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ABSTRACT 

Real-time fuel octane number classification is essential to ensure that spark 

ignition engines operation are free of knock at best combustion efficiency. Combustion 

with knock is an abnormal phenomenon which constrains the engine performance, 

thermal efficiency and longevity. The advance timing of the ignition system requires 

it to be updated with respect to fuel octane number variation. The production series 

engines are calibrated by the manufacturer to run with a special fuel octane number. 

Presently, there is no research which takes into account the fuel tendency to knock in 

real-time engine operation. This research proposed the use of on-board detection of 

fuel octane number by implementing a simple methodology and use of a non-intrusive 

sensor. In the experiment, the engine was operated at different speeds, load, spark 

advance and consumed commercial gasoline with research octane numbers (RON) 95, 

97 and 100. The RON classification procedure was investigated using regression 

analysis as a classic pattern recognition methodology and artificial neural network 

(ANN) by executing combustion properties derived from in-cylinder pressure signal 

and engine rotational speed signal. The in-cylinder pressure analysis illustrated the 

knock-free, light-knock and heavy-knock regions for all engine operating points. The 

results showed a special pattern for each fuel RON using peak in-cylinder pressure, 

maximum rate of pressure rise and maximum amplitude of pressure oscillations. 

Besides, there is a requirement for pre-defined threshold or formula to restrict the 

implementation of these parameters for on-board fuel identification. The ANN model 

efficiency with pressure signal as network input had the highest accuracy for all spark 

advance timing. However, the ANN model with rotational speed signal input only had 

the ability to identify the fuel octane number after a specific advance timing which was 

detected at the beginning of noisy combustion due to knock. The confusion matrix for 

the ANN with speed signal input had increased from 68.1% to 100% by advancing the 

ignition from -10° to -30° before top dead centre. The results established the ability of 

rotational speed signal for fuel octane classification using the relation between knock 

and RON. The implication is that all the production spark ignition engines are 

equipped with engine speed sensor, thus, this technique can be applied to all engines 

with any number of cylinders. 
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ABSTRAK 

Masa sebenar klasifikasi nombor oktana bahan api adalah penting untuk 

memastikan operasi enjin pencucuhan percikan adalah bebas daripada ketukan 

pembakaran yang efisien. Pembakaran dengan ketukan adalah satu fenomena yang 

tidak normal yang mengekang prestasi enjin, kecekapan haba dan jangka hayat. Masa 

awal daripada sistem penyalaan memerlukan ia dikemas kini berdasarkan variasi 

nombor oktana bahan api. Enjin siri pengeluaran ditentukur oleh pengilang untuk 

beroperasi dengan nombor oktana bahan api khas. Pada masa ini, tidak ada 

penyelidikan yang mengambil kira kecenderungan bahan api untuk ketukan semasa 

enjin operasi. Kajian ini mencadangkan pengesanan penggunaan ofon-lembaga 

nombor oktana bahan api dengan melaksanakan kaedah yang mudah dan penggunaan 

sensor yang tidak mengganggu. Dalam eksperimen ini, enjin beroperasi pada kelajuan 

yang berbeza, beban, menganjakkan percikan berdasarkan petrol komersial dengan 

nombor penyelidikan oktana (RON) 95, 97 dan 100. Prosedur klasifikasi RON telah 

dikaji dengan menggunakan analisis regresi sebagai satu kaedah pengiktirafan corak 

klasik dan rangkaian neural buatan (ANN) dengan melaksanakan ciri-ciri pembakaran 

yang diperoleh daripada isyarat tekanan dalam silinder dan isyarat kelajuan putaran 

enjin. Analisis tekanan dalam silinder digambarkan berdasarkan kawasan ketukan 

bebas, ketukan kecil dan ketukan kuat pada semua kondisi operasi enjin. Hasil kajian 

menunjukkan satu corak khas bagi setiap bahan api RON yang menggunakan tekanan 

dalam silinder, kenaikan tekanan pada kadar maksimum dan ayunan tekanan pada 

amplitud maksimum. Selain itu, terdapat keperluan untuk ambang atau formula yang 

telah ditetapkan untuk menyekat pelaksanaan parameter ini untuk mengenal pasti 

bahan api sebenar. Kecekapan model ANN dengan isyarat tekanan sebagai input 

rangkaian mempunyai ketepatan tertinggi untuk semua pemasaan awal percikan. 

Walau bagaimanapun, model ANN dengan isyarat putaran input kelajuan hanya 

mempunyai keupayaan untuk mengenal pasti nombor oktana bahan api selepas 

menganjakkan pemasaan yang spesifik yang telah menyebabkan permulaan untuk 

pembakaran yang bising berpunca daripada ketukan. Matriks kekeliruan bagi ANN 

dengan input isyarat kelajuan telah meningkat dari 68.1% kepada 100% dengan 

menganjakkan pencucuhan dari -10 ° hingga -30 ° sebelum titik mati atas. Keputusan 

menunjukkan keupayaan isyarat kelajuan putaran untuk pengelasan oktana bahan api 

menggunakan hubungan antara ketukan dan RON. Implikasinya adalah bahawa semua 

enjin pengeluaran cucuhan percikan dilengkapi dengan isyarat kelajuan enjin, dengan 

itu, teknik ini boleh digunakan untuk semua enjin tanpa mengira bilangan silinder.
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1 CHAPTER 1 

1 INTRODUCTION 

1.1 Foreword 

Based on global statistics for passenger car production in 2012, more than 

165,000 passenger cars were produced per day (60 million per year). Over one billion 

passenger cars are driven in the world today [1]. Passenger cars and all types of trucks 

use internal combustion engine as their power source. Such vehicles are able to travel 

on roads by converting chemical energy of various types of fuels during the 

combustion process to kinetic energy. Gasoline, gasoil, ethanol, compressed natural 

gas (CNG), and liquid petroleum gas (LPG) are general fuels used in internal 

combustion engine (ICE). Low efficiency and exhaust emissions produced during 

combustion process are the most damaging output of internal combustion engine. In 

spark ignition (SI) engines, the ideal cycle efficiency is between 56% and 61%, and in 

car production, just 14%-30% of the energy generated from the consumed fuel is used 

to drive the car. However, practical compression ignition (CI) engines work 30%-35% 

more efficiently than SI engines [2]. In the 1970's, electronic technologies were 

introduced to automobile system controllers and mechanical control systems were 

replaced with electronic type in SI engines [3]. The engine electronic control unit 

(ECU) does the same task for ignition system after removing the distributer and also 

ECU excites the electrical injectors which exchanging with engine carburettor. The 

use of electronic control system resulted in improving the fuel efficiency, emission 

reduction, and torque production [4]. The number of engine systems components and 

controllers increased due to improvement in fuel economy and emission reduction. In 

addition, legislation related to decreasing the amount of exhaust emission tightened. 
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 Engine controllers regulated all combustion details to reduce accurately 

exhaust emission. The design process and the addition of any new systems to the 

engine increase the complexity and production cost. Systems such as variable valve 

timing (VVT), exhaust gas recirculation (EGR) and charge-boosting systems (i.e., 

supercharger, turbocharger, and intercooler) influence the in-cylinder charge 

composition. Complexities of combustion control increase by controller objectives 

such as fuel efficiency, emission reduction, misfire and knock detection. 

Distinguishing between effects of several parameters that influence the combustion 

process has become more difficult with the increased number of engine systems. 

Furthermore, fuel octane number variation and the introduction of new bio-fuel 

increase such complexity. 

ECU of the SI engines has two main tasks: managing the fuel injection and 

managing spark ignition (or injection timing in CI engine). The engine ignition system 

task is to ignite the air-fuel mixture in the combustion chamber at the ignition timing 

with adequate energy. Ignition timing depends on several factors such as engine speed 

and load (by measuring the manifold air pressure), engine warm-up condition, and 

knock occurrence. For instance, by providing a rich mixture and retard ignition, the 

combustion continues into the exhaust system, resulting in speeding up the warm-up 

process of three-way catalyst (TWC). The early electronic ignition control system was 

an open-loop system that used a look-up table provided in engine test procedure with 

dynamometer. The ignition timing look-up table consisted of a matrix that considered 

required advance ignition for every engine speed and load. The benefit of this approach 

was to overcome the non-linearity of engine phenomena. In addition, engine ignition 

timing is affected by in-cylinder mixture properties. The fuel octane number, laminar 

flame speed, turbulent intensity, residual fraction, temperature, and equivalence ratio 

affect the ignition timing. Any change in these parameters requires that the look-up 

table data be updated to adjust the ignition to achieve maximum brake torque (MBT) 

timing [5].  

A combustion closed-loop control system requires a feedback signal from 

combustion process and also uses look-up table as a reference for adjusting the 

ignition. It prevents the engine from operating in knock region by monitoring the 

vibration signal from a knock sensor installed on engine cylinder block. The controller 



 

 

3 

works as a closed-loop control system, and ignition timing is retarded when a knock 

event is detected. However, retard ignition reduces the combustion efficiency and 

engine works far from MBT timing [6]. 

1.2 Background 

Ideally, nearly all of the fuel energy would be released in ICEs when the piston 

was at top dead centre (TDC) and ready to begin the power stroke. In SI engines with 

port fuel injection (PFI), the fuel is premixed with air before entering the combustion 

chamber and energy release begins when the spark plug is fired. Significant time is 

required for the flame front to progress from the spark plug to the far side of the 

combustion chamber; thus, the spark plug must be fired before TDC. Spark advance 

refers to the number of crankshaft degrees before TDC at which the spark plug fires. 

Because initial flame speed is nearly constant, greater spark advance is required at 

higher engine speeds to allow sufficient time for the flame front to cross the 

combustion chamber. The unstretched laminar burning velocity depends on fuel type 

and equivalence ratio, 33.3 cm/s for iso-octane and 38.9 cm/s for n-heptane at 

stoichiometric mixture. Greater spark advance is also required for leaner mixtures, 

because they burn more slowly than chemically correct mixtures. A lean mixture is 

one in which the fuel-to-air ratio is less than the chemically correct ratio [7]. The 

ignition control system target is to set the MBT timing at CA50 (crank angle which 50 

percent of mixture burned); therefore, the spark advance strategy after this value or the 

occurrence of the audible knock should be stopped. 

Ignition timing is one of the major factors that directly affects the combustion 

process. Combustion phasing, such as crank angle for the consumption of 50% of the 

fuel mass (CA50), crank angle for the consumption of 90% of the fuel mass (CA90), 

the duration from consumption of 10% to 90% of the air/fuel mixture (CA10-CA90 

duration), and location of peak pressure (LPP), is influenced by advancing the ignition 

as the starting point of combustion. The general combustion phasing location is CA50, 

the point when 50% of in-cylinder mixture mass burned in crank angle degree (CAD). 

The indicated mean effective pressure (IMEP) is most relevant parameter in terms of 

engine efficiency and CA50 location defines the MBT timing point. Another definition 
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for MBT is "minimum spark advance for best torque", illustrating that ignition timing 

is restricted by knock phenomena. At MBT timing, the maximum acceleration point 

of mass fraction burned (MFB) is located at around top dead centre. The optimized 

CA50 is 8-10° aTDC, and the peak cylinder pressure location is around 15° aTDC. 

Consequently, the only requirement for handling the combustion into MBT timing is 

adjusting the ignition in such a way that CA50 can occur around 8-10° aTDC [8-9]. 

Therefore, the main target of combustion control designer for ignition advance timing 

is to set the CA50 at MBT timing [5,10]. 

 To adjust the ignition on MBT location, look-up table (or map) based ignition 

control system is introduced. It is quite hard and time consuming to prepare the ignition 

timing map. However, it is easy to implement it on the engine ignition system. Since 

maps are developed in laboratory measurements, data are only acceptable for that 

condition, i.e., engine wearing and production tolerances decrease the control 

accuracy. Several parameters reduce or disable the map-based control system during 

the engine operation such as fuel octane number, engine subsystems alteration, 

environment variety, etc. 

A look-up table structure consists of a matrix that defines the optimum ignition 

timing for each engine operation point with respect to manifold air pressure (MAP) 

and engine speed. A microprocessor serves to apply map data by receiving the engine 

speed and load signal from related sensors. Moreover, the correction for engine warm-

up condition and torque reduction request from automobile stability system is applied 

during engine operation. Additionally, in a closed-loop map-based ignition control 

system, an extra correction has been done with respect to knock sensor signals for 

preventing repetitive knock events. A new window is opened for such system 

improvement by transition from mechanical system to map-based electronic system 

that conquered the engine non-linear phenomena. 

SI engines consume a wide variety of fuel with different characteristics such 

as octane number and laminar flame speed, which directly affect the ignition timing. 

Gasoline, LPG, CNG, Hydrogen, and E85 (a blend of 85% ethanol and 15% gasoline) 

are common fuels commercially used in SI engines. Different burning rate and knock 

tendency increase the complexity of the ignition timing map; thus, an individual map 

for each fuel should be designed. In conclusion, an essential control algorithm capable 
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of detecting and predicting the properties of fuel with respect to fuel efficiency and 

emission reduction is required. For introducing a new control algorithm for real-time 

ignition adjustment, knock and misfire limitation, MBT settles, and emission reduction 

should be taken into account. By implementing the model-based spark advance 

controller, SI engines can work with a wide range of fuel octane number; an approach 

that improves the use of new energy sources and severely reduces the research cost for 

new fuel utilization. The overall cost of improving the octane number and fuel 

production process, essentially for bio-fuel, can be reduced by this approach. 

Therefore, the engine performance and efficiency can be enhanced when various types 

of fuel are applied.  

1.3 Statement of the Problem 

This research aims at finding a useful feed-back signal from combustion 

process for designing a closed-loop control system. The in-cylinder pressure 

measurement, using pressure transducer or ion current sensor, has been applied to 

several studies on knock detection. However, the complexity of signal analysis, high 

expense, low precision, and poor stability have limited the implementation of such 

controllers that use such signals. Furthermore, cylinder-to-cylinder variations have 

been ignored because the system needs individual combustion analysis for each 

cylinder. Several sample sets are needed to increase the accuracy in steady state 

condition, making it difficult to consider engine transient condition [11-15]. 

Numerous techniques have been adopted to reconstruct the cylinder pressure 

from the instantaneous crankshaft speed measurement [16-17]. The engine angular 

velocity and its derivative has been implemented as inputs in artificial neural network 

(ANN) to estimate the LPP [18], finding the correlation between torque and engine 

speed [19], instantaneous pressure estimation [20], IMEP estimation [21] and different 

diesel fuel identifier [22]. In this research, the engine rotational speed has been 

implemented as the input into an ANN to identify different fuel octane numbers. The 

objectives of an adaptive model-based ignition control system are to adjust the spark 

advance to locate the MBT timing on CA50 and to prevent knock occurrence or knock 

repetition at all engine operating conditions. Therefore, the main targets of this 
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research are to develop a neural network structure that is able to identify the fuel octane 

number and to determine the correction requirement for spark advance with a high 

degree of freedom related to variation in fuel properties and combustion chamber 

tendency to surface ignition. 

1.4 Hypothesis 

When the engine control unit technology evolves and when a new fuel is 

introduced to be used in an internal combustion engine, the most important issue is 

how to update the engine maps with new conditions. For instance, engines that 

simultaneously consume gasoline and CNG need two different spark timing look-up 

tables for each type of fuel. Furthermore, engine controllers need to be updated with 

current engine operation parameter; in other words, if the octane number is defined as 

a fixed parameter in the laboratory, the controller operation will be corrected for that 

situation and pump-to-pump fuel properties will be varied to enhance the engine 

efficiency. 

Demand for high fuel efficiency and emission reduction has increased the 

demand for new engine actuators. VVT, EGR, and charge-boosting systems are the 

most popular and new technologies in SI engines [23-25]. The cost of implementing 

such systems is very high, which confines its application to engine. Therefore, a new 

approach for updating the control parameters during the engine operation is proposed 

in this research. This technique can detect any changes in the fuel properties or engine 

systems. While spark timing is the main issue in SI engines equipped with PFI system, 

the injection timing is the control parameter for CI engines. Similar to SI engines, CI 

engines can be reutilized via the proposed approach for their fuel injection timing.  

1.5 Objectives of the Research 

The present research mainly aims at utilizing a neural network structure for on-

board identification of fuel octane number. The network has the ability to use an 
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operating parameter as the network input and the fuel octane number as the network 

output. The spark advance will be updated with regard to identification of the octane 

number. The specific objectives of this research are:  

1) To investigate and validate the knock intensity for different fuel octane number 

at altered engine speed and load using in-cylinder pressure signal and cylinder 

block vibration signal. 

2) To compare and validate the knock detection results using the experimental 

signals using knock prediction results obtained from GT-Power simulation 

software.  

3) To investigate the engine operating parameter thus finding a reliable factor 

related to octane number variety.  

4) To design and develop an ANN structure for fuel octane number identification 

using input-output data obtained experimentally.  

1.6 Scope of the Research 

The scope of this research is categorized into four items as follow:  

1) Organization of test rig to run an SI engine at different speed and load with 

different fuels: 

 Modification of the engine harness and installation programmable ECU on 

a series production engine in order to adjust the injection duration and 

sweep the ignition timing; 

 Installation of in-cylinder pressure transducer and crank angle encoder to 

collect the experiment requirement for knock analysis. 

2) To perform the test point considering: 

 The engine operation condition limited to low engine speed ranges (as 

knock intensity is high), the engine load increased from 20 to 60% of 

maximum brake torque with 20% interval; 
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 The octane number of fuels used in this research is limited to RON95, 

RON97, and RON100 (representing research octane number (RON) for 

commercial gasoline); 

 The injection duration adjusted to operate the engine only at stoichiometric 

mixture along using a wide range oxygen sensor and a lambda module; 

 The spark timing is swept till audible knock region using a programmable 

ECU. 

3) To carry out the testing results analysis: 

 Frequency analysis of in-cylinder pressure and cylinder block vibration 

signals to define the domain of acoustic resonance frequency due to knock 

events; 

 Comparison and validation of knock envelope extracted from in-cylinder 

pressure signal by cylinder block vibration signal; 

 Modelling and simulation of combustion process using the SI turbulent 

flame entrainment model and Douaud and Eyzat knock predictor model in 

GT-Power environment. 

4) To design and develop a fuel identifier algorithm: 

 Comparative and statistical analysis of combustion parameters for different 

fuel octane number. 

 Comparative and statistical analysis of in-cylinder pressure signal and 

engine rotational speed signal as the input signal into a neural network 

structure to identify the fuel types (different RONs). 

1.7 Significance and Contribution of the Research 

The novelties of this research and test rig instrumentation are listed below: 

1) Reliable parameter to identify the fuel octane number has been selected and 

validated using in-cylinder pressure signal and engine rotational speed.  
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2) An ANN model has been trained, validated, and tested for on-board fuel octane 

classification by monitoring the pattern of instantaneous rotational speed. 

The other prospective contributions of this study include:  

1)  The knock boundary prediction for engine operating range utilizing the 

validated combustion model in GT-Power. 

2) The knock intensity determination for different fuel octane numbers and 

illustration of the differences. 

Figure 1.1 briefly presents the procedure of the study in four steps; experiment 

setup, simulation using GT-Power, data analysis, and fuel octane identifier using 

ANN. 
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Figure 1.1 Research procedure flowchart 
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