y 

axis represents the height of the end-effector of the robot. An overshot can be 

observed from Figure 4.24. 

The changes in the angle between the stick and the ground are given in Figure 4.2S. Y 

axis represents the angle. It can be seen from Figure 4.2S, the maximum of the angle 

is O.0741raci (approximately 4.25°). Because of the effect of the additional controller, 

the angie \vas reduced to O.023Srad (approximately 1.35°) after R2 stopped moving. 

The stick W;~~; almost kept level during the whole process of lifting. The time between 

the R:; stopped moving and the stick was kept level is 1.Ss. 

The result also shows that when R2 lifted the stick with a speed of O.3m/s, RJ 

controlled by the first fuzzy logic controller can response quickly. 
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Figure 4.23 The height ofR2's end-effector 

Figure 4.24 The height ofR\'s end-effector 
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Figure 4.25 Changes in the angle between the stick and the ground 
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CHAPTER 5. FRAMEWORK OF ACTIVE ROBOT 

LEARNING AND COOPERATION WITH ACTIVE COGNITIVE 

ROBOT 

In order to enable a robot to cooperate better with its user, the robot needs to be able 

to predict \vhat the user will do next. The prediction can be made based on the users' 

intention and/or preference, that is, the high-order beliefs of the robot. The existing 

approaches to the development of such beliefs through machine learning rely on 

particular social cues or specifically defined award functions, as mentioned in Chapter 

2. Their applications can be limited. 

This chapter presents an active robot learning (ARL) approach for a service robot to 

develop such beliefs. Inspired by discovery learning theory which encourage learners 

to acquire information by performing their own experiments, this approach allows a 

robot to perform guided tests on its users and to build up the high-order beliefs 

according to the users' responses. This approach emphasises the active acquisition of 

intention and preference by robots but not the passive learning. The robots do not 

require recognition ora particular gesture or determination of a specific function. 

5.1 R()bot Active Learning 

Discovery learning takes place in problem solving situations where the learner draws 

on his own experience and prior knowledge. It has then been developed into a method 
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of instruction through which learners interact with their environment by exploring and 

manipulating objects, wrestling with questions and controversies, or performing 

experiments. 

Discovery learning can be simply described as "learn by doing". Despite of concerns 

to its effectiveness, this learning method has been employed in supervised machine 

learning, known as active machine learning (AML), as a resolution to the problem of 

lacking expensive labelled training examples. Supervised learning requires a 

sufficient number of labelled training examples to be presented to the learner. An 

error signal between the examples and the learning outcomes from the learner can 

then be obtained and used to drive the learning process, for example, through 

adjusting the learner's parameters to minimise the error. The labelled data, however, 

are sometimes expensive to obtain. AML allows the learner to explore all available 

examples and to add scores to them. Those with higher scores will be passed to 

human experts to add labels (Kim, et aI., 2006). AML has also been used in robot 

control to model the inverse dynamics of a robot arm with high model uncertainty 

(Rohbe! and Vijayakunar, 20(7). 

Uncertainty also exists in the development of beliefs for service robots on their users' 

intentions and preferences. Belief is the psychological state in which an individual 

(including cognitive robots) holds a proposition to be true. In computer science, the 

decision on whether the proposition is true (uncertainty) can be made by looking at 

the evidence of other related propositions (Dempster 1968, Shafer 1976). The 

colk:licmJf r.'kvanl evidence is, therefore, an important step in the process of 

buHdinp up hcli<.:ts. In situati<ms where service robots co-work with their users, to 
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build up their high-order beliefs on the users' intention and preference, the robots also 

need to collect evidence which may not be seen at the first glance. 

The property of "learning by doing" of discovery learning makes it suitable for the 

robots to develop the high-order beliefs. With discovery learning capability, the 

robots will be able to perform experiments when they are not sure what their human 

counterparts intend and prefer to do. By doing this, the robots can discover evidence 

which is required but not seen at the first glance to build up the high-order beliefs. For 

cxampk, in the sitw:ltion where a robot helps its user to lift an object from ground and 

the rohot realizes that the user stopped at certain height, the robot will need to find out 

whether the user decides to lift the object only to that height or he prefers to put the 

object dO\vn to the ground because he changes his mind. The robot can test the user 

by slightly putting down the object and see how the user response. If the robot 

perceives the same action from the user, it can then regard the response as the 

evidc-l1cc of changing mind. rfthe robot perceives no action from the user, it can view 

this response as evidence of the preference of keeping the object to that height. 

This approach to the use of discovery learning in the development of service robots' 

beEds cun be ca!l:d active robot learning (ARL). ARL differs from AML because 

ARL requires a robot to curry out experiments to generate data (evidence), whilst 

\1L only se~lrchcs for and evaluates available data. 
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5.2 Framework of ARL System 

The overall structure of an ARL system is shown in Figure 5.1. The system consists 

of an action bank which stores actions that can be taken to test its users, an inference 

engic~ '\hi '.1 ~a!-;(ms ahout what actions to be taken for a specific purpose, a moment 

determination mechanism to decide the moment of test, an intention identification 

mechanism to intcrpret responses of the users and to identify intention and preference, 

and .1!1 intention rnodd \vhich represents intcntions. 

r~- - ­
InferenceI Action hank Actionengine 

Moment 
determination 

. Intention Intentionj PerceptionL mod<.:l identification______---' 

Fi':u~;,· 5.1 Structure of .\RL system 

5.2.1 Action and ~lction selection 

Test actions a':"c those that can be taken to test the users. They are associated with 

conditions and stored in the action bank. Each test action stored in the action bank has 

a mu ••c ..n~ cvnt";'1t which is the kinematics of the robot. The conditions express 

re;~c _s r'lr ..eJ "ormini~ the actions and arc represented as propositions. For example, . .. 
if 11. rnb(\f il!"h.t..:: UVCl' I'i plass of water to its user, it would need to check whether the 

U!sCr intcnd~ ano is r(!udy to take over lhe glass. The test action for testing the user in 
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this case is to slightly loosen the glass and the condition associated is to confinn the 

user's intention of taking over the glass. The actions and the associated conditions can 

be designed by robot designers before the robots are deployed. 

The inference engine selects a test action from the action bank to conduct a specific 

test. As the actions are associated with conditions in the action bank and the 

associations actually represent causal relations (implications) from the conditions to 

the actions, the selection of an action can be carried out with the standard forward 

reasonmg. 

The moment determination mechanism decides the starting time for testing the user 

and triggers the action bank to send out a test action. There are, in general, two 

moments where a robot needs to test the user for intentions. The first is the moment 

before the last action in the course of the completion of a task. Taking the example of 

getting a drink for the user, before a robot finally takes the action of releasing a glass, 

it needs to find out whether the user intends and is ready to take over the glass. In the 

example of assisting a human standing out from a chair, the robot has to make sure 

that the user intends and is ready to stand alone before releasing his armJhand. The 

second is the moment when a robot feels its user stops doing what he originally 

intended to do. The robot will need to find out whether the user changed his mind or 

not for further cooperating with him. In this situation, the robot will rely on its 

perception to detect this stop. 
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5.2.2 Fuzzy intention model and intention identification 

-


Human intention and preference can be vague. Human beings can desperately want to 

do or not to do something and can also more or less want to do it. They can like 

something very much, more or less like, less like, or dislike it. To reflect this natural 

vagueness, intentions and preferences are represented using fuzzy sets in the intention 

model. The fuzzy sets are defined in the domain of intention and preference. 

Representing intention as a variable, linguistic terms used by human beings to 

describe their intentions, for example, can be discrete values of this variable and 

arranged along the axis of intention from "determinatively to do", "may want to do", 

... to "determinatively no to do". Fuzzy sets on this axis are defined by membership 

functions which take values in [0, 1]. For example, "determinatively to do" and "may 

want to do" can be defined as shown in Figures S.2(a) and (b), respectively. 

o 1 o 
II 

o o 

do may may not do may may not 


do not do do do not do do 


(a) (b) 

Figure 5.2 Fuzzy sets defined for representing intentions 

The vagueness is represented by the membership functions. First, the membership 

functions can take values in [0, 1]. These values are the subjective expressions about 

uncertainty property of intention and preference. Second, these functions are allowed 

to have any shape to represent slight different subjective feelings. For example, the 
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fuzzy set shown in Figure 5.2(b) represents the hesitation between "do" and "not do" 

but incline more to "do" side. If the shape changes in the way of increasing the value 

of "may not do" to 1, the fuzzy set will still express hesitation but much less 

inclination. 

Intention and preference are identified from the responses of the user to the test 

actions a robot preformed. In this sense, the identification process maps the perception 

of the robot to the intention and preference of its user, and, therefore, relies on a set of 

rules which represent the relationship between the perception and intention and 

preference. It is more natural to develop a causal relation from what the user intends 

or prefers to do to how the user responds to test actions, that is, from intention and 

preference to perception, than the way around. This is because that the responses are 

naturally determined by the intentions and preferences. Each of such rules is also 

associated with a truth degree indicating to what extend the designers ofthe rule trusts 

the rule. 

1 
" 

To identify intentions and preferences based on this type of causal relation will need 


fuzzy backward reasoning (Anould and Tano, 1995; Pham and Li, 2001). Fuzzy 


backward reasoning performs based on a fuzzy relational equation, the general form 


of which is represented in 5.1. 


XoR=Y (5.1) 


where X is a fuzzy decision variable, Y is s fuzzy dependent variable, R stands for a 


causal relation from the universe of discourse where X is defined to the universe of 


discourse where Y is defined, and represents the composition rule of inference. 
0 
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Because R represents a causal mapping from X to Y, given Yd, a desired value of Y, 

fuzzy backward reasoning can deduce X which is sufficient for Yd. In the case of 

intention and preference identification, a fuzzy relational equation can be developed 

to represent the causal relation from intention andlor preference to actions. This is 

because the intention leads to actions when the user is conscious. When the response 

of the user to a test action is known, fuzzy backward reasoning is able to deduce the 

intention or preference that could determine the response by solving 5.1. The user's 

responses are perceived by a robot in terms of perception. 

5.3 Simulations and Discussions 

Simulations were designed and carried out to evaluate the ARL based approach to 

building up high-order beliefs for a robot arm. The simulation environment is 

depicted in Figure 5.3. Robot arm RI is a cognitive robot with the ARL framework 

installed. Robot ann R2 models the user. Figure 5.4 shows how the ARL system is 

integrated with the robot control system described in Chapter 4. 

In the simulations, the user and the robot cooperate in lifting a stick in the way of 

keeping it level. The user then stopped. When the robot detected the stop, it reacted in 

order to keep the stick level and applied test actions to the user to check his intention 

in order to further cooperate with him. The user reacted to the test actions taken by the 

robot. The robot then started to identify the user's intention according to his responses. 
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Figure 5.3 Simulation environment 
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Figure 5.4 Integration of ARL system to robot control system 

The user may stop for three different reasons: having a rest (because the stick is 

heavy), or leaving the stick at the height (because the stick reached the desired height), 

or putting the stick down (because he changes his mind). Three linguistic tenns were 

used to describe these three reasons, namely, "having a break", "leaving to the desired 

height", and "putting down". These terms were represented using a, b and c, 

respectively. 

A variable x was defined in the domain of intention and a, b, and c are the three 

values of x. Intentions of "to have a rest and then continue", "to keep at the current 



height", and "to put down" were defined, in the form of fuzzy sets A, B, and C, 

respectively, in the domain of x. Human beings can be indeterministic and even 

hesitate by their nature. That is, vagueness can exist in their intentions. The best way 

to represent this natural vagueness in human beings' mind is to use fuzzy sets. The 

fuzzy sets A, B and C are shown in Figures 5.5(a), (b) and (c). 

Test actions and associated conditions are: 

o Ifto confirm "continue to lift", Then Lift_slightly 

o Ifto confirm "the desired height reached", Then Stay_still 

o If to confim1 "put down, Then Put_dawn_slightly. 

1 0 , 0 
I 

1 0 ,, 
I ,

I 

I 


0 0 0 0 
0 0 0 


a b c a b c a b c 


(a) (b) (c) 

Figure 5.5 Intentions defined as fuzzy sets 

A tilt sensor was attached to the stick and connected to the robot for it to check 

whether the stick is level. The sensor gives a 0 (Z) when the stick is at level, that is, 

the two sides of the stick held by the user and the robot, respectively, are at the same 

height. It gives a positive number (P) when the side held by the user is higher than the 

other side. Otherwise, it gives a negative number (N). The sensor readings in the 

courSe of n test provide information about the user's reactions. For example, that the 

sensor n'$\ding is still 0 after the robot took Lift action means the user was also lifting 

with theobot. 
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A fuzzy variable X was defined for the user's intention, a "crisp" variable u defined 

for test actions taken by the robot, and ~y for the differential of the sensor reading. 

Rules were designed for the robot to reason about the user's intention according to the 

actions it takes and perception it receives. 

In the case where the user intends to have a rest and then continue, if the robot takes 

action of Lift._slightly, then the user may keep in lifting the stick, though reluctant. 

This can be seen from Figure 5.5 (a) where both a and b are non-zero. If the robot 

takes the action of Put_down_slightly, the user will not follow the robot putting down 

the stick. If the robot takes the action of Stay_still, the user will be happy to remain 

unchanged. Therefore, the corresponding rules defined are: 

o IF )( is A AND u is Lift_slightly, THEN ~y is Z (truth degree = 1.0) 

o IF X is A AND u is Stay_still, THEN ~y is Z (truth degree = 0.2) 

o IF X is A AND u is Put_dawn_slightly, THEN ~y is P (truth degree = 1.0). 

In the case that the user intends to keep the stick at the current height, if the robot 

takes action of Lift_.slightly, then the user will remain his current position unchanged. 

If the robot takes the action of Stay_still, the user will be happy to remain unchanged. 

If the robot takes the action of Put_down_slightly, the user will not follow the robot 

putting down the stick. Therefore, the corresponding rules are: 

o IF X is B AND u is Lift_slightly, THEN ~y is N (truth degree = 0.4) 

o IF X is B A ND u is Stay_still, THEN t.y is Z (truth degree = 1.0) 

o IF X is B AND u is Put_down_slightly, THEN ~y is P (truth degree = 0.5). 
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In the case that the user intends to put the stick down, if the robot takes action of 

Lift_slightly, then the user will put down the stick. If the robot takes the action of 

Stay_still, the user will also put down the stick. If the robot takes the action of 

Put_down_slightly, the user will be happy to cooperate with the robot. Therefore, the 

corresponding rules are: 

o IF X is C AND u is Lift_slightly, THEN ~y is N (truth degree = 0.6) 

o IF X is C AND u is Stay_still, THEN ~y is N (truth degree = 1.0) 

o IF X is C AND u is Put_down_slightly, THEN ~y is Z (truth degree = 1.0). 

The above rules were represented using three fuzzy relational matrices, namely, RLift , 

R,I/'" ."''' and R1'1If 
- .1m", , which correspond to the conditions of taking actions of 

Lift_slightly, Stay _still and Put_down_slightly, respectively. The fuzzy relational 

matrices arc: 

0 1 

(
 (5.2)KJV' = 0 0 

o 0 

( 
0 0.2 

Ilrtf = ~ ~ (5.3) 

(5.4) 

The variables X and ~y (~y is the set of differentials of sensor readings the elements 

of which arc the truth values of P, Z, and N) can be connected with the fuzzy 

relat ional matrices to form three fuzzy relational equations such as: 
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x 0 R = t..Y (5.5) 

where R stands for one of the three matrices given in 5.2,5.3 and 5.4. 

In the first simulation, a 3.5 seconds halt was introduced into the trajectory designed 

for R2 to simulate the case where the user takes a rest in the middle of lifting. When 

Rl captured the halt through the tilt sensor (/).y remained at 0 in this case), the ARL 

system applied the test action of Lift_slightly to the stick to test R2. Because R2 

intended to have a rest and then continue, it responded to RI by restarting to lift the 

stick. When received this response, RI started fuzzy backward reasoning to identify 

R2 'S intention, which is "to have a rest and then continue" in this case. 

The pre-defined motion trajectory for R2 is shown in Figure 5.6. X axis represents 

time and Y axis represents the height of the end-effector. From O.Os to1.5s, R2 lifted 

the stick from the ground up to 0.23 metres. From 1.5s to 5.0s, R2 stopped to have a 

rest. From 5.2s to 6.5s, R2 continued to lift the stick from the height of 0.23m to 

0.39m. After 6.5s, R2 stopped. 

Figure 5.6 Trajectory of R2' send-effector 

Rl ' S motio n trajectory is shown in Figure 5.7. X axis represents time and Yaxis 

represents the height of the end-effector. From O.Os to1.5s, Rl followed the movement 
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of R2 and lifted the stick to the height of 0.20 metres. This process was controlled by 

the first fuzzy controller. From 1.5s to 3.0s, RJ tried to keep the tick level. This 

process is controlled by the second fuzzy controller. It can be seen from the diagram 

that there is an overshot between 1.8s and 3.0s. Then RJ waited from 3.0s to 4.6s. 

From 4.6s to 5.2s, Rl applied the test action of Lift_slightly, which is, lifting the stick 

for 0.05 metres and waited for R2's response. In responding to the test action, at 5.2s, 

R2 started to also lift the stick. Then the ARL system started to identify R2's intention 

via its fuzzy backward reasoning. When the angle between the stick and ground was 

zero (corresponding to /).Y = (0 1 0)), the intention was identified via resolving the 

following fuzzy relational equation: 

0 1 0 J(a b c)o ( 0 0 0.4 =(0 1 0) (5.6) 

o 0 0.6 

Resolving the equation yielded a fuzzy set A I which is similar to but not A, which can 

be seen by comparing Figures 5.5(a) and 5.8. This deduced fuzzy set shows that R2 

did not change his mind, that is, he intended to have a rest and then continue. After 

R2'S intention was identified, the first fuzzy logic controller was switched on and Rl 

continued to follow R2 to lift the stick. 

Figure 5.9 shows the angle between the stick and ground. X axis represents time and Y 

axis represents the angle. From O.Os to 1.5s, RJ followed R2's movement. Because RJ 

moved later than R2, the angle increased to O. 1Orad. From 1.5s to 3.0s, the angle 

decreased to -O.05radbecause of the overshot. From 4.8s to 5.3s, the angle decreased 

to -0.03rad because RJ applied the test action of Lift_slightly. From 5.3s to 6.2s, the 

angle increased to 0.06rad because R2 continued to lift. 
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Figure 5.7 Trajectory ofR2's end-effector 

11 ~ 
o 1...--•..--.---....- ..... 

abc 

Figure 5.8 Fuzzy setA' 

Figure 5.9 Angle between the stick and ground. 

In the second simulation, the trajectory was designed for R2 to lift the stick to a 

certain position and then put it down to simulate that R2 changes mind. When having 
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detected ~y = 0, the ARL system in RI applied test action of Lift_slightly. R2 at this 

time did not follow Rl to lift the stick, instead, it started to put the stick down. When 

received this response, the ARL system started fuzzy backward reasoning and 

identified R2's intention of "to put down". It then started to put the stick down. 

The pre-defined motion trajectory for R2 is shown in Figure 5.10. X axis represents 

time and Yaxis represents the height of the end-effector. From O.Os to1.5s, R2 lifted 

the stick from the ground up to 0.23 metres. From 1.5s to 5.2s, R2 stopped to have a 

rest. From 5.0s to 6.5s, R2 put the stick down from the height of 0.23m to 0.03m. After 

6.5s, R2 stopped as the stick reached the ground. 

Figure 5.10 Trajectory ofR2's end effector 

R1's motion trajectory is shown in Figure 5.11. X axis represents time and Y axis 

represents the height of the end-effector. From O.Os to1.5s, Rl followed the movement 

of R2 and lifted the stick to the height of 0.20 metres. This process was controlled by 

the first fuzzy controller. From 1.5s to 3.0s, RI tried to keep the tick level, controlled 

by the second fuzzy logic controller. It can be seen from the diagran1 that there is an 

overshot between 1.8s and 3.0s. Then Rl waited from 3.0s to 4.6s. From 4.6s to 5.2s, 
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RJ applied the test action of Lift_slightly, which is, lifting the stick for 0.05 metres 

and waited for R2's response. At 5.2s, R2 started to put the stick downward. The ARL 

system stated to identify R2' s intention. When the angle between the stick and ground 

was negative (corresponding to I1Y = (0 0 1)), the intention was identified through 

fuzzy backward reasoning via resolving the following fuzzy relational equation: 

0 1 0 J
(a b c)o [ ° 0 0.4 =(0 0 1) (5.7)

° 0 0.6 

Resolving the equation yielded a fuzzy set C' which is similar to but not C, which can 

be seen by comparing Figures 5.5(c) and 5.12. This deduced fuzzy set shows that R2 

had changed his mind, that is, he intended to put the stick down to the ground. After 

R2'S intention was identified, RJ also put the stick down and then followed R2's 

movement. 

The angle between the stick and ground is shown in Figure 5.13. X axis represents 

time and Y axis represents the angle. From O.Os to 1.5s, Rl followed R2's movement. 

Because Rl moved later than R2, the angle increased to O.lOrad. From 1.5s to 3.0s, the 

angle decreased to -0.05rad because of the overshot. From 4.8s to 5.3s, the angle 

decreased to -O.07radbecause Rl applied the test action of Lift_slightly. From 5.3s to 

6.2s, the angle continued to decrease to -0.1 Orad because R2 put the stick down. 
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Figure 5.11 Trajectory ofR]'s end-effector 
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Figure 5.12 Fuzzy set C' 
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Figure 5.13 Angle between the stick and ground. 

In the third simulation, the trajectory was designed for R2 to lift the stick to a certain 

position and then stop for the purpose of simulating that the desired height is reached. 
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When having detected ~y=O, the ARL system in R\ applied test action of Lift_slightly. 

R2 in this time did not follow R\ to lift the stick but stayed still. When having received 

this response, the ARL system started fuzzy backward reasoning and identified R2'S 

intention of "stay still". It then stopped. 

The pre-defined motion trajectory for R2 is shown in Figure 5.14. X axis represents 

time and Yaxis represents the height of the end-effector. From O.Os to1.5s, R2 lifted 

the stick from the ground up to 0.23 metres. After 1.5s, R2 stopped. 

Figure 5.14 Trajectory ofR2's end-effector 

R\'s motion trajectory is shown in Figure 5.15. X axis represents time and Yaxis 

represents the height of the end-effector. From O.Os to 1.5s, R\ followed the movement 

of R2 and lifted the stick to the height of 0.20 metres. This process was controlled by 

the first fuzzy logic controller. From 1.5s to 3.0s, R\ tried to keep the tick level 

controlled by the second fuzzy logic controller. It can be seen from the diagram that 

there is an overshot between 1.8s and 3.0s. Then R\ waited from 3.0s to 4.6s. From 

4.6s to 5.2s, R\ applied the test action of Lift_slightly, which is, lifting the stick for 

0.05 metres and waited for R2's response. At 5.2s, the ARL system perceived R2's 
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response -- the angle between the stick and ground was zero (corresponding to !::,Y = 

(0 1 0)). It then started fuzzy backward reasoning to identify the intention via 

resolving the following fuzzy relational equation: 

0 1 0 J(a b c)o [ 0 0 0.4 =(0 1 0) (5.8) 

o 0 0.6 

Resolving the equation yielded a fuzzy set S' which is similar to but not S, which can 

be seen by comparing Figures 5.5(b) and 5.16. This deduced fuzzy set shows that the 

desired height was reached. After R2 's intention was identified, RJ started to put the 

stick to the original height, the desired height (0 .23m) and kept the stick level. 

The angle between the stick and ground is shown in Figure 5.17. X axis represents 

time and Yaxis represents the angle. From O.Os to 1.5s, Rl followed R2's movement. 

Because Rl moved later than R2, the angle increased to 0.1 Orad. From 1.5s to 3.0s, the 

angle decreased to -0.05rad because of the overshot. From 4.8s to 5.3s, the angle 

decreased to -0.05radbecause RJ applied the test action of Lift_slightly. From 5.3s to 

6.0s, the angle tended to zero. 

Figure 5.15 Trajectory ofR1's end-effector 
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Figure 5.16 Fuzzy set B' 

Figure 5.17 Angle between the stick and ground. 
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CHAPTER 6. CONCLUSIONS AND FURTHER WORK 

6.1 	 Conclusions 

This study aims at the development of the framework of ARL for cognitive robots, 

including the components and the relationship between the components. This 

framework allows a robot to actively recognize its user's intention/preference by 

testing the users and learning from the user's responses. This study also sets up a 

stick-lifting scenario to test the framework. 

This study first carried out a survey of state-of-the-art approaches in the area of 

cognitive robots. Through the investigation, it has been found that the current robot 

learning approaches include the imitation based learning and award function based 

learning: 

o 	 The imitation based learning has two limitations. First, it only allows a 

robot to learn the user's intention passively. Second, it relies on social cues 

and therefore when using the robot the users must give exactly the same 

gestures as they act at the teaching stage to make sure the robot could pick 

up their intentions. 

o 	 The award function based learning also has limitations because the 

definition depends on how a robot's behaviour is parameterised. For 

different tasks, this function may have to be defined differently. 
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Secondly, this study has proposed the framework of active robot learning to facilitate 

a robot to develop the so-called high-order beliefs by actively collecting evidence it 

needs. The emphasis is on active learning, but not teaching. Hence social cues and 

award functions are not necessary. The following work has been done: 

o 	 Building a mathematical model of an industrial robot arm which was used 

in this study for the purpose of simulation. The robot arm has four links and 

can be used for object lifting. The links of the robot arm are driven by 

motors and the motors can be controlled by controllers. 

o 	 Building two fuzzy logic based controllers to control one robot arm to 

cooperate with another. One controller is used for robot cooperation and 

another is used for keeping the stick level. 

o 	 Developing a framework of active robot learning. This framework allows a 

robot to actively recognise its user' s intention/preference. 

o 	 Setting up a stick-lifting scenario to test this framework. In this scenario, 

two robot arms have to fulfil a task of holding each end of a stick and lifting 

it to a certain height. The stick should be kept level during the whole 

process. 

o 	 Testing the fuzzy logic controllers and the framework of ARL through 

simulations. 

The simulation results presented in this dissertation show: 

o 	 The fuzzy logic controllers can control a robot arm to cooperate with the 

other industrial robot arm effectively. When the industrial robot arm lifts 

one end of a stick, the one which is controlled by fuzzy logic controllers 
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can follow the movement of the industrial robot arm to lift the other end of 

the stick and keep the stick level. 

o 	 The ARL framework allows one robot arm to actively identify the 

intention/preference of the other one which was used to simulate a human. 

6.2 	 Further Work 

The fuzzy logic controller developed in this research for Rl to track the movement of 

R2 introduces a big overshot when R2 stops to move. To overcome this overshot 

problem, some kind of damping, for example, the change rate of angle, may need to 

be introduced as one input of the controller. This signal can be obtained by comparing 

the current and the previous angle readings. 

A flexible stick has been used in simulations to allow this study to focus on the high­

order beliefs development. In reality, a stick can be a rigid body. To test if the 

proposed work is able to make a robot to cooperate with a human to pick up a rigid 

stick, force control is required for the robot. 

In the process of user intention identification, the robot is able to actively testing the 

user. These test actions in this work have been developed according to the scenario of 

picking up a stick. For different scenarios, different kinds of test actions are required. 

Developing test actions according to scenarios may lead to a huge number of test 

actions and may confuse a robot when choosing a test action. More abstract test 

actions as well as arranging the test actions to ontology may need to be considered. 
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Accordingly, the inference engine that allows a robot to choose a suitable test action 

may also need to be reconstructed. Inspired by the process of interview, where 

interviewers may continuously question an interviewee before they have a satisfied 

answer, test actions which are related to a task may be chosen one after another before 

an intention is identified. 
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