3D BEAMSTEERING LOW COMPLEXITY RECONFIGURABLE MULTILEVEL ANTENNA

Abstract

The main idea of the thesis is to develop a new reconfigurable antenna that makes beamsteering in 3D, with the minimum number of possible switches (maximum 9) and as simple as possible for use in a car vehicle. The design will explore an active dipole located in the center of the antenna (which is fed by a tapered balun), and 4 parasitic dipoles around, placed so that the steering can be done in 9 3D directions according to which parasites we activate by means of switches. The basic idea is to study the physical principle of double reflection, the first reflection due toBeamforming, in its many variants, is a key spatial processing technique to improve user throughput, system capacity, system coverage as well as reducing interference. Simple architectures enabling beamforming either in predefined or arbitrary directions are very desirable for the Fifth Generation of Mobile Communications (5G) to boost power efficiency. Furthermore, it is expected that the number of 5G mobile subscribers grows from 5 million in 2019 to nearly 600 million by 2023, increasing traffic, connections density, and latency which will increase the demand of capacity to the network. Therefore, a broadband intelligent antenna must be at the basis to provide reliable data service, capable to adapt the antenna's capabilities to environment changes. The scope of this thesis focuses on a novel multilevel reconfigurable antenna incorporating beamsteering capabilities by using the lowest number of switches possible

    Similar works