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Abstract
An elongation of the single-valued neutrosophic set is an interval-valued neutrosophic set. It has been demonstrated to deal 
indeterminacy in a decision-making problem. Real-world problems have some kind of uncertainty in nature and among them; 
one of the influential problems is solving the shortest path problem (SPP) in interconnections. In this contribution, we con-
sider SPP through Bellman’s algorithm for a network using interval-valued neutrosophic numbers (IVNNs). We proposed a 
novel algorithm to obtain the neutrosophic shortest path between each pair of nodes. Length of all the edges is accredited an 
IVNN. Moreover, for the validation of the proposed algorithm, a numerical example has been offered. Also, a comparative 
analysis has been done with the existing methods which exhibit the advantages of the new algorithm.

Keywords Interval-valued neutrosophic numbers · Ranking methods · Shortest path problem · Bellman’s algorithm · 
Directed graph network

Introduction and review of the literature

A tool which represents the partnership or relationship func-
tion is called a Fuzzy Set (FS) and handles the real-world 
problems in which generally some type of uncertainty exists 
[1]. This concept was generalized by Atanassov [2] to intui-
tionistic fuzzy set (IFS) which is determined in terms of 
membership (MS) and non-membership (NMS) functions, 

the characteristic functions of the set. Beside this, several 
theories have been developed for uncertainties, including 
generalized orthopair FSs [3], Pythagorean FSs [4], pic-
ture FSs [5], hesitant interval-based neutrosophic linguis-
tic sets [6], N-valued interval neutrosophic sets (NVINSs) 
[7], generalized interval-valued triangular intuitionistic 
FSs [8], interval-valued trapezoidal intuitionistic FSs [9], 
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interval-valued Pythagorean FSs [10], interval-valued IFSs 
[11], and interval type 2 FSs [12].

In 1995, Smarandache [13] premises the theme of neu-
trosophic sets (NS). The NS is to be a set of elements hav-
ing a membership degree, indeterminate membership and 
also non-membership with the criterion less than or equal 
to 3. The neutrosophic number is an exceptional type of 
neutrosophic sets that extend the domain of numbers from 
those of real numbers to neutrosophic numbers. By general-
izing SVNSs [14], Wang et al. premised the idea of IVNS. 
The IVNS [15] is a more general database to generalize the 
concept of different types of sets to express membership 
degrees’ truth, indeterminacy, and a false degree in terms 
of intervals. Thus, several papers are published in the field 
of fuzzy and neutrosophic sets [46–62].

Harish [16] proposed and analyzed an extension of the 
score function by incorporating hesitance. The authors pre-
sented an algorithm for the function including qualitative 
examples. Jun et al. [17] discuss INSs in algebra of BCK/
BCI. Mehmet [18] put forward for analyzing the concept of 
the interval cut set (ICS) and strong ICS (α, β, γ) of IVNSs 
with proof and examples. Also, there are other several exten-
sions of NSs described in the literature including interval-
valued bipolar neutrosophic sets [19], hesitant interval 
neutrosophic linguistic set [20], and interval neutrosophic 
hesitant fuzzy sets [21]; for more details of neutrosophic set 
and their extensions, we refer the reader to [22–28].

Among humanistic problems of computer science, finding 
the shortest path is one of the significant problems. Many of 
the algorithms existing for optimization assumed the edge 
weights as the absolute real numbers. Despite this, we need 
to deal inexplicit parameters such as scope, costs, time and 
requirements in real-world problems. For example, a sub-
stantial length of any road is permanent; still, traveling time 
along the road varies according to weather and traffic con-
ditions. An uncertain fact of those cases directs us to adopt 
fuzzy logic, fuzzy numbers, intuitionistic fuzzy and so on. 

The SPP using fuzzy numbers is called fuzzy shortest path 
problem (FSPP). Several researchers are paying attention in 
fuzzy shortest path (FSP) and intuitionistic FSP algorithms.

Das and De [29] employed Bellman dynamic program-
ming problem for solving FSP based on value and ambiguity 
of trapezoidal intuitionistic fuzzy numbers. De and Bhincher 
[30] have studied the FSP in a network under triangular 
fuzzy number (TFN) and trapezoidal fuzzy number (TpFN) 
using two approaches such as influential programming of 
Bellman and linear programming with multi-objective. 
Kumar et al. [31] proposed a model to find the SP of the 
network under intuitionistic trapezoidal fuzzy number based 
on interval value. Meenakshi and Kaliraja [32] formulated 
interval-valued FSPP for interval-valued type and developed 
a technique to solve SPP.

Elizabeth and Sujatha [33] solved FSPP using interval-
valued fuzzy matrices. Based on traditional Dijkstra algo-
rithm, Enayattabar et al. [34] solved SPP in the interval-
valued pythagorean fuzzy setting. Dey et al. [35] formulated 
fuzzy shortest path problem with interval type 2 fuzzy num-
bers. But, if the indeterminate information has appeared, 
all these kinds of shortest path problems failed. For this 
reason, some new approaches have been developed using 
neutrosophic numbers. Then neutrosophic shortest path 
was first developed by Broumi et al. [36]. The authors in 
[36] constructed an extension of Dijkstra algorithm to solve 
neutrosophic SPP. Then they used the extended version to 
treat the NSPP where the edge weight is characterized by 
IVNNs [37].

Broumi et al. [38–40] first introduced a technique of find-
ing SP under SV-trapezoidal and triangular fuzzy neutro-
sophic environment. In [41], the authors proposed another 
approach to solve SPP on a network using trapezoidal neu-
trosophic numbers. Broumi et al. [42] developed a new 
algorithm to solve SPP using bipolar neutrosophic setting. 
In another paper, Broumi et al. [43] discussed an algorith-
mic approach based on a score function defined in [44] for 

Table 1  Authors’ contributions 
towards neutrosophic shortest 
path problem

IVN interval-valued neutrosophic, PA proposed algorithm

Author and references Year Contribution

Broumi et al. [36] 2016 Solved NSPP using Dijkstra algorithm
Broumi et al. [37] 2016 Solved NSPP for interval-based data using Dijkstra algorithm
Broumi et al. [38] 2016 Discovered the SP using SV-TpNNs
Broumi et al. [40] 2016 Worked out SPP using single-valued neutrosophic graphs
Broumi et al. [41] 2017 Solved SPP under neutrosophic setting as well as trapezoidal fuzzy
Broumi et al. [42] 2017 Solved SPP under bipolar neutrosophic environment.
Broumi et al. [43] 2017 Dealt SPP under interval-valued neutrosophic setting
Broumi et al. [44] 2018 Proposed maximizing deviation method with partial weight in a 

decision-making problem under the neutrosophic environment
This paper – Introduction of the neutrosophic version of a Bellman’s algorithm
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solving NSPP on a network with IVNN as the edges. Liu 
and You proposed interval neutrosophic Muirhead mean 
operators and their applications in multiple-attribute group 
decision-making [45]. Thus, several papers are published 
in the field of neutrosophic sets [46–55]. Table 1 summa-
rizes some contributions towards NSPP. Based on the idea 
of Bellman’s algorithm, SPP is solved for fuzzy network 
[29–32]. This algorithm is not applied yet on neutrosophic 
network. Therefore, there is a need to establish a neutro-
sophic version of Bellman’s algorithm for neutrosophic 
shortest path problems.

The main motivation of this study is to introduce an algo-
rithmic approach for SPP in an uncertain environment which 
will be simple enough and effective in real-life problem. The 
main contributions of this paper are as follows.

• We concentrate on a NSP on a neutrosophic graph in 
which an IVNN, instead of a real number/fuzzy number, 
is assigned to each arc length.

• A modified Bellman’s algorithm is introduced to deal the 
shortest path problem in an uncertain environment.

• Based on the idea discussed in [15], we use an addition 
operation for adding the IVNNs corresponding to the 
edge weights present in the path. It is used to find the 
path length between source and destination nodes. We 
also use a ranking method to choose the shortest path 
associated with the lowest value of rank.

In this work, we are motivated to solve SPP by introduc-
ing a new version of BA where the edge weight is repre-
sented by IVNNs. The remaining part of the paper is pre-
sented as follows. The next section contains a few of the 
ideas and theories as overview of interval neutrosophic set 
followed by which the Bellman algorithm is discussed. In 
the subsequent section, an analytical illustration is presented, 
where our algorithm is applied. Then contingent study has 
been done with existing methods. Before the concluding sec-
tion, advantages of the proposed algorithm are presented. 
Finally, conclusive observations are given.

Overview on interval‑valued neutrosophic 
set

In this part, we recall few primary notions pertaining to 
NSs, SVNSs, IVNSs and some existing ranking functions 
for IVNNs which are the background of this study and will 
help us to further research.

Definition 1 [13] Let X be a set of elements and its uni-
versal elements denoted by x; we define the neutrosophic 
set A (NS A) by A = {< x: TA(x) , IA(x) , FA(x) > , x ∈ X}, 
where the functions T, I, F: X → ]−0,1+[ are called the truth, 

indeterminate and false MS functions, respectively, and they 
satisfy the following condition: 

The values of the three MS functions are taken from 
 ]−0,1+[. As we have difficulty of applying NSs to real-time 
issues, Wang et al. [14] put forward the approach of a SVNS, 
which is the simplification of a NS and can be applied to any 
real-world topic.

Definition 2 [14] A⃛ is the SVNS in X and is described by 
the set: 

where TA⃛(x), IA⃛(x),FA⃛(x) ∈ [0, 1] satisfying the condition:

Definition 3 [15] An IVNS in X, which represented by:

where [TL

A⃛
(x), TU
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]
, [IL
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]
, [FL
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are the interval numbers satisfying the condition:

Now we consider a few mathematical operations on inter-
val-valued neutrosophic numbers (IVNNs)s.

Definition 4 [15] Let 

be two IVNNs and 𝜂 > 0.

Then

(1)−0 ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

(2)A⃛ =
�
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where 𝜂 > 0.

Deneutrosophication formulas for interval‑valued 
neutrosophic numbers

To compare two IVNNs A⃛1 and A⃛2 , a map from [N (R)] to 
real line called score function has been used here. In the 
review of the literature, there are some formulas for deneu-
trosophication; in this paper, the following formulas have 
been focused [44, 45] and defined as follows:

Using score function (SF), the ranking technique is 
defined as below:

 (i) A⃛1 < A⃛2 if SF(A⃛1) < SF(A⃛2).

 (ii) A⃛1 > A⃛2 if SF(A⃛1) > SF(A⃛2).

 (iii) A⃛1 = A⃛2 if SF(A⃛1) = SF(A⃛2).

(10)
A⃛
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Computation of the shortest path based 
on neutrosophic numbers

In this section, the new algorithmic approach to solve IVNSP 
is provided. It is pretended that there are n nodes with the 
source node (SN), node 1 and destination node (DN), node 
n. The neutrosophic length between nodes i and j is denoted 
by dij and the set of all nodes having a connection with the 
node i is denoted by MN(i).

Mathematical formulation of BELLMAN dynamic 
programming

Consider a directed connected graph G = (V ,E) from SN ‘1’ 
and the DN ‘n’ which is acyclic and they are organized by 
topological ordering 

(
Eij; i < j

)
 . Using the Bellman powerful 

programming system, the shortest path can be determined by 
forward pass computation method. The Bellman powerful 
programming system is defined as follows:

where dij is the weight the directed edge Eij , f (i) is the length 
of SP node i from the SN 1.

Neutrosophic Bellman–Ford algorithm:

(13)f (i) =

{
0, i = 1

min
i<j

[
f (i) + dij

]
, otherwise ,

Fig. 1  Interval-valued neutro-
sophic network
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In the posterior section, we present a simple illustration 
to show the brevity of our method.

Illustrative example

This part is based on a numerical problem adapted from [43] 
to show the potential application of the proposed algorithm.

Example 1 Consider an interval-valued neutrosophic net-
work whose edge weights are represented by IVNNs with 
SN, node 1 and DN, node 6 (Fig. 1). Table 2 represents 
interval-valued neutrosophic distance.

Here we need to find the shortest distance from node 1 to 
node 6 (Table 3).

Using the proposed algorithm in previous section, the SP 
from SN and DN is calculated as follows:

Table 2  The details of edge 
information in terms of interval-
valued neutrosophic numbers

Edges IVN distance Edges IVN distance

1–2 ([0.1, 0.2], [0.2, 0.3], [0.4, 0.5]) 3–4 ([0.2, 0.3], [0.2, 0.5], [0.4, 0.5])

1–3 ([0.2, 0.4], [0.3, 0.5], [0.1, 0.2]) 3–5 ([0.3, 0.6], [0.1, 0.2], [0.1, 0.4])

2–3 ([0.3, 0.4], [0.1, 0.2], [0.3, 0.5]) 4–6 ([0.4, 0.6], [0.2, 0.4], [0.1, 0.3])

2–5 ([0.1, 0.3], [0.3, 0.4], [0.2, 0.3]) 5–6 ([0.2, 0.3], [0.3, 0.4], [0.1, 0.5])
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thus

 
Therefore, the path P: 1 → 2 → 5 → 6 is recognized as the 

neutrosophic shortest path, and the crisp shortest path is 
0.35.

f (1) = 0,

f (2) = min
i<2

{
f (1) + c12

}
= c∗

12
= 0, 1,

f (3) = min
i<3

{
f (i) + c

i3

}
= min

{
f (1) + c13, f (2) + c23

}

= {0 + 0, 175, 0, 1 + 0, 235} = {0, 175, 0, 335} = 0, 175,

f (4) = min
i<4

{
f (i) + c

i4

}
= min

{
f (3) + c34

}

= {0, 175 + 0, 05} = 0, 225,

f (5) = min
i<5

{
f (i) + c

i5

}
= min

{
f (2) + c25, f (3) + c35

}

= {0.1 + 0, 125, 0, 175 + 0, 455} = {0.225, 0, 625} = 0.225,

f (6) = min
i<6

{
f (i) + c

i6

}
= min

{
f (4) + c46, f (5) + c56

}

= {0.225 + 0, 35, 0, 225 + 0, 125} = {0.575, 0, 350} = 0.350,

f (6) = f (5) + c
56

= f (2) + c
25

+ c
56

= f (1) + c
12

+ c
25

+ c
56

= c
12

+ c
25

+ c
56

.

Table 3  The details of 
deneutrosophication value of 
edge (i, j)

Edges SRidvan SLiu

1–2 0.1 1.45
1–3 0.175 1.75
2–3 0.325 1.8
2–5 0.125 1.6
3–4 0.05 1.45
3–5 0.45 2.05
4–6 0.35 2
5–6 0.125 1.6

Table 4  Comparison of the sequence of nodes using neutrosophic shortest path and our proposed algorithm

Possible path Sequence of nodes Crisp shortest path length

Neutrosophic shortest path with interval-valued neutrosophic 
numbers [43]

1 → 2 → 5 → 6 ([0.35, 0.60], [0.01, 0.04], [0.008, 0.075])

PA based on SRidvan 1 → 2 → 5 → 6 0.35

PA based on SLiu 1 → 2 → 5 → 6 4.65

Contingent study

In this section, the analysis of contingency for the proposed 
algorithm with existing approaches has been analyzed. A 
comparison of the results between the existing and new tech-
nique is shown in Table 4.

From the result, it is shown that the introduced algorithm 
contributes sequence of visited nodes which shown to be 
similar to neutrosophic shortest path presented in [43].

The neutrosophic shortest path (NSP) remains 
the same, namely 1 → 2 → 5 → 6, but the neutro-
sophic shortest path length (NSPL) differs, namely 
([0.424, 0.608], [0.012, 0.06], [0.016, 0.125]), respectively. 
From here we come to the conclusion that there exists no 
unique method for comparing neutrosophic numbers and dif-
ferent methods may satisfy different desirable criteria.

Advantages and limitations of the proposed 
algorithm

Advantages

By correlating our PA with Broumi et al. [43] to solve the 
same problem, we conclude that the proposed approach 
leads to the same path 1 → 2 → 5 → 6. The extended Bell-
man’s algorithm operates on neutrosophic directed graphs 
with negative weight edges whereas the extended Dijkstra 
algorithm proposed in [37] cannot deal with. This approach 
can be easily extended and applied to other neutrosophic 
networks with the edge weight as

1. Single-value neutrosophic numbers.
2. Bipolar neutrosophic numbers.
3. Trapezoidal neutrosophic numbers.
4. Cubic neutrosophic numbers.
5. Interval bipolar neutrosophic numbers.
6. Triangular neutrosophic numbers and so on.

Limitations

1. Slow response will be observed when there is a change 
in the network as this change will spread node-by-node.

2. If node failure occurs then routing loops may exist.
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Conclusion

In this study, we describe the NSP, where edge weights are 
represented by IVNS. The advantage of using IVNSs in NSP 
is discussed in this paper. The classical Bellman’s algorithm 
is modified by incorporating the uncertainty using IVNSs 
for NPP between source and destination nodes. We use a 
numerical example to illustrate the efficiency of our pro-
posed algorithm. The main goal of this work is to describe 
an algorithm for NSP in the neutrosophic environment using 
IVNS as edge weight. The proposed algorithm is very effec-
tive for real-life problem. In this paper, we have used a sim-
ple numerical example to illustrate our proposed algorithm. 
Therefore, as future work, we need to consider a large-scale 
practical shortest path problem using our proposed algo-
rithm and to compare our proposed algorithm with the exist-
ing algorithm in terms of strictness of optimality, efficiency, 
computational time, and other aspects.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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