668 research outputs found

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Application of artificial neural network to classify fuel octane number using essential engine operating parameters

    Get PDF
    Real-time fuel octane number classification is essential to ensure that spark ignition engines operation are free of knock at best combustion efficiency. Combustion with knock is an abnormal phenomenon which constrains the engine performance, thermal efficiency and longevity. The advance timing of the ignition system requires it to be updated with respect to fuel octane number variation. The production series engines are calibrated by the manufacturer to run with a special fuel octane number. Presently, there is no research which takes into account the fuel tendency to knock in real-time engine operation. This research proposed the use of on-board detection of fuel octane number by implementing a simple methodology and use of a non-intrusive sensor. In the experiment, the engine was operated at different speeds, load, spark advance and consumed commercial gasoline with research octane numbers (RON) 95, 97 and 100. The RON classification procedure was investigated using regression analysis as a classic pattern recognition methodology and artificial neural network (ANN) by executing combustion properties derived from in-cylinder pressure signal and engine rotational speed signal. The in-cylinder pressure analysis illustrated the knock-free, light-knock and heavy-knock regions for all engine operating points. The results showed a special pattern for each fuel RON using peak in-cylinder pressure, maximum rate of pressure rise and maximum amplitude of pressure oscillations. Besides, there is a requirement for pre-defined threshold or formula to restrict the implementation of these parameters for on-board fuel identification. The ANN model efficiency with pressure signal as network input had the highest accuracy for all spark advance timing. However, the ANN model with rotational speed signal input only had the ability to identify the fuel octane number after a specific advance timing which was detected at the beginning of noisy combustion due to knock. The confusion matrix for the ANN with speed signal input had increased from 68.1% to 100% by advancing the ignition from -10° to -30° before top dead centre. The results established the ability of rotational speed signal for fuel octane classification using the relation between knock and RON. The implication is that all the production spark ignition engines are equipped with engine speed sensor, thus, this technique can be applied to all engines with any number of cylinders

    Intelligent techniques for improved engine fuel economy

    Get PDF
    ii This thesis presents an investigation into a novel method of estimating the trajectory (future direction and elevation) of a vehicle, and subsequently influencing the control of an engine. The technique represents a convenient and robust method of achieving road prediction, to form a fuzzy system that „looks ahead‟, leading potentially to improved fuel consumption and a consequent reduction in exhaust emissions. The work described in this thesis brings together two modern technologies, Neuro-fuzzy techniques and Global Positioning System, and applies them to engine/vehicle control. The intelligent GPS-based control system presented in this thesis utilises information about the current vehicle position and upcoming terrain in order to reduce vehicle fuel consumption as well as improve road safety and comfort. The development of such in-vehicle control systems has provided static and dynamic road information. The vehicle running parameters have been mathematically defined whilst the engin

    Studies on SI engine simulation and air/fuel ratio control systems design

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.More stringent Euro 6 and LEV III emission standards will immediately begin execution on 2014 and 2015 respectively. Accurate air/fuel ratio control can effectively reduce vehicle emission. The simulation of engine dynamic system is a very powerful method for developing and analysing engine and engine controller. Currently, most engine air/fuel ratio control used look-up table combined with proportional and integral (PI) control and this is not robust to system uncertainty and time varying effects. This thesis first develops a simulation package for a port injection spark-ignition engine and this package include engine dynamics, vehicle dynamics as well as driving cycle selection module. The simulations results are very close to the data obtained from laboratory experiments. New controllers have been proposed to control air/fuel ratio in spark ignition engines to maximize the fuel economy while minimizing exhaust emissions. The PID control and fuzzy control methods have been combined into a fuzzy PID control and the effectiveness of this new controller has been demonstrated by simulation tests. A new neural network based predictive control is then designed for further performance improvements. It is based on the combination of inverse control and predictive control methods. The network is trained offline in which the control output is modified to compensate control errors. The simulation evaluations have shown that the new neural controller can greatly improve control air/fuel ratio performance. The test also revealed that the improved AFR control performance can effectively restrict engine harmful emissions into atmosphere, these reduce emissions are important to satisfy more stringent emission standards

    Optimizing IC engine efficiency: A comprehensive review on biodiesel, nanofluid, and the role of artificial intelligence and machine learning

    Get PDF
    Transportation and power generation have historically relied upon Internal Combustion Engines (ICEs). However, because of environmental impact and inefficiency, considerable research has been devoted to improving their performance. Alternative fuels are necessary because of environmental concerns and the depletion of non-renewable fuel stocks. Biodiesel has the potential to reduce emissions and improve sustainability when compared to diesel fuel. Several researchers have examined using nanofluids to increase biodiesel performance in internal combustion engines. Due to their thermal and physical properties, nanoparticles in a host fluid improve engine combustion and efficiency. This comprehensive review examines three key areas for improving ICE efficiency: biodiesel as an alternative fuel, application of nanofluids, and artificial intelligence (AI)/machine learning (ML) integration. The integration of AI/ML in nanoparticle-infused biodiesel offers exciting possibilities for optimizing production processes, enhancing fuel properties, and improving engine performance. This article first discusses, the benefits of biodiesel concerning the environment and various difficulties associated with its usage. The review then explores the effects and characteristics of nanofluids in IC engines, aiming to know their impact on engine emissions and performance. After that, this review discusses the utilization of AI/ML techniques in enhancing the biodiesel-nanofluid combustion process. This article sheds light on the ongoing efforts to make ICE technology more environmentally friendly and energy-efficient by examining current research and emerging patterns in these fields. Finally, the review presents the challenges and future perspectives of the field, paving the way for future research and improvement

    Predicting engine performance and exhaust emissions of a spark ignition engine fuelled with 2-butanol-gasoline blends using RSM and ANN models

    Get PDF
    Experimental investigation in engine testing using alternative fuels always subjected to more engine operation, time-consuming and require expensive cost of materials. For these reasons, this study is aimed to predict the engine performance and exhaust emissions using 2-butanol-gasoline blended fuels with percentage volume ratios of 5:95 (GBu5), 10:90 (GBu10) and 15:85 (GBu15) of gasoline to 2-butanol, respectively, operated in a four-cylinder, four-stroke port fuel 4G93 Mitsubishi spark ignition engine at 30%, 50% and 70% of throttle position using artificial neural network and response surface methodology techniques. Based on the experimental investigation, at 30%, 50% and 70% of throttle position, 2-butanol–gasoline blended fuels indicated an improvement in engine brake power, brake torque and brake thermal efficiency with increasing 2-butanol content in the gasoline fuels. The engine performance indicated improvement in brake power, brake torque and brake thermal efficiency in the average of 2 to 15% and 0.2% to 1.5%,respectively, for all of the tested throttle position with respect to increasing the 2-butanol content in the gasoline fuel. For exhaust emissions, it was recorded that, a significant decreased of NOx, CO, CO2 and HC for GBu5, GBu10 and GBu15, by an average of 7.1%, 13.7%, and 19.8% than G100, respectively, over a speed range of 1000 to 4000 RPM. Other emission contents indicate lower CO and HC but higher CO2 from 2500 to 4000 RPM for the blended fuels. The engine speeds, 2-butanol blended fuels and engine throttle position and results from the engine performance and exhaust emissions characteristics was then used as the input and output for the for the artificial neural network and response surface methodology. Based on the RSM model, performance characteristics revealed that the increment of 2-butanol in the blended fuels lead to the increasing trends of brake power, brake torque and brake thermal efficiency. Nonetheless, a marginally higher brake specific fuel consumption was observed. Furthermore, the RSM model suggests that the presence of 2-butanol exhibits a decreasing trend of NOx, CO, and HC, however, a higher trend was observed for CO2 exhaust emissions, which are in accordance with the experimental results. Meanwhile, for ANN it was shown that the two hidden layer ANN model trained with the tansig-logsig activation function combination yields the best correlation coefficient, R at a value of 0.9995 against other activation function combinations evaluated. However, to attain a higher fidelity prediction model, all the configurations are further assessed by additional statistical error and correlation metrics, namely Mean Absolute Percentage Error (MAPE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Theil U2, Nash-Sutcliffe Efficiency (NSE) and Kling–Gupta Efficiency (KGE). Following the evaluation, the best activation function combination for the brake power, BSFC, BTE, NOx, CO, and CO2 ANN predictive models is the tansig-logsig configuration. As for Brake torque and HC, the tansig combination provides a better prediction. It can be conclusively shown from the study that the developed ANN models have a higher predictive accuracy as compared to the RSM model

    Automotive Powertrain Control — A Survey

    Full text link
    This paper surveys recent and historical publications on automotive powertrain control. Control-oriented models of gasoline and diesel engines and their aftertreatment systems are reviewed, and challenging control problems for conventional engines, hybrid vehicles and fuel cell powertrains are discussed. Fundamentals are revisited and advancements are highlighted. A comprehensive list of references is provided.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72023/1/j.1934-6093.2006.tb00275.x.pd

    Powertrain Systems for Net-Zero Transport

    Get PDF
    The transport sector continues to shift towards alternative powertrains, particularly with the UK Government’s announcement to end the sale of petrol and diesel passenger cars by 2030 and increasing support for alternatives. Despite this announcement, the internal combustion continues to play a significant role both in the passenger car market through the use of hybrids and sustainable low carbon fuels, as well as a key role in other sectors such as heavy-duty vehicles and off-highway applications across the globe. Building on the industry-leading IC Engines conference, the 2021 Powertrain Systems for Net-Zero Transport conference (7-8 December 2021, London, UK) focussed on the internal combustion engine’s role in Net-Zero transport as well as covered developments in the wide range of propulsion systems available (electric, fuel cell, sustainable fuels etc) and their associated powertrains. To achieve the net-zero transport across the globe, the life-cycle analysis of future powertrain and energy was also discussed. Powertrain Systems for Net-Zero Transport provided a forum for engine, fuels, e-machine, fuel cell and powertrain experts to look closely at developments in powertrain technology required, to meet the demands of the net-zero future and global competition in all sectors of the road transportation, off-highway and stationary power industries
    • 

    corecore