
Thank

Citatio

See th

Version

Copyri

Link to

you for do

on:

is record i

n:

ght Statem

o Published

wnloading

in the RMI

ment: ©

d Version:

 this docum

IT Researc

ment from

ch Reposit

the RMIT R

ory at:

Research RRepository

PLEASE DO NOT REMOVE THIS PAGE

Elbanhawi, M, Simic, M and Nakhaie Jazar, G 2013, 'Autonomous robots path planning: An
adaptive roadmap approach', Applied Mechanics and Materials, vol. 373375, pp. 246-254.

http://researchbank.rmit.edu.au/view/rmit:23689

Accepted Manuscript

(2013) Trans Tech Publications, Switzerland

http://researchbank.rmit.edu.au/view/rmit:23689

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RMIT Research Repository

https://core.ac.uk/display/20539421?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://researchbank.rmit.edu.au/

Autonomous Robots Path Planning: An Adaptive Roadmap Approach

Mohamed Elbanhawi1, a, Milan Simic1, b and Reza Jazar1, c

1RMIT University, Melbourne, Australia

as3322588@student.rmit.edu.au, bmilan.simic@rmit.edu.au, creza.nakahiejazar@rmit.edu.au

Keywords: Autonomous, Mobile Robots, Path Planning, Navigation, Algorithm, Roadmap

Abstract. Developing algorithms that allow robots to independently navigate unknown

environments is a widely researched area of robotics. The potential for autonomous mobile robots

use, in industrial and military applications, is boundless. Path planning entails computing a collision

free path from a robot’s current position to a desired target. The problem of path planning for these

robots remains underdeveloped. Computational complexity, path optimization and robustness are

some of the issues that arise. Current algorithms do not generate general solutions for different

situations and require user experience and optimization. Classical algorithms are computationally

extensive. This reduces the possibility of their use in real time applications. Additionally, classical

algorithms do not allow for any control over attributes of the generated path. A new roadmap path

planning algorithm is proposed in this paper. This method generates waypoints, through which the

robot can avoid obstacles and reach its goal. At the heart of this algorithm is a method to control the

distance of the waypoints from obstacles, without increasing its computational complexity. Several

simulations were run to illustrate the robustness and adaptability of this approach, compared to the

most commonly used path planning methods.

Introduction

Autonomous mobile robots are able to purposely and safely traverse an unfamiliar environment

without human intrusion. An autonomous robot initially needs to gather information about its

environment to be able to safely navigate through it. This is known as the perception stage. The

perceived data is then treated in order for the robot to localize itself in the environment map. Knowing

its current and goal location the robot will proceed to plan a collision free route. Finally, the mobile

robot will trail that generated route.

 The problem at hand is to develop a strategy that allows the robot to reach its desired position

through a short, smooth and collision free path. Once the robot localizes itself in its environment and

gathers information about obstacles, a path planner algorithm should be implemented to generate the

desired path. The path planner additionally regulates features of the path such as smoothness and

length.

Mobile robot path planning algorithms are categorized into classic and heuristic approaches.

According to [1] more than fifty percent of all current robot planning algorithms are based on

classical methods. Nevertheless, the application of classical methods is in constant decline in favour

of heuristic approaches. The most commonly used classical methods are Potential Field, Voronoi

Diagrams, VD, and Visibility graphs, Vgraphs, [1].

Classical methods are generally subdivided into roadmap, cell decomposition and potential

field methods. Detailed analyses of these methods can be found in [2] and [3]. The most popular

roadmap approaches are VD and Vgraph. These methods graphically analyse the map, in which the

robot has localized itself in, to produce a network, or connectivity graph. A connectivity graph is a set

of feasible routes from the current robot position, through sets of successive nodes, to the target

position.

Voronoi diagrams generate nodes (waypoints) that are equidistant to two or more objects.

They were first used by [4] in path planning. VD have been applied in several robot path planning

approaches [5]. They have also been combined with heuristic methods [6]. The main drawback of VD

is that they tend to generate long routes, as they maximize the distance between the robot and

obstacles.

Visibility graph approaches consider obstacle vertices, in the map, to be the nodes through

which the robot can reach its desired position. They proceed to connect vertices that are visible to

each other. Visible nodes are nodes with the property that straight line joining them does not intersect

any obstacles. Vgraphs were first used in robot motion planning by [7]. They guarantee that the robot

will find the shortest path to its goal. A V*graph was introduced in [8], which reduced the number of

considered vertices, thus reducing the computational complexity of the algorithm. In [9], a reduced

Vgraph method was coupled with a curved weighed Dijkstra algorithm [10] and Simulated Annealing

for autonomous mining applications. The main disadvantage of this approach is that it plans a route

that forces the robot to pass, as close as possible, to any detected obstacles.

Autonomous robot localization and mapping data are computed by probabilistic approaches

given in [11, 12]. Subsequently, planned routes that are close to any detected obstacles carry high risk

of collision as they neglect the uncertainty of localization algorithms and consider the given data to be

accurate.

Potential fields [13] consider the robot to be under the influence of several forces. These

forces are generated towards the goal and away from obstacles. This approach is rather popular in

robot motion planning [1]. However potential fields tend to get trapped in local minima and generate

vibrating paths in narrow passages as discussed in [14].

Cell decomposition methods proceed to subdivide the map into smaller cells. The

decomposition continues until a minimum resolution is reached (the size of the robot), a maximum

number of iteration is reached, or all cells are either free of obstacles, or completely occupied by

obstacles [2]. This method was first used by [15] in robot motion planning. Approximate cell

decomposition proceeds to subdivide cells that are neither completely full nor completely occupied

and thus reduce the computational complexity of that approach. In [16], an approximate cell

decomposition algorithm was coupled with tesseral addressing to further reduce the computational

time of cell decomposition. The free cells are then used as waypoints or nodes in a connectivity graph

as explained earlier.

Heuristic methods employ certain assumptions to reduce the complexity of a problem.

Arguably, the most commonly used heuristic method in robot motion planning is A* Algorithm

which was introduced by [17] and used in [8], [18] and [19]. Other heuristic algorithms mimic

biological ones, such Genetic Algorithms [6, 19] and Ant Colony Optimization [18, 20], then

physical phenomena, such as Simulated Annealing [9] or human decision making such as Fuzzy

Logic Control [21-23]. The drawback of these methods is that they use multiple variables and

coefficients that must be chosen by the algorithm designer. There is no literature that defines a

particular method for variable selection and thus results are not consistent for different scenarios. For

instance, a genetic algorithm requires the selection of mutation and cross-over factors, encoding and

decoding methods, selection criteria, fitness function design, number of generations, population size

and finally number of individuals and their string length. All these variables require fine-tuning by the

designer and they do not guarantee optimal solutions. As a consequence, heuristic methods do not

produce general solutions. For different situation the variables of a heuristic algorithm may require

adjustment.

 We present here an adaptive roadmap-based path planning algorithm for mobile robots in

two-dimensional maps. As any other path planner, it assumes a-priori knowledge of the robot

position, its goal position and surrounding obstacles. It combines the ability of some algorithms to

produce optimum short paths with the characteristic of other algorithms that route robots safely away

from obstacles. This method also reduces the computational complexity of roadmap approaches,

which is their main disadvantage, as it only considers obstacles that are in its path neglecting all

others. Unlike most heuristic methods, the proposed planner has the ability to produce general

solutions for different scenarios. A minimum safe distance is introduced to the algorithm in order to

modify it based on the complexity of the map and the certainty of the robot’s position. It can also be

combined with any other algorithms to produce different planners. The algorithm is presented in

section 2, algorithms used with the presented planner will be discussed in section 3 and finally some

experiments are presented in section 4 to illustrate the implementation of this algorithm.

Proposed Path Planning Algorithm

Algorithm, proposed here, could be considered as a roadmap approach to path planning. It generates a

set of waypoints, through which the robot can navigate without colliding with obstacles. All obstacles

in the map are modelled as polygons. The algorithm analyses location of each obstacle’s vertices. The

start and target position of the robot are considered to be known relative to the obstacles in the

surrounding environment. The operation of the algorithm, for a map that consists of one obstacle is as

follows:

1- The algorithm is given the robot’s start S and target T positions, and obstacles vertices

number and location, as illustrated in Fig. 1 (a).

2- A straight-line path joining the start and target points is generated, as shown in Fig. 1 (b). The

straight path is the shortest path between the two points, however, usually, it is not collision

free, as in this case. This line divides the map into two halves.

3- The intersection point between the straight-line path and the obstacle are computed. They are

highlighted in red in Fig. 1 (b).

4- Waypoints are calculated, for each half of the map, such that the line joining the waypoint and

its corresponding intersection point is orthogonal to the original straight-line path, as shown in

Fig. 1 (c). Since there are two intersection points with each point having two waypoints in

each half of the map, a total of four waypoints are computed.

5- Successive waypoints are joined together to generate several possible collision free routes for

the robot around the obstacle. In Fig. 1 (c), there are two possible collision free paths. Each

path passes through two waypoints, both of which are highlighted in blue.

6- The algorithm is reiterated for every segment of the path until a collision free path is

generated. The start and finish points of that segment are considered to be the intermediate

start and target goals for the robot.

Fig. 1 The different stages of waypoint generation, around an obstacle in the robot’s path, using the

proposed algorithm

 Waypoint Calculation. The advantage of this method over classical roadmap approaches,

such as VD and Vgraph, is that the distance between the generated route and obstacles can be

controlled. VD methods ensure that the robot follows a route that is far from any obstacles and

Vgraph generated routes as close to the obstacles. The proposed method can be better controlled, i.e it

enables the robot to approach obstacle within a certain, acceptable, distance while also minimizing

the travelled path. This allows for the algorithm to adapt based on the complexity of the obstacles and

the certainty of the information about the obstacle and robot locations.

 Fig. 1(b) shows the third step in the algorithm, where the intersection points between the

straight-line path and obstacles are known and it is then required to calculate the waypoints for those

intersection points. Consider Fig. 2, the line joining the start S and goal G points intersect an obstacle,

whose edges are shown as dotted lines, at point P. It is required to calculate a point P’ that creates an

orthogonal line to the straight-line path at point P. The normal distance between the point P’ and the

straight line must exceed the maximum distance n between any vertex in that object and the straight

line by a safe distance of δ. The normal distance n is calculated using Eq. 1 and the waypoints P’ on

either side of the intersection point are calculated using Eq. 2 and 3. In the given equations G, S, V, P

and P’ are position vectors for the goal, start, vertex, intersection and waypoint locations.

n =
 () ()

 (1)

 () [
– ()
 ()

] (2)

[

] [

] () [

– ()
 ()

] (3)

Fig. 2 Calculation of waypoint (P’) at an intersection point (P)

Architecture of the Proposed Planner

Path planning for autonomous robots is the stage that follows localization. The features of the

surrounding environment are detected and processed using algorithms that are presented in [11]. The

path planner generates a route based on the localization data.

 The proposed path planner consists of two main components, a global planner and a path

optimizer. The global planner gathers the information about the robot’s current and goal positions in

addition to all information about obstacles. It then proceeds to generate sets of possible routes through

which the robot can reach its goal. The optimizer analyses all the possible routes and selects the most

suitable path, based on the predefined weight evaluation function.

Fig. 3 The proposed algorithm consists of two main components, planning and optimization

 The different components of the planner are shown above in Fig. 3. The details of the first

component (path planning) are provided in the previous section. The planner generates a set of

possible routes through which the robot can reach the desired goal.

There are multiple paths generated by the path planning part of the algorithm. They are

evaluated based on the cost, or weight function. The task can be treated as a single source shortest

path mathematical problem. A Dijkstra algorithm is employed to select the safest path with the least

cost, referred to as the optimum path in this paper.

For this application, the cost function calculates the Euclidian distance between successive

waypoints in the path. The problem at hand is now simplified into a single source shortest path

problem that can easily be resolved using a Djkastra algorithm. The optimum path selected is the

shortest path. It is possible to change the features of the path by varying the evaluation of the weight,

or cost function. This variation allows for the option to select the path based on changes in direction,

curvature or any other desired property. This is needed when it is required to minimize the time

travelled not just the distance. Changing the evaluation function is used to account for any kinematic

or dynamic constraints on the vehicle, or robot.

Experiments and Results

Several simulations were run to demonstrate the features of the proposed algorithm. All simulations

were carried out using Matlab. Maps were created as images and loaded into the user interface. The

user selects the start and goal positions in addition to the desired minimum distance. The dimension

of the workspace is defined by the user as well. After the waypoints are generated, any possible path

that lies outside workspace is eliminated.

 Experiment 1 involved finding the shortest safe route around two obstacles that are arranged

as shown in Fig. 4 (a). The algorithm proceeds to find the shortest path, as shown in Fig. 4 (b) while

maintaining a safe distance away from the obstacles. Both Fig. 4 (c) and (d) illustrate the effect of

adding another obstacle. The robot’s route will not change unless the added object interferes with that

route. As shown in Fig. 4 (d), the algorithm reroutes the robot, when an object intersect the shortest

collision free path, to find the next shortest path.

Fig. 4 Experiment 1 demonstrates the operation of the algorithm with multiple obstacles and the

effect of placing obstacle on the generated path

Experiment 2 shows the effect of increasing the value of the safe distance from the obstacles δ.

The algorithm will proceed to find the shortest possible distance, and will maintain the specified

distance as shown in Fig. 5. In an area of 355,365 units squared, δ values of 0, 10, 20 and 80 units

were used respectively in Fig. 5 (a), (b), (c) and (d). It must be noted that the generated path with a δ

= 0, shown in Fig. 5 (a), is identical to a path that would be generated by a Vgraph method as it forces

the robot to move as close as possible to the obstacle.

Fig. 5 Experiment 2 illustrates the effect of changing the safe distance δ on the generated path

 Experiment 3 is designed to compare performances of the proposed algorithm and Vgraph

method. It can be seen that in both Fig. 6(a) and (b) the path generated by Vgraph method forces the

robot to pass as close as possible to the wall. On the other hand, by increasing δ value the path

generated by the proposed algorithm will change accordingly to increase its distance from the

obstacle. This highlights the ability of this algorithm to generate safer paths than Vgraph especially

when the obstacle locations are uncertain.

Fig. 6 Experiment 3 compares outcomes of the proposed method and Vgraph

 δ = 0 δ = 10 δ =20 δ = 80

 A comparison between the path generated by VD and the proposed algorithm is shown in Fig.

7. Experiment 3 shows that the proposed algorithm generates shorter path, as it does not have to be

equidistant from two obstacles. Additionally, the generated path is smoother since it only consists of

one waypoint between the start and goal positions, thus requires fewer changes in robot’s heading

unlike the VD generated path.

 Experiment 4 examines the problem presented in [18]. The generated path for the Simple Ant

Colony Optimization algorithm is given in [18]. The proposed algorithm is used to plan a collision

free path in the same map with different δ values. Both scenarios are shown in Fig. 8 (a) and (b). It can

be seen than with a small δ value the path is shorter than the Ant Colony generated path, however it

tends to pass close to the obstacles, as highlighted in red. On the other hand, the algorithm will

generate a longer, yet safer path, when increasing δ. Another disadvantage of the Ant Colony

algorithm, given in [18], like many heuristic methods, is that it treats the workspace as a grid.

Subsequently, the position of waypoints cannot be modified with a resolution smaller than the grid

size, unlike the presented algorithm, which does not require the environment to be represented as a

grid. Additionally, information about each grid, or cell, must be stored. This will increase the

computational complexity of the path planning and reduce its suitability for real time applications.

Fig. 7 Experiment 4 compares between the proposed algorithm and VD

Fig. 8 Experiment 5 compares the proposed algorithm with a heuristic algorithm (a) Path generated

using the proposed algorithm a low δ value (b) Path generated using the proposed algorithm and a

high δ value

Conclusion

In this paper, a new path planning algorithm for autonomous vehicles is presented. It combines the

advantages of two of the most commonly used roadmap algorithms, VD and Vgraphs. Unlike both

VD and Vgraph approaches, this method provides a great extent of flexibility. The adaptability of the

proposed system stems from varying the minimum allowable distance between the robot and any

detected obstacle. The adaptability feature of this algorithm makes it more efficient and allows it to

produce general solutions for different scenarios. It provides the shortest collision free path, similar

to Vgraph, while maintaining a safe distance from obstacles, similar to VD.

Simulations have been conducted in order to compare the performance of the presented

algorithm, with classical and heuristic approaches. Sets of experiments demonstrated the effect of

changing the safe distance on the planned path. The results of the experiments, are promising, as they

illustrated the effectiveness, computational efficiency and adaptability of the presented approach.

The shortcoming of this method is the lack of a proper procedure to selecting a suitable safe

distance, but the variability of the minimum safe distance makes this algorithm very promising. At

this stage, the minimum safe distance δ must be defined by the user prior to using the algorithm. A

safe distance that produces acceptable results for one map may not generate a collision free path in

other situations. We need to further investigate this promising approach and probably include a

function that would be used to optimize selection and eliminate trial and error part of the algorithm.

That is the subject of the further research.

Future Work

The presented algorithm has shown promising characteristics, and generated good results in

numerous scenarios and experiments. Further investigation is required to improve the performance of

this planner. Introducing a method to calculate the safe distance based on the given scenario would

allow this algorithm to produce general solutions without any user input. Additionally, the current

algorithm is coupled with a Dijkstra algorithm to calculate the shortest path through the generated

waypoints. The weights between the points are calculated based on the Euclidian distance between

them. Using a curve weighted Dijkstra algorithm presented in [9], a fuzzy evaluated cost function

presented in [18], or a fitness function, would improve the control of the features of the path, based on

the desired smoothness, curvature and length. Further experimentation using different algorithms

such as A* Algorithm, Fuzzy Logic, Genetic Algorithms and Ant Colony Optimization is needed to

optimize the performance of the presented planner. Further investigation into changing the position of

the generated waypoints, within a certain area and its effect of the generated path is required. This is

possible since the presented algorithm does not require grid representation of the workspace.

References

1. Masehian, E. and D. Sedighizadeh, Classic and heuristic approaches in robot motion

planning-a chronological review. World Academy of Science, Engineering and Technology,

2007. 23: p. 101-106.

2. Siegwart, R., I.R. Nourbakhsh, and D. Scaramuzza, Introduction to Autonomous Mobile

Robots. 2011: Mit Press.

3. Latombe, J.-C., ROBOT MOTION PLANNING.: Edition en anglais. 1990: Springer.

4. Canny, J. A Voronoi method for the piano-movers problem. in Robotics and Automation.

Proceedings. 1985 IEEE International Conference on. 1985.

5. Takahashi, O. and R.J. Schilling, Motion planning in a plane using generalized Voronoi

diagrams. Robotics and Automation, IEEE Transactions on, 1989. 5(2): p. 143-150.

6. Chien-Chou, L., C. Wei-Ju, and L. Yan-Deng. Path Planning Based on Bezier Curve for

Robot Swarms. in Genetic and Evolutionary Computing (ICGEC), 2012 Sixth International

Conference on. 2012.

7. Asano, T., et al. Visibility-polygon search and euclidean shortest paths. in Foundations of

Computer Science, 1985., 26th Annual Symposium on. 1985.

8. Alexopoulos, C. and P.M. Griffin, Path planning for a mobile robot. Systems, Man and

Cybernetics, IEEE Transactions on, 1992. 22(2): p. 318-322.

9. Maekawa, T., et al., Curvature continuous path generation for autonomous vehicle using

B-spline curves. Computer-Aided Design, 2010. 42(4): p. 350-359.

10. Dijkstra, E.W., A note on two problems in connexion with graphs. Numerische Mathematik,

1959. 1(1): p. 269-271.

11. Durrant-Whyte, H. and T. Bailey, Simultaneous localization and mapping: part I. Robotics &

Automation Magazine, IEEE, 2006. 13(2): p. 99-110.

12. Luettel, T., M. Himmelsbach, and H.J. Wuensche, Autonomous Ground Vehicles: Concepts

and a Path to the Future. Proceedings of the IEEE, 2012. 100(Special Centennial Issue): p.

1831-1839.

13. Khatib, O., REAL-TIME OBSTACLE AVOIDANCE FOR MANIPULATORS AND MOBILE

ROBOTS. International Journal of Robotics Research, 1986. 5(1): p. 90-98.

14. Koren, Y. and J. Borenstein. Potential field methods and their inherent limitations for mobile

robot navigation. in Robotics and Automation, 1991. Proceedings., 1991 IEEE International

Conference on. 1991.

15. Brooks, R.A. and T. Lozano-Perez, A subdivision algorithm in configuration space for

findpath with rotation. Systems, Man and Cybernetics, IEEE Transactions on, 1985.

SMC-15(2): p. 224-233.

16. Arney, T. An efficient solution to autonomous path planning by Approximate Cell

Decomposition. in Information and Automation for Sustainability, 2007. ICIAFS 2007. Third

International Conference on. 2007.

17. Hart, P.E., N.J. Nilsson, and B. Raphael, A Formal Basis for the Heuristic Determination of

Minimum Cost Paths. Systems Science and Cybernetics, IEEE Transactions on, 1968. 4(2): p.

100-107.

18. Garcia, M.A.P., et al., Path planning for autonomous mobile robot navigation with ant colony

optimization and fuzzy cost function evaluation. Applied Soft Computing Journal, 2009. 9(3):

p. 1102-1110.

19. Cen, Z., Z. Qiang, and W. Xiaopeng. Robotic Global Path-Planning Based Modified Genetic

Algorithm and A* Algorithm. in Measuring Technology and Mechatronics Automation

(ICMTMA), 2011 Third International Conference on. 2011.

20. Dorigo, M., M. Birattari, and T. Stutzle, Ant colony optimization. Computational Intelligence

Magazine, IEEE, 2006. 1(4): p. 28-39.

21. Antonelli, G., S. Chiaverini, and G. Fusco, A fuzzy-logic-based approach for mobile robot

path tracking. IEEE Transactions on Fuzzy Systems, 2007. 15(2): p. 211-221.

22. Hagras, H.A., A hierarchical type-2 fuzzy logic control architecture for autonomous mobile

robots. Fuzzy Systems, IEEE Transactions on, 2004. 12(4): p. 524-539.

23. Zadeh, L.A., Outline of a New Approach to the Analysis of Complex Systems and Decision

Processes. Systems, Man and Cybernetics, IEEE Transactions on, 1973. SMC-3(1): p. 28-44.

