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ABSTRACT

In recent years, cognitive robots have become an attractive research area of Artificial
Intelligent (AI). High-order beliefs for cognitive robots regard the robots’ thought
about their users’ intention and preference. The existing approaches to the
development of such beliefs through machine learning rely on particular social cues or

specifically defined award functions. Therefore, their applications can be limited.

This study carried out primary research on active robot learning (ARL) which
facilitates a robot to develop high-order beliefs by actively collecting/discovering
evidence it needs. The emphasis is on active learning, but not teaching. Hence, social
cues and award functions are not necessary. In this study, the framework of ARL was
developed. Fuzzy logic was employed in the framework for controlling robot and for
identifying high-order beliefs. A simulation environment was set up where a human

and a cognitive robot were modelled using MATLAB, and ARL was implemented

through simulation.

Simulations were also performed in this study where the human and the robot tried to
jointly lift a stick and keep the stick level. The simulation results show that under the

framework a robot is able to discover the evidence it needs to confirm its user’s

intention.

Keywords: cognitive robot, high-order beliefs, robot active learning,;
P

control, MATLAB modelling
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CHAPTER 1. INTRODUCTION

1.1  Motivation

Robots are automatic devices and are widely used in various areas since 1959 when
American scientists developed the first robot in the world. They can be divided into
three generations according to automatic control methods used. The first generation of
robots do not have sensing devices and uses sequence control method. A user can
teach the robot how to complete a task by programming. Those robots are designed to
fulfil the heavily repeat tasks. The second generation of robots are equipped with
different kinds of sensing devices such as position sensors, velocity sensors, force
sensors, etc. The robots are controlled by computers and can perform more complex
tasks. The second generation robots also have the ability of self-adjusting and self-
adaptive capacity. The third generation of robots have some more complex sensory
devices which make the robots able to recognise objects in surrounding environments.
The third generation robots also have autonomous decision-making ability and self-

learning ability which can make the robot “intelligent”.

Cognitive robots are the third generation robots. They are usually used in
rehabilitation, home care, therapy, rescue, inspection, maintenance and construction.
They will need to autonomously co-work with humans in a sensible and adaptable
manner which requires the robot able to recognize their users’ intentions and
preferences. This means that these robots are expected to possess cognitive

capabilities such as knowledge, believes, preference and motivational attitudes.
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Robot learning plays an important rtole in knowledge acquisition, motivation
establishment and preference identification. The current robot learning approaches
include the imitation learning and reinforcement learning. The imitation based
learning uses social cues such as pointing and gazing to indicate what the user
intended to do next (Dillmann 2004, Breazeal et al. 2005, Calinon and Billard 2006).
The user first teaches a robot by demonstrating gestures, for example, pointing to and
gazing an object, to the robot. These gestures serve as social cues of his interest on the
object. Then the robot imitates the gestures for the user’s approval. This imitation
process enables the robot to recognise the user’s intention when it captures the same
gestures. This imitation based approach has two limitations. First, it only allows the
robot to learn the user’s intention passively. Second, the users must give exactly the

same gestures as they act at the teaching stage to make sure the robot could pick up

their intentions.

Tapus and Mataric (2007) proposed a reinforcement learning process for medical care
robots. This approach uses the introversion-extroversion level to consider the patients’
preference and employs an award function. The award function is defined over the
robot’s behaviour space. When local optima of this function are reached the robot will
be awarded. The award function has become the key to the success of this approach.
The use of the award function, on the other hand, limits the application of this
approach because the definition depends on how a robot’s behaviour is parameterised.

For different tasks, this function may have to be defined differently.

An approach which does not rely on social cues and not require specifically defined

award functions is needed for robots to develop their cognitive capabilities.
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Discovering learing in education, also known as “learn by doing”, encourages
learners to discover knowledge through performing supervised experiments by
themselves. Inspired by the discovering learning, this study proposed an approach of
active robot learning (ARL). The proposed ARL allows a robot to perform test actions
to its user and to identify the user’s intention/preference by analysing her/his
responses to the test actions. ARL does not rely on social cues and on explicitly
defined award functions. ARL also is an active learning approach. This means that the

robot decides when to learn and what to learn.

1.2 Aim and Objectives

This study aims at the development of the framework for ARL, including the
components and the relationship between the components. This study also sets up a

stick-lifting scenario to test the framework.

Objectives are in the following:

O  To investigate the existing methods of the development of cognition
capability for robots and their applications through a literature review
To decide what functions/components are required by ARL
To decide the relationship between the components

O To develop mathematical models for robot and human in order to test the
ARL framework

Q To develop a local fuzzy control algorithm for the robot model to perform

the task of object lifting



To implement the prototype of the ARL framework
To integrate the prototype with the robot and human models as well as
fuzzy control algorithms

U To test the prototype in a simple stick-lifting scenario.

1.3  Structure of Dissertation

Chapter 2 provides the survey of state-of-the-art approaches in the area of cognitive
robots. This chapter describes four main research areas of cognitive robot and
investigates the major approaches in these areas. The four areas are: the structure of
cognitive robot, how to let robot comprehend user’s intention, the task planning and

the environment recognition.

Chapter 3 gives the mathematical model of an industrial robot arm which was used in
this study for the purpose of simulation. Manutec 13 industrial robot arm was used as
a benchmark to build the dynamic model of the robot arm used in simulation. The
robot arm has four links and they are connected by rotational joints. Each link is
driven by an electric motor and a gearbox consisting of steel gear wheels embedded in
the link. The position and rate of each motor are measured by a tachometer on the
motor’s axis. The angle between two links can be calculated from the motor position
and gear ratio of the corresponding gearbox. Chapter 3 describes the development of
the dynamic model of Manutec r3 using MATLAB and SIMULINK, and the setting

of parameters.



Chapter 4 presents details of fuzzy logic control system (FLCS) development. The
FLCS is used to control the robot arm model (described in Chapter 3) to cooperate
with a human, which was modelled by a second robot arm that act according to a
predefined trajectory, in lifting a stick and keeping the stick level. The FLC consists
of two fuzzy logic controllers. One is to control the robot arm to cooperate with the
human model. The other is designed for the purpose of keeping the stick level after

the human model stops moving. A switcher is used to switch the two controllers.

Chapter 5 introduces the framework of ARL, including concepts, simulation results
and implementation. The framework consists of five components, namely an action
bank, an interface engine, a moment determination mechanism, an intention
identification mechanism and an intention model. The action bank stores test actions
that can be taken to test its cooperative partner. The inference engine reasons about
what actions to be taken for a specific purpose. The moment determination
mechanism decides the moment of test. The intention identification mechanism
interprets responses of the users and identifies intention and preference. The intention
model represents intentions to support the intention identification. Testing results are

also given in this chapter.

Chapter 6 gives conclusions and further work.



CHAPTER 2. LITERATURE REVIEW

2.1  The Structure of Cognitive Robot

2.1.1 Three-layer structure

Most of the cognitive robotic system comprises functions of perception, memorising
and learning, problem-solving (task planning), motor control and communication. The
very first cognitive robots can only be able to perform task planning based on sensor
readings. The problems these cognitive robots suffer are the long response time and
the poor expression of environment. Albus (2000) (also see Burghart et al. (2005))
tried to solve these problems by introducing a three-layer structure cognition system

for cognitive robots, as shown in Figure 2.1.

Global knowledge database [«

____________________ ‘ k.._-__-_-__._._....-_ - -

Top-level: Task High-level v
planning perception » Dialogue
"""""""""""""" g T s manager
A
Mid-level: Task Mid-level ]
coordination perception | ]
-------------------- :‘." =TTy T »  Active
Bottom- Task Low-level ] L> Models
level: execution perception
-------------------- kA ——---------Ae----------
A N
Actuators Sensors

Figure 2.1 Three-layer structure of cognitive robot



The bottom layer consists of a low-level perception module and a task execution
module for fast responding. The low-level perception collects sensor readings. Those
sensor readings that are relevant to low-level control of the robot will be passed to the

task execution module for giving a fast response to the environmental changes. The

rest will be sent to the middle layer.

The middle layer consists of a mid-level perception module and a task coordination
module. The mid-level perception module comprises various recognition components.
These components have the function of multimodal recognition such as audio-visual
speaker tracking and have access to the database for using background knowledge
stored in the database. The task coordination module receives a sequence of actions
which are planned at the top layer. It coordinates the running of all tasks and sends the
final correctly parameterized and deadlock free flow of actions to the task execution

module at the bottom layer.

The top layer comprises a high-level perception module and a task planning module.
The high-level perception module contains all understanding components such as
single modality understanding, multimodal fusion, and situation recognition. It
interprets actions by the user and creates a situational representation and interpretation
for having a high-quality expression of the environment. The task planning module
operates in a real-time manner using task knowledge stored in the database. The
planning process starts when a desired task has been successfully interpreted out of
the data passed from the high-level perception module. A plan consists of a sequence

of actions which the task planner selects from a knowledge base. The task planning



module assembles the plan for the intended task and adapts the free parameters to the

given task.

In addition to the modules included in the three layers, the structure proposed by
Burghart et al. also consists of active models, a dialogue manager, and a global
knowledge database. The active models serve as a short time memory and provide
current environmental information, as well as information about objects in the focus
of attention. The dialogue manager communicates with the user and interpretation of
communicative events. It can be initiated by the system to request information by the
user. The global knowledge database contains object models, environment model,
task knowledge, gesture library, person library, dialogue library, sound library and

Hidden Markov Model (HMM).

2.1.2 Eyemind structure

Some cognitive robot structures are based on the “sense-think-action” such as the
three-layer structure model described in the previous sub-section. Some others are
based on “behaviour”. Behaviour based approaches have been successfully applied to
dynamic environments. The character of the behaviour based robots is that the robots

are self-motivated, that is, the robots desire to explore environments.

Maes (1994) (also see Petitt and Braunel (2003)) introduced a behaviour based
cognitive robot structure called Eyemind. It divided a robot’s mind model into three

classes, namely, Id, Ego and Super-ego, as shown in Figure 2.2.



Id: management Ego: Super-ego: an
of sensor, .| simulationof |, .| interface to
actuator and | human mental | | high-level
behaviour activities algorithms

Figure 2.2 Mind model of Eyemind structure

The Id provides the functionality required for managing all the sensors and actuators.
It can access actuators and sensors. Based on this accessibility, the Id manages the
current behaviours of a robot. Behaviour refers to a mapping from a sensor input to a
motor output. The Id allows a robot to combine simple behaviours to assume more
complex behaviours. For example, a robot that is able to perform light-beams-

following can be deployed to maze solving and navigation in dynamic environments.

In the Id, behaviour can be suppressed or excited by a feedback loop between their
sensors and actuators. When the behaviour is excited, the excitation value generated is
added to the current excitation value, which is itself the result of previous excitation
events. If the new excitation value is greater than a threshold, then the behaviour is
activated. The activation of behaviour can take many forms, from creating an output

signal for an actuator, requesting sensor input, to triggering other behaviours.

The Id retains a list of up to 16 ‘root’ behaviours. Each of these behaviours is excited
by the timer processor unit (TPU) at set intervals. The TPU interrupts the CPU and
causes the CPU to execute the list of root behaviours. The root behaviours then either

do nothing, or execute their specific fire function.



The Ego simulates human’s mental activities. For example, when someone wants to
open a door, he will decide to push or rotate the handle in a very short period of time.
If the door didn’t open, he will do it in another way. The Ego module acts similarly to

this logic which is illustrated in the following pseudo-code:

while (desired_states)
{

for each state

{

if Criticise (past_states, current_states, desired_states)
{
LearnBad (superego);
RemoveState (state);
}
else if Satisfied (id)
{
LearnGood (superego);
RemoveState (state);

}

else state->Satisfy ();

}

Superego->CreateStrategy ();

Figure 2.3 Pseudo-code of the Ego

The key in the Ego is the Criticise ( ) function. This function tests whether the current

state reaches the desired state in the specified period of time. When the desired state is
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reached, the robot will continue to do the task. If the current time exceed the desired

time of task finished, the system will send back an error signal and reform the strategy.

The Super-ego houses no real information, but provides an interface with higher-level
algorithms, such as expert system and adaptive critics. When the CreateStrategy ( )
function is called, a list of states which correspond to the strategy is appended to the

list of desired states.

2.1.3 iCub cognitive system structure

Sandini et al. (2006) developed a cognitive structure for iCub, an open platform for
robot simulation. The structure has three parts, namely, a network of perceptuo-motor
circuits, a modulation circuit which affects homeostatic actions selection by
disinhibiting the perceptuo-motor circuits, and a system to affect anticipation through

perception-action simulation.

The anticipatory system allows a cognitive robot to rehearse hypothetical scenarios
and in turn to influence the modulation of the network of perceptuo-motor circuits.
Each perceptuo-motor circuit has its own limited representational framework and
together they constitute the phylogenetic abilities of the system. The modulation
circuit carries out self-modification in terms of parameter adjustment of the
phylogenetic skills through learning and developmental adjustment of the structure
and the organization of the robot. This enables the cognitive robot to alter its own
dynamics based on experience, to expand its repertoire of actions, and thereby adapt

itself to new circumstances.
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The iCub cognitive architecture is illustrated in Figure 2.4.

Simulated sensory signals

N

Motor/Sensory Sensory/Motor
Auto-associative Auto-associative
Memory Memory

Prospected by
action simulation

imulated motor signals

\ Auto-associative
Memory Modulation
— - circuit
Motivation Action
Selection
Perceptuo-

motor circuits

Figure 2.4 iCub cognitive architecture

2.1.4 Behaviour based hierarchical structure

Arkin (1998) interpreted behaviour as a pair of attention and intention. Attention
prioritises tasks and provides some organization in the use of sensorial resources.

Intention, on the other hand, determines the behaviours to be activated.

Based on Arkin’s interpretation, Duro et al. (2003) developed a behaviour based
hierarchical structure for cognitive robots. In this structure, behaviours are classified
into two categories: lower-level behaviours and higher-level ones (also known as
complex behaviours). This structure uses the concept of attention to prioritise a task

and then form a higher-level controller. This controller, based on the concept of

-12-



intention, is able to choose lower-level behaviours to form a complex behaviour. This
process can be described as following: A designer must provides the robot with
whatever behaviours he or she decides that may be useful. This initial behaviour set
may not be complete and may include unnecessary behaviours. The high-level
controller uses the data from sensors, which reflect the state of the environment, and

other controllers to choose behaviours.

To prevent the problem of the designers having to determine all the necessary lower
level behaviours, this approach includes the possibility of cooperatively coevolving
lower and higher level behaviours. That is, a higher-level behaviour may be evolved
by itself using previously evolved lower level behaviours, or it may be coevolved with
part of the lower level behaviours and use the previously evolved ones. When the
designer is faced with a problem where he is only able to identify part of the
behaviours that may be involved, the unidentified ones will be evolved at the same

time as the higher-level controller. This is illustrated in Figure 2.5.

Previously Environment
evolved
behaviours
Goal

i !

Evolver/Co-evolver

iy iy

New higher New lower
level level
behaviour behaviour

Figure 2.5 New behaviours evolution
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2.2 User Intention Cognition through Learning

2.2.1 Learn by imitation

Robot learning plays an important role in background knowledge building, motivation
establishment and preference identification. The current robot learning approaches
include imitation learning. The imitation based learning uses social cues such as
pointing and gazing to indicate what the user intended to do next (Dillmann 2004,
Breazeal et al. 2005, Calinon and Billard 2006). The user first teaches a robot by
demonstrating gestures, for example, pointing to and gazing an object, to the robot.
These gestures serve as social cues of his interest on the object. Then the robot
imitates the gestures for the user’s approval. This imitation process enables the robot

to recognise the user’s intention when it captures the same gestures.

Experiments carried out in Calinon and Billard (2006) can be described as below:
During a first phase of the interaction, the designer demonstrated a gesture in front of
a robot. The robot then observed the designer’s gesture. Joint angles trajectories are
collected from a motion sensor. The second phase was begun when the robot collected
the different movements of user. The robot compared the gesture it collected with the
gesture stored earlier and finds the cues of them. Then the robot pointed at an object
that the user most likely to be interested. The robot then turned to user for evolution
of its selection. The designer signals to the robot whether the same object has been

selected by nodding/shaking his/her head.
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In the imitation learning, a Hidden Markov Model (HMM) with full covariance
matrix is used to extract the characteristics of different gestures which are used later
to recognise gestures from the user. The characteristic of a gesture is expressed by
transition across the state of the HMM. Using such a model requires the estimation of
a large set of parameters. An Expectation-Maximisation (EM) algorithm is used to
estimate the HMM parameters. The estimation starts from initial estimates and
converges to a local maximum of a likelihood function. It first performs a rough
clustering. Next, EM is carried out to estimate a Gaussian Mixture Model (GMM).

Finally, the transitions across the states are encoded in a HMM created with the GMM

state distribution.

2.2.2 Learn by conversation

The most direct way to let the robot to understand the users’ intention is conversation.
Hassch et al. (2004) developed a Bielefeld Robot Companion (BIRON) which is a
robot who accompanies to a human. It consists of cameras, microphones, laser range
finder, speech recognition system, and other components. This robot is able to
understand its users’ intention through oral instructions and observation of the user's

sight.

BIRON employs a human concern system to decide which user is interested by the
robot. When someone is talking while watching the robot, the robot’s attention will be
transferred to this people. When individuals are talking at the same time and no one is
watching the robot, the robot will pay attention to the people who has not been

concerned for the longest time.
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A Dialogue Manager is also included in the robot, which is responsible for receiving
the instructions from users. The Dialogue Manager could interact with users and solve

some ambiguous question by asking them.

A speech recognition system is used to understand users’ intention by analysing
received sound information from the microphone. The two major challenges of the
speech recognition system are:
Q  The speech recognition has to be performed on distant speech data recorded
by two microphones

0  Speech recognition has to deal with spontaneous speech phenomena.

The recognition of distant speech with two microphones is achieved by reconstructing
a single channel representation of the speech originating from a known location on the

basis of the different channels recorded by the microphones (Leese 2002).

The speech understanding components deals with spontaneous speech phenomena in
conversations between a user and the robot. For example, large pauses and incomplete
utterances can occur in such task oriented and embodied communication. However,
missing information in an utterance can often be acquired from the scene. For
example the utterance “Look at this” and pointing gestures to the table concludes to

the meaning “Look at the table”.
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2.2.3 Reinforcement learning system

Tapus and Mataric (2007) proposed a reinforcement learning based approach to robot
behaviour adaptation. The aim of this approach is to develop a robotic system capable
of adapting its behaviours according to the user’s personality, preference, and profile

in order to provide an engaging and motivating customised protocol.

In this learning approach, a robot incrementally adapts its behaviour and its expressed
personality as a function of the user’s extroversion-introversion level and the amount

of performed exercises. Then the robot attempt to maximize that function.

The learning process consists of the following steps:
L  Parameterisation of the behaviour
O  Approximation of the gradient of the reward function in the parameter
space

O  Movement towards local optimum.

The main goal of this robot behaviour adaptation system is to optimise three main
parameters (interaction distance, speed, and verbal cues) that define the behaviour of a
robot, so that the robot can adapt itself to the user’s personality and improve its task
performance. Task performance is measured as the number of exercises performed in
a given period of time. The learning system changes the robot’s personality which is

expressed through the robot’s behaviour to maximise the task performance.
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2.3 Task Planning of Cognitive Robot

2.3.1 Forward model

Hashimoto et al. (1992) (also see Dearden and Demiris (2005)) developed a system
that enables a robot to autonomously learn a forward model with no prior knowledge
about its motor system and about external environment. Information about the effects
of the robot’s actions is captured by a vision system. The vision system generates a
cluster of image features and the robot will automatically find and track moving

objects in a scene.

At the beginning, the robot generates random motor commands to its motor system
and receives information back from the vision system. The information is used to
learn the structure and parameters of a Bayesian network which represents the
forward model. This model can then be used to enable the robot to predict the effects

of its actions. The robot learning process is shown below:

Motor | Motor system N Computer
Commands and environment vision system
Learning
system

Figure 2.6 Robot learning process

The Bayesian network is an ideal way to represent forward model. The foundation of

the Bayesian network is based on the state of a robot, the robot’s motor commands
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and the observations of the robot’s states that are received from the vision system.
The learning system of the robot is aimed at learning the casual associations between
them. The structure of the Bayesian network is shown in Figure 2.7. The question

marks in the diagram represent parameters to be determined through the learning

process.

Motor commands M[t-d] M,[t-d]

Robot state

Observation

Figure 2.7 Bayesian network structure

No prior information about what to track is available at the beginning of the learning
process as the environment is unknown. The robot needs to find and track the moving
objects by capturing their positions and velocities using its vision system. After the
observations are received, the robot can then realise how its motor commands interact
with the state and adjusts the parameters of the Bayesian network using the difference

between the actual state and the desired state.

2.3.2 Inverse dynamics robot trajectory learning

The approach of inverse dynamics robot trajectory learning was developed by Robbel

and Vijayakumar (2007). The key to the success of this approach is the generation of
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a smooth trajectory for robot arms with different degrees of freedom. Most of the
current studies are based on the storage of multiple trajectories and employ a training

system to choose one of the trajectories and to amend the parameters to achieve a

given goal.

In order to get a highly effective inverse dynamic robot arm trajectory exploration
strategy, Robbel and Vijayakumar developed the robot learning system. It consists of
a feed-forward model of the inverse dynamics and a corrective PID controller. The
difficulties with data selection for robot control are in twofold. First, points cannot be
chosen freely from the input distribution. Second, the inverse dynamics of a system

cannot be learnt easily online.

The learning process of this system can be described as below:
1. At every time step, model prediction and prediction confidence for the current

query point x, are manually determined. The model generalization error is

also postulated manually by the size of the confidence intervals.
2. If the confidence is above a threshold, the model prediction is applied as a
control signal to all joints and continues with step 1. Otherwise, set the last

trusted point x,_, , which the model predicts, as a set point.

g-1?

3. Execute a number of directed exploratory actions around x,_, to reduce the

confidence interval size. Those actions are followed by resetting the arm to the

set point via PID control. Then continue with step 1.
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2.4  Environment Recognition

2.4.1 Map building

Robots are expected to work at humans’ home in the future. This requires the robots
to develop abilities to understand, interpret and represent environments where they are
deployed. Vasudevan et al. (2006) developed a probabilistic approach which is able to
represent in-door environments. This approach is based on the location of objects and
the relationship between objects. A global presentation consists of a number of local
representations which represent places. Objects in a place are detected and used to
build a local map (representation) in the form of a local probabilistic object graph.
Doors are identified and used as links to connect the local ones to form the global

representation.

The process of building up a global map (representation) can be shown in Figure 2.8.
The process begins with local representation development, including object detection,
recognition and probabilistic object graph development. When a local map is built up,
the process starts to extract doors (also known as high-level features). It then moves to

a new place and develop a new local map which is connected to the doors identified.

This representation must consider and handle uncertainties existing in the perception
of a robot. For this reason, the representation is probabilistic. “Existential” beliefs are
obtained for each object that is observed. Simultaheously, precision beliefs are
maintained in the form of covariance matrices. These beliefs are based on detailed

mathematical formulations given below:
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X, =/(X.) 21
where f =M, xM_, , Mpo stands for transformation between robot frame and

absolute reference, and Mg stands for transformation between camera frame and

robot frame.

A precision belief is presented in the form of a covariance:

P,=FPF, + F,RF, (2.2)

where F=J, (f) , F,=J,(f) ., X =(X,1,,0,) represents robot pose,
X, =(X..Y..,6.) stands for object position in camera frame, P, is the covariance
matrix which represents uncertainty in robot position, P, is the covariance matrix

which represents uncertainty in the object position, F; is the Jacobian of “f* with

respectto X, and F, is the Jacobian of ‘/* with respect to X, .

The belief representation for relationships between objects is shown below:
Let (X,,1,Z,)and (X,,Y;,Z,) represent two objects, f(X,,X,) stands for relative

spatial information between the two objects, B and P, stands for uncertainty in

object positions (covariance matrices).

The precision belief is defined as:
Bel,(f) = FPF, + E,RF, 23)
where Fy =J, (f) & F, =J (f) are the Jacobian of " with respect to X, and X,

respectively and existential belief Bel,(f)=min (belief in existence of objects).
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Figure 2.8 Map building process

Figure 2.9 shows the place cognition process using the created maps, where C
represents “Change” and R represents “Recognition”. The first step of reasoning
process is place classification. The robot uses the object it perceives to classify the
place into one of its known place categories (office, kitchen etc.). Next step is
recognizing specific instants of the place it is aware of (place recognition).

Accordingly map update or adding of new place is done.
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Figure 2.9 Place recognition process

2.4.2 Dynamic environment modelling

Benjamin et al. (2007) developed a cognitive structure called Adaptive Dynamics and
Active Perception for Thought (ADAPT). ADAPT uses Ogre3D, an open source
gaming platform, and Soar, a problem-solving tool which is able to perform symbolic
reasoning, to develop the model of a dynamic environment, called world model. The
ADAPT’s environment modelling system enables a robot to model its environment.

The structure of this system is illustrated in Figure 2.10.
ADAPT’s world model is a graphic view of the environment. It is saved in Orge. This

world model is not directly connected to the real world. Instead, it is linked to Soar

which has a connection to cameras, as can be seen from Figure 2.10.
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Figure 2.10 Environment modelling system

Orge embodies the graphical and dynamic aspects of the world model and Soar
contains the symbolic part of the world model. The way in which the system works
can be explained using the following example. When Soar recognises a person sitting
in a chair (image captured by cameras), it will construct virtual copies of the chair and
the person in Orge and create symbolic structures in Soar’s working memory pointing
to them, as well as a symbol structure for the relationship of sitting. Orge serves as the
model that interprets the symbols in Soar’s working memory. The relationships
between the Soar and Orge parts of the world model are updated automatically each

Soar cycle.

The dynamics is modelled in the way that Soar continuously tests for significant
differences between the expected view and the actual view. After the graphic of the
environment in Orge is segmented and placed into Soar’s working memory, Soar
starts to operate such tests. If a new object appears, Soar will propose a new operation
to a robot to look at this object and try to recognise it. The robot will then turn its
cameras towards this object and then call its recognition software to process a visual

field that contains the object.
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Once the object is recognised, a virtual copy is created in Orge. If the object from the
visual field approximately match one of the expected objects from Orge, ADAPT

assumes it is the same object. Otherwise, the object will be added to the world model.
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CHAPTER 3. THE DYNAMIC MODEL OF THE ROBOT ARM

3.1 Siemens Manutec r3 Robot Arm

Siemens Manutec r3 is an industrial robot arm. It is often used for computer aided
control system design and dynamic trajectory planning. The robot arm is shown in
Figure 3.1. Siemens Manutec 13 robot arm can simulate a number of physical effects,
such as the robot arm movement, friction, elasticity and damping. The links of the

robot arm is driven by motors and the motors are controlled by controllers.

Figure 3.1 Siemens Manutec r3 robot arm
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3.1.1  Dynamic model of Siemens Manutec r3 robot arm

The dynamic model of the entire robot arm is shown as below:

.
aq daqd rg’%q' ﬂq’ daq
7 dr | controller+ L Rotor + |4 gt
™ motor (el) | gear N
F iE
¥
oy 4 i3 ddq 2,24
@ controller + |« : Rotor + |« g (3)
> motor (el.) o gear >
?’F QF "
d ¥ 2
. Q% "a, g 2y dg
@ s controller + (< dt Rotor + [« gt
™ tmotor (el) »| gZear - "
'F TR B
a7 d
. d, "g dq 2g, 22
9e 244 controller + |« L Rotor + [+ dt
™ motor (el) »| gear - (1)
?’F G-F

Figure 3.2 Dynamic model of Siemens Manutec 13 robot arm

The meanings of the parameters shown in Figure 3.2 are:

“q, is the desired angle of revolute joint in [rad]

“q is the angle of revolute joint in [rad]

"q is the angle of rotor in [rad]

d(“q,)/dt is the desired angular rate of revolute joint in [rad/s]
d(“q)/dr is the angular rate of revolute joint in [rad/s]

d("q)/dt is the angular rate of rotor in [rad/s]
228 -



p is the gear ratio, i.e. if elasticity is neglected in the joint, ¢ = p-"g
"F 1is the torque in air gap of motor in [Nn1]

“F is torque in joint in [Nm]

The robot arm has four links. They are connected by rotational joints. Each link is
driven by electric motor and a gearbox consisting of steel gear wheels embedded in
the link. The position and rate of each motor is measured by an encoder amounted on
the motor’s axis. The angle between two adjacent links is calculated from the motor
position and gear ratio of the corresponding gearbox. Thus the position of the end-
effector can be measured. Every joint of the robot arm is driven by a torque (°F),
which is produced by the corresponding motor and transformed to the joint via a
gearbox. To simplify the dynamic model, the rotor of the motor and the gear wheels
are treated as one rigid body with rotational symmetry, called rotor. It is assumed that
the complete friction is acting at the rotor. Further more, there is no dynamic coupling

between the rotors and the links of the robot in the model.

The current of motor is controlled by ‘“controller+motor (el.)”. The module of
“rotor+gear” contains the mechanical part of motor and gearbox. The internal forces
of the motor and the gear are described by rotor. To simplify the model, the elastic

deformation of the links can be ignored.

The motors and the controllers inside the joints of the robot arm have the same
structure but with different parameters. The motor is an electric rectifier synchronous
motor. Because the robot arm uses electric rectification and current control, the

dynamics model of motor is the same as a DC motor. The angle and angular rate of
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the rotor are measured by an incremental encoder. The module also includes a low
pass filter. The entire dynamic model of motor is a three-input structure. The
rotational rate measured by a tachometer is sent to the input of rate controller. The
angle of the rotor is sent to the position controller as an input. The outputs of the
position controller and the rate controller are converted by D/A converter and the

sampling interval is 0.008s. The maximum torque of the motor is | F | =9Nm. The

maximum of continuous working torque is |'F| =4Nm. The maximum rotational

hnom

rate |'q | is about 3000 to 3500 revolutions per minutes (around 315 to 366rad/s). The

electrical part of the motor and the controller are shown in Figure 3.3.

! rate
: | feedforward |
. : i controller
d H d 1
8 ¢ P99y :
dt i . dt |
a4 sTo+1 | !
™ i s ,
‘ ' stsTe+ 1)
.: P ———— "
) [P K . —
N sTat 1 iy 1 bt
| L e T (S R ()T
E ?i ‘E sTb+1 ; i ol 0y ! ;
! .' ; rate controller | | tachogenerator .
E i Trmmmmmmmmemmmoond Remmeememeememreeneeee i 'q

Figure 3.3 Electrical part of the motor and controller

The parameters of the controller and the electrical part of motor are given in Table 3.1:

An actuator drives a rotor to produce torque. The angular velocity of the rotor is

transformed to low-speed by gear box and drives the link of robot arm. ’The rotor,
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gearbox and actuator all have friction. The first three links of the robot arm have a
certain amount of damping and backlash. In the last actuator, the backlash is

comparatively small, such that it can be neglected.

Table 3.1 The parameters of the controller and the electrical part of motor

unit Aml | Am2 [ Arm3 | Amd
Position K, - 0.3
Controller
Feed- K, - 0.03
forward
Controller
Rate K - 340.8
Controll
ntroller T, p T
T, s 0.56+107
7, § 40%107
T, s 20.2+107
Tacho K, Vs/rad 0.03
generator , 1/s 2014
D, - 0.294
o, /s 1180
Motor and K, Nm/V 1.1616 1.1616 1.1616 0.2365
Ccurfeﬁt o, 1/s 4390 | 5500 | 5500 | 6250
ontroter D, : 0.6 0.6 06 055
a - 0.094 0.094 0.094 0.022
b - 9.0
'F Nm 9.0
'R Nm 4.0
g rad/s 315 315 315 335
Gear ratio p - -105 210 60 -99

To simplify the dynamic model, the motor and the gearbox can be seen as a rotational
rigid body, called rotor. Furthermore, it is assumed that the complete friction of the
actuator is acting at the rotor. Besides, the coordinates of first three joints’ rotation

axis are established according to the entire world rather than the former links’ end.
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There is no dynamic coupling between two links and the centrifugal force and gravity

are also neglected so the dynamic model of robot arm is greatly simplified.

The dynamic functions of the Manutec 13 robot arm are given in the following:

asj
q
¥ ;

1
Y

a yoi

_aFi

ahi
rhl

aa ar
M, "M,

ar n[ rr
i My

= + > i>j=17253:4 (3'1)

{pj TR @A fori<

“M, = 3.2
Y 0 forizj (3-2)

J. ri . J Py

0 forisj

where

°qf is the angular acceleration of joint j

"¢’ is the angular acceleration of rotor j with respect to the link the rotor resides
p’ is the gear ratio of the actuator driving joint j

"J” is the moment of inertia of rotor j with respect to its axis of rotation
“#' is a unit vector which lies in the axis of rotation of joint i

‘7' is a unit vector which lies in the axis of rotation of rotor j

“F' is the applied torque acting in joint i

® is the scalar product of two vectors

“h' is the friction acting in joint i

"h' is the friction acting in rotor i.

After neglecting the term p-'J for every actuator, the off-diagonal terms“M ,’s

magnitudes are smaller than the dialogue terms (p’)*-'J’ due to the high gear
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ratios p’. The model equations simplify considerably, because the equations of the

robots become decoupled from the rest of the multi body system. Furthermore, the
friction torques only appear in the rotor equations and thereby are also decoupled

from the rest of the multi body system.

For the last link of the robot arm, since the elasticity in the corresponding gearboxes is
neglected in the model the joint and rotor angles are rigidly coupled by the equation

below:

g =pq (3.4)

Figures 3.4 and 3.5 show the structures of the rotors and gearboxes. “L in Figure 3.5
represents the coupling torque due to the movement of other joints. The
corresponding model parameters are given in Table 3.2. Due to the elasticity, a spring

constant ¢ and a damping factor d are presented.

rotor + gear ‘q -

sliding

: M .. ]C g friction

°F

e | sticking
friction

Figure 3.4 The rotor and gear model structure of joint actuators 1, 2, and 3

-33-



gear
I'q aq
p
cﬂg R a
dt (—— %_tg
J p
Mot sliding E—
ViPT | triction
Ao |4°
ra d_dtg 70
L——'—c s " ag
NL i L 0
LA wmT
y} “ase | sticking
friction
(T*‘ A
f § L P
F f 5

Figure 3.5 The gear model structure of joint actuator 4

Table 3.2 Rotor and gear parameters

unit Arm 1 Arm 2 Arm 3 Arm 4

J kgm? 0.0013 0.0013 0.0013 -

€ rad 0.01 0.06 0.0 -

C Nm/rad 43 8.0 58 .

d Nms/rad 0.005 0.01 0.04 -
4 . -105 210 60 -99
M, Nm 0.4 0.5 0.7 0.27
"M, Nm 0.4 0.5 0.7 0.22

dq, /dt rad/s 0 0 0 0
"M, Nm 0.53 0.6 0.9 0.52
dq, / dt rad/s 160 130 130 300
"M, Nm - 0.7 - 1.0

dq,/ dt rad/s - 360 360 -

3.1.2  Friction model of joint

The friction model has discontinuous and nonlinear characteristic. If the angular rate

of the rotor is "¢ # 0, friction acts as an applied torque "M according to a nonlinear
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function which is approximated by two or three linearly interpolated points. If the
angular rate is"g = 0, two possibilities exist: the friction acts as constraint torque M ,
for example it compensates the sum of all other torques acting on the rotor (='F —7)
and it forces "¢ = 0, so the friction torque it provided is less than or equal to the upper
limit "M, .

If\'F-7

>"M, the friction remains an applied torque but switched to the opposite
branch of the nonlinear function. This effect can be explained as follows: assume that
"¢ becomes zero from the positive side, the only possibility is "¢ <0, therefore

"F —7<"M . On the other hand, for l’F -7

>'M,, "F -7 <-"M, is true. This makes
" remains less than zero, and therefore, angular rate "¢ may become negative. The

flow-diagram for the computation of friction is shown in Figure 3.6 (£'M, is the

value of the sliding friction at zero angular rate).

Sticking
friction

Sliding friction

"M =—~(F-1) M = ~sign(M'F-1) J [ ™M = f(d g lde)

| I ]

Figure 3.6 Flow-diagram for the computation of friction
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In simulation, friction should be handled by state events in the following way: If the
angular rate of the rotor "g # 0, the angular rate is then used as an indicator function.

If this function passes through zero, the crossing time point is determined by the
integrator and the integration is stopped to check whether the simulation has
continued with sticking or sliding functions. Then the integration restarted. In the case

of sticking friction, the function "M, —

"F— r‘ is used as an indicator for the next state

event to switch back to the sliding friction model.

3.2 Mathematical Model for Siemens Manutec r3 Robot Arm

3.2.1 Mathematical model development

SIMULINK is a software package that is used for building up mathematic models for
dynamic systems and system simulation. It can be used to build a linear/non-linear
system or continuous/discontinuous system. The SIMULINK can also be used to

build systems with different sampling rates.

In SIMULINK, a mathematical model is represented in the form of block diagram.
SIMULINK provides variou; blocks for modelling a system. Regarding to modelling

a robot arm, SIMULINK provides the following blocks:
0  Body block: Represents a user-defined rigid body. Body defined by mass,
inertia tensor and coordinate origins and axes for centre of gravity and other

user specified body coordinate systems
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O  Inertial frame block: Grounds one side of a joint to a fixed location in the
world coordinate system

U Environment block: Defines the mechanical simulation environment for the
machine to which the block is connected. The settings include gravity,
dimensionality, analysis mode, constraint solver fype tolerance,
linearization and visualization

U Rotational freedom block: Represents one rotational degree of freedom.
The follower body rotates relative to the base body about a single rotational
axis going through collocated body coordinate system origins

O  Coulomb friction block: Actuates a joint primitive with friction force/torque.
Lock if static friction remains within the range of forward and reverse

friction limits.

The model of Siemens Manutec r3 robot arm was developed using SIMULINK. The

block diagram of this model is given in Figure 3.7.

Follower Base Follower Base Follower HBES& Follower Base Follower [

robot base Bodyl Body2 Body3 Body4

Figure 3.7 Mathematical model of Siemens Manutec 13 robot arm (block diagram)

The robot arm has four bodies and a base. Each body consists of a link and a joint.

The bodies and the base are connected together in the way shown in Figure 3.7.
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The details of the base are shown in Figure 3.8.
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Figure 3.8 Structure of the base

The base consists of an environment block, an inertial frame block, a weld block, a
body0 block and a connecting point (Follower). The Body0 block defines the position,
weight, and shape information of the base. The base is a 40kg homogeneous

hexahedral. The settings of the shape parameters of the base are given in Table 3.3.

Table 3.3 Parameters of the base

Show | Port Name | Origin Position Units | Translated from Components in

Part_|_Side Vectar [x v 71 ... flrinin. of T

[0 [Botom v CG  [0-028750] m___¥|World MLLL 4
 [Botom v CST 0040  m v |word v [Woid v
@ [Te w052 [00175000  [m v |Wold v [World 1
O  [Tee  ~C33 (030403  |n v|Wold el il =
O [T wicse 1030403 |n  v[Woid ¥ o =
D  [Botom v CSS A [-0.3 0403] m ¥ |Word b s k.
0 [T v 0510 (030403 fm v|word ¥ [World Ad
[0 [Tep vCS5 (030178003  |m v [Word 4 [World x
O o wess [030m003 o vived o 3
[0 [Top v (CS7 030175003  |m v |Wold B world A
O [fee v(CS8 [03-0175003]  |m v |Word M [Word Y

The Origin Position Vector column shows the position parameters of the base and all

of the reference points are translated from the origin of world coordinator.
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The weld block is used to connect the base and ground. It can be consider as a joint
with zero degree of freedom. The inertial frame block defines a fixed point in absolute
space. All the movement of objects in this space is referred to this point. The inertial

frame block can never be able to move. Sensors cannot be connected to this block.

The environment block defines the settings of environment. These settings include:
O  Settings that control how the model is simulated and define the gravity,
system dimensionality, analysis mode and tolerance
Settings that control how constraints are interpreted
Settings that control how linearization is implemented and define the type
and size of perturbation
O  Settings that decide whether the machine is displayed in SIMULINK

visualization.

Any of the bodies consists of a body block, a driver module, an acceleration block and
a pair of connecting points (Follower and Base). The details of a body are shown as

below:

Feceleration] |
r—m Cs1ighcs2

JaMOHD_-j[%

asEq
Laaiqg
LApog

Figure 3.9 Structure of a body
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The body block defines the position, weight, and shape information of the

corresponding link. The settings of parameters are given in Table 3.4.

Table 3.4 Parameters of the body block

Show Pml: | Name Elngm Position Umts Translated fmm Cu;ﬁpﬁhénts in |
Port | Side | | Vector[zxwz] | l]num of _ Axes of
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Input signals are often connected to the acceleration block. The input signals can be in

the form of curve, constant, as well as the signal from controller.

3.2.2 Actuator and friction modelling

Actuator and friction within a driver were also modelled. The actuator contains a rotor,
a motor and a gearbox. The settings of parameters are based on Manutec 13 industrial
robot arm. The description of Manutec r3 robot arm is given in the previous section of
this chapter. The actuator was modelled using an actuator block (known as Motor
circuitry bock in SIMULINK) and the friction was modelled using a friction block

(known as Coulomb friction block in SIMULINK), as illustrated in Figure 3.10.
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Figure 3.10 Structure of a driver which contains actuator and friction

It can be seen from Figure 3.10 that the actuator model of the robot arm has three
main blocks. They are controller block, motor circuitry block, and input rotation
freedom block which represent gearbox. Trajectory commands are filtered and
converted into control signals (current) by the controller block. The control signals are
the inputs to the motor. The gearbox is driven by the motor. The coulomb friction

block produces friction of the actuator.

In order to simulate the effect of friction, the coulomb friction block had been added

into the actuator module. The joint state changing flow can be illustrated in Figure

3.11.

The variables v and a are the velocity and acceleration along or around a joint
primitive axis. These quantities are relative between the two bodies at the joint ends
and signed = to indicate forward or reverse. The joint directionality is set by the base-

to-follower sequence of bodies attached to the joint primitive being actuated.
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Figure 3.11 State changing flow of a joint

If a joint is moving in continuous motion, during this motion, there are two kinds of
torque applied to the joint primitive, they are:
U Kinetic friction torque Fy, (F, <0 retards forward motion, F}, > 0 retards
reverse motion)

U  External, non-frictional torque F,,, .

Besides its continuous motion mode, the joint has two other discrete modes, namely,
locked and unlocked modes. The coulomb friction block switches a joint primitive
between these two modes. In the locked mode, the joint locks rigidly. In the unlocked
mode, it moves with the kinetic friction and external non-frictional torques applied.

The joint can also be in a wait mode, between the locked and the unlocked modes.

The unlocked mode is specified by a two-condition threshold, they are:

Q  Joint unlocking threshold velocity v, >0
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O  Static friction limits F,” <0 and F," >0 for forward and reverse motion.

In the locked mode, v and a of the joint are zero. The static computed torque F at the

joint is internally computed to maintain the foliowing equitation:

F

ext

+F +F, —F, =0 (3.5)
where F, and F, are the torques on the base and follower bodies apart from those

torques acting at the joint. The joint remains locked as long as F, Sf <F,

test

<F/.
If the static test friction F,, leaves the static friction range [FSf ,F'1, the joint
satisfies the first condition for unlocking and enters the wait mode, suspending the
mechanical motion. A search begins for a consistent state of the joint in the model.
The potential direction of motion after unlocking is determined by all the non-
frictional forces on the bodies. During the search, the net torque at the joint primitive
is computed by the following equation:

F=F_+F, (3.6)

where F is the kinetic friction.

At this stage a is determined. For potential motion in the forward (reverse) direction,
if a<0 (2>0), the search returns to the locked mode. Once a consistent state for the
joint is found, mechanical motion restarts. The simulation integrates a to obtain v.

When || exceeds v, , the joint unlocks.
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In the unlocked mode, the joint primitive moves are actuated by the sum of the

external, non-frictional torque F,

ext

and the kinetic friction F), . The wait mode

prevents infinite cycling between locked and unlocked modes.
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CHAPTER 4. COOPERATION BETWEEN TWO ROBOTS

4.1  Introduction to Fuzzy Logic and Fuzzy Logic Control

The development of Artificial Intelligent enables computers to have certain level of
intelligence such as thinking, decision-making, creativity, and the adaptation to
complex environments. Fuzzy logic is tightly integrated with the computer science.
The fuzzy logic based computer programs which simulate the process of human
reasoning, are widely used in various areas, such as automatic tank driving, furnace

@

smelting automatic control, biology, medical diagnosis, economics and social sciences.

Fuzzy logic, also known as fuzzy set theory, differs from traditional set theory. Fuzzy
set theory deals with vagueness, a type of uncertainty. For example, between the
concepts of “young” and “old”, there is no actual criterion from where “young” stops
and “old” starts in human reasoning. Zadeh (1965) defined two fuzzy sets for the
concepts of “young” and “old”, as shown in Figure 4.1. It can be seen that the fuzzy
sets allow their elements (age) to partially belong to them and they overlap with one

another around the age of 50.

Human being’s daily actions can also be vague from human reasoning point of view.
For example, when a human picks up a book from a desk, he does not need to
calculate a precise force he should apply to the book. The vagueness of the daily
actions inspires the development of fuzzy logic control. It has been found that

sometimes traditional controllers are difficult to develop in order to control highly
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non-linear and highly complex processes. On the other hand, a well trained human
operator can finish very complex tasks based on his experience. Engineers can sum up
the worker’s experience to a group of fuzzy rules and develop a fuzzy logic controller
which uses the group of fuzzy rules as a key component. The controller is able to

finish complex tasks in the same way that the human operator does.

When a human operator operates a machine, the operator and the machine are
connected to form a closed-loop system as illustrated in Figure 4.2. This system can

also be called a “human-machine system”.

1.0

0.0 = Age
25 50 100

Figure 4.1 Fuzzy sets representing “young” and “old”

Input - - : Output
_| Sound, Light, .| Operator Controller | | Machine
477 Monitor

B
|

A
\ 4
A

Figure 4.2 A human-machine control system

Firstly, the operator uses eyes and ears to acquire information from the output of the
machine in the forms of sound, light and digital/analogous display. The information

may include “the pressure is high” or “the changing of temperature is small”. He then
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converts the information into fuzzy information. Next, the operator uses the fuzzy
information and his experience to make control decisions. Apparently, the information

in the operator’s mind is fuzzy.

The operators experience can be summarised and represented in the form of fuzzy
rules. The fuzzy rules can be saved on computers. In addition, human reasoning
process can also be simulated using computer programs. Computers, once equipped
with the fuzzy rules and the human reasoning programs, can then make fuzzy

decisions when provided fuzzy information to achieve a given goal.

Fuzzy rule
base
Fuzzification Inference Defuzzification
— . > . — . l—
interface engine interface

Figure 4.3 Structure of fuzzy logic controller

In Figure 4.3, the fuzzification block represents the process of converting precise
input information to fuzzy input information. Whilst, the defuzzification block stands
for the process of converting fuzzy decision (output) into precise control signals.
Fuzzy rules are stored in the fuzzy rule base. The fuzzy inference engine is a

computer program which mimics the process of human reasoning.

Three basic variables are in concern when human operators control a machine. They

are errors (e), differences between the desired output and the actual output of the
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controlled machine, the changing rate of the differences (¢) and the control action ().
The fuzzification block converts the precise values of e and ¢ into fuzzy values. This
process is performed based on fuzzy sets which are pre-defined for these two
variables. The simplest fuzzification process is called fuzzy singleton, illustrated in
Figure 4.4. In the example shown in this diagram, 4 and B are two fuzzy sets, defined

for the variable e. e, is a precise value of e. Fuzzy singleton converts e, into

04 0.6
— .
A B

A A B
#
04
0 1 2 3 3.6
y=1.6

Figure 4.4 Fuzzy singleton

The defuzzification block converts the fuzzy values of u into precise values. The most
commonly used defuzzification strategy is Centre of Gravity (CoG). CoG can be

formulised below:

iu(W,)’W,-
ZO = = n
> HOw,)

where w; stands for the support value at which the membership function u(w,)

4.1)

reaches the maximum value, and zo is the precise value resulted from the

defuzzification process.
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The fuzzy rule base contains a group of logic rules which are obtained by generalising
human operators’ experience. Fuzzy rules are normally expressed in the form of

“If ...then...”). For example, “If e is 4 and c is B, then u is C”, where A, B and C are

three fuzzy sets defined for e, ¢ and u, respectively.

Fuzzy inference is the process of mapping from given inputs to an output based on
fuzzy rules. The mapping then provides a basis from which decisions can be made,
that is, a control action can be decided. The fuzzy inference engine is an

implementation of the fuzzy inference process.

4.2 Fuzzy Logic Controller Design Using MATLAB

4.2.1 Fuzzy logic controller in MATLAB

The Fuzzy Logic Toolbox within MATLAB contains five operations which are
needed for implementing a fuzzy logic controller. They are fuzzification, fuzzy
composition rule of inference, fuzzy implication, aggregation of the consequents

across the rules, and defuzzification.

Fuzzification takes the inputs and determines the membership degrees to which they
belong to each of the fuzzy sets defined for the inputs via membership functions. It
gives out a set of degrees of membership in [0, 1] of the corresponding fuzzy sets. The

fuzzification process is illustrated in Figure 4.5.
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Figure 4.5 Fuzzification process in MATLAB

Mamdani-type fuzzy inference is the most commonly used fuzzy inference method in
automatic control. It was developed when Mamdani (1974) designed the first fuzzy
logic control system to control a steam engine and boiler combination. In Mamdani-
type fuzzy inference, the composition rule of inference is implemented using “super-
min” to activate fuzzy rules, fuzzy AND operator is then applied to implement fuzzy
implication, also known as fuzzy mapping, and finally fuzzy OR operator is applied to
the consequence of the rules for aggregation. In the Fuzzy Logic Toolbox, because of
the use of fuzzy singleton, “super-min” becomes simple and straightforward. Fuzzy
AND is implemented by point-wise minimum and fuzzy OR by point-wise maximum.

Mamdani-type fuzzy inference can be illustrated in Figures 4.6 and 4.7.

Defuzzification strategy used in the Fuzzy Logic Toolbox is the Centre of Gravity,

which returns the centre of area covered by a fuzzy set. This process is illustrated in

Figure 4.8.
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Figure 4.8 Defuzzification process
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4.2.2 Fuzzy logic toolbox

The Fuzzy Logic Toolbox provides graphical user interface (GUI) tools for the design
of fuzzy logic controller. The followings are five primary GUI tools for building,
editing, and viewing a fuzzy logic controller:

U Fuzzy Inference System (FIS) Editor
Membership Function Editor
Rule Editor

Rule Viewer

o o O d

Surface Viewer

These GUI tools are interconnected. If any change is made to a fuzzy logic controller
through one of them, all other GUI tools will make the corresponding changes. The

connections among the GUI tools are illustrated in Figure 4.9.

Membership
Function Editor

_ Rule Editor

R B P M

Rule Viéwer Surface Viewer

Figure 4.9 Interconnected primary GUI tools in Fuzzy Logic Toolbox
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The names and the number of input/output variables of a fuzzy logic controller are
defined in the FIS Editor. The Membership Function Editor is used to define
membership functions of all fuzzy sets associated with each variable. The Rule Editor
is for editing fuzzy rules. The Rule Viewer and the Surface Viewer are used to display

all fuzzy rules in either “If...Then...” format or graphically. They are strictly read-

only tools.

The five primary GUI tools can all interact and exchange information. Any one of
them can read from and write to the workspace and to a file (the read-only viewers
can still exchange plots with the workspace and save them to a file). For any fuzzy
inference system, any or all of these five GUI tools may be open. If more than one of
these editors is open for a single system, the various GUI windows are aware of the
existence of the others, and, if necessary, update the related windows. Thus, if the
names of the membership functions are changed using the Membership Function
Editor, those changes will be reflected in the rules shown in the Rule Editor. The
editors for any number of different FIS systems may be open simultaneously. The FIS
Editor, the Membership Function Editor, and the Rule Editor can all read and modify
the FIS data, but the Rule Viewer and the Surface Viewer do not modify the FIS data

in any way.

43 Development of Fuzzy Logic Controllers for Robot Arm Cooperation

The aim of developing fuzzy logic controllers for a robot arm is to enable it to

cooperate with a human in lifting a light-weight stick and keeping the stick level
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during the course of lifting. The stick is light weight and flexible so force control is no

considered to the end-effectors. The two robot arms each of which holds one end of a

stick are illustrated in Figure 4.10.

. . “
................................................
.

«Control signals
. |are sent to here

Figure 4.10 Two robot arms holding a stick

Fuzzy logic controllers were designed for robot arm on the left, R;. Robot arm, R, is
a normal industrial robot arm the motion of which follows a pre-defined trajectory.
Two fuzzy logic controllers were developed for R;. One is for cooperating with R; in

lifting the stick, and the other is for keeping the stick level when R, stops moving.

4.3.1 Designing fuzzy logic controller to following the motion of R,

The fuzzy logic controller for R; to follow R,’s motion has two inputs. One is the
angle between the stick and the ground, as this angle tells whether Ry’s motion is
followed. The other is the change rate of Ry’s lifting speed. This signal helps R; to
predict Ry’s next movement. A positive value of this signal indicates that R will

continually lift the stick, whilst a negative value means R; is going to stop.
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Assigning the robot arms a reference system, as displayed in Figure 4.11, the height

of the end-effector of Ry, y;, and that of Ry, 32, can be measured. The position of the

end-effector of R; along X-axis, x;, as well as that of Ry, x3, can also be measured.

The angle 6, can then be calculate as the following:

Y=Y,
X =X,

@ = arctan=———=2 (4.2)

This equation can also be implemented in SIMULINK in the way shown in Figure

4.12.

Click On Object To Dlsplay Information

Y-axis

Figure 4.11 Reference system assigned to the robot arms
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Figure 4.12 Calculation of the angle in SIMULINK

The change rate of Ry’s lifting speed, Av, can be calculated using the following

equation:

_dr,(n) dr,(t-An
oar dt

Av

(At =0.15) (4.3)

This equation can also be implemented using SIMULINK, as illustrated in Figure

4.13.

7
G p du/dt +
Out3

— Gai
Body Sensor Derivative ain2

- Ry I

Transport
Delay prediction

N[

d/dt

Figure 4.13 Calculation of the change rate of Ry’s lifting speed in SIMULINK

The membership functions of these inputs are defined based on experience and

simulation. The membership function of the first input “angle” is given in Figure 4.14.
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Figure 4.14 Membership function of “angle”

In order to let the Ry respond quickly, the membership function for “negative” and
“positive™ fuzzy sets were defined having the shape of “trapezoid” and that for the

‘zero” fuzzy set was in Gaussian shape.

The membership function of the input “the change rate of lifting speed” is shown in

Figure 4.15. The membership functions for all fuzzy sets are in Gaussian shape.

neghve Tero posuwe

\__

\ SSEDU SRR

] 2 10
hp«.n variable "Pridiction”

Figure 4.15 Membership function of “change rate of lifting speed”
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The design of fuzzy rules is based on experience. For example, if the end-effector of
Ry is higher than that of R| and the change rate of Ry’s lifting speed decreases, then
the controller should keep the current lifting torque and wait. The fuzzy rule base of
the fuzzy logic controller is given in Figure 4.16. It can also be viewed in the input-

output space, as shown in Figure 4.17.

1. If (angle is positive) and (prediction is postive) then

2.1 (angle is positive) and (prediction is zero) then (force is positive) (1)
3.1t (angle is positive) and (prediction is negtive) then (force is positive) (1)
4.1f (angle is zero) and (prediction is positive) then (force is negtive) (1)
5.1 (angle is zero) and (prediction is zero) then (force is zreo) (1)

‘6. If (angle is zero) and (prediction is negtive) then (force is positive) (1)
17.1f (angle is negtive) and (prediction is posttive) then (force is negtive) (1)
8. 1f (angle is negtive) and (prediction is zero) then (force is negtive) (1)

9. If (angle is negtive) and (prediction is negtive) then (force is zreo) (1)

i

Figure 4.16 Fuzzy rule base
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Figure 4.17 Mapping from inputs to output
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These two inputs are fed into a fuzzy inference engine which is provided by the Fuzzy
Logic Toolbox. Based on the fuzzy rules, the inference engine can produce a lifting

torque which is the output of the controller. The fuzzy sets of this output are defined

as shown in Figure 4.18.

Membership funclion plots
[ )

T T T T

negtive rec positive
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Figure 4.18 Membership function of “lifting torque”

The controller can now be shown in Figure 4.19.

The angle between
the stick and ground

— 0\
control signal

Fuzzy Logic
Controller
with Ruleviewer

Robotarm2's litting speed changing rate

Figure 4.19 Fuzzy logic controller for Ry to follow the motion of Ry

As described in the last chapter, the robot arm has four links. In order to get best

control results, all the control signals are sent to the actuator between linkl and link2
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(as can be seen from Figure 4.10). The output of the controllers will be transformed to

current signals and applied directly to the joint between the two links.

4.3.2 Designing fuzzy logic controller for keeping the stick level

In order to keep the stick level after R, stops moving, an additional fuzzy logic
controller was added for R;. This controller also has two inputs and a single output.

The two inputs of this controller are the angle 8 and the R,’s lifting speed. The output

is the lifting torque.

The fuzzy rules of this additional controller are given in Figure 4.20. The fuzzy rules
were also obtained based on experience. For example, when the angle is positive and
the lifting speed of R, is also positive, that means the stick will tend to level, then R

should keep the current torque and wait.

.If (angle is postive) and (velocity Is postive) then (force is zreo) (1) ~
It (angle is postive) and (veloctty is zero) then (force is positive) (1) |
It (angle is postive) and (velocity is negtive) then (force is positive) (1) }
It (angle is zero) and (veloctty is posttive) then (force is negtive) (1) |
It (angle is zero) and (velocity is zero) then (force is zreo) (1) ]
It (angle is zero) and (velocty is negtive) then (force is postive) (1) i
If (angle is negtive) and (velocity is positive) then (force is negtive) (1) I
It (angle is negtive) and (velocity is zero) then (force is negtive) (1) i
.1t (angle is negtive) and (veloctty is negtive) then (force is zreo) (1) |
|

T OONO A WN =

Figure 4.20 Fuzzy rules developed for the additional controller

The mapping of the controller’s inputs and output is illustrated in Figure 4.21.
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Figure 4.21 Mapping of the inputs to the output of the additional controller

A switcher is designed to switch between the two fuzzy logic controllers. The switch
normally switches on the first controller. When the switcher detected no further
movement of Ry, which is done by measuring the height of the end-effector of Ry,
then the switch switches the additional controller. The switcher is illustrated in Figure

4.22.

Switcher

G r———pnt

the height of robotaim2’s end

} Actuatorof
l P In2 Gusd Robotarml

P In3

Fuzzy Logic
Controllert

L0

Fuzzy Logic
Controlie2

Figure 4.22 The switcher to switch on controller2
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4.4 Simulation Results

R,’s motion trajectory is shown in Figure 4.23. X axis represents time and Y axis
represents the height of the end-effector of R,. The robot arm lifted the stick to the
height of 0.5m in 2.5s. R; was controlled by the fuzzy logic controllers. Ry’s
movement is illustrated in Figure 4.24. In this diagram, X axis represents time and ¥

axis represents the height of the end-effector of the robot. An overshot can be

observed from Figure 4.24.

The changes in the angle between the stick and the ground are given in Figure 4.25. Y
axis represents the angle. It can be seen from Figure 4.25, the maximum of the angle
is 0.0741rad (approximately 4.25°). Because of the effect of the additional controller,
the angle was reduced to 0.0235rad (approximately 1.35°) after R, stopped moving.
The stick was almost kept level during the whole process of lifting. The time between

the R stopped moving and the stick was kept level is 1.5s.

The result also shows that when Ry lifted the stick with a speed of 0.3m/s, R;

controlled by the first fuzzy logic controller can response quickly.
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Figure 4 .23 The height of R,’s end-effector

Figure 4.24 The height of R;’s end-effector
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Figure 4.25 Changes in the angle between the stick and the ground
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CHAPTERS. FRAMEWORK OF ACTIVE ROBOT

LEARNING AND COOPERATION WITH ACTIVE COGNITIVE

ROBOT

In order to enable a robot to cooperate better with its user, the robot needs to be able
to predict what the user will do next. The prediction can be made based on the users’
intention and/or preference, that is, the high-order beliefs of the robot. The existing
approaches to the development of such beliefs through machine learning rely on
particular social cues or specifically defined award functions, as mentioned in Chapter

2. Their applications can be limited.

This chapter presents an active robot learning (ARL) approach for a service robot to
develop such beliefs. Inspired by discovery learning theory which encourage learners
to acquire information by performing their own experiments, this approach allows a
robot to perform guided tests on its users and to build up the high-order beliefs
according to the users’ responses. This approach emphasises the active acquisition of
intention and preference by robots but not the passive learning. The robots do not

require recognition of a particular gesture or determination of a specific function.

5.1 Robot Active Learning

Discovery learning takes place in problem solving situations where the learner draws
on his own experience and prior knowledge. It has then been developed into a method
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of instruction through which leamers interact with their environment by exploring and

manipulating objects, wrestling with questions and controversies, or performing

experiments.

Discovery learning can be simply described as “learn by doing”. Despite of concerns
to its effectiveness, this learning method has been employed in supervised machine
learning . known as active machine learning (AML), as a resolution to the problem of
lacking expensive labelled training examples. Supervised learning requires a
sufficient number of labelled training examples to be presented to the learner. An
error signal between the examples and the learning outcomes from the learner can
then be obtained and used to drive the learning process, for example, through
adjusting the learner’s parameters to minimise the error. The labelled data, however,
are sometimes expensive to obtain. AML allows the learner to explore all available
examples and to add scores to them. Those with higher scores will be passed to
human experts to add labels (Kim, et al., 2006). AML has also been used in robot
control to model the inverse dynamics of a robot arm with high model uncertainty

(Robbel and Vijayakunar, 2007).

Uncertainty also exists in the development of beliefs for service robots on their users’
intentions and preferences. Belief is the psychological state in which an individual
(including cognitive robots) holds a proposition to be true. In computer science, the
decision on whether the proposition is true (uncertainty) can be made by looking at
the evidence of other related propositions (Dempster 1968, Shafer 1976). The
collection of relevant evidence is, therefore, an important step in the process of

building up belicfs. In situations where service robots co-work with their users, to
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build up their high-order beliefs on the users’ intention and preference, the robots also

need to collect evidence which may not be seen at the first glance.

The property of “learning by doing” of discovery learning makes it suitable for the
robots to develop the high-order beliefs. With discovery leaming capability, the
robots will be able to perform experiments when they are not sure what their human
counterparts intend and prefer to do. By doing this, the robots can discover evidence
which 1s required but not seen at the first glance to build up the high-order beliefs. For
example, in the situation where a robot helps its user to lift an object from ground and
the robot realizes that the user stopped at certain height, the robot will need to find out
whether the user decides to lift the object only to that height or he prefers to put the
object down to the ground because he changes his mind. The robot can test the user
by slightly putting down the object and see how the user response. If the robot
perceives the same action from the user, it can then regard the response as the
evidence of changing mind. If the robot perceives no action from the user, it can view

this response as evidence of the preference of keeping the object to that height.

This approach to the use of discovery learning in the development of service robots’
beliefs can be called active robot learning (ARL). ARL differs from AML because
ARL requires 2 robot to carry out experiments to generate data (evidence), whilst

AML only scarches for and evaluates available data.
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5.2 Framework of ARL System

The overall structure of an ARL system is shown in F igure 5.1. The system consists
of an action bank which stores actions that can be taken to test its users, an inference
engine which reasons about what actions to be taken for a specific purpose, a moment
determination mechanism to decide the moment of test, an intention identification

mechanism to interpret responses of the users and to identify intention and preference,

and an intention mode! which represents intentions.

A

r Action bank | > Inference —
AC UNK . i
| engine Action

t

Moment
determination

Intention < Intention

: T Percepti
model identification rception

Figure 5.1 Structure of ARL system

5.2.1 Action and action selection

Test actions are those that can be taken to test the users. They are associated with
conditions and stored in the action bank. Each test action stored in the action bank has
a name and content which is the kinematics of the robot. The conditions express
reasons for performing the actions and are represented as propositions. For example,
if a robot hands over @ gluss of water to its user, it would need to check whether the

user infends and is ready to take over the glass. The test action for testing the user in
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this case is to slightly loosen the glass and the condition associated is to confirm the
user’s intention of taking over the glass. The actions and the associated conditions can

be designed by robot designers before the robots are deployed.

The inference engine selects a test action from the action bank to conduct a specific
test. As the actions are associated with conditions in the action bank and the
associations actually represent causal relations (implications) from the conditions to

the actions, the selection of an action can be carried out with the standard forward

reasoning.

The moment determination mechanism decides the starting time for testing the user
and triggers the action bank to send out a test action. There are, in general, two
moments where a robot needs to test the user for intentions. The first is the moment
before the last action in the course of the completion of a task. Taking the example of
getting a drink for the user, before a robot finally takes the action of releasing a glass,
it needs to find out whether the user intends and is ready to take over the glass. In the
example of assisting a human standing out from a chair, the robot has to make sure
that the user intends and is ready to stand alone before releasing his arm/hand. The
second is the moment when a robot feels its user stops doing what he originally
intended to do. The robot will need to find out whether the user changed his mind or
not for further cooperating with him. In this situation, the robot will rely on its

perception to detect this stop.
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5.2.2 Fuzzy intention model and intention identification

Human intention and preference can be vague. Human beings can desperately want to
do or not to do something and can also more or less want to do it. They can like
something very much, more or less like, less like, or dislike it. To reflect this natural
vagueness, intentions and preferences are represented using fuzzy sets in the intention
model. The fuzzy sets are defined in the domain of intention and preference.
Representing intention as a variable, linguistic terms used by human beings to
describe their intentions, for example, can be discrete values of this variable and
arranged along the axis of intention from “determinatively to do”, “may want to do”,
... to “determinatively no to do”. Fuzzy sets on this axis are defined by membership

functions which take values in [0, 1]. For example, “determinatively to do” and “may

want to do” can be defined as shown in Figures 5.2(a) and (b), respectively.

e 1 i
o a
0 & O P> 0
do may may not do may may not
do not do do do not do do
(a) (b)

Figure 5.2 Fuzzy sets defined for representing intentions

The vagueness is represented by the membership functions. First, the membership
functions can take values in [0, 1]. These values are the subjective expressions about
uncertainty property of intention and preference. Second, these functions are allowed

to have any shape to represent slight different subjective feelings. For example, the

-70 -



fuzzy set shown in Figure 5.2(b) represents the hesitation between “do” and “not do”
but incline more to “do” side. If the shape changes in the way of increasing the value

of “may not do” to 1, the fuzzy set will still express hesitation but much less

inclination.

Intention and preference are identified from the responses of the user to the test
actions a robot preformed. In this sense, the identification process maps the perception
of the robot to the intention and preference of its user, and, therefore, relies on a set of
rules which represent the relationship between the perception and intention and
preference. It is more natural to develop a causal relation from what the user intends
or prefers to do to how the user responds to test actions, that is, from intention and
preference to perception, than the way around. This is because that the responses are
naturally determined by the intentions and preferences. Each of such rules is also
associated with a truth degree indicating to what extend the designers of the rule trusts

the rule.

To identify intentions and preferences based on this type of causal relation will need
fuzzy backward reasoning (Anould and Tano, 1995; Pham and Li, 2001). Fuzzy
backward reasoning performs based on a fuzzy relational equation, the general form
of which is represented in 5.1.

XoR=Y 5.1

where X is a fuzzy decision variable, Y is s fuzzy dependent variable, R stands for a
causal relation from the universe of discourse where X is defined to the universe of

discourse where Y is defined, and o represents the composition rule of inference.
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Because R represents a causal mapping from X to Y, given Yy, a desired value of ¥,
fuzzy backward reasoning can deduce X which is sufficient for Y, In the case of
intention and preference identification, a fuzzy relational equation can be developed
to represent the causal relation from intention and/or preference to actions. This is
because the intention leads to actions when the user is conscious. When the response
of the user to a test action is known, fuzzy backward reasoning is able to deduce the
intention or preference that could detérmine the response by solving 5.1. The user’s

responses are perceived by a robot in terms of perception.

5.3 Simulations and Discussions

Simulations were designed and carried out to evaluate the ARL based approach to
building up high-order beliefs for a robot arm. The simulation environment is
depicted in Figure 5.3. Robot arm R; is a cognitive robot with the ARL framework
installed. Robot arm R; models the user. Figure 5.4 shows how the ARL system is

integrated with the robot control system described in Chapter 4.

In the simulations, the user and the robot éooperate in lifting a stick in the way of
keeping it level. The user then stopped. When the robot detected the stop, it reacted in
order to keep the stick level and applied test actions to the user to check his intention
in order to further cooperate with him. The user reacted to the test actions taken by the

robot. The robot then started to identify the user’s intention according to his responses.
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Figure 5.3 Simulation environment
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Figure 5.4 Integration of ARL system to robot control system

The user may stop for three different reasons: having a rest (because the stick is
heavy), or leaving the stick at the height (because the stick reached the desired height),
or putting the stick down (because he changes his mind). Three linguistic terms were
used to describe these three reasons, namely, “having a break”, “leaving to the desired
height”, and “putting down”. These terms were represented using a, b and c,

respectively.

A variable x was defined in the domain of intention and a, b, and ¢ are the three

values of x. Intentions of “to have a rest and then continue”, “to keep at the current
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height”, and “to put down” were defined, in the form of fuzzy sets 4, B, and C,

respectively, in the domain of x. Human beings can be indeterministic and even
hesitate by their nature. That is, vagu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>