11,004 research outputs found

    Ensuring Cyber-Security in Smart Railway Surveillance with SHIELD

    Get PDF
    Modern railways feature increasingly complex embedded computing systems for surveillance, that are moving towards fully wireless smart-sensors. Those systems are aimed at monitoring system status from a physical-security viewpoint, in order to detect intrusions and other environmental anomalies. However, the same systems used for physical-security surveillance are vulnerable to cyber-security threats, since they feature distributed hardware and software architectures often interconnected by ‘open networks’, like wireless channels and the Internet. In this paper, we show how the integrated approach to Security, Privacy and Dependability (SPD) in embedded systems provided by the SHIELD framework (developed within the EU funded pSHIELD and nSHIELD research projects) can be applied to railway surveillance systems in order to measure and improve their SPD level. SHIELD implements a layered architecture (node, network, middleware and overlay) and orchestrates SPD mechanisms based on ontology models, appropriate metrics and composability. The results of prototypical application to a real-world demonstrator show the effectiveness of SHIELD and justify its practical applicability in industrial settings

    Robust Computer Algebra, Theorem Proving, and Oracle AI

    Get PDF
    In the context of superintelligent AI systems, the term "oracle" has two meanings. One refers to modular systems queried for domain-specific tasks. Another usage, referring to a class of systems which may be useful for addressing the value alignment and AI control problems, is a superintelligent AI system that only answers questions. The aim of this manuscript is to survey contemporary research problems related to oracles which align with long-term research goals of AI safety. We examine existing question answering systems and argue that their high degree of architectural heterogeneity makes them poor candidates for rigorous analysis as oracles. On the other hand, we identify computer algebra systems (CASs) as being primitive examples of domain-specific oracles for mathematics and argue that efforts to integrate computer algebra systems with theorem provers, systems which have largely been developed independent of one another, provide a concrete set of problems related to the notion of provable safety that has emerged in the AI safety community. We review approaches to interfacing CASs with theorem provers, describe well-defined architectural deficiencies that have been identified with CASs, and suggest possible lines of research and practical software projects for scientists interested in AI safety.Comment: 15 pages, 3 figure

    The HIPEAC vision for advanced computing in horizon 2020

    Get PDF

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Analyzing the attack surface and threats of industrial Internet of Things devices

    Get PDF
    The growing connectivity of industrial devices as a result of the Internet of Things is increasing the risks to Industrial Control Systems. Since attacks on such devices can also cause damage to people and machines, they must be properly secured. Therefore, a threat analysis is required in order to identify weaknesses and thus mitigate the risk. In this paper, we present a systematic and holistic procedure for analyzing the attack surface and threats of Industrial Internet of Things devices. Our approach is to consider all components including hardware, software and data, assets, threats and attacks throughout the entire product life cycle

    Making intelligent systems team players: Overview for designers

    Get PDF
    This report is a guide and companion to the NASA Technical Memorandum 104738, 'Making Intelligent Systems Team Players,' Volumes 1 and 2. The first two volumes of this Technical Memorandum provide comprehensive guidance to designers of intelligent systems for real-time fault management of space systems, with the objective of achieving more effective human interaction. This report provides an analysis of the material discussed in the Technical Memorandum. It clarifies what it means for an intelligent system to be a team player, and how such systems are designed. It identifies significant intelligent system design problems and their impacts on reliability and usability. Where common design practice is not effective in solving these problems, we make recommendations for these situations. In this report, we summarize the main points in the Technical Memorandum and identify where to look for further information
    • …
    corecore