
Interpretation of Overtracing Freehand Sketching for 
Geometric Shapes

Day Chyi Ku 
School of Engineering and Design 

Brunel University 
Uxbridge

 UB8 3PH, UK 

Daychyi.Ku@brunel.ac.uk

Sheng-Feng Qin 
School of Engineering and Design 

Brunel University 
Uxbridge

 UB8 3PH, UK 

Sheng.Feng.Qin@brunel.ac.
uk

David K. Wright 
School of Engineering and Design 

Brunel University 
Uxbridge

 UB8 3PH, UK 

David.Wright@Brunel.ac.uk

ABSTRACT
This paper presents a novel method for interpreting overtracing freehand sketch. The overtracing strokes are 

interpreted as sketch content and are used to generate 2D geometric primitives. The approach consists of four 

stages: stroke classification, strokes grouping and fitting, 2D tidy-up with endpoint clustering and parallelism 

correction, and in-context interpretation. Strokes are first classified into lines and curves by a linearity test. It is 

followed by an innovative strokes grouping process that handles lines and curves separately. The grouped 

strokes are fitted with 2D geometry and further tidied-up with endpoint clustering and parallelism correction. 

Finally, the in-context interpretation is applied to detect incorrect stroke interpretation based on geometry 

constraints and to suggest a most plausible correction based on the overall sketch context. The interpretation 

ensures sketched strokes to be interpreted into meaningful output. The interface overcomes the limitation where 

only a single line drawing can be sketched out as in most existing sketching programs, meanwhile is more 

intuitive to the user.  
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1. INTRODUCTION
Sketch interface is an important, natural application 

to support conceptual design. A sketch system 

implemented in a computer has the advantage 

whereby further manipulations and processing, such 

as 3D modelling from 2D sketch, can be made 

directly with minimal steps within a short time. 

However, this is realistic only if the system allows 

the flexibility of transferring ideas directly from 

designers through a series of freehand sketch. To 

support this process, the system should provide an 

interface that is natural to the user as sketching with 

pen and paper. Users may find sketching with 

extensive menus difficult as a result of frequent 

interruptions. 

On the other hand, the system will also need to be 

able to correctly interpret the user’s intent from the 

drawing of the sketch. A trade-off is often required in 

the design of the calligraphic interface between being 

natural, easy-to-use, and that of accuracy of the 

system’s interpretation of user’s intent. 

One problem in the design of a natural but accurate 

calligraphic interface is that of interpreting 

overtracing of freehand sketch. Overtracing is 

frequently used to enhance and complete an edge 

during freehand sketching. A system that supports 

overtracing, i.e., accepts multiple stroke inputs, has 

the advantage of providing more drawing freedom to 

the user. However, at the same time, overtracing 

further increases the number of possible 

interpretations of a sketch, and as such, making the 

system more susceptible to making mistakes in 

interpreting the user’s actual intent.  

In this paper, we are concerned specifically with the 

interpretation of overtracing freehand sketches of 

geometric objects. Although there are sketch systems 

that support overtracing inputs, they do not actually 

interpret them [FIO02a, GRO00a, KAR05a], or 

provide limited interpretations (e.g., only supports 

certain sketching primitives or has a very strict 
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definition of how a sketch is interpreted) and as such, 

not applicable to general cases [MIT02a, SHE04a].  

Here, we developed a system that supports and 

interprets overtracing freehand sketch of general 

geometric objects (Figure 1). The work presented in 

this paper is a part of our on-going project that is 

aimed at reconstructing 3D models from 2D 

sketches. The preliminary system is developed to 

address the problem of interpreting overtraced 

strokes, i.e., multiple strokes that are part of the same 

geometric primitives.  

Figure 1: A freehand sketch with overtracing and 

its tidy-up output from our system. 

There are two important differences between our 

system and other earlier, calligraphic interface 

systems such as in [MIT02a, SHE04a]. First, our 

system supports and interprets both straight-line and 

curve overtracing sketches. In [SHE04a], the system 

can only interpret straight-line input. Second, our 

system interprets overtracing strokes with various 

curvatures and represents them in parametric 

equations that best represent the strokes. In 

[MIT02a], the overtracing strokes are represented by 

polylines after grouping into core curves and only 

curves with low curvatures are showed in their 

examples. 

Furthermore, some of the systems impose frequent 

interruptions to users during the sketching process. 

This is normally associated with interactive systems 

that prompt users for selection of choices [IGA97a]. 

The frequent interruptions can be a source of 

distractions that can impede the flow of thoughts of 

the designer, and as such, should be addressed in the 

design of a calligraphic interface. 

Therefore, the interpretation process in our system is 

carried out automatically and designed to have 

minimum interruption to the user. To achieve this, 

we designed the system to carry out the interpretation 

process between sketching sessions rather than 

interrupting the user during sketching for further 

inputs to clarify ambiguous cases. This allows a user 

to draw in a more intuitive and natural way without 

diverting attention from the sketching flow. 

2. RELATED WORKS 
Computer calligraphic interface has been receiving 

more attention over recent years. However, despite 

the availability of hardware such as the stylus tablet, 

there are still many problems left to be solved in the 

development of a full-fledged, functional free-hand 

sketching calligraphic interface, such as 

interpretation of multiple strokes, in-context 

classification and clustering of strokes, inferring 

constraints from freehand sketches for tidy-up and 

beautification.   

Perhaps Pavlidis [PAV85a] made the first attempt to 

infer constraints from initial freehand sketch to 

automatically tidy-up rectilinear drawings. However, 

the method is bound to produce unintended and 

undesirable results in practice and negative 

constraints were suggested to address the problem 

[PAV85a]. Similarly in Easel [JEN92a], Jenkins and 

Martin developed a system that can automatically 

analyze and tidy-up sketches. Easel introduced more 

constraints and processed freeform curves [JEN92a]. 

Pegasus [IGA98a, IGA97a] is a prototype system for 

beautification of freehand sketching through an 

interactive process. The system generates several 

candidate strokes based on geometry constraints for 

user selection. This interaction process is to ensure 

that the resulting sketch is as closely desired by the 

user, i.e., the precise and correct sketch that the user 

had in mind but unable to accurately draw himself. 

However, the process of selecting candidates, stroke-

by-stroke, is somewhat distracting to the user. 

Consequently, the system is not suitable for 

conceptual design sketching, where the designer 

must be allowed to sketch without interruption to 

ensure a continuous flow of ideas. 

In addition to the tidy-up process, there are other 

research efforts focused on sketch interpretation 

problems such as the strokes classification and 

clustering. For example, Shpitalni and Lipson 

[SHP97a] presented a method for classifying input 

strokes in an online sketching system that is based on 

linear least squares fitting to a conic section equation. 

They also introduced new endpoints clustering 

scheme based on adaptive tolerances [SHP97a]. Qin 

[QIN00a] introduced a system that classified strokes 

using adaptive threshold and fuzzy knowledge with 

respect to curve’s linearity and convexity. After that, 

2D primitives are identified and a 2D relationship 

inference engine is used to study their relationship 

for 3D recognition.   

Although advances have been made in developing a 

functional calligraphic interface for freehand 

sketching, in general, most of the current 2D 

freehand sketch interpreters have the limitation of 

either not supporting overtracing sketches [JEN92a, 

IGA98a, IGA97a, PAV85a, QIN00a, QIN00b, 

SHP97a], or have limited support ([SHE4a], 

[MIT02a]). SMARTPAPER [SHE4a] groups 

overtracing strokes into segments. The grouping 
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process was carried out in two passes where the 

distance between end points and the slopes of the 

strokes are checked against each other. However, 

SMARTPAPER is limited to straight-line input with 

limited configurations only. Furthermore the system 

does not support curves input. There is no discussion 

of wrongly drawn lines correction and hence it is 

assumed that the system is limited to interpret 

sketches with correct strokes. 3D SKETCH 

[MIT02a] supports both overtracing and hatching 

sketch. Strokes are divided into core strokes (strokes 

that touch the characteristic curves of the object), and 

hatching strokes (strokes that are mapped to the faces 

of the object). Although the system can interpret 

overtracing strokes (e.g., by grouping strokes into 

bundles), there is no explanation of how the 

characteristic strokes are distinguished from the 

hatching strokes. Furthermore, the system used 

polylines to represent the core curve limited its 

accuracy in representing curves with higher 

curvature.

There are other sketch systems that support 

overtracing strokes but do not interpret them as part 

of the sketch. In [GRO00a], the system filters out 

overtraced lines to produce simpler, approximated 

drawings (e.g., filtering out elements that are smaller 

than a specified size) rather than performing 

interpretations in the context of the sketch as a 

whole. In [KAR05a], the sketch recognizer allows 

overtracing symbol recognition based on image 

processing techniques, e.g., it relies entirely on the 

symbol libraries for the recognition where the sketch 

is examined in pixel and hence no work is done on 

interpretation of individual stroke.  In [FIO02a], 

overtracing is used to edit an existing stroke that is 

represented in cubic Bezier splines. The movements 

of oversketching is sampled and interpreted 

specifically as transformation attractor to the 

underlying curve’s control points. The overtracing 

strokes are used as gesture input to alter the existing 

sketch rather than sketching information that actually 

add more lines to the existing sketch. 

In this paper, we propose an interactive calligraphic 

interface that addresses the limitations discussed 

above. Referring to the systems discussed above, we 

use Qin’s curve classification, Shiptalni and Lipson’s 

conic fitting equation, and others geometry 

constraints as the backbone of our system to interpret 

and tidy-up freehand sketch. However, stroke pre-

processing, i.e., segmentation, is not covered in this 

paper. All input strokes are taken to represent only a 

segment or part of a segment. However, the system 

here can be easily extended to include pre-processing 

algorithms for segmentation such as those described 

in [QIN00b, SEZ01a]. 

3. SYSTEM OVERVIEW 
We propose the interpretation of overtracing strokes 

by carrying out a set of tests automatically to group 

and tidy up the sketched strokes into segments. The 

output of the system is edge-vertex graph with initial 

sketched strokes associated to the edges. The graph 

can be transferred into CAD or 3D modelling 

systems for further processing and manipulation 

while the edges can be reproduced in sketchy style 

with the sketched strokes information. Another 

advantage to our proposed system is that the new 

edges that looked similar to the original sketching 

style can be produced from the information obtained 

during the sketching process. However, for this 

paper, we focus only on planar objects and objects 

with ellipsoidal curves for inputs to reduce the 

system’s bounds in producing unintended and 

undesirable result. Additional work is needed to 

extend the system to support the interpretation B-

spline curves and freeform objects. 

Interruptions such as prompts for clarifying 

ambiguous strokes are made at the end of the 

drawing session. For example, our system prompts 

the user to decide whether an ambiguous stroke 

should be deleted or kept with the existing drawing 

only at the end of the drawing session. 

The system can take in the sketch directly from the 

user through a tablet with a digital pen or mouse. A 

stroke is a set of points that is captured during the 

period when the mouse button is pressed down, 

moved, and released. An edge refers to the 

intersection of two faces of a solid object, which in 

2D drawing is represented by strokes. In many 

drawings an edge is often composed of a set of 

discontinuous strokes. The overtracing strokes are 

used to complete, correct or enhance an edge in the 

sketch. The strokes will be processed by the 2D 

sketch interpreter and automatically grouped together 

to represent the associated edges.

The 2D sketch interpretation is divided into five 

stages: grouping and fitting of strokes, end points 

clustering, parallelism correction, in-context 

interpretation and user interactive selection. First, all 

classified strokes (using the linearity test) will be 

grouped according to their positional relations. After 

that, the grouped strokes are fitted collectively into 

an appropriate parametric equation in the least square 

sense. A tidied-up sketch will be produced from the 

equations. Lastly, lines with similar gradients (within 

some tolerance levels) are adjusted to be parallel to 

each other, thus reflecting the user intention because 

it is not possible for the user to draw exactly parallel 

edges in freehand sketch. When there are strokes that 

cannot be interpreted correctly according to 

geometry constraints, the system will tag the strokes 

as ambiguous cases. The system only prompts the 
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user for further action and correction of the 

ambiguous cases at the end of the drawing session. 

After the interpretation process, the system is then 

able to generate tidied-up 2D single line drawing, 

while at the same time, still have initial sketchy 

strokes linked to the appropriate tidied-up edges.  

4. CLASSIFITION AND GROUPING 

4.1 Stroke Classification 
All drawn strokes will be classified into either one of 

the categories, straight-lines or curves. The linearity 

test is used to classify a straight-line from a curve 

[QIN00a]. It is simpler and faster compared to the 

conic curve equation used in [SHP97a]. This is 

because the linearity test involves only a simple 

calculation of two parameters, while the conic curve 

equation requires the calculation of five parameters 

in the quadratic equation. 

The linearity is defined as the ratio of the distance 

between two endpoints of a stroke to the 

accumulative chord length between sequences of 

points captured.  

The linearity value is a floating point between zero to 

one. A greater linearity value for a stroke indicates 

that the stroke is more likely to be a straight-line 

rather than a curve. An ideal straight-line will have 

unity linearity, which rarely happened in freehand 

sketching. Therefore, we set an arbitrary straight-line 

tolerance for the classification.

Each classified stroke will be fitted either into a 

general straight-line equation to generate a straight-

line, or a general conic curve equation to generate a 

curve. With equations, strokes can be represented in 

a more general and effective way compared to using 

a list of points. Furthermore, the representation of 

input strokes with parameterised equations allow for 

more effective and efficient tests of input strokes 

during the interpretation process. 

4.2 Strokes Grouping and Fitting 
The strokes grouping process groups sketched 

strokes into the appropriate edges that they represent. 

However, the grouping process only tries to group 

strokes in the same category, i.e., lines only grouped 

with lines, and curves only grouped with curves. The 

grouped strokes are fitted with equations to obtain 

parameters that best represent them.  

4.2.1 Line Segment Grouping and Fitting 
A straight-line is approximated by fitting data points 

of the strokes into a line equation that give the 

minimum least-square error [ONE83a]. The fitted 

line end points are the points on the equation that 

have the minimum Euclidian distance from the 

sketched stroke end points. All straight-lines will be 

tested to determine whether they should be grouped 

together to represent the same edge. The line 

segments will be grouped together if they are close in 

position and orientation to each other.

4.2.1.1 Distance Tests 
A series of distance tests is used to determine the 

smallest distance between two line segments. The 

tests are carried out in sequence as follows: 

1) Get the smallest Euclidean distances between 

endpoints of lines A and B (Figure 2). The 

resulting distance is compared with a threshold 

value. The threshold value represents the largest 

tolerance of the distance between two line 

segments to be grouped together. The threshold 

value varies according to the lines’ length, as in 

[SHP97a]. If the two line segments (A and B)

pass the threshold test, go to the angular test, 

otherwise go to step 2. 

2) Calculate the perpendicular Euclidean distances 

from line endpoints of one line to the other line 

segment, as shown in Figure 2. Eliminate the 

distances that corresponding projection points 

are out of the other line segment, e.g., (a) and (d) 

in Figure 2. Compare the smallest distance 

among the remains, (b), with a threshold value. 

If the distance is smaller than the threshold, go 

to the angular test. Otherwise the two line 

segments are grouped into separate edges. 

Figure 2: Distance calculated between A and B.

4.2.1.2 Angular Test 
The Angular test is to ensure that strokes grouped as 

one edge are pointing in the same direction.  

The absolute dot product value, which is the smallest 

angle between the lines A and B, is calculated. The 

two lines will be grouped into one segment if the 

angle is smaller than a threshold value. The threshold 

value is adjusted according to the longest length of 

the lines A and B. The value is calculated to be 

inversely proportional to the length of the 

corresponding line, e.g. the longer line will have a 

smaller threshold value. This is because the longer 

length of lines will “look” more apart than shorter 

line with the same angle.  

The lines do not have to intersect, or overlap each 

other to be grouped together. The grouped strokes 

will undergo another round of straight-line least-

square fitting to update its equation and endpoints 

(Figure 3). 

(a)
(c)(b)

(d)
s2

s1

e1

e2

A

B
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              (a)                      (b)                         (c) 

Figure 3: Line Grouping: (a) Initial sketch;  (b) 

Grouped sketch; (c) Fitted result. 

We assume that earlier drawn stroke is more likely to 

represent an edge position and orientation, while 

strokes drawn later are the overtracing to enhance or 

complete the edge. Therefore, earlier drawn stroke is 

used as reference to test against candidate strokes to 

determine if the strokes should be grouped into the 

edge. If a candidate stroke fails the tests for all 

existing edges, then it will be grouped as a new edge 

and used as reference for the edge. 

4.3 Curve Grouping and Conic Fitting 
Strokes classified as curves by the linearity test will 

undergo the curve fitting process before curve 

grouping can be carried out. They will be fitted using 

a conic curve equation [SHP97a] to obtain the curve 

parametric equation. The fitted result will fall in one 

of the following category: straight-line, parabola, 

hyperbola, or ellipse. 

However, straight-lines will not be generated due to 

the pre-processing of strokes through the linearity 

test. Hyperbola and parabola are considered as 

special cases by our system on the assumption that 

they rarely occurred in sketched geometric objects. 

Consequently, we only consider the elliptical curves 

that result from the fitting. Circle is treated as special 

case of ellipse where the major and minor radii are 

identical. After that, all sketched curves are 

represented by the parametric equations generated 

from the conic fitting procedure.  

A general conic curve can be described by the 

following equation [BOW83a]:  

0222),( 22 cfygxbyhxyaxyxQ

In our system, we need to find the least square fitting 

based on the distance between the captured sketching 

points and the equation. The fitting problem is then 

reduced to minimizing the following function: 

n

i

iiiiii fygxbyyhxaxE
1

222 1222

We obtain the coefficients (a, h, b, g, and f) by 

solving the partial derivatives of E equals to zero. 

The central point, major and minor radii, and the 

rotation angle of an ellipse can be obtained from the 

equation as in [QIN99a]. 

A bounding box, the smallest rectangle to enclose a 

fitted curve, is used to test for the curves adjacency 

for grouping them together. If the bounding boxes 

overlap one another, the sketched strokes associated 

with the curves will be grouped together. The 

grouped strokes will be fitted again. The overlapping 

test will be repeated for new fitted curve until there is 

no more overlapping bounding boxes in the sketch 

(Figure 4).  

      (a)                 (b)         (c)                     (d) 

Figure 4: Curve Grouping and Fitting: (a) Initial 

sketch; (b) Generate bounding box for each 

stroke; (c-d) Grouped strokes with fitted result. 

4.3.1 Curve Range 
A curve range is calculated from its starting point to 

the ending point, with reference to the centre point of 

the curve [JEN92a]. The user has the freedom in 

sketching a curve in any desired direction. However, 

our system standardized all curve range in anti-

clockwise. The ending angle can be a value greater 

than 360 degree, as shown in Figure 5. 

Figure 5: Curve range calculation. 

Over-sketched and incomplete curves often occur in 

freehand sketching. Our system will tidy-up the 

curves into smooth ellipse or circle as shown in 

Figure 6. The curve range for grouped curves is 

updated automatically by our system, as shown in 

Figure 7. 

Figure 6(a):  Over-sketched Curve. 

Figure 6(b): Incomplete Curve. 

0    360   720 

x

y
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(a)         (b)          (c)              (d)                (e)                 (f) 

Figure 7: New curve range is determined from 

grouped curves: (a) Initial sketch; (b-c) Curve 

with initial range; (d) Additional stroke; (e) 

Strokes are grouped as a curve; (f) Curve with 

new range. 

5. ENDPOINT CLUSTERING
After the grouping process, strokes representing a 

particular edge are approximated by a single line or 

ellipse parametric equation. The endpoint clustering 

process ensures that the corresponding edge 

endpoints meet together and that a close loop can be 

formed for edge-graph extraction. 

5.1 Straight-line Junction Clustering 
The straight-line junction clustering is applied for the 

line-to-line clustering. Before the clustering can be 

applied, the system first finds out endpoints of edges 

that are adjacent to each other and within the 

tolerance zone as discussed in [SHP97a]. Edges with 

endpoints that lie within the zone will be clustered 

together to form a junction. In case of a junction with 

more than two edges, the system will select two 

edges with the most number of strokes to determine 

the junction point, the rest of the edges will 

automatically snapped to the point (Figure 8). 

     (a)            (b)  (c)         (d) 

Figure 8: Straight-line junction clustering: (a) 

Initial sketch; (b) Clustering result; (c) Modified 

sketch; (d) Updated clustering result. 

5.2 Lines and Curve Junction Clustering 
The curve edge will be adjusted based on the line 

edges endpoints position so that the curve edge 

endpoints (open curve) or boundaries (closed curve) 

will meet the line edges endpoints to form a close 

loop (Figure 9).   

     (a)                 (b)        (c)     (d) 

Figure 9: Endpoint clustering for lines and curves 

junctions: (a) Initial sketch; (b) Fitted result; (c-d) 

Clustered result. 

The orientation of the curve is determined to be 

parallel to the imaginary line segment L1 that 

connects the endpoints of lines that are to form 

junctions with the curve. After that, the curve’s 

central point is determined to be the middle point of 

the line segment L1. The major or minor radius of 

the curve is calculated based on the length of L1, 

with the other radius being adjusted according to the 

distance from sketched curve to central point. For 

open curve, new curve range is determined based on 

the line endpoints. 

For closed curve, lines are adjusted to be tangent to 

the curve boundaries, that is, the line is snapped to 

the curve at only one intersection point. Figure 10 

shows an example of the adjustment made on such 

junction. 

         (a)     (b)         (c)                 (d) 

Figure 10: Intersection adjustment on full ellipse 

for line and curve junction (a) Initial sketch; (b) 

Fitted result; (c) Before adjustment; (d) After 

adjustment.

5.3 Parallelism Correction 
After the endpoints clustering process, the edges of 

the object can be represented by single 2D geometry, 

in perfect straight-lines or ellipses that are joined to 

each other. To allow some tolerance for freehand 

sketching error, straight-lines are tested if they have 

similar gradients or orientations. A slight change in 

the orientation of lines can be done to ensure 

parallelism in the sketch, which is often difficult to 

be achieved by freehand sketching.  

Each straight-line edge is tested against all the other 

edges to obtain their similarity with each other. 

Edges drawn with more number of strokes are 

determined to be more important and such, are used 

as the reference. All adjustment of an edge is 

achieved by rotating at the middle point of the edge. 

Figure 11 shows an example of the parallelism 

correction.

Figure 11: A rectangle before and after 

parallelism correction. 

If the parallelism correction process changes line 

endpoints, the clustering process (as discussed in 5.1) 

will be carried out for the associated strokes to 

ensure the junction connectivity. 
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6. IN-CONTEXT INTERPRETATION 

OF STROKE 
The calligraphic interface system developed here is 

meant as a preliminary system taking in 2D sketches, 

which are then interpreted so that they can later be 

used for 3D models reconstruction. As such, the 

system’s interpretation is set to process sketches of 

3D geometric objects drawn on 2D. We consider the 

isometric projection, although other projections can 

be used as well.

For a 2D sketch, a closed loop line or curve is used 

to represent a face of a 3D geometric object. A 

closed loop is normally interpreted as a surface, 

depending on the shape of the object. A complete 3D 

object should have no open edge in sketch. Any 

stroke with endpoint unconnected to a junction in the 

sketch will be considered as an error, and the stroke 

will be tagged as ambiguous. The system will 

highlight the strokes and prompt the user with a 

choice to either delete or keep them. If the user 

decides not to delete the strokes, the system will 

reinterpret the strokes based on the context so that 

they satisfied the geometry constraints. 

There are two sources for the ambiguous strokes. 

Firstly, the strokes can be caused by the 

misclassification of strokes at the beginning of the 

interpretation. For example, a short curve drawn with 

high sketching speed can be misinterpreted as a line 

by the classification method. To correct it, the system 

will reclassified it as curve, and continue with the 

grouping and fitting with other strokes in the sketch. 

Secondly, the stroke might be caused by poor 

sketching skill of the user, where overtracing strokes 

that meant to be grouped into an edge are sketched 

too far apart. The overtracing strokes failed the 

grouping tests and were grouped into separate edge. 

The both edges have the same endpoints that can be 

detected by our system, and grouped into one edge. 

Similar restriction applies to cylindrical object, 

where straight-lines only intersect curve at the 

boundaries of the curve surface (Figure 12).

     (a)               (b)                  (c)              (d) 

Figure 12: Lines detected as ambiguous with 

endpoints at an arc: (a) Input sketch; (b) Detected 

ambiguous stroke is in thick red color; (c) Result 

when user choose to delete the strokes; (d) Result 

when user choose to merge the strokes. 

The in-context interpretation also allows the user to 

modify sketch with overtracing strokes (Figure 13). 

The system will try to connect ‘open’ strokes in the 

sketch to its nearest junctions, resulting regrouping 

and refitting of the strokes. The fitted result is 

therefore moved by the new strokes and modified the 

initial sketch. 

       (a)                  (b)                 (c)                  (d)

Figure 13: Modification by overtracing; (a-b) 

Initial sketch with fitted result; (c-d) Sketch with 

‘open’ strokes and new fitted result. 

7. IMPLEMENTATION AND 

EXAMPLES
The system is implemented using Visual C++ under 

the Windows 2000 operating system. The input 

device is a traditional digitizing tablet that senses the 

drawing on its screen.  

Figure 14 shows some examples of the sketch before 

and after tidy-up with our system. The interface 

allows the user to sketch freely as though using pen 

and paper. The system will interpret and tidy-up the 

sketch into a single line drawing.

            (a)             (b)                      (c) 

Figure 14: (a) Input sketch; (b) Tidied-up sketch; 

(c) Single-line output. 

Our system keeps the initial sketch information and 

associates them with the corresponding edges in tidy-

up drawing. The information can be used to render 

additional new strokes in the sketch that are of 

similar appearance to the original sketch even though 

the new strokes are not actually drawn by the user. 

This suggests that the result from our system can be 

used as input for non-photorealistic rendering (NPR) 

system that renders 3D objects with sketchy 

appearance that is similar to the original sketch by 

the user. Figure 15 shows the result of such an 

implementation. 
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            (a)                      (b)                           (c) 

Figure 15: (a) Initial sketch; (b) 3D model in 

NPR; (c) 3D model after rotation. 

8. CONCLUSION
This paper presents an interactive calligraphic 

interface for conceptual design, which supports 

multistroke sketching. It is designed to handle 

freehand sketches with overtracing and 

imperfections. User can sketch over the existing 

drawing to enhance, complete or correct an edge. 

The system provides in-context interpretation for 

sketch that depict 3D geometric object. The 

interpretation provides verifications and corrections 

for errors made during sketching session, thus 

achieving meaningful tidy-up result.  

We proposed an alternative interpretation of 

overtracing strokes from freehand sketch input from 

the existing systems. We consider all strokes as part 

of the sketch and grouped them into edges. We 

introduce a new method to group multiple curves 

using the minimal enclosing bounding box. The 

method is fast and hence suitable for online 

sketching.

The work presented here is only the first part of our 

final sketched-based 3D modeling and rendering 

system. The freehand sketch input is processed and 

tidied-up for the 3D reconstruction. The 

reconstructed 3D model will have a photorealistic 

appearance by default. The future work is to 

reconstruct and display the 3D model with the 

appearance similar to the original sketch in a non-

photorealistic rendering form.  
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