
Interpretation of Overtracing Freehand Sketching for
Geometric Shapes

Day Chyi Ku
School of Engineering and Design

Brunel University
Uxbridge

 UB8 3PH, UK

Daychyi.Ku@brunel.ac.uk

Sheng-Feng Qin
School of Engineering and Design

Brunel University
Uxbridge

 UB8 3PH, UK

Sheng.Feng.Qin@brunel.ac.
uk

David K. Wright
School of Engineering and Design

Brunel University
Uxbridge

 UB8 3PH, UK

David.Wright@Brunel.ac.uk

ABSTRACT
This paper presents a novel method for interpreting overtracing freehand sketch. The overtracing strokes are

interpreted as sketch content and are used to generate 2D geometric primitives. The approach consists of four

stages: stroke classification, strokes grouping and fitting, 2D tidy-up with endpoint clustering and parallelism

correction, and in-context interpretation. Strokes are first classified into lines and curves by a linearity test. It is

followed by an innovative strokes grouping process that handles lines and curves separately. The grouped

strokes are fitted with 2D geometry and further tidied-up with endpoint clustering and parallelism correction.

Finally, the in-context interpretation is applied to detect incorrect stroke interpretation based on geometry

constraints and to suggest a most plausible correction based on the overall sketch context. The interpretation

ensures sketched strokes to be interpreted into meaningful output. The interface overcomes the limitation where

only a single line drawing can be sketched out as in most existing sketching programs, meanwhile is more

intuitive to the user.

Keywords
Freehand sketching, multistroke sketching, calligraphic interface, design

1. INTRODUCTION
Sketch interface is an important, natural application

to support conceptual design. A sketch system

implemented in a computer has the advantage

whereby further manipulations and processing, such

as 3D modelling from 2D sketch, can be made

directly with minimal steps within a short time.

However, this is realistic only if the system allows

the flexibility of transferring ideas directly from

designers through a series of freehand sketch. To

support this process, the system should provide an

interface that is natural to the user as sketching with

pen and paper. Users may find sketching with

extensive menus difficult as a result of frequent

interruptions.

On the other hand, the system will also need to be

able to correctly interpret the user’s intent from the

drawing of the sketch. A trade-off is often required in

the design of the calligraphic interface between being

natural, easy-to-use, and that of accuracy of the

system’s interpretation of user’s intent.

One problem in the design of a natural but accurate

calligraphic interface is that of interpreting

overtracing of freehand sketch. Overtracing is

frequently used to enhance and complete an edge

during freehand sketching. A system that supports

overtracing, i.e., accepts multiple stroke inputs, has

the advantage of providing more drawing freedom to

the user. However, at the same time, overtracing

further increases the number of possible

interpretations of a sketch, and as such, making the

system more susceptible to making mistakes in

interpreting the user’s actual intent.

In this paper, we are concerned specifically with the

interpretation of overtracing freehand sketches of

geometric objects. Although there are sketch systems

that support overtracing inputs, they do not actually

interpret them [FIO02a, GRO00a, KAR05a], or

provide limited interpretations (e.g., only supports

certain sketching primitives or has a very strict

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute

to lists, requires prior specific permission and/or a fee.

Conference proceedings ISBN 80-86943-03-8

WSCG’2006, January 30-February 3, 2006

Plzen, Czech Republic.

Copyright UNION Agency – Science Press

WSCG2006 Full Papers proceedings 263 ISBN 80-86943-03-8

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Brunel University Research Archive

https://core.ac.uk/display/334991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

definition of how a sketch is interpreted) and as such,

not applicable to general cases [MIT02a, SHE04a].

Here, we developed a system that supports and

interprets overtracing freehand sketch of general

geometric objects (Figure 1). The work presented in

this paper is a part of our on-going project that is

aimed at reconstructing 3D models from 2D

sketches. The preliminary system is developed to

address the problem of interpreting overtraced

strokes, i.e., multiple strokes that are part of the same

geometric primitives.

Figure 1: A freehand sketch with overtracing and

its tidy-up output from our system.

There are two important differences between our

system and other earlier, calligraphic interface

systems such as in [MIT02a, SHE04a]. First, our

system supports and interprets both straight-line and

curve overtracing sketches. In [SHE04a], the system

can only interpret straight-line input. Second, our

system interprets overtracing strokes with various

curvatures and represents them in parametric

equations that best represent the strokes. In

[MIT02a], the overtracing strokes are represented by

polylines after grouping into core curves and only

curves with low curvatures are showed in their

examples.

Furthermore, some of the systems impose frequent

interruptions to users during the sketching process.

This is normally associated with interactive systems

that prompt users for selection of choices [IGA97a].

The frequent interruptions can be a source of

distractions that can impede the flow of thoughts of

the designer, and as such, should be addressed in the

design of a calligraphic interface.

Therefore, the interpretation process in our system is

carried out automatically and designed to have

minimum interruption to the user. To achieve this,

we designed the system to carry out the interpretation

process between sketching sessions rather than

interrupting the user during sketching for further

inputs to clarify ambiguous cases. This allows a user

to draw in a more intuitive and natural way without

diverting attention from the sketching flow.

2. RELATED WORKS
Computer calligraphic interface has been receiving

more attention over recent years. However, despite

the availability of hardware such as the stylus tablet,

there are still many problems left to be solved in the

development of a full-fledged, functional free-hand

sketching calligraphic interface, such as

interpretation of multiple strokes, in-context

classification and clustering of strokes, inferring

constraints from freehand sketches for tidy-up and

beautification.

Perhaps Pavlidis [PAV85a] made the first attempt to

infer constraints from initial freehand sketch to

automatically tidy-up rectilinear drawings. However,

the method is bound to produce unintended and

undesirable results in practice and negative

constraints were suggested to address the problem

[PAV85a]. Similarly in Easel [JEN92a], Jenkins and

Martin developed a system that can automatically

analyze and tidy-up sketches. Easel introduced more

constraints and processed freeform curves [JEN92a].

Pegasus [IGA98a, IGA97a] is a prototype system for

beautification of freehand sketching through an

interactive process. The system generates several

candidate strokes based on geometry constraints for

user selection. This interaction process is to ensure

that the resulting sketch is as closely desired by the

user, i.e., the precise and correct sketch that the user

had in mind but unable to accurately draw himself.

However, the process of selecting candidates, stroke-

by-stroke, is somewhat distracting to the user.

Consequently, the system is not suitable for

conceptual design sketching, where the designer

must be allowed to sketch without interruption to

ensure a continuous flow of ideas.

In addition to the tidy-up process, there are other

research efforts focused on sketch interpretation

problems such as the strokes classification and

clustering. For example, Shpitalni and Lipson

[SHP97a] presented a method for classifying input

strokes in an online sketching system that is based on

linear least squares fitting to a conic section equation.

They also introduced new endpoints clustering

scheme based on adaptive tolerances [SHP97a]. Qin

[QIN00a] introduced a system that classified strokes

using adaptive threshold and fuzzy knowledge with

respect to curve’s linearity and convexity. After that,

2D primitives are identified and a 2D relationship

inference engine is used to study their relationship

for 3D recognition.

Although advances have been made in developing a

functional calligraphic interface for freehand

sketching, in general, most of the current 2D

freehand sketch interpreters have the limitation of

either not supporting overtracing sketches [JEN92a,

IGA98a, IGA97a, PAV85a, QIN00a, QIN00b,

SHP97a], or have limited support ([SHE4a],

[MIT02a]). SMARTPAPER [SHE4a] groups

overtracing strokes into segments. The grouping

WSCG2006 Full Papers proceedings 264 ISBN 80-86943-03-8

process was carried out in two passes where the

distance between end points and the slopes of the

strokes are checked against each other. However,

SMARTPAPER is limited to straight-line input with

limited configurations only. Furthermore the system

does not support curves input. There is no discussion

of wrongly drawn lines correction and hence it is

assumed that the system is limited to interpret

sketches with correct strokes. 3D SKETCH

[MIT02a] supports both overtracing and hatching

sketch. Strokes are divided into core strokes (strokes

that touch the characteristic curves of the object), and

hatching strokes (strokes that are mapped to the faces

of the object). Although the system can interpret

overtracing strokes (e.g., by grouping strokes into

bundles), there is no explanation of how the

characteristic strokes are distinguished from the

hatching strokes. Furthermore, the system used

polylines to represent the core curve limited its

accuracy in representing curves with higher

curvature.

There are other sketch systems that support

overtracing strokes but do not interpret them as part

of the sketch. In [GRO00a], the system filters out

overtraced lines to produce simpler, approximated

drawings (e.g., filtering out elements that are smaller

than a specified size) rather than performing

interpretations in the context of the sketch as a

whole. In [KAR05a], the sketch recognizer allows

overtracing symbol recognition based on image

processing techniques, e.g., it relies entirely on the

symbol libraries for the recognition where the sketch

is examined in pixel and hence no work is done on

interpretation of individual stroke. In [FIO02a],

overtracing is used to edit an existing stroke that is

represented in cubic Bezier splines. The movements

of oversketching is sampled and interpreted

specifically as transformation attractor to the

underlying curve’s control points. The overtracing

strokes are used as gesture input to alter the existing

sketch rather than sketching information that actually

add more lines to the existing sketch.

In this paper, we propose an interactive calligraphic

interface that addresses the limitations discussed

above. Referring to the systems discussed above, we

use Qin’s curve classification, Shiptalni and Lipson’s

conic fitting equation, and others geometry

constraints as the backbone of our system to interpret

and tidy-up freehand sketch. However, stroke pre-

processing, i.e., segmentation, is not covered in this

paper. All input strokes are taken to represent only a

segment or part of a segment. However, the system

here can be easily extended to include pre-processing

algorithms for segmentation such as those described

in [QIN00b, SEZ01a].

3. SYSTEM OVERVIEW
We propose the interpretation of overtracing strokes

by carrying out a set of tests automatically to group

and tidy up the sketched strokes into segments. The

output of the system is edge-vertex graph with initial

sketched strokes associated to the edges. The graph

can be transferred into CAD or 3D modelling

systems for further processing and manipulation

while the edges can be reproduced in sketchy style

with the sketched strokes information. Another

advantage to our proposed system is that the new

edges that looked similar to the original sketching

style can be produced from the information obtained

during the sketching process. However, for this

paper, we focus only on planar objects and objects

with ellipsoidal curves for inputs to reduce the

system’s bounds in producing unintended and

undesirable result. Additional work is needed to

extend the system to support the interpretation B-

spline curves and freeform objects.

Interruptions such as prompts for clarifying

ambiguous strokes are made at the end of the

drawing session. For example, our system prompts

the user to decide whether an ambiguous stroke

should be deleted or kept with the existing drawing

only at the end of the drawing session.

The system can take in the sketch directly from the

user through a tablet with a digital pen or mouse. A

stroke is a set of points that is captured during the

period when the mouse button is pressed down,

moved, and released. An edge refers to the

intersection of two faces of a solid object, which in

2D drawing is represented by strokes. In many

drawings an edge is often composed of a set of

discontinuous strokes. The overtracing strokes are

used to complete, correct or enhance an edge in the

sketch. The strokes will be processed by the 2D

sketch interpreter and automatically grouped together

to represent the associated edges.

The 2D sketch interpretation is divided into five

stages: grouping and fitting of strokes, end points

clustering, parallelism correction, in-context

interpretation and user interactive selection. First, all

classified strokes (using the linearity test) will be

grouped according to their positional relations. After

that, the grouped strokes are fitted collectively into

an appropriate parametric equation in the least square

sense. A tidied-up sketch will be produced from the

equations. Lastly, lines with similar gradients (within

some tolerance levels) are adjusted to be parallel to

each other, thus reflecting the user intention because

it is not possible for the user to draw exactly parallel

edges in freehand sketch. When there are strokes that

cannot be interpreted correctly according to

geometry constraints, the system will tag the strokes

as ambiguous cases. The system only prompts the

WSCG2006 Full Papers proceedings 265 ISBN 80-86943-03-8

user for further action and correction of the

ambiguous cases at the end of the drawing session.

After the interpretation process, the system is then

able to generate tidied-up 2D single line drawing,

while at the same time, still have initial sketchy

strokes linked to the appropriate tidied-up edges.

4. CLASSIFITION AND GROUPING

4.1 Stroke Classification
All drawn strokes will be classified into either one of

the categories, straight-lines or curves. The linearity

test is used to classify a straight-line from a curve

[QIN00a]. It is simpler and faster compared to the

conic curve equation used in [SHP97a]. This is

because the linearity test involves only a simple

calculation of two parameters, while the conic curve

equation requires the calculation of five parameters

in the quadratic equation.

The linearity is defined as the ratio of the distance

between two endpoints of a stroke to the

accumulative chord length between sequences of

points captured.

The linearity value is a floating point between zero to

one. A greater linearity value for a stroke indicates

that the stroke is more likely to be a straight-line

rather than a curve. An ideal straight-line will have

unity linearity, which rarely happened in freehand

sketching. Therefore, we set an arbitrary straight-line

tolerance for the classification.

Each classified stroke will be fitted either into a

general straight-line equation to generate a straight-

line, or a general conic curve equation to generate a

curve. With equations, strokes can be represented in

a more general and effective way compared to using

a list of points. Furthermore, the representation of

input strokes with parameterised equations allow for

more effective and efficient tests of input strokes

during the interpretation process.

4.2 Strokes Grouping and Fitting
The strokes grouping process groups sketched

strokes into the appropriate edges that they represent.

However, the grouping process only tries to group

strokes in the same category, i.e., lines only grouped

with lines, and curves only grouped with curves. The

grouped strokes are fitted with equations to obtain

parameters that best represent them.

4.2.1 Line Segment Grouping and Fitting
A straight-line is approximated by fitting data points

of the strokes into a line equation that give the

minimum least-square error [ONE83a]. The fitted

line end points are the points on the equation that

have the minimum Euclidian distance from the

sketched stroke end points. All straight-lines will be

tested to determine whether they should be grouped

together to represent the same edge. The line

segments will be grouped together if they are close in

position and orientation to each other.

4.2.1.1 Distance Tests
A series of distance tests is used to determine the

smallest distance between two line segments. The

tests are carried out in sequence as follows:

1) Get the smallest Euclidean distances between

endpoints of lines A and B (Figure 2). The

resulting distance is compared with a threshold

value. The threshold value represents the largest

tolerance of the distance between two line

segments to be grouped together. The threshold

value varies according to the lines’ length, as in

[SHP97a]. If the two line segments (A and B)

pass the threshold test, go to the angular test,

otherwise go to step 2.

2) Calculate the perpendicular Euclidean distances

from line endpoints of one line to the other line

segment, as shown in Figure 2. Eliminate the

distances that corresponding projection points

are out of the other line segment, e.g., (a) and (d)

in Figure 2. Compare the smallest distance

among the remains, (b), with a threshold value.

If the distance is smaller than the threshold, go

to the angular test. Otherwise the two line

segments are grouped into separate edges.

Figure 2: Distance calculated between A and B.

4.2.1.2 Angular Test
The Angular test is to ensure that strokes grouped as

one edge are pointing in the same direction.

The absolute dot product value, which is the smallest

angle between the lines A and B, is calculated. The

two lines will be grouped into one segment if the

angle is smaller than a threshold value. The threshold

value is adjusted according to the longest length of

the lines A and B. The value is calculated to be

inversely proportional to the length of the

corresponding line, e.g. the longer line will have a

smaller threshold value. This is because the longer

length of lines will “look” more apart than shorter

line with the same angle.

The lines do not have to intersect, or overlap each

other to be grouped together. The grouped strokes

will undergo another round of straight-line least-

square fitting to update its equation and endpoints

(Figure 3).

(a)
(c)(b)

(d)
s2

s1

e1

e2

A

B

WSCG2006 Full Papers proceedings 266 ISBN 80-86943-03-8

 (a) (b) (c)

Figure 3: Line Grouping: (a) Initial sketch; (b)

Grouped sketch; (c) Fitted result.

We assume that earlier drawn stroke is more likely to

represent an edge position and orientation, while

strokes drawn later are the overtracing to enhance or

complete the edge. Therefore, earlier drawn stroke is

used as reference to test against candidate strokes to

determine if the strokes should be grouped into the

edge. If a candidate stroke fails the tests for all

existing edges, then it will be grouped as a new edge

and used as reference for the edge.

4.3 Curve Grouping and Conic Fitting
Strokes classified as curves by the linearity test will

undergo the curve fitting process before curve

grouping can be carried out. They will be fitted using

a conic curve equation [SHP97a] to obtain the curve

parametric equation. The fitted result will fall in one

of the following category: straight-line, parabola,

hyperbola, or ellipse.

However, straight-lines will not be generated due to

the pre-processing of strokes through the linearity

test. Hyperbola and parabola are considered as

special cases by our system on the assumption that

they rarely occurred in sketched geometric objects.

Consequently, we only consider the elliptical curves

that result from the fitting. Circle is treated as special

case of ellipse where the major and minor radii are

identical. After that, all sketched curves are

represented by the parametric equations generated

from the conic fitting procedure.

A general conic curve can be described by the

following equation [BOW83a]:

0222),(22 cfygxbyhxyaxyxQ

In our system, we need to find the least square fitting

based on the distance between the captured sketching

points and the equation. The fitting problem is then

reduced to minimizing the following function:

n

i

iiiiii fygxbyyhxaxE
1

222 1222

We obtain the coefficients (a, h, b, g, and f) by

solving the partial derivatives of E equals to zero.

The central point, major and minor radii, and the

rotation angle of an ellipse can be obtained from the

equation as in [QIN99a].

A bounding box, the smallest rectangle to enclose a

fitted curve, is used to test for the curves adjacency

for grouping them together. If the bounding boxes

overlap one another, the sketched strokes associated

with the curves will be grouped together. The

grouped strokes will be fitted again. The overlapping

test will be repeated for new fitted curve until there is

no more overlapping bounding boxes in the sketch

(Figure 4).

 (a) (b) (c) (d)

Figure 4: Curve Grouping and Fitting: (a) Initial

sketch; (b) Generate bounding box for each

stroke; (c-d) Grouped strokes with fitted result.

4.3.1 Curve Range
A curve range is calculated from its starting point to

the ending point, with reference to the centre point of

the curve [JEN92a]. The user has the freedom in

sketching a curve in any desired direction. However,

our system standardized all curve range in anti-

clockwise. The ending angle can be a value greater

than 360 degree, as shown in Figure 5.

Figure 5: Curve range calculation.

Over-sketched and incomplete curves often occur in

freehand sketching. Our system will tidy-up the

curves into smooth ellipse or circle as shown in

Figure 6. The curve range for grouped curves is

updated automatically by our system, as shown in

Figure 7.

Figure 6(a): Over-sketched Curve.

Figure 6(b): Incomplete Curve.

0 360 720

x

y

WSCG2006 Full Papers proceedings 267 ISBN 80-86943-03-8

(a) (b) (c) (d) (e) (f)

Figure 7: New curve range is determined from

grouped curves: (a) Initial sketch; (b-c) Curve

with initial range; (d) Additional stroke; (e)

Strokes are grouped as a curve; (f) Curve with

new range.

5. ENDPOINT CLUSTERING
After the grouping process, strokes representing a

particular edge are approximated by a single line or

ellipse parametric equation. The endpoint clustering

process ensures that the corresponding edge

endpoints meet together and that a close loop can be

formed for edge-graph extraction.

5.1 Straight-line Junction Clustering
The straight-line junction clustering is applied for the

line-to-line clustering. Before the clustering can be

applied, the system first finds out endpoints of edges

that are adjacent to each other and within the

tolerance zone as discussed in [SHP97a]. Edges with

endpoints that lie within the zone will be clustered

together to form a junction. In case of a junction with

more than two edges, the system will select two

edges with the most number of strokes to determine

the junction point, the rest of the edges will

automatically snapped to the point (Figure 8).

 (a) (b) (c) (d)

Figure 8: Straight-line junction clustering: (a)

Initial sketch; (b) Clustering result; (c) Modified

sketch; (d) Updated clustering result.

5.2 Lines and Curve Junction Clustering
The curve edge will be adjusted based on the line

edges endpoints position so that the curve edge

endpoints (open curve) or boundaries (closed curve)

will meet the line edges endpoints to form a close

loop (Figure 9).

 (a) (b) (c) (d)

Figure 9: Endpoint clustering for lines and curves

junctions: (a) Initial sketch; (b) Fitted result; (c-d)

Clustered result.

The orientation of the curve is determined to be

parallel to the imaginary line segment L1 that

connects the endpoints of lines that are to form

junctions with the curve. After that, the curve’s

central point is determined to be the middle point of

the line segment L1. The major or minor radius of

the curve is calculated based on the length of L1,

with the other radius being adjusted according to the

distance from sketched curve to central point. For

open curve, new curve range is determined based on

the line endpoints.

For closed curve, lines are adjusted to be tangent to

the curve boundaries, that is, the line is snapped to

the curve at only one intersection point. Figure 10

shows an example of the adjustment made on such

junction.

 (a) (b) (c) (d)

Figure 10: Intersection adjustment on full ellipse

for line and curve junction (a) Initial sketch; (b)

Fitted result; (c) Before adjustment; (d) After

adjustment.

5.3 Parallelism Correction
After the endpoints clustering process, the edges of

the object can be represented by single 2D geometry,

in perfect straight-lines or ellipses that are joined to

each other. To allow some tolerance for freehand

sketching error, straight-lines are tested if they have

similar gradients or orientations. A slight change in

the orientation of lines can be done to ensure

parallelism in the sketch, which is often difficult to

be achieved by freehand sketching.

Each straight-line edge is tested against all the other

edges to obtain their similarity with each other.

Edges drawn with more number of strokes are

determined to be more important and such, are used

as the reference. All adjustment of an edge is

achieved by rotating at the middle point of the edge.

Figure 11 shows an example of the parallelism

correction.

Figure 11: A rectangle before and after

parallelism correction.

If the parallelism correction process changes line

endpoints, the clustering process (as discussed in 5.1)

will be carried out for the associated strokes to

ensure the junction connectivity.

WSCG2006 Full Papers proceedings 268 ISBN 80-86943-03-8

6. IN-CONTEXT INTERPRETATION

OF STROKE
The calligraphic interface system developed here is

meant as a preliminary system taking in 2D sketches,

which are then interpreted so that they can later be

used for 3D models reconstruction. As such, the

system’s interpretation is set to process sketches of

3D geometric objects drawn on 2D. We consider the

isometric projection, although other projections can

be used as well.

For a 2D sketch, a closed loop line or curve is used

to represent a face of a 3D geometric object. A

closed loop is normally interpreted as a surface,

depending on the shape of the object. A complete 3D

object should have no open edge in sketch. Any

stroke with endpoint unconnected to a junction in the

sketch will be considered as an error, and the stroke

will be tagged as ambiguous. The system will

highlight the strokes and prompt the user with a

choice to either delete or keep them. If the user

decides not to delete the strokes, the system will

reinterpret the strokes based on the context so that

they satisfied the geometry constraints.

There are two sources for the ambiguous strokes.

Firstly, the strokes can be caused by the

misclassification of strokes at the beginning of the

interpretation. For example, a short curve drawn with

high sketching speed can be misinterpreted as a line

by the classification method. To correct it, the system

will reclassified it as curve, and continue with the

grouping and fitting with other strokes in the sketch.

Secondly, the stroke might be caused by poor

sketching skill of the user, where overtracing strokes

that meant to be grouped into an edge are sketched

too far apart. The overtracing strokes failed the

grouping tests and were grouped into separate edge.

The both edges have the same endpoints that can be

detected by our system, and grouped into one edge.

Similar restriction applies to cylindrical object,

where straight-lines only intersect curve at the

boundaries of the curve surface (Figure 12).

 (a) (b) (c) (d)

Figure 12: Lines detected as ambiguous with

endpoints at an arc: (a) Input sketch; (b) Detected

ambiguous stroke is in thick red color; (c) Result

when user choose to delete the strokes; (d) Result

when user choose to merge the strokes.

The in-context interpretation also allows the user to

modify sketch with overtracing strokes (Figure 13).

The system will try to connect ‘open’ strokes in the

sketch to its nearest junctions, resulting regrouping

and refitting of the strokes. The fitted result is

therefore moved by the new strokes and modified the

initial sketch.

 (a) (b) (c) (d)

Figure 13: Modification by overtracing; (a-b)

Initial sketch with fitted result; (c-d) Sketch with

‘open’ strokes and new fitted result.

7. IMPLEMENTATION AND

EXAMPLES
The system is implemented using Visual C++ under

the Windows 2000 operating system. The input

device is a traditional digitizing tablet that senses the

drawing on its screen.

Figure 14 shows some examples of the sketch before

and after tidy-up with our system. The interface

allows the user to sketch freely as though using pen

and paper. The system will interpret and tidy-up the

sketch into a single line drawing.

 (a) (b) (c)

Figure 14: (a) Input sketch; (b) Tidied-up sketch;

(c) Single-line output.

Our system keeps the initial sketch information and

associates them with the corresponding edges in tidy-

up drawing. The information can be used to render

additional new strokes in the sketch that are of

similar appearance to the original sketch even though

the new strokes are not actually drawn by the user.

This suggests that the result from our system can be

used as input for non-photorealistic rendering (NPR)

system that renders 3D objects with sketchy

appearance that is similar to the original sketch by

the user. Figure 15 shows the result of such an

implementation.

WSCG2006 Full Papers proceedings 269 ISBN 80-86943-03-8

 (a) (b) (c)

Figure 15: (a) Initial sketch; (b) 3D model in

NPR; (c) 3D model after rotation.

8. CONCLUSION
This paper presents an interactive calligraphic

interface for conceptual design, which supports

multistroke sketching. It is designed to handle

freehand sketches with overtracing and

imperfections. User can sketch over the existing

drawing to enhance, complete or correct an edge.

The system provides in-context interpretation for

sketch that depict 3D geometric object. The

interpretation provides verifications and corrections

for errors made during sketching session, thus

achieving meaningful tidy-up result.

We proposed an alternative interpretation of

overtracing strokes from freehand sketch input from

the existing systems. We consider all strokes as part

of the sketch and grouped them into edges. We

introduce a new method to group multiple curves

using the minimal enclosing bounding box. The

method is fast and hence suitable for online

sketching.

The work presented here is only the first part of our

final sketched-based 3D modeling and rendering

system. The freehand sketch input is processed and

tidied-up for the 3D reconstruction. The

reconstructed 3D model will have a photorealistic

appearance by default. The future work is to

reconstruct and display the 3D model with the

appearance similar to the original sketch in a non-

photorealistic rendering form.

9. REFERENCES
[BOW83a] Bowyer, A., and Woodwark, J., A

Programmer's Geometry, Butterworths, 1983.

[FIO02a] Fiore, F.D., and Reeth, F.V., A Multi-

Level Sketching Tool for Pencil-and-Paper

Animation, AAAI 2002 Spring Symposium., Tech.

Rep. SS-02-08, 2002.

[GRO00a] Gross, M.D., and Do, E.Y., Drawing on

the Back of an Envelope: a framework for interacting

with application programs by freehand drawing,

Computers & Graphics, vol.24, pp.835-849, 2000.

[IGA98a] Igarashi, T., Kawachiya, S., Tanaka, H.,

and Matsuoka, S., Pegasus: a drawing system for

rapid geometric design, ACM Press, pp. 24-25, 1998.

[IGA97a] Igarashi, T., Matsuoka, S., Kawachiya, S.,

and Tanaka, H., Interactive beautification: a

technique for rapid geometric design, ACM Press,

pp.105-114, 1997.

[JEN92a] Jenkins, D.L., and Martin, R.R., Applying

constraints to enforce users' intentions in free-hand

2-D sketches, Intell.Syst.Eng., vol.1, pp.31-49, 1992.

[KAR05a] Kara, L.B., and Stahovich, T.F., An

image-based, trainable symbol recognizer for hand-

drawn sketches, Computers & Graphics, vol.29,

pp.501-507, 2005.

[MIT02a] Mitani, J., Suzuki, H., and Kimura, F., 3D

sketch: sketch-based model reconstruction and

rendering, Kluwer Academic Publishers, pp.85-98,

2002.

[ONE83a] O’Neil, P.V., Advanced engineering

mathematics, Wadsworth Publishing, pp.1091-1093,

1983.

[PAV85a] Pavlidis, T., and Wyk, C.J.V., An

Automatic Beautifier for Drawings and Illustrations,

SIGGRAPH., vol. 19, pp.225-234, 1985.

 [QIN01a] Qin, S.F., Wright, D.K., and Jordanov,

I.N., On-line segmentation of freehand sketches by

knowledge-based nonlinear thresholding operations,

Pattern Recognit, vol.34, pp.1885-1893, 2001.

 [QIN00a] Qin, S.F., Investigation of Sketch

Interpretation Techniques Into 2D and 3D

Conceptual Design Geometry, University of Wales

Institute, Cardiff, PhD Thesis, 2000.

[QIN00b] Qin, S.F., Wright, D.K., and Jordanov,

I.N., From on-line sketching to 2D and 3D geometry:

A system based on fuzzy knowledge, CAD

Computer Aided Design, vol.32, pp.851-866, 2000.

[QIN99a] Qin, S.F., Jordanov, I.N., and Wright,

D.K., Freehand drawing system using a fuzzy logic

concept, CAD Computer Aided Design, vol.31,

pp.359-360, 1999.

 [SEZ01a] Sezgin, T.M., Stahovich, T., and Davis,

R., Sketch based interfaces: early processing for

sketch understanding, PUI '01: Proc. of the 2001

workshop on Percetive user interfaces, pp.1-8, 2001.

[SHE04a] Shesh, A., and Chen, B., SMARTPAPER:

An Interactive and User Friendly Sketching System,

Comput.Graphics Forum, vol.23, pp.301-301, 2004.

 [SHP97a] Shpitalni, M., and Lipson, H.,

Classification of sketch strokes and corner detection

using conic sections and adaptive clustering, J Mech

Des, Trans ASME, vol.119, pp.131-135, 1997.

WSCG2006 Full Papers proceedings 270 ISBN 80-86943-03-8

