

 Int. J. Critical Computer-Based Systems, Vol. X, No. Y, xxxx 1

 Copyright © 20XX Inderscience Enterprises Ltd.

Ensuring cyber-security in smart railway surveillance
with SHIELD

Francesco Delli Priscoli and
Alessandro Di Giorgio*
University of Rome La Sapienza,
Via Ariosto 25, Rome, Italy
Email: dellipriscoli@dis.uniroma1.it
Email: digiorgio@dis.uniroma1.it
*Corresponding author

Mariana Esposito
Ansaldo STS,
Via Argine 425, Naples, Italy
Email: mariana.esposito@ansaldo-sts.com

Andrea Fiaschetti
University of Rome La Sapienza,
Via Ariosto 25, Rome, Italy
Email: fiaschetti@dis.uniroma1.it

Francesco Flammini
Ansaldo STS,
Via Argine 425, Naples, Italy
Email: francesco.flammini@ansaldo-sts.com

Silvano Mignanti
University of Rome La Sapienza,
Via Ariosto 25, Rome, Italy
Email: mignanti@dis.uniroma1.it

Concetta Pragliola
Ansaldo STS,
Via Argine 425, Naples, Italy
Email: concetta.pragliola@ansaldo-sts.com

 2 F. Delli Priscoli et al.

Abstract: Modern railways feature increasingly complex embedded computing
systems for surveillance that are moving towards fully wireless smart-sensors.
Those systems are aimed at monitoring system status from a physical-security
viewpoint, in order to detect intrusions and other environmental anomalies.
However, the same systems used for physical-security surveillance are
vulnerable to cyber-security threats, since they feature distributed hardware and
software architectures often interconnected by ‘open networks’, like wireless
channels and the internet. In this paper, we show how the integrated approach
to security, privacy and dependability (SPD) in embedded systems provided by
the SHIELD framework (developed within the EU funded pSHIELD and
nSHIELD research projects) can be applied to railway surveillance systems in
order to measure and improve their SPD level. SHIELD implements a layered
architecture (node, network, middleware and overlay) and orchestrates SPD
mechanisms based on ontology models, appropriate metrics and composability.
The results of prototypical application to a real-world demonstrator show the
effectiveness of SHIELD and justify its practical applicability in industrial
settings.

Keywords: security; privacy; dependability; railway; surveillance; SHIELD.

Reference to this paper should be made as follows: Delli Priscoli, F.,
Di Giorgio, A., Esposito, M., Fiaschetti, A., Flammini, F., Mignanti, S.
and Pragliola, C. (xxxx) ‘Ensuring cyber-security in smart railway surveillance
with SHIELD’, Int. J. Critical Computer-Based Systems, Vol. X, No. Y,
pp.xxx–xxx.

Biographical notes: Francesco Delli Priscoli was with Telespazio, Rome, Italy
from 1986 to 1991. Since 1991, he has been with the University of Rome ‘La
Sapienza’, Rome, Italy, where he is a Full Professor of Automatic Control. He
was scientifically responsible for 32 projects mainly financed by the European
Union, as well as for many national projects and cooperations with major
industries. He is the author of about 200 papers, appearing in major
international reviews, books, and conference proceedings. His main research is
on networked systems. He is an expert in the field of resource management
control for networked systems.

Alessandro Di Giorgio received his degree (Cum Laude) in Physics in 2005,
and PhD in Systems Engineering from the University of Rome ‘Sapienza’ in
2010. He is currently a postdoctoral researcher in automatic control, working
on original applications of control systems theory to smart grids and critical
infrastructure protection, mainly in the context of national and European
research projects. He is an author of about 40 papers and book chapters on
these topics.

Mariana Esposito is a PhD in Computer and System Engineering. She is an
expert in the field of security. Her research activities are focused on safety,
reliability, and security of railway systems. Her activities are documented by
publications in national and international conference proceedings.

Andrea Fiaschetti received his PhD in Systems Engineering and works as an
Engineer at Thales Alenia Space Italia. Since 2013, he has been an honorary
fellow at the University of Rome ‘La Sapienza’, where his research interests
are in the field of applied automatic control, pursuing a cross-fertilization
between control theory and computer science. His major achievement is the
formalisation of the so-called ‘composable security theory’, aimed at
establishing the foundations of next generation embedded systems. He is an
author of several conference papers, journal papers and books contributions on
these topics.

 Ensuring cyber-security in smart railway surveillance with SHIELD 3

Silvano Mignanti holds a PhD in Systems and Control Engineering. He has
more than 11 years of experience in computer science, ITC, service
management and security for networked systems. He is an author of several
publications on these topics.

Concetta Pragliola received her Laurea and Doctorate degrees in Electronic
Engineering from the University Federico II of Naples in October 1985. From
January 1987 to October 2001, she has worked at Ansaldo Transporti. From
November 2001 to November 2006, she has worked in Elsag as an Account
Manager. She is currently with the innovation unit of Ansaldo STS working on
the design of security systems.

1 Introduction

Embedded systems (ES) employed in cyber-physical monitoring and control
applications feature increasingly complex (i.e., large, distributed, heterogeneous)
architectures and strict requirements about security, privacy and dependability (SPD). In
order to manage such complexity, it is essential to develop new frameworks allowing the
management of SPD requirements in a way that is both effective and efficient. Several
research efforts have been performed to address the resilience of ES through
hardware/software fault/attack-tolerance and dynamic reconfiguration; however, none of
those approaches address the overall issue in a way that is integrated, cohesive and
holistic, using semantic modelling, ontologies and control systems theories implemented
through appropriate middleware and SPD-technologies, that is the scope of the SHIELD
framework presented in this paper (see references Esposito et al., 2013; Delli Priscoli
et al., 2012a; pSHIELD Project, http://pshield.unik.no/wiki/PSHIELD-public; nSHIELD
Project, http://www.newshield.eu/.).

Among the critical applications of ES, there are the ones addressing physical security
that is the protection against intentional attacks of malicious nature like thefts, sabotage,
terrorism, etc. The issue is very relevant in the context of critical infrastructure
security (e.g., Casola et al., 2012b; Canale et al., 2012), where large, distributed and
heterogeneous surveillance systems are employed (Flammini, 2011; Di Giorgio and
Liberati, 2011). Those systems are used to monitor the environment to detect physical
threats and activate appropriate response countermeasures. As a matter of fact, the same
ES used for physical security monitoring can be subject to cyber-security attacks aimed at
deactivating or spoofing intrusion detection and access control devices, or at getting
private information about user data or video footage.

One of the nowadays most relevant domains of critical infrastructure protection is
railway and mass-transit surveillance, since for their nature (open systems moving a very
large number of passengers) rail-based transit systems are attractive targets for
adversaries ranging from thieves to terrorists (Hartong et al., 2008). In fact, there has
been a growing interest of railway operators in physical security information
management systems (Bocchetti et al., 2009) (see Figure 1), as well as in novel smart-
sensing platforms (Flammini et al., 2010; Hodge et al., 2015). Unfortunately, most of the
sensors nowadays available for railway surveillance feature weak information security
and resilience mechanisms (if any), that are difficult to measure, integrate and control,

 4 F. Delli Priscoli et al.

especially considering the requirements of easy scalability, expansion and maintainability
requested by the end users.

Figure 1 A control room for the physical security information management (see online version
for colours)

The scope of this paper is to present the general features of the SHIELD framework and
to show an example case-study application to the cyber-security of a network of smart
wireless devices used to monitor a critical railway asset.

The rest of this paper is structured as follows. Section 2 and its sub-sections provide a
general description of the SHIELD framework, focusing on metrics, semantic models,
middleware architecture and composability mechanisms. Section 3 and its sub-sections
describe the railway security demonstrator, its reference architecture, the involved
SHIELD prototypes, the case-study scenario, and demonstration results. Finally,
Section 4 provides conclusions and hints about future developments.

2 The SHIELD framework

In recent years, ES technologies have seen an exponential diffusion in our daily life, from
business environment to personal entertainment, mainly due to the high availability of
low-cost computational capabilities.

The pervasive presence of ES has therefore raised new challenges and problems that
need to be properly addressed through strategic initiatives. In this perspective, the
European Commission, within the seventh framework program (FP7) has established the
ARTEMIS JU (today known as ECSEL), a joint undertaking in charge of defining and
implementing a roadmap that will drive the growth of ESs industry towards really
effective objectives (ECSEL JU, http://www.ecsel-ju.eu/). One of these objectives is the
development of new technologies and/or strategies to address SPD in the context of ESs,
with major impacts on all those applications involving safety, reliability and security.

To properly address this challenge, a restricted pool of academic and industrial
researchers has created the SHIELD roadmap, whose output was the SHIELD
Framework, an innovative methodology to address SPD in complex system as a ‘built in’
feature, rather than ‘add-on’ functionality.

 Ensuring cyber-security in smart railway surveillance with SHIELD 5

In a nutshell, a complex system is seen as a mixture of atomic elements performing
specific tasks (that can be SPD relevant): the main purpose of the SHIELD methodology
is to enable composability of these atomic functionalities. A trivial representation is
provided in Figure 2.

The SHIELD SPD modules can be represented as pieces of a puzzle, which perfectly
fits each other thanks to common interfaces. Each module implements a SPD technology
or a specific SPD functionality. As an example, in Figure 2 at node level there are two
modules: personal node and power node technologies, at network level there are two
functionalities: self-x algorithms and secure routing, and at middleware level there are
two services: semantic management and authentication.

Figure 2 SHIELD composability

These modules, belonging to different SPD layers (node, network or middleware), can be
composed statically or dynamically by the SHIELD overlay. Furthermore, individual
SHIELD SPD modules can be replaced once the measured SPD metrics do not satisfy the
required SPD levels. Indeed the SPD metrics are continuously monitored by the security
agents and in case of failure, the security agent reacts by discovering, composing and
configuring the available SPD modules.

The SHIELD reference architecture is depicted in Figure 3 in a more formal
representation (as already described in Fiaschetti et al., 2014, 2012), with the indication
of the technological enablers: metrics, ontologies (or metadata) and overlay.

The complex system is divided into its atomic elements at node (i.e., hardware),
network (i.e., communication) and middleware (i.e., software) named ‘SPD
functionalities’ or ‘SPD technologies’. Then, on top of that, SHIELD introduces an
overlay of security agents which will be in charge to implement the key composability
concept (see Figure 3). The security agents will be placed in appropriate network entities
to be properly selected according to specific criteria which take into account the
considered scenario.

 6 F. Delli Priscoli et al.

Figure 3 SHIELD functional architecture

Heterogeneous
Measurements,
Parameters
SPD Metrics

pSHIELD
Network

Layer

pSHIELD
Middleware

Layer

SPD Security Agent

Discovery Composition

Dynamic
context

Control
algorithms

Rules for
discovery
and composition

Other SPD Security Agents

Exchanged
metadata

pSHIELD
Overlay

Meta-
data

pSHIELD
Node
Layer

Commands for
composition and
configuration
of SPD modules

Each security agent monitors a set of properly selected measurements and parameters
taken at any of the three above-mentioned layers (see the arrows labelled as
measurements in Figure 3). These heterogeneous measurements and parameters are
converted by the security agents in homogeneous metadata by extensively using properly
selected semantic technologies; the use of homogeneous metadata makes easy the
metadata exchange among different security agent (Figure 3). Each security agent, thanks
to metadata homogeneity, can aggregate the available metadata (the ones relevant to
monitored measurements and parameters, as well as the ones coming from other security
agents), in order to deduce aggregated metadata which form the so-called dynamic
context. The latter is used as basic input for a set of control algorithms responsible of
dynamically deciding which SPD modules have to be composed and enabled/disabled at
any of the three above-mentioned layers, as well as how the activated modules have to be
configured in order to achieve the desired SPD level. These decisions are enforced in the
interested SPD modules lying at the three above-mentioned layers (see the arrows
labelled as commands in Figure 3). The above-mentioned control algorithms are also in
charge of possibly updating the rules to form the dynamic context (i.e., which
measurements and parameters have to be monitored, which metadata have to be
exchanged with other security agents, how the available metadata have to be aggregated,
etc.).

Note that the strength of the presented composability concept lies in the possibility of
jointly deciding at the inter-layer manager, basing on information gained at all layers,
which SPD provisions have to be performed at each layer in order to achieve the overall
desired SPD level. This approach has the evident advantage of allowing taking SPD
provisions which are coordinated among the different layers and of permitting to decide
on these provisions on the basis of aggregated information coming from all layers.

In the following sections, the main enabling technologies for this architecture will be
described: metrics, semantic models and middleware.

 Ensuring cyber-security in smart railway surveillance with SHIELD 7

2.1 The SHIELD metrics

SPD metrics is the SHIELD key issue. The SHIELD project has identified static and
dynamic SPD metrics driven by the requirements coming from applications, at each of
the considered layers, as well as for the overall system. Then, SHIELD identifies the ES
desired SPD level at each layer and for the overall system with respect to these metrics.

The ‘SHIELD attack surface metrics’ is an approach developed in order to compute
the SPD level in the SHIELD framework. The approach is an integration of three
different methods: ‘attack surface metric’ (Manadhata and Wing, 2010), ‘the open source
testing methodology manual (OSSTMM) 3’ (Herzog, 2010) and ‘common criteria
evaluation methodology (CEM)’ (Common Criteria, 2012). Such integration allows
expressing the SPD level as a plain number.

An attack surface is a set of modes by which an attacker can entry in contact with a
system and cause a disaster or a failure.

The SHIELD metrics integrate dependability and security concepts. It considers the
threat as the origin of the chain ‘fault → error → failure’ as well as the potential for
abusing protected assets.

The malicious human activity or non-malicious events are addressed at the entry and
exit points of the system. The entry and exit points are characterised by three factors:
porosity, controls, and limitations (Herzog, 2010). The characteristics of entry and exit
points define the likelihood of being exploited by attackers. The measurement is the total
contribution of porosity, controls and limitations.

A threat has the capacity to subvert the security or the dependability of a system and
in order to be effective; it shall interact directly or indirectly with the asset. So the aim is
to separate the threat from the asset in order to avoid the interaction (e.g., total separation
means SPD level = 100). Any protection increases the SPD level and can be activated by
controls to the asset, in order to reduce the impact a threat.

During the analysis phase (a sort of ‘vulnerability assessment’), it is important is to
identify the possible interactions. This parameter is called ‘porosity’. The porosity
reduces the separation between a threat and an access. It is characterised by three
elements: complexity, access and trust.

Each point of interaction (access) reduces the security and then the SPD level. The
increase of porosity is the decrease in SPD and each pore is a complexity, access or trust.
In detail:

• complexity: number of SPD critical components

• access: number of possible interactions with the system

• trust: access not threatening system security.

For each access pore identified, damage potential-effort ratio need to be computed to
have a consistent measure of the introduced lack of separation. Access pores do not
equally contribute to system porosity since they are not equally likely to be exploited by
attackers.

 8 F. Delli Priscoli et al.

Controls reduce the interaction between threat and assets. There are two main
categories of controls, ‘interactive’ and ‘process’, for a total of 12 types of controls.

Interactive Controls are directly related to complexity, access, or trust interactions,
and they influence them. The categories are the following:

• Authentication is a control through the challenge of credentials based on
identification and authorisation.

• Indemnification is a control through a contract between the asset owner and the
interacting party. This contract may be in the form of a visible warning as a
precursor to legal action if posted rules are not followed, specific, public legislative
protection, or with a third-party assurance provider in case of damages like an
insurance company.

• Resilience is a control over all interactions to maintain the protection of assets in the
event of corruption or failure.

• Subjugation is a control assuring that interactions occur only according to defined
processes. The asset owner defines how the interaction occurs which removes the
freedom of choice but also the liability of loss from the interacting party.

• Continuity is a control over all interactions to maintain interactivity with assets in the
event of corruption or failure.

Process controls define defensive processes. These controls do not directly influence
interactions; rather, they protect the assets once the threat is present. The categories are
the following:

• non-repudiation is a control which prevents the interacting party from denying its
role in any interactivity

• confidentiality is a control for assuring an asset displayed or exchanged between
interacting parties cannot be known outside of those parties

• privacy is a control for assuring the means of how an asset is accessed, displayed, or
exchanged between parties cannot be known outside of those parties

• integrity is a control to assure that interacting parties know when assets and
processes have changed

• alarm is a control to notify that an interaction is occurring or has occurred.

The classes of limitation are listed in the following:

• vulnerability: denying access to authorised entities (people or processes), allow
privileged access to unauthorised entities, or allowing unauthorised entities to hide
assets or themselves

• weakness: abusing or nullifying the effects of the interactivity controls

• concern: disrupting or reducing the effects of the process controls

 Ensuring cyber-security in smart railway surveillance with SHIELD 9

• exposure: unjustifiable action or error that provides direct or indirect complexity of
targets or assets

• anomaly: unexpected error or flaw.

The process of obtaining the SPD level for the whole system is composed by several
steps. The starting point is the analysis of the system and the recognition of the
components. In order to simplify the computation and to reduce the number of system
states, some components are merged according to SPD functionalities generated from
their cooperation, whether they:

• have a common physical boundary

• could work together to identify a logical functionality.

In this way, it is possible to apply the Attack surface metric composition rules to obtain
all the possible SPD levels for the system.

2.2 The SHIELD semantic framework

As outlined in the architecture (Figure 3) and widely justified in the pilot phase of the
project (see Fiaschetti et al., 2011; Suraci et al., 2012), the middleware modules (and
above all the security agent) need a proper semantic framework to model and elaborate
all the information exchanged among the system and relevant to implement the
composability mechanism. This framework is composed by:

• an ontology, to model technology independent information (i.e., metric value)

• a domain database, to model technology and scenario dependent information.

The SHIELD ontology is a simple translation of the ‘attack surface’ and ‘porosity’
concepts. Since the surface is a function of the amount of interfaces to the external world
(access), interactions between components (complexity) and internal/external interactions
with no direct impact on security (trust), these concepts are included in the ‘system’ part
of SHIELD ontology (Figure 4). These attributes are represented by a number, so the
generic SPD functionality brings a numeric contribution for each of these attributes.
These values hold both for the system and for each additional SPD functionality.

As described in the previous section, each vulnerability, identified by the number of
‘accesses’, can be counteracted by means of specific controls. Controls are classified in
class A and class B, and can be translated into ontology as well (Figure 4).

Each SPD functionality brings into the system one or more controls. Each control,
once activated, can be affected by a set of limitations that are included in the third section
of the SHIELD ontology (Figure 4).

Each element depicted in this ontology can be:

• a simple number (i.e., two integrity controls, …)

• an element itself (i.e., CRC control, hash integrity control, …).

 10 F. Delli Priscoli et al.

Figure 4 SHIELD ontology (see online version for colours)

The resulting XML file is reported in Figure 5 and, due to the very high-level information
represented; its size is surprisingly small: about 2 kB that is suitable for low resource
environments.

Each SHIELD component/device can implement a set of SPD functionalities,
introducing controls, limitations, vulnerabilities and all those information are stored into
an XML file.

When all the XML files are collected by the security agent, they are put together to
build one single XML file representing the security level of the overall system. This
composition has to cope with:

• interfaces

• contracts

• exceptions.

 Ensuring cyber-security in smart railway surveillance with SHIELD 11

Figure 5 Sample SHIELD XML (see online version for colours)

<metrics>

<vulnerabilities>

<basic>0</basic>

<e_basic>0</e_basic>

<moderate>0</moderate>

<high>1</high>

<beyond_high>1</beyond_high>

</vulnerabilities>

<limitations>

<anomalies>2</anomalies>

<concerns>4</concerns>

<exposures>1</exposures>

<weaknesses>6</weaknesses>

</limitations>

<classA>

<authentication>14</authentication>

<indemnification>1</indemnification>

<resilience>4</resilience>

<subjugation>29</subjugation>

<continuity>4</continuity>

</classA>

<classB>

<non_Repudiation>11</non_Repudiation>

<confidentiality>2</confidentiality>

<privacy>1</privacy>

<integrity>3</integrity>

<alarm>6</alarm>

</classB>

<complexity>4</complexity>

<trust>6</trust>

<accessesList>

<dp>4</dp>

<ef>2</ef>

<num>1</num>

</accessesList>

<accessesList>

<dp>4</dp

<ef>4</ef>

<num>2</num>

</accessesList>

<SPD>84.95</SPD>

</metrics>

 12 F. Delli Priscoli et al.

Since those information are strictly linked to the current environment and
operating domain, it is reasonable to find the composition information and rules in the
domain database. The role of the domain database (or library) is to tailor the
technology-independent information to the specific application scenario.

This library contains all the refinements necessary to tailor the abstract components to
the specific scenario requirements, as well as to perform metrics composition. In
particular, it contains:

• a replica of the XML information (relevant for metrics computation)

• a list of numerical values for the metrics attribute of the defined ontology

• a list of functional dependencies between the SPD functionalities (mutual inclusion
and mutual exclusion)

• a list of connection interfaces (i.e., topological information) to identify internal and
external interfaces after elements coupling

• a ‘composition priority’ attribute indicating the order in which different elements
should be composed.

The E-R representation of this DB is reported in Figure 6 (in yellow the parts that can
override the information already included in the XML ontology).

Figure 6 SHIELD domain dependent library E-R diagram (see online version for colours)

 Authentication

Indemnification

Resilience

Subjugation

Continuity

Non-Repudiation

Confidentiality

Privacy

Integrity

Alarm

Implement

SPD
Functionality

includesexcludes

Complexity Access Trust

Vulnerabilities

Weaknesses

Concerns Exposures Anomalies

has
n

n

n

n

n

n

1

1

ID

SHIELD
Component

Implement

Limitation

1

n

Physical
Interface

Has

Can be
Connected

to

1

n

n

n

Composition
Priority

Control

 Ensuring cyber-security in smart railway surveillance with SHIELD 13

This library can be also referred to as ‘context’ and it is used by the overlay during the
composition process in this way:

Step 1 At first the ontologies (XML) are retrieved by means of discovery services.

Step 2 Ontologies (XML) are updated by means of context information.

Step 3 According to functional dependencies (inclusion/exclusion) only compatible
SPD functionalities are considered for composition. The SPD functionalities
may also be forced or deleted by proper, domain dependent, policies (i.e., a
policy may force ciphering).

Step 4 Following a priority order given by the priority field, individual XMLs are
couples iteratively, to derive a single XML file starting from two atomic files.
The result is then coupled with another atomic XML, or with an XML resulting
from a previous coupling. The process is repeated until only one XML is
obtained, that reports the information about the whole system. The composition
rules for the quantification of the resulting metric value are reported in the
following page.

Step 5 The resulting file contains a certain amount of possible ‘variation’ of the metrics
relevant parameters (e.g., n vulnerabilities, m weakness, and so on). By varying
these values from 1 to m or from 1 to n, all the possible condition in which the
system may operate are identified, with the associated metric value. The
conditions are named ‘states’. The states may also be forced or deleted by
proper, domain dependent, policies (i.e., a policy may remove all the states
involving ciphering). The possible solutions for the composition problem are
then identified.

Step 6 At runtime, according to the current condition of the system, the solution for the
composability problem is computed.

The rules of metrics composition are used to determine the value of the SPD level for a
system (scenario) in a given state, once calculated the SPD level that the various
components (prototypes) that constitute it can take (for each state of the prototype).

At this purpose, first of all, starting on system (scenario) architecture, it is necessary
to define by successive steps how the various components (prototypes) are connected
physically creating the elements and/or sub-systems, until all join in the composition of
the system (scenario) proposed.

The starting points for this calculation are the XML file that each prototype provides.
Therefore, once defined the basic rules for the composition of two files associated with
the two prototypes is possible to automate these rules for the calculation of SPD levels
defined in the XML file that represent the various states of the system from those of the
components (prototypes) that constitute it.

In Tables 1 to 3, composition rules for each field of the XML file are reported, with
the rationale for each of them and notes to handle exceptions.

 14 F. Delli Priscoli et al.

Table 1 Porosity composition rules

Element Composition
rule

Rationale Notes

Complexity Sum Must consider all critical
elements which failure
might not be tolerated by
system architecture

If the same element is critical for
more than one component, it must
be considered only once.

If a single component has more than
one critical element, it must be
considered as 1 in the composition.

Access Sum (for the
different
types)

Must consider all possible
accesses to the composition
of components

If one access is common to both
components, it must be considered
as 1.

If one access of the first component
belongs also to other components
and it is internal to the composition
of components (with a relationship
of trust), then these accesses must
not be considered and the Trust
element must be incremented by
one.

Trust Sum Must consider each
relationship that exists
where the system accepts
interaction from its
components or from another
system

If one access of the first component
belongs also to other components
and it is internal to the composition
of components (with a relationship
of trust), then these accesses must
not be considered and the Trust
element must be incremented by
one.

Table 2 Controls composition rules

Element Composition rule Rationale Notes

Confidentiality Sum (for the different
control categories)

Must consider all
controls that counteract
threats and their effects.

Privacy

Authentication

Resilience

Integrity

Non-repudiation

Subjugation

Continuity

Indemnification

Alarm

 Ensuring cyber-security in smart railway surveillance with SHIELD 15

Table 3 Limitations composition rules

Element Composition
rule

Rationale Notes

Exposure Sum Must consider all unjustifiable
actions, flaws, or errors providing
direct or indirect visibility of targets
or assets within the chosen scenario
interface

If the same element
represent an exposure for
more than one component,
it must be considered only
once

Vulnerability Sum (for the
different
rating)

Must consider all possible flaws or
errors that:

a deny access to assets for
authorised people or processes

b allow privileged access to assets
to unauthorised entities

c allows unauthorised entities to
hide assets or themselves

Weakness Sum Must consider all possible flaws or
errors that disrupt, reduce, abuse, or
nullify the effects of the five
interactivity controls: authentication,
indemnification, resilience,
subjugation, and continuity

Concern Sum Must consider all possible flaws or
errors that disrupt, reduce, abuse, or
nullify the effects of the flow or
execution of the five process
controls: non-repudiation,
confidentiality, privacy, integrity, and
alarm.

Anomaly Sum Must consider all unidentifiable or
unknown elements which cannot be
accounted for in normal operations,
generally when the source or
destination of the element cannot be
understood.

If more than one
component considers the
same anomaly, it must be
counted only once

2.3 The SHIELD middleware

Figure 7 depicts the reference nSHIELD middleware and overlay architecture that is the
software layer in charge of implementing the services necessary to perform the discovery
(Casola et al., 2012a) and composition of SPD functionalities.

The security agent is the core of the SHIELD system, since it implements the control
algorithms that drive the composability. Expandability of such framework is obtained by
enabling communication between security agents controlling different sub-systems
through a proper overlay interface. Therefore, the presence of more than one SPD
security agents is justified by the need for solving scalability issues in the scope of
system-of-systems (exponential growth of complexity can be overcome only by adopting
a hierarchical policy of divide et impera).

 16 F. Delli Priscoli et al.

Figure 7 SHIELD middleware and overlay

OTHER SECURITY
AGENTS

SECURITY AGENT

CHOREOGRAPHER

ORCHESTRATION

A
D

A
P

T
E

R
S

IN
TR

U
S

IO
N

 D
E

T
E

C
TI

O
N

, M
O

N
IT

O
R

IN
G

 A
N

D

F
IL

T
E

R
IN

G

TRUSTED
COMPOSITION

SECURE
DISCOVERY

SERVICE
REGISTRY

SEMANTIC DB

Policy-Based
Manager

Common
Criteria

Reasoner

Control
Algorithms

(Generic)
Middleware

Services

Network
functionalities

Node
Functionalities

SHIELD Middleware and Overlay SHIELD System

UML/
OWL/
JSON

...

Figure 8 Security agent architecture

A zoom on the internal architecture of the security agent is provided in Figure 8:

• The monitoring engine is in charge to interface the Overlay layer with the
Middleware layer, to retrieve sensed metadata from heterogeneous SHIELD devices
belonging to the same subsystem, to aggregate and filter the provided metadata and
to provide the subsystem situation status to the context engine.

• The context engine is in charge to keep the situation updated as well as to store and
keep updated any additional information exchanged with other SPD security agents
that are meaningful to keep track of the situation context of the controlled SHIELD
subsystem. The situation context contains both status information and configuration
information (e.g., rules, policies, constraints, etc.) that are used by the decision
maker engine.

 Ensuring cyber-security in smart railway surveillance with SHIELD 17

• The decision maker engine uses the valuable, rich input provided by the
context engine to apply a set of adaptive (closed-loop or rule-based) and
technology-independent algorithms. The latter, by using (as input) the
above-mentioned situation context and by adopting appropriate advanced
methodologies able to profitably exploit such input, produce (as output) decisions
aiming at guaranteeing, whenever it is possible, target SPD levels over the controlled
SHIELD subsystem.

• The decisions mentioned above are translated by the enforcement engine into a set of
proper enforcement rules actuated by the SHIELD middleware layer all over the
SHIELD subsystem controlled by the considered SPD security agent.

2.4 How does composability work in five steps

Summing up all the concepts described so far, the SPD composability can be achieved
through several simple steps. The first step is depicted in Figure 9.

Figure 9 Shield ontology rationale (see online version for colours)

 <?xml vers ion="1.0"?>
<!DOCTYPE rdf:RDF
[…]
<rdf:RDF xmlns="ht tp: //www.owl-ontologies.com/Ontol ogy1300273978.owl#"
 xml:base="ht tp:/ /www.owl-ontologies.com/Onto lo gy1300273978.owl"
 xmlns:rdfs="http ://www.w3.org/2000/01/rdf-sche ma#"
 xmlns:owl2xml="http: //www.w3.org/2006/12/owl2- xml#"
 xmlns:xsp="http: //www.owl-ontologies.com/2005/ 08/07/xsp.owl#"
 xmlns:Ontology1300273978="ht tp:/ /www.owl-ontol ogies.com/Onto logy1300273978.owl#"
 xmlns:owl="http: //www.w3.org/2002/07/owl#"
 xmlns:xsd="http: //www.w3.org/2001/XMLSchema#"
 xmlns:rdf="http: //www.w3.org/1999/02/22-rdf-sy ntax-ns#"
 xmlns:TCP="&Ontology1300273978;TCP/">
 <owl:Ontology rdf:about="">
 <owl:imports rdf: resource="ht tp:/ /protege.s tanford.edu/plugins/owl/protege"/>
 </owl:Onto logy>

 <! --
 // //// //// //// //// /// //// //// //// //// //// //// // // //// //// //// //// //// //// /// //// //// ///
 //
 // Object Properties
 //
 // //// //// //// //// /// //// //// //// //// //// //// // // //// //// //// //// //// //// /// //// //// ///
 - ->

 <! -- h ttp: //www.owl-ontologies.com/2005/08/07/x sp.owl#minExclusive -->
 <owl:ObjectProperty rdf:about="&xsp;minExclus iv e">
 <rdfs:domain rdf: resource="&rdfs;Datatype"/ >
 </owl:ObjectProperty>

 <! -- h ttp: //www.owl-ontologies.com/Ontology1300 273978.owl#HasAutorization -->
 <owl:ObjectProperty rdf:about="#HasAutorization "/>
 […]

 <?xml vers ion="1.0"?>
<!DOCTYPE rdf:RDF
[…]
<rdf:RDF xmlns="ht tp: //www.owl-ontologies.com/Ontol ogy1300273978.owl#"
 xml:base="ht tp:/ /www.owl-ontologies.com/Onto lo gy1300273978.owl"
 xmlns:rdfs="http ://www.w3.org/2000/01/rdf-sche ma#"
 xmlns:owl2xml="http: //www.w3.org/2006/12/owl2- xml#"
 xmlns:xsp="http: //www.owl-ontologies.com/2005/ 08/07/xsp.owl#"
 xmlns:Ontology1300273978="ht tp:/ /www.owl-ontol ogies.com/Onto logy1300273978.owl#"
 xmlns:owl="http: //www.w3.org/2002/07/owl#"
 xmlns:xsd="http: //www.w3.org/2001/XMLSchema#"
 xmlns:rdf="http: //www.w3.org/1999/02/22-rdf-sy ntax-ns#"
 xmlns:TCP="&Ontology1300273978;TCP/">
 <owl:Ontology rdf:about="">
 <owl:imports rdf: resource="ht tp:/ /protege.s tanford.edu/plugins/owl/protege"/>
 </owl:Onto logy>

 <! --
 // //// //// //// //// /// //// //// //// //// //// //// // // //// //// //// //// //// //// /// //// //// ///
 //
 // Object Properties
 //
 // //// //// //// //// /// //// //// //// //// //// //// // // //// //// //// //// //// //// /// //// //// ///
 - ->

 <! -- h ttp: //www.owl-ontologies.com/2005/08/07/x sp.owl#minExclusive -->
 <owl:ObjectProperty rdf:about="&xsp;minExclus iv e">
 <rdfs:domain rdf: resource="&rdfs;Datatype"/ >
 </owl:ObjectProperty>

 <! -- h ttp: //www.owl-ontologies.com/Ontology1300 273978.owl#HasAutorization -->
 <owl:ObjectProperty rdf:about="#HasAutorization "/>
 […]

 <?xml vers ion="1.0"?>
<!DOCTYPE rdf:RDF
[…]
<rdf:RDF xmlns="ht tp: //www.owl-ontologies.com/Ontol ogy1300273978.owl#"
 xml:base="ht tp:/ /www.owl-ontologies.com/Onto lo gy1300273978.owl"
 xmlns:rdfs="http ://www.w3.org/2000/01/rdf-sche ma#"
 xmlns:owl2xml="http: //www.w3.org/2006/12/owl2- xml#"
 xmlns:xsp="http: //www.owl-ontologies.com/2005/ 08/07/xsp.owl#"
 xmlns:Ontology1300273978="ht tp:/ /www.owl-ontol ogies.com/Onto logy1300273978.owl#"
 xmlns:owl="http: //www.w3.org/2002/07/owl#"
 xmlns:xsd="http: //www.w3.org/2001/XMLSchema#"
 xmlns:rdf="http: //www.w3.org/1999/02/22-rdf-sy ntax-ns#"
 xmlns:TCP="&Ontology1300273978;TCP/">
 <owl:Ontology rdf:about="">
 <owl:imports rdf: resource="ht tp:/ /protege.s tanford.edu/plugins/owl/protege"/>
 </owl:Onto logy>

 <! --
 // //// //// //// //// /// //// //// //// //// //// //// // // //// //// //// //// //// //// /// //// //// ///
 //
 // Object Properties
 //
 // //// //// //// //// /// //// //// //// //// //// //// // // //// //// //// //// //// //// /// //// //// ///
 - ->

 <! -- h ttp: //www.owl-ontologies.com/2005/08/07/x sp.owl#minExclusive -->
 <owl:ObjectProperty rdf:about="&xsp;minExclus iv e">
 <rdfs:domain rdf: resource="&rdfs;Datatype"/ >
 </owl:ObjectProperty>

 <! -- h ttp: //www.owl-ontologies.com/Ontology1300 273978.owl#HasAutorization -->
 <owl:ObjectProperty rdf:about="#HasAutorization "/>
 […]

SHIELD

Ontologies

Repository

SHIELD Node

Porosity

Complexity 4

Trust 6

Total 13

Psum 12

True Controls

7,55680

CONTROLS

Class A Missing Full Controls

A uthentication 14 0 8,26931

Indemnification 1 11

Resilience 4 8 True Coverage A

Subjugation 29 0 55,00%

Continuity 4 8

Total A 52 27 True Coverage B

38,33%

Class B Missing

Non-Repudiation 11 1 Total True Coverage

Confidentiality 2 10 46,67%

Priv acy 1 11

Integrity 3 9 Limitation

A larm 6 6 13,212191

Total B 23 37

SPD lev el ∆

Sum Missing -14,42647

Total Controls 75 64

Coverage 62,50% 53,33% True Protection

84,86102

LIMITATIONS Value Total V alue

V ulnerabilities 0,6 6,33333 3,8 Vulnerabilities Number CC rating

Weaknesses 6 3,25 19,5 Basic 0 0

Concerns 4 4,08333 16,33333333 E. Basic 0 0

Exposures 1 1,19444 1,194444444 Moderate 0 0

A nomalies 2 1,15 2,3 High 1 0,5

Total Limitations 13,6 43,12777778 Beyond High 1 0,1

84,95Actual SPD level:

nSHIELD SPD Metrics

Access 3

Pbase 9,4835851

Translated into

XML
Stored

Stored

SHIELD OntologySHIELD

Metric

Pointed

through

URI

In the SHIELD system, the security agent needs a mean to have both qualitative and
quantitative information about system elements needing to be composed. The SHIELD
ontology is stored into an XML file that contains the translation of the ‘attack surface
metric’.

The assumption is that a system expert fills in a sheet containing all the information
needed to compute the attack surface metric. These sheets are then translated into XML
(in order to ease information storage and parsing) and stored into a local memory of the
component or on a remote SHIELD ontology repository accessible through the internet
using a specific uniform resource identifier (URI) [in this respect, recent advancements in
the future internet field might prove useful (Delli Priscoli et al., 2012b; Bruni et al.,
2016)].

In the second step (depicted in Figure 10), the SHIELD System is deployed into a
specific application scenario, with the aim of implementing some security related
end-to-end behaviour. As far as the elements are put in place, domain experts populate a

 18 F. Delli Priscoli et al.

domain database with a set of information necessary to the security agent to tailor its
decisions. In particular in this domain DB one can find:

• Architectural/topological information related to the system deployment, with
specific focus on:

1 component interfaces (necessary for metric composition)

2 composition hierarchy/order (also necessary for metric composition)

3 functional dependencies (used by the composition engine to activate ancillary
services).

• Policies and constraints to drive the control action by:

1 forcing specific system configurations under specific circumstances

2 erasing specific system configurations from the available ones.

Figure 10 SHIELD framework deployment (see online version for colours)

In operating conditions, the SHIELD system is supposed to have access to several data
sources: the XML stored into the ES (or alternatively on the ontologies repository) and
the domain database. Those information are collected by the security agent and the
derived data are stored into a local DB (i.e., a volatile memory of the software
component).

When the SHIELD framework is initialised or whenever variations in environmental
or architectural conditions are detected, the discovery engine starts monitoring the system
to collect the XML from the SHIELD Nodes or retrieve information from the domain
DB. In this way, the security agents’ knows the list of all the available elements as well
as (domain DB) their architectural dependencies and composition hierarchy. Using those
information, it can iteratively couple the elements until a single metric value is obtained
for the overall system. At this stage, Policies may also override or delete specific
configurations that are not permitted.

In case of multiple states for the same configuration, the corresponding metrics are
computed. The result is then a vector of 1 to n elements, representing the n system

 Ensuring cyber-security in smart railway surveillance with SHIELD 19

configurations and the corresponding metric value. This information is then propagated to
the control algorithm module.

Please note that, in order to prevent malicious attacks or flooding during the
discovery process, the middleware is protected by a robust intrusion detection system.

The computation of the SPD composition solution is a problem of choosing a
configuration that implements the desired SPD level. This is trivial in case of single
admissible solution, but it can be difficult in case of several possible states and
configurations. In the SHIELD research project, several approaches have been
investigated based on hybrid automata, coloured Petri nets, etc., with the most
effective one being an optimisation algorithms that – given as inputs all the possible
configurations – is able to compute the configuration that maximises or minimises an
objective function, that is the distance between current and desired SPD levels.

Figure 11 SHIELD discovery and ‘baseline’ composition (see online version for colours)

SHIELD

Ontologies

Repository

SHIELD

Node

SHIELD Node

(Security Agent)

SHIELD

Domain

Database

SHIELD

Node

Discovery

Engine
 <?xml version="1.0 "?>

<!DOC TYPE rdf:RDF
[…]
<rdf: RDF xmlns="ht tp://www.owl-o ntologies.com /Ontol ogy1300 273978.owl#"
 xml:base="htt p://www.owl-on tologies.com/ Ontolo gy13002 73978.owl"
 xmlns:rdfs="h ttp://www.w3.o rg/2000/01/rd f-sche ma#"
 xmlns:owl2xml ="http://www. w3.org/2006/1 2/owl2- xml#"
 xmlns:xsp="ht tp://www.owl-o ntologies.com /2005/ 08/07/x sp.owl#"
 xmlns:Ontolog y1300273978=" http://www.ow l-ontol ogies.c om/Ontology13 00273978.owl# "
 xmlns:owl="ht tp://www.w3.or g/2002/07/owl #"
 xmlns:xsd="ht tp://www.w3.o rg/2001/XMLSc hema#"
 xmlns:rdf="ht tp://www.w3.o rg/1999/02/22- rdf-sy ntax-ns #"
 xmlns:TCP="&O ntology130027 3978;TCP/">
 <o wl:Ontology r df:about="">
 <owl:import s rdf:resourc e="http://pr otege.s tanfor d.edu/plugins/ owl/protege"/ >
 </ owl:Ontology>

 <! --
 // ///////////// ///////////// ///////////// ////// /////// ///////////// ///////////// ///////
 //
 // Object Prope rties
 //
 // ///////////// ///////////// ///////////// ////// /////// ///////////// ///////////// ///////
 -->

 <! -- http://ww w.owl-ontolog ies.com/2005/0 8/07/x sp.owl# minExclusive -->
 <o wl:ObjectProp erty rdf:abou t="&xsp;minEx clusiv e">
 <rdfs:domai n rdf:resourc e="&rdfs;Data type"/ >
 </ owl:ObjectPro perty>

 <! -- http://ww w.owl-ontolog ies.com/Ontolo gy1300 273978. owl#HasAutori zation -->
 <o wl:ObjectProp erty rdf:abou t="#HasAutori zation "/>

 […]

 <?xm l version="1 .0"?>
<!DO CTYPE rdf:RD F
[…]
<rdf :RDF xmlns=" http://www.o wl-ontologi es.com/Ontol ogy13002739 78.owl#"
 xml:base="h ttp://www.ow l-ontologie s.com/Ontol o gy130027397 8.owl"
 xmlns:rdfs= "http://www. w3.org/2000 /01/rdf-sche ma#"
 xmlns:owl2x ml="http://w ww.w3.org/2 006/12/owl2- xml#"
 xmlns:xsp=" http://www.o wl-ontologi es.com/2005/ 08/07/xsp.o wl#"
 xmlns:Ontol ogy130027397 8="http://w ww.owl-onto l ogies.com/O ntology13002 73978.owl#"
 xmlns:owl=" http://www. w3.org/2002/ 07/owl#"
 xmlns:xsd=" http://www.w 3.org/2001/ XMLSchema#"
 xmlns:rdf=" http://www.w 3.org/1999/ 02/22-rdf-sy ntax-ns#"
 xmlns:TCP=" &Ontology130 0273978;TCP /">
 <owl:Ontolog y rdf:about ="">
 <owl:imp orts rdf:res ource="http ://protege.s tanford.edu /plugins/owl /protege"/>
 </owl:Ontolo gy>

 <!--
 //////////// /////////// //////////// /////////// / /////////// //////////// /////////// //////
 //
 // Object Pr operties
 //
 //////////// /////////// //////////// /////////// / /////////// /////////// //////////// //////
 -->

 <!-- http:// www.owl-onto logies.com/ 2005/08/07/x sp.owl#minE xclusive -->
 <owl:ObjectP roperty rdf :about="&xsp ;minExclusi v e">
 <rdfs:do main rdf:res ource="&rdf s;Datatype"/ >
 </owl:Object Property>

 <!-- http:// www.owl-onto logies.com/ Ontology1300 273978.owl# HasAutorizat ion -->
 <owl:ObjectP roperty rdf :about="#Has Autorizatio n "/>

 […]

In
tr

u
si

o
n

D
e

te
ct

io
n

Metric Composition

Rules

Local

Semantic

Database

Control

Algorithms

Composition

drivers/

constraints

A second way to manage SPD composition is by using policy-based management (PBM).
PBM works in parallel with the security agent and drives the composition according to
pre-defined, deterministic rules that force specific system behaviour and components
activation. The PBM solution is more suitable when safety aspects are involved, or when
domain security is driven by reference standards. Such a dual approach is depicted in
Figure 12.

Once the selected configuration (i.e., solution) is computed, the composition engine
enforces the decisions back to the system by means of:

1 composition commands sent to SHIELD compliant nodes

2 proper adapters, in case of legacy ES.

The composition command is simply a list of commands to be executed in order to
activate services or HW configurations. The mapping between the domain command and
the security agent high-level decisions is reported in the domain database: for example, if

 20 F. Delli Priscoli et al.

the SHIELD system has to interact with a Railway server to orchestrate services, then the
list of server commands with associated ‘services’ is stored in the domain database, so
that the discovery engine is able to interact with them.

Figure 12 Composition problem solution (see online version for colours)

Desired

SPD

Overlay System

Attack Surface

Metrics

Composition

Control

Algorithms (HA,

Petri, Opt.)

Context

Information

Composition

Commands

Policy

Management

Configurations

3 The railway security demonstrator

3.1 Reference architecture

A railway security system is aimed at detecting and possibly counteracting physical
threats like abnormal behaviours, thefts, vandalism, sabotage, etc. A railway security
system (Bocchetti et al., 2009; Flammini, 2011) is composed by several types of devices
including access control and intrusion detection systems, cameras and other
smart-sensors for environmental monitoring (Figure 13). In recent years, even wireless
and low-power smart-sensors have started to be used for their flexibility as well as unique
and convenient features: low hardware cost, low-power draining, reduced or no cabling,
on-board programming to provide distributed ‘intelligence’, easy to obtain mesh-network
topologies and multi-hop routing, possible ‘plug and play’ installation (Hodge et al.,
2015).

However, the usage of wireless smart-sensors poses novel threats to information
security due to possible cyber-attacks to stored and transmitted data, at any link of the
path connecting sensors to the control centre. In particular, certain buildings, namely
‘shelters’, are especially sensible targets, since they can contain valuable and possible
critical equipment used for signalling and telecommunications. The trackside location of
shelters is typically far from stations and depots, hence remote and automated monitoring
of possible cyber-physical attacks is essential.

 Ensuring cyber-security in smart railway surveillance with SHIELD 21

Figure 13 Typical architecture of a railway security system (see online version for colours)

Shelters can be equipped with sensors measuring environmental parameters, such as
temperature, humidity, vibration, light, etc., as well as motion detection cameras used to
detect intrusions and visually verify the consistency of other alarms. Environmental
monitoring is important for both non-intentional and intentional (human-made) threats
like flooding, fire/overheating, unauthorised door opening, manumissions, etc. In case of
wireless inter-sensor communication, wireless sensor networks (WSN) messages can be
subject to the threats affecting ‘open communication channels’ (repetition, deletion,
insertion, re-sequencing, corruption, delay, masquerade), as defined in the CENELEC
EN50159 standard specification for railway applications.

The reference architecture of the demonstrator is shown in Figure 14. The
architecture is composed by an operation control centre in which the SHIELD-
middleware server and client are installed. Alarms and SPD-state variations are managed
by the middleware server and monitored by the operators through the middleware client.

The demonstration scenario consists of a shelter monitoring system featuring the
following sensor types:

• WSN motes

• Smart cameras.

Those devices are vulnerable to cyber-attacks at the network level, such as black-hole
attacks (Ramaswamy et al., 2003) and bad-mouthing attacks (Vijaya and Selvam, 2013).
Black hole attack in a network implies that one or more malicious nodes would partially
or fully drop data packets being routed through it causing disruptions in the normal data
flow in the network. Malicious node advertises itself as the best route towards the sink
node just like other sensor nodes. The sender nodes select the malicious node as their
parent node (next in line node in the routing topology) and start forwarding their data
packets; these data packets are then dropped. In a bad mouthing attack an attacker gives
negative feedback on a node in order to lower or destroy its reputation.

 22 F. Delli Priscoli et al.

Figure 14 Railway security demonstrator reference architecture (see online version for colours)

InternetOperations

Control

Center

LAN

WAN

` Middleware

Client

SHELTER LAN

WiFi Shelter

Firewall

`
Video Wall

Wireless Sensor

Network

SHIELD

middleware

server

Figure 15 Network topology in the shelter (see online version for colours)

 Ensuring cyber-security in smart railway surveillance with SHIELD 23

In the shelter, the following sensors are installed:

• at the entrance, smart-cameras are installed to detect physical intrusions

• inside the shelter, two diverse WSNs are installed: WSN_1 (in green) measures
temperature and light, while the WSN_2 (in red) only measures temperature.

WSN_1 and WSN_2 feature different hardware and software in order to provide diverse
redundancy. The topology of the network is shown in Figure 15. The gateway acts as the
link through which the information is sent to the control centre.

3.2 Involved SHIELD prototypes

The scenario uses the following SHIELD prototypes:

• Middleware SHIELD (MW_SH): the software layer that implements SHIELD
methods and mechanisms. In particular, the layer is in charge of performing the
discovery and composability activities.

• Reputation-based secure routing (RBSR): each node inside the WSN is equipped
with software that enables the selection of a trusted neighbour that guarantees
continuity of the routing service. The reputation scheme enables the exchange of
first-hand trust evidence used as third-party information by neighbours in building
trust relationships.

• Policy-based management framework (PBMF): the SHIELD secure policy-based
access control (PBAC) framework facilitates the control of access to devices and
their resources via security policies residing on resource-rich infrastructure nodes. It
consists of several components that run on different nodes of the nSHIELD
architecture. These components are the policy enforcement points (PEP), the policy
administration point (PAP), the policy decision points (PDP) and the policy
information point (PIP). A node, depending on its capabilities and the available
resources, might include one or more of these functional components. The solution
adopted for secure PBAC is based on extensible access control markup language
(XACML) policies. The PBAC framework is DPWS-compliant, utilising the relevant
specifications and existing work to provide message-level security and fine-grained
security policy functionality while maintaining interoperability with the standard.

• Network security layer (NSL): this software layer allows a sensor node running
Contiki OS to communicate with an external host (e.g., a laptop running Linux),
using end-to-end security on the network layer. In this way, any readings from the
sensor (e.g., temperature) are transferred via a secure communication channel using
IPsec, based on AES-CCM (RFC 4309). Since the sensor communicates via
6LoWPAN and the laptop via standard IPv6, another sensor is used as a bridge
between these two technologies. Finally, the security level of this IPsec
communication can be changed by modifying the size of the integrity check value
(ICV).

 24 F. Delli Priscoli et al.

• Middleware intrusion detection (MW_IDS): this module protects the middleware
entry points from overload or blocked service situations. Overload can be caused
either by normal requests due to some bottlenecks or delays in the system, or as a
result of a malicious attack, due to a large number of requests or specially crafted
requests causing the system to malfunction (DoS or DDoS attacks). The objective of
the filtering and intrusion detection functionalities is to provide protection and safe
recovery when one of the above types of malformed traffic occurs.

The use of these prototypes makes the Railway Security scenario SHIELD-compliant,
providing the SPD-enhancements of the SHIELD methodology. In particular, the aim is
to demonstrate that:

• the communication between nodes is secure, due to the presence of mechanisms able
to detect cyber-security attacks and encrypt connections

• the communication with the middleware is monitored and protected from possible
malicious connections

• stored and transmitted data is protected from unauthorised access

• WSN data routes feature redundant links, with automatic detection of HW/SW node
failures and appropriate reconfiguration.

Figure 16 UML model of system-threats-countermeasures (see online version for colours)

 Ensuring cyber-security in smart railway surveillance with SHIELD 25

In Figure 16, the role of each prototype in the demonstration scenario is defined by means
of a UML class diagram.

The MW_IDS prototype is installed at the middleware level and it is able to
counteract malicious requests/intrusions against the middleware. The PBMF is installed
on specific nodes (in this case on the smart-camera) to detect intrusions at node level. The
NSL is a cryptographic protocol installed at the node level, in this case on a WSN, to
encrypt the information exchanged between nodes. The RBSR is installed at the node
level, in this case on a WSN, to detect malicious threats such as bad mouthing attacks,
black hole attacks and node failures, and to restore system operation by reconfiguring the
routing among nodes.

Figure 17 Thresholds of SPD level (see online version for colours)

HIGH (SPD >= 0.7)

NORMAL (0.3 < SPD < 0.7)

LOW (0.2 ≤ SPD ≤ 0.3)

VERY LOW (0 < SPD < 0.2)

3.3 Scenario description

The aim of the scenario is to show the effectiveness of SHIELD prototypes, middleware
and metrics in the specific application, by counteracting cyber-attacks and properly
re-configuring the system in case of failures. Figure 18 shows the scenario description
using a UML sequence diagram, while Figure 19 reports the UML state diagram
representing the system during scenario execution.

In the sequence diagram, the actors involved in the scenario are represented. On each
message, a railway scenario state (RSS) code is indicated. This code identifies the state
of the system. Table 4 shows the steps of scenario and the associated SPD metrics. At
each step, one or more components change their status and the related SPD value
(red text in Table 4) changes accordingly. For each step, it is possible to identify the state
of the system and the state of the single prototypes during scenario execution.
Furthermore, the column ‘SPD norm’ shows a normalised SPD value between 0
(lowest relative SPD) and 1 (highest relative SPD). The colour indicates a qualitative
SPD level.

In fact, the SPD levels derived from SHIELD metrics are expressed by plain numbers
(e.g., 84.705) since they are the results of mathematical formulas. In order to make the
SPD level easier to understand and hence to ease situation awareness for operatora, a
normalisation of the SPD level between 0 (lowest relative SPD) and 1 (highest relative
SPD) has been performed and reported in the column ‘SPD normalised value’.

The formula applied for normalisation is the following:

min

max min

act
norm

SPD SPD
SPD

SPD SPD

−=
−

where SPD_min (resp. SPD_max) is the minimum (resp. maximum) SPD level, while
SPD_act is the actual SPD level (i.e., the one computed by the middleware).

The associated reference thresholds are reported in Figure 17.

 26 F. Delli Priscoli et al.

The system starts from a basic SPD configuration when no threats are detected. In
order to save smart-sensor node resources, prototypes are configured with basic SPD
functionalities and default SPD levels. The state of prototypes is changed in response to
attacks, in order to guarantee adequate SPD levels during system operation.

Figure 18 Scenario UML sequence diagram

 Ensuring cyber-security in smart railway surveillance with SHIELD 27

Figure 19 Scenario UML state diagram (see online version for colours)

 28 F. Delli Priscoli et al.

Table 4 Scenario steps (see online version for colours)

Step Description RSS SPD
norm

1 Initialisation of all systems and activation of discovery service to
register available nodes and prototypes. Basic security functionalities.

State_01 0.3

WSN_1: normal

WSN_2: encryption 64 bits

Smart camera: messaging – no protection

DW_IDS: normal

2 In WSN_1, a bad mouthing attack is detected. The middleware is
informed of the attack is ongoing so it sends a command to the smart

camera to activate its security mechanisms. SPD level decreases.

State_03 0

WSN_1: bad mouthing attack

WSN_2: encryption 64 bits

Smart camera: messaging – no protection

MDW_IDS: normal

3 Smart-camera activates its SPD functionality. SPD level increases. State_19 0.3

WSN_1: bad mouthing attack

WSN_2: encryption 64 bits

Smart camera: messaging – authentication and integrity

MDW_IDS: normal

4 The WSN_1 has counteracted the bad mouthing attack. SPD level
increases again.

State_17 0.6

WSN_1: normal

WSN_2: encryption 64 bits

Smart camera: messaging – authentication and integrity

MDW_IDS: normal

5 In WSN_1, a black hole attack is detected. The middleware is
informed of the attack so it sends a command to the smart-camera and
WSN_2 to activate their security mechanisms. SPD level decreases.

State_18 0.3

WSN_1: black hole attack

WSN_2: encryption 64 bits

Smart camera: messaging – authentication and integrity

MDW_IDS: normal

6 The smart-camera and WSN_2 have activated their security
functionalities. SPD level increases

State_42 0.6

WSN_1: black hole attack

WSN_2: encryption 128 bits

Smart camera: authentication, integrity and confidentiality

MDW_IDS: normal

 Ensuring cyber-security in smart railway surveillance with SHIELD 29

Table 4 Scenario steps (continued) (see online version for colours)

Step Description RSS SPD
norm

7 The WSN_1 has counteracted the black hole attack. SPD level
increases again.

State_41 1

WSN_1: normal

WSN_2: encryption 128 bits

Smart camera: authentication, integrity and confidentiality

MDW_IDS: normal

8 In WSN_1, a node failure is detected. The SPD level decreases. State_45 0.8

WSN_1: dead node alarm

WSN_2: encryption 128 bits

Smart camera: authentication, integrity and confidentiality

MDW_IDS: normal

9 WSN_1 recovers from node failure. SPD level increases. State_41 1

WSN_1: normal

WSN_2: encryption 128 bits

Smart camera: authentication, integrity and confidentiality

MDW_IDS: normal

10 A DoS attack against middleware is detected. SPD level decreases. State_89 0.8

WSN_1: normal

WSN_2: encryption 128 bits

Smart camera: authentication, integrity and confidentiality

MDW_IDS: IDS alarm

11 End of DoS attack. SPD level increases. State_41 1

WSN_1: normal

WSN_2: encryption 128 bits

Smart camera: authentication, integrity and confidentiality

MDW_IDS: normal

3.4 Demonstration results

The demonstration has proven that the SHIELD system is able to control systemSPD
level during the simulated scenario by detecting threats (i.e., attacks and faults) and
activating the appropriate countermeasures provided by the installed SHIELD prototypes.
That allows fulfilling the customer requirements often referred to as ‘resilience’ or
‘self-healing’.

Figure 20 shows the variation of the SPD Level during scenario execution in the
testing environment shown in Figure 21. The SPD level starts with a value of 84.22 and
then decreases/increases depending on the events that are happening and on the
countermeasures activated by SHIELD, according to the steps described in Table 4.

 30 F. Delli Priscoli et al.

Figure 20 Variation of the SPD level in the demonstration scenario (see online version
for colours)

83,0

83,3

83,6

83,9

84,2

84,5

84,8

85,1

85,4

85,7

86,0

0,0 2,0 4,0 6,0 8,0 10,0 12,0 14,0 16,0 18,0 20,0

SPD Level (%)

Time (s

Figure 21 SHIELD testing environment for the railway security scenario (see online version
for colours)

The demonstrator validated the correct integration and interoperability among SHIELD
components at all levels: middleware and overlay, network and node. The
SPD-level output provided in Figure 20 is exactly what was expected: it was the result of
SPD-level variations generated by the information passed to the middleware by all

 Ensuring cyber-security in smart railway surveillance with SHIELD 31

SHIELD components, with decreases caused by some external events, to which the
SHIELD system reacts raising the SPD level.

Please note that the final state of the system features a higher SPD-level with respect
to the initial one, since more SPD mechanisms have been kept activated in response to
the threats detected in the previous steps. Such a ‘self-adaptation’ to the ‘risks’ detected
in the surrounding environment is something that is highly beneficial to end users, since
typical risk assessment is an error prone static activity, that would need to be repeated
after some time to redesign the security policies, costing significant time and resources.

Figure 21 shows a screenshot of the PC running the middleware and overlay
components, including the secure discovery, the security agent, the intrusion detection
module, the OSGi middleware, the semantic model, and the control algorithms. The
screenshot has been taken during the final nSHIELD project demonstration held in
Nerviano (Selex ES premises) on 21 January 2015.

4 Conclusions

In this paper, we have described the SHIELD approach to ensure cyber-security in
railway monitoring and surveillance applications, that are based on increasingly smart
embedded devices (environmental sensors and cameras).

The railway security demonstrator has showed a subset of SHIELD functionalities,
focusing on the security mechanisms enabled by the involved prototypes. The SHIELD
framework has been developed in the context of two EU funded multi-year
research projects [namely pilot-SHIELD (pSHIELD Project, http://pshield.unik.no/wiki/
PSHIELD-public) and new-SHIELD (pSHIELD Project, http://pshield.unik.no/wiki/
PSHIELD-public0]) and it is general enough to address a large number of other possible
applications in very different domains. For instance, the new-SHIELD research project
demonstration also addressed avionics and social mobility.

We believe the results of the SHIELD project have paved the way to a completely
new approach to address the development and control of SPD functionalities, leveraging
and integrating the state-of-the-art of current multidisciplinary research in contexts like:
hybrid control, semantic modelling, service oriented architectures, computer
dependability, critical infrastructure resilience, self-healing and reconfiguration,
information security metrics, smart-devices and WSN. Those theoretically outstanding
achievements need to be supported by the actual industrialisation of SHIELD-compliant
devices that is still in progress. Commercial off the shelf (COTS) SHIELD-compliant
devices will allow the SPD-aware composition of heterogeneous devices that will
seamlessly integrate to provide dynamic SPD measurement and resilience functionalities.

In railway applications, that allows improving the SPD and shortening the
time-to-market of all ‘non-vital’ (i.e., non-safety-critical) applications, while for the
‘vital’ ones, a certification process of the framework components will be necessary in
order to match the CENELEC requirements for higher safety integrity levels (SIL).

 32 F. Delli Priscoli et al.

References

Bocchetti, G., Flammini, F., Pappalardo, A. and Pragliola, C. (2009) ‘Dependable integrated
surveillance systems for the physical security of metro railways’, Proc. 3rd ACM/IEEE
International Conference on Distributed Smart Cameras (ICDSC 2009), Como, Italy, 30
August to 2 September, pp.1–7.

Bruni, C., Delli Priscoli, F., Koch, G., Palo, A. and Pietrabissa, A. (2016) ‘Quality of experience
provision in the future internet’, IEEE Systems Journal, Vol. 10, No. 1, pp.302–312,
doi: 10.1109/JSYST.2014.2344658.

Canale, S., Delli Priscoli, F., Di Giorgio, A., Lanna, A., Mercurio, A., Panfili, M. and
Pietrabissa, A. (2012) ‘Resilient planning of powerline communications networks over
medium voltage distribution grids’, Proc. of the 20th Mediterranean Conference on Control
and Automation (MED), Barcelona, ES, July, pp.710–715 DOI: 10.1109/MED.2012.6265721.

Casola, V., De Benedictis, A., Drago, A., Esposito, M., Flammini, F. and Mazzocca, N. (2012a)
‘Securing freight trains for hazardous material transportation: a WSN-based monitoring
system’, International Defence and Homeland Security Simulation Workshop (DHSS 2012), in
Cooperation with the I3M 2012 Multi-Conference, Wien, Austria, 19–21 September.

Casola, V., Esposito, M., Mazzocca, N. and Flammini, F. (2012b) ‘Freight train monitoring:
a case-study for the pSHIELD project’, IEEE 6th International Conference on Innovative
Mobile and Internet Services in Ubiquitous, Palermo, IT, 4–6 July, pp.597–602,
DOI: 10.1109/IMIS.2012.51

Common Criteria (2012) Common Methodology for Information Technology Security Evaluation,
Evaluation Methodology, September, Version 3.1, Revision 4.

Delli Priscoli, F., Fiaschetti, A. and Suraci, V. (2012a) ‘The SHIELD framework: how to control
security, privacy and dependability in complex systems’, IEEE Workshop on Complexity in
Engineering, pp.1–4, Aachen, June, DOI: 10.1109/CompEng.2012.6242962.

Delli Priscoli, F., Suraci, V., Pietrabissa, A. and Iannone, M. (2012b) ‘Modelling quality of
experience in future internet networks’, Proc. of the Future Network & Mobile Summit
(Future Netw), Berlin, DE, 4–6 July, pp.1–9, ISBN: 978-1-905824-16-8.

Di Giorgio, A. and Liberati, F. (2011) ‘Interdependency modeling and analysis of critical
infrastructures based on dynamic Bayesian networks’, 19th Mediterranean Conference on
Control and Automation MED11,Corfu, June, pp.791–797, DOI: 10.1109/MED.2011.
5983016.

ECSEL JU [online] http://www.ecsel-ju.eu/ (accessed July 2016).

Esposito, M., Fiaschetti, A. and Flammini, F. (2013) ‘The new shield architectural framework’,
ERCIM News, No. 93, Vol. 93, p.53.

Fiaschetti, A., Lavorato, F., Suraci, V., Palo, A., Taglialatela, A., Morgagni, A., Baldelli, R.,
Flammini, F. (2011) ‘On the use of semantic technologies to model and control security,
privacy and dependability in complex systems’, in 30th International Conference on
Computer Safety, Reliability, and Security (SAFECOMP 2011), Springer, pp.467–479, Naples
(Italy), 19–22 September, DOI: 10.1007/978-3-642-24270-0_34.

Fiaschetti, A., Morgagni, A., Lanna, A., Panfili, M., Mignanti, S., Cusani, R., Scarano, G.,
Pietrabissa, A. and Delli Priscoli, F. (2014) ‘Control architecture to provide E2E security in
interconnected systems: the (new) SHIELD approach’, Proceedings of the 18th International
Conference on Circuits, Systems, Communications and Computers (CSCC 2014), Santorini
Island, 17–19 June, ISBN 978-1-61804-237-8.

Fiaschetti, A., Taglialatela, A., Suraci, V. and DelliPriscoli, F. (2012) ‘Semantic technologies to
model and control the ‘composability’ of complex systems: a case study’, in Horizons in
Computer Science Research, Vol. 8, pp.91–110, Nova Science Publisher, ISBN 978-1-62417-
413-1.

Flammini, F. (2011) Critical Infrastructure Security: Assessment, Prevention, Detection, Response,
WIT Press, ISBN 978-1-84564-562-5, Transaction series WIT Transactions on State-of-the-art
in Science and Engineering Transaction, Vol. 54.

 Ensuring cyber-security in smart railway surveillance with SHIELD 33

Flammini, F., Gaglione, A., Ottello, F., Pappalardo, A., Pragliola, C. and Tedesco, A. (2010)
‘Towards wireless sensor networks for railway infrastructure monitoring’, Proc. International
Conference on Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS’10),
Bologna, Italy, 19–21 October, pp.1–6.

Hartong, M., Goel, R. and Wijesekera, D. (2008) ‘Security and the US rail infrastructure’,
International Journal of Critical Infrastructure Protection, Vol. 1, pp.15–28, No. 1,
DOI: 10.1016/j.ijcip.2008.08.006.

Herzog P. (2010) OSSTMM 3 The Open Source Security Methodology
Manual – Contemporary Security Testing and Analysis, ISECOM [online]
http://www.isecom.org/mirror/OSSTMM.3.pdf.

Hodge, V.J., O’Keefe, S., Weeks, M. and Moulds, A. (2015) ‘Wireless sensor networks for
condition monitoring in the railway industry: a survey’, IEEE Transactions on Intelligent
Transportation Systems, Vol. 16, No. 3, pp.1088–1106.

Manadhata, P.K. and Wing, J.M. (2010) ‘An attack surface metric’, IEEE Transactions on Software
Engineering, Vol. 37, No. 3, pp.371–386, DOI: 10.1109/TSE.2010.60.

nSHIELD Project [online] http://www.newshield.eu/ (accessed July 2016).

pSHIELD Project [online] http://pshield.unik.no/wiki/PSHIELD-public (accessed July 2016).

Ramaswamy, S., Fu, H., Sreekantaradhya, M., Dixon, J. and Nygard, K.E. (2003) ‘Prevention of
cooperative black hole attack in wireless ad hoc networks’, International Conference on
Wireless Networks, June.

Suraci, V., Fiaschetti, A. and Anzidei, G. (2012) ‘Design and implementation of a service
discovery and composition framework for security, privacy and dependability control’, Future
Network & Mobile Summit, Berlin, DE, July.

Vijaya, K. and Selvam, M. (2013) ‘Improving resilience and revocation by mitigating bad
mouthing attacks in wireless sensor networks’, International Journal of Scientific &
Engineering Research, April, Vol. 4, No. 4, pp.276–280, 276ISSN 2229-5518.

