
A Fuzzy Approach to Addressing Uncertainty in
Airport Ground Movement Optimisation

Alexander E. I. Brownleea, Michal Weiszerb, Jun Chenb, Stefan Ravizzac,
John R. Woodwardd, Edmund K. Burked

aDivision of Computing Science & Mathematics, University of Stirling, UK;
sbr@cs.stir.ac.uk

bSchool of Engineering and Materials Science, Queen Mary University of London, UK
cIBM Global Business Services, Zurich, Switzerland

dSchool of Electronic Engineering and Computer Science, Queen Mary University of
London, UK

Abstract

Allocating efficient routes to taxiing aircraft, known as the Ground Movement
problem, is increasingly important as air traffic levels continue to increase. If
taxiways cannot be reliably traversed quickly, aircraft can miss valuable assigned
slots at the runway or can waste fuel waiting for other aircraft to clear. Efficient
algorithms for this problem have been proposed, but little work has considered
the uncertainties inherent in the domain. This paper proposes an adaptive
Mamdani fuzzy rule based system to estimate taxi times and their uncertain-
ties. Furthermore, the existing Quickest Path Problem with Time Windows
(QPPTW) algorithm is adapted to use fuzzy taxi time estimates. Experiments
with simulated taxi movements at Manchester Airport, the third-busiest in the
UK, show the new approach produces routes that are more robust, reducing
delays due to uncertain taxi times by 10-20% over the original QPPTW.

Keywords: Routing, Scheduling, Airport Operations, Optimization, Taxiing,
Ground Movement, Uncertainty

1. Introduction

The aviation industry is experiencing sustained and long-term growth. It is
estimated that air traffic within the European Union will reach 1.5x 2012 levels
by 2035 [1]. As a result, many airports are operating near capacity, and the
European Commission has recognised [2] the need to use existing infrastructure
more efficiently as well as increasing capacity. Thus, there is increasing inter-
est in better-performing decision support systems to optimise various airport
operations[3]. Such systems need to cope well with the complex, integrated
nature of airports, and model the processes realistically with minimal simplifi-
cation of the constraints or uncertainties.

At many airports, a major bottleneck is the system of taxiways between
the runways and stands. Optimisation of the Ground Movement of aircraft on

Preprint submitted to Transportation Research Part C April 25, 2018

the taxiways is a critical problem [4]. It directly links other problems such as
runway sequencing [5, 6] and stand/gate allocation [7, 8]. Furthermore, while
only a fraction of the total journey consists of Ground Movement, it makes
a large contribution to the running cost and emissions of an aircraft. Jet-
engines are designed to operate optimally at cruising speed in the air, and
are considerably inefficient while propelling an aircraft at low speed on the
ground. It is estimated that fuel burn during taxiing alone represents up to 6%
of airline fleet fuel consumption for short-haul flights with single-aisle aircraft
from congested airports, resulting in 5m tonnes of fuel burnt globally[9], with
reduced taxi delays offering potential savings of one third of that [10]. Reviews
of Ground Movement research can be found in [3] and [4], with work published
since these reviews including [11–29].

A critical issue remaining largely unaddressed by existing research (notable
exceptions being [13, 17]) is the uncertainty inherent in Ground Movement. In
particular, it is hard to accurately predict the time taken to travel between
the runways and stands. This can be affected by slope, turning angle, other
aircraft, runway crossings and simply the speed set by the flight crew. Existing
approaches to Ground Movement optimisation typically assume that the taxi
times are fixed. This can lead to a lack of robustness: an aircraft arriving at a
point before or after the expected time can cause conflicts with other aircraft,
leading to delays. Therefore, a decision support system which accommodates
uncertainty has the potential to produce tighter, more efficient, and more robust
taxiing schedules that bring an airport closer to its maximum capacity.

Some previous work has touched on this: [16] explored a number of different
modelling approaches, with the aim of reducing the error in estimated times.
That paper found that, depending on the model, 3.2-5.7% of all flights were
incorrectly estimated by over 3 minutes, with the lower end of that range (the
best estimates) from a fuzzy rule based system. A common means of tackling
this problem is adding time buffers to absorb uncertainty in the taxi times [13].
This paper presents a more sophisticated approach. The uncertainty in the taxi
times is represented using fuzzy membership functions, which come directly
from an adaptive Mamdani fuzzy model of the taxi times. The Quickest Path
Problem with Time Windows (QPPTW) algorithm [30] is extended to use these
fuzzy times, generating multiple routes for different levels of uncertainty. This
allows the decision support system to find a route assignment that is robust in
a range of situations, yet still uses a minimal time to complete the movement.

As far as we are aware, no other research has applied fuzzy systems to
handling uncertainty in Ground Movement, though fuzzy approaches have been
applied to handling uncertainty in other transportation problems [31, 32] and
are well established in more general scheduling problems [33–35].

Thus, the major contributions of this paper are: an adaptive Mamdani fuzzy
rule based system (FRBS) from [16] is improved and extended to estimate taxi
times and their uncertainties; and Fuzzy-QPPTW, an algorithm to allocate taxi
routes to aircraft that are robust to taxi time uncertainty, is proposed. The new
approach is demonstrated through the use of simulation to reduce delays caused
by uncertainties in aircraft movements by 10-20% for higher levels of uncertainty.

2

This has the potential to reduce fuel burned by stopping and starting aircraft,
and make better use of congested taxiways at busy airports.

The rest of this paper is structured as follows. We begin in Section 2 with
a review of existing work in airport Ground Movement and uncertainty. In
Section 3 we fully define the problem, and then describe the FRBS and new
algorithm Fuzzy-QPPTW in Section 4. In Sections 5 and 6 we detail our case
study, centred around Manchester Airport, and the simulator used to compare
the different algorithms. We present and discuss experimental results in Sec-
tion 7 and finally in Section 8 we draw our conclusions.

2. Related work

2.1. Ground Movement

Airport Ground Movement is a difficult problem which has been the focus
of extensive research over the past couple of decades. Comprehensive reviews
of this area are [3] and [4].

Early work in this area [36–38] used a list of routes that were either human-
designed or generated before the algorithm was run using a shortest path al-
gorithm. Heuristic search algorithms, such as genetic algorithms, selected an
appropriate route and wait points for each aircraft. More recently, genetic algo-
rithms were used to evolve the routes rather than choosing predefined ones [11].
Alternative efforts including [12, 21, 22, 39], [40] formulated Ground Movement
as a mixed-integer linear programming problem. Ravizza et al. [30] describe
the QPPTW algorithm, an adaptation of Dijkstra’s shortest path algorithm
that accounts for the movements of previously-allocated aircraft. Rather than
optimisation of routes, congestion on the airport surface has also been reduced
by management of the speeds, time slots, landing runway, and pushback delay
[41]. Optimising gate allocations can also target reduced taxi times [25]. Often
the focus is on optimising taxi times, but other objectives have attracted some
attention, particularly reducing aircraft emissions and fuel consumption due to
taxiing [22, 42–44], [45]. Integrated approaches to optimising Ground Move-
ment with gate/stand allocation [24, 46] and runway sequencing [26, 47] have
also been shown to provide more airport-wide improvements.

Most of the above methods assume fixed start or end times and taxi speeds.
Some research has also attempted to account for the inherent uncertainty in
this problem, which includes variations in push-back times, landing times and
taxi speeds. Such uncertainty has been modelled as a fixed percentage of the
initially defined taxi speed [37], with an aircraft occupying multiple positions on
the taxiway graph simultaneously. An alternative is to use a planning horizon
[39], so that aircraft routes were only determined up to a fixed time, and were
then completed in subsequent iterations. Lesire et al. [48] used an increased
temporal separation between aircraft to cope with uncertainty, and Koeners
et al. [13] made use of time-margins around aircraft trajectories. The similar
concept of buffering was discussed in [30]. Pfeil et al. [14] addressed the issue
of rerouting aircraft to accommodate forecast bad weather. Furthermore, the

3

Ground Movement problem has been tackled as a network congestion control
problem [15], making use of a probabilistic model based on Erlang random
variables for taxi-out times at Boston Logan Airport.

There have been some attempts to reduce uncertainty by building more ac-
curate models of taxi time using data provided by airports or airlines. Several
papers describe models to accurately estimate taxi times for different aircraft
movements. Balakrishna et al. [49] used reinforcement learning to predict taxi
times at Tampa International Airport. The similarity of Ground Movement to
road traffic flows was considered by Yang et al [29], in proposing a modelling
approach based on the cell transmission model for simulating the evolution of
flow and congestion on taxiways. Ravizza et al. [50] used a multiple linear
regression to estimate taxi time at Zurich and Stockholm airports. In [51], an
adaptive Mamdani Fuzzy Rule-Based Systems were used to estimate taxi times
at Zurich Airport. A comparison of the latter two and several other modelling
approaches [16] found the fuzzy approaches to yield the most accurate mod-
elling. A regression model was used in [18] to estimate taxi times at Newark
Liberty International Airport; a log-linear regression analysis to estimate taxi
time was demonstrated by [52]. Truong [19] developed a probability distribution
function to model taxi times for JFK Airport. More realistic timings can also
be produced by redefining the taxiway model from a pure graph of nodes and
edges to a zone based partition of the taxiways [23]. This achieves more realistic
trajectory modelling through curves and intersections. Speed profiles [42] and
Active Routing [44] also represent a path to more realistic routing. Khadilkar et
al [53] used a dynamic programming approach combined with a model drawing
on taxi times, arrival airspace and departures to determine the optimal push-
back times for aircraft waiting on their stands at Boston Logan International
Airport. This meant that aircraft could delay starting their engines to save
fuel, mitigating the effect of delays in taxiing. A similar approach for delaying
pushbacks Heathrow airport was described in [54].

Some work has also looked at the impact of uncertainty on Ground Move-
ment. Lee et al. [17] described the use of a simulation of aircraft movements,
given their route allocations and variations in speed profile, to measure the im-
pact of uncertainty from various sources at Detroit International Airport. They
confirmed that ground delay increases as uncertainty increases for most scenar-
ios. Furthermore, they found that while routing allocations based on determin-
istic models can still be robust to certain types of uncertainties (such as runway
exit times for arrivals), variations in taxi speeds resulted in significant increases
in ground delay for departures. However, they did not propose an algorithm
to explicitly handle uncertainty. A simulation was also used by [13] to explore
the effect that the size of buffers around taxiing aircraft has upon throughput
and robustness, finding that taxi time uncertainty is a major factor preventing
the optimal use of the taxiways and runways. More detailed analyses of airport
surface movements was conducted by [20] and [55], also reflecting the strong
impact of taxi time uncertainty on the airport’s efficiency. Morris et al [27]
analysed various sub-problems within airport surface operations, and suggested
that uncertainty in executing allocated taxi movements could be handled by

4

‘migrating’ part of the uncertainty into probabilistic or flexible predictive mod-
els. Stergianos et al [28] investigated how arriving aircraft can affect the routing
process and whether pushbacks can result into different types of delays. They
showed that arriving aircraft can indeed produce a lot of delay to overall taxi
movements, and they noted the importance of having an accurate model for
the pushback process. Lie et al. [56] gave a comprehensive assessment of the
predictability impacts of airport surface automation. A wide range of the im-
pacts is considered, which includes variability in taxi-out time, predictability of
take-off time and take-off sequence, entropy of the airfield state, and perceived
predictability from users. It has also been suggested that punctuality figures
should be adjusted to use take-off times rather than push-back times, so that
uncertainty in taxi times can be explicitly recognised and so tackled [21].

In summary, there has been considerable research into Ground Movement
and some attempts to quantify the impact of uncertainty. While it has been
established that taxi time uncertainty can cause delays, and has a large impact
on the efficient use of taxiways and runways, only preliminary work has been
conducted into generating taxi routes that are robust to uncertainty. This paper
addresses this problem.

2.2. Stochastic routing

Closely related to the present work is the body of research in stochastic
routing [57, 58]. This encompasses a family of related vehicle routing problems
(VRP) with an uncertain element, which can be in the demands [59], travel
times/costs [60], time-windows or other aspects of the problem. Exact and
heuristic approaches have been applied to stochastic routing problems with un-
certain travel costs. These are often termed robust optimisation, seeking to find
a solution that is invariant under uncertainty such as different delay patterns.

One of the closest works to the present study is [61]. This proposed a
Dijkstra-based routing algorithm applied to road and rail movements, but with-
out time-windows. Link costs were either dynamic or stochastic, with labels on
nodes being distributions, and travel times dependent on time of day. Rather
than our approach, which considers the full range of uncertain times on each
edge, their algorithm made comparisons and operations on labels using per-
centiles, taking scalar values from the distributions representing a fixed vari-
ation on the expected time. [62] considered a VRP with soft time-windows
and stochastic travel times. The goal was minimising transportation cost, us-
ing another label setting algorithm to compute shortest paths. Rather than
considering travel time, costs for comparing labels were associated with missed
time-windows (which had stochastic start and end times). Again, the shortest
path algorithm worked on the resulting crisp, scalar, costs.

Also close to the present study is [63], which focused on the stochastic ori-
enteering problem with time-windows. This is essentially a combination of the
knapsack problem and travelling salesman problem, with a reward for visiting
each node, meaning that decisions must be made on which nodes to visit and in
what order. Vertices have time-windows representing the expected arrival times

5

to qualify for the reward. [63] described a variant of the Dijkstra-based algo-
rithm from [61] with node comparisons at the 99th centile to generate instances
from which time-independent stochastic travel times could be computed. That
work used the Ant Colony Optimisation metaheuristic as the main solution
method, applied to graphs having up to 100 vertices. They used a Monte-Carlo
simulation to test performance, similar to the approach we take. The method
was shown to produce better solutions than those obtained for the regular orien-
teering problem when evaluated in a stochastic environment. This is also similar
to our method of evaluating crisp and fuzzy QPPTW, both under uncertainty.

Recently, [64] looked at the related probabilistic orienteering problem, where
the nodes were only available for service with a certain probability. A matheuris-
tic algorithm based on the branch-and-cut scheme was described, with heuristic
rules to reduce the solution space.

Surveying the literature in this area, we can make two important distinctions
between our work and stochastic routing problems. In a general sense, Ground
Movement with uncertain taxi times might be viewed as a VRP with hard
but uncertain time-windows (i.e. hard constraints for missing time-windows),
although the time-windows are on the edges rather than the nodes. In contrast
to VRPs with Ground Movement very few nodes must be visited (in fact, usually
just start and end). However, for each aircraft we are attempting to find a
conflict-free path, so there are still time-windows on the intermediate edges to
avoid aircraft conflicts. These time-windows are updated for every aircraft that
is routed, so a dependency exists between vehicles not usually present in VRPs
or SVRPs. Our algorithm also considers the taxi-time uncertainty in a tunable
(via α-cuts) range of uncertainty levels, rather than only a centile taken from the
distribution. Furthermore, rather than a probabilistic distribution, representing
times as fuzzy membership functions means we can capture the uncertainties
without needing to specify particular distributions for each taxi time, using a
model that can be parameterised with qualitative metrics, e.g. route direction,
traffic conditions etc.

3. Problem description

We now define underlying concepts that are key to this work. First, we
discuss the links between Ground Movement and other airport optimisation
problems. This is followed by a formal definition of the Ground Movement
problem.

3.1. Links with other airport operations

Operations at an airport are highly complex and interrelated. Atkin et al.
[65] noted the importance of integrating Ground Movements with other airport
operations, such as gate allocation and finding efficient arrival and departure
sequences. At many airports (including our case study, Manchester), a key
issue is the crossing of active runways by taxiing aircraft. Arriving or departing
aircraft are always given priority, effectively blocking the taxiway at regular

6

Figure 1: Part of the undirected graph representing Manchester Airport. Nodes represent
the locations of stands, intersections, or intermediate points on taxiways used to maintain
separation of aircraft. Edges are coloured blue to indicate stands, red to indicate taxiways
and green to indicate runways.

intervals. In [30], while the taxi time model incorporated likely delays due to
such crossings, the routing algorithm itself did not consider them. We take
the same approach for the present work, except that the simulator used to
recreate aircraft movements under uncertainty also includes runway crossings:
the appropriate taxiways are blocked for an appropriate interval during landings
and take-offs. We also follow [30] in solving the Ground Movement problem
separate to the runway sequencing and gate allocation problems. Both runway
sequencing and gate allocations are solved first, then the resulting take-off and
landing times, and allocated gates, are considered to be fixed when solving the
Ground Movement problem. Changes to runway sequence or gate allocations
can be accommodated by rerunning the routing algorithm, with the routes of
already-taxiing aircraft kept fixed. A study of tighter integration of runway
sequencing and Ground Movement forms part of a separate piece of work [47]
and more recently has been considered in [24, 25].

3.2. Ground Movement

Airport Ground Movement is a combined routing and scheduling problem
[4]. Time-efficient routes must be allocated to aircraft seeking to traverse the
taxiways between the runways and stands. Routes must respect allocated run-
way times, route restrictions, and safety constraints on the proximity of other
aircraft. At less busy airports, where only a couple of aircraft are moving at any
one time, it would be possible to assign routes using shortest path algorithms
like Dijkstra’s or A*. However, interactions between moving aircraft mean that
a more sophisticated approach is required at busier airports.

7

Our approach does not use pre-determined routes, allowing for greater flex-
ibility. As noted earlier, we assume that the runway time for an aircraft is
fixed for departures and arrivals. The objective for arrivals is simply to find
the quickest route to the stand. For departures, it is to find the quickest route
from the stand that finishes at the runway at the allocated time. This approach
means that the aircraft can be held on the stand as long as possible, delaying
the engine start-up time and reducing fuel burn and emissions.

The airport layout is represented as an undirected graph G = (V,E) (e.g.
Fig. 1). Edges E represent taxiways and vertices V represent stands, junctions
and intermediate points. An edge e ∈ E has a set of weights Te, the times to
traverse e. Specifically which taxi time te in Te applies for a particular aircraft
depends on the previous edge traversed, airport operating mode (i.e. which
runways are in use) and aircraft type (i.e. arrival or departure). Each e can only
have one aircraft ai on it at any one time. This is enforced by each e having an
associated list of time-windows Fe. The Fe specify the times that e is available
to be used as part of a route. An aircraft will only be allocated a route for which
there is a chain of time-windows along its entire length. This way, we ensure
that the route is conflict free. Additionally, aircraft have a minimum separation
distance of 60m at all times. To ensure this, G is pre-processed before routing
to find the conflicting edges conf(e) for each e, these being any edge sharing a
vertex with e or passing within 60m of e. When an aircraft is present on any
edge e, the time-windows of conf(e) must be updated to prevent other aircraft
coming in to conflict with it. Long edges are divided into lengths of no more
than 60m by intermediate points to accommodate separation of consecutive
aircraft on the same taxiway. This and subsequent notation are summarised in
Table A.4 in the Appendix.

4. Adaptive Mamdani FRBS and Fuzzy-QPPTW

In this section we describe Fuzzy-QPPTW, an algorithm to find the quick-
est route for taxiing aircraft, given the existing routes of other aircraft and
fuzzy estimates of taxi times for edges in the taxiway graph. Fuzzy-QPPTW
extends the existing QPPTW algorithm [30]. First we describe the estimation
of fuzzy taxi times for edges and introducing some key concepts in fuzzy sets
and arithmetic. We then replicate the relevant details of the original QPPTW
algorithm for convenience. Finally, we describe Fuzzy-QPPTW, in terms of the
required changes to the original QPPTW. These are grouped into changes to
the core algorithm, methods for calculating and comparing fuzzy taxi times, the
operation to update time-windows, and an alternative approach to backwards
routing for departures. Fig. A.14 in the Appendix gives an overview of how the
components fit together to route a set of aircraft.

4.1. Adaptive Mamdani fuzzy rule-based system

Earlier work with QPPTW [30] considered taxi times for traversing edges as
crisp real values. In the present work, we use fuzzy time t̃ that a given aircraft
will take to traverse an edge e based on historical aircraft movements.

8

Given that nonlinearity is inherent in the Ground Movement problem, non-
linear modeling approaches, like fuzzy rule-based systems (FRBSs) with proven
ability to approximate any real continuous function [66], are very suitable for
predicting taxi times [51]. In particular, a Mamdani FRBS that outputs a
fuzzy set is ideal as it can produce not only taxi time predictions, but also a
membership function that quantifies uncertainty. However, as noted in [51],
a standard Mamdani FRBS is highly dependent on human expertise and not
suitable for making accurate predictions when: 1) such expertise is only par-
tially or not available, 2) the problem is complex, with high dimensions in its
explanatory variables. Given the abundance of historical aircraft movements, a
data-driven fuzzy approach affords more accurate predictions, in turn leading
to more accurate uncertainty quantification. Therefore, an adaptive Mamdani
FRBS with a bespoke back-error propagation algorithm [51] was developed.
Good performance compared to other methods, including linear and support
vector regression, for predicting crisp taxi times has been shown [16]. While, in
[16], a TSK FRBS was best performing, this type of FRBS only outputs a single
value rather than a fuzzy set. The Mamdani FRBS represents a small sacrifice
in accuracy to gain the benefit of uncertainty quantification. In this study, we
extend the work in [16] to quantify uncertainty via the overall implied fuzzy set.

A typical Mamdani FRBS is defined by a number of fuzzy if-then rules in
the following form:

If x1 is H1
i and x2 is H2

i , . . . , and xj is Hj
i , . . . ,

. . . and xn is Hn
i Then yi = Zi,

where xj is the value of the j-th explanatory variable (j = 1, 2, . . . , n), yi is

the output of the i-th rule, Hj
i is the fuzzy set (a linguistic value) for the j-th

explanatory variable of the i-th rule and Zi is the consequent of the i-th rule,
and is defined as the fuzzy set Bi in a Mamdani FRBS. The original Mamdani
FRBS is based on the so-called “sup-star compositional rule of inference” (as
defined in (1)–(3)) and the overall implied fuzzy set B̂ (as defined in (3)) [67].

µB̂i
(y) = µi(X) ∗ µBi

(y), (1)

µi(X) = µH1
i
(x1) · µH2

i
(x2) · . . . · µHj

i
(xj) · . . . · µHn

i
(xn), (2)

µB̂(y) = µB̂1
(y)⊕ µB̂2

(y)⊕ . . .⊕ µB̂i
(y), i = 1, 2, . . . , r, (3)

where, r is the number of fuzzy rules in the rule-base. ⊕ and ∗ correspond to
“sup” and “star”, and are maximum and minimum respectively in the original
Mamdani implementation. Note that the centre of average defuzzification was
applied on B̂ in order to derive a crisp output, which leads to two problems as
mentioned in [67]: 1) B̂ is itself difficult to compute; and 2) the defuzzification
techniques based on B̂ are also difficult to compute.

Therefore, in this work, the centre of gravity defuzzification is applied on
the individual implied fuzzy set B̂i as defined in (1). Instead of using minimum

9

and maximum, “product” is used for ∗ and “plus” is used for ⊕. In order to
arrive at a differentiable analytical form after defuzzification, we further choose
Gaussian membership functions for all of the explanatory variables and bell-
shaped membership functions for the consequents, as defined in (4) and (5)
respectively:

µHj
i
(xj) = exp[−1

2
· (xj − c

j
i

σji
)2], (4)

µBi
(y) =

1

1 + (
y−cyi
σy
i

)2
. (5)

where cji and σji are the centre and the spread of the i-th membership function of
the input. cyi and σyi are the centre and spread of the i-th membership function
of the output. Using the above modifications, a defuzzified output ycrisp of the
FRBS for input X can be formulated as follows:

ycrisp =

∑r
i=1 coai ·

∫
y
µB̂i

(y) dy∑r
i=1

∫
y
µB̂i

(y) dy

=

∑r
i=1 coai · µi(X) ·

∫
y
µBi(y) dy∑r

i=1 µi(X) ·
∫
y
µBi(y) dy

def
= ycrisp(X|θ), (6)

where coai is the centre of area of µBi
(y) and is the peak, i.e. cyi , if µBi

(y) is
symmetric.

∫
y
µBi

(y) dy denotes the area under µBi
(y) over the output interval

y : [yl, yu] and is calculated using (7).∫
y

µBi
(y) dy = σyi [arctan(

yu − coai
σyi

)− arctan(
yl − coai

σyi
)] (7)

In order to obtain a good estimation, i.e. ycrisp, the parameter vector θ =
(cji , σ

j
i , c

y
i , σ

y
i) needs to be chosen appropriately. The initial values of θ are

derived by applying a clustering algorithm [68] on historical data containing
aircraft movements. This vector is subject to further fine-tuning with a bespoke
back-error propagation (BEP) algorithm [69] in a bid to improve the estimation
accuracy of the FRBS, leading to an adaptive Mamdani FRBS. For details of
the updating laws based on the BEP algorithm, readers are referred to [69].

It is well known that a large number of factors influence taxi times [49, 50, 55,
70]. The adaptive Mamdani FRBS uses explanatory variables identified in [50]
as inputs for accurate prediction of taxi times, i.e. the output. The explanatory
variables include airport operating mode; whether an aircraft is departing or ar-
riving; total taxi distance; total turning angle; whether a push-back manoeuvre
was performed; and the number of other moving aircraft divided into groups
of arrivals and departures. Aircraft type (wake vortex category and number of
engines) was excluded in line with the finding of [50, 70] that this had a poor
correlation with taxi time. For the purpose of routing, all factors related to

10

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Arriving
aircraft

(a)

0 1000 2000 3000 4000
0

0.5

1
Distance

(b)

0 0.2 0.4 0.6 0.8 1
0

0.5

1
Single rwy
op mode

(c)

0 5 10 15 20 25 30 35
0

0.5

1
Taxi time

(d)

5 10 15 20 25 30
0

0.02

0.04

(e)

5 10 15 20 25 30
0

0.05

0.1

(f)

Figure 2: An example rule; (a)–(c) membership functions of explanatory variables and the
values of the variables for a single example; (d) the membership function for the output; (e)
the implied fuzzy set of this rule; (f) the overall implied fuzzy set with the indicated prediction.

other moving aircraft are set to 0, allowing estimation of unimpeded taxi times.
As an example, Fig. 2a–f illustrates an example rule of the Adaptive Mam-

dani FRBS, which has the highest firing strength with respect to the given
inputs among all rules, as part of the inference system to derive taxi times.
Fig. 2a–c depict membership functions of some explanatory variables and the
values taken as the given inputs. Other explanatory variables are omitted for
simplicity. Fig. 2d shows the membership function of the output pertaining to
this particular rule. Fig 2e shows the implied fuzzy set of this rule. The rule
can be interpreted using subjective abstractions: If the aircraft is arriving and
the operating mode is in single runway and the distance is medium, then taxi
time is short. Note that the choice of membership functions is quite subjective
and does not come from randomness, nor should they follow probability theory,
which deals with objective treatment of random phenomena [71]. Fig 2f shows
the overall implied fuzzy set with the indicated prediction, which is the result of
several fired rules working concomitantly within the FRBS. Readers interested
in the primary difference between the study of fuzzy theory and probability
theory are referred to [72].

As the elicited FRBS models historical aircraft movements accurately, in this
paper, we further exploit the overall implied fuzzy set B̂ as defined in (3) for
accurate uncertainty quantification. Note that for a certain airport operational
scenario as described by a combination of the explanatory variables, B̂ effec-

11

tively gives a fuzzy time for traversing an edge on the graph. In order to use
fuzzy arithmetic introduced later in Section 4.2, we use triangular membership
functions of a fuzzy set t̃ = (l, b, u) as defined in (8) to approximate those of the
resulting B̂:

µt̃(t)


0 t ≤ l
t−l
b−l l < t ≤ b
u−t
u−b b < t < u

0 t ≥ u

(8)

where, b represents the modal, with l and u representing the lower and upper
bounds respectively. The membership value of t ∈ R+ represents how likely t
is to occur given t̃. Fig. 3a illustrates this approximation process. The inter-
section of the predicted taxi time and the membership function of B̂ represents
the modal of µt̃(t). The bounds l and u are extreme values defined by the mem-

bership function of B̂. As l can take small values close or equal to 0, which is
not a realistic speed for aircraft to taxi at, a limit is imposed to l such that the
maximum speed of aircraft is 30 m/s. For u, a limit equal to the maximum taxi
time in the historic data is applied.

4.2. Fuzzy arithmetic

In order to adapt QPPTW to consider fuzzy times, we make use of several
existing concepts. Our approach is broadly inspired by the algorithm for solving
flow shop scheduling problems with fuzzy processing times in [35]. That was an
extension of an earlier work by McCahon and Lee [73], which adapted Johnsons’
exact algorithm [74] for flow shop scheduling. McCahon and Lee’s idea is that
the times, represented by triangular fuzzy membership functions t̃ = (l, b, u),
were ranked by their Generalized Mean Values (GMV (t̃) = (l+ b+u)/3). Here
we make a few definitions which will be referred to in the description of the
algorithm.

An important concept that we use is the set of α-cuts of a fuzzy set t̃. An
α-cut of t̃, denoted by tα, is a crisp set comprised of the elements in t̃ with a
membership greater than α. More formally,

tα = {x | µt̃(x) ≥ α}, 0 ≤ α ≤ 1. (9)

An α-cut of t is illustrated in Fig. 3b, where tα has the modal value bα = b,
lower bound lα and upper bound uα.

In fuzzy set theory, the representation theorem states that a fuzzy set t̃ can
be decomposed into a series of its α-cuts [75]. This in turn means that any fuzzy
set can be derived from a family of nested sets: if α1 > α2, then tα1 ⊂ tα2 . A
problem formulated in terms of fuzzy sets can be solved by decomposing them
into their families of α-cuts. In order to compute the fuzzy taxi time for an
aircraft along a series of edges, given fuzzy times on each edge and fuzzy time-
windows, addition, minimum and maximum operations are required. As per
[35] and [73], each operation can be decomposed into corresponding interval
operations, conducted at each α-cut:

12

t
0 5 10 15 20 25 30 35 40

7
~ t(
t)

0

0.2

0.4

0.6

0.8

1

1.2

ul b

(a)

l b,bα ulα uα

1

α

0 t

μ~t (t)

(b)

Figure 3: Triangular membership function (a) constructed from the membership function of

B̂ of the FRBS; (b) α-cut of the triangular membership function (shown by the hatched area).

13

Add Given two intervals [l1, u1] and [l2, u2],
then [l1, u1] + [l2, u2] = [l1 + l2, u1 + u2]

Min Given two intervals [l1, u1] and [l2, u2],
then min([l1, u1], [l2, u2]) = [min(l1, l2),min(u1, u2)]

Max Given two intervals [l1, u1] and [l2, u2],
then max([l1, u1], [l2, u2]) = [max(l1, l2),max(u1, u2)].

For one or a combination of these operations, the partial results obtained for
all α-cuts, α ∈ (0, 1), can be combined to yield a solution to the original fuzzy-
set formulated problem. The resulting taxi time is not necessarily a triangular
function, and in practice is highly unlikely to be so when calculated over an entire
route. However, for convenience it can be represented as a triple t̃ = (l, b, u).
We use the popular Yager’s index [76] to scalarise the membership function for
total taxi time:

Y (t̃) =
1

2

∫ 1

0

(tαl + tαu)dα (10)

In comparing routes, we use the centre of gravity of t̃, which is simply the
weighted mean of all the values in t̃

COG(t̃) =

∑u
x=l µt(x)x∑u
x=l µt(x)

(11)

As noted above, our method for adapting QPPTW to use fuzzy taxi times is
based on the approach of [35]. It is noted in [35] that the approach of scalarising
the fuzzy values (in that paper, using Generalized Mean Values / GMVs) for
comparisons could miss optimal schedules because possibly useful information
describing how times overlap is lost (see Fig. 4 for an example). For this reason,
they took the approach of repeating the algorithm over several α-cuts, calcu-
lating a schedule for each α-cut, and finally choosing the best one overall. The
final comparison between these alternatives is made using the fuzzy makespan
computed using the full membership functions (rather than at each α-cut). In
effect, the concept is to explore several alternative solutions for increasing levels
of uncertainty (α→ 0), but choosing the one that performs best under maximal
uncertainty.

In our case, we repeat QPPTW for values of α from 0 to 1 in increments
of 0.1. In each run, operations associated with edge weights and checks against
time-windows are conducted over the interval of times at the value of α. The
final comparisons of routes, calculation of taxi times and updating of time-
windows all use the full membership functions (i.e. α = 0).

4.3. QPPTW

Our work extends the QPPTW algorithm [30]. This algorithm resembles
Dijkstra’s shortest path algorithm, but also considers time reservations on the
graph edges. Aircraft are routed sequentially, each being given the optimal route

14

1

0

1

0

1

0 xxxl
1

l
2
b
2
b
1
u
1

u
2

l
1

l
2

b
2

b
1
u
1

u
2

l
1
l
2

b
2

b
1

u
1
u
2

μ t̃ (x) μ t̃ (x) μ t̃ (x)

Figure 4: Three pairs of overlapping membership functions. In each, a simple scalarisation of
the functions (e.g. GMV) results in the solid-line function being the minimal one. However,
at high α values, the dashed-line one has the minimal value.

considering those aircraft that have already been routed. The overall framework
proceeds as in Algorithm 2.

For convenience, the original QPPTW algorithm from [30] is replicated in
Algorithm 1. For a given taxi request Qi = (vstart, vend, τrw) for aircraft ai,
this finds the conflict-free route Ri from vertex vstart to vend over G with the
minimal taxi time T that respects the time-windows in E. τrw is the allocated
runway time for the aircraft: the time to leave vstart or to arrive at vend for
arrivals and departures respectively.

Two key concepts in QPPTW are time-windows and labels. Each e has a
sorted set of time windows F(e), representing the times e can be used. These
exclude periods where e or an edge in conf(e) are occupied by previously routed
aircraft. A label L = (vL, IL, predL) specifies the time period IL = [aL, bL]
within which the current aircraft being routed could reach vertex vL, given the
previous label predL in the route.

Once a route Ri to the destination vertex is found, the algorithm terminates.
Ri is allocated to aircraft ai, and the F(e) are trimmed, split or deleted to reflect
times that ai is present on each e. As long as a complete path of edges exists
between vstart and vend on G, QPPTW will always find a route. Any delay
caused by conflicts with other aircraft will simply make the time of arrival at the
stand later (for arrivals) or the required pushback time earlier (for departures,
whose routes are computed backwards from the runway).

We have made two changes to the QPPTW algorithm presented in [30].
Firstly, in our approach, we use an undirected graph rather than a directed
graph, to better reflect the operations at Manchester Airport. Secondly, we
have removed the swap heuristic to save CPU time (it did not appear to make a
large difference to taxi times in this work). It was noted by [30] that, according
to [77], QPPTW will solve the problem in polynomial time in the number of
time-windows: O(|F|3 log |F|). More details of each step in the algorithm will
be discussed in Section 4.4.

4.4. Modified steps of QPPTW main loop

The core of QPPTW has several operations involving times. We now discuss
how each is modified to handle fuzzy values. We start with the operations for

15

Algorithm 1 The QPPTW algorithm, replicated for convenience

1: Let H = ∅
2: Let L(v) = ∅ ∀v ∈ V
3: Create new label L such that L = (vstart, τrw, nil)
4: Insert L into heap H with key τrw
5: Insert L into set L(vstart)
6: while H 6= ∅ do
7: Let L = H.getMin(), where L = (vL, IL, predL) and IL = [aL, bL]
8: if vL = τi then
9: From L, rebuild route R from vstart to vend

10: return the route R
11: end if
12: for all outgoing edges eL of vL do
13: for all F jeL ∈ F(eL), where F jeL = [ajeL , b

j
eL], in increasing order of

ajeL do
14: . Expand labels for edges where time intervals overlap:
15: if ajeL > bL then
16: next eL . Consider next outgoing edge (line 12)
17: end if
18: if bjeL < aL then
19: next F jeL . Consider next time-window (line 13)
20: end if
21: Let τin = max(aL, a

j
eL)

22: Let τout = τin + τeL
23: if τout ≤ bjeL then
24: Let u = head(eL)
25: Let L′ = (u, [τout, beL], L)
26: for all L̂ ∈ L(u) do . Dominance check
27: if L̂ dominates L′ then
28: next F jeL . Next time-window (line 13)
29: end if
30: if L′ dominates L̂ then
31: Remove L̂ from H
32: Remove L̂ from L(u)
33: end if
34: end for
35: Insert L′ into heap H with key aL

′

36: Insert L′ into set L(u)
37: end if
38: end for
39: end for
40: end while
41: return ”there is no vstart to vend route”

16

Algorithm 2 The overall QPPTW framework

1: Runway times are fixed for each aircraft
2: Aircraft are sorted to natural ordering (arrivals before departures, then by

runway time)
3: for all Aircraft i do
4: Route i using QPPTW (Algorithm 1), considering already routed air-

craft
5: Fix route of i and re-adjust time-windows
6: end for

computing edge entry and exit times as these are referred to by other steps,
then proceed through the remaining parts of the algorithm in order.

4.4.1. Edge entry and exit times

Steps 21 and 22 calculate the aircraft’s entry time τin and exit time τout on
the edge.

τ̃in is the latest of the arrival time at the start of the edge and the beginning
of the current time-window (the aircraft cannot start to move along the edge
until the time-window, marking the edge as available, has begun).

The start
˜
ajeL and end

˜
bjeL of the time-window are represented by fuzzy

membership functions (Fig. 5a). The aircraft’s arrival time ãL at the start of
the edge is represented by a third membership function (Fig. 5b). The start

time for the edge traversal τ̃in is the maximum of ãL and
˜
ajeL (Fig. 5c).

The estimated time ˜teL to traverse the edge is also fuzzy (Fig. 5d), coming
from the adaptive Mamdani FRBS based taxi time estimation (Section 5.1).
This is added on to τ̃in to produce the fuzzy exit time τ̃out for the edge, illus-
trated in Fig. 5e. The exit time τ̃out for an aircraft on an edge eL, given a label
L representing a route to the start of eL, depends on three variables:

• ãL, the arrival time at the start of the edge

• ˜
ajeL , the start of the time window j (marking when the edge becomes
available)

• ˜teL , the time taken to taxi along the edge.

These operations are carried out on the full fuzzy membership functions,
without defuzzificiation.

4.4.2. Weight for Fibonacci heap

QPPTW stores the labels representing the shortest paths to nodes found so
far in a Fibonacci heap. Each iteration (Step 7), the minimal label is removed
and an attempt is made to expand the route represented by it. The labels in the
heap are sorted according to their weight, which is a scalar value. For QPPTW
this is the total taxi time for the partial route represented by the label.

17

(a) time-window with fuzzy start and end

(b) fuzzy arrival time at edge

(c) fuzzy start time for traversal is maximum of time-
window start and arrival time

(d) fuzzy taxi time

(e) fuzzy exit time for edge

ã eL
j b̃eL

j

ã L

b̃eL
j

b̃eL
j

max(ãL , ã eL
j)

τ̃ in

τ̃eL

τ̃ in τ̃out=τ̃in+τ̃eL

u t̃ (x)

x

1

0

u t̃ (x)
1

0 x

u t̃ (x)
1

0 x
u t̃ (x)

1

0 x

u t̃ (x)
1

0 x

u t̃ (x)
1

0 x

Figure 5: Adding fuzzy taxi times. No defuzzification takes place at this stage: the addition
and maximum operations both return fuzzy values. Note that the resulting times in (e) are
not triangular, due to the max() operation in computing the start time at (c).

18

The membership function for the total taxi time is not necessarily triangular,
so we cannot use a simple metric like GMV for the weight. Instead, Yager’s index
at the present α-cut is used here for comparisons.

4.4.3. Ordering of time-windows

Once a label L is removed from the heap, QPPTW considers the set of time-
windows FeL on each outgoing edge eL of the vertex vL represented by L. The
loop in Steps 13 to 35 aims to find the times during which the edge is free to be
traversed by the aircraft, and so determine the times at which the aircraft will
reach the next vertex in the route. Earlier time-windows are considered first,
with the aim of achieving shorter taxi times.

For this to work, FeL is sorted on the start times of each time-window. In
Fuzzy-QPPTW, the membership function representing the possible start times
of each time-window are defuzzified using the centre of gravity. FeL is then
sorted in ascending order of these scalar values.

4.4.4. Comparing fuzzy times

Steps 15 and 18 check whether the current time-window contains the time
of arrival at the start of the current edge. Two comparisons are made: less-than
and greater-than, considering whether the time-window F jeL starts before the
label L ends, and whether F jeL ends before L starts.

Recall that Fuzzy-QPPTW iterates over a set of α-cuts on the fuzzy mem-
bership functions representing taxi times. When comparing the fuzzy times,
these are considered at the current α. Time period A is considered to have
finished after B if the upper bound uα of A is before the lower bound lα of B,
at the current α. So, the time-window F jeL starts before the label L ends if the
following is false:

lα(ajeL) > uα(bL) (12)

Likewise, the time-window F jeL ends before the label L starts if the following
is false:

uα(bjeL) > lα(aL) (13)

These comparisons replace those for crisp values at Steps 15 and 18 of the
algorithm.

4.4.5. Comparing τ̃out with b̃j

In Step 23, the calculated fuzzy exit time for the aircraft’s movement along
the edge is compared to the end of the time-window. If the time-window finishes
after the aircraft’s movement, then we can move on to create a new label,
representing an expansion of the route. If not, then the aircraft cannot complete
its movement while the edge remains unreserved. This comparison is exactly the
same as for the start times ((4) above), except that it is on the maximum values
with membership at the current α-cut. This allows the algorithm to consider
overlaps in the functions in iterations with lower α-cuts, where the probability
of conflict is small.

19

4.4.6. Label dominance

Once it is determined that the aircraft can complete its movement along
the edge within the present time-window, a new label is created to reflect the
arrival time at the edge’s end node. Steps 26 to 35 determine whether this new
label dominates any existing labels for the node. A label is said to dominate
another if it represents both an earlier possible arrival time at a node and a later
possible departure time: more formally, L dominates L′ if and only if aL ≤ aL′
and bL ≥ bL′. In Fuzzy-QPPTW, the comparisons are made using the Yager’s
index on the membership functions for a and b on both labels, at the present
α-cut.

4.4.7. Reconstructing the route

Once QPPTW’s main loop reaches a label representing a route to the des-
tination, the algorithm terminates. As the minimal label (that with the lowest
weight: the shortest length of time) is always removed from the heap, this rep-
resents the quickest path. The route can be reconstructed by following each
node’s reference to its predecessor in turn. Timings for the route (edge entry
and exit times) are determined by copying the earliest and latest arrival times
at each node contained in each label. These are used to reallocate each edge’s
time-windows (Section 4.4.9). Note that this is an instance of the standard dy-
namic programming algorithm, being an extension of Dijkstra’s shortest path
algorithm (a classic dynamic programming exemplar) to handle times.

There is an added level of complexity here for Fuzzy-QPPTW, because the
membership function τ̃out representing an aircraft’s possible edge exit times
might overlap b̃jeL, the end of the time-window. This means that there is uncer-
tainty about whether the aircraft will complete taxiing along the edge within
the time-window. In this situation, the aircraft might need to wait for the next
time-window. To accommodate this, when the route is reconstructed, the fuzzy
times for each node are compared to the time-windows, and if necessary, a set of
multiple exit times πout for an edge are computed following Algorithm 3. This
carries over to become a set of multiple entry times πin for the following edge,
ultimately leading to a set of multiple possible completion times for the route.
Each time in this set is itself a membership function.

4.4.8. Choosing the route to allocate

As noted in Section 4.2, Fuzzy-QPPTW performs the above operations for
multiple values of α. In this way, we obtain, for multiple values of α, a route
and a fuzzy membership function representing the total taxi time to complete it.
As per Section 4.4.7, there are usually multiple functions representing a spread
of possible exit times. A sample of exit times generated using the procedure
is shown in Fig. 6. Note in this figure that the highest values of α have the
greatest uncertainty in the exit times. This might seem counter-intuitive: α = 1
corresponds to using crisp taxi-times on the edges. As noted at the end of
Section 4.2, the exit times are computed for each α using the full membership
functions, not the α-cut. The point of this is that the alternative routes are
being compared on their possible performance under full uncertainty. We would

20

Algorithm 3 Finding the set of membership functions representing possible
completion (exit) times for the route. Note that τ̃ , ã, b̃ are fuzzy sets, and e.g.
l(τ̃) and u(τ̃) denotes the lower and upper bounds of τ̃

1: πin = ∅ . For the first edge, initialise πin to the route start time
2: πin ← τstart . (after the first edge, πin can contain multiple times)
3: for all edges e in route R do
4: πout = ∅
5: for all [τ̃in, τ̃out] in πin do
6:

7: for all time-windows F j = [ãj , b̃j] on e do
8: if u(b̃) < l(τ̃in) then
9: next F j . Time-window too early, skip (line 7)

10: end if
11: if u(b̃) < l(τ̃out) then
12: . Exit & end times overlap
13: . Cut off τ̃out at mid-point of overlap:

14: z = u(b̃)+l(τ̃out)
2

15: τ̃ ′out = min(τ̃out, z)
16:

17: . Create new start time in next TW:
18: τ̃ ′′in = ãj

19: πin ← τ̃ ′′in
20:

21: . Calculate corresponding exit time:
22: τ̃ ′′out = τ̃ ′′in + t̃eL
23: πout ← τ̃ ′′out
24:

25: . Replace current times with new
26: . and check against next TW:
27: τ̃in = τ̃ ′′in
28: τ̃out = τ̃ ′′out
29: else
30: . Exit & end times do not overlap
31: πout ← τ̃out
32: end if
33: end for
34: end for
35: πin = πout
36: end for
37: Return τout

21

64.9s
(exit = 18:44:18)

1083.4s
(exit = 19:01:16)

α=0.0, exit time CoG=18:51:27

Aircraft 1029

α=0.1, exit time CoG=18:51:27

α=0.2, exit time CoG=18:51:27

α=0.3, exit time CoG=18:51:27

α=0.4, exit time CoG=18:51:27

α=0.5, exit time CoG=18:51:27

α=0.6, exit time CoG=18:51:27

α=0.7, exit time CoG=18:51:27

α=0.8, exit time CoG=18:54:42

α=0.9, exit time CoG=18:54:42

α=1.0, exit time CoG=18:56:40

0

Exit Time

u t̃ (x)

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Figure 6: Exit times for routes generated by Fuzzy-QPPTW at various α-cuts. The lower
and upper bounds in milliseconds are given at the top, with the centre of gravity for each set
of exit times given as a time in hh:mm:ss format alongside the corresponding α. Here, the
algorithm found the same route for α-cuts 0-0.7, and for 0.8-0.9, so there are three sets of
possible exit times.

22

expect that routes computed assuming low levels of uncertainty would be more
heavily impacted by the full uncertainty. This is consistent with much greater
variation in the possible exit times being seen for routes calculated using high
α values.

The centre of gravity (CoG) is computed over all possible exit times at
each α for the route: the route with the lowest CoG being allocated to the
aircraft. No assumption is made as to the likelihood of each time, so each
is given an equal weight in the CoG calculation. This approach regresses to
the crisp version of QPPTW with α = 0, so routes generated by that method
will still be considered. It is also worth noting that the runs at each α are
independent, and can be conducted in parallel to reduce the overall run time.

4.4.9. Reallocating time-windows

Once a route has been allocated to an aircraft, the final step is to reallocate
the time-windows on any edges that conflict with it. This means that routes
allocated to subsequent aircraft can avoid earlier ones. This is achieved by
either shortening or splitting time-windows to reflect the slots taken up by the
aircraft’s movement. If any of the resulting time-windows are too short to be
useful (that is, they are shorter than the minimum taxi time for their edge),
they are deleted. For Fuzzy-QPPTW, the same process is followed, deleting a
time-window if its upper bound is less than the edge’s minimum taxi time.

An additional cleaning-up step is performed as part of this to reduce mem-
ory requirements and to improve the speed of the algorithm. Given the time-
splitting when reconstructing the route (noted above), a single route will often
have multiple start times for each edge. As the route is built up, particularly
with the presence of many other aircraft leading to many time-windows, later
edges can have many start times, some being highly similar. For each edge, if a
membership function for a start time was found to match the shape of another
(with a tolerance of ±1s), the two start times are merged, taking the minimum
of their lower bounds, the maximum of their upper bounds, and the mean of
their modal points.

4.4.10. Backwards routing

The original QPPTW algorithm [30] included a backwards variant for de-
parting aircraft. The route was constructed working back from the runway at
the allocated take-off time, so the computed pushback time was as late as pos-
sible while still meeting the target runway time. Any waiting could then be
absorbed at the stand before the engines had started, reducing fuel burn and
emissions. This cannot be easily adapted to handle uncertainty, because uncer-
tainty grows as the route is constructed. Working backwards from a target exit
time, the route is constructed having greatest source of uncertainty in timings at
the start, with the greatest certainty at the end. Obviously, this is the opposite
of reality.

Instead, we propose an iterative approach to determining the latest push-
back time, following a bisection method, presented formally in Algorithm 4.
This aims to find a feasible route R (where the exit time is before the aircraft’s

23

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●
● ●

●

● ● ●

06:42:00
06:43:00
06:44:00
06:45:00
06:46:00
06:47:00
06:48:00
06:49:00
06:50:00
06:51:00
06:52:00
06:53:00
06:54:00
06:55:00
06:56:00
06:57:00
06:58:00
06:59:00
07:00:00
07:01:00
07:02:00
07:03:00
07:04:00
07:05:00
07:06:00
07:07:00
07:08:00

0 5 10 15 20
Iteration

S
ta

rt
 ti

m
e

Category
●●●

●●●

●●●

A

B

C

Figure 7: Start times for one aircraft, revised using the bisection approach. Times labelled A
are later than the allocated runway time, and at this point no feasible route has been found,
so the algorithm makes large jumps back. Times labelled C are earlier than the runway time,
so when these are found, the algorithm tried making the start time later. Times labelled B
are later than the allocated runway time, found after we have obtained a feasible route, so
the algorithm makes small steps back, trying to find the “sweet spot” where the start time is
as late as possible but the route is still feasible.

allocated runway time), which starts as late as possible. We assume a start time
τstart of the runway time τrw, minus the estimated taxi time for the shortest
possible route in terms of distance (computed using the classic Dijkstra’s algo-
rithm). Fuzzy-QPPTW is run forwards, building up the route from the stand.
The exit time τout allocated route will likely be fuzzy: here we consider only the
modal value of the fuzzy set. In the event that no route was found at all, 10
minutes are subtracted from τstart. If no feasible route has been found yet, and
τout is later than τrw, then τstart is made earlier by the difference τrw − τout.
If a feasible route has been previously found, and τout is later than τrw, then
we added too much time to τstart previously, so τstart is made a little earlier
(by half as much as was added to it in the previous iteration). If τout is ear-
lier than τrw, then τstart is made later by half the difference τout − τrw. This
repeats until τout = τrw or a fixed number of iterations have passed (20 in our
experiments), returning Rbest, the latest-starting feasible route found. In our
experiments, this number of iterations always found a feasible route. In heavy
traffic situations the departing aircraft are just given an earlier pushback time
in order to meet their target runway time. 20 iterations allows for pushback up
to 200 minutes early, which in practice is far more than enough. Example start
times for one aircraft as bisection proceeds are illustrated in Fig. 7.

5. Analysed Case: Manchester Airport

Manchester Airport is the third busiest airport in the UK, both in annual
passengers (20.7m) and aircraft movements (159000), according the UK Civil

24

Algorithm 4 Algorithm to find the route Rbest having the latest start time
that still meets the runway time for departing aircraft a

1: Rbest ← ∅
2: τinc = 0
3: Compute Rmin over G using Dijkstra’s algorithm
4: Estimate the time tmin to complete Rmin
5: τ0 ← τstart ← (τrw − tmin)
6: repeat
7: R← FuzzyQPPTW (a)
8: if R == ∅ then
9: τstart = τ0 − 10min

10: else
11: if Rτout > τrw then . late
12: if R == ∅ then . large jump earlier
13: tinc = τrw −Rτout

14: else . small jump earlier
15: tinc = tinc/2
16: end if
17: τstart = τ0 − tinc
18: else if Rτout

< τrw then . early, make later
19: tinc = tinc −min(tinc/2, Rτout

− τrw)
20: τstart = τ0 − tinc
21: else . perfectly on time
22: Rbest ← R
23: end if
24: end if
25: until (count > 20) or (Rτout

== τrw)
26: return Rbest

Aviation Authority1. From a Ground Movement perspective it has several inter-
esting features. There are three terminals, two runways (05L/23R and 05R/23L)
and 148 aircraft stands. 54 stands are ‘shadowed’ and cannot be used when
larger aircraft are on adjacent stands. 57 stands are served by terminal piers,
and 91 are remote and accessed by bus. Access to runway 05R/23L is achieved
by crossing 05L/23R. Access to stands on the apron serving terminal 2 and part
of terminal 1 can be limited to a single taxiway depending on stand usage be-
cause several stands block the alternative taxiway. Aircraft on longer stopovers
are often towed to remote stands to free up stands at the terminals, placing
further demand on the taxiways. A stylised diagram of the airport is given in
Fig. 8.

1Taken from CAA data:
http://www.caa.co.uk/docs/80/AviationTrends_Q3_2013.pdf and
http://www.caa.co.uk/docs/80/airport_data/201401/Table_01_Size_of_UK_Airports.pdf

25

http://www.caa.co.uk/docs/80/AviationTrends_Q3_2013.pdf
http://www.caa.co.uk/docs/80/airport_data/201401/Table_01_Size_of_UK_Airports.pdf

RW
Y 05R / 23L

T2RW
Y 05L / 23R

NorthT3

T1

Figure 8: Stylised diagram of Manchester Airport showing the terminals (grey), runways
(black) and major taxiways (black). The apron (blue hatched) can only be reached by two
taxiways: this bottleneck restricts access to around half of the airport’s stands.

Most days (except in unusual prevailing wind conditions), the airport switches
between two operating modes. In single runway mode, runway 05L/23R is used
for both arrivals and departures. In twin runway mode (daytime busy periods
only), arrivals use runway 05L/23R and departures use 05R/23L.

The graph specifying the airport layout was generated using the GM Tools2

[78]. A set of real aircraft movements for a day of operations was provided
by Manchester Airport. We took these and generated additional sets of move-
ment data for varying traffic levels by selecting aircraft at random and either
duplicating or removing them. Duplicated flights used the same runway as the
original, with the runway time having a two minute offset added in order not
to take the runway at exactly the same time. In this way, sets having 0.8, 0.9,
1.1, 1.2 and 1.3 times the number of original aircraft movements were created,
giving us scenarios for our experiment ranging from low-density traffic (80%
of reality), through a real day of operations, to high-density traffic (130% of
reality). Both layout and traffic data sets are available from the repository of
Ground Movement benchmarks at ASAP Nottingham3. The number of aircraft
movements in each density is shown in Table 1.

2https://github.com/gm-tools/gm-tools/wiki
3http://www.asap.cs.nott.ac.uk/external/atr/benchmarks/index.shtml

26

https://github.com/gm-tools/gm-tools/wiki
http://www.asap.cs.nott.ac.uk/external/atr/benchmarks/index.shtml

Table 1: Number of aircraft at each density

Density Number of Aircraft Movements
0.8 516
0.9 575
1.0 640
1.1 701
1.2 790
1.3 851

5.1. Taxi time model with uncertainty

The flight movement data used to train the adaptive Mamdani FRBS (de-
scribed in Section 4.1) represents real aircraft movements taken from freely-
available data on the website FlightRadar24 (FR24), following the techniques
described in [78] using the tools available at https://github.com/gm-tools/

gm-tools/wiki. The same source has also been used to gather airborne flight
tracks [79–82]. FR24 gathers automatic dependent surveillance-broadcast (ADS/B)
messages that are transmitted by many aircraft and contain the latitude, longi-
tude and altitude of the aircraft, typically every 5 to 10 seconds. The coordinates
have a resolution of 10−4 degrees: approximately 10m at the latitude of Manch-
ester Airport. While not all aircraft broadcast ADS/B data, and some of those
that do show calibration errors or other corruptions that need to be cleaned
before it is useable, enough flight movements are available so that a reliable taxi
time estimation model can be derived.

For this work, all 1767 tracks for 5-12 November 2013 for aircraft with an
altitude of zero within 5km of the airport’s centre were collected (in the same
period, public flight times on the web showed 3211 flights). These tracks were
snapped to the actual taxiways at Manchester Airport by searching for all taxi-
ways within 10m of each coordinate and deriving the most likely route taken.
1413 aircraft Ground Movements remained in the data after this processing.
Each movement contained an actual taxi route taken, with the real time at the
start and end, as well as at some intermediate points. The data was divided
at random into 2/3 training and 1/3 test data sets. Following training of the
FRBS, the predicted modal times estimated by the model were found to fit
the real times in the validation data with R2 = 0.70. For Ground Movement,
accuracy of taxi times within 3 and 5 minutes are the most common measures
used [49]. 84% of movements were accurate to within 3 mins and 95% were
accurate to within 5 mins. A plot showing the time estimates for the validation
data is given in Fig. 9. Further 10-fold cross validation of the FRBS proved the
robustness of the model with R2 = 0.61, 85% and 94% of accurate movements
within 3 and 5 mins, respectively, comparable with previous studies [49, 50].

6. Ground Movement simulator

In order to measure the impact of uncertain taxi times on aircraft move-
ments, a simulator was developed to reflect real airport operations. The rules

27

https://github.com/gm-tools/gm-tools/wiki
https://github.com/gm-tools/gm-tools/wiki

0 500 1000 1500

0
50

0
10

00
15

00
20

00

Actual times (s)

P
re

di
ct

ed
 ti

m
es

 (
s)

Figure 9: Model estimated taxi times vs real measured times for validation data.

incorporated in this were determined in consultation with our industrial part-
ners at Manchester and Zurich Airports.

A pilot is guided by the air traffic control tower, with some discretion in
stopping points. The typical minimum separation between aircraft in good
conditions is 60m. To avoid collision, an aircraft may stop or reduce speed;
for simplicity, the aircraft is assumed to stop at the last possible point. The
duration of this stop contributes towards the aircraft’s delay.

The simulator employs an object-oriented architecture, implemented in Java
7. The major data structures are as follows. Aircraft objects encapsulate data
including runway time, allocated route, current position (i.e. how far it is along
which edge in its allocated route). A JGraphX graph object represents the
“current” layout of taxiways as edges and nodes. Each edge has an associated
slot for an aircraft on it. A manager object keeps track of any aircraft currently
on the runway, and blocks any edges that cross it. The simulation takes a
discrete time-step approach, and follows the procedure outlined in Algorithm
5, which we will now explain. Prior to commencing, the routes for all aircraft
are preprocessed using the taxi time estimation model to determine the average
speed on each edge of the taxiway graph. Steps 5-18 represent the main loop
of the simulator. Each iteration represents one increment in time (0.1s in our
experiments). In Steps 6-16, all the aircraft are placed in new positions on the
taxiway graph. Aircraft will be moved to new locations by taking their previous
location and adding the distance travelled in 0.1s at the speed for this part of
the route, calculated in Step 1. The new locations may be revised if moving to
the new location would conflict with another already-placed aircraft.

To detect conflicts between aircraft, the procedure is similar to that in
QPPTW. If an aircraft crosses or shares a path with another, it travels to

28

Algorithm 5 Procedure for the simulator working with the set of all routed
aircraft A

1: Preprocess(A)
2: Acurrent ← ∅ . Set of current aircraft
3: t = 0 . Current timestamp
4: Add any ai ∈ A with Rτstart

= t to Acurrent
5: while t < τfinish do
6: for all Acurrent as ai do
7: removeFromGraph(ai)
8: pi = calcNewPosition(ai)
9: if isCompleted(ai) then

10: Remove ai from Acurrent
11: end if
12: if inConflict(ai) then
13: Update ai position to latest clear point in route
14: end if
15: addToGraph(ai, p)
16: end for
17: t = t+ 0.1
18: end while

the last point before the conflicting segment of the taxiway graph. The first air-
craft reaching the conflicting segment proceeds and the other aircraft must wait
until the segment is clear. Aircraft are counted as occupying all edges crossing
the runway for 2 minutes prior to runway time for arrivals and 1 minute after
runway time for departures. This procedure is illustrated in Fig. 10.

On this basis, the simulator recreates the expected movements of the aircraft,
detecting stops due to conflicts, and allowing measurements of the total taxi
times and delays to be made. In order to measure the impact of uncertainty, we
perturb the time estimates used to calculate taxiing speeds in the preprocessing
stage. In our study, we are trying to measure the robustness of the allocated
routes to uncertainty in the taxi times. Recall that the adaptive Mamdani FRBS
produces fuzzy estimates of the taxi time to cover each edge. These approximate
the uncertainty present in the underlying real-world data. We could just sample
each function at random as if it were a probability distribution, similar to the
method described by [83]. Here, for a triangular function (a, b, c), we have two
equiprobable probability density functions, (a, b) and (b, c), assuming that the
area under the lines representing the membership values in each is 1. Sampling
these distributions for each edge would produce a range of possible times in
the range (a, c), biased towards the modal time b. The problem with doing
this is that, along the whole route, the fast and slow taxi times will cancel out.
Instead, we have opted for the more realistic scenario that a given aircraft will
be slower or faster than expected along the whole route. This represents the
worst-case scenario in terms of uncertainty: in practice there will be some parts
of the taxi movement that cancel out other slower or faster parts. The idea is

29

Figure 10: Handling of conflicts in the simulator. Aircraft 968 (arrival) and 975 (departure)
have conflicting paths between B and C: 968 moving B→C and 975 C→B. At the current time
step, 975 has reached D. Conflict is assessed in terms of the remaining path, so the conflict
area is between B and D. A is the last node before 968 is within 60m of the conflict area: if
968 reaches A before 975 clears B, 968 stops. 968 only restarts once 975 has passed B.

that for a given aircraft ai, a random number ui is chosen in the range [0, 1]
inclusive. This controls from where – in the fuzzy set of times for each edge –
the taxi time for the simulator is taken:

• If u = 0.5, modal time is used for each edge on the route.

• If u < 0.5, time for each edge is a+ 2u(b− a)

• If u > 0.5, time for each edge is b+ 2u(c− b)

u is allocated to each aircraft prior to preprocessing the speeds for the taxi-
way graph at the beginning of the simulator run. The precise u values are varied
from one run to another by changing the random number generator seed, but
in any one run, u will be unique for each aircraft. The amount of uncertainty
present in the system can be controlled by limiting the range of values the u can
take to 0.5± δ. In the results given in the next section, we quantify uncertainty
in terms of this δ. Zero uncertainty means that u = 0.5 for all aircraft (so only
modal times are used). The maximum value is 0.5 uncertainty, which means
that u ∈ [0, 1], that is, 0.5± 0.5.

30

●

●

●

●

●

●

●

●

●

5000

10000

15000

0 0.1 0.2 0.3 0.4 0.5
UncertaintyTo

ta
l v

ar
ia

tio
n

on
 ro

ut
ed

 ti
m

e
(s

)

Routing Method
QPPTW
Buf−QPPTW
Fuzzy−QPPTW

(a) Traffic density 0.8

●

●

●

●

●

5000

10000

15000

0 0.1 0.2 0.3 0.4 0.5
UncertaintyTo

ta
l v

ar
ia

tio
n

on
 ro

ut
ed

 ti
m

e
(s

)

Routing Method
QPPTW
Buf−QPPTW
Fuzzy−QPPTW

(b) Traffic density 0.9

●

●

5000

10000

15000

20000

25000

0 0.1 0.2 0.3 0.4 0.5
UncertaintyTo

ta
l v

ar
ia

tio
n

on
 ro

ut
ed

 ti
m

e
(s

)

Routing Method
QPPTW
Buf−QPPTW
Fuzzy−QPPTW

(c) Traffic density 1

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

10000

20000

30000

40000

0 0.1 0.2 0.3 0.4 0.5
UncertaintyTo

ta
l v

ar
ia

tio
n

on
 ro

ut
ed

 ti
m

e
(s

)

Routing Method
QPPTW
Buf−QPPTW
Fuzzy−QPPTW

(d) Traffic density 1.1

●

●

●

●

●

●

●

●

●

10000

20000

30000

0 0.1 0.2 0.3 0.4 0.5
UncertaintyTo

ta
l v

ar
ia

tio
n

on
 ro

ut
ed

 ti
m

e
(s

)

Routing Method
QPPTW
Buf−QPPTW
Fuzzy−QPPTW

(e) Traffic density 1.2

●●

●
●

●

● ●

● ●

●

●

●●
●

●

●

●

●

●

●

10000

20000

30000

40000

50000

0 0.1 0.2 0.3 0.4 0.5
UncertaintyTo

ta
l v

ar
ia

tio
n

on
 ro

ut
ed

 ti
m

e
(s

)

Routing Method
QPPTW
Buf−QPPTW
Fuzzy−QPPTW

(f) Traffic density 1.3

Figure 11: Total variation of simulated times on routed times, for each traffic density. Each
group of three bars has the same uncertainty δ. Dijkstra omitted to reduce skewing of the
scale: see Figure 12 for the results at traffic density 1 with Dijkstra included.

7. Experiments and Results

We applied Fuzzy-QPPTW to the set of benchmark scenarios for Manchester
Airport described in Section 5. We considered four routing algorithms: (1) the
original QPPTW; (2) Fuzzy-QPPTW; (3) the original QPPTW with fixed
buffers, and (4) a simple heuristic approach using fixed shortest paths as a
baseline. Approach (3), here referred to as “Buf-QPPTW”, was suggested in
[30]. A buffer is added to the estimated time on each edge, so that the edge is
reserved for longer than needed to contain any delay. An obvious disadvantage
is the extra parameter (buffer size) introduced by this approach, for which there
is little guidance as to an appropriate value. We used buffers equivalent to a
taxi speed of 3m/s lower than the model estimated speed, this figure being
taken from [48]. Approach (4), here referred to as “Dijkstra”, used a single
fixed shortest path between each runway and stand pair. The shortest paths

31

●

●

●

●

●

●

●

●

 0

 50000

100000

150000

200000

0 0.1 0.2 0.3 0.4 0.5
UncertaintyTo

ta
l v

ar
ia

tio
n

on
 ro

ut
ed

 ti
m

e
(s

)

Routing Method
QPPTW
Buf−QPPTW
Fuzzy−QPPTW
Dijkstra

Figure 12: Total variation of simulated times on routed times, for traffic density 1.0, including
results for Dijkstra. Each group of four bars has the same uncertainty δ.

were computed using Dijkstra’s shortest path algorithm, with edge costs being
the modal value from our fuzzy taxi time model for each edge.

The four algorithms were each run to generate routes for all aircraft on each
traffic density. These routes were then run through the simulator 30 times using
different seeds for the random number generator (the same 30 seeds being used
for each algorithm). Simulator runs were also repeated over six uncertainty
levels δ: 0.0 to 0.5 in 0.1 increments.

During each simulator run, the simulated taxi times were recorded for each
aircraft. Also recorded for each aircraft was the time that it would have taken
to follow the route allocated by QPPTW (the routed time) and the time that
it would have taken to complete the shortest route (allocated by Dijkstra’s
algorithm) without stopping (the minimum time).

The results of these runs are given in Figs. 11, 12 and 13. Figs. 11 and
12 show the total of simulated times minus routed times over all aircraft (their
variation on the routed times). Fig. 13 shows the number of aircraft that were,
according to their simulated times, delayed by more than 30s over their routed
times. Both metrics are useful. The total variation on routed taxi times reflect
the total amount of delay experienced by passengers, how efficiently the taxiways
are being used, and are directly related to the fuel consumed for taxiing. In
contrast, the total number of aircraft delayed by more than 30s reveals how
many movements will be noticeably impacted by delays.

Figs. 11 and 13 show boxplots for the minimum, maximum and median
figures over the 30 repeats of the simulation for each scenario and level of
uncertainty. Yellow boxes are for QPPTW, green for Buf-QPPTW, blue for
Fuzzy-QPPTW, and red for Dijkstra.

It is first worth noting that in 21 individual runs for Buf-QPPTW (spread
over traffic densities of 1.0 and higher), and 5 runs for Dijkstra (over densities of
1.2 and higher), several aircraft were unable to complete their movements before
the end of the simulator run. The simulator was allowed to run for 15 minutes
after the expected completion time of the last movement, so this means that
several movements were delayed by more than 15 minutes due to conflicts with

32

●

●

●

●

●

●

●

●

●

●

●

40

80

120

0 0.1 0.2 0.3 0.4 0.5
Uncertainty

N
um

be
r

of
 d

el
ay

ed
 a

irc
ra

ft

Routing Method
QPPTW
Buf−QPPTW
Fuzzy−QPPTW
Dijkstra

(a) Traffic density 0.8

●

●

●

●

●

50

100

150

0 0.1 0.2 0.3 0.4 0.5
Uncertainty

N
um

be
r

of
 d

el
ay

ed
 a

irc
ra

ft

Routing Method
QPPTW
Buf−QPPTW
Fuzzy−QPPTW
Dijkstra

(b) Traffic density 0.9

●

●

●

●

●

●

●

●

●

●

●

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5
Uncertainty

N
um

be
r

of
 d

el
ay

ed
 a

irc
ra

ft

Routing Method
QPPTW
Buf−QPPTW
Fuzzy−QPPTW
Dijkstra

(c) Traffic density 1

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

100

200

0 0.1 0.2 0.3 0.4 0.5
Uncertainty

N
um

be
r

of
 d

el
ay

ed
 a

irc
ra

ft

Routing Method
QPPTW
Buf−QPPTW
Fuzzy−QPPTW
Dijkstra

(d) Traffic density 1.1

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

100

200

300

0 0.1 0.2 0.3 0.4 0.5
Uncertainty

N
um

be
r

of
 d

el
ay

ed
 a

irc
ra

ft

Routing Method
QPPTW
Buf−QPPTW
Fuzzy−QPPTW
Dijkstra

(e) Traffic density 1.2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●●●

100

200

300

0 0.1 0.2 0.3 0.4 0.5
Uncertainty

N
um

be
r

of
 d

el
ay

ed
 a

irc
ra

ft

Routing Method
QPPTW
Buf−QPPTW
Fuzzy−QPPTW
Dijkstra

(f) Traffic density 1.3

Figure 13: Number of aircraft delayed (per the simulated times) by more than 30s over the
routed time as uncertainty increases, at each traffic density. Each group of four bars has the
same uncertainty δ.

other aircraft. To avoid skewing the aggregated results, these were omitted from
the figures. For QPPTW and Fuzzy-QPPTW, all aircraft were able to complete
their movements in all runs.

Furthermore, the variations on routed times for Dijkstra were so much higher
than the other algorithms (see Figure 12) that we have omitted them from
Figure 11 to keep the scale spread out enough to distinguish between the other
routing algorithms. Figure 12 only gives the results for traffic density 1.0, but
the trend was the same for all densities in the experiment.

In Fig. 11, the total variations on the routed times are all positive, reflecting
delays. Both Figs. 11 and 13 give a similar picture: as uncertainty in the taxi
times increases, so do delays. Buf-QPPTW and Fuzzy-QPPTW show similar
levels of total delay over the routed time (Fig. 11), both having 10-20% less
total delay than QPPTW. For all levels of uncertainty, Fuzzy-QPPTW produces
more robust routes than both QPPTW and Buf-QPPTW (Fig. 13). This means

33

Table 2: Total distance for routes allocated
Traffic Distance for routes (m) Fuzzy-QPPTW % increase over
Density QPPTW Buf- Fuzzy- Dijkstra QPPTW Buf- Dijkstra

QPPTW QPPTW QPPTW
0.80 1 064 608 1 070 608 1 074 528 1 057 295 0.93 0.37 1.62
0.90 1 113 171 1 121 036 1 122 446 1 105 170 0.83 0.13 1.56
1.00 1 243 064 1 252 805 1 270 889 1 232 931 2.24 1.44 3.08
1.10 1 386 145 1 395 537 1 398 004 1 372 253 0.86 0.18 1.88
1.20 1 517 227 1 533 419 1 537 102 1 500 897 1.31 0.24 2.41
1.30 1 631 457 1 646 840 1 644 432 1 611 860 0.80 −0.15 2.02

that fewer aircraft are stopping due to other aircraft in their path. The same
trend was also observed for the simulated times compared to the minimum times
for each aircraft, so the improved robustness does not come at the cost of longer
taxi durations.

For each traffic scenario, where there is no uncertainty, a couple of observa-
tions may be made. The boxplots show no variation (i.e., the median, minimum
and maximum are equal) because without uncertainty, the simulation runs iden-
tically over the 30 repeats. The routes generated by QPPTW almost always
show substantially less delay than those for Fuzzy-QPPTW. This is because
QPPTW allocates the quickest routes assuming fixed taxi times, and without
uncertainty added to the simulator, the routes taken by the aircraft will match
these. Delays over the routed times in this situation are unavoidable, being
caused simply by the high traffic levels. Buf-QPPTW and Dijkstra have the
most delayed aircraft (Fig. 13) and substantially so for low traffic levels. For
Buf-QPPTW, this is because the extra time reserved for movements is never
used when there is zero uncertainty. For Dijkstra, this is because there is no
planning for the movements of other aircraft. In both cases, this means that
no aircraft follows the expected timings, leading to more aircraft conflicts than
would otherwise be the case.

Fuzzy-QPPTW allocates routes with some expectation of uncertainty. In
order to make these routes more robust, they are more conservative, and occa-
sionally longer than those allocated by QPPTW and Buf-QPPTW. The total
length of all routes allocated by each algorithm is shown in Table 2. The total
for those allocated by Fuzzy-QPPTW is around 1-2% longer than for those al-
located by QPPTW. They are much closer in length to the routes allocated by
Buf-QPPTW, and are shorter for the highest traffic scenario. It is also inter-
esting to note that the routes allocated by Dijkstra are only fractionally shorter
than those allocated by QPPTW: only a small increase in length is needed to
avoid many of the aircraft conflicts.

Overall, Fuzzy-QPPTW allocated routes that are more achievable in the
presence of uncertainty. While the routes tend to be slightly longer, aircraft
will be able to complete their allocated route without stopping or slowing as
often to avoid other aircraft. The number of stops and associated acceleration

34

Table 3: Run time (seconds) for route allocation step

Density Aircraft
count

QPPTW Buf-
QPPTW

Fuzzy-
QPPTW

0.8 476 3.10 3.75 737
0.9 518 3.36 4.04 635
1.0 578 3.49 4.90 744
1.1 636 4.12 5.70 1654
1.2 694 4.31 6.56 3440
1.3 752 4.88 7.60 1732

events together with the taxi time, which includes waiting, are significant factors
contributing to poor fuel consumption [84]. Therefore, it can be expected that
routes generated by Fuzzy-QPPTW will result in less fuel consumption by the
taxiing aircraft, compared to QPPTW and Buf-QPPTW. This represents a
trade-off, from having more predictable route timings (Fuzzy-QPPTW), shorter
routes that likely involve more stopping (QPPTW), or somewhere between (Buf-
QPPTW).

It is also worth noting that, to the best of our knowledge, there is no sys-
tematic way to determine the buffer size for Buf-QPPTW. As documented in
Fig. 13b, Buf-QPPTW is sensitive to buffer setting. If not set properly, it will
result in worse performance, comparable to QPPTW in this case. In contrast,
Fuzzy-QPPTW gives a systematic way driven by historical aircraft movements
and tailored for individual aircraft, airport and operating mode, as determined
by explanatory variables in the adaptive Mamdani FRBS described in Section
4.1.

Finally, we consider the run-time for the approaches. Table 3 gives the
mean run-time in seconds for each algorithm on each traffic density. These
times were achieved on an Intel i7 3820 CPU @3.6GHz with 16GB RAM and no
CPU-intensive background processes. Despite this, there is still substantial vari-
ability in the run-times. Fuzzy-QPPTW has considerable overhead compared
to the other approaches: runs take 3-5s for QPPTW, 3-9s for Buf-QPPTW,
and 600-3400s for Fuzzy-QPPTW. Profiling the Java Virtual Machine while the
experiments are running suggests this is mostly due to garbage collection of the
numerous objects associated with the time-windows as they are updated. How-
ever, these figures are for routing 400-800 aircraft: around 5s each. Although
the approach is not intended for real-time use (the idea being to run ahead of
time and generating routes that are robust to changes that occur in the interim),
this is still within the 10s per aircraft that the ICAO requires for online routing
and scheduling [85]. The times could also be improved by running the 11 route
finding steps in parallel (they were run sequentially in our experiments, but are
independent).

35

8. Conclusions

In this paper, an adaptive Mamdani fuzzy rule based system has been de-
veloped as the first attempt for accurate estimation of taxiing times and their
associated uncertainty. Theoretically, if each rule only accounts for one taxiing
scenario the resulting output membership function will have high certainty at
the modal value (i.e. the estimated taxi time) and a support which gives good
estimation of uncertainty. However, due to the high number of explanatory
variables involved in this work, it is inevitable that several rules will be fired
simultaneously. This situation will be intensified when there are no mechanisms
in the optimisation procedure to mitigate such correlation between different
rules, leading to a big support and low certainty for most of the taxiing sce-
narios (in the extreme case, this means uncertainty everywhere). Indeed, the
quality of estimation of uncertainty is compromised in this situation in exchange
for a better estimation of taxi times. Simply adding a constraint on the sup-
port may solve the problem at the expense of accuracy in taxi time estimation,
which in turn will affect uncertainty estimation. Therefore, a multi-objective
adaptive Mamdani FRBS, which can simultaneously optimise the structure of
the rule base as well as the estimation accuracy [69], deserves more investigation
in future studies.

The second major contribution of this paper is Fuzzy-QPPTW, an exten-
sion of the existing QPPTW algorithm, to handle the fuzzy taxi time estimates
provided by the adaptive Mamdani FRBS. This was applied to meeting routing
requests for real historical aircraft movements at Manchester Airport. Simula-
tions tested the impact of increasing levels of uncertainty on the conflicts and
delays experienced by aircraft. Fuzzy-QPPTW produced more conservative taxi
routes than QPPTW or Buf-QPPTW, being 1-2% longer in distance on average.
However, these routes were more robust, being less disrupted by uncertainty in
the taxi times and reducing delays due to other aircraft by 10-20% for higher
uncertainty levels. This leads to less stopping and starting of taxiing aircraft,
reducing fuel consumption and making better use of the congested airport taxi-
ways. Ultimately this represents a strategic decision on the preferred point in
the trade-off between faster or more predictable routes. This trade-off will be
highly dependent on airport layout and air traffic patterns, and further research
is needed to consider this in more detail. The approach is dependent on the
order in which aircraft are routed, particularly when integrating runway cross-
ings where arrivals can block departures and vice versa. Further consideration
of this issue forms part of the next stage of this research. Furthermore, it is
conceivable that the approach as it stands will fail when departures are held for
long enough that arrivals allocated to the same stand will be blocked. The only
real solution to this is integration of routing with both gate/stand allocation
[24, 25] and runway sequencing [26, 47] together, which represents a challenging
direction for future work.

36

9. Data Access Statement

Final URLs to the data sets used in this paper will be provided here.

10. Acknowledgements

Work funded by UK EPSRC [grants EP/H004424/2, EP/J017515/1, EP/N029496/2,
and EP/N029577/1]. Results obtained using the EPSRC funded ARCHIE-WeSt
HPC [EPSRC grant EP/K000586/1]. We are also grateful to Manchester and
Zurich Airports for valuable advice and data provision.

[1] EUROCONTROL, Challenges of growth 2013 - task 4: European air
traffic in 2035 (2013).
URL http://www.eurocontrol.int/sites/default/files/

article/content/documents/official-documents/reports/

201306-challenges-of-growth-2013-task-4.pdf

[2] European Commission, Roadmap to a single european transport area:
Towards a competitive and resource efficient transport system. white
paper (2011).
URL http://ec.europa.eu/transport/themes/strategies/2011_

white_paper_en.htm

[3] J. A. D. Atkin, Airport airside optimisation problems, in: A. Uyar,
E. Ozcan, N. Urquhart (Eds.), Automated Scheduling & Planning, Vol.
505 of Stud. in Comp. Intell., Springer, 2013, pp. 1–37. doi:10.1007/

978-3-642-39304-4_1.

[4] J. A. D. Atkin, E. K. Burke, S. Ravizza, The Airport Ground Movement
Problem: Past & Current Research and Future Directions, in: Int. Conf.
on Research in Air Transportation, 2010, pp. 131–138.

[5] J. A. Bennell, M. Mesgarpour, C. N. Potts, Airport runway scheduling,
4OR 9 (2) (2011) 115–138. doi:10.1007/s10288-011-0172-x.

[6] G. Slveling, J.-P. Clarke, Scheduling of airport runway operations using
stochastic branch and bound methods, Transp. Res. Pt. C: Emerg. Tech.
45 (2014) 119 – 137, advances in Computing and Communications and
their Impact on Transportation Science and Technologies. doi:https:

//doi.org/10.1016/j.trc.2014.02.021.

[7] U. Dorndorf, A. Drexl, Y. Nikulin, E. Pesch, Flight gate scheduling: State-
of-the-art & recent developments, Omega 35 (3) (2007) 326–334.

[8] M. Dell’Orco, M. Marinelli, M. G. Altieri, Solving the gate assignment
problem through the fuzzy bee colony optimization, Transp. Res. Pt. C:
Emerg. Tech. 80 (2017) 424 – 438. doi:https://doi.org/10.1016/j.

trc.2017.03.019.

37

http://www.eurocontrol.int/sites/default/files/article/content/documents/official-documents/reports/201306-challenges-of-growth-2013-task-4.pdf
http://www.eurocontrol.int/sites/default/files/article/content/documents/official-documents/reports/201306-challenges-of-growth-2013-task-4.pdf
http://www.eurocontrol.int/sites/default/files/article/content/documents/official-documents/reports/201306-challenges-of-growth-2013-task-4.pdf
http://www.eurocontrol.int/sites/default/files/article/content/documents/official-documents/reports/201306-challenges-of-growth-2013-task-4.pdf
http://www.eurocontrol.int/sites/default/files/article/content/documents/official-documents/reports/201306-challenges-of-growth-2013-task-4.pdf
http://ec.europa.eu/transport/themes/strategies/2011_white_paper_en.htm
http://ec.europa.eu/transport/themes/strategies/2011_white_paper_en.htm
http://ec.europa.eu/transport/themes/strategies/2011_white_paper_en.htm
http://ec.europa.eu/transport/themes/strategies/2011_white_paper_en.htm
http://ec.europa.eu/transport/themes/strategies/2011_white_paper_en.htm
http://dx.doi.org/10.1007/978-3-642-39304-4_1
http://dx.doi.org/10.1007/978-3-642-39304-4_1
http://dx.doi.org/10.1007/s10288-011-0172-x
http://dx.doi.org/https://doi.org/10.1016/j.trc.2014.02.021
http://dx.doi.org/https://doi.org/10.1016/j.trc.2014.02.021
http://dx.doi.org/https://doi.org/10.1016/j.trc.2017.03.019
http://dx.doi.org/https://doi.org/10.1016/j.trc.2017.03.019

[9] Honeywell, Electric green taxiing system (2013).
URL www.greentaxiing.com/resources/EGTS_Positioning_paper.pdf

[10] L. Hao, M. S. Ryerson, L. Kang, M. Hansen, Estimating fuel burn impacts
of taxi-out delay with implications for gate-hold benefits, Transp. Res. Pt.
C: Emerg. Tech. 80 (2017) 454 – 466. doi:https://doi.org/10.1016/j.
trc.2016.05.015.

[11] Y. Jiang, Z. Liao, H. Zhang, A collaborative optimization model for ground
taxi based on aircraft priority, Math Probl Eng 2013 (2013) 1–9. doi:

10.1155/2013/854364.

[12] K. Yin, C. Tian, B. X. Wang, L. Quadrifoglio, Analysis of Taxiway Aircraft
Traffic at George Bush Intercontinental Airport, Houston, Texas, Transp.
Res. Record 2266 (1) (2012) 85–94.

[13] J. Koeners, R. Rademaker, Creating a simulation environment to analyze
benefits of real-time taxi flow optimization using actual data, AIAA Mod-
eling & Simulation Technologies Conf.doi:10.2514/6.2011-6372.

[14] D. M. Pfeil, H. Balakrishnan, Identification of robust terminal-area routes
in convective weather, Transport Sci 46 (1) (2012) 56–73.

[15] H. Khadilkar, H. Balakrishnan, Network congestion control of airport sur-
face operations, J Guid Control Dyn 37 (3) (2014) 933–940.

[16] S. Ravizza, J. Chen, J. A. D. Atkin, P. Stewart, E. K. Burke, Aircraft taxi
time prediction: Comparisons & insights, Applied Soft Computing 14 (Part
C) (2014) 397 – 406. doi:10.1016/j.asoc.2013.10.004.

[17] H. Lee, H. Balakrishnan, Fast-time simulations of Detroit Airport op-
erations for evaluating performance in the presence of uncertainties,
IEEE/AIAA 31st Digital Avionics Systems Conference (DASC)doi:10.
1109/dasc.2012.6382349.

[18] I. Simaiakis, H. Balakrishnan, A queuing model of the airport departure
process, Transp. Science 50 (1) (2016) 94–109.

[19] T. V. Truong, The distribution function of airport taxi-out times & selected
applications, J. Tran. Res. For. 50 (2) (2012) 33–44.

[20] T. K. Simić, O. Babić, Airport traffic complexity & environment efficiency
metrics for evaluation of ATM measures, J. of Air Transport Management
42 (2015) 260 – 271. doi:http://dx.doi.org/10.1016/j.jairtraman.

2014.11.008.

[21] J. Guépet, O. Briant, J. Gayon, R. Acuna-Agost, The aircraft ground rout-
ing problem: Analysis of industry punctuality indicators in a sustainable
perspective, European Journal of Operational Research 248 (3) (2016) 827–
839. doi:10.1016/j.ejor.2015.08.041.

38

www.greentaxiing.com/resources/EGTS_Positioning_paper.pdf
http://dx.doi.org/https://doi.org/10.1016/j.trc.2016.05.015
http://dx.doi.org/https://doi.org/10.1016/j.trc.2016.05.015
http://dx.doi.org/10.1155/2013/854364
http://dx.doi.org/10.1155/2013/854364
http://dx.doi.org/10.2514/6.2011-6372
http://dx.doi.org/10.1016/j.asoc.2013.10.004
http://dx.doi.org/10.1109/dasc.2012.6382349
http://dx.doi.org/10.1109/dasc.2012.6382349
http://dx.doi.org/http://dx.doi.org/10.1016/j.jairtraman.2014.11.008
http://dx.doi.org/http://dx.doi.org/10.1016/j.jairtraman.2014.11.008
http://dx.doi.org/10.1016/j.ejor.2015.08.041

[22] C. Evertse, H. Visser, Real-time airport surface movement planning: Mini-
mizing aircraft emissions, Transportation Research Part C: Emerging Tech-
nologies 79 (2017) 224–241. doi:10.1016/j.trc.2017.03.018.

[23] T. Zhang, M. Ding, B. Wang, Q. Chen, Conflict-free time-based trajec-
tory planning for aircraft taxi automation with refined taxiway model-
ing, Journal of Advanced Transportation 50 (3) (2015) 326–347. doi:

10.1002/atr.1324.

[24] C. Yu, D. Zhang, H. H. Lau, A heuristic approach for solving an integrated
gate reassignment and taxi scheduling problem, Journal of Air Transport
Management 62 (2017) 189–196. doi:10.1016/j.jairtraman.2017.04.

006.

[25] J. A. Behrends, J. M. Usher, Aircraft gate assignment: Using a determinis-
tic approach for integrating freight movement and aircraft taxiing, Comput.
& Indust. Eng. 102 (2016) 44–57. doi:10.1016/j.cie.2016.10.004.

[26] J. Guépet, O. Briant, J.-P. Gayon, R. Acuna-Agost, Integration of aircraft
ground movements and runway operations, Transportation Research Part
E: Logistics and Transportation Review 104 (2017) 131–149. doi:10.1016/
j.tre.2017.05.002.

[27] R. Morris, C. S. Pasareanu, K. S. Luckow, W. Malik, H. Ma, T. S. Ku-
mar, S. Koenig, Planning, scheduling and monitoring for airport surface
operations, in: Proceedings of the 13th AAAI Conference on Artificial In-
telligence, Phoenix, Arizona, USA, 2016, pp. 608–614.

[28] C. Stergianos, J. Atkin, P. Schittekat, T. E. Nordlander, C. Gerada, H. Mor-
van, The importance of considering pushback time and arrivals when rout-
ing departures on the ground at airports, in: Proceedings of ICAOR 2016,
Vol. 8 of Lecture Notes in Management Science, Springer, Rotterdam, The
Netherlands, 2016, pp. 41–46.

[29] L. Yang, S. Yin, K. Han, J. Haddad, M. Hu, Fundamental diagrams of
airport surface traffic: Models and applications, Transportation Research
Part B: Methodologicaldoi:10.1016/j.trb.2017.10.015.

[30] S. Ravizza, J. A. D. Atkin, E. K. Burke, A more realistic approach for
airport ground movement optimisation with stand holding, Journal of
Scheduling 17 (5) (2013) 507–520. doi:10.1007/s10951-013-0323-3.

[31] L. Yang, K. Li, Z. Gao, Train timetable problem on a single-line railway
with fuzzy passenger demand, IEEE T. Fuzzy Syst. 17 (3) (2009) 617–629.
doi:10.1109/tfuzz.2008.924198.

[32] S.-C. Huang, M.-K. Jiau, C.-H. Lin, Optimization of the carpool service
problem via a fuzzy-controlled genetic algorithm, IEEE T. Fuzzy Syst.
23 (5) (2015) 1698–1712. doi:10.1109/tfuzz.2014.2374194.

39

http://dx.doi.org/10.1016/j.trc.2017.03.018
http://dx.doi.org/10.1002/atr.1324
http://dx.doi.org/10.1002/atr.1324
http://dx.doi.org/10.1016/j.jairtraman.2017.04.006
http://dx.doi.org/10.1016/j.jairtraman.2017.04.006
http://dx.doi.org/10.1016/j.cie.2016.10.004
http://dx.doi.org/10.1016/j.tre.2017.05.002
http://dx.doi.org/10.1016/j.tre.2017.05.002
http://dx.doi.org/10.1016/j.trb.2017.10.015
http://dx.doi.org/10.1007/s10951-013-0323-3
http://dx.doi.org/10.1109/tfuzz.2008.924198
http://dx.doi.org/10.1109/tfuzz.2014.2374194

[33] P. Fortemps, Jobshop scheduling with imprecise durations: a fuzzy ap-
proach, IEEE T. Fuzzy Syst. 5 (4) (1997) 557–569. doi:10.1109/91.

649907.

[34] F.-T. Lin, Fuzzy job-shop scheduling based on ranking level (λ, 1) interval-
valued fuzzy numbers, IEEE T. Fuzzy Syst. 10 (4) (2002) 510–522. doi:

10.1109/tfuzz.2002.800659.

[35] S. Petrovic, X. Song, A new approach to two-machine flow shop problem
with uncertain processing times, Optim Eng 7 (3) (2006) 329–342. doi:

10.1007/s11081-006-9975-6.

[36] J.-B. Gotteland, N. Durand, Genetic algorithms applied to airport ground
traffic optimization, in: Proc. IEEE CEC, Canberra, Australia, 2003, pp.
544–551. doi:10.1109/CEC.2003.1299623.

[37] J.-B. Gotteland, N. Durand, J.-M. Alliot, E. Page, Aircraft ground traffic
optimization, in: Proc. Int’l Air Traf. Mgmnt. R&D Seminar, 2001.

[38] B. Pesic, N. Durand, J.-M. Alliot, Aircraft ground traffic optimisation using
a genetic algorithm, in: Proc. GECCO, 2001.

[39] G. L. Clare, A. G. Richards, Optimization of taxiway routing & runway
scheduling, IEEE T Intell Tran Syst 12 (4) (2011) 1000–1013. doi:10.

1109/TITS.2011.2131650.

[40] M. Samà, A. D’Ariano, F. Corman, D. Pacciarelli, Coordination of schedul-
ing decisions in the management of airport airspace and taxiway operations,
Transportation Research Procedia 23 (2017) 246–262, papers Selected for
the 22nd International Symposium on Transportation and Traffic Theory
Chicago, Illinois, USA, 24-26 July, 2017. doi:10.1016/j.trpro.2017.05.
015.

[41] J. Ma, D. Delahaye, M. Sbihi, M. Mongeau, Integrated Optimization of
Terminal Manoeuvring Area and Airport , in: EUROCONTROL (Ed.), 6th
SESAR Innovation Days (2016) . , Proceedings of the SESAR Innovation
Days 2016, Delft, Netherlands, 2016, pp. ISSN 0770–1268.
URL https://hal-enac.archives-ouvertes.fr/hal-01404006

[42] J. Chen, M. Weiszer, P. Stewart, M. Shabani, Toward a more realistic,
cost-effective, and greener ground movement through active routing–part
i: Optimal speed profile generation, IEEE Trans. on Intel. Transp. Systems
17 (5) (2016) 1196–1209. doi:10.1109/TITS.2015.2477350.

[43] J. Chen, M. Weiszer, G. Locatelli, S. Ravizza, J. A. Atkin, P. Stewart,
E. K. Burke, Toward a more realistic, cost-effective, and greener ground
movement through active routing: A multiobjective shortest path ap-
proach, IEEE Trans. on Intell. Transp. Systems 17 (12) (2016) 3524–3540.
doi:10.1109/TITS.2016.2587619.

40

http://dx.doi.org/10.1109/91.649907
http://dx.doi.org/10.1109/91.649907
http://dx.doi.org/10.1109/tfuzz.2002.800659
http://dx.doi.org/10.1109/tfuzz.2002.800659
http://dx.doi.org/10.1007/s11081-006-9975-6
http://dx.doi.org/10.1007/s11081-006-9975-6
http://dx.doi.org/10.1109/CEC.2003.1299623
http://dx.doi.org/10.1109/TITS.2011.2131650
http://dx.doi.org/10.1109/TITS.2011.2131650
http://dx.doi.org/10.1016/j.trpro.2017.05.015
http://dx.doi.org/10.1016/j.trpro.2017.05.015
https://hal-enac.archives-ouvertes.fr/hal-01404006
https://hal-enac.archives-ouvertes.fr/hal-01404006
https://hal-enac.archives-ouvertes.fr/hal-01404006
http://dx.doi.org/10.1109/TITS.2015.2477350
http://dx.doi.org/10.1109/TITS.2016.2587619

[44] M. Weiszer, J. Chen, P. Stewart, A real-time active routing approach via a
database for airport surface movement, Transp. Res. Pt. C: Emerg. Tech. 58
(2015) 127 – 145. doi:https://doi.org/10.1016/j.trc.2015.07.011.

[45] L. Adacher, M. Flamini, E. Romano, Airport ground movement problem:
Minimization of delay and pollution emission, IEEE Transactions on Intel-
ligent Transportation Systems PP (99) (2018) 1–10. doi:10.1109/TITS.

2017.2788798.

[46] O. E. Guclu, C. Cetek, Analysis of aircraft ground traffic flow and gate
utilisation using a hybrid dynamic gate and taxiway assignment algorithm,
The Aeronautical Journal 121 (1240) (2017) 721745. doi:10.1017/aer.

2017.20.

[47] U. Benlic, A. E. I. Brownlee, E. K. Burke, Heuristic search for the coupled
runway sequencing & taxiway routing problem, Trans Res C: Emerg Tech
71 (2016) 333–355.

[48] C. Lesire, An iterative A* algorithm for planning of airport ground move-
ments, in: Proc. Euro. Conf. on AI, IOS Press, Amsterdam, Netherlands,
2010, pp. 413–418.

[49] P. Balakrishna, R. Ganesan, L. Sherry, Accuracy of reinforcement learning
algorithms for predicting aircraft taxi-out times: A case-study of Tampa
Bay departures, Transport Res. C: Emerg. Tech. 18 (6) (2010) 950–962.
doi:10.1016/j.trc.2010.03.003.

[50] S. Ravizza, J. Atkin, M. Maathuis, E. Burke, A combined statistical ap-
proach & ground movement model for improving taxi time estimations at
airports, J Oper Res Soc 64 (9) (2013) 1347–1360. doi:10.1057/jors.

2012.123.

[51] J. Chen, S. Ravizza, J. A. D. Atkin, P. Stewart, On the utilisation of
fuzzy rule-based systems for taxi time estimations at airports, in: Wkshp
on Algor. Appr. for Transp. Model., Opt., & Syst., 2011, pp. 134–145.
doi:10.4230/OASIcs.ATMOS.2011.134.

[52] O. Lordan, J. M. Sallan, M. Valenzuela-Arroyo, Forecasting of taxi
times: The case of barcelona-el prat airport, Journal of Air Transport
Management 56 (2016) 118 – 122, growing airline networks -Selected
papers from the 18th ATRS World Conference, Bordeaux, France, 2014.
doi:https://doi.org/10.1016/j.jairtraman.2016.04.015.
URL http://www.sciencedirect.com/science/article/pii/

S0969699716301570

[53] H. Khadilkar, H. Balakrishnan, Integrated control of airport and terminal
airspace operations, IEEE Transactions on Control Systems Technology
24 (1) (2016) 216–225. doi:10.1109/TCST.2015.2424922.

41

http://dx.doi.org/https://doi.org/10.1016/j.trc.2015.07.011
http://dx.doi.org/10.1109/TITS.2017.2788798
http://dx.doi.org/10.1109/TITS.2017.2788798
http://dx.doi.org/10.1017/aer.2017.20
http://dx.doi.org/10.1017/aer.2017.20
http://dx.doi.org/10.1016/j.trc.2010.03.003
http://dx.doi.org/10.1057/jors.2012.123
http://dx.doi.org/10.1057/jors.2012.123
http://dx.doi.org/10.4230/OASIcs.ATMOS.2011.134
http://www.sciencedirect.com/science/article/pii/S0969699716301570
http://www.sciencedirect.com/science/article/pii/S0969699716301570
http://dx.doi.org/https://doi.org/10.1016/j.jairtraman.2016.04.015
http://www.sciencedirect.com/science/article/pii/S0969699716301570
http://www.sciencedirect.com/science/article/pii/S0969699716301570
http://dx.doi.org/10.1109/TCST.2015.2424922

[54] J. Atkin, G. D. Maere, E. Burke, J. Greenwood, Addressing the pushback
time allocation problem at heathrow airport, Transportation Science 47 (4)
(2013) 584–602.

[55] D. Rappaport, P. Yu, K. Griffin, C. Daviau, Quantitative Analysis of Un-
certainty in Airport Surface Operations, AIAA, 2009, pp. 1–16. doi:

10.2514/6.2009-6987.

[56] Y. Liu, M. Hansen, G. Gupta, W. Malik, Y. Jung, Predictability impacts
of airport surface automation, Transp. Res. Pt. C: Emerg. Tech. 44 (2014)
128 – 145. doi:https://doi.org/10.1016/j.trc.2014.03.010.

[57] M. Gendreau, G. Laporte, R. Séguin, Stochastic vehicle routing, Euro J
Oper Res 88 (1) (1996) 3–12.

[58] U. Ritzinger, J. Puchinger, R. F. Hartl, A survey on dynamic & stochastic
vehicle routing problems, Int J Prod Res 54 (1) (2016) 215–231.

[59] L. M. Hvattum, A. Løkketangen, G. Laporte, Solving a dynamic & stochas-
tic vehicle routing problem with a sample scenario hedging heuristic, Transp
Sci 40 (4) (2006) 421–438. doi:10.1287/trsc.1060.0166.

[60] N. Ando, E. Taniguchi, Travel time reliability in vehicle routing and
scheduling with time windows, Netw Spat Econ 6 (3-4) (2006) 293–311.
doi:10.1007/s11067-006-9285-8.

[61] S. Demeyer, P. Audenaert, M. Pickavet, P. Demeester, Dynamic & stochas-
tic routing for multimodal transportation systems, IET Intel Transp Sys
8 (2) (2014) 112–123. doi:10.1049/iet-its.2012.0065.

[62] D. Taş, M. Gendreau, N. Dellaert, T. Van Woensel, A. De Kok, Vehicle
routing with soft time windows & stochastic travel times: A column gen-
eration and branch-and-price solution approach, Euro J Oper Res 236 (3)
(2014) 789–799.

[63] C. Verbeeck, P. Vansteenwegen, E.-H. Aghezzaf, Solving the stochastic
time-dependent orienteering problem with time windows, Euro J Oper Res
255 (3) (2016) 699 – 718.

[64] E. Angelelli, C. Archetti, C. Filippi, M. Vindigni, The probabilistic ori-
enteering problem, Comput Oper Res 81 (2017) 269 – 281. doi:http:

//dx.doi.org/10.1016/j.cor.2016.12.025.

[65] J. A. D. Atkin, E. K. Burke, J. S. Greenwood, TSAT allocation at
London Heathrow: the relationship between slot compliance, through-
put and equity, Public Transport 2 (3) (2010) 173–198. doi:10.1007/

s12469-010-0029-2.

[66] B. Kosko, Fuzzy systems as universal approximators, IEEE T Computers
43 (11) (1994) 1329–1333.

42

http://dx.doi.org/10.2514/6.2009-6987
http://dx.doi.org/10.2514/6.2009-6987
http://dx.doi.org/https://doi.org/10.1016/j.trc.2014.03.010
http://dx.doi.org/10.1287/trsc.1060.0166
http://dx.doi.org/10.1007/s11067-006-9285-8
http://dx.doi.org/10.1049/iet-its.2012.0065
http://dx.doi.org/http://dx.doi.org/10.1016/j.cor.2016.12.025
http://dx.doi.org/http://dx.doi.org/10.1016/j.cor.2016.12.025
http://dx.doi.org/10.1007/s12469-010-0029-2
http://dx.doi.org/10.1007/s12469-010-0029-2

[67] K. M. Passino, S. Yurkovich, M. Reinfrank, Fuzzy control, Vol. 20, Addison-
wesley, Menlo Park, CA, 1998.

[68] J. Chen, M. Gallimore, C. Bingham, M. Mahfouf, Y. Zhang, et al., Intelli-
gent data compression, diagnostics and prognostics using an evolutionary-
based clustering algorithm for industrial machines, in: Fault detection:
classification, techniques & role in industrial systems, NOVA Science Pub-
lisher, New York, USA, 2014.

[69] J. Chen, M. Mahfouf, Improving transparency in approximate fuzzy mod-
eling using multi-objective immune-inspired optimisation, Int J Comput
Intel Sys 5 (2) (2012) 322–342. doi:10.1080/18756891.2012.685311.

[70] H. Idris, J. Clarke, R. Bhuva, L. Kang, Queuing model for taxi-out time
estimation, Air Traf Cont Quart 10 (1) (2002) 1–22.

[71] J.-S. Jang, C.-T. Sun, Neuro-fuzzy modeling and control, Proceedings of
the IEEE 83 (3) (1995) 378–406.

[72] D. Dubois, H. T. Nguyen, H. Prade, Possibility theory, probability and
fuzzy sets misunderstandings, bridges and gaps, in: Fundamentals of fuzzy
sets, Springer, 2000, pp. 343–438.

[73] C. S. McCahon, E. S. Lee, Job sequencing with fuzzy processing times,
Comput Math Appl 19 (7) (1990) 31–41. doi:10.1016/0898-1221(90)

90191-l.

[74] S. M. Johnson, Optimal 2- & 3-stage production schedules with setup
times included, Nav Res Log Quart 1 (1) (1954) 61–68. doi:10.1002/

nav.3800010110.

[75] W. Pedrycz, F. Gomide, An Introduction to Fuzzy Sets, MIT Press, Cam-
bridge, Mass., 1998.

[76] R. R. Yager, A procedure for ordering fuzzy subsets of the unit inter-
val, Info Sci 24 (2) (1981) 143 – 161. doi:http://dx.doi.org/10.1016/

0020-0255(81)90017-7.

[77] B. Stenzel, Online disjoint vehicle routing with application to AGV routing,
Ph.D. thesis, TU Berline, Germany (2008).

[78] A. E. I. Brownlee, J. A. D. Atkin, J. A. W. Woodward, U. Benlic, E. K.
Burke, Airport ground movement: Real world data sets & approaches to
handling uncertainty, in: Proc. PATAT, York, UK, 2014.

[79] C. Petersen, M. Mühleisen, A. Timm-Giel, Evaluation of the aircraft dis-
tribution in satellite spotbeams, in: T. Bauschert (Ed.), Adv. in Comm.
Networking, Vol. 8115 of LNCS, Springer, 2013, pp. 46–53. doi:10.1007/
978-3-642-40552-5_5.

43

http://dx.doi.org/10.1080/18756891.2012.685311
http://dx.doi.org/10.1016/0898-1221(90)90191-l
http://dx.doi.org/10.1016/0898-1221(90)90191-l
http://dx.doi.org/10.1002/nav.3800010110
http://dx.doi.org/10.1002/nav.3800010110
http://dx.doi.org/http://dx.doi.org/10.1016/0020-0255(81)90017-7
http://dx.doi.org/http://dx.doi.org/10.1016/0020-0255(81)90017-7
http://dx.doi.org/10.1007/978-3-642-40552-5_5
http://dx.doi.org/10.1007/978-3-642-40552-5_5

[80] R. Turner, S. Bottone, C. Stanek, Online variational approximations to
non-exponential family change point models: With application to radar
tracking, in: Proc. of NIPS 26, 2013, pp. 306–314.

[81] P. Ptak, J. Hartikka, M. Ritola, T. Kauranne, Long-distance multistatic
aircraft tracking with VHF frequency doppler effect, IEEE T Aero Elec Sys
50 (3) (2014) 2242–2252. doi:10.1109/taes.2014.130246.

[82] A. J. Eele, J. M. Maciejowski, Sequential Monte Carlo Optimisation for Air
Traffic Management, Tech. Rep. CUED/F-INFENG/TR.693, Cambridge
University Engineering Department (2015).

[83] H. K. Baruah, Ch 6: Construction of normal fuzzy numbers using the
mathematics of partial presence, Mathematics of Uncertainty Modeling in
the Analysis of Engineering & Science Problems (2014) 109–126doi:10.
4018/978-1-4666-4991-0.ch006.

[84] H. Khadilkar, H. Balakrishnan, Estimation of aircraft taxi fuel burn using
flight data recorder archives, Transportation Res. D: Transport & Environ-
ment 17 (7) (2012) 532–537.

[85] ICAO, Advanced surface movement guidance & control systems (a-smgcs)
manual, section 4.3.2 (2004).
URL http://www.icao.int/Meetings/anconf12/Document%20Archive/

9830_cons_en[1].pdf

44

http://dx.doi.org/10.1109/taes.2014.130246
http://dx.doi.org/10.4018/978-1-4666-4991-0.ch006
http://dx.doi.org/10.4018/978-1-4666-4991-0.ch006
http://www.icao.int/Meetings/anconf12/Document%20Archive/9830_cons_en[1].pdf
http://www.icao.int/Meetings/anconf12/Document%20Archive/9830_cons_en[1].pdf
http://www.icao.int/Meetings/anconf12/Document%20Archive/9830_cons_en[1].pdf
http://www.icao.int/Meetings/anconf12/Document%20Archive/9830_cons_en[1].pdf

Appendix A. Notation and Process Overview

45

Table A.4: Summary of Notation

Symbol Description
A set of all aircraft to be routed

G = (V,E) graph of taxiways, sets of vertices and edges
e a single edge
τ a specific point in time (timestamp)
t a period of time
Te set of weights (taxi times) for e
teL a specific taxi time for e, given the previous label L and current

aircraft
conf(e) set of conflicting edges for e
F(e) set of time windows for e
ai aircraft and index

IL = [aL, bL] time period for label L
L = (vL, IL, predL) label on vertex v for QPPTW, predL being the previous label

Qi = (vstart, vend, τrw) request to route aircraft ai from vstart ∈ V to vend ∈ V , start-
ing at allocated runway time τrw (arrivals) or ending at τrw
(departures)

τin and τout in and out times for an edge
Rτstart , Rτout start / exit time for allocated aircraft route R
t̃ = (l, b, u) a fuzzy value (time in this case), with lower bound l, modal b,

upper bound u
µt̃(t) membership function for time t
t̃α alpha cut of t
pi position of aircraft ai on G
ui uncertainty applied to aircraft ai
Hj
i fuzzy set (a linguistic value) for the j-th explanatory variable of

the i-th rule

cji centre of the Gaussian membership function for the j-th ex-
planatory variable and i-th rule

σji spread of the Gaussian membership function for the j-th ex-
planatory variable and i-th rule

xj value of the j-th explanatory variable
yi output of the i-th rule
σyi spread of the bell-shaped function for the output of the i-th rule

µHj
i
(xj) membership function associated with Hj

i

µBi
(y) output membership function for the i-th rule
Zi consequent of the i-th rule
n number of explanatory variables
r number of rules in adaptive Mamdani FRBS
δ the uncertainty level applying to one run of the simulator

46

Train FRBS for
estimating taxi

times (S4a)

Sort aircraft into
natural order

Remove first
aircraft from list

For each α,
compute shortest

route:

Algorithm 1

α = 0 α = 1

Departure?

Run QPPTW
forwards to find

route (Alg. 2, S4d
1-6)

Run Alg. 4:
repeat QPPTW to

find latest start
time, S4d 10)

Estimate length
of route (Alg. 3,

S4d 7)

No Yes

α = 0 α = 1

α = 0 α = 1

Allocate quickest
route to aircraft

(S4d 8)

Update time-
windows on G

(S4d 9)

Any aircraft
left to
route?No Yes

STOP

Figure A.14: Overview of the optimisation process, showing how the component algorithms
fit together to allocate routes to a set of aircraft. Each stage identifies the algorithm number
and section in the text giving more detail.

47

	Introduction
	Related work
	Ground Movement
	Stochastic routing

	Problem description
	Links with other airport operations
	Ground Movement

	Adaptive Mamdani FRBS and Fuzzy-QPPTW
	Adaptive Mamdani fuzzy rule-based system
	Fuzzy arithmetic
	QPPTW
	Modified steps of QPPTW main loop
	Edge entry and exit times
	Weight for Fibonacci heap
	Ordering of time-windows
	Comparing fuzzy times
	Comparing out time with the end of the time-window
	Label dominance
	Reconstructing the route
	Choosing the route to allocate
	Reallocating time-windows
	Backwards routing

	Analysed Case: Manchester Airport
	Taxi time model with uncertainty

	Ground Movement simulator
	Experiments and Results
	Conclusions
	Data Access Statement
	Acknowledgements
	Notation and Process Overview

