389 research outputs found

    Reconfigurable pixel antennas for communications

    Get PDF
    The explosive growth of wireless communications has brought new requirements in terms of compactness, mobility and multi-functionality that pushes antenna research. In this context, recon gurable antennas have gained a lot of attention due to their ability to adjust dynamically their frequency and radiation properties, providing multiple functionalities and being able to adapt themselves to a changing environment. A pixel antenna is a particular type of recon gurable antenna composed of a grid of metallic patches interconnected by RF-switches which can dynamically reshape its active surface. This capability provides pixel antennas with a recon guration level much higher than in other recon gurable architectures. Despite the outstanding recon guration capabilities of pixel antennas, there are important practical issues related to the performance-complexity balance that must be addressed before they can be implemented in commercial systems. This doctoral work focuses on the minimization of the pixel antenna complexity while maximizing its recon guration capabilities, contributing to the development of pixel antennas from a conceptual structure towards a practical recon gurable antenna architecture. First, the conceptualization of novel pixel geometries is addressed. It is shown that antenna complexity can be signi cantly reduced by using multiple-sized pixels. This multi-size technique allows to design pixel antennas with a number of switches one order of magnitude lower than in common pixel structures, while preserving high multiparameter recon gurability. A new conceptual architecture where the pixel surface acts as a parasitic layer is also proposed. The parasitic nature of the pixel layer leads to important advantages regarding the switch biasing and integration possibilities. Secondly, new pixel recon guration technologies are explored. After investigating the capabilities of semiconductors and RF-MEMS switches, micro uidic technology is proposed as a new technology to create and remove liquid metal pixels rather than interconnecting them. Thirdly, the full multi-parameter recon guration capabilities of pixel antennas is explored, which contrasts with the partial explorations available in the literature. The maximum achievable recon guration ranges (frequency range, beam-steering angular range and polarization modes) as well as the linkage between the di erent parameter under recon guration are studied. Finally, the performance of recon gurable antennas in beam-steering applications is analyzed. Figures-of-merit are derived to quantify radiation pattern recon gurability, enabling the evaluation of the performance of recon gurable antennas, pixel antennas and recon guration algorithms

    Advances in Reconfigurable Antenna Systems Facilitated by Innovative Technologies

    Full text link
    © 2013 IEEE. Future fifth generation (5G) wireless platforms will require reconfigurable antenna systems to meet their performance requirements in compact, light-weight, and cost-effective packages. Recent advances in reconfigurable radiating and receiving structures have been enabled by a variety of innovative technology solutions. Examples of reconfigurable partially reflective surface antennas, reconfigurable filtennas, reconfigurable Huygens dipole antennas, and reconfigurable feeding network-enabled antennas are presented and discussed. They represent novel classes of frequency, pattern, polarization, and beam-direction reconfigurable systems realized by the innovative combinations of radiating structures and circuit components

    Reconfigurable pixel antennas for communications

    Get PDF
    Premi extraordinari doctorat curs 2012-2013, àmbit Enginyeria de les TICThe explosive growth of wireless communications has brought new requirements in terms of compactness, mobility and multi-functionality that pushes antenna research. In this context, recon gurable antennas have gained a lot of attention due to their ability to adjust dynamically their frequency and radiation properties, providing multiple functionalities and being able to adapt themselves to a changing environment. A pixel antenna is a particular type of recon gurable antenna composed of a grid of metallic patches interconnected by RF-switches which can dynamically reshape its active surface. This capability provides pixel antennas with a recon guration level much higher than in other recon gurable architectures. Despite the outstanding recon guration capabilities of pixel antennas, there are important practical issues related to the performance-complexity balance that must be addressed before they can be implemented in commercial systems. This doctoral work focuses on the minimization of the pixel antenna complexity while maximizing its recon guration capabilities, contributing to the development of pixel antennas from a conceptual structure towards a practical recon gurable antenna architecture. First, the conceptualization of novel pixel geometries is addressed. It is shown that antenna complexity can be signi cantly reduced by using multiple-sized pixels. This multi-size technique allows to design pixel antennas with a number of switches one order of magnitude lower than in common pixel structures, while preserving high multiparameter recon gurability. A new conceptual architecture where the pixel surface acts as a parasitic layer is also proposed. The parasitic nature of the pixel layer leads to important advantages regarding the switch biasing and integration possibilities. Secondly, new pixel recon guration technologies are explored. After investigating the capabilities of semiconductors and RF-MEMS switches, micro uidic technology is proposed as a new technology to create and remove liquid metal pixels rather than interconnecting them. Thirdly, the full multi-parameter recon guration capabilities of pixel antennas is explored, which contrasts with the partial explorations available in the literature. The maximum achievable recon guration ranges (frequency range, beam-steering angular range and polarization modes) as well as the linkage between the di erent parameter under recon guration are studied. Finally, the performance of recon gurable antennas in beam-steering applications is analyzed. Figures-of-merit are derived to quantify radiation pattern recon gurability, enabling the evaluation of the performance of recon gurable antennas, pixel antennas and recon guration algorithms.Award-winningPostprint (published version

    Phased Array Antenna System Enabled by Liquid Metal Phase Shifters

    Get PDF

    Autonomous smart antenna systems for future mobile devices

    Get PDF
    Along with the current trend of wireless technology innovation, wideband, compact size, low-profile, lightweight and multiple functional antenna and array designs are becoming more attractive in many applications. Conventional wireless systems utilise omni-directional or sectored antenna systems. The disadvantage of such antenna systems is that the electromagnetic energy, required by a particular user located in a certain direction, is radiated unnecessarily in every direction within the entire cell, hence causing interference to other users in the system. In order to limit this source of interference and direct the energy to the desired user, smart antenna systems have been investigated and developed. This thesis presents the design, simulation, fabrication and full implementation of a novel smart antenna system for future mobile applications. The design and characterisation of a novel antenna structure and four-element liner array geometry for smart antenna systems are proposed in the first stage of this study. Firstly, a miniaturised microstrip-fed planar monopole antenna with Archimedean spiral slots to cover WiFi/Bluetooth and LTE mobile applications has been demonstrated. The fundamental structure of the proposed antenna element is a circular patch, which operates in high frequency range, for the purpose of miniaturising the circuit dimension. In order to achieve a multi-band performance, Archimedean spiral slots, acting as resonance paths, have been etched on the circular patch antenna. Different shapes of Archimedean spiral slots have been investigated and compared. The miniaturised and optimised antenna achieves a bandwidth of 2.2GHz to 2.9GHz covering WiFi/Bluetooth (2.45GHz) and LTE (2.6GHz) mobile standards. Then a four-element linear antenna array geometry utilising the planar monopole elements with Archimedean spiral slots has been described. All the relevant parameters have been studied and evaluated. Different phase shifts are excited for the array elements, and the main beam scanning range has been simulated and analysed. The second stage of the study presents several feeding network structures, which control the amplitude and phase excitations of the smart antenna elements. Research begins with the basic Wilkinson power divider configuration. Then this thesis presents a compact feeding network for circular antenna array, reconfigurable feeding networks for tuning the operating frequency and polarisations, a feeding network on high resistivity silicon (HRS), and an ultrawide-band (UWB) feeding network covering from 0.5GHz to 10GHz. The UWB feeding network is used to establish the smart antenna array system. Different topologies of phase shifters are discussed in the third stage, including ferrite phase shifters and planar phase shifters using switched delay line and loaded transmission line technologies. Diodes, FETs, MMIC and MEMS are integrated into different configurations. Based on the comparison, a low loss and high accurate Hittite MMIC analogue phase shifter has been selected and fully evaluated for this implementation. For the purpose of impedance matching and field matching, compact and ultra wideband CPW-to-Microstrip transitions are utilised between the phase shifters, feeding network and antenna elements. Finally, the fully integrated smart antenna array achieves a 10dB reflection coefficient from 2.25GHz to 2.8GHz, which covers WiFi/Bluetooth (2.45GHz) and LTE (2.6GHz) mobile applications. By appropriately controlling the voltage on the phase shifters, the main beam of the antenna array is steered ±50° and ±52°, for 2.45GHz and 2.6GHz, respectively. Furthermore, the smart antenna array demonstrates a gain of 8.5dBi with 40° 3dB bandwidth in broadside direction, and has more than 10dB side lobe level suppression across the scan. The final stage of the study investigates hardware and software automatic control systems for the smart antenna array. Two microcontrollers PIC18F4550 and LPC1768 are utilised to build the control PCBs. Using the graphical user interfaces provided in this thesis, it is able to configure the beam steering of the smart antenna array, which allows the user to analyse and optimise the signal strength of the received WiFi signals around the mobile device. The design strategies proposed in this thesis contribute to the realisation of adaptable and autonomous smart phone systems

    3D BEAMSTEERING LOW COMPLEXITY RECONFIGURABLE MULTILEVEL ANTENNA

    Get PDF
    The main idea of the thesis is to develop a new reconfigurable antenna that makes beamsteering in 3D, with the minimum number of possible switches (maximum 9) and as simple as possible for use in a car vehicle. The design will explore an active dipole located in the center of the antenna (which is fed by a tapered balun), and 4 parasitic dipoles around, placed so that the steering can be done in 9 3D directions according to which parasites we activate by means of switches. The basic idea is to study the physical principle of double reflection, the first reflection due toBeamforming, in its many variants, is a key spatial processing technique to improve user throughput, system capacity, system coverage as well as reducing interference. Simple architectures enabling beamforming either in predefined or arbitrary directions are very desirable for the Fifth Generation of Mobile Communications (5G) to boost power efficiency. Furthermore, it is expected that the number of 5G mobile subscribers grows from 5 million in 2019 to nearly 600 million by 2023, increasing traffic, connections density, and latency which will increase the demand of capacity to the network. Therefore, a broadband intelligent antenna must be at the basis to provide reliable data service, capable to adapt the antenna's capabilities to environment changes. The scope of this thesis focuses on a novel multilevel reconfigurable antenna incorporating beamsteering capabilities by using the lowest number of switches possible

    Planar Ultra-Thin Small Beam-Switching Antenna

    Get PDF
    A novel planar ultrathin electronically steerable parasitic array radiator (ESPAR) is presented in this paper. Through theoretical analysis of the electric fields of orthogonally crossed dipoles in phase quadrature, it is found that the crossed dipoles radiate linearly polarized wave with a rotational electric field in the azimuth plane. This characteristic is then utilized to design a planar crossed dipole ESPAR, termed as “CD-ESPAR.” Furthermore, a simple but effective impedance matching method is also proposed and analyzed. To verify these concepts, a prototype with compact size and very low profile (0.42 ?0 × 0.42 ?0 ×0.006 ?0) resonating at 2.3 GHz is designed, fabricated, and measured. The measured results indicate that the proposed antenna achieves more than 17.8% impedance bandwidth and can produce four directional beams, covering the whole azimuth plane. Owing to its planar ultrathin structure, compact size, electronically beam-switching ability, low power, and low cost characteristics, it is promising for applications in wireless communication

    Multi-Functional Reconfigurable Antenna Development by Multi-Objective Optimization

    Get PDF
    This dissertation work builds upon the theoretical and experimental studies of radio frequency micro- and nano-electromechanical systems (RF M/NEMS) integrated multifunctional reconfigurable antennas (MRAs). This work focuses on three MRAs with an emphasis on a wireless local area network (WLAN), 5-6 GHz, beam tilt, and polarization reconfigurable parasitic layer-based MRA with inset micro-strip feed. The other two antennas are an X band (8-12 GHz) beam steering MRA with aperture-coupled micro-strip fed and wireless personal area network (WPAN), 60 GHz, inset micro-strip fed MRA for dual frequency and dual polarization operations. For the WLAN (5-6 GHz) MRA, a detailed description of the design methodology, which is based on the joint utilization of electromagnetic (EM) full-wave analysis and multi-objective genetic algorithm, and fundamental theoretical background of parasitic layer-based antennas are given. Various prototypes of this MRA have been fabricated and measured. The measured and simulated results for both impedance and radiation characteristics are given. The work on the MRAs operating in the X band and 60 GHz region focuses on the theoretical aspects of the designs. Different than the WLAN MRA, which uses inset fed structure, the aperture-coupled feed mechanism has been investigated with the goal of improving the bandwidth and beam-tilt capabilities of these MRAs. The simulated results are provided and the working mechanisms are described. The results show that the aperture-coupled feed mechanism is advantageous both in terms of enhanced bandwidth and beam-steering capabilities. Finally, this dissertation work concludes with plans for future work, which will build upon the findings and the results presented herein

    Two dimensional switched beam antenna at 28 GHz for fifth generation wireless system

    Get PDF
    Fifth generation (5G) wireless system is expected to enable new device-to-device (D2D) and machine-to-machine (M2M) applications that will impact both consumers and industry. Moreover, for efficient M2M communication, both one dimensional (1-D) and two dimensional (2-D) beam switching is highly needed for high data-rate wireless radio links. A planar array with 2-D beam switching capabilities is highly desirable in 5G system. This thesis proposes a new technique of achieving simple and cost effective 2-D beam switching array antenna at 28 GHz for 5G wireless system. The technique involves lateral cascading of Butler matrix (BM) beamforming network (BFN). However, designing a planar BM at 28 GHz that will allow K-connector is not a trivial issue because the distances between the ports are X/4 electrical length apart. Nevertheless, two branch line coupler (BLC) with unequal ports separation at 28 GHz on a single substrate are designed and applied to design 1-D switched beam antennas based on BLC and 4 * 4 BM. Then two of these antennas are laterally cascaded to achieve 2-D beam switching antenna. This novel concept is the basis for choosing BM BFN in the design. The proposed 1-D array antennas on BLC and BM have wide measured impedance bandwidth of 18.9% (5.3 GHz) and 21.7% (6.1 GHz) and highest gain of 14.6 dBi and 15.9 dBi, respectively. The 2-D switched beam antenna on cascaded BLC has highest realized gain of 14.9 dB, radiation efficiency of 86%, 86.8%, 85.5%, and 83.4% at ports 1 to 4, respectively. The switching range of from -25o to +18° in the x-z plane and from -18o to 24o in the y-z plane, while the 2-D switched beam antenna based on cascaded 4 * 4 BM has switching range of -41o to 43o in the x-z plane and -43o to 42o in the y-z plane with highest realized gain of 14.4 dBi. The proposed antennas have great potentials for 5G wireless communication system applications

    Advanced Radio Frequency Antennas for Modern Communication and Medical Systems

    Get PDF
    The main objective of this book is to present novel radio frequency (RF) antennas for 5G, IOT, and medical applications. The book is divided into four sections that present the main topics of radio frequency antennas. The rapid growth in development of cellular wireless communication systems over the last twenty years has resulted in most of world population owning smartphones, smart watches, I-pads, and other RF communication devices. Efficient compact wideband antennas are crucial in RF communication devices. This book presents information on planar antennas, cavity antennas, Vivaldi antennas, phased arrays, MIMO antennas, beamforming phased array reconfigurable Pabry-Perot cavity antennas, and time modulated linear array
    corecore