862 research outputs found

    Shortest path problem using Bellman algorithm under neutrosophic environment

    Get PDF
    An elongation of the single-valued neutrosophic set is an interval-valued neutrosophic set. It has been demonstrated to deal indeterminacy in a decision-making problem. Real-world problems have some kind of uncertainty in nature and among them; one of the influential problems is solving the shortest path problem (SPP) in interconnections

    Aplikasi Algoritma Dijkstra dalam Penyelesaian Berbagai Masalah

    Get PDF
    Dijkstra is a greedy algorithm that gives a choice of several available shortest routes and then provides a solution. The application of Dijkstra's Algorithm in everyday life is very diverse. This study collects research results regarding the application of Dijkstra's Algorithm to solve everyday problems such as the shortest path problem, this mini-review paper can explain the study of Dijkstra's Algorithm for various things, including solving bi-objective shortest routes, multi-objective routes, emergency evacuation, Dijkstra's graph, the connection between LBS features, best route distribution, and fuzzy solution

    Virtual Structure Based Formation Tracking of Multiple Wheeled Mobile Robots: An Optimization Perspective

    Get PDF
    Today, with the increasing development of science and technology, many systems need to be optimized to find the optimal solution of the system. this kind of problem is also called optimization problem. Especially in the formation problem of multi-wheeled mobile robots, the optimization algorithm can help us to find the optimal solution of the formation problem. In this paper, the formation problem of multi-wheeled mobile robots is studied from the point of view of optimization. In order to reduce the complexity of the formation problem, we first put the robots with the same requirements into a group. Then, by using the virtual structure method, the formation problem is reduced to a virtual WMR trajectory tracking problem with placeholders, which describes the expected position of each WMR formation. By using placeholders, you can get the desired track for each WMR. In addition, in order to avoid the collision between multiple WMR in the group, we add an attraction to the trajectory tracking method. Because MWMR in the same team have different attractions, collisions can be easily avoided. Through simulation analysis, it is proved that the optimization model is reasonable and correct. In the last part, the limitations of this model and corresponding suggestions are given

    Voronoi diagram with fuzzy number and sensor data in an indoor navigation for emergency situation

    Get PDF
    Finding shortest and safest path during emergency situation is critical. In this paper, an indoor navigation during an emergency time is investigated using the combination of Voronoi Diagram and fuzzy number. The challenge in indoor navigation is to analyses the network when the shortest path algorithm does not work as always expected. There are some existing methods to generate the network model. First, this paper will discuss the feasibility and accuracy of each method when it is implemented on building environment. Next, this paper will discuss selected algorithms that determine the selection of the best route during an emergency situation. The algorithm has to make sure that the selected route is the shortest and the safest route to the destination. During a disaster, there are many uncertainties to deal with in determining the shortest and safest route. Fuzzy logic can be hardly called for to deal with these uncertainties. Based on sensor data, this paper will also discuss how to solve shortest path problem using a fuzzy number

    Intelligent algorithm for trapezoidal interval valued neutrosophic network analysis

    Get PDF
    The shortest path problem has been one of the most fundamental practical problems in network analysis. One of the good algorithms is Bellman-Ford, which has been applied in network, for the last some years. Due to complexity in the decision-making process, the decision makers face complications to express their view and judgment with an exact number for single valued membership degrees under neutrosophic environment. Though the interval number is a special situation of the neutrosophic, it did not solve the shortest path problems in an absolute manner. Hence, in this work, the authors have introduced the score function and accuracy function of trapezoidal interval valued neutrosophic numbers with their illustrative properties. These properties provide important theoretical base of the trapezoidal interval valued neutrosophic number. Also, they proposed an intelligent algorithm called trapezoidal interval valued neutrosophic version of Bellman’s algorithm to solve neutrosophic shortest path problem in network analysis. Further, comparative analysis has been made with the existing algorithm

    A Comprehensive Overview of Classical and Modern Route Planning Algorithms for Self-Driving Mobile Robots

    Get PDF
    Mobile robots are increasingly being applied in a variety of sectors, including agricultural, firefighting, and search and rescue operations. Robotics and autonomous technology research and development have played a major role in making this possible. Before a robot can reliably and effectively navigate a space without human aid, there are still several challenges to be addressed. When planning a path to its destination, the robot should be able to gather information from its surroundings and take the appropriate actions to avoid colliding with obstacles along the way. The following review analyses and compares 200 articles from two databases, Scopus and IEEE Xplore, and selects 60 articles as references from those articles. This evaluation focuses mostly on the accuracy of the different path-planning algorithms. Common collision-free path planning methodologies are examined in this paper, including classical or traditional and modern intelligence techniques, as well as both global and local approaches, in static and dynamic environments. Classical or traditional methods, such as Roadmaps (Visibility Graph and Voronoi Diagram), Potential Fields, and Cell Decomposition, and modern methodologies such as heuristic-based (Dijkstra Method, A* Algorithms, and D* Algorithms), metaheuristics algorithms (such as PSO, Bat Algorithm, ACO, and Genetic Algorithm), and neural systems such as fuzzy neural networks or fuzzy logic (FL) and Artificial Neural Networks (ANN) are described in this report. In this study, we outline the ideas, benefits, and downsides of modeling and path-searching technologies for a mobile robot

    Autonomous robots path planning: An adaptive roadmap approach

    Get PDF
    Developing algorithms that allow robots to independently navigate unknown environments is a widely researched area of robotics. The potential for autonomous mobile robots use, in industrial and military applications, is boundless. Path planning entails computing a collision free path from a robots current position to a desired target. The problem of path planning for these robots remains underdeveloped. Computational complexity, path optimization and robustness are some of the issues that arise. Current algorithms do not generate general solutions for different situations and require user experience and optimization. Classical algorithms are computationally extensive. This reduces the possibility of their use in real time applications. Additionally, classical algorithms do not allow for any control over attributes of the generated path. A new roadmap path planning algorithm is proposed in this paper. This method generates waypoints, through which the robot can avoid obstacles and reach its goal. At the heart of this algorithm is a method to control the distance of the waypoints from obstacles, without increasing its computational complexity. Several simulations were run to illustrate the robustness and adaptability of this approach, compared to the most commonly used path planning methods
    • …
    corecore