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Abstract— Mobile robots are increasingly being applied in a 

variety of sectors, including agricultural, firefighting, and 

search and rescue operations. Robotics and autonomous 

technology research and development have played a major role 

in making this possible. Before a robot can reliably and 

effectively navigate a space without human aid, there are still 

several challenges to be addressed. When planning a path to its 

destination, the robot should be able to gather information from 

its surroundings and take the appropriate actions to avoid 

colliding with obstacles along the way. The following review 

analyses and compares 200 articles from two databases, Scopus 

and IEEE Xplore, and selects 60 articles as references from 

those articles. This evaluation focuses mostly on the accuracy of 

the different path-planning algorithms. Common collision-free 

path planning methodologies are examined in this paper, 

including classical or traditional and modern intelligence 

techniques, as well as both global and local approaches, in static 

and dynamic environments. Classical or traditional methods, 

such as Roadmaps (Visibility Graph and Voronoi Diagram), 

Potential Fields, and Cell Decomposition, and modern 

methodologies such as heuristic-based (Dijkstra Method, A* 

Algorithms, and D* Algorithms), metaheuristics algorithms 

(such as PSO, Bat Algorithm, ACO, and Genetic Algorithm), 

and neural systems such as fuzzy neural networks or fuzzy logic 

(FL) and Artificial Neural Networks (ANN) are described in this 

report. In this study, we outline the ideas, benefits, and 

downsides of modeling and path-searching technologies for a 

mobile robot. 

Keywords—Path Planning Algorithms; Autonomous Mobile 

Robot; Collision-Free Path Planning; Classic Navigation 

Approaches; Modern Path Planning Techniques. 

I. INTRODUCTION  

A wide range of autonomous tasks has been accomplished 
by mobile robots in a variety of industries and situations 
throughout the last several decades [1]. In order for robots to 
be able to travel and explore freely in complicated situations, 
collision-free route planning must be addressed. Since the 
mid-1960s, a number of researchers have been interested in 
route planning [1]. The following is a description of the route 
planning issue: The robot is programmed to do a certain task 
based on specified performance metrics and the nature of its 
activity, an autonomous mobile robot (AMR) travels from one 
state to the next, to determine if there is an optimal or 
suboptimal route there [2]. Time and money may be saved by 
using mobile robots equipped with advanced route-planning 
technologies. As a result of its practical importance, mobile 

robot route planning has grown to be a popular study issue 
both at home and abroad. 

The ability to navigate through a given environment is 
considered to be one of the most desirable characteristics of 
autonomous robots [2]. This capacity to shift and complete 
tasks in a wide range of surroundings is critical to the large 
percentage of robot-enabled industries, including mining and 
agriculture, today [3]. In the field of mobile robot research, 
route planning is a major emphasis [4]. Localization, path 
planning, perception, and motion control are the four integral 
parts of the navigation problem [5]. In a real-world situation, 
planning a collision-free route through an alternatively 
cluttered environment is the goal of path planning. In other 
words, path planning is a method for an autonomous robot to 
get from the beginning point to the goal while traversing an 
environment that includes both static and dynamic obstacles 
[6]. The robot must be able to figure out the best way to get 
there in the shortest amount of time, distance, and money. It is 
possible to divide path planning into global and local 
planning, depending on the scope of the map [7]. Global path 
planning provides all the necessary data about the robot's 
known environment, while local path planning relies on 
partially or completely zero knowledge of the robot's 
environment to plan its course. 

The autonomous mobile platform must provide answers to 
a slew of issues [8]. The first question is: where am I? 
Secondly, what are the following steps, what goals should I 
set, and how should I go about achieving them? As part of a 
conventional self-driving car control architecture, a vehicle 
takes in its surroundings, anticipates what other drivers will 
do, and makes a decision. Actuators are also controlled. They 
are called the "perception module," and are made up of sensors 
in the body of the car. LiDARs, Cameras, GPS, RADARs, 
Ultrasonic and Infrared sensors, and algorithms that combine 
them, work together to figure out what is around the car[8]. 

When it comes to laying out a route, there are three types: 
traditional algorithms, bionic algorithms, and reinforcement-
based path planning algorithms [9]. Campbell et al. classified 
path planning into the classical and heuristic approach [2]. 
Next, [1] proposed traditional and heuristic approaches to 
route planning. In addition, traditional and modern intelligent 
algorithms path strategizing are two types of path planning 
algorithms that were also proposed [6]. Heuristic search 
algorithms and intelligent optimization algorithms are the 
solutions that appeared in dealing with motion planning 
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problems [1]. Obstacle fields and vehicle motion limits must 
be taken into consideration while searching for a vehicle's best 
route. Potential-field methods [10], discrete optimization 
methods, grid-based approaches, and sample-based 
approaches are the most common approaches to route 
planning research. 

Fig. 1 depicts the various AMR route planning 
approaches. Next, as shown in Table I, a number of methods 
were used in research on mobile robot navigation.  

Collision-free route planning is covered in Section II 
including a summary of both local and global approaches. In 
Section III, searching algorithms for both traditional and 
modern approaches will be discussed. The Cell 
Decomposition Technique, Potential Fields, and Roadmaps 
are examples of traditional methods in motion planning, 
which will be discussed in Section III. A), whereas Heuristic 
Methodologies (Dijkstra, A*, D*), Metaheuristic Algorithms 
(GA, PSO, ACO, BA), and Neural Systems/Fuzzy Controllers 
(ANN, FL/FLC/FNN) are examples of modern and intelligent 
methods; Section III. B) will address these issues. Section IV 
illustrates the specifics of algorithms that have been 
implemented in a variety of publications. Section V goes into 
further detail on the research effort and methodologies. This 
review analyses 200 articles from two databases, Scopus and 
IEEE Xplore. Only 60 articles were selected as references 
from those articles, from 2019 until 2022. The conclusion of 
the research is presented in Section VI. 

The common route planning methods covered in this 
review study were organized in a classification diagram as 
shown in Fig. 1. The techniques that were chosen will be 
discussed in further depth in the next section. 

 

Fig. 1. Classification of Path Planning Approaches 

TABLE I.  DETAILS OF AUTHORS AND JOURNALS INVOLVED 

IN PATH PLANNING 

Y. O. P Authors Title Algorithms 

2019 Jeon, G. Y., & 
Jung, J. W. 

 

Water Sink Model 
for Robot Motion 

Planning 

Potential Field 
(main), Voronoi 

Diagram, CD, 

Visibility Graph  
Bug Algorithm 

2019 Li, D. Du,, P., 

Wang, & L.  

Path Planning 

Technologies for 

Autonomous 
Underwater 

Vehicles-A 

Review 

Dijkstra, A*, D* 

D* Lite, FM, LSM, 

Boustrophedon, 
ISA, PRM, RRT, 

APF, BA, PSO, 

ACO, WPA, SA, 
GA, DE, Others 

2021 Tan, C. S., 

Arshad, R., M. 
R., & Mohd-

Mokhtar 

A Comprehensive 

Review of 
Coverage Path 

Planning in 

Robotics Using 
Classical and 

Heuristic 

Algorithms 

STC, APF, DP, 

PRM, RRT, 
RHNBV, RHNBV-

FE, DFS, BFS, 

Dijkstra, A*, D*, 
D* Lite, Theta*, 

Lazy Theta*, GA, 

DE, PSO, ACO, 
FFO, GWO, IWO, 

BINN, GBNN 

2020 Abaas, Shabeeb, 
A. H., & T. F. 

 

Autonomous 
Mobile Robot 

Navigation Based 

on PSO Algorithm 
with Inertia 

Weight Variants 

for Optimal Path 
Planning 

TV-IWPSO (main), 
S-PSO, B-PSO 

 

 

2020 Agwogie, U. 

 

Mobile Robot 

Path Planning in 

an Obstacle-free 
Static 

Environment 

using Multiple 
Optimization 

Algorithms 

FFO (main), ACO, 

PSO 

2020 Campbell, S., 
Riordan, D., 

Walsh, J., 

Krpalkova, L., 
O’Mahony, N., 

& Carvalho, A. 

Path Planning 
Techniques for 

Mobile Robots 

A Review 
 

Roadmap, PF, CD,  
Bug Algorithms, 

VFH, ANN, GA, 

FL, PSO 

2019 Patle, B. K., 
Pandey, A., 

Babu L, G., 

Jagadeesh, A., & 
Parhi, D. R. K.. 

A review: On path 
planning 

strategies for 

navigation of 
mobile robot 

CD, Roadmap,  
APF, GA, FL, NN, 

FFO, PSO, ACO, 

BFO, ABC, CS, 
SFLA, Others 

2020 Deogyang-gu. A Performance 

Review of 
Collision-Free 

Path Planning 

Algorithms 

GA, SA, PSO, 

ACO, Dijkstra, A*, 
Wavefront 

 

 

II. COLLISION-FREE ROUTE PLANNING (CFRP) 

The purpose of the collision-free route planning (CFRP) 

or collision-free path planning (CFPP) issue is to assist robots 

in finding a safe route from a beginning point to an ending 

(goal) location without colliding with anything. Certain 

researchers believe that the route taken as a consequence of 

the CFRP issue is an effective bypass for mobile agents 

(MAs). The efficiency of MAs is examined from this vantage 

point since it is the shortest distance. Multi-objective models, 

such as minimizing resource usage with shorter distances or 

finding an efficient solution in less time may also be used to 

investigate this issue. To determine the problem type, four 

separate qualities are required: the environmental type, the 
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environmental class, the searching algorithm, and the 

experimental type. In addition, related studies that focus on 

and enhance at least one point of any one of these qualities 

are required in order to characterize the kind of issue being 

addressed. Fig. 2 depicts the categories in more detail, as well 

as their subcategories. 

 
Fig. 2. Characteristics of CFRP 

This article uses shorthand notation in order to present 

information as effectively as possible. Table II shows how the 

notation is arranged, in order of their appearance in this 

article. 

A. Path Planning Environments 

When it comes to path planning, there are two types of 
environments: environmental point type (E.P.T.) and 
environmental obstacle type (E.O.T.) [11]. There are two main 
categories of obstacles; static route planning and dynamic path 
planning [12]. Examples of static and dynamic obstacle types 
are shown in Fig. 3 and Fig. 4. 

 

Fig. 3. Static Obstacle 

 

Fig. 4. Dynamic Obstacles [13] 

TABLE II.  ABBREVIATED NOTATION OF CFRP FOR MOBILE 

ROBOT 

Words Notation 

Collision-Free Route Planning CFRP 

Collision-Free Path Planning CFPP 

Mobile Agents MAs 

Environmental Point Type E.P.T. 

Environmental Obstacles Type E.O.T. 

Cell Decomposition CD 

Particle Swarm Optimization PSO 

Artificial Potential Field APF 

Potential Field PF 

Ant Colony Optimization ACO 

Genetic Algorithm GA 

Bat Algorithm BA 

Fuzzy Logic FL 

Fuzzy Logic Controller FLC 

Artificial Neural Network ANN 

Year of Publications Y.O.P 

Radio Detection and Ranging RADAR 

Global Positioning System GPS 

Light Detection and Ranging LiDAR 

Institute of Electrical and Electronic 

Engineers 

IEEE 

Length of Path LP 

Types of Path Planning T.O.P.P 

Fast Marching FM 

Level Set Method LSM 

Internal Spiral Algorithm ISA 

Probabilistic Roadmap Method PRM 

Rapidly-Exploring Random Trees RRT 

Wolf Pack Algorithm WPA 

Simulated Annealing SA 

Differential Evolution DE 

Dynamic Programming DP 

Spanning Tree Coverage STC 

Receding Horizon Next Best View RHNBV 

Combine RHNBV with Frontier-Based RHNBV-FE 

Depth-First Search DFS 

Breadth First Search BFS 

Firefly Optimization  FFO 

Grey Wolf Optimizer GWO 

Invasive Weed Optimization IWO 

Biologically Neural Network BINN 

Glasius Bio-Inspired GBNN 

Autonomous Mobile Robot AMR 

Figure Fig. 

 

C
F

R
P

Type Of Environment

Obstacle Type

Point Type

Classification Of Path 
Planning Algorithm

Global

Local

Path Planning Algorithm

Traditional Algorithms

Modern Algorithms

Experimental Type

Simulation And Real

Mobile Robot
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The simplified notations that are used in this work are 

shown in the Table II. As a result, researchers will have a 

better understanding of each subject and area. 

The static obstacle environment, also known as the fixed 
obstacle environment, is the CFRP problem's most basic 
variant. In this example, there are no changes to the barriers' 
form or location. The CFRP issue in a static setting is the 
CFPP's simplest model. As a result, a static environment 
assumption is often used in research articles [14]. Allowing 
the robot to compute its own setup sequence would allow it to 
broaden its applications and accomplish more than one 
activity in a fixed area [15]. This would allow the robot to be 
more versatile. 

The dynamic obstacle environment, which is also known 
as the moving obstacle, has the ability to alter the obstacle's 
form over time. Mobile agents’ velocity and acceleration are 
examined in this scenario. Table III depicts a more detailed 
illustration of the nature of the different types of obstacles 
environments in navigation [2]. 

TABLE III.  NATURE OF OBSTACLE ENVIRONMENTS IN PATH 

PLANNING 

 

Next, in E.P.T., a point's classification is based on its 
certainty. Because of the inherent ambiguity in the MA's 
sensing, the point type should be presumed to be either 
definite or uncertain. MAs' positions and objective points are 
assumed to be in a precise place. Because of the difficulty of 
solving an unknown issue, the assumption is often used to 
evaluate innovative ideas using simulation. When the location 
of the MA's point and the location of the objective point is not 
known precisely, the uncertain point type is used. MAs 
employ a variety of sensors to detect their surroundings. MAs 
must be aware of the possibility of sensor mistakes in a hazy 
environment. In order to solve the issue, this problem has to 
be taken into consideration. This is one of the reasons why it 
is difficult to tackle CFPP problems with genuine MAs. The 
Monte-Carlo approach, for example, is implemented to solve 
the issue. Table IV classified authors based on the 
Environment of Obstacle Types addressed in their respective 
papers. 

Based on Table IV, we can conclude that some authors 
applied different obstacle types of environments in their 
journals and projects. These differences are based on personal 
goals or targets and the objectives of one’s research. 

B. Classification of Path Planning 

As in all circumstances, a global planner (which knows 

about the surrounding environment) and a local planner 

(which recalculates the route to avoid dynamic barriers) are 

used to identify the best path [16]. Fig. 5 illustrates the types 

of route planning. 
 

TABLE IV.  CLASSIFICATION OF ARTICLES BASED ON 

OBSTACLES TYPE OF ENVIRONMENTS 

Author(s) Y. O. P Title(s) Pages E. O. T 

Agwogie, 
U. 

2020 Mobile Robot Path 
Planning in an Obstacle-

free Static Environment 

using Multiple 
Optimization Algorithms 

9 Static 

Humaidi, 

A. J. 
 

2020 Grid-Based Mobile 

Robot Path Planning 
Using Aging-Based Ant 

Colony Optimization 

Algorithm in Static and 
Dynamic Environments 

26 Static 

Dynamic 

 

Fig.  5. Types of Route Planning 

Route planning is separated into 2 categories; global and 

local route strategizing [17].  All necessity data of the robot's 

known environment is provided by global route planning 

(also known as Off-line Navigation), while local path 

strategizing, which is known as On-line Navigation, tends to 

rely on partial or complete lack of knowledge to plan a course 

of action. 

1. Global Route Planning 

With a map of the surroundings, global planning may 

determine the most efficient path. Some approaches are based 

on roadmaps or Voronoi diagrams, depending on the study of 

the map. The least costly alternative may be found by 

assigning a monetary value to each component. Algorithms 

such as Dijkstra's, and A* can serve as good instances of this 

method. CD, in which the map is divided into smaller areas 

(cells), is another example.  

Neural networks and other cutting-edge techniques for 

quickly exploring random trees are all instances of the same 

kind of strategy and all have potential fields. There are 

several solutions that incorporate the aforementioned 

methods, but at a price. 

In the usual situation, the following stages should be 

followed throughout the process of the mobile robot's 

worldwide route planning: 

a. Environmental Modelling [18] 

This will help the mobile robot get a better sense of its 

surroundings, avoid needless planning, and drastically cut the 

time taken to figure out a global route layout. The real 

surroundings in which the mobile robot will execute its duty 

are transformed into map feature information and saved as-is 

in the environmental modelling, which is done in accordance 

with the available map data. 

Nature of 
Obstacle 
Environmen
ts in Path 
Planning

Static Environments Obstacles do not move or 
shift their positions over 
time.

(fixed)

Dynamic Environments Obstacles shift their 
positions as time 
progresses.

(not fixed)

Types of Route Planning

Global Approach/ 

Act-After-Thinking Process/

Off-line Planning

Motion planning with 
complete information.

Local Approach/ 

Act-While-Think 
Process/ 

On-line Planning

Motion planning with 
incomplete or zero 

information.
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b. Optimization requirements must be met [1] 

Developing optimization criteria for mobile route design 

necessitates taking into account a number of factors. One 

frequent optimization criterion is as follows: length of path. 

The robot's journey from its starting point to its destination is 

measured in terms of its path length (LP) [19]. 

c. A path-finding method is employed [2] 

A path proposal technique is employed when searching 

for a collision-free route between two points in state space. 

The path search method must meet a number of optimization 

requirements, such as the distance of the route, the degree of 

safety, and the smoothness of the path. 

2. Local Route Planning 

The local planner includes various waypoints that may be 

used to transform the global route into a series of destinations 

for MAs. The planner takes into account the vehicle 

constraints and the dynamic obstacles. The map is reduced to 

show only what is near the vehicle, and it is updated as the 

vehicle moves around. This way, the path can be changed at 

a certain rate. The use of the whole map is impractical due to 

the fact that detectors will be unable to continue updating the 

map in all locations, and the processing load would increase 

by a significant number of cells. The local planning produces 

methods to avoid dynamic barriers based on the current local 

map and global waypoints, and attempts to match the route as 

closely as possible to those supplied by the global path 

planning [20]. 

As a conclusion, it has been established that route 

planning approaches are classified into two groups depending 

on the availability of environmental data: local path planning 

and worldwide path planning. It is essential to employ 

worldwide or global route planning techniques if all of the 

information about the barriers are known in advance, since 

this results in the generation of a path that connects both the 

starting and finish points at the same time. The local route 

planning approach, in contrast to this, necessitates the 

computation of maps based on any changes to the 

surrounding environment. 

C. Classification of Articles Based on Types of Path 

Planning 

Table V illustrates the author’s journals based on the path 
planning types; global and local. Based on Table V, we can 
conclude that some authors conducted research related to local 
and worldwide route planning. All of the information was 
provided and described for use in global route planning. 
However, minimal to zero information was provided about the 
environment. 

III. SEARCHING OR PATH PLANNING ALGORITHMS 

A. Traditional Methodologies 

The existing traditional or classical techniques in path 

planning are Potential Field, Cell Decomposition (CD), 

Roadmap Method, etc. 

 

 

TABLE V.  CLASSIFICATION OF ARTICLES BASED ON TYPES 

OF PATH PLANNING 

Y. 

O. P Author Title Pages T. O. 

P. P 

2020 Abaas, Shabeeb, 

A. H., & T. F. 

 

Autonomous 

Mobile Robot 

Navigation Based 
on PSO Algorithm 

with Inertia 

Weight Variants 
for Optimal Path 

Planning 

12 Global 

2020 Campbell, S., 

Riordan, D., 
Walsh, J., 

Krpalkova, L., 

O’Mahony, N., & 
Carvalho, A. 

Path Planning 

Techniques for 
Mobile Robots 

A Review 

 

 Global, 
Local 

2021 G., Vazquez-leal, 

H., Huerta-chua, 
J., Diaz-arango, 

Hernandez-mejia, 

C.Moreno-
moreno, M., 

Flores-mendez, J., 

& Ambrosio-
lazaro, R. C. 

Exploring a Novel 

Multiple-Query 
Resistive Grid-

Based Planning 

Method Applied to 
High-DOF 

Robotic 

Manipulators 

30 Global 

 

1. Cell Decomposition 

A route planner dependent on cell decomposition (CD) 

utilizes the principle use of wavelet transforms in motion and 

perception planning, lowering computing expenses [1]. There 

are two methods implemented in the CD techniques. They are 

the exact and approximate CD methods, respectively [6].  

The exact method is used to split the search space into 

simple cells as well as to construct the adjacency 

relationships between the cells, which are then used to find 

the solution [2]. It specifies the obstacles and constructs the 

cells in a straightforward manner. It will be possible to 

generate the exact space available by combining all the 

generated cells. Moreover, to search for a collision-free route, 

cell decomposition divides the given environment into 

simpler cells and uses the cell connectivity graph to find a 

path [21]. When constructing a connectivity graph, each cell 

or its border line is used to create each node [2]. Each node 

in the graph indicates a cell that is directly adjacent to another 

cell [7]. 

However, determining the exact free space in a high-

dimensional environment is not a simple task, which is why 

the approximate technique was implemented. Quad-trees can 

be used in conjunction with other techniques to achieve 

multi-resolution cell decomposition [8]. However, this has 

the unfortunate side effect of making the cells around all 

obstacles in the map high-resolution no matter how close the 

robot is to the roadblock. This is not good. As a result, the 

cost of computational estimations rises [6]. Fig. 6 shows the 

overview of cell decomposition. 
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Fig. 6. Overview of Cell Decomposition 

2. Roadmap Method 

A graph-based approach is used in the route discovery 

phase of the Roadmap Method to determine the shortest path, 

which is then considered the best path [22]. Thus, the problem 

of making a good graph is closely linked to the problem of 

planning the best way to move. Learning and querying are 

two distinct phases in this approach [5]. Ref. [7] described a 

method of learning in which the robot builds a model of the 

world and a network of nearby areas. Finding the most viable 

route may be done in a variety of ways, and many of these 

techniques vary in the way that paths and nodes are specified. 

The Visibility Graph and the Voronoi diagram are two of the 

most well-known roadmaps [2]. 

An approach known as "The Visibility Graph" is used to 

strategize the path of the robot. They can be very important 

in applications where things move in polygonal shapes in 

constant or detached areas [11]. Problems arise when the 

paths generated collide with obstructions at the vertices and 

edges of the visibility graph [23]. This makes its 

implementation difficult. However, Voronoi diagrams can 

help resolve this issue [13]. Fig. 7 shows the overview of the 

Visibility Graph. 

 
 

Fig. 7. Overview of Visibility Graph 

The Voronoi diagram divides a flat space into several 

areas by using multiple points as the cores, which allows for 

more precise path planning for the robot's movement [12]. 

However, despite the fact that the Voronoi diagram is not a 

new concept in path planning for robots' cooperation and 

exploration, it continues to play an important role in 

improving various algorithms for a variety of applications 

[14]. When using this method, there is a made guarantee that 

the graph vertices will be located at the greatest possible path 

length from all nearby obstacles because of the way the 

method is designed [1]. Radar and LiDAR are the only 

onboard sensors capable of determining such distances [2]. 

As a result, ultrasonic sensors and other short-range sensors 

are out of the question for this approach in path planning. 

Moreover, Voronoi diagrams ensure high obstacle clearance 

but require high computational complexity to create the paths 

[23]. Fig. 8 shows the view of Voronoi Diagram. 

 

 
Fig. 8. Overview of Voronoi Diagram [2] 

3. Potential Field 

Known as the artificial potential field (APF), it is a route 

planning methodology developed by Khatib in 1986, and it is 

still in use today [24]. APF is a common navigation technique 

and is founded on two different types of forces: repulsive and 

attractive, also known as electrostatic particles [2]. Many 

researchers have used this method because it is elegant, safe, 

and simple. The robot is affected by the fields created by the 

beginning, destination, and barrier locations in the solution 

space and the surrounding area[7]. The target point attracts 

attention, whereas the default position and obstacles detract 

attention. However, more effort is required to move an object 

that is farther away from the two boundaries [10].  

The advantages of APF are that it is fast to compute, and 

it generates a collision-free path [23]. However, the technique 

had several flaws, such as local minima, unreachable goals, 

and narrow passages [15]. As illustrated in Fig. 9, an artificial 

potential field has been created around obstacle and goal. 

 

 
Fig. 9. The Artificial Potential Field 

4. Comparison of Advantages and Limitations of Classical 

Techniques in Route Planning 

Table VI below summarizes the advantages and 

disadvantages of each method mentioned in the traditional 
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methodologies section. The comparison involves the CD 

method, Roadmap (Visibility Graph and Voronoi Diagram), 

and Potential Field. 

TABLE VI.  ADVANTAGES AND DISADVANTAGES OF 

CLASSICAL APPROACHES 

Algorithms Limitations Advantages 

CD  

 

Difficult to determine 

the precise amount of 

free space in a 
multidimensional 

environment [21].  

Extremely 
computationally 

intensive [23]. 

Static and dynamic route 

planning issues are well 

recognized. 
 

Simple [23]. 

Visibility 
Graph 

The route comes into 
touch with 

impediments at the 

vertices and the edges, 
which might lead to 

possible accidents 

[23]. 
Time-consuming and 

lacking in flexibility 

[25]. 

Ensures that the quickest 
route is on a two - 

dimensional map [23]. 

Voronoi 

Diagram 

Does not work well 

with short-range 

detectors. 
Complexity increases 

when the number of 

cells is increased [23]. 

Ensures the robot will always 

choose the safest route 

possible [23]. 
 

Potential 
Field 

Best implemented in 
an immobile setting 

with stationary 

barriers. 
Local minimum of 

potential may be 

trapped by robots [25]. 

Generates a smooth and 
instantaneous path for a robot 

without needing a separate 

controller [23]. 
Great real-time performance 

and efficiency in the 

calculation [25]. 

 

Based on Table VI, we can conclude that each technique 

proposed has its own limitations and benefits. By comparing 

the approaches, one can choose their path planning algorithm 

wisely for their research. 

B. Modern Methodologies 

Modern approaches have been proposed due to several 

drawbacks of traditional algorithms such as inefficiency, high 

computation rates, and inaccurate results [1]. These modern 

intelligence techniques can be categorized into heuristic 

approaches, metaheuristic algorithms, and neural system 

methods. 

1. Heuristic Approaches 

According to the above-mentioned traditional 

methodologies, heuristic route planning has recently grown a 

lot more popular [2]. The fundamental distinction is that 

heuristic-based learning has the potential for human-like 

behavior-based learning. This section discusses many 

common methodologies, including Dijkstra Algorithm, A* 

Algorithm, and D* Algorithm. 

a. Dijkstra Algorithm 

In the field of route planning for 2D mobile robots, the 

Dijkstra algorithm is a well-known shortest path routing 

technique [26]. To solve the single-source shortest path issue, 

this approach uses a simple algorithm to find the most 

efficient route to any destination. Edsger Wybe Dijkstra, a 

Dutch computer scientist, created the Dijkstra algorithm in 

1959. In a directed graph, the shortest path problem can be 

solved using a standard algorithm [1]. The increased number 

of nodes traversed reduces the algorithm's efficiency. To 

identify the most efficient route across the network, this 

approach employs graph searching techniques [9]. To 

approximate the configuration space, several discrete cell-

grid spaces and lattices are used [14]. Computer science, 

geography, and transportation are just a few examples of 

where it's been used effectively. 

b. A* Algorithm 

In 1968, Hart and colleagues proposed the A-star (A*) 

algorithm, derived from Dijkstra [1]. With this algorithm, the 

assessment evaluation of the current base stations is updated 

[3]. The A* algorithm was based on f(n). That is, f(n) = h(n) 

+ g(n), in which h(n) is the estimated value to get from B to 

C and g(n) is the real price to get from A to B. The h(n) is the 

Euclidean separation between the two access points. When 

g(n) is fixed, h(n) influences f(n). h(n) and f(n) are slightly 

near the target node (n). As a consequence, the route search 

always moves towards the target. The A* algorithm finds the 

mobile robot's goal [27]. The A* algorithm outperforms 

Dijkstra algorithms in path search. This is because Dijkstra's 

method for graph searching has been extended to include 

heuristics, making it possible to search for nodes quickly [3]. 

Nodes' weights are determined by their cost function, which 

is the most significant part of their design. It works well for 

searching places that the vehicle already knows about, but it 

is time-consuming and expensive to use in large areas [15]. 

c. D* Algorithm 

Path planning for mobile robots has evolved over time to 

take into account environmental information. The D* 

algorithm was developed in 1994 by Stentz[1]. Typically, 

robots use it to discover new routes. There are a series of 

states that represent the robot's position in the D* algorithm's 

problem space [10]. Using the cosine of the arc, the search is 

directed in the right direction. D* algorithms, including the 

field and Theta* algorithms, have also been studied by some 

researchers [11]. 

2. Metaheuristic Approaches 

a. Particle Swarm Optimization (PSO) 

Established by Dr. Eberhart, and Dr. James Kennedy in 

1995 and based on the uniformity of bird cluster activity, the 

PSO algorithm is utilized in stochastic optimization 

technique [28]. Completely random solutions are used as a 

starting point. To find the best solution, iteration is used [1]. 

Using model parameters, it determines the optimal solution, 

and by comparing the currently searched optimal value to the 

previously searched optimal value, it determines the global 

optimal [29]. Using this algorithm, robotic path planning can 

be accomplished in a straightforward manner, with a high 

degree of precision, and at an extremely rapid rate [1]. During 

the last few years, PSO has been utilised in a diverse range of 

research and application areas. 

PSO begins with a random distribution of particle 

populations [13]. Each particle in a swarm indicates a 

possible solution, and the swarm repeatedly travels around 
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the area of concern in pursuit of the best-fitting solution [12]. 

Every single particle in the population moves through its 

travel space at an unknown position and velocity because 

of this initiation phase. Tracking and updating velocity and 

position vectors for each particle is a continual element of 

PSO [14]. In every iteration, each particle strives to achieve 

the greatest possible fitness for that particle (PBest) and the 

best possible fitness for the whole swarm as a whole (Gbest). 

Until either the desired location has been located, or the 

maximum number of iterations were achieved, this cycle will 

continue endlessly [29]. 

b. Ant Colony Optimization (ACO) 

Italian scholar Dorigo came up with the idea for the Ant 

colony algorithm in 1992 [12]. To determine the ant's 

solution route, it carries out an ant colony simulation. Positive 

feedback, easy fusion, and parallel computation are its 

features. However, there are still some issues, such as slow 

processing rates and difficulty in finding local optimums in 

robot path planning [30].  

In order to discover the most efficient route between their 

colony and food, ants hunt for the shortest way possible [1]. 

Initially, they roam about their nest at random, before moving 

on to other areas in search of food. The ant leaves behind a 

chemical compound called pheromone as it travels [6]. 

Quality and quantity are assessed as soon as the ant discovers 

a food source. In order to deposit additional pheromone on a 

certain trail, ants must take the same route back to their 

colony from the food source [11]. All ants have the ability to 

smell this chemical compound, which they use to exchange 

information with their fellow ants. A trail with a high 

concentration of these pheromones (fitness value) is thought 

to be more likely to lead to a food source when young ants 

leave their nests in search of food. The presence or absence 

of the pheromone trails acts as positive or negative feedback 

respectively [13].  If the pheromone concentration is higher 

in the undiscovered route, it might lead to an even better 

solution in the uncharted area [6]. 

c. Bat Algorithm 

The Bat Algorithm (BA) was introduced in 2010 by Xin-

She Yang of Cambridge University [31]. The echolocation 

property of the microbats is used to distinguish and track 

down prey. It can also be used by microbats to locate 

obstacles that indicate where they roost. As an example, bats 

can echolocate by sending out high-frequency ultrasonically-

pulsed sound waves and listening to the echo that returns 

[32]. The species of bat and the environment in which it lives 

have an effect on the pulse frequency. The bats can use the 

various sound levels and time delays in the echo to figure out 

where the prey is and catch it [12]. This strategy enhances the 

algorithm's ability to find relevant results in the local area. 

d. Genetic Algorithm 

When it comes to providing precise and high-quality 

answers to optimization and discovery issues, genetic 

algorithms are widely recognised as one of the most regularly 

used optimization methods [1,2,4,5]. With no previous 

knowledge of what may be the optimal answer to the issue, 

GA is inspired by the natural selection notion [8–14]. 

Evolutionary operators like mutation, crossover, and 

selection are used to acquire data from the world before 

determining the best response for a specific circumstance. 

Path-planning problems have a lot of things that need to be 

done before genetic algorithms can be implemented. These 

things include making sure the "chromosome" for the path is 

the right size, coming up with a way to avoid obstacles, and 

choosing the right constraint definition [1]. 

The Genetic Algorithm, sometimes known as GA, is a 

search algorithm for global optimization. The ideas of 

Charles Darwin's theory of evolution served as inspiration for 

the development of the algorithm, which primarily simulates 

the genetic phenomena of natural selection and inheritance, 

including crossover and mutation, and also incorporates the 

natural laws governing which organisms will survive and 

thrive. The candidate solutions for each generation are 

obtained based on the results, and then the candidate solutions 

themselves are obtained at the end of the process. Obtain the 

best possible answer. The fact that this algorithm can be 

easily integrated with other algorithms while still making full 

use of its own iteration advantage is perhaps the most 

significant benefit it offers. It is really good at both organising 

itself and teaching itself, and it is very good at searching for 

the best possible route while it is planning its route. While 

doing so, it ensures that a good overall optimization is 

achieved. The genetic algorithm is straightforward to 

construct and is mostly unaffected by outside factors. The 

drawback is that the real-time operation is slow, the search 

efficiency is low, and it is easy to slip into the local optimal 

solution. When the algorithm is being executed, there will be 

some populations that aren't needed, which will make the 

complexity of following computations higher. This will lead 

to low operational efficiency and sluggish convergence. It is 

not appropriate for use with online route planning. 

3. Neural System/ Fuzzy Controller’s 

a. Artificial Neural Network (ANN) 

There is a strong connection between ANNs and the 

human brain's internal workings. Rather, they are computer 

simulations that can adapt their behaviour in response to the 

present environment [1-5]. For each neuron to function as a 

computing unit, it must have access to prior experiences and 

observations, much like the human brain [8]. The ANN's total 

intelligence or ability is determined by its neurons and how 

they connect [13]. When it comes to search engine 

optimization, knowledge acquisition, and information 

processing, ANNs are frequently employed because of their 

ability to deliver simple and optimum answers in complicated 

scenarios that are easy to implement [2,14]. 

An artificial neural network (ANN) expresses path 

planning as a modelling for both perceptual as well as 

behavioral space [10]. As a function of a path point in the 

neural network, it defines energy [33]. Depending on the 

location of the route point, the network follows the energy-

depleted path [9]. Finally, the least total energy path is found. 

However, this route is not the quickest nor most efficient [34]. 

The mobile robot's working environment is unpredictable and 

difficult to model. It is hard to describe a moving 

environment with a neural network topology. Moreover, the 

large and complex structure makes weighting the neural 
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network difficult [1]. However, this comes at the expense of 

large amounts of training data and a relatively long learning 

cycle. 

b. Fuzzy Controller’s/Fuzzy Logic 

Fuzzy Logic was initially established in 1965 by Zadeh 

[1]. To express anything as "true" or "false," this system uses 

Boolean logic, a kind of classical computer logic (0 or 1). In 

the fuzzy approach, these two states of being have a "degree 

of freedom" between them [2]. Many robot route planning 

applications have used this method because it allows the 

robot to build an understanding of its surroundings [5]. FLCs 

are ideal for controlling robots because they can make 

inferences even when there is a lot of uncertainty. They can 

also help make decisions and write rules [2]. 

Local approximation networks, and neural networks' self-

learning capabilities, were created as a result of a combined 

application of neural networks and fuzzy logic reasoning. 

Fuzzy weights and fuzzy input signals are fed into a 

conventional neural network, and this innovation has been 

utilized in a variety of applications for a long time. As a 

general rule, fuzzy neural systems [12] can be broken down 

into 5 layers: an input layer, an inferential layer, a fuzzy layer, 

a defuzzification layer, and the last layer, which serves as the 

final layer [4]. FLC that uses linguistic information has a lot 

of advantages, such as being model-free, being robust, and 

having a rule-based algorithm [11-13]. 

4. Comparison of Advantages and Limitations of Modern 

Techniques in Route Planning 

Table VII below summarizes the advantages and 

disadvantages of each method mentioned in the modern 

methodologies section. The comparison involves Dijkstra 

Algorithm, A-Star, D-Star, Ant Colony Optimization, PSO, 

GA, Bat Algorithm, ANN, and Fuzzy Logic. 

We may infer from Table VII that each approach has its 

own set of advantages and disadvantages. A researcher can 

make an informed decision on the best route planning 

algorithm by comparing the techniques. 

TABLE VII.  ADVANTAGES AND DISADVANTAGES OF 

MODERN APPROACHES 

Algorithms Limitations Advantages 

Dijkstra 

Algorithm 

Takes the quickest route 

without considering the 

state of the terrain or path 
[35].  

i) Easy to perform 

debugging [16]. 

ii) Excellent 
performance [16]. 

A* Algorithm i) There is a possibility 

for the robot to go too 

near convex barriers 

when it derives a 
route. Consequently, 

the robot is more likely 

to come into contact 
with objects as it 

travels. 

ii) Performance degrades 
in dynamic conditions 

[35]. 

i) Simple 

ii) Low-Cost [13] 

iii) Efficient 

D* Algorithm Excessively redundant 
calculations occur when 

the map's grid number is 

too high [2]. 

i) The quickest route 
to an objective. 

ii) Can locally mend 

the initially 

intended route 

[35]. 

Genetic 

Algorithm 

High time consumption 

leads to severely 

hampered real-time 
systems [13]. 

Optimized routes. [13] 

PSO 

 

Slow convergence in a 

narrowed search region 

due to poor local search 
capability [6]. 

 

i) Good robustness 

ii) Speed 

convergence in 
the initial stage 

[13] 

iii) Simple 

ACO 

 

i) No central processor 

to direct the system 

towards optimal 
solutions [6]. 

ii) Performs badly in vast 

search areas. 

i) Good robustness 

ii) Fast convergence 

in the late stages 
of the search [1] 

ANN It is difficult and requires a 
learning process, which 

might occasionally fall 

short of the demands of 
real-time applications 

[6,8]. 

i) Simple  
ii) Can provide 

optimal solutions 

in complex 
situations. 

Fuzzy Logic Expensive in terms of 
money and time. 

i) Enhances the 
robot's capacity to 

learn about its 

surroundings. 
ii) Higher possibility 

to draw 

conclusions even 
when there is 

uncertainty. 

iii) Assists in making 
decisions and 

creating 

regulations. 

 

IV. TAXONOMY OF PATH PLANNING TECHNIQUES 

APPLIED IN AMR SCENARIOS 

TABLE VIII.  TAXONOMY OF PATH PLANNING TECHNIQUES 

APPLIED IN AMR SCENARIOS 

Group of  

Algorithms 

Approaches Description of 

Approaches 

Mentioned in 

 

 

Classic 
 

Cell 
Decomposition 

 

Divides the given 
environment into 

many cells and 

creates a 
collision-free path 

using the 

connection graph 
of these cells. 

[1], [2], [6], 
[7], [8], [21], 

[23], [35], 

[36], [37] 
 

 

Classic 

 

Visibility 
Graph 

 

Connects the 

starting and 
ending points by 

using nodes on 

the map. 

[2], [7], [11], 

[13], [25], 
[35], [37] 

 

 
Classic 

 
Voronoi 

Diagram 

 

The configuration 
space is defined 

as the sum of all 

locations that are 
equally far from 

another two or 

more barriers. 

[1], [2], [6], 
[11], [13], 

[14], [23], 

[35], [37], 
[38], [39] 

 

 

Classic 

 

 

Potential Field 

 

Transforms the 

default map's 

moving tendency 
into virtual 

forces. 

[1], [2], [4], 

[5], [7], [10], 

[11], [12], 
[13], [14], 

[15], [23], 

[35], [40], 
[41], [42] 
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Heuristic Dijkstra 

Algorithm 

Utilizes known 

nodes and cells 

with their 

weights. 

When the 
environment 

changes, the 

weight of the grid 
and the cells and 

nodes in it 

changes. 

[1], [5], [6], 

[9], [11], 

[13], [14], 

[15], [38]  

 

 

Heuristic 

 

 

A-Star/A* 

Algorithm 
 

Created in 

accordance with 

Dijkstra's 
algorithm.  

Updating the 

relative weight of 
each current child 

node begins at the 

root and 
continues until all 

child nodes have 

had their 
weighted values 

updated. 

[1], [2], [3], 

[4], [5], [9], 

[10], [11], 
[12], [14], 

[15], [23], 

[37], [43], 
[44], [45] 

 

 
Heuristic 

 

 
D* Algorithm 

Created in 
accordance with 

A* algorithm to 

perform tasks in 
dynamic 

environment. 

 [1], [10], 
[11], [35], 

[46] 

 

 

Metaheuristic 

 

GA 
 

Has an initial 

population of 
chromosomes that 

encode all of the 

potential 
solutions to the 

issue 

[1],[2],[4],[5], 

[8],[9],[10], 
[11],[12], 

[13],[14], 

[19],[37], 
[45], [47], 

[48],[49] 

Metaheuristic PSO 
 

Influenced by the 
uniformity of the 

birds' clustering 

behavior.  
Begins with a 

randomly 

generated 
solution. With 

each iteration, it 

gets closer and 
closer to finding 

the perfect 

answer for the 
problem.  

Determines the 

global ideal by 
comparing the 

presently sought 

optimal value 
with the fitness 

value used to 

assess the quality 

of the answer. 

[1], [2], [5], 
[6], [11], 

[12], [13], 

[14], [29], 
[50]  

Metaheuristic ACO 

 

Based on ants’ 

behaviour in 
food-searching, 

they will each 

leave a trail of a 
secretion known 

as pheromones on 

the path it took as 
a reference and 

will be able to 

sense the 
secretions that 

other ants leave 

behind. 

[1], [6], [11], 

[12], [13], 
[14], [37], 

[51] 

Pheromones 

allow the ant 

colony to 

communicate and 

make decisions 
together. 

Metaheuristic Bat Algorithm 

 

Based on bats’ 

behaviour in 
prey-hunting, 

they produce a 

strong and brief 
wave of noise and 

then listen to the 

echoes that return 
to their ears after 

a little period of 

time.  
As a result, the 

bats can calculate 

their distance 
from a target. 

[12], [31], 

[32], [52] 
 

Neural 

System 

ANN 

 

Utilizes neurons 

that have the 
same structure as 

the brains of 

animals.  
Able to perform 

in the same way 

as a person would 
in the given 

circumstance.  

[1], [2], [3], 

[4], [5], [8], 
[9], [10], 

[11], [13], 

[14], [53], 
[54], [55], 

[56], [57] 

Neural 

System 

FL 

 

Human-language 

issues are 
transformed into 

mathematical 

formulae. 

[1], [2], [4], 

[5], [10], 
[11], [12], 

[13], [34], 

[37], [58], 
[59], [60] 

V. RESEARCH METHODOLOGIES 

This paper presents a systematized classification of path 

planning algorithms that are organized by environment types, 

date of publications, advantages, drawbacks, and principles 

of path search and modelling of autonomous mobile robots. 

The search for relevant literature was conducted in 2 main 

databases, IEEE Xplore and Scopus with particular attention 

paid to topics such as route planning, static navigation, 

dynamic path planning, global and local route navigation, 

traditional algorithms, classical path planning approaches, 

modern intelligence algorithms, heuristic approaches, 

metaheuristic approaches, and neural networks techniques. 

The references that were utilized in this investigation 

were found by searching the databases Scopus and IEEE 

Xplore for works published between 2019 and 2022 and set 

to only conferences and journals. These databases were used 

in the search. The specialized search has been configured to 

look for "Path Planning", and the results have been filtered 

for at least one algorithm; Cell Decomposition, Visibility 

Graph, Voronoi Diagram, Potential Field, Dijkstra, A*, D*, 

Genetic Algorithm, Particle Swarm Optimization, Ant 

Colony Optimization, Bat Algorithm, Neural Network or 

Fuzzy Logic. This article is created in Microsoft word 2016 

using Windows 10. Table IX illustrates the criteria of this 

article. The strategy for searching the references is described 

in Table IX. 

I. CONCLUSION 

Presented in a very systematic manner, this paper 

provides a review of the different collision-free trajectory 
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planning techniques that can be used for autonomous 

navigation. The paper investigates the static and dynamic 

nature of environments, as well as their interconnections. 

Following that, the classifications of pathfinding, which 

include global and local navigation systems, as well as both 

traditional and innovative intelligence approaches, are 

discussed to provide a more comprehensive picture of motion 

planning and its implications. In addition, this paper points 

out the benefits and drawbacks of each method in turn. 

Roadmaps, Potential Fields, and Cell Decomposition are 

examples of classical or conventional or traditional methods 

that have been discussed. Both of these strategies will either 

attempt to find a workable alternative or demonstrate that no 

solution exists. Because of their high complexity of 

computation and not being able to work well in changing 

situations, they may well not be reliable in practical uses.  

TABLE IX.  ARTICLE’S SELECTED CRITERIONS BASED ON 

PATH PLANNING FOR AMR FROM 2018 TO 2022 

 

Modern methodologies such as Heuristic-based (Dijkstra 

Method, A*, and D* Algorithms), Metaheuristics Algorithms 

(PSO, ACO, Bat Algorithms, and Genetic Algorithm), and 

Neural System (ANN and Fuzzy Neural Networks) were also 

discussed. This paper provides a list of some of the most 

frequently used techniques for trajectory tracking. The 

previous techniques do not guarantee the finding of a 

solution, but if they do, it will be in a fraction of the time and 

with a portion of the computation. The use of modern 

methodologies in real-world applications, particularly in 

dynamic environments, is becoming significantly more 

appropriate. In a nutshell, for these methods to work, the 

validity and dependability of the input data are critical. 
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