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ABSTRACT 

Along with the current trend of wireless technology innovation, wideband, compact size, 

low-profile, lightweight and multiple functional antenna and array designs are becoming more 

attractive in many applications. Conventional wireless systems utilise omni-directional or 

sectored antenna systems. The disadvantage of such antenna systems is that the 

electromagnetic energy, required by a particular user located in a certain direction, is radiated 

unnecessarily in every direction within the entire cell, hence causing interference to other 

users in the system. In order to limit this source of interference and direct the energy to the 

desired user, smart antenna systems have been investigated and developed. This thesis 

presents the design, simulation, fabrication and full implementation of a novel smart antenna 

system for future mobile applications. 

The design and characterisation of a novel antenna structure and four-element liner array 

geometry for smart antenna systems are proposed in the first stage of this study. Firstly, a 

miniaturised microstrip-fed planar monopole antenna with Archimedean spiral slots to cover 

WiFi/Bluetooth and LTE mobile applications has been demonstrated. The fundamental 

structure of the proposed antenna element is a circular patch, which operates in high 

frequency range, for the purpose of miniaturising the circuit dimension. In order to achieve a 

multi-band performance, Archimedean spiral slots, acting as resonance paths, have been 

etched on the circular patch antenna. Different shapes of Archimedean spiral slots have been 

investigated and compared. The miniaturised and optimised antenna achieves a bandwidth of 

2.2GHz to 2.9GHz covering WiFi/Bluetooth (2.45GHz) and LTE (2.6GHz) mobile standards. 

Then a four-element linear antenna array geometry utilising the planar monopole elements 

with Archimedean spiral slots has been described. All the relevant parameters have been 

studied and evaluated. Different phase shifts are excited for the array elements, and the main 

beam scanning range has been simulated and analysed.  

The second stage of the study presents several feeding network structures, which control 

the amplitude and phase excitations of the smart antenna elements. Research begins with the 

basic Wilkinson power divider configuration. Then this thesis presents a compact feeding 

network for circular antenna array, reconfigurable feeding networks for tuning the operating 

frequency and polarisations, a feeding network on high resistivity silicon (HRS), and an ultra-

wideband (UWB) feeding network covering from 0.5GHz to 10GHz. The UWB feeding 

network is used to establish the smart antenna array system.    

Different topologies of phase shifters are discussed in the third stage, including ferrite 

phase shifters and planar phase shifters using switched delay line and loaded transmission line 
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technologies. Diodes, FETs, MMIC and MEMS are integrated into different configurations. 

Based on the comparison, a low loss and high accurate Hittite MMIC analogue phase shifter 

has been selected and fully evaluated for this implementation. For the purpose of impedance 

matching and field matching, compact and ultra wideband CPW-to-Microstrip transitions are 

utilised between the phase shifters, feeding network and antenna elements. Finally, the fully 

integrated smart antenna array achieves a 10dB reflection coefficient from 2.25GHz to 

2.8GHz, which covers WiFi/Bluetooth (2.45GHz) and LTE (2.6GHz) mobile applications. By 

appropriately controlling the voltage on the phase shifters, the main beam of the antenna array 

is steered ±50° and ±52°, for 2.45GHz and 2.6GHz, respectively. Furthermore, the smart 

antenna array demonstrates a gain of 8.5dBi with 40° 3dB bandwidth in broadside direction, 

and has more than 10dB side lobe level suppression across the scan. 

The final stage of the study investigates hardware and software automatic control systems 

for the smart antenna array. Two microcontrollers PIC18F4550 and LPC1768 are utilised to 

build the control PCBs. Using the graphical user interfaces provided in this thesis, it is able to 

configure the beam steering of the smart antenna array, which allows the user to analyse and 

optimise the signal strength of the received WiFi signals around the mobile device. 

The design strategies proposed in this thesis contribute to the realisation of adaptable and 

autonomous smart phone systems. 
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1.1 Research Motivation 

The adoption of smart antenna techniques in communication systems demonstrates 

significant impacts on the efficient use of the spectrum, the optimisation of service quality, 

the minimisation of the network configurations, and realisation of transparent operation 

across multi-technology wireless networks. Furthermore, smart antennas have been identified 

to support several benefits include antenna gain, increased directivity, and a host of 

capabilities enabled with arrayed antennas and signal processing techniques including beam 

forming, null steering, spatial processing, diversity, and multiple input multiple output 

(MIMO) [1-4]. Smart antenna system utilises adaptive beam forming algorithm in a dynamic 

environment continuously adjusting the weight of antenna arrays for generating a beam to 

track desired users automatically, and placing nulls in other directions to minimise the 

interferences [5].    

Smart antennas consist of two approaches: switched beam system and adaptive system 

[6]. A switched beam antenna, as illustrated in Figure 1.1(a), has a finite number of predefined 

radiation patterns and the appropriate beam pattern is selected based on the system 

requirement. Although the spatial dimension of the antenna is exploited, sometimes the main 

beam cannot point to the signal of interest (SoI) accurately, as shown in Figure 1.1(b).  
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(a)                                                (b) 

Figure 1.1: (a) Predefined Switched Beam Antenna (b) Low Resolution of the Main Beam 

Comparatively, in the adaptive antenna system, the beam pattern is configured by 

adjusting the excitation of the individual antenna elements, which provides beam orientation 

in any directions in response to its signal environment, as depicted in Figure 1.2(a).  

Moreover, these excitations could be manipulated in order to suppress the radiation in the 

direction of signals not of interest (SNoI), as shown in Figure 1.2(b). With this adaptive 

beamforming, the smart antenna is able to maximise the spatial usability. 

   

(a)                                                       (b) 

 Figure 1.2: Adaptive Antenna (a) Arbitrary Steering (b) Adaptive Beamforming  

Smart antenna systems are composed of reconfigurable antennas, control networks to 

provide beamforming functionality, and software for signal processing. Lots of successful 

implementations have revealed the capability of smart antenna technology on performance 

enhancement in terms of range, radio coverage, data rate, capacity, and flexibility. Pattern 
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reconfigurable antenna elements and weighted thinned synthesis technology has been 

presented in [7], a four-element phased array antenna using carbon nanotube thin-file 

transistors on a flexible Kapton polyimide substrates is demonstrated in [8], a electronically 

steerable parasitic array radiator antenna array is investigated in [9], a printed dipole phased 

array antenna using microstrip-fed coplanar stripline tee junctions has been shown in [10] and 

a reconfigurable RF MEMS phased array antenna within a liquid crystal polymer system-on-

package has been presented in [11].  

However, most of the designs have complicated structures and multilayer configurations. 

Moreover, not much of the works have been reported at WiFi/Bluetooth (2.45GHz) and LTE 

(2.6GHz) frequencies. For commercial applications, smart antenna systems with compact 

size, simple structure, low profile, reduced power consumption, wide scanning range, high 

gain and automatic control is required, which are the motivations of this research [12]. 

1.2 Research Investigations 

The components in a complete smart antenna system include the antenna element, the 

array geometry, the feeding network, the phase shifter and the control unit. In order to achieve 

the autonomous smart antenna system, several challenges related to the components have to 

be addressed. 

1.2.1 Design Challenges 

1.2.1.1 Antenna Design 

The microstrip antenna has become one of the most popular candidates for highly 

directive antenna applications due to its characterisations of light weight, low profile, easy 

fabrication, low cost and easy integration with other circuit components [13]. Several 

microstrip antennas have been developed to achieve multiple operating frequencies, 

reconfigurable polarisations, ultra wideband (UWB) performance or reconfigurable radiation 

patterns [14-16]. The greatest challenge associated with microstrip antenna design is to 

miniaturise the circuit dimension while maintaining certain antenna characteristics. In 

addition, the developed antenna structure should be able to easily integrate with feeding 

networks and phase shifters, in order to provide adaptive performance.  

This research investigates the design of a planar monopole antenna with multiple 

operating frequency bands for mobile applications. Archimedean spiral slots are etched on a 

circular patch antenna for miniaturisation. The aim is to develop an antenna covering 
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2.45GHz/2.6GHz, in compact dimension, with suitable gain (3dB) and efficiency (70%), 

providing proper radiation patterns (omni-directional) and utilising a microstrip feed.  

1.2.1.2 Array Geometry 

Radiation pattern of an antenna array depends on the antenna arrangements, spacing 

between the elements, excitation phase of individual antenna and characterisations of the 

single element.  

The theoretical separation between two adjacent elements is 0.5 λ, in order to avoid high 

coupling between neighbouring elements in an antenna array. Antennas that are separated less 

than 0.5λ will generate high coupling level and this consequently will distort the radiation 

pattern of the antenna array. Relatively, when the separations are more than 0.5λ, the 

tendency for grating lobes to occur is high and the gain is decreased. Due to the radiation 

power is transferred from the main beam to other lobes, grating lobes also reduce the peak 

directivity of the array [17-19].  

Furthermore, in real smart antenna array implementations, the number of elements is 

limited. This also produces several design challenges, which include reduced angular 

scanning resolution,  limited scanning range and high side lobe levels [20, 21].  

The linear array geometry consisting of four elements is investigated in this research. The 

target is to develop an antenna array demonstrating low coupling (-10dB) and wide angle 

(±50º) scanning ability. Wide scan coverage is necessary in wireless communication system, 

since the transmission link is not always within the boresight of an antenna. Utilising the 

microstrip antenna, different inter-element spacing are investigated and compared. The gain, 

directivity, radiation patterns and mutual coupling are evaluated and analysed. Beam scanning 

range is estimated based on antenna gain, angular widths (3dB) and side lobe levels. Finally, 

the excitations of the antenna array will be configured by the feeding network to achieve 

adaptive beam scanning.      

1.2.1.3 Feeding Network Structure 

Another important configuration in the smart antenna array is the feeding network, which 

controls the amplitude and phase excitations of the antenna elements. The conventional T-

junction power divider is lossless, but suffers from the issue of not being matched at all ports, 

and there is no isolation between the output ports.  The resistance divider is able to match all 

the ports, however, the power loss is relative high and still no isolation is achieved. The 

conventional Wilkinson power divider is lossless and provides high isolation between outputs, 

but only operates at a certain frequency.  
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This research investigates reconfigurable and UWB feeding networks for smart antenna 

applications. Different feeding network geometries are developed, including feeding network 

on high resistivity silicon (HRS) and Aluminium wafers, circular feeding networks, 

reconfigurable feeding structure for multiple frequencies and dual circular polarisations, and 

also UWB feeding geometry. The main challenge is to achieve suitable S-Parameters for the 

required applications with compact circuit dimension and miniaturised power loss. 

Furthermore, suitable resistors are important in these geometries to produce high isolation (-

10dB). Finally, the proposed feeding network should be able to easily integrate with the 

antenna elements.       

1.2.1.4 Phase Shifter Implementation 

In the proposed smart antenna system, phase shifters are used to provide required phase 

excitations. Various phase shifter structures are analysed and compared, which includes 

ferrite phase shifter, switched delay line phase shifter and loaded transmission line phase 

shifter. PIN diodes, FETs, MMIC and MEMS are employed as control elements in different 

configurations. The phase shifter should provide high and accurate phase excitations with low 

loss and suitable S-Parameters. Moreover, the control voltage cannot be too high due to low 

power mobile applications.  

Based on the above design challenges, several phase shifter techniques are evaluated and 

a MMIC device has been fully characterised for the proposed smart antenna implementation.  

Moreover, UWB CPW-to-Microstrip transitions are required between the antenna array, 

feeding network and phase shifters, for the purpose of providing suitable field matching and 

impedance matching. The aim is to develop miniaturised UWB transitions between CPW and 

microstrip transmission lines with minimum loss.          

1.2.1.5 Hardware Control 

Hardware control system is developed to configure the MMIC phase shifters and establish 

the communication between antenna array and mobile device. Control units are required to 

send suitable voltages to the smart antenna array and rotate the main beam direction. Basic 

algorithms are required to achieve the beam steering. The aim is to design compact processing 

units with accurate control ability and minimum power consumptions.  

This research demonstrates two separate hardware control systems based on two 

microprocessors PIC18F4550 and LPC1768, respectively. After schematic design and layout 

analysis, both of the structures are fabricated on multilayer PCBs. In the developed smart 

array system, a USB WiFi adapter is running as a communication module between the 
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antenna array and mobile device. Basic algorithms are programmed into the processing units 

to achieve the adaptive beamforming.   

1.2.1.6 Software Control 

The software control program implemented in a mobile device contributes to the 

intelligence of a smart antenna array. The signals induced on each antenna element are 

processed and analysed, so as to adjust the array radiation characteristic in order to adapt to 

the environment. 

Based on the developed hardware control units, several graphical user interfaces are 

investigated to automatically configure the smart antenna main beam direction. Current 

software program is using Windows. However, the algorithms can be easily transferred into 

Android and IOS systems. The attractive feature is the ability to locate the desired signal and 

perform the adaptive beamforming. The desired signal is calculated based on the received 

signal strength at different locations. Beamforming algorithms are used to optimise the 

complex excitations of the array elements. 

Figure 1.3 summarises the area and challenges to be addressed in the thesis. 

 

 

 

 

 

 

 

 

 

Figure 1.3: Overview of the Research Structure 
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1.2.2 Research Objectives 

The main objectives of this research are: 

1. Design a miniaturised multiband microstrip antenna for smart antenna system 

2. Develop a wide scanning range adaptive array antenna  

3. Produce reconfigurable and UWB feeding network for wireless communication system 

4. Evaluate phase shifter techniques and select suitable device for smart antenna array 

5. Smart Antenna full implementation and characterisation  

6. Develop intelligent hardware and software control systems for realising smart antenna. 

1.3 Overview of Thesis  

This thesis is divided into seven chapters. In this chapter, the requirement and general 

structure of the autonomous smart antenna systems for mobile applications have been 

outlined. 

Chapter 2 proposed a novel miniaturised planar monopole antenna. In order to achieve a 

multiband performance, Archimedean spiral slots, acting as resonance paths, have been 

etched on the circular patch antenna. Key parameters of the antenna structure are varied to 

understand their effects on the antenna characterisations. The optimised antenna demonstrates 

a bandwidth of 2.2GHz to 2.9GHz covering WiFi/Bluetooth (2.45GHz) and LTE (2.6GHz) 

mobile standards. Moreover, this chapter presents the design of a phased antenna array with 

wide scan coverage (±52º) for wireless communication systems. Various configurations and 

different separations between elements are analysed in order to achieve proper radiation 

patterns. Using suitable amplitude and phase excitations, the scanning range of the array is 

simulated and estimated.    

Chapter 3 explores different feeding network structures for the smart antenna arrays. 

Based on the conventional Wilkinson power divider, firstly, a more compact structure has 

been proposed using high resistivity silicon (HRS) and Aluminium wafers. Then a feeding 

network for circular antenna array is demonstrated. Subsequently, two reconfigurable feeding 

networks to adjust the operating frequencies and circular polarisation directions are discussed. 

Finally, a UWB feeding network is developed and described for the smart antenna application.  

In Chapter 4, several phase shifter techniques are studied, analysed and compared. A low 

loss (-3dB) and high accurate MMIC analogue phase shifter has been selected and fully 
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evaluated. This chapter also discusses the design and optimisation of UWB CPW-to-

Microstrip transitions for field matching and impedance matching. Furthermore, the complete 

smart antenna array has been integrated and characterised. The scanning range, gain, side lobe 

levels are discussed and summarised. 

Chapter 5 provides the smart antenna hardware control for mobile applications. Two 

control units are developed using microprocessor PIC18F4550 and LPC1768. The functions 

of key components in the circuit are discussed, including microchips, digital potentiometers, 

voltage boosters, oscillators and USB modules. The schematic design is transferred into PCB 

layout and finally fabricated and tested. Both of the integrated PCBs are able to configure the 

phase shifters and so to control the smart antenna array beam steering. 

Chapter 6 presents the software control system for the smart antenna array. Several 

preliminary graphical user interfaces are developed to manually and automatically configure 

the smart antenna. In this implementation, a laptop running Windows system is used to 

display WiFi information at different beam directions. It is able to achieve the automatic 

beam steering and basic adaptive beamforming. 

Chapter 7 concludes the research investigations and suggests future work. 

Figure 1.4 illustrates the block diagram of the developed autonomous smart antenna 

system. 

 

 

Figure 1.4: Block Diagram of the Autonomous Smart Antenna System 
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1.4 Key Contributions of the Thesis 

The thesis contains number of novelties, which are including: 

i. Miniaturised and multiband microstrip antenna for WiFi/Bluetooth and LET 

applications 

ii. Adaptive array geometry with wide scanning range 

iii. Reconfigurable and UWB feeding network for microwave applications 

iv. Phase shifter technology accurate evaluation and comparison  

v. UWB CPW-to-Microstrip transitions for RF circuits 

vi. Compact hardware control units for smart antenna  

vii. Software program to achieve adaptive beamforming  

1.5 Publications Arising from This Research 

In the course of this research, the following journals and conference papers have been 

published and submitted: 

1. Wei Zhou; Noordin, Nurul; Haridas, Nakul; El-Rayis, Ahmed; Erdogan, Ahmet; Arslan, 

Tughrul, "A WiFi/4G compact feeding network for an 8-element circular antenna array," 

2011 Loughborough  Antennas and Propagation Conference (LAPC),vol., no., pp.1,4, 14-15 

Nov. 2011 

2. Yan Chiew Wong; Wei Zhou; El-Rayis, Ahmed; Haridas, Nakul; Erdogan, Ahmet; Arslan, 

Tughrul, "Practical design strategy for two-phase step up DC-DC Fibonacci Switched-

Capacitor converter," 2011 20th European Conference on Circuit Theory and Design 

(ECCTD), vol., no., pp.817,820, 29-31 Aug. 2011 

3. Wei Zhou; Arslan, Tughrul; Benkrid, Khaled "Low Power Autonomous Smart Antenna 

System for Future Mobile Devices," University of Edinburgh Postgraduate Student Poster 

Conference, 23 Apr. 2012 

4.Noordin, Nurul; Wei Zhou; El-Rayis, Ahmed; Haridas, Nakul; Erdogan, Ahmet; Arslan, 

Tughrul, "Single-feed polarization reconfigurable patch antenna," 2012 IEEE Antennas and 

Propagation Society International Symposium (APSURSI), vol., no., pp.1,2, 8-14 July 2012 



Chapter 1: Introduction 

 

  10 

5.Wei Zhou; Haridas, Nakul; El-Rayis, Ahmed; Erdogan, Ahmet; Benkrid, Khaled; Arslan, 

Tughrul, "Enhanced Wilkinson divider on Si substrate for energy efficient microwave 

applications," 2012 Loughborough  Antennas and Propagation Conference (LAPC), vol., no., 

pp.1,4, 12-13 Nov. 2012 

6.Wei Zhou; Arslan, Tughrul; Benkrid, Khaled; El-Rayis, Ahmed; Haridas, Nakul, 

"Reconfigurable feeding network for GSM/GPS/3G/WiFi and global LTE applications," 2013 

IEEE International Symposium on Circuits and Systems (ISCAS), vol., no., pp.958,961, 19-

23 May 2013 

7.Wei, Zhou; Arslan, Tughrul; Flynn, Brian, "A reconfigurable feed network for a dual  

circularly polarised antenna array," 2013 IEEE 24th International Symposium on Personal  

Indoor and Mobile Radio Communications (PIMRC), vol., no., pp.430,434, 8-11 Sept. 2013 

8.Wei, Zhou; Arslan, Tughrul, "A bidirectional planar monopole antenna array for  

WiFi/Bluetooth and LTE mobile applications," 2013 Loughborough Antennas and 

Propagation  Conference (LAPC), vol., no., pp.190,193, 11-12 Nov. 2013 

9.Wei, Zhou; Arslan, Tughrul, "Planar monopole antenna with Archimedean spiral slot for 

WiFi/Bluetooth and LTE applications," 2013 Loughborough Antennas and Propagation 

Conference (LAPC), vol., no., pp.186, 189, 11-12 Nov. 2013 

10.Wei, Zhou; Arslan, Tughrul, "Smart antenna array for WiFi/Bluetooth and LTE 

applications," IEEE Transactions on Antennas and Propagation (Journal Submitted, Under 

Review)  

 

 

 

 

 

 

 



Chapter 2: Novel Antenna Design for Smart Antenna Array 

  11 

 

2.1 Introduction 

This chapter discusses the design, simulation, optimisation, fabrication and 

characterisation of a novel antenna structure and four-element liner array geometry for smart 

antenna systems. The radiation pattern of an adaptive array antenna is dependent on the 

individual radiation pattern of the array element and also the configuration of the array. 

 Firstly, this chapter presents a novel miniaturised microstrip-fed planar monopole 

antenna with Archimedean spiral slots to cover WiFi/Bluetooth and LTE mobile applications. 

The fundamental structure of the proposed antenna element is a circular patch, which operates 

in high frequency range, for the purpose of miniaturising the circuit dimension. In order to 

achieve a multiband performance, Archimedean spiral slots, acting as resonance paths, have 

been etched on the circular patch antenna. Analysis of the current distributions on the antenna 

design reveals that at low frequencies, the additional of the slots create new circular current 

paths, which generate a wideband low frequency response. Different shapes of Archimedean 

spiral slots have been investigated and compared. The miniaturised and optimised antenna 

achieves a bandwidth of 2.2GHz to 2.9GHz covering WiFi/Bluetooth (2.45GHz) and LTE 

(2.6GHz) mobile standards. The proposed antenna exhibits low return loss, large gain, high 

efficiency and stable omni-directional radiation pattern across all the relevant bands.  

An array of omni-directional antennas will generate a radiation pattern with narrow main 

beam. A directional antenna array is suited to systems with limited power and involving data 

communication with known locations. The second part of this chapter describes a four-

element linear antenna array geometry utilising the planar monopole elements with 
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Archimedean spiral slots. All of the relevant parameters have been studied and evaluated. 

Different phase shifts are excited for the array elements, and the main beam scanning range 

has been simulated and analysed.  

This chapter is divided into six sections. The antenna theory and individual antenna 

design are presented in Section 2.2 and Section 2.3, respectively. The proposed antenna 

structure is modelled in CST Microwave Studio. Section 2.4 discusses the design principles of 

an antenna array. Section 2.5 presents the array geometry and analyses all of the key 

parameters in a smart antenna system. Finally, Section 2.6 summaries the chapter. 

2.2 Antenna Theory  

2.2.1 Antenna Introduction 

An antenna is a device for radiating or receiving radio waves. It is an essential transitional 

structure between guiding device (transmission line) and free-space. The guiding device takes 

the form of a waveguide or a coaxial line, for the purpose of transporting electromagnetic 

energy from the transmitting source to the antenna, or from the antenna to the receiver. Then 

we have a transmitting antenna in the former case and a receiving antenna in the later one. 

Radiation pattern is utilised to describe the electromagnetic radiation distribution of an 

antenna, and it is achieved by controlling the current flow on the antenna. Figure 2.1 shows 

the antenna operating as a transition device. There are various types of antenna 

configurations, as illustrated in Figure 2.2, which include wire antennas, log-periodic 

antennas, travelling wave antennas, aperture antennas, reflector antennas, and microstrip 

antennas [22]. 

 

Figure 2.1: Antenna Operates as a Transition Device [22] 
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(a) Wire Antenna Configurations: Dipole Antenna, Folded Dipole Antenna, Circular 

Loop Antenna and Monopole Antenna  

        

(b) Log-Periodic Antennas: Log Periodic Tooth Antenna 

 

(c) Travelling Wave Antennas: Yagi-Uda Antenna, Spiral Antenna and Helical Antenna 
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(d) Aperture Antennas: Slot Antenna, Cavity-Backed Slot Antenna, Inverted-F Antenna, 

Slotted Waveguide Antenna, Vivaldi Antenna and Horn Antenna 

 

          

(e) Reflector Antennas: Corner Reflector Antenna and Parabolic Reflector Antenna 
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(f) Microstrip Antennas: Rectangular Patch Antenna and Circular Patch Antenna 

Figure 2.2: Antenna Types: (a) Wire Antennas, (b) Log-Periodic Antennas, (c) Travelling Wave 

Antennas, (d) Aperture Antennas, (e) Reflector Antennas, and (f) Microstrip Antennas 

2.2.2 Antenna Properties   

The transmission-line Thevenin equivalent circuit of a transmitting antenna is presented in 

Figure 2.3 [22].  

 

Figure 2.3: Transmission-Line Thevenin Equivalent of a Transmitting Antenna [22] 

An ideal signal generator is used as the source and the transmission line is represented by 

a line with characteristic impedance of ZC. The impedance of antenna, ZA is given by the 

following equations: 

                                                                       ZA = RA+jXA                                                            (2.1) 

                          RA = RL+Rr                                                                                                              (2.2) 

Where, RA refers to the antenna resistance. RL is the loss resistance, which includes the 

conduction loss and dielectric loss. Rr stands for the radiation resistance and XA is the antenna 

reactance.  

By matching the antenna impedance ZA and the transmission line characteristic impedance 

ZC, the standing wave is decreased, and the energy storage capacity of the transmission line is 
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minimised [22]. As a result, the maximum power is delivered from the source to the antenna. 

This condition is calculated by conjugate matching: 

                                           Rg  =  RA =  RL+Rr                                                                                                       (2.3) 

                                                  Xg = -XA                                                                                                                       (2.4)                                                                                  

Where, Rg is the source resistance, RA presents the antenna resistance, Xg describes the 

source reactance, and XA is the antenna reactance. 

Practically, the power reflected by the antenna, as shown above, is represented using S-

Parameters. S-Parameters show the relationship between input power and output power for 

electrical systems. S11 is defined as reflection coefficient, which describes the reflected power 

from the antenna.  

2.2.3 Antenna Fundamental Parameters 

2.2.3.1  Radiation Pattern 

The radiation properties of an antenna as a function of space coordinates can be 

mathematically or graphically represented by its radiation pattern [23]. Radiation properties 

include radiation intensity, power flux density, field strength, phase, directivity and 

polarisation. Generally, there are three types of antenna radiation patterns: isotropic, 

directional and omni-directional. Isotropic radiation pattern is created when a theoretical 

lossless antenna has equal radiation in all directions.  Antenna with uniform radiation is in an 

ideal case, and it is not physically realisable. However, the isotropic radiation is often utilised 

as a reference to analysis the directive properties of actual antennas [22] . An antenna which 

radiates or receives more electromagnetic waves in some directions than in others is defined 

as a directional antenna. Various portions of a directional radiation pattern are represented by 

lobes, which may be classified into main lobe, minor lobe, side lobe, and back lobe (as shown 

in Figure 2.4). The lobe containing the strongest radiation intensity is defined as the main lobe 

(also called major lobe), while the rest are side lobes. Beam width of the main lobe is 

calculated using the angular separation between the half-power (3dB) points, also known as 

the half-power beamwidth (HPBW). A minor lobe is any lobe except the main lobe. A back 

lobe refers to a minor lobe which occupies the opposite direction of the main lobe. Minor 

lobes show radiations in undesired directions, and they will be minimised in the design 

procedure. Normally, side lobes are the largest minor lobes. Side lobe level (or side lobe 

ratio) are used to express the ratio of the power density between the side lobe and main lobe. 

Low side lobe level is very important requirement in smart antenna array designs. Finally, an 
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omni-directional radiation patten is a special type of a directional pattern, which generates a 

non-directional pattern in a given plane and a directional pattern in any orthogonal plane [22]. 

 

Figure 2.4: Directional Radiation Pattern  

2.2.3.2  Field Regions 

The antenna radiation area is divided into three regions: (a) reactive near-field region, (b) 

radiating near-field (Fresnel) region and (c) far-field (Fraunhofer) region, as presented in 

Figure 2.5. There are different preferences among the three regions. Reactive near-field region 

is the area immediately surrounding the antenna, and the distance is determined by R1 < 

0.62      , where D is the largest antenna dimension and λ stands for the wavelength.  

Radiating near-field (Fresnel) region is the portion between the reactive near-field region and 

the far-field region, wherein the angular field distribution is according to the distance from the 

antenna. The inner boundary is the space R ≥ 0.62      and the outer boundary is the 

distance R < 2D
2
/λ. Far-field (Fraunhofer) region is the antenna radiation space where the 

angular field distribution is completely independent of the radial distance from the antenna. 

The distance is estimated by R2 ≥ 2D
2
/λ. 
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Figure 2.5: Antenna Radiation Field Regions [22] 

2.2.3.3 Radiation Power Density 

The average power radiated by an antenna in a particular direction is defined as the 

radiation power density, Pr (Watts/m
2
).  It is estimated using the time averaging Poynting 

vector. The following equation describes the relationship between power density and field 

intensities. 

                                                          
 

 
        

 

  
                                          (2.5) 

 Where, E represents the electric field intensity, H refers to the magnetic field intensity, 

and η is the intrinsic impedance.  

2.2.3.4  Radiation Intensity 

Antenna radiation power per unit solid angle is defined as the radiation intensity, U 

(Watts/unit solid angle), as expressed in Equation (2.6). 

                                                             U = r2Pr                                                                  (2.6) 

Where, r is the distance to the antenna, and Pr stands for the radiation power density.  

The total power radiated by an antenna, Prad, is obtained by integrating the radiation 

intensity over the entire solid angle of 4π, as given in Equation (2.7). 

                                              Prad =                  
 

 

  

 

 

 
                                        (2.7) 

Where, dΩ is the element of solid angle, and d    sinθdθdϕ.  
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2.2.3.5  Directivity 

The antenna directivity is the ratio of a particular direction’s radiation intensity, to the 

average radiation intensity over all directions. The average radiation intensity is estimated 

using the total power radiated divided by 4π. The directivity of a non-isotropic antenna is the 

ratio of its radiation intensity in a specified direction over that of an isotropic antenna, as 

expressed in Equation (2.8). 

                                                                    D = 
 

  
 = 

   

    
                                                             (2.8) 

Where, Prad is the total radiated power. When the direction is not clarified, the antenna 

directivity means the direction of maximum radiation intensity.  

                                              Dmax = 
    

  
 = 

      

    
                                                      (2.9) 

2.2.3.6 Gain 

Gain of an antenna is the ratio of radiation intensity in a specified direction, to the 

radiation intensity from an isotropic radiator with the same power feed to it. Isotropical 

radiated power equals to the antenna input power divided by 4π [23]. Compared to the 

antenna directivity, the antenna gain parameter also takes into account the antenna efficiency 

and directional capabilities. The following equation (2.10) describes the gain calculation [22] 

.    

                                       Gain =   
                   

                 
   

      

   
                                    (2.10) 

Equation 2.11 describes the relationship between antenna radiation gain and directivity. 

                                                             G  θ  ϕ) = ecd D  θ  ϕ)                                                         (2.11) 

Where, ecd stands for the radiation efficiency and it will be described in the following 

section. 

2.2.3.7  Antenna Efficiency 

The total antenna efficiency e0 is utilised to describe losses at the input terminals and 

within the antenna structure. The losses are generally caused by two mechanisms: reflections 

because of the mismatch between the antenna and transmission line; conduction and dielectric 

losses (I
2
R). Figure 2.6 illustrates the antenna terminals and losses. 
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Figure 2.6: Antenna Terminals and Losses 

The total efficiency e0 is achieved using Equation 2.12. 

                                                                             e0 = ereced                                                                (2.12) 

Where, er is the reflection (mismatch) efficiency, and er    1 −   Γ 2). Γ stands for the 

voltage reflection coefficient at the antenna input terminals, and Γ    ZA – ZC)/(ZA + ZC), 

where ZA is the antenna input impedance, and ZC shows the characteristic impedance of 

transmission line.ec represents the conduction efficiency. ed describes the dielectric efficiency.  

                                           VSWR = Voltage Standing Wave Ratio =  
1      
 1 −     

                  (2.13) 

ecd is defined as the antenna radiation efficiency. 

                                                              ecd = eced = 
    

   
                                                    (2.14) 

Where, Prad is the total radiated power and Pin is the total input power to the antenna. 

2.2.3.8  Beam Efficiency 

Another parameter is used to describe the transmitting and receiving antenna 

performance: beam efficiency (BE). It is the ratio of power transmitted (received) within cone 

angle θ1, to the power transmitted (received) by the antenna, as expressed in the following 

formula: 

                                                         BE =  
                

  
 

  

 

                
 

 

  

 

                                         (2.15) 
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2.2.3.9  Polarisation 

Antenna polarisation describes the instantaneous electric field orientation of the 

propagated electromagnetic wave, as presented in Figure 2.7.  It is a far-field characteristic of 

electromagnetic waves radiated by all practical antennas.  In general, polarisations can be 

categorised into linear, circular, or elliptical. In linear polarised mode, the electric field vector 

is always directed along a line, as illustrated in Figure 2.7. If the antenna radiates an 

electromagnetic wave in a corkscrew pattern and performs a complete revolution in each 

wavelength, this radiation is defined as circularly polarisation.   The figure of the electric field 

is traced either in a clockwise (Right-Hand Circularly Polarised, RHCP), or counter-

clockwise (Left-Hand Circularly Polarised, LHCP) sense. When the electric field traces is an 

ellipse, the radiation is classified as elliptical polarisation. Linearly and circularly polarised 

antenna patterns are special cases of elliptical polarisation, and they can be achieved when the 

ellipse becomes a straight line or a circle, respectively.  

 

Figure 2.7:  Linear Polarisation and Circular Polarisation 

2.3 Novel Planar Monopole Antenna Design with Archimedean 

Spiral Slots  

2.3.1  Introduction 

With the rapid development of wireless technology innovation, compact size, low-profile, 

lightweight, wideband, and multiple functional antenna designs are becoming more attractive 

in many microwave applications. Planar monopole antenna structures have been investigated 

in order to fulfil these requirements. The monopole antennas demonstrate many advantages, 

including simple fabrication, low cost, wide impedance bandwidth, omni-directional radiation 

properties, and transmitting and receiving wideband signals without significant distortions [24, 

25] . Numerous monopole antennas have been investigated employing various ground plane 

sizes and monopole radiating elements of different shapes, including squares, rectangles, 

trapezoids, circles and ellipses [26-28].  
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There are two main approaches in the literature to achieve multiband planar monopole 

antennas. In the first method, an antenna element is designed to cover a wide bandwidth. The 

low frequency limitation will increase the size of the antenna. Some notches are introduced 

into the antenna in order to create the multiband behaviour, as presented in [29]. An ultra 

wideband printed monopole antenna with a modified ground plane has been studied. By adding 

a pair of L-shaped slots in the ground plane, additional resonances are excited and hence the 

bandwidth is increased up to 130% (in Figure 2.8). By properly adjusting the dimensions of the 

capacitive-coupled elements, the lower-edge frequency of the band can also be decreased. 

Because the additional capacitive loads change the equivalent circuit model of the antenna and 

also generate more current flow in the lower frequency bands. The resonant frequency 

bandwidth is even wider. 

 

Figure 2.8: UWB Printed Monopole Antenna with a Pair of L-Shaped Slots [29] 

With the second technique, a compact antenna can be designed to cover high frequencies. 

The lower frequency bands are created by adding extra resonant elements to the main antenna 

structure [30]. Figure 2.9 illustrates an antenna configuration integrating Bluetooth and UWB 

frequencies. The main rhombus radiating patch has been designed to cover UWB frequency 

(3.1GHz-10.6GHz). Additional arms have been added for the lower Bluetooth (2.45GHz) 

application. The combined structure is able to operate both in high UWB and low Bluetooth 

bands. Spirals are able to slow down the wave travelling within the antenna structure and 

hence they have been widely used in the second technology, and also for the purpose of 

furthermore miniaturisation [31]. 
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Figure 2.9: Microstrip-Fed Integrated Bluetooth/UWB Antenna [30] 

The Archimedean two-wire spiral antenna is a traditional configuration which belongs to 

the family of frequency independent antennas. They are capable of operating over multiband 

frequencies while maintaining stable radiation patterns [32]. The conventional Archimedean 

spiral antennas utilising a perfect electric conducting (PEC) ground plane placed at a distance 

of λ/4 below the antenna, to generate a unidirectional beam (as presented in Figure 2.10). This 

technique introduces a fixed physical length between the ground plane and the antenna in 

terms of λ, and therefore seriously limiting the frequency independent characteristics [33, 34]. 

Moreover, the Archimedean spiral antennas have relatively complex feeding structure and 

unfixed phase centre, as a result, significant distortion will occur when transmitting and 

receiving wideband signals [35].  

 

Figure 2.10: Conventional Archimedean Spiral Antenna Structure 
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In this section, the monopole and Archimedean spiral technologies are combined. Several  

Archimedean spiral shaped slots are etched on  a circular patch antenna, and using microstrip-

fed in order to achieve miniaturised dimensions, multiband operating frequencies, high 

efficiency, large gain and stable radiation patterns. Five different kinds of Archimedean spiral 

slot shapes have been investigated and compared.  Full-wave simulations were carried out 

using finite-difference time-domain (FDTD) method based software, namely CST Microwave 

Studio. Moreover, the simulations were validated through a real fabrication with the measured 

results agreeing with simulated results. 

2.3.2 Antenna Structure Design 

Radiating patches of printed antennas have a variety of forms, including square, 

rectangular, triangular, circular and elliptical. It has been investigated that circular 

configuration achieve smaller dimensions related with the operating frequency. Furthermore, 

the only control variable for the structure is the patch radius, which makes the circular or disk 

antennas are easy to be calculated and designed. The proposed antenna structure is based on a 

circular patch, and the geometry is depicted in Figure 2.11. Since the substrate height h is very 

small (typically h<0.05λ), the radius of the patch is calculated based on circular TM11 mode 

resonance, and using Equations 2.16 and 2.17 [22]. 

 

Figure 2.11: Geometry of the Fundamental Antenna 

                                                     
 

     
 
   
 

 
  

      

      
                                         (2.16) 

                                                                 
      

  

  
                                                          (2.17) 

Where    
  represents zero of the derivative of the Bessel function which determines the 

order of resonant frequency, fmn. The value of    
  is 1.8412 for TM11 mode analysis. The 

circular patch effective radius, aeff, which including fringing effects, to replace the actual radius 

a, is referred to Equation (2.18) 
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                                                  1  
  

    
    

  

  
  1       

   

                               (2.18) 

Therefore, the resonant frequency for the TM11 mode has been modified by using Equation 

(2.18) and expressed as: 

                                                                         
        

       
                                                    (2.19)            

Where, v0 is the speed of light in free-space. 

The substrate size, wg is optimised in order to minimise the fringing effect and, 

simultaneously, to achieve the best reflection coefficient. 

The feeding technique for the proposed antenna structure is a microstrip line. This feeding 

method has advantages over others, like testing point (coaxial connector) and coplanar feed, 

because it creates an easy approach to integrate with a printed circuit board. Furthermore, it 

can be utilised separately from the main circuit using a coaxial connector [15, 36]. 

The microstrip dimensions are calculated using the formulas in (2.20) to (2.22) [37]. 
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            (2.20) 

Where: 

                        A= 
  

  
 
    

 
 

    

    
      

    

  
                                        (2.21) 

                            B=
    

      
                                                            (2.22) 

Since the dielectric substrate thickness is very thin compared with the wavelength (h<<λ), 

a quasi-TEM mode has been used for the microstrip line analysis. The characteristic 

impedance Z0 (50Ω) can be rewritten here in Equations (2.23) and (2.24). 

                    Z0 = 
  

   
    

  

  
 

  

  
                                                       (2.23) 

                       Z0 = 
    

    
  

                 
  

          
                                     (2.24) 

Where, wm represents width of the transmission line, and h is the thickness of the substrate. 

εe presents the effective dielectric constant which is given by: 
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                    εe = 
    

 
   

    

           
                                                  (2.25) 

Where, εr shows the dielectric constant of the substrate. In the implementation, copper 

track with a conductivity of 5.89  10
7
 has been etched on an FR4 printed circuit board (with a 

thickness h=1.6mm, and relative dielectric constant εr=4.55). The resonant frequency for the 

base circular patch is 3GHz in order to miniaturise the antenna dimension. From calculation, 

radius of the circular should be around 16mm. The substrate dimension wg is near 38mm. The 

width of the feed line wm is 3mm and length of the feed line is around 5mm. The base antenna 

structure has been further optimised in CST Microwave Studio, for the purpose of achieving a 

suitable reflection coefficient. 

 

Figure 2.12: Archimedean Spiral Represented on a Polar Graph 

Archimedean spiral slots are etched on the microstrip patch antenna, in order to increase 

circular current paths, which generate a wideband low frequency response. Figure 2.12 

demonstrates the Archimedean spiral represented on a polar graph. The Archimedean spiral 

curve is defined by the polar equation r= θ, with θ 0. The system of parametric equations 

corresponding to the polar graph is x= θcos(θ) and y=  θsin(θ), where   represents any real 

number denoting the growth rate of the spiral. Figure 2.13 depicts the proposed antenna 

structure. 

 

Figure 2.13: Geometry of the Proposed Antenna 



Chapter 2: Novel Antenna Design for Smart Antenna Array 

  27 

In a Cartesian coordinate system, the Archimedean spiral slots are generated using the 

following formulas. 

                                 X = t  1        1  − 1                                        (2.26) 

                                Y = t  1        1  − 1                                         (2.27) 

                                                            Z=0                                                                       (2.28) 

Where, t is a variable representing the distance between the circular patch centre and the 

Archimedean spiral slots. By varying the value of t, different geometries of Archimedean spiral 

slots could be obtained. The planar monopole antennas with Archimedean spiral slots have 

been designed, calculated, simulated and optimised using finite-difference time-domain 

(FDTD) method based software, Advanced Design System (ADS) and CST Microwave Studio, 

for full-wave analysis. 

2.3.3  Equivalent Circuit of the Antenna Structure  

A simplified lumped element circuit model of the planar monopole antenna with 

Archimedean spiral slots has been derived. This model was achieved by studying the scattering 

parameter (S11) of the antenna structure and simulating the antenna in an EM simulator. By 

obtaining the S-Parameter, the general structure of the circuit model has been transformed to 

imply the characteristics of the antenna.  

The equivalent circuit of the base circular patch antenna is illustrated in Figure 2.14, where 

the patch cavity is modelled as a parallel RLC circuit, while the probe inductance is 

represented by a series inductor.  

 

Figure 2.14: Equivalent Circuit of the Patch Antenna 

When a notch is incorporated into the patch antenna, the resonance features change. The 

equivalent circuit for an Archimedean spiral slot in Figure 2.13 is modelled as a parallel LC 

circuit (Ls and Cs) [38].  
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Figure 2.15: Equivalent Circuit of the Planar Monopole Antenna with Archimedean Spiral Slots  

Figure 2.15 illustrates the equivalent circuit of the proposed planar monopole antenna with 

Archimedean spiral slots. The component values and reflection coefficient can be calculated 

using the following equations. Moreover, for the calculation of input impedance, the circuit 

model has been simplified using Equation 2.30 and 2.31. 

                                                                      
      

      
                                                          (2.29) 

                               
      
      

      
       

      
   

 
    
      

   
 
    
         

             
           (2.30) 

From the above equations and assuming Zin is 50Ω, all of the resistance, inductance and 

capacitance could be calculated. Finally, in the equivalent circuit, R1=50Ω, L1=2nH, C1=0.9pF, 

R2=50 Ω, Lp=0.5nH, Ls=1.2nH and Cs=6.4pF. The circuit model has been built and simulated 

in Advanced Design System. Figure 2.16 shows the equivalent circuit diagram. 

 

Figure 2.16: Equivalent Circuit of the Planar Monopole Antenna with Archimedean Spiral Slots 

in ADS 
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Figure 2.17: Simulation Results of the Antenna Equivalent Circuit in ADS 

Figure 2.17 presents the simulation results for the antenna equivalent circuit in ADS. By 

varying the values of Cs and Ls, the Archimedean spiral slots dimensions are changed, which 

generates difference resonate frequency performance. The equivalent circuit in Figure 2.16 is 

based on the antenna model in Figure 2.18 (t=0~0.5mm). Similar antenna structure has also 

been modelled in CST Microwave Studio, for full wave analysis. Figure 2.19 (CST Model) 

shows the similar simulation results as in Figure 2.17 (Equivalent Circuit), which guarantees 

the component values in the equivalent circuit are all suitable. 

2.3.4 Simulation and Experimental Results  

Based on the above design procedures, five monopole antennas with Archimedean spiral 

slots are developed and simulated in CST Microwave Studio. Furthermore simulations for 

circular patch radius, transmission line length, Archimedean spiral slots shapes and substrate 

dimensions are made in order to optimise the reflection coefficient and radiation patterns.  

For the finalised antenna geometry, the radius of the circular patch is 15mm and the 

dimension of the substrate is 35mm  35mm. By controlling the value of t in formulas (2.26) to 

(2.28), there is a variation of the Archimedean spiral slot shapes, generating different antenna 

performance. The planar monopole antennas are implemented on a single FR4 substrate with 

the relative dielectric constant εγ=4.55, loss tangent         and the thickness of 1.6mm.   

In Figure 2.18, the range of the parameter t is from 0 to 0.5mm, leading a small 

Archimedean spiral slots with number of turn, N=3. Figure 2.21 presents the monopole 

antenna with longer spiral slots, utilising parameter t increasing to 1mm, which raises the turn 

number N=5. When the range of t is between 0 and 1.3mm, the Archimedean spiral slots are 

the longest for the circular patch, and its structure is depicted in Figure 2.24. Figure 2.19, 

Figure 2.22 and Figure 2.25 illustrate the simulated surface current distributions and reflection 
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coefficients for the proposed antenna structures. Figure 2.20, Figure 2.23 and Figure 2.26 

present the H-Plane and E-Plane antenna radiation patterns, which correspond to x-z (Phi=0°) 

and y-z planes (Phi=90°), for t=0~0.5mm, t=0~1mm and t=0~1.3mm, at 2.45GHz and 2.6GHz, 

respectively.  

   

Figure 2.18: Planar Monopole Antenna with Archimedean Spiral Slots (t = 0~0.5mm), Front 

View, Back View, and its Corresponding Surface Current Distribution 

 

Figure 2.19: Simulated Reflection Coefficient of the Planar Monopole Antenna with 

Archimedean Spiral Slots (t = 0~0.5mm) 

    

Figure 2.20: Simulated Radiation Pattern of the Planar Monopole Antenna with Archimedean 

Spiral Slots (t = 0~0.5mm), at 2.45GHz and 2.6GHz, in E-Plane and H-Plane 
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Figure 2.21: Planar Monopole Antenna with Archimedean Spiral Slots (t = 0~1mm), Front View, 

Back View, and its Corresponding Surface Current Distribution 

 

Figure 2.22: Simulated Reflection Coefficient of the Planar Monopole Antenna with 

Archimedean Spiral Slots (t = 0~1mm) 

 

Figure 2.23: Simulated Radiation Pattern of the Planar Monopole Antenna with Archimedean 

Spiral Slots (t = 0~1mm), at 2.45GHz and 2.6GHz, in E-Plane and H-Plane 
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Figure 2.24: Planar Monopole Antenna with Archimedean Spiral Slots (t = 0~1.3mm), Front 

View, Back View, and its Corresponding Surface Current Distribution 

 

Figure 2.25: Simulated Reflection Coefficient of the Planar Monopole Antenna with 

Archimedean Spiral Slots (t = 0~1.3mm) 

 

Figure 2.26: Simulated Radiation Pattern of the Planar Monopole Antenna with Archimedean 

Spiral Slots (t = 0~1.3mm), at 2.45GHz and 2.6GHz, in E-Plane and H-Plane 
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By applying Archimedean spiral slots to the circular patch antenna, the resonant frequency 

is shifted to lower band. Multiband and wideband antenna performance have been obtained. 

When the parameter t is from 0 to 0.5mm (as shown in Figure 2.19), the resonant frequency is 

from 2.6GHz to 5GHz. Figure 2.22 demonstrates a wideband performance from 2.36GHz to 

2.89 GHz if the parameter t is varying from 0 to 1mm. In Figure 2.25, the antenna presents a 

multiband frequency performance, covering 2.19GHz to 2.43GHz, 2.76GHz to 2.92GHz, 

3.35GHz to 3.8GHz and 4.44GHz to 4.7GHz. 

Another important design parameter is the positions of Archimedean spiral slots. The 

variations of reflection coefficients with the positions of Archimedean spiral slots are shown in 

Figure 2.27 to Figure 2.32. By changing the range of parameter t, the Archimedean spiral slots 

could be created either in the centre or near the circular edge. The curves demonstrate that, the 

reflection coefficient improves as the Archimedean spiral slots start further from the centre, 

and that the resonant frequency also increases. It is also noted that the bandwidth decreases 

with the larger distance of Archimedean spiral slots. 

     

Figure 2.27: Planar Monopole Antenna with Archimedean Spiral Slots (t = 0.5~1mm), Front 

View, Back View, and its Corresponding Surface Current Distribution 

 

Figure 2.28: Simulated Reflection Coefficient of the Planar Monopole Antenna with 

Archimedean Spiral Slots (t = 0.5~1mm) 



Chapter 2: Novel Antenna Design for Smart Antenna Array 

  34 

 

Figure 2.29: Simulated Radiation Pattern of the Planar Monopole Antenna with Archimedean 

Spiral Slots (t = 0.5~1mm), at 2.45GHz and 2.6GHz, in E-Plane and H-Plane 

 

Figure 2.30: Planar Monopole Antenna with Archimedean Spiral Slots (t = 1~1.3mm), Front 

View, Back View, and its Corresponding Surface Current Distribution 

 

Figure 2.31: Simulated Reflection Coefficient of the Planar Monopole Antenna with 

Archimedean Spiral Slots (t = 1~1.3mm) 
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Figure 2.32: Simulated Radiation Pattern of the Planar Monopole Antenna with Archimedean 

Spiral Slots (t = 1~1.3mm), at 2.45GHz and 2.6GHz, in E-Plane and H-Plane 

Table 2.1 compares the simulated radiation efficiency, total efficiency and gain 

corresponding to the value of parameter t, which determines the dimensions and positions of 

the Archimedean spiral slots. 

Table 2.1: Simulated Efficiency and Gain 

 

2.45GHz 2.6GHz 

Rad. 

Effic 

Tot. 

Effic 
Gain 

Rad. 

Effic 

Tot. 

Effic 

 

Gain 

 

T=0~0.5 89% 73% 2.55dB 90% 81% 2.63dB 

T=0~1 91% 87% 2.77dB 92% 91% 2.93dB 

T=0~1.3 84% 72% 2.58dB 83% 78% 2.97dB 

T=0.5~1 81% 74% 2.47dB 80% 71% 2.53dB 

T=1~1.3 88% 79% 2.38dB 83% 49% 2.68dB 

 

From Table 2.1, it is clear that when the range of t is from 0 to 1mm, the antenna geometry 

demonstrates the best radiation performance. Combining the results from Figure 2.18 to Figure 

2.32, t=0~1mm is leading a best Archimedean spiral slot on the circular monopole patch. This 

antenna configuration has been fabricated (as shown in Figure 2.33) and subsequently 

characterised with an HP8753C vector network analyser (VNA). The dimension of the realised 

implementation is 35mm   35mm.  
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Figure 2.33: Photo of the Fabricated Antenna Designs, Front View and Back View  

 

Figure 2.34: HP8753C Vector Network Analyser 

 

Figure 2.35: Simulated and Measured Reflection Coefficient of the Proposed Antenna 
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A schematic of the radiation pattern measurement setup is presented in Figure 2.36, which 

demonstrates the source Yagi antenna and the integrated smart antenna array are connected to 

Port 1 and Port 2 of the network analyser, respectively. A computer controlled positioner has 

been used to generate the azimuth and elevation for the antenna measurement. DC power 

supplies are utilised to provide suitable control voltage to the analogue phase shifters (later 

for the array measurements). Data acquisition interface sends the control signal to the position 

controller to rotate by specific step angle after programmed time interval and acquires the 

data from the network analyser for each step. The measurements were carried out in an 

anechoic chamber having walls that are covered with RF absorbers, as shown in Figure 2.37. 

Figure 2.38 illustrates the photo of the real measurement setup.  

 

Figure 2.36: Radiation Pattern Measurement Setup  
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                                  (a)                                                   (b)                                    (c) 

Figure 2.37: (a) RF Absorbers (b) Antenna under Test (c) Source Yagi Antenna 

 

Figure 2.38: Photo of the Radiation Pattern Measurement Setup 
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Figure 2.39: Simulated Radiation Efficiency, Simulated Total Efficiency and Measured Efficiency 

of the Proposed Antenna Structure 

 

Figure 2.40: Measured Gain of the Proposed Antenna Structure 

Figure 2.35, Figure 2.39 and Figure 2.40 demonstrate the simulated and measured reflection 

coefficient, radiation efficiency, total efficiency and gain, respectively. It is clear that a good 

consistency between the simulated and measured results, which verifies the design procedure. 

The proposed planar monopole antenna with Archimedean spiral slots configuration covers 

from 2.18GHz to 2.92GHz frequency band, which covers the WiFi/Bluetooth (2.45GHz) and 

LTE (2.6GHz) standards. Figure 2.39 depicts the measured efficiency are 79% and 87% for 

2.45GHz and 2.6GHz, respectively. Figure 2.40 illustrates the measured gains are 2.72dBi at 

2.45GHz and 2.88dBi for 2.6GHz.  
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2.4 Antenna Array Theory  

2.4.1 Antenna Array Introduction 

In the previous section, the characteristics of the single planar monopole antenna design 

with Archimedean spiral slots was discussed and analysed. Usually the radiation pattern of a 

single antenna element is relatively wide, and each element only provides low values of 

directivity and gain. In many commercial applications, it is required to design antennas with 

very directive characteristics and high gains (10dB), in order to meet the demands of long 

distance communication. This can only be achieved by increasing the electrical dimensions of 

the antenna. Enlarging the size of single antenna elements often demonstrates more directive 

characteristics. Another method to enlarge the electrical dimensions of the antenna, without 

necessarily increasing the size of the individual element, is to form an assembly of radiating 

elements in a geometrical and electrical configuration. This new antenna structure, formed by 

multi-elements, is referred to as an array [22]. In most cases, the array elements are identical. 

It is not necessary, but it is simpler, convenient, and more practical. 

The individual elements in an antenna array could be of any forms (wires, microstrip, 

apertures, etc.). The vector addition of the fields radiated by the individual elements 

determines the total field of the antenna array, assuming that the current in each antenna is the 

same as that of the isolated antenna, neglecting coupling. This is in the ideal case and the 

performance depends on the separation between the elements. In order to obtain directive 

radiation patterns, the fields from the elements in the array should interfere constructively in 

the desired directions, and interfere destructively in the remaining space. There are five 

aspects controlling the shape and overall radiation pattern of the antenna array.  

1. Geometrical construction of the antenna array (linear, rectangular, circular, rectangular, 

spherical) 

2. Relative displacement between the antenna elements 

3. Amplitude excitation of the individual antenna 

4. Phase excitation of the individual antenna 

5. Radiation pattern of the individual antenna 
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2.4.2 Antenna Array Fundamental Parameters 

2.4.2.1 Array Factor 

An array of identical antenna elements, with same magnitude and various progressive 

phases is referred to as a uniform antenna array. Its characteristic could be mathematically 

described by its array factor (AF). If the actual antennas are not isotropic sources, the total 

radiation field could be formed by multiplying the field of a single element by the array factor 

of the isotropic. This method applies for arrays of identical elements. 

The array factor is given by Equation (2.31) [39]. 

                                                                    
    

                                                   (2.31) 

Where, N is the number of elements, ψn stands for the difference in phase excitation 

between the elements and wn demonstrates the complex weight of the n
th
 element.  

By applying a phase shift δn to ψn, the main beam of the antenna array is steered to (θs, ϕs), 

as shown in Equation 2.32. 

                                                                 
         

                                              (2.32) 

An antenna array distributed in 3D space is demonstrated in Figure 2.41 and its array 

factor could be described in Equation 2.33 to 2.35. 

 

Figure 2.41: Arbitrary Antenna Array Geometry 

                                                
                             

                            (2.33) 

                                                 u   sinθcosϕ, us   sin θscosϕs                                         (2.34) 

                                                 v   sinθsinϕ, vs   sinθssinϕs                                           (2.35) 
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Where, N shows the number of elements in the array, (xn, yn, zn) represents the position of 

the n
th 

element, wn stands for the array weight and (θs, ϕs) is the steering angle for elevation 

and azimuth, respectively, as depicted in Figure 2.41. 

2.4.2.2 Radiation Pattern 

The far-field radiation pattern of an antenna array is the total product of a single element 

radiation pattern, as described in Equation (2.36) [39]. 

                                           
                             

                    (2.36) 

Where EPn(θ,ϕ) is the radiation pattern of a single element, N shows the number of 

elements in the array, (xn, yn, zn) represents the position of the n
th 

element, wn stands for the 

array weight and (θs, ϕs) is the steering angle for elevation and azimuth, respectively. 

2.4.2.3 Directivity 

The directivity of an antenna array is determined by Equation (2.37) [46]. 

                                      
                   

                           
 
 

  
 

                                    (2.37) 

Where, EP(θ,ϕ) is the radiation pattern of a single element and AF(θ,ϕ) is the array factor. 

2.5 Array Geometry for Smart Antenna System 

2.5.1 Antenna Array Structure 

Radiation pattern of an antenna array depends on the antenna arrangements, spacing 

between the elements, excitation phase of individual antenna and characterisations of the 

single element. Utilising the analysis obtained from the individual antenna design, a four-

element linear planar antenna array with uniform spacing is conceived (as illustrated in Figure 

2.42).  

 

Figure 2.42: Four-Element Linear Planar Antenna Array 

The separation between the adjacent planar monopole antennas relates to the inter-element 

(centre to centre) spacing. The wide inter-element spacing will limit the maximum scanning 
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range of the antenna array, because of the emergence of grating lobe. The separation also 

affects the reflection coefficient of the whole antenna array. The linear antenna array is 

designed to have 10dB gain and angular width less than 40° so that the beam steering 

characteristics could be demonstrated with reasonable phase shift. The inter-element spacing 

is defined using the following equation [22]. 

                                                                   θ    
 

 
− cos   

 

  
                                               (2.38)        

Where, θm represents the first null beamwidth, λ stands for the free space wavelength and 

d is the separation between array elements. The array factor of an N-element array is 

simplified as: 

                                                                o  
sin    

                                                (2.39) 

Where ψ=kdcosθ+β, θ decides the maximum radiation direction of the antenna array. 

Phase difference (ΔΦ=βdsinφ0) applied to the consecutive antenna array elements depends on 

the beam scan angle (φ0). Radiation pattern of the antenna array is obtained by multiplying 

the radiation pattern characteristics of the antenna with the array factor. 

2.5.2 Antenna Array Simulation and Experimental Results 

From calculation, the inter-element spacing should be around 35mm. In order to further 

optimise the reflection coefficient, radiation efficiency and gain, five inter-element spacing 

values: 32mm, 36mm, 40mm, 45mm and 50mm, have been simulated and compared, as 

shown from Figure 2.43 to Figure 2.47. 

 

Figure 2.43: Antenna Array with Inter-Element Spacing S=32mm 

 

Figure 2.44: Antenna Array with Inter-Element Spacing S=36mm 
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Figure 2.45: Antenna Array with Inter-Element Spacing S=40mm 

 

Figure 2.46: Antenna Array with Inter-Element Spacing S=45mm 

 

Figure 2.47: Antenna Array with Inter-Element Spacing S=50mm 

Figure 2.48 illustrates the simulated reflection coefficients corresponding to the inter-

element spacing (S). Table 2.2 summarises the simulated radiation efficiency, total efficiency 

and gain for the five antenna arrays. 

  

Figure 2.48: Simulated Reflection Coefficient (S11) Corresponds to Inter-Element Spacing (S) 



Chapter 2: Novel Antenna Design for Smart Antenna Array 

  45 

Table 2.2: Simulated Efficiency and Gain 

 

2.45GHz 2.6GHz 

Rad. 

Effic. 

Tot. 

Effic. 
Gain 

Rad. 

Effic. 

Tot. 

Effic. 
Gain 

S=32mm 86% 67% 8.7dB 87% 78% 8.9dB 

S=36mm 88% 73% 9.1dB 89% 80% 9.3dB 

S=40mm 90% 75% 9.9dB 91% 84% 10.3dB 

S=45mm 89% 74% 9.8dB 90% 83% 10.2dB 

S=50mm 90% 74% 9.9dB 91% 82% 10.3dB 

 

From Figure 2.48 and Table 2.2, it is significant to note that when the inter-element 

spacing is 40mm, the planar monopole antenna array achieves best reflection coefficient, 

highest efficiency and suitable radiation performance. The mutual coupling of the proposed 

antenna array is demonstrated in Figure 2.49. 

 

Figure 2.49: Simulated Mutual Coupling of the Proposed Antenna Array 

Figure 2.50 presents the simulated radiation pattern of the four-element linear planar 

monopole antenna array with inter-element spacing s=40mm, in H-Plane and E-Plane, at 

2.45GHz and 2.6GHz, respectively.  
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Figure 2.50: Simulated Radiation Pattern of the Proposed Four-Element Linear Planar Antenna 

Array at 2.45GHz and 2.6GHz in H-Plane and E-Plane 

In both planes, the side lobe levels are down by at least 10dB from the main lobe 

magnitude. The angular widths (3dB) in the E-plane are approximately 81º and 80º at 

2.45GHz and 2.6GHz, respectively. In the H-plane, the 3dB beamwidths are 31º and 30º at 

2.45GHz and 2.6GHz, respectively. 

This four-element linear antenna array configuration has been fabricated (as presented in 

Figure 2.51) and subsequently characterised with an HP8753C vector network analyser (VNA). 

Since the antenna array is a four ports circuit and the VNA is a two port system, while in the 

measurement, the empty two ports of the antenna array were terminated with 50 ohm 

terminators. The final inter-element spacing is 40mm, and the dimension of the realised 

implementation is 36mm   155mm.  

 

 

Figure 2.51: Photo of the Fabricated Antenna Array, Front View and Back View  
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Figure 2.52 and Figure 2.53 depict the measured reflection coefficient and mutual coupling 

of the proposed four-element linear antenna array.  

 

Figure 2.52: Measured Reflection Coefficient of the Proposed Antenna Array 

 

Figure 2.53: Measured Mutual Coupling of the Proposed Antenna Array 

Figure 2.52 and Figure 2.53 reveal a good consistency between the simulated and measured 

reflection coefficients, which validates the antenna array configuration. The proposed antenna 

array achieves a 10 dB reflection coefficient from 2.2GHz to 2.9GHz with low mutual 

coupling (-10dB), which could cover WiFi/Bluetooth (2.45GHz) and LTE (2.6GHz) mobile 

applications. Gain, efficiency and radiation pattern measurements of the whole smart antenna 

array will be summarised in Chapter 4.  
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2.5.3 Antenna Array with Simulated Phase Excitation 

The four-element linear antenna array has been excited by different phase degrees using 

CST Microwave Studio, in order to clarify the main beam scanning angles. The phase 

excitation of each antenna corresponding to the steering angle is tabulated in Table 2.3. 

Table 2.3: Phase Excitation of the Antenna 

Phase Excitation (Degree) Main Beam 

Direction 

(θ°) Antenna_1 Antenna_2 Antenna_3 Antenna_4 

0 0 0 0 0 

0 30 60 90 10 

0 55 110 165 20 

0 85 170 255 30 

0 105 210 315 40 

0 130 260 30 50 

0 145 290 75 60 

0 155 310 105 70 

0 165 330 135 80 

0 175 350 165 85 

 

The main beam scanning ranges are ±86° and ±88° for 2.45GHz and 2.6GHz, 

respectively. However, as the scanning reaches ±55° and ±57°, grating lobes start to appear in 

the linear antenna array. Grating lobes are not desired in adaptive antennas as they expose the 

system to noise and interference signals coming far from the direction of the required signal. 

Furthermore, the grating lobes also cause the array to radiate in undesired directions. Figure 

2.54 and Figure 2.55 demonstrate the simulated gain vs. theta in the H-Plane, for scanning 

angles of -50°, -40°, -30°, -20°, -10°, 0°, +10°, +20°, +30°, +40° and +50°, at 2.45GHz and 

2.6GHz, respectively. At 0°, the gains are 9.9dB and 10.3dB for 2.45GHz and 2.6GHz. The 

main beam could rotate ±50° without emergence of grating lobes. Scanning angles 

corresponding to the angular width and side lobe levels (SLL) are presented in Figure 2.56 and 

Figure 2.57. 



Chapter 2: Novel Antenna Design for Smart Antenna Array 

  49 

 

Figure 2.54: Simulated Gain vs. Theta in the H-Plane for Different Scanning Angles, at 2.45GHz  

 

Figure 2.55: Simulated Gain vs. Theta in the H-Plane for Different Scanning Angles, at 2.6GHz 
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Figure 2.56: Full Wave Simulation Results of Angular Width (3dB)  

 

Figure 2.57: Full Wave Simulation Results of Side Lobe Level 

The four-element linear antenna array was designed to achieve 10dB gain and angular 

width less than 40°. The 3dB bandwidth reaches -57° to +55° for 2.45GHz, and -59° to +57° 

at 2.6GHz. The SLL increases with the scanning range, which covers -59° to +54° and -59° to 

+58°, for 2.45GHz and 2.6GHz, respectively. Combing all of the simulation results from 
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Table 2.3, Figure 2.54 to Figure 2.56, the main beam of the four-element linear antenna array 

is able to steer from -57° to +54° for 2.45GHz, and -59° to +57° at 2.6GHz. 

2.6 Summary 

In this chapter, firstly, a novel compact planar monopole antenna configuration with 

Archimedean spiral slots for WiFi/Bluetooth and LTE frequency bands has been presented. 

The effects of varying slots dimensions and positions on the monopole antenna performance 

have also been studied. It is illustrated when the value of Archimedean spiral slot key 

parameter t is from 0 to 1mm, the presented structure obtains low reflection coefficient (-19dB, 

-30dB), high efficiency (79%, 87%), large gain (2.72dBi, 2.88dBi) and omni-directional 

radiation patterns for 2.45GHz and 2.6GHz, respectively. This antenna structure has 

application to multi-functional wireless communication systems. 

Secondly, a four-element linear planar monopole antenna array utilising the unit antenna 

has been designed, simulated, optimised and characterised. Different inter-element spacing 

values are investigated and compared. When the spacing is 40mm, the array geometry archive 

low reflection coefficient (-17dB, -29dB), suitable mutual coupling (-15dB, -14dB), large 

efficiency (75%, 84%), high gain (9.9dB, 10.3dB) and directional radiation patterns for 

2.45GHz and 2.6GHz, respectively. The antenna array is implemented and fabricated on an 

FR4 substrate. Reflection coefficient and mutual coupling measurement results closely 

correlate with those obtained during design simulations. The array will be integrated into a 

smart antenna system, and the radiation properties will be measured together with the feeding 

network and phase shifters. 

Lastly, the four-element linear antenna array has been excited by progressive phase shifts 

using CST Microwave Studio, in order to demonstrate the main beam scanning angles. By 

analysing the radiation gain, angular width (3dB) and side lobe level, beam steering from 57° 

to +54° for 2.45GHz, and -59° to +57° at 2.6GHz in H-plane with the gain fluctuation less 

than 3dB, narrow half power beamwidth (40°) and low side lobe level (-10dB) have been 

achieved. 

In summary, the investigations of single antenna design and array geometry are shown in 

Figure 2.58 and Figure 2.59. 

In the next chapter, UWB feeding network for the linear antenna array will be discussed. 

Chapter 4 will focus on using high accurate analogue shifters to achieve real phase excitations. 

Moreover, full system fabrication and characterisation will also be presented in Chapter 4. 
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Figure 2.58: Investigation of Planar Monopole Antenna with Archimedean Spiral Slots 
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Figure 2.59: Investigation of Four-Element Linear Antenna Array 
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3.1 Introduction 

Another important element in a smart antenna array is the feeding network, which 

controls the amplitude and phase excitations of the antennas. This chapter concentrates on the 

design, simulation, optimisation and characterisation of various feeding network geometries.  

The conventional T-junction power divider is lossless, but suffers from the issue of not 

being matched at all ports. Moreover, there is no isolation between the output ports.  The 

resistance divider is able to match all the ports, however, the power loss is relative high and 

still no isolation is achieved. The Wilkinson power divider has been widely used in 

microwave communication systems, because it shows useful property of being lossless when 

the output ports are matched, and only the reflected power is dissipated. 

The fundamental Wilkinson power divider and its equivalent circuit has been analysed, 

designed and simulated, targeting at 2.45GHz. Modifications and improvements have been 

made to the basic structure, in order to obtain multiband and reconfiguration performance. 

The divide circuit is designed in Agilent Advanced Design System, and later imported to CST 

Microwave Studio for full wave simulations.  

This chapter is divided into seven sections. Section 3.2 describes the introduction, theory 

and analysis of the fundamental Wilkinson power divider. Based on the standard structure, 

Section 3.3 investigates implementing the feeding network on high resistivity silicon (HRS) 

and Aluminium wafers. Section 3.4 presents a compact feeding network for circular antenna 

array. Reconfigurable feeding network for dual circular polarised antenna array is discussed 
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in Section 3.5, and reconfigurable feeding network for tuning the operating frequency is 

shown in Section 3.6. Section 3.7 presents an ultra-wideband (UWB) feeding network for 

smart antenna array. Finally, Section 3.8 summaries the chapter. 

3.2 Fundamental Wilkinson Power Divider Design 

3.2.1 Introduction 

Power dividers are passive components in microwave communication systems, using for 

power division or power combination, as depicted in Figure 3.1 [37]. 

 

(a)                                                           (b) 

Figure 3.1: (a) Power Division (b) Power Combination [37] 

In power division, an input RF signal is distributed into two (or more) individual signals 

with less power. The divider could be a three-port circuit (as shown in Figure 3.1), with or 

without loss, and also would be a four-port geometry. Three-port structure may take the form 

of T-junctions, while four-port networks take the form of directional couplers and hybrids 

[37]. Power dividers can achieve both of equal (3dB) and unequal power divisions, depending 

on the system requirements. Directional couplers are usually designed for arbitrary power 

distribution, and hybrid junctions have equal power splitting. Moreover, hybrid junctions 

demonstrate either a 180º (Magic-T) or a 90º (Quadrature) phase shift between the output 

ports. 

A wide variety of power dividers and couplers have been investigated and characterised, 

which include E-Plane waveguide T-junction, H-Plane waveguide T- junction, multi-hole 

directional coupler, Magic-T coupler, the Bethe hole coupler and the Schwinger coupler. 

Furthermore, there are many other couplers and dividers utilising coaxial probe, stripline and 

microstrip technologies, such as branch line hybrid, coupled line coupler and Wilkinson 

power divider. 

3.2.2 T-Junction Power Divider Structure 

T-junction is the simplest configuration of power divider, which is a three-port network 

and can be used for power splitting and combining. The T-junction is able to be implemented 
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in any type of transmission lines. Figure 3.2 illustrates some T-junctions in waveguide and 

microstrip structures. 

    

       (a)                                                                    (b) 

 

(c) 

Figure 3.2: Various T-Junction Power Dividers: (a) E-Plane Waveguide (b) H-Plane Waveguide 

(c) Microstrip T-Junction 

The scattering matrix of an arbitrary three-port network has nine elements: 

                                                               

         
         
         

                                                 (3.1) 

When the network is passive and contains no anisotropic materials, the power divider 

should be reciprocal and the [S] matrix must be symmetric (Sij=Sji).  The ideal case is to 

construct a junction with lossless and matched at all ports.  However, it is impossible to build 

such a three-port lossless reciprocal network with all ports matched.  

If all ports are matched, then S11=S22=S33=0, and if the network is reciprocal, the [S] 

matrix is simplified to 

                                                               

       
       
       

                                                  (3.2) 

If the three-port network is also lossless, then the energy conservation requires the [S] 

matrix should be unitary, which generates the following conditions: 
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  1                                                        (3.3) 

                                                              
       

  1                                                        (3.4) 

                                                              
       

  1                                                        (3.5) 

                                                                
                                                                        (3.6) 

                                                                
                                                                        (3.7) 

                                                                
                                                                        (3.8) 

Equations (3.6) to (3.8) demonstrate at least two of the three parameters (S12, S13, and S23) 

should be zero.  However, this condition will always be inconsistent with one of the 

Equations (3.3) to (3.5), which means a three-port network cannot be lossless, reciprocal and 

matched at all ports [37].   

Lossless T-junction is able to be implemented, and the transmission line model is 

presented in Figure 3.3. As discussed before, such configuration cannot be matched 

simultaneously at all ports.  

 

Figure 3.3: Transmission Line Model of a Lossless T-Junction [37] 

There are fringing fields and higher order modes associated with the T-junction. The 

stored energy can be represented by a lumped susceptance, B.  For the T-junction power 

divider, in order to match the input characteristic impedance Z0, the following equation can be 

satisfied. 

                                                                       
 

  
 

 

  
 

 

  
                                                 (3.9) 

If the transmission lines are lossless (or with low loss), then the characteristic impedances 

are real. In that condition, B=0, and Equation (3.9) is reduced to 
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                                                       (3.10) 

 In reality, if B is not negligible, some reactive tuning elements will be utilised into the 

divider configuration, in order to cancel the susceptance, at least over a narrow frequency 

band. 

The output line impedance Z1 and Z2 can be calculated to generate various power division 

ratios. For a 50Ω input transmission line, a 3dB (equal split) power divider can be designed 

by using two of 100Ω output lines. If necessary, λ/4 transformers could be used to bring the 

output line impedances back to the desired values. When the output lines are matched, then 

the input line will also be matched, however, there will be no isolation between the output 

ports.  

Alternatively, a three-port network can be realised with lossless and reciprocal, if only 

two of its ports are matched. If Port 1 and Port 2 are matched, then the [S] matrix could be 

defined as 

                                                                       

       
       
         

                                                   (3.11) 

In order to be lossless, the following unitarity conditions should be achieved: 

                                                                       
2 +      

2 =1                                                     (3.12) 

                                                                              
2 +      

2 =1                                                     (3.13) 

                                                                      
2 +      

2 +     
2 =1                                               (3.14) 

                                                                         
                                                                 (3.15) 

                                                                  
         

                                                       (3.16) 

                                                                
         

                                                  (3.17) 

Equations (3.12) and (3.13) present that |S13|=|S23|, so Equation (3.15) generates that 

S13=S23=0. Then, |S12|=|S33|=1.  The [S] matrix and signal flow diagram for this kind of three-

port network are illustrated in Figure 3.4. Actually, the network consists of two individual 

elements, one a matched two-port line and the other a totally mismatched one-port [37]. 

                                                       
     
     
     

                                              (3.18) 
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Figure 3.4: A Reciprocal, Lossless Three-Port Network Matched at Port 1 and 2 [37] 

Finally, if the thee-port network is allowed to be lossy, it is able to be reciprocal and 

matched at all ports. This is the case of the resistive power divider, which will be discussed in 

the following section.  

3.2.3 Resistive Power Divider Configuration 

If a three-port network contains lossy components, its output ports can be all matched, 

although there is still no isolation between the output ports. Figure 3.5 illustrates a power 

divider structure using lump-element resistors. 

 

Figure 3.5: Equal-Split Three-Port Resistive Power Divider [37] 

The resistive power divider can be calculated using standard circuit theory. All of the 

ports are terminated with the characteristic impedance Z0. The impedance of Z0/3 resistor 

together with the output line is defined by Equation (3.19). 
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                                                                   Z  
  

 
 Z  

   

 
                                                      (3.19) 

The input impedance of the divider is 

                                                      Z   
  

 
 

   

 
 Z                                                   (3.20) 

Equation (3.20) demonstrates that the input is matched to the feeding line. Since the 

resistive power divider is symmetric, all of the ports are matched. 

                                                                                                                          (3.21) 

If the voltage at port 1 is V1, then the voltage at the centre of the junction is 

                                                           
     

          
 

 

 
                                                (3.22) 

 And the output voltages are calculated by 

                                                        
  

       
 

 

 
  

 

 
                                   (3.23) 

Thus, S21=S31=S23=1/2, refers -6dB below the input power. The resistive power divider is 

reciprocal, so the [S] matrix is symmetric, which could be simplified to 

                                                                    
 

 
 
 1 1
1  1
1 1  

                                                 (3.24) 

The power delivered into the resistive divider is 

                                                                            
 

 

  
 

  
                                                        (3.25) 

And the output powers are 

                                                         
 

 

       
 

  
 

 

 

  
 

  
 

 

 
                                           (3.26) 

Equation (3.26) illustrates that half of the power is dissipated in the resistors. 

3.2.4 Wilkinson Power Divider Introduction 

The T-junction power divider is lossless, but suffers from the issue of not being matched 

at all ports. Moreover, there is no isolation between output ports. The resistive divider can 

match the ports, but it is lossy and also without isolation. The Wilkinson power divider is an 

improved three-port network, which is lossless when the output ports are matched, with high 

isolation and only reflected power is dissipated. 
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The Wilkinson power divider can be designed to provide arbitrary power division. In this 

section, equal-split (3dB) structures will be presented, in order to construct the suitable 

feeding network for the smart antenna array system.   

Various Wilkinson power dividers have been investigated and characterised. They 

differed in dimensions, fabrication materials, application of extra circuit components and 

integration methods. 

With the development of microwave communication, the performance of Wilkinson 

power divider has been improved in many directions. In [40], an uniplanar MMIC Wilkinson 

power divider utilising ACPS series stubs has been presented. They use short-circuit series 

stubs in the signal conductor of an asymmetric coplanar stripline (ACPS) transmission line as 

a circuit element, in order to achieve a significant size reduction of a MMIC Wilkinson 

divider. The stubs are able to shorten the λ/4 transmission lines by approximately 35%. [41] 

proposes a method to increase the operating frequency range of a Wilkinson power divider. 

The broadband micro-coaxial Wilkinson divider operates from 2 to 22 GHz, demonstrating an 

11: 1 bandwidth. The divider circuits are fabricated on silicon wafer with PolyStrata 

technology and implemented with 650µm×400 µm air-supported micro-coaxial lines. In [42], 

another 3dB Wilkinson power divider on low resistivity silicon substrate with a polyimide 

interface layer has been demonstrated. The design utilises finite ground coplanar (FGC) line 

technology, and operates at a centre frequency of 15 GHz. Low insertion loss, high return loss 

and suitable isolation are obtained. Moreover, many researchers add extra circuit elements 

into the Wilkinson power divider to enhance the performance. Since the quarter wave length 

lines have a significant dimension, causing a high MMIC fabrication cost, a lumped elements 

Wilkinson divider has been developed [43], which replaces the transmission lines with 

lumped capacitors and inductors. However, a lumped inductor with low loss and high self-

resonant frequency is difficult to achieve, especially at a very high frequencies (f>10GHz). 

An improved lumped-distributed Wilkinson divider [44] is able to solve this problem. The 

structure removes the inductor and adds another two capacitors. One is between the output 

ports in series with the isolation resistor, and the other is in parallel with the input signal. By 

adjusting the capacitor values, it is possible to generate suitable RF performance and reduce 

the circuit dimension. Furthermore, Wilkinson power dividers can be designed to supply 

phase shifts to the antennas [45, 46].   
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3.2.5 Wilkinson Power Divider Equivalent Circuit Analysis 

 

Figure 3.6: Wilkinson Power Divider Equivalent Transmission Line Circuit 

Figure 3.6 depicts the equivalent transmission line circuit of Wilkinson power divider. For 

simplicity, all impedances can be normalised to the characteristic impedance Z0, and the 

circuit is redrawn in Figure 3.7, with voltage generators at the output ports.  

 

Figure 3.7: Wilkinson Power Divider in Normalised and Symmetric Form [37] 

The three-port network is symmetric across the middle plane. The two source resistors Z1 

are combined in parallel to generate a resistor of normalised value. Z2 presents the impedance 

of a matched source. The λ/4 transmission line shows a normalised characteristic impedance 

Z, and the lumped resistor has a normalised value of r. As shown in Figure 3.6, for a 3dB 

(equal-splitting) Wilkinson power divider, Z =   Z0, r = 2Z0.  

Even-Odd mode analysis has been used to design the Wilkinson power divider. For even 

mode, Vg2 = Vg3 =2V, and in odd mode, Vg2 = -Vg3 =2V. By superposition of the two modes, 

an excitation of Vg2 =4V and Vg3 =0 could be obtained, which can be used to define the S-

Parameters of the network [37]. 
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Figure 3.8: Bisection of the Circuit for Even Mode Excitation [37] 

Even Mode: In the even mode excitation, Vg2 = Vg3 =2V,   
    

 , and there is no 

current flow through the r/2 resistors or the short circuit between the inputs of the two 

transmission lines at Port 1. Then the equivalent circuit in Figure 3.7 can be simplified into 

bisection in Figure 3.8 with open circuits. Looking into Port 2, the impedance is 

                                                                          Z  
  

  

 
                                                         (3.27) 

The transmission line works as a λ/4 transformer. If Z =   Z0, Port 2 will be matched for 

even mode excitation, and then,   
   , Z  

  Z. The r/2 resistor is superfluous in the even 

mode. If x=0 at Port 1 and x=- λ/4 at Port 2, the voltage on the transmission line can be 

written as: 

                                                                   Γ                                             (3.28) 

                                                   
    − 

        1 − Γ                                        (3.29) 

                                                       
          1  Γ    

   

   
                                   (3.30) 

The reflection coefficient Γ is that seen at Port 1, looking to the resistor of normalised 

value 2Z0, so 

                                                                          Γ  
    

    
                                                        (3.31) 

Thus  

                                                                           
  −                                                       (3.32) 
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Figure 3.9: Bisection of the Circuit for Odd Mode Excitation [37] 

Odd Mode: In the odd mode excitation, Vg2 = -Vg3 =2V,   
    

 , and there is a voltage 

null along the middle of the equivalent circuit in Figure 3.7. The bisection circuit is illustrated 

in Figure 3.9, by grounding the network at two points on its middle plane. Looking into Port 2, 

there is an impedance of r/2. The paralleled transmission line is λ/4 long and shorted at Port 1, 

and it seems an open circuit at Port 2. So Port 2 will be matched in the odd mode excitation if 

r=2Z0. Thus   
    and    

   , which means all of the power is transmitted to the r/2 

resistors, none is going to Port 1. 

Figure 3.10(a) shows an equivalent circuit of Wilkinson power divider when Port 2 and 

Port 3 are terminated in matched loads. It is similar to an even mode excitation, since V2=V3. 

There is no current flow through the resistor of 2Z0, and it could be removed. The simplified 

circuit is demonstrated in Figure 3.10(b). The paralleled two λ/4 transformers are terminated 

in normalised loads, and the impedance is calculated by: 

                                                         Z   
 

 
   Z  

  Z                                            (3.33) 

 

(a) 
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(b) 

Figure 3.10:  (a). Terminated Wilkinson Power Divider (b).Bisection Wilkinson Power Divider  

[37] 

Finally, the S-Parameters can be summarised  

                                                S11= 0 (Zin= Z0 at Port 1)                                                 (3.34) 

        S22 = S33= 0 (Ports 2 and Port 3 are matched for even mode and odd mode)         (3.35) 

             S12=S21= (  
 +  

      
    

   -j/    (Symmetry due to reciprocity)            (3.36) 

                              S13 = S31=-j/    (Symmetry of Ports 2 and Port 3)                          (3.37) 

                                 S23 = S32= 0 (Due to short or open at bisection)                            (3.38) 

It can be seen from the above equations, all ports are matched when the divider is 

terminated with matched loads. When the network is driven at Port 1 and the outputs are 

matched, no power is dissipated in the resistor. So the Wilkinson power divider is lossless 

when the output ports are matched, only reflected power at Port 2 and Port 3 are lost by the 

resistor. Because S23 = S32= 0, there is a high isolation between Port 2 and Port 3. 

3.2.6 Wilkinson Power Divider Design 

 

Figure 3.11: Structure of the Wilkinson Power Divider [47] 
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The Wilkinson power divider is one of the essential components in various wireless 

communication systems and it has been widely utilised for power division and combination 

for antenna feeding networks. In the conventional Wilkinson power divider structure, as 

shown in Figure 3.11, two lengths of λ/4 transmission lines with   Z0 impedance and a 

characteristic impedance of 2Z0 are placed between the output ports, for the purpose of 

providing return loss (-10dB) , insertion loss (-3.2dB), correct impedance matching (50Ω) and 

high isolation (-10dB).  

 

Figure 3.12: Equivalent Lumped Component Circuit of Lossless Transmission Line [48] 

Figure 3.12 depicts the schematic representation of the elementary component of a lossless 

transmission line. Resistive effects have been neglected and there is no Joule effect loss 

because only reactive elements are presented. Since the dielectric substrate thickness is very 

thin compared to the wavelength (h<<λ), a quasi-TEM mode has been used for the circuit 

analysis [37]. The characteristic impedance Z0 (50Ω) can be rewritten in Equation (3.39) and 

(3.40). 

                                                    Z0 = 
  

   
 n  

  

  
 

  

  
                                                 (3.39) 

                                        Z0 = 
    

    
  

                 
  

          
                               (3.40) 

Where, wm shows the width of the transmission line and h represents the thickness of the 

substrate. εe demonstrates the effective dielectric constant of the substrate, which is given by: 

                                                   εe = 
    

 
   

    

           
                                            (3.41) 

Where, εr stands for the dielectric constant of the substrate. By using the equations (3.39) 

to (3.41), the most important parameter, port width of the Wilkinson power divider is able to 

be determined. Then, the full structure can be completed by utilising the following equations.    

                            
  

 
 

   

  
 

 

  
 

      

 
                                 (3.42) 

                                                               
 

         
 

 

   
                                                   (3.43) 
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                                                               (3.44) 

                                                                   
  

 
 

 

      
                                                       (3.45) 

Where, L and C illustrate the equivalent inductor and capacitor for the lossless 

transmission line, respectively. β stands for the wave propagation constant, vp represents the 

phase velocity and ω demonstrates the angular frequency.  

In this chapter, the Wilkinson power divider with two materials have been implemented 

and characterised. Firstly, silicon substrate and aluminium transmission lines are used to 

construct the power divider. The silicon substrate thickness is 380 um. The relative dielectric 

constant and relative permeability are 11.9 and 1, respectively. The aluminium conductor 

thickness is 6um and its conductivity is 3.5 10
7
. Using the equations from (3.39) to (3.45), 

the width of the input and output ports are 0.278mm, in order to match the line impedance at 

50 Ω. Secondly, copper transmission lines with a conductivity of 5.89  10
7
 was etched on an 

FR4 printed circuit board (with a thickness h=1.6mm and relative dielectric constant, εr=4.55). 

The operating frequency is 2.45GHz, targeting WiFi applications. By calculation, the width of 

the input and output ports are 3.09mm. 

Based on the above design procedures, several individual Wilkinson power dividers have 

been designed, calculated and simulated using electromagnetic simulators, Agilent Advanced 

Design System (ADS) and CST Microwave Studio. The following S-Parameters have been 

observed and optimised. 

 

Figure 3.13: S-Parameter Relationships 

S11= 20 log10 (
  

  
 , which represents the reflection coefficient at the input port.  

S22= 20 log10 (
  

  
 , which demonstrates the reflection coefficient at the output port.                                                                                                     

S21= 20 log10 (
  

  
 , which shows the forward gain between the input and output.                     
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S23= 20 log10 (
  

  
 , which illustrates the isolation coefficient between the two output ports 

S11 is related to the return loss and S21 could be used to determine the insertion loss. 

Return loss is the negative of the magnitude of the reflection coefficient in dB. Since 

power is proportional to the square of the voltage, return loss is given by: 

                                               Return Loss = -20log10|S11|                                              (3.46) 

Insertion loss is defined as 

                                              Insertion Loss = -20log10|S21|                                            (3.47) 

Based on the fundamental Wilkinson power divider, multiband and reconfigurable feeding 

networks for smart antenna arrays have been constructed.  

3.3 Enhanced Wilkinson Divider on Si Substrate for Energy Efficient 

Microwave Applications 

3.3.1 Introduction 

The Wilkinson Power Divider is one of the essential components in radio frequency 

design field, used mainly for power division or combination in different microwave 

applications such as balanced amplifiers, mixers, and feeding networks of antenna arrays. 

Presently works have demonstrated that the performance of the conventional Wilkinson 

power divider can be improved by utilising different technologies. There are two approaches 

in the literature to increase the operating bandwidth of the divider. The first approach uses 

resonators [49], planar artificial transmission lines [50], coupled lines [51], and lumped 

elements [52], in order to achieve a multi-frequency Wilkinson power divider. The other 

approach utilising multi-layered structure [53], multi-section λ/4 lines [46, 54], and composite 

right-left-handed transmission lines [55], to generate an ultra wideband (UWB) Wilkinson 

divider. Meanwhile, there are lots of efforts to miniaturise the power dividers dimensions [56-

58]. However, most of the geometries are based on FR4 substrate, which limits the 

miniaturisation and performance.  

This section presents the design, simulation, fabrication, and experimental results of an 

enhanced 1:2 Wilkinson Power Divider fabricated on high resistivity Silicon (HRS) and 

aluminium wafer. Designed and simulated in Agilent Advanced Design System, this structure 

exceeds the characteristics of many Wilkinson dividers presented recently in the literature. 

The enhanced design provides suitable S-parameters and with significantly size reduction, by 

using Silicon substrate and optimising the transmission line segments from λ/4 to λ/8, 
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targeting compact portable devices. At the desired frequency (2.4GHz), the reflection 

coefficients at input and output ports are smaller than -42dB, compared to -30dB for previous 

designs on FR4 substrate. For the insertion loss and isolation coefficient, the enhanced design 

also demonstrates better performance results. Fabrication and measurement results closely 

correlate with those obtained during simulations. The presented configuration is particularly 

suited to energy efficient microwave systems [59]. 

3.3.2 Enhanced Wilkinson Power Divider Geometry 

      

Figure 3.14: Enhanced Wilkinson Power Divider (a) Schematic (b) Layout [59] 

Figure 3.14 illustrates the configuration of the enhanced Wilkinson power divider.  The 

structure is designed to cover 2.4GHz, applying for WiFi and Bluetooth standards. For 

material properties, the silicon substrate thickness is 380 um, the relative dielectric constant is 

11.9 and the resistivity is (ρ>25000S/m). The aluminium conductor thickness is 6um and its 

conductivity is 3.5 10
7
. The design utilises a 100Ω smallest thin-film centre-tapped resistor 

(CTR, 0.76mm x 0.76mm) from VISHAY to provide perfect isolation [60], as illustrated in 

Figure 3.15. The CTR series is a centre-tapped chip resistor providing excellent stability with 

250mW power levels. Moreover, the CTR’s six bonding pads allow the user to increase 

layout flexibility [60]. VISHAY CTR chip resistor chips are mainly used in RF circuits where 

ratio matching, high power and tracking between two resistors is critical. A simulated model 

of this resistor is placed between the output ports (green block in Figure 3.14(b)).  

 

Figure 3.15: Thin Film, Centre-Tapped Resistors (CTR) 
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                                   (a)                                                                    (b) 

Figure 3.16:  (a) Wilkinson Power Divider Design Parameters (b) Optimisation Results 

By using the equations in Section 3.2, the design parameters of the Wilkinson power 

divider have been calculated, as showed in Figure 3.16(a). In ADS, S11, S21, S22 and S23 are 

defined as optimisation targets. Length of the λ/4 transmission lines and size of the output 

ports are variables which have been optimised, in order to miniaturise the circuit dimension 

and achieve suitable S-parameters (as illustrated in Figure 3.16(b)). By using the high relative 

dielectric constant and high resistivity silicon substrate, much better S-Parameters are 

achieved compared to those dividers fabricated on FR4. Figure 3.17 illustrates the optimised 

configuration. 

 

Figure 3.17: 3D View of the Optimised Enhanced Wilkinson Power Divider 

Figure 3.18 to Figure 3.21 demonstrate the simulated S11, S22, S21 and S23 results of the 

proposed enhanced Wilkinson power divider. The reflection coefficients at input and output 

ports are all smaller than -35dB at 2.4GHz. The insertion loss between Port 2 and Port 1 is 
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3.2dB, which showing the divider is splitting power equally. Figure 3.21 depicts that good 

isolation (-39dB) has been obtained between the output ports at the centre frequency. 

 

Figure 3.18: Simulated Reflection Coefficient (S11) at the Input Port is -42.219dB at 2.4GHz   

 

Figure 3.19: Simulated Reflection Coefficient (S22) at the Output Port is -35.276dB at 2.4GHz 
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Figure 3.20: Simulated Insertion Loss between Port 2 and Port 1 is 3.2dB at 2.4GHz 

 

Figure 3.21: A Good Isolation (S23) is Achieved (-38.892dB) Between Output Ports 

Dimension of the enhanced Wilkinson power divider is 9.9mm  8.64mm. 

Accordingly, the occupied space of the proposed geometry is only 35% of that of the 

conventional Wilkinson power [61]. The proposed configuration is constructed on 

high resistivity Silicon (HRS) wafers (ρ>25000S/m), which are utilised to overcome 

some disadvantages of traditional microwave circuits, such as the high loss of lumped 

elements, transmission lines, filters and antennas [62-64]. Compared to another 

Wilkinson power divider fabricated on low resistivity Si substrate with a polyimide 

interface layer [65], the proposed implementation is demonstrating much better S11 

performance (-42dB versus -20dB). 
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3.3.3 Enhanced Wilkinson Power Divider Fabrication and Characterisation 

The enhanced Wilkinson power divider has been fabricated on high resistivity silicon 

wafer, in the Scottish Microelectronics Centre (SMC). Figure 3.22 demonstrates the wafer 

layout. The original wafer is shown in Figure 3.23(a), and the components after dicing are 

presented in Figure 3.23(b). 

 

Figure 3.22: Silicon Wafer Layout 

   

(a)                                                  (b) 

Figure 3.23: (a) Original Wafer (b) Test Components after Dicing 

The divider has been subsequently characterised with an HP8753C vector network 

analyser (VNA), controlled by a PC, a Bausch & Lomb microscope and an RF probe station 

(illustrated in Figure 3.24 and Figure 3.25). Calibration was done with Short-Open-Load-

Through (SLOT) using an impedance standard substrate. 
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Figure 3.24: Vector Network Analyser, PC, Microscope and RF Probe Station 

            

Figure 3.25: The Fabricated Divider and RF Probes Measurement 

Since the Wilkinson power divider is a three port network and the VNA is a two port 

system, the third port of the divider was terminated with a specially built microprobe that 

incorporates a 50 termination. 

Figure 3.26 demonstrates the measured S11 of the enhanced Wilkinson power divider, 

which is -42.637dB at the desired frequency (2.4GHz). 

 

Figure 3.26: Measured S11 of the Enhanced Wilkinson Power Divider: S11 is -41.637dB at 2.4GHz 



Chapter 3: Reconfigurable and Ultra-Wideband Feeding Network for Smart Antenna Array 

  75 

Table 3.1 compares the simulated and measured S-Parameters of the enhanced silicon 

based Wilkinson power divider. 

Table 3.1: S-Parameters of the Enhanced Wilkinson Power Divider 

 S11(dB) S22(dB) S21(dB) S23(dB) 

Simulation -42.21 -35.27 -3.21 -38.89 

Measurement -42.63 -32.32 -3.29 -35.17 

 

From Table 3.1, it is clear that a good consistency between the simulated and measured S-

Parameters. At the centre frequency (2.4GHz), the reflection coefficient (S11) of the proposed 

divider was simulated and measured to be smaller than -40dB. The insertion loss between the 

input and output ports was simulated and measured to be around 3.2dB (showing equal-

splitting). Similarly, the isolation coefficient (S23) between the output ports was measured to 

be smaller than -35dB. There is a slight discrepancy at the resonance frequency, which could 

be attributed to either fabrication errors or a small deviation of the silicon dielectric constant 

from 11.9. The only disadvantage of the proposed structure is the cost of silicon substrate. 

The developed feeding networks can be applied to industrial, scientific, SIMO 

communication and energy efficient microwave systems.  

3.4 A WiFi/LTE Compact Feeding Network for an 8-Element 

Circular Antenna Array   

3.4.1 Introduction 

A Wilkinson power divider is a fundamental element in microwave systems such as the 

feeding network of an antenna array. Currently, most researches in this area focus on multiple 

operating frequencies [49, 51], broadband operating frequency ranges [66, 67] and unequalled 

power deviation [68-70]. However, majority of these structures are aimed at linear antenna 

arrays.  

An antenna array which combines several individual antenna elements in certain electrical 

and geometrical configurations can satisfy the gain and highly directive radiation pattern 

required by long distance communication systems [71, 72]. By applying different algorithms 

and methods, classical linear arrays can be designed to generate a radiation pattern to match 

the desired pattern as closely as possible [73, 74]. Furthermore, interests in the development 

of antenna arrays with other geometrical shapes have been steadily on the rise. For example, 
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circular antenna arrays have various applications in radar, sensor and commercial satellite 

communication systems [75, 76]. 

This section demonstrates a novel one-to-eight compact feeding network based on 

Wilkinson power dividers for a circular antenna array. The network is composed of four 1:2 

conventional Wilkinson power dividers. The outputs are revolved at 45° in order to satisfy the 

circular geometry on an FR4 substrate. Antenna elements are connected at the opposite side 

of the substrate through eight feeding pins. Furthermore, dimension of the feeding network 

has been optimised and miniaturised targeting compact portable devices. The proposed 

structure is applied to WiFi and LTE/LTE frequency bands. Designed and examined with the 

CST Microwave Studio, this feeding network provides high return loss (10dB), suitable 

insertion loss (9.6dB) and high isolation (-10dB) parameters for the designated frequency 

ranges. Fabrication and measurement results closely correlate with simulation results. The 

configuration can be used in SIMO and MIMO communication systems [77]. 

3.4.2 Individual Modified Wilkinson Power Divider Geometry 

The schematic of fundamental Wilkinson power divider is illustrated in Section 3.2.6. In 

this design, the resonant frequencies are tuned for 2.45GHz and 2.6GHz, targeting WiFi and 

LTE/4G frequency bands. For FR4 substrate and copper transmission lines, the following 

parameters are utilised: substrate thickness = 1.6mm, relative permeability of FR4 = 1, 

relative dielectric constant of FR4 = 4.3, conductor thickness = 35um, and conductor 

conductivity = 5.89   10
7
. The width of the input port and output ports are set to 3.059mm in 

order to match the line impedance at 50Ω. The design has been calculated using the methods 

in Section 3.2 6, and then simulated and optimised for the S-Parameter performance.  

Figure 3.27 presents the structure of the single Wilkinson power divider. The design was 

simulated and verified with CST Microwave Studio. An RF resistor is placed between the 

output ports to provide high isolation (-10dB). According to discrete component manufacturer, 

VISHAY, the smallest thin-film, centre-tapped resistor (CTR) is 0.76mm x 0.76mm. A model 

of this resistor has been made and placed in the middle of the two output ports. 
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Figure 3.27: Individual Wilkinson Power Divider 

For an 8-element circular antenna array, the separation angle between output ports is 

360/8=45°. Figure 3.28(a) plots the modified Wilkinson power divider whose outputs have 

been rotated in order to obtain 45° angle. The lengths of the output transmission lines are 

made long enough in order to satisfy the requirements for circular feeding network. Figure 

3.28(b) depicts the optimised structure of the modified Wilkinson power divider. The target 

frequencies are 2.45GHz and 2.6GHz. 

     

(a)                                                       (b) 

Figure 3.28: (a) Modified Wilkinson Power Divider (b) Optimised Structure Based on the 

Modified Wilkinson Power Divider 

Figure 3.29 presents the simulated S11 for the optimised and modified Wilkinson power 

divider. The reflection coefficient at Port 1 (S11) is -14.905dB and -15.348dB for 2.45GHz 

and 2.6GHz, respectively.  
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Figure 3.29: Simulated Reflection Coefficient (S11) of the Proposed Optimised Wilkinson Power 

Divider 

Table 3.2 summarises all simulated S-Parameters of the optimised Wilkinson power 

divider at 2.45GHz and 2.6GHz. It is clear from simulation results that the return loss, 

insertion loss and isolations are all adequate for the required frequency ranges. The dimension 

of this optimised layout is 21mm   18mm.  The total size can be miniaturised further to meet 

different requirements.   

Table 3.2: Simulated S-Parameters of the Optimised Wilkinson Power Divider 

 S11(dB) S22(dB) S21(dB) S23(dB) 

2.45 GHz -14.9 -14.3 -3.2 -21 

2.6 GHz -15.3 -14.6 -3.2 -23 

 

3.4.3 Feeding Network Configuration  

Four of the optimised Wilkinson power dividers have been connected in order to create a 

circular feeding network, as illustrated in Figure 3.30. The sections of the feeding network are 

revolved at an angle of 45° with respect to output waveguides of the power divider. The 

radius of the presented circular feeding network is 25mm. 
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Figure 3.30: Structure of the Circular Feeding Network 

In order to achieve suitable reflection coefficient at the power input port (S11), a 

meandered structure was used, as shown in Figure 3.31.  

 

Figure 3.31: Geometry of the Circular Feeding Network with Meandered Input 

This circular feeding network has been fabricated using the same dimensions from the 

simulation environment. Figure 3.32 demonstrates a photo of the fabricated circular feeding 

network. 

  

Figure 3.32: Photo of the Fabricated Prototype of the Circular Feeding Network 
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S-Parameter measurements were conducted using an HP8753C network analyser. Figure 

3.33 and Figure 3.34 show the simulated and measured reflection coefficient S11 respectively 

of the circular one-to-eight feeding network. 

 

Figure 3.33: Simulated S11: S11 is -15.03dB and -15.01dB at 2.45GHz and 2.6GHz 

 

Figure 3.34: Measured S11 Parameter: S11 is -16.37dB and -12.34dB at 2.45GHz and 2.6GHz 

Table 3.3 compares the simulated and measured S-Parameters of the circular feeding 

network at 2.45GHz and 2.6GHz. Clearly the results reveal a good correlation between 

simulation and measurement. The reflection coefficients (S11, S22, S33,…S99) are all under -

10dB.  Theoretically, for an eight port feeding network, the forward gains (S21, S31,…S91) 

should be around -9.6dB [37]. The measured gains are around -10.2dB, which are strongly 

deteriorated by high FR4 substrate losses. High isolation coefficients (-10dB) between 

adjacent ports (S23, S34,…S89) have been achieved. 
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Table 3.3: Simulated and Measured S-Parameters for Circular Feeding Network 

 

 2.45GHz 

Simulated 

2.45GHz 

Measured 

2.6GHz 

Simulated 

2.6GHz 

Measured 

S11 -15 dB -16.4 dB -15 dB -12.3 dB 

S22 -13 dB -14 dB -14 dB -12 dB 

S33 -13 dB -12 dB -14 dB -12 dB 

S44 -12 dB -13 dB -13 dB -11 dB 

S55 -13 dB -12 dB -13 dB -11 dB 

S66 -12 dB -13 dB -12 dB -10 dB 

S77 -13 dB -12 dB -14 dB -11 dB 

S88 -13 dB -13 dB -14 dB -12 dB 

S99 -12 dB -13 dB -13 dB -11dB 

S21 -9.6 dB -9.9 dB -9.7dB -9.9 dB 

S31 -9.7 dB -10.1 dB -9.8dB -10.3 dB 

S41 -9.8 dB -10.3 dB -10.1dB -10.4 dB 

S51 -9.9 dB -10.2 dB -9.9 dB -10.3 dB 

S61 -9.9 dB -10.3 dB -10dB -10.4 dB 

S71 -10 dB -10.4 dB -10.1dB -10.5 dB 

S81 -9.8 dB -10.1 dB -9.9 dB -10.4 dB 

S91 -9.9 dB -10.3 dB -9.9 dB -10.3dB 

S23 -15 dB -18 dB -16 dB -15 dB 

S34 -14 dB -19 dB -15 dB -14 dB 

S45 -14 dB -18 dB -15 dB -14dB 

S56 -13 dB -17 dB -14 dB -13 dB 

S67 -15 dB -20 dB -15 dB -14 dB 

S78 -12 dB -15 dB -13 dB -15 dB 

S89 -14 dB -18 dB -14 dB -16 dB 

 

The design, simulation and measurement results of a novel one-to-eight compact circular 

feeding network have been described. The proposed configuration consists of four 1:2 

optimised Wilkinson power dividers with outputs revolving at an angle of 45° to suit circular 

antenna arrays. The structure presents suitable S-Parameters and occupies a small size of 

25mm radius circle (area of 1986mm
2
). At the desired frequencies 2.45GHz and 2.6GHz, the 

circular feeding network provides low reflection coefficient (-16.4dB, -12.3dB), suitable 

forward gain (-10.2dB, -10.2dB) and high isolation coefficient (-14dB, -15dB). A good 

correlation between simulation and measurement has been obtained. 



Chapter 3: Reconfigurable and Ultra-Wideband Feeding Network for Smart Antenna Array 

  82 

3.5 A Reconfigurable Feeding Network for a Dual Circularly 

Polarised Antenna Array 

3.5.1 Introduction 

The continuous miniaturisation of transceivers for mobile communications leads to an 

increasing demand for low profile, lightweight, compact, multiband and multi-function 

antennas. Reconfigurable mobile terminals have been developed which can fulfil these 

requirements but these require a single reconfigurable antenna element that is effective for the 

multiple systems. In a reconfigurable antenna, characteristics such as the operating frequency, 

bandwidth and radiation pattern could be modified in order to achieve different targets [78-

80].  

An important property of electromagnetic wave propagation is the polarisation of the 

electric field (E), which is determined by the orientation of the E vector as it varies in time 

[81]. When the electromagnetic wave travels in free space, it propagates as a transverse wave, 

and the polarisation is perpendicular to the wave’s direction of travel. In this case, if the 

electric field is oriented in a single direction, it defines as linear polarisation (horizontal or 

vertical). Otherwise, if the electric field rotates as the electromagnetic wave travels, it is 

defined as circular polarisation or elliptical polarisation [82]. Depending on the direction of 

electric field rotation (clockwise or counter-clockwise), left-hand circular polarisation 

(LHCP) and right-hand circular polarisation (RHCP) could be excited, respectively. 

Television broadcasting utilises linear polarisation and it is generally horizontally polarised. 

Several cellular operators use dual linear polarised propagation with the purpose of reducing 

the multipath interference, which otherwise produces fading. Nevertheless, for most of the 

point-to-point communication systems, such as radio frequency identification (RFID), 

satellite, navigation and mobile devices, it is preferable to operate with circular polarisation. 

The use of circular polarisation (CP) removes the need to continuously align the two 

antennas, maximises received power and also avoids the need of complex tracking systems.  

There are many methods to obtain CP, including feeding ring slot antenna with a strip line 

hybrid coupler [83],  adding a fan-shaped patch for an annular-ring antenna [84], cutting slot 

in a patch antenna [85], or applying mono-strip in the printed slot element to excite two near-

degenerate orthogonal resonant modes of equal amplitude and 90º phase difference [86]. CP 

antenna arrays, which combine individual antenna elements are able to achieve the directivity 

and gain requirements for long distance communication [77]. In [87], four circularly polarised 

antennas are excited by a standard T-junction power divider. In [88] and [89], four standard 

patch antennas are fed in phase quadrature to generate 90º phase difference for generating CP. 
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Moreover, [90] demonstrates an elliptical CP dielectric resonator antenna array using 

sequential feeding networks. However, all of these structures can only achieve single 

direction CP. Dual circularly polarised antenna arrays are presented in [91] and [92], but they 

have either complex multilayer structures or complicated switching arrangements. 

 This section describes a novel miniaturised reconfigurable, switchable feeding network 

for a four elements dual circularly polarised antenna array. The four feeds are in phase 

quadrature to generate a phase shift of 90º between each neighbouring antenna element, 

producing a circularly polarised pattern. The feeding network consists of three optimised 

Wilkinson power dividers which can be individually reconfigured in length using PIN diodes 

switches. By controlling the bias voltages on these PIN diodes, the 90º phase increment can 

be allocated in either clockwise or counter-clockwise directions. Two orthogonal patterns 

with left-hand circular polarisation (LHCP) and right-hand circular polarisation (RHCP) are 

obtained. The operating frequency is 2.45GHz, targeting WiFi/Bluetooth applications. Full-

wave simulations were carried out using Agilent Advanced Design System (ADS). With 

carefully miniaturisation and optimisation, the feeding network achieves a high return loss 

(10dB), equal power splitting, suitable insertion loss (3.2dB), high isolation (-10dB) and 

accurate phase difference. Fabrication and measurement results closely correlate with those 

obtained from simulations. The reconfigurable feeding network is particularly useful for 

diversity reception to combat channel fading in indoor wireless LAN applications [47]. 

3.5.2 Individual Wilkinson Power Divider Architecture 

The Wilkinson power divider is one of the essential components in various radio 

frequency circuits and it has been widely used for power division and combination for 

antenna feeding networks. For the conventional Wilkinson power divider configuration, as 

discussed in Section 3.2.6, two lengths of λ/4 transmission lines with   Z0 impedance and a 

characteristic impedance of 2Z0 are utilised between the output ports, for the purpose of 

providing low insertion loss, accurate impedance matching and perfect isolation. When Port 2 

and Port 3 are matched, the Wilkinson divider is a lossless network and only reflected power 

is dissipated [37]. 

In this implementation, copper transmission lines with a conductivity of 5.89× 10
7
 were 

etched on an FR4 printed circuit board (with a thickness h=1.6mm and relative dielectric 

constant, εr=4.55). The operating frequency is designed at 2.45GHz, targeting WiFi/Bluetooth 

applications. 
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Two individual Wilkinson power dividers (as shown in Figure 3.35 and Figure 3.36) have 

been designed, calculated, simulated and optimised using an electromagnetic simulator, 

namely Agilent Advanced Design System (ADS), for full-wave analysis. 

 

Figure 3.35: Wilkinson Power Divider with 90º Phase Shift  

 

Figure 3.36: Wilkinson Power Divider with 180º Phase Shift 

In Figure 3.35, the length of Port 3 is λ/4 longer than Port 2, which provides a 90º phase 

difference between the two outputs. Similarly, Figure 3.36 shows a Wilkinson power divider 

with λ/2 length difference, in order to produce a 180º phase shift. The simulation results of the 

two initial Wilkinson power divider geometries are plotted in Figure 3.37 to Figure 3.40. 
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Figure 3.37: Simulated S-Parameters (Magnitude) of Wilkinson Power Divider with 90º Phase 

Shift 

 

Figure 3.38: Simulated S-Parameters (Phase) of Wilkinson Power Divider with 90º Phase Shift 
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Figure 3.39: Simulated S-Parameters (Magnitude) of Wilkinson Power Divider with 180º Phase 

Shift 

 

Figure 3.40: Simulated S-Parameters (Phase) of Wilkinson Power Divider with 180º Phase Shift 

The two Wilkinson dividers share an identical configuration of transmission lines, same 

isolation resistor (2Z0=100Ω, SMD0603 from VISHAY [60]) and the identical design 

structure. By varying the length difference between two output transmission lines, the 

proposed geometries could produce 90º and 180º phase shift, respectively. 

Figure 3.37 illustrates all of the simulated S-Parameters in magnitude for the 90º phase 

shift Wilkinson power divider. At 2.45GHz, it provides low reflection coefficient (-27.05dB), 

suitable forward gains (3.45dB and 4.21dB) and high isolation (-24.65dB). S31(-4.21dB) is 
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greater than S21(-3.45dB), due to the additional λ/4 transmission line, which not only produces 

the 90º phase difference, but also increases the power loss at Port3. Figure 3.38 demonstrates 

the simulated phase of the S-Parameters. At 2.45GHz, S21 is 132.81º and S31 is 43.29º. A 

phase difference of 89.52º has been successfully generated. Figure 3.39 and Figure 3.40 depict 

correct S-Parameters and 179.4º (16.29º + 163.11º) phase difference for the second Wilkinson 

power divider architecture. It is clear from the simulation results that the two Wilkinson 

dividers are adequate for both of the required phase shifts. Furthermore, dimensions of the 

circuits have been miniaturised in order to be implemented for compact portable devices 

(26mm 29mm and 32mm 52mm, respectively). 

3.5.3 Design of the Reconfigurable Feeding Network 

 

Figure 3.41: Schematic of the Reconfigurable Feeding Network 

Based on the above design procedure, three individual Wilkinson power dividers in 

Section 3.5.2 and 24 PIN diodes are combined in order to produce the reconfigurable feeding 

network for dual circular polarisations. The schematic and geometry of the feeding network 

are illustrated in Figure 3.41. Furthermore simulations of transmission lines, PIN diodes 

locations and signal port dimensions have been made in order to optimise the S-Parameters. 

Figure 3.42 shows the final structure.   
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Figure 3.42: Configuration of the Proposed Feeding Network 

PIN diodes are widely used in microwave circuits because they have attractive properties, 

such as low power handling, low insertion loss, good isolation and low fabrication cost [78] 

[93]. There are 24 PIN diodes integrated into the feeding network to construct the 

reconfigurable circular polarisation. By controlling the bias voltages on the PIN diodes 

(represented by small red blocks in Figure 3.41), the feeding network may convert between 

two states and hence switch its circular polarisation (as presented in Figure 3.43 and Figure 

3.44). 

 

Figure 3.43: Circuit Configuration for Left-Hand Circular Polarisation (LHCP) 
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Figure 3.44: Circuit Configuration for Right-Hand Circular Polarisation (RHCP) 

When the PIN diodes D1, D4, D6, D7 D10, D11, D13, D16 D17, D20, D22 and D23 are in the ON-

state (forward bias) and others are in the OFF-state (reverse bias), the proposed configuration 

transfers to the circuit diagram illustrated in Figure 3.43. There is a λ/4 length increment from 

Port 2 to Port 5, which creates 90º, 180º and 270º phase shift between Port 2, Port 3, Port 4 

and Port 5. When this feeding network is connected to a four elements antenna array, the 

antenna elements will be fed in quadrature. The 90º phase delay is in clockwise direction and 

a left-hand circular polarisation (LHCP) will be excited. Similarly, when diodes D2, D3, D5, 

D8 D9, D12, D14, D15 D18, D19, D21 and D24 are supplied with forward bias voltages, the 

structure reduces to the circuit as plotted in Figure 3.44. From Port 2 to Port 5, there is a λ/4 

length decrement. The 90º phase delay is in the opposite direction compared with the 

geometry in Figure 3.43 (counter-clockwise), which converts the antenna array with a right-

hand circular polarisation (RHCP). These bias voltages are configured by an ARM 

microprocessor (LPC1768) and the control circuit has been implemented and fabricated. 

Detailed hardware implementation will be discussed in Chapter 5. 

 

        (a)                                         (b)                                    (c) 

Figure 3.45:  (a) PIN diodes Arrangement (b) Equivalent RLC Circuit of PIN Diode (c) PIN 

Diode Simulation Model in Agilent ADS 
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In Agilent ADS simulation environment, the packaged PIN diodes are modelled based on 

its equivalent RLC circuit (in Figure 3.45). Diodes of HSMP-389D (AVAGO) [94] with a 

dimension of 1.2mm  2mm are applied as switches, which guarantee low insertion loss 

(0.36dB) and high isolation (25dB). The resistance, inductance and capacitance values for the 

equivalent RLC circuit model are according to the PIN diode datasheet. At the ON-state, the 

PIN diode is represented by a resistor (Rs=4.5Ω) and an inductor (L=2nH), while for the OFF-

state, the diode can be replaced by a capacitor (Cr=0.2pF) and an inductor (L=2nH). Rp is the 

net dissipative resistance in the reverse bias and is neglectable for this RF circuit. The 

simulated S-Parameters are summarised in Table 3.4. Figure 3.46 and Figure 3.47 depict the 

simulated S-Parameters in phase format for the proposed reconfigurable feeding network.  

 

Figure 3.46: Simulated S-Parameter (Phase) of LHCP 
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Figure 3.47: Simulated S-Parameter (Phase) of RHCP 

3.5.4 Circuit Fabrication and Characterisation 

The reconfigurable feeding network has been fabricated (as shown in Figure 3.48) and 

subsequently characterised with an HP8753C vector network analyser (VNA). The dimension 

of the realised implementation is 45mm 105mm. 

 

Figure 3.48: Photo of the Fabricated Structure (with and without PIN Diodes) 

Table 3.4 compares the simulated and measured S-Parameters of the proposed 

reconfigurable feeding network.  

Table 3.4: Simulated and Measured S-Parameters 

 Simulation 

(LHCP) 

Measurement 

(LHCP) 

Simulation 

(RHCP) 

Measurement 

(RHCP) 

S11(Magnitude) -18.22dB -20.56dB -19.24dB -21.15dB 

S22(Magnitude) -11.47dB -12.21dB -22.98dB -19.12dB 

S33(Magnitude) -15.52dB -13.87dB -12.63dB -15.31dB 

S44(Magnitude) -12.81dB -16.65dB -15.54dB -10.33dB 

S55(Magnitude) -23.16dB -20.13dB -10.91dB -9.31dB 
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S21(Magnitude) -7.48dB -8.26dB -8.38dB -8.58dB 

S31(Magnitude) -8.14dB -8.57dB -7.82dB -8.12dB 

S41(Magnitude) -7.81dB -8.32dB -8.16dB -8.32dB 

S51(Magnitude) -8.39dB -8.62dB -7.47dB -8.34dB 

S23(Magnitude) -14.61dB -12.31dB -17.28dB -20.33dB 

S34(Magnitude) -24.66dB -26.11dB -24.73dB -19.56dB 

S45(Magnitude) -17.51dB -12.31dB -14.54dB -12.45dB 

S21(Phase) 147.05º 131.16º -126.32º -140.23º 

S31(Phase) 58.19º 43.28º -38.45º -58.98º 

S41(Phase) -36.61º -59.15º 59.15º 41.03º 

S51(Phase) -124.02º -133.13º 146.18º 122.75º 

 

Finally, Figure 3.49 and Figure 3.50 demonstrate the simulated and measured phase 

difference for LHCP and RHCP, respectively. 

 

Figure 3.49: Simulated and Measured Phase Difference for LHCP 
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Figure 3.50: Simulated and Measured Phase Difference for RHCP 

Table 3.4 and Figure 3.49 to Figure 3.50 reveal a good consistency between the simulation 

and measurement. At 2.45 GHz, all of the S-Parameters meet the requirements. Phase 

differences of 88º, 190º, 264º and 262º, 181º, 81º have been obtained for LHCP and RHCP, 

respectively. There is a slight difference of the insertion loss, which is due to the high loss of 

the lump components, PIN diodes in this circuit. Further work will apply MEMS devices 

integrated into the configuration to replace the PIN diodes. The proposed geometry could be 

applied to a four elements antenna array with dual circular polarisations. 

3.6 Reconfigurable Feeding Network for GSM/GPS/3G/WiFi and 

Global LTE Applications  

3.6.1 Introduction 

With the rapid development in wireless communication systems, there are many growing 

demands for mobile design requirements, which include lightweight, compact size, multiband 

and multiple functionalities. Reconfigurable mobile terminals become the trend in order to 

satisfy these targets and various reconfigurable antennas have been investigated and 

demonstrated in practice. Reconfigurable antennas commonly adapt their properties to obtain 

selectivity in operating frequency, bandwidth and radiation polarizations [78-80]. However, 

these communication systems such as phased array antennas and smart antennas cannot be 

fully accomplished without the aid of advanced feeding networks [95-97].  

The Wilkinson power divider is one of the indispensable components in various radio 

frequency circuits and it has been widely utilised for power division and combination in 
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antenna feeding networks [89, 91, 97]. The conventional Wilkinson divider applies two λ/4 

transmission lines and only operates at a certain frequency [37]. A literature review 

demonstrates that both multiband and wideband Wilkinson dividers could be successfully 

developed [51, 55]. Nevertheless, these configurations have relatively limited abilities in 

miniaturising circuit dimensions and can only achieve a maximum of three operating 

frequency bands. 

This section discusses a novel miniaturised switchable and reconfigurable feeding 

network covering GSM, GPS, 3G, WiFi and global LET standards. The feeding network is 

composed of four conventional Wilkinson power dividers which could be individually 

reconfigured in length using PIN diodes switches. By controlling the bias voltages on these 

PIN diodes, the operating frequency of the proposed geometry can be converted between four 

different bands:  600MHz-900MHz, 1.2GHz-1.6GHz, 1.8GHz-2.2GHz and 2.4GHz-2.6GHz. 

The first frequency band (600MHz-900MHz) is used to cover LTE US (700MHz), LTE UK 

(800MHz) and GSM (850MHz, 900MHz). The second band (1.2GHz-1.6GHz) targets GPS 

L1 (1.575GHz) and GPS L2 (1.227GHz). Different GSM (1800MHz, 1900MHz) and 3G 

standards (UMTS, W-CDMA, TD-SCDMA and CDMA2000) are located in the third 

frequency band (1.8GHz-2.2GHz). The last band (2.4GHz-2.6GHz) is applied to satisfy the 

applications of WiFi (2.45GHz) and LTE Europe (2.6GHz). The miniaturised and optimised 

feeding network exhibits good performance of S-Parameters in each band, which includes 

high return loss (10dB), suitable insertion loss (3.2dB), equal power splitting, and high 

isolation (-10dB). Full-wave simulations were carried out using CST Microwave Studio. 

Within the simulation environment, three types of PIN diode models were constructed and 

investigated in order to improve accuracy. The feeding network is implemented on an FR4 

substrate. Fabrication and measurement results closely correlate with those achieved during 

design simulations. The reconfigurable feeding network could be particularly applied to 

commercial multiband communication systems [48]. 

3.6.2 Initial Wilkinson Power Divider Structure 

Based on the design procedure discussed in Section 3.2.6, four Wilkinson power dividers 

(as shown in Figure 3.51 to Figure 3.54) have been designed, simulated and optimised using an 

electromagnetic simulator, namely CST Microwave Studio (CST), for full-wave analysis.  In 

this implementation, copper transmission lines with a conductivity of 5.89×10
7
 were etched 

on a FR4 printed circuit board (with a thickness h=1.6mm and relative dielectric constant, 

εr=4.55) [98]. 
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Figure 3.51: Wilkinson Divider with Frequency Band 600MHz-900MHz 

   

Figure 3.52: Wilkinson Divider with Frequency Band 1.2GHz-1.6GHz 

 

Figure 3.53: Wilkinson Divider with Frequency Band 1.8GHz-2.2GHz 



Chapter 3: Reconfigurable and Ultra-Wideband Feeding Network for Smart Antenna Array 

  96 

 

Figure 3.54: Wilkinson Divider with Frequency Band 2.4GHz-2.6GHz 

These initial Wilkinson power dividers share an identical configuration of transmission 

lines, same characteristic impedance (2Z0=100Ω, SMD0603 from VISHAY [60]) and the 

similar design structure. By only varying the quarter-wavelength, different operating 

frequency bands are achieved. 

Figure 3.51 to Figure 3.54 demonstrate the simulated reflection coefficients (S11) of the 

four initial Wilkinson power dividers for different operating frequency bands. The first 

architecture (in Figure 3.51) illustrates 600MHz to 900MHz bandwidth, which is applied for 

LTE US (700MHz), LTE UK (800MHz) and GSM (850MHz, 900MHz). The resonant 

frequency in Figure 3.52 is adjusted to operate from 1.2GHz to1.6GHz, targeting at GPS L1 

(1.575GHz) and GPS L2 (1.227GHz). 3G applications (UMTS, W-CDMA, TD-SCDMA and 

CDMA2000) are covered by the configuration in Figure 3.53 and the last circuit (in Figure 

3.54) is used for WiFi (2.45GHz) and LTE Europe (2.6GHz) standards. It is clear from the 

simulation results that the reflection coefficients (S11) are adequate for each required 

frequency range. Furthermore, dimensions of these circuits have been miniaturised targeting 

compact portable devices (52.5mm 19.6mm, 29.6mm 19.6mm, 22.7mm 19.6mm and 

16.5mm 19.6mm, respectively). 

3.6.3 Design of the Reconfigurable Feeding Network 

Based on the above design procedure, four initial Wilkinson power dividers in Section 

3.6.2 and 24 PIN diodes are combined in order to construct the reconfigurable feeding 

network. Its schematic and geometry are shown in Figure 3.55 and Figure 3.56.  In radio 

frequency circuit, length of transmission lines, dimensions of microstrip ports and the 

locations of PIN diodes strongly influence the S-Parameters and operating frequencies. 

Furthermore simulations were carried out to optimise the circuit parameters and develop the 

feeding network. Figure 3.57 illustrates the final layout. 
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Figure 3.55: Schematic of the Reconfigurable Feeding Network 

 

Figure 3.56: PIN Diodes Arrangement 

 

Figure 3.57: Configuration of the Proposed Design in CST Microwave Studio 

By controlling the bias voltages on the PIN diodes (represented by small red blocks in 

Figure 3.55), the feeding network may convert between four states and hence switch its 

operating frequencies. When diodes D10, D11, D14, D15 are in the ON-state (forward bias) and 
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others are in the OFF-state (reverse bias), the proposed structure reduces to the circuit 

presented in Figure 3.54, which targets at 2.4GHz-2.6GHz. Similarly, when diodes D6, D7, D9, 

D12, D13, D16, D18 and D19 are on, the operating frequency is from 1.8GHz to 2.2GHz as the 

design converts to the circuit illustrated in Figure 3.53. For the case when only diodes D2, D3, 

D5, D8, D9, D12, D13, D16, D17, D20, D22 and D23 are in the ON-state, the feeding network 

covers 1.2GHz-1.6GHz as the design changes to the circuit plotted in Figure 3.52. Finally, 

when diodes D1, D4, D5, D8, D9, D12, D13, D16, D17, D20, D21 and D24 are supplied with forward 

bias voltages, the design applies for 600MHz-900MHz as it reduces to the circuit 

demonstrated in Figure 3.51. These bias voltages are configured by an ARM microprocessor 

(LPC1768) and the control circuit will be discussed in Chapter 5. 

The PIN diode (as depicted in Figure 3.58) is composed of an intrinsic semiconductor 

layer sandwiched between heavily doped P and N type regions. In reality, the intrinsic layer 

also becomes very weakly doped P-type or N-type silicon. The PIN diodes are widely utilised 

as switches when operated between forward and reverse DC bias states for tuning the 

microwave signals. When a forward DC bias is applied to the PIN diode, free charges from P 

and N regions flood the I-region, which converts the diode into a conducting medium. The 

diode behaves virtually like a short circuit, and allows easy flow of any RF signals 

superimposed on it. To the contrary, when a reverse DC bias is applied, the I-region is 

completely depleted of charge carriers, making the diode behave essentially like an open 

circuit. 

 

Figure 3.58: Schematic of a PIN Diode  

There are generally three methods to construct the simulation model of PIN diode in 

microwave systems. Firstly, presenting and absenting air gap and perfect electrical conductor 

(PEC) strip is used to characterise the PIN diode [80, 99]. The second approach is to represent 

the diode by a microstrip or a metal strip [93, 100]. The third and most popular way is to 

utilise the equivalent RLC circuit of a packaged PIN diode [101]. This section applies all of 

the above methodologies to investigate the influence of the PIN diode on the feeding 

networks. 
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                (a)                                                    (b)                                                  (c) 

Figure 3.59:  (a) PEC PIN Diode Model (b) Metal Strip PIN Diode Model (c) Equivalent RLC 

Circuit of PIN Diode 

Figure 3.59 demonstrates the configurations of PIN diodes models in CST Microwave 

Studio. In Figure 3.59(a), a PEC pad is utilised to represent an open (or short) of the 

transmission lines. Figure 3.59(b) illustrates the connection or disconnection of PIN diodes 

simulated in the absence or presence of a metal pad with the area of 0.4mm 0.6mm. Several 

previous experiments have shown the validity of this simplification for RF device designs. 

Moreover, the equivalent RLC circuit of the PIN diode is sketched in Figure 3.59(c). Diodes 

of HSMP-389D (AVAGO) with a dimension of 1.2mm  2mm are used as switches, which 

guarantee a high isolation of -25dB and low insertion loss (0.36dB). The equivalent RLC 

circuit models that include the parasitic packaging effects could be extracted from the PIN 

diode datasheet [94]. For the ON-state, the diode is represented by an inductor (L=2nH) and a 

resistor (Rs=4.5Ω), while in the OFF-state, the diode is replaced by an inductor (L=2nH) and 

a capacitor (Cr=0.2pF). Rp is the net dissipative resistance in the reverse bias and is not 

important for this application [101]. The simulated reflection coefficients (S11) simulation 

results are presented Figure 3.61 to Figure 3.64.   

3.6.4 Circuit Fabrication and Measurements 

The proposed reconfigurable feeding network has been fabricated (as shown in Figure 3.60) 

and subsequently characterised with an HP8753C vector network analyser (VNA). Short-
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Open-Load-Through (SLOT) calibration was done in order to improve measurement accuracy. 

The size of the realised implementation is 50mm  19mm.  

     

Figure 3.60: Photo of the Fabricated Configuration (With and Without PIN Diodes) 

The presented reconfigurable feeding network is a three port microwave device and the 

VNA is a two port system. The third port of the circuit was terminated with a standard 50Ω 

terminator. Figure 3.61 to Figure 3.64 summarise the simulated and measured reflection 

coefficients (S11). Table 3.5 compares the simulated and measured forward gain (S21). 

 

Figure 3.61: Simulated and Measured Reflection Coefficients (S11) for 600MHz-900MHz 
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Figure 3.62: Simulated and Measured Reflection Coefficients (S11) for 1.2GHz-1.6GHz 

 

Figure 3.63: Simulated and Measured Reflection Coefficients (S11) for 1.8GHz-2.2GHz 

 

Figure 3.64: Simulated and Measured Reflection Coefficients (S11) for 2.4GHz-2.6GHz 
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Table 3.5: Simulated and Measured Forward Gain (S21) 

Frequency PEC Metal RLC Measurement 

700 MHz -3.22dB -3.37dB -3.81dB -3.95dB 

800 MHz -3.12dB -3.41dB -3.85dB -4.15dB 

850 MHz -3.25dB -3.35dB -3.91dB -4.21dB 

900 MHz -3.15dB -3.34dB -3.79dB -4.16dB 

1.227 GHz -3.21dB -3.41dB -3.96dB -3.98dB 

1.575 GHz -3.19dB -3.39dB -4.02dB -4.05dB 

1.8 GHz -3.15dB -3.43dB -3.89dB -4.25dB 

1.9 GHz -3.22dB -3.45dB -3.98dB -4.21dB 

2.0 GHz -3.21dB -3.47dB -4.05dB -4.11dB 

2.1 GHz -3.19dB -3.53dB -3.89dB -4.15dB 

2.45GHz -3.2dB -3.45dB -3.78dB -4.11dB 

2.6 GHz -3.17dB -3.34dB -3.97dB -4.15dB 

 

Figure 3.61 to Figure 3.64 and Table 3.5 reveal a good consistency between the simulated 

and measured results. At the desired frequencies, all of the S11 (reflection coefficients) are 

lower than -15dB (most under -20dB). There is a slight difference for insertion loss. It is due 

to the high loss of the lump components, PIN diodes in this circuit. Further research will 

focus on using MEMS devices integrated into the configuration to replace these diodes.  

3.7 UWB Feeding Network for Smart Antenna Arrays 

3.7.1 Introduction 

The Wilkinson power divider is one of the indispensable components in various 

microwave communication systems and it has been widely used for power division and 

combination for antenna feeding networks [37, 102, 103]. A literature review illustrates that 

both wideband and multiband Wilkinson dividers could be successfully developed [55, 104, 

105]. Whereas, these structures have relatively limited abilities in miniaturising circuit 

dimensions and perform inefficiently in low frequency bands. In this section, an improved 

and miniaturised UWB Wilkinson power divider is developed in order to provide the UWB 

feeding network. 
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3.7.2 Single UWB Wilkinson Power Divider Structure 

 

Figure 3.65: Structure of the UWB Wilkinson Power Divider 

Structure of the UWB Wilkinson power divider is presented in Figure 3.65. The 

characteristic impedance Z0 of Port 1, Port 2 and Port 3 are 50Ω, for standard applications. 

The fundamental geometry of the proposed design is a two-section Wilkinson power divider, 

with high frequency response. From Young’s transformer tables [106], Z1 and Z2 could be 

calculated  according to the terminating bandwidth ratio f2/f1. The input admittance and 

reflection coefficient are determined by means of elementary transmission line theory [107]. 

                                                    G    
             

            
                                               (3.48) 

                                                                   
       

       
                                                           (3.49) 

Where s=-j cotθ1. In order to achieve ρo= 0 at φ1 and φ2, Equation (3.48) and (3.49) yield 

that 

                                                              1 −
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                                                 (3.52) 

Compared with the conventional Wilkinson power divider, the λ/4 transmission lines have 

been separated into two sections, with same impedance Z1 but different electrical length θ1 

and θ1 .́ Moreover, two open stubs are connected to the both branches, with impedance Z3 and 

length θ3 for impedance matching. By adjusting the length and width of the stubs, a reflection 

zero could be introduced into the lower and higher frequencies, so the bandwidth is even 

wider. The electrical length θ1  ́ compensates the impedance mismatch caused by the stubs 
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between the original λ/4 transmission lines, and also guarantees all of the input and output 

ports are matched to 50Ω. 

Since the dielectric substrate thickness is very thin compared with the wavelength (h<<λ), 

a quasi-TEM mode has been utilised for the circuit design. The characteristic impedance Z0 

(50Ω) could be rewritten here in Equation (3.53) and (3.54). 

                                                          Z0 = 
  

   
 n  

  

  
 

  

  
                                                 (3.53) 

                                            Z0 = 
    

    
  

                 
  

          
                                 (3.54) 

Where, wm stands for the width of the transmission line and h represents the thickness of 

the substrate. εe shows the effective dielectric constant which is given by: 

                                                        εe = 
    

 
   

    

           
                                             (3.55) 

Where, εr illustrates the dielectric constant of the substrate. In order to cover 

WiFi/Bluetooth (2.45GHz) and LTE (2.6GHz) applications, the centre frequency for the 

fundamental two-section Wilkinson power divider was set at 4.5GHz with the bandwidth ratio 

of 2, so the terminating frequencies are 3GHz and 6GHz, respectively.  

By optimising dimensions of the open stubs, the two-section Wilkinson power divider is 

able to cover wider frequency ranges. In this implementation, copper transmissions with a 

conductivity of 5.89  10
7
 was etched on an FR4 printed circuit board (with a thickness 

h=1.6mm and relative dielectric constant, εr=4.55). All of the transmission line dimensions 

have been calculated using the formulas (3.48-3.55). Finally, the UWB divider configuration 

has been optimised in order to achieve the following scattering matrix: 

                         [S] = 

         
         
         

                             [S] =
  

   
 

   
   
   

                       (3.56) 

                                                             S11 = S22 = S33 = 0                                                    (3.57) 

                                                                  S23 = S32 = 0                                                         (3.58) 

                                        S12 =S21=S13=S31= (  
 +  

      
    

   -j/                             (3.59) 

The UWB Wilkinson power divider (in Figure 3.67) has been designed, calculated, 

simulated and optimised using Advanced Design System (ADS) and CST Microwave Studio 

(CST), for full-wave analysis.  
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Figure 3.66: Schematic of the UWB Wilkinson Power Divider 

 

Figure 3.67: Configuration of the UWB Wilkinson Power Divider 

Figure 3.68 illustrates the simulated S-Parameters of the proposed UWB Wilkinson power 

divider. It reveals that from 0 to 9GHz, the presented configuration demonstrates high return 

loss (greater than 10dB), suitable insertion loss (3.2dB=50%) and high isolation (larger than 

10dB). There are two makers showing the S-Parameters for 2.45GHz and 2.6GHz 

respectively, which are the operating frequencies of the smart antenna developed in Chapter 2.  

 

Figure 3.68: Simulated S-Parameters (Magnitude) of the UWB Wilkinson Power Divider 
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The proposed UWB Wilkinson power divider has been fabricated (as illustrated in Figure 

3.69) and subsequently characterised with an HP8753C vector network analyser (VNA). 

Short-Open-Load-Through (SLOT) calibration was done in order to improve measurement 

accuracy. Figure 3.70 presents all of the measured S-Parameters. 

 

Figure 3.69: Photo of the Fabricated UWB Wilkinson Power Divider 

 

Figure 3.70: Measured S-Parameters (Magnitude) of the Fabricated UWB Wilkinson Power 

Divider 

It is evident from the simulation and measurement results that the improved UWB 

Wilkinson power divider almost covers from 0.5GHz to 10GHz, which is adequate for both of 

WiFi/Bluetooth (2.45GHz) and LTE (2.6GHz). The reflection coefficient S11 exhibits a 

matched behaviour because the reflected waves caused by the mismatched elements are 

cancelled by the open stubs and the isolation resistance (R1=40Ω and R2=80Ω) between the 

output ports. The divider also obtains suitable insertion loss and high isolation. Furthermore, 

dimension of the circuit has been miniaturised in order to be implemented for compact 
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portable devices (9.5mm 15mm). Finally, this UWB Wilkinson power divider will be 

modified and applied into the smart antenna array systems presented in this thesis. 

3.7.3 Modified UWB Wilkinson Power Divider Configuration 

For the UWB Wilkinson power divider, separation between the two output ports is 3mm. 

It is difficult to connect antenna elements to the divider due to the limited spacing. This 

section describes several modified UWB Wilkinson power dividers with various output 

separations. 

Figure 3.71 presents the schematic of the modified UWB Wilkinson power divider. 

Compared to the configuration in Figure 3.66, two additional transmission lines are added 

before the output ports. By varying the length of the two transmission lines, difference output 

separations could be achieved. 

 

Figure 3.71: Schematic of the Modified UWB Wilkinson Power Divider 

Five modified UWB Wilkinson power dividers have been calculated, simulated, and 

optimised in Agilent Advanced Design System (ADS). The structures are presented in Figure 

3.72, Figure 3.75, Figure 3.78, Figure 3.81, Figure 3.84 and Figure 3.87, for the separations of 

12mm, 16mm, 20mm, 36mm, 40mm and 45mm, respectively. The simulated S-Parameters 

are shown in Figure 3.73, Figure 3.76, Figure 3.79, Figure 3.82, Figure 3.85 and Figure 3.88. All 

of the modified UWB Wilkinson dividers have been fabricated and fully characterised. Figure 

3.74, Figure 3.77, Figure 3.80, Figure 3.83, Figure 3.86 and Figure 3.89 summarise the 

measured S-Parameters. 
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Figure 3.72: Modified UWB Wilkinson Power Divider with Separation of 12mm 

 

 

Figure 3.73: Simulated S-Parameters (Magnitude) of Modified UWB Wilkinson Power Divider 

with Separation of 12mm 

 

 

Figure 3.74: Measured S-Parameters (Magnitude) of Modified UWB Wilkinson Power Divider 

with Separation of 12mm 
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Figure 3.75: Modified UWB Wilkinson Power Divider with Separation of 16mm 

 

 

Figure 3.76: Simulated S-Parameters (Magnitude) of Modified UWB Wilkinson Power Divider 

with Separation of 16mm 

 

 

Figure 3.77: Measured S-Parameters (Magnitude) of Modified UWB Wilkinson Power Divider 

with Separation of 16mm 
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Figure 3.78: Modified UWB Wilkinson Power Divider with Separation of 20mm 

 

 

Figure 3.79: Simulated S-Parameters (Magnitude) of Modified UWB Wilkinson Power Divider 

with Separation of 20mm 

 

 

Figure 3.80: Measured S-Parameters (Magnitude) of Modified UWB Wilkinson Power Divider 

with Separation of 20mm 
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Figure 3.81: Modified UWB Wilkinson Power Divider with Separation of 36mm 

 

 

Figure 3.82: Simulated S-Parameters (Magnitude) of Modified UWB Wilkinson Power Divider 

with Separation of 36mm 

 

 

Figure 3.83: Measured S-Parameters (Magnitude) of Modified UWB Wilkinson Power Divider 

with Separation of 36mm 
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Figure 3.84: Modified UWB Wilkinson Power Divider with Separation of 40mm 

 

 

Figure 3.85: Simulated S-Parameters (Magnitude) of Modified UWB Wilkinson Power Divider 

with Separation of 40mm 

 

Figure 3.86: Measured S-Parameters (Magnitude) of Modified UWB Wilkinson Power Divider 

with Separation of 40mm 
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Figure 3.87: Modified UWB Wilkinson Power Divider with Separation of 45mm 

 

Figure 3.88: Simulated S-Parameters (Magnitude) of Modified UWB Wilkinson Power Divider 

with Separation of 45mm 

 

Figure 3.89: Measured S-Parameters (Magnitude) of Modified UWB Wilkinson Power Divider 

with Separation of 45mm 

Figure 3.73 to Figure 3.89 reveal a good consistency between the simulations and 

measurements of UWB Wilkinson power dividers with various separations. From 0.5 to 

10GHz, the UWB configurations demonstrate high return loss (10dB), suitable insertion loss 

(3.2dB) and high isolation (-10dB). The RF performances at 2.45GHz and 2.6GHz have been 
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recorded for smart antenna applications. Furthermore, the individual UWB Wilkinson 

dividers are combined to construct 1:4 UWB feeding networks. Based on UWB Wilkinson 

divider with separation of 12mm, three types of 1:4 networks have been conceived and 

simulated. Figure 3.90, Figure 3.92 and Figure 3.94 illustrate the optimised structures. The 

simulated S-Parameters are shown in Figure 3.91, Figure 3.93 and Figure 3.95, respectively. 

Finally, a 1:8 UWB feeding network has been designed, simulated and optimised (as 

presented in Figure 3.96 and Figure 3.97). 

 

Figure 3.90: 1:4 UWB Feeding Network (Type I) with Separations of 12mm  

 

 

Figure 3.91: Simulated S-Parameters of 1:4 UWB Feeding Network (Type I) with Separations of 

12mm  
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Figure 3.92: 1:4 UWB Feeding Network (Type II) with Separations of 12mm  

 

 

Figure 3.93: Simulated S-Parameters of 1:4 UWB Feeding Network (Type II) with Separations of 

12mm  
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Figure 3.94: 1:4 UWB Feeding Network (Type III) with Separations of 12mm  

 

 

Figure 3.95: Simulated S-Parameters of 1:4 UWB Feeding Network (Type III) with Separations 

of 12mm  
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Figure 3.96: 1:8 UWB Feeding Network with Separations of 12mm  
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Figure 3.97: Simulated S-Parameters of 1:8 UWB Feeding Network with Separations of 12mm  

The results clearly demonstrate that UWB Wilkinson power divider can satisfy all design 

requirements. Even when expanded to 1:4 and 1:8 feeding networks, it is possible to generate 

acceptable S-parameters through optimising the width and the length of the traces between 

these dividers and the locations of each divider. The proposed dividers can be used to 

construct different feeding network geometries, in order to satisfy the antenna array 

specifications. 

 

(a)                                      (b)                                        (c) 

Figure 3.98: Other UWB Wilkinson Power Divider Geometries  

Moreover, other UWB Wilkinson power divider configurations have been investigated. In 

Figure 3.98(a), the open stubs are replaced by two fan-shape stubs, which can provide more 

accurate impedance matching. In Figure 3.98(b), two inductors are used instead of the open 

stubs. In Figure 3.98(c), additional sections are included into the structure with the purpose of 

even increasing the operating frequency. However, in these investigated designs, the return 

loss and insertion loss are worse than the original structure. 
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3.7.4 UWB Wilkinson Power Divider Third Order Intermodulation Distortion 

Measurements 

Two-tone third order intermodulation (IMD) is a common problem in RF applications. 

When two (or more) RF signals are present in a communication system, strong harmonic 

components are often generated. In cases where two RF signals are present, the two signals 

(F1 and F2) mix with each other’s second harmonic (2F1 and 2F2), which creates distortion 

products evenly spaced about the fundamentals (2F1–F2 and 2F2–F1). Components such as 

amplifiers, filters and power dividers will generate third order intermodulation distortion 

products. These distortion products degrade the RF performance of many communication 

systems, such as FM and AM transceivers and smart antenna systems. For instance, signals 

transmitted with excessive third order IMD will interfere with other transmissions. Receivers 

must also be distortion-free, especially in the pre-amplifier stages, to prevent crosstalk 

between adjacent channels. 

This section concentrates on the two-tone third order intermodulation distortion 

measurement of an UWB Wilkinson power divider. Figure 3.99 illustrates the measurement 

setup. Two signal generators (HP83732A and HPE4400A) are connected with two attenuators, 

working at F1 (-9dBm) and F2 (-10dBm), and generating a two-tone IMD driven through the 

UWB Wilkinson power divider. A HP8566B spectrum analyser has been used to display the 

measured signal (also in dBm), in order to analysis linearity of the device.  

 

 

Figure 3.99: Intermodulation Distortion Measurement Setup 
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Figure 3.100: Signal Generators (HP83732A and HPE4400A) and Spectrum Analyser HP8566B 

 

   

Figure 3.101: Attenuator and UWB Power Divider under Test 

Various F1 and F2 frequencies were tested, including (1000MHz,990MHz), 

(1550MHz,1540MHz), (2000MHz,1990MHz), (2450MHz,2440MHz) and 

(3000MHz,990MHz). Due to the frequency limitation of signal generators, the maximum 

testing frequency can only reach 3000MHz. Harmonic distortions (2F1 and 2F2) were 

recorded. The third order intermodulation frequencies (2F1-F2 and 2F2-F1) are summarised in 

Table 3.6. Compared to the fundamental carrier frequencies, the measured results have been 

converted into dBc. For this third order intermodulation distortion measurement, the UWB 

Wilkinson power divider with separation of 12mm was under test.  
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Table 3.6: Third Order Intermodulation Distortion Measurements of UWB Wilkinson 

Power Divider 

IIP3 
F1 (Carrier 

Frequency) 
F2 2F1+F2 2F1-F2 2F2+F1 2F2-F1 F1+F2 F1-F2 

Frequency 

(MHz) 
1000 990 2990 1010 2980 980 1990 10 

dBm -9 -10.1 -46.3 -80 -46.3 -81 -45 -32.3 

dBc 
  

-37.3 -71 -37.3 -72 -36 -23.3 

Frequency 

(MHz) 

1550 1540 4640 1560 4630 1530 3090 10 

dBm 
-9 -10 -47 -80 -47 -78 -36.9 -33.4 

dBc   -38 -71 -38 -69 -27.9 -24.4 

Frequency 

(MHz) 

2000 1990 5990 2010 5980 1980 3990 10 

dBm 
-9 -10.1 -62 -78 -62 -79 -44.3 -31.4 

dBc   -53 -69 -53 -70 -35.3 -22.4 

Frequency 

(MHz) 

2450 2440 7340 2460 7330 2430 4890 10 

dBm 
-9 -10 -77 -78.3 -76 -74 -48.6 -29.3 

dBc   -68 -69.3 -67 -65 -39.6 -20.3 

Frequency 

(MHz) 

3000 2990 8990 3010 8980 2980 5990 10 

dBm 
-9 -10.1 -80 -90 -85 -90 -50 -33.3 

dBc   -71 -81 -76 -81 -41 -24.3 

 

It is significant to note that the UWB Wilkinson power divider demonstrates excellent 

linearity. The third order intermodulation frequencies (2F1-F2 and 2F2-F1) are around -80dBm 

or -71dBc and -79dBm or -70dBc from the fundamental carrier frequencies. 
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3.7.5 1:4 UWB Feeding Network for Smart Antenna Array 

Based on the above design procedure, three modified UWB Wilkinson power dividers 

have been combined in order to construct a 1:4 UWB feeding network for the smart antenna 

array. The separations between outputs are 40mm, according to the requirement of the four-

element linear planar antenna array discussed in Chapter 2. The schematic and geometry of 

the UWB feeding network are plotted in Figure 3.102. Furthermore simulations for 

transmission lines and port dimensions have been carried out in order to optimise the S-

Parameters. Figure 3.103 demonstrates the final structure and the fabricated layout.   

 

Figure 3.102: Configuration of the UWB Feeding Network for Smart Antenna Array 

 

 

Figure 3.103: Photo of the Fabricated UWB Feeding Network for Smart Antenna Array 

Table 3.7 compares the simulated and measured S-Parameters of the proposed UWB 

feeding network for smart antenna array. 2.45GHz (WiFi/Bluetooth) and 2.6GHz (LTE) are 

the required frequencies. 
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Table 3.7: Simulated and Measured S-Parameters of UWB Feeding Network for Smart 

Antenna Array 

S-Parameters 

2.45GHz 2.6GHz 

Simulation Measurement Simulation Measurement 

S11(Magnitude) -15.71dB -18.54dB -16.81dB -20.13dB 

S22(Magnitude) -14.71dB -15.64dB -15.69dB -17.45dB 

S33(Magnitude) -16.45dB -17.44dB -15.97dB -16.33dB 

S44(Magnitude) -15.99dB -18.45dB -16.34dB -17.43dB 

S55(Magnitude) -16.12dB -16.55dB -16.98dB -17.23dB 

S21(Magnitude) -6.79dB -6.91dB -6.89dB -7.12dB 

S31(Magnitude) -6.78dB -7.11dB -6.85dB -7.09dB 

S41(Magnitude) -6.81dB -7.13dB -6.85dB -7.15dB 

S51(Magnitude) -6.76dB -7.09dB -6.89dB -7.13dB 

S23(Magnitude) -25.34dB -27.98dB -26.45dB -28.15dB 

S34(Magnitude) -37.13dB -39.22dB -39.47dB -40.66dB 

S45(Magnitude) -26.99dB -27.23dB -27.25dB -29.02dB 

 

A good agreement between simulation and measurement results is achieved in Table 3.7, 

verifying all of the suitable S-Parameters of the proposed 1:4 UWB feeding network for smart 

antenna array. 
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3.8 Summary 

In this chapter, several Wilkinson power divider structures have been investigated and 

developed in order to construct a suitable feeding network for the smart antenna array system.  

Firstly, the elementary T-Junction and resistance three port networks were explained and 

discussed. Because they are not matched at all ports and have power losses, the operating 

principles of fundamental Wilkinson power divider is presented, including Even-Odd modes 

and equivalent circuit analysis. Then, the conventional Wilkinson power divider has been 

modified and optimised for compact reconfigurable and UWB mobile applications 

In Section 3.3, a novel miniaturised silicon-based Wilkinson power divider was analysed, 

designed, simulated and implemented down to fabrication stage. Based on both simulation and 

measurement results, it has been demonstrated that the circuit size could be reduced by 65% 

without significantly increasing the insertion loss or decreasing the bandwidth. At the desired 

frequency (2.4GHz), the proposed novel silicon-based Wilkinson divider can provide low 

reflection coefficient (-42dB), suitable forward gain (-3.2dB) and high isolation (-38dB). The 

developed feeding networks can be applied to industrial, scientific, SIMO communication and 

energy efficient microwave systems. 

In Section 3.4, the design, simulation and measurement results of a novel one-to-eight 

compact feeding networks for circular antenna array have been presented. The proposed 

structure consists of four 2-way conventional Wilkinson power dividers with outputs revolving 

at an angle of 45° to suit circular antenna array geometry. The design has suitable S-

Parameters and occupies a size of 25mm radius circle (area of 1986mm
2
). At the desired 

frequencies 2.45GHz and 2.6GHz, the feeding network achieves low reflection coefficient (-

16.4dB, -12.3dB), acceptable forward gain (-10.2dB, -10.2dB) and great isolation coefficient (-

14dB, -15dB). A good correlation between simulated and measured results is obtained.  

Section 3.5 discusses a novel reconfigurable feeding network which enables electronic 

switching of circular polarisation direction in an antenna array. This is achieved through the 

digital control of PIN diodes in the feeding network. The lengths of the transmission lines are 

various, leading to different phase shifts between output ports. Integrated with any four 

antenna elements, the feeding network is able to switch the polarisation between LHCP and 

RHCP. The performance of this reconfigurable feeding network has been verified both 

simulation and experiment. Both simulation and measurement results demonstrate that high 

return loss (10dB), suitable insertion loss (8dB) and good isolation (-12dB) can be obtained. 

Phase errors of ± 9º are achieved for required output ports. This feeding network could be 

applied to multi-function wireless communication systems. 
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Then, a novel reconfigurable feeding network which allows for the electronic switching 

among four frequency bands is illustrated in Section 3.6. This is also achieved through the 

digital control of the bias voltages of PIN diodes. The length of the quarter-wavelength 

transmission lines can thus be changed, resulting in a change in operating frequency. The 

feeding network is targeted at four frequency bands: 600MHz-900MHz, 1.2GHz-1.6GHz, 

1.8GHz-2.2GHz and 2.4GHz-2.6GHz, in order to cover GSM, GPS, 3G, WiFi and LET 

applications in different countries. Performance of the synthesised reconfigurable feeding 

network has been both numerically verified and experimentally tested. Both simulation and 

measurement results show that high return loss (20dB) and good insertion loss (3.8dB) are 

obtained. The developed feeding network can be hence applied to multiband wireless 

communication systems. Moreover, this work forms an important step towards realizing a truly 

global mobile phone. 

Finally, a novel miniaturised UWB Wilkinson power divider has been designed, calculated, 

analysed, simulated, fabricated and characterised. Dimension of the proposed UWB power 

divider configuration is only 9.5mm×15mm and the design demonstrates high return loss 

(10dB), low insertion loss (3.2dB) and high isolation (10dB) through 0.5GHz to 10GHz, 

generating an ultra wide band performance. The simulations were validated through a real 

implementation with the measured testing results agreeing with simulated results. Based on 

the UWB Wilkinson power divider structure, several UWB dividers with different output 

separations were successfully developed, which include 12mm, 16mm, 20mm, 36mm, 40mm 

and 45mm. These modified geometries could satisfy different antenna array inter-spacing. 

Furthermore, third order intermodulation distortion measurements for the proposed UWB 

devices were carried out, in order to confirm the linearity. Eventually, 1:4 and 1:8 UWB 

feeding networks based on the UWB Wilkinson power divider are discussed. A linear 1:4 

UWB feeding network with separations of 40mm is developed and characterised for the smart 

antenna array. Suitable S-Parameters are obtained.  

In a conclusion, the investigation of feeding network for smart antenna array discussed in 

this thesis is illustrated in Figure 3.104 

The UWB feeding network developed in this chapter is able to control the magnitude of 

the antenna radiation. In the next chapter, various phase shifter technologies will be discussed 

and compared. An integrated UWB feeding network with high accurate analogue phase 

shifters for the complete smart antenna array will be presented and analysed.    
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Figure 3.104: The Investigation of Feeding Network for Smart Antenna Array  
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4.1 Introduction 

In the smart antenna array systems, phase shifters are used to generate the required phase 

excitations for the antenna elements for main beam steering. Using the antenna analysis from 

Chapter 2 and UWB feeding network designed in Chapter 3, this chapter presents a complete 

smart antenna array and its full characterisation.  

Research investigation begins with different topologies of phase shifters developed in the 

past and the associated practical considerations, which includes diodes, FETs, MMIC, and 

MEMS technologies. For comparisons, a low loss and high accurate analogue phase shifter 

from Hittite Microwave Corporation has been selected and fully evaluated. For impedance 

matching, compact and ultra wideband CPW-to-Microstrip transitions are utilised between the 

phase shifters, feeding network and antenna elements. All components in the smart antenna 

array are fabricated and characterised separately. Finally, this chapter proposes a complete 

smart antenna array based on microstrip structures, in order to simplify the configuration and 

reduce the energy loss.  

Figure 4.1 presents the system layout. The individual element in the array is a planar 

monopole antenna with Archimedean spiral slots, covering multiband frequencies, with 

suitable S-Parameters and proper radiation patterns. The feeding network consists of three 

ultra wideband (UWB) Wilkinson power dividers which provide high return loss, equal power 

splitting, low insertion loss and ultra wide band performance. High accuracy and low loss 

analogue phase shifters and ultra wide band CPW-to-Microstrip transitions have also been 

integrated into the smart antenna systems. All of the components are designed, simulated, 
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fabricated and characterised individually before establishing the whole system, in order to 

confirm the RF performance. Furthermore, the capability of the proposed fully implemented 

smart antenna has been experimentally verified by measurements of the manufactured array. 

 

Figure 4.1: Smart Antenna Array System Layout 

This chapter is mainly divided into five sections. Section 4.1 provides an overview of 

phase shifters and existing approaches for their implementations. Section 4.2 discusses the 

evaluation methods and performance of the Hittite analogue phase shifter. UWB CPW-to-

Microstrip transition structures are shown in Section 4.3 and Section 4.4 presents the 

complete smart antenna array characterisation. Finally, Section 4.5 summaries this chapter. 

4.2 Phase Shifter Introduction 

Phase shifters are essential components in realising a phased array antenna system. During 

the last six decades, the design approaches and fabrication processes have gone through 

significant changes. In this section, some of the successful implementations to realise 

microwave phase shifters are reviewed and compared. 

The earliest forms of phase shifters were all mechanical. Rotary vane adjustable 

waveguide phase changer was first proposed by Fox in 1947 [60] and the helical line phase 

changer for linear antenna array beam steering is developed by Stark in 1957 [108]. Prior to 

the development of electronically variable phase shifters, all the phased array antennas were 

implemented with mechanical phase shifters. Mechanical phase shifters are simple and 

inexpensive for fabrication. Hence they have been widely utilised in applications that do not 

require fast changing of phase shifts [109]. 
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Electrical phase shifters could be made of: ferrite materials, Semiconductor/MMIC, and 

MEMS based fabrication approaches [110]. In these structures, there are no moving 

components and phase shift is achieved by applying a bias field. The following sub-sections 

explain some of these configurations. 

4.2.1 Ferrite Phase Shifter 

In 1957, the first electronically variable ferrite phase shifter was reported by Reggia and 

Spencer [111]. Currently, most of the ferrite phase shifters are realised in waveguide 

geometry, and only quite a few designs are in strip line, microstrip line and coaxial line 

configurations. Figure 4.2 presents the structure of a ferrite phase shifter. By varying the DC 

bias voltage, the magnetic field of the device is changed, which influences the permeability of 

the ferrite material. Because phase constant is a function of permeability, finally, the DC bias 

can control the phase shifts of the ferrite devices. Moreover, shape and geometry of the ferrite 

material will also affect the performance of the phase shifter [112]. 

 

Figure 4.2: Ferrite Rod in Rectangular Waveguide 

Planar ferrite phase shifters using microstrip transmission lines are presented in [113, 114] 

and ferrite tunable device is demonstrated in [115]. In [113], phase shifter is implemented 

using microstrip transmission lines on Yttrium Iron Garnet/Gadolinium Gallium Garnet 

(YIG/GGG) substrate, which is operated on magnetic field (H0μ0) of 0.057T for numerical 

analysis. Similarly, in [114], a tunable device utilising symmetrically coupled microstrip 

transmission lines on a obliquely magnetised YIG substrate with magnetic field (H0μ0) of 

0.1T has been discussed. In [115], a phase shifter is achieved by placing a YIG bar on top of a 

microstrip transmission line. This configuration requires a very high magnetic field of 

5.6kA/m, which is applied externally. An electromagnet was used for external magnetic field 

in order to characterise the device (as illustrated in Figure 4.3).  
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Figure 4.3: YIG Phase Shifter Measurement Setup [115] 

The ferrite phase shifters have many advantages such as low losses and high power 

handling. However, dimensions of the devices are always huge, also they are heavy, 

temperature sensitive, high DC power consumptions, and expensive to fabricate [112,116, 

117]. 

4.2.2 Planar Phase Shifter 

Ferrite phase shifters are suited primarily for coaxial cables and non-planar waveguides, 

but not popular with planar transmission lines such as strip lines, microstrip lines, and 

coplanar waveguides. Planar transmission lines are highly preferred for miniaturising devices 

with low cost and simplifying the integration with antenna arrays. Some planar ferrite phase 

shifters have been discussed in Section 4.2.1, but the external set up is bulky. Therefore, 

electrical phase shifters are more attractive due to low cost and compactness. This section will 

concentrate on phase shifters using PIN diodes, field effect transistors and electro-mechanical 

structures. These designs could be configured as either switched delay lines or loaded 

transmission lines. 

4.2.2.1 Switched Delay Line Phase Shifter 

The switched line phase shifter is actually a time-delay circuit in which phase shift is 

achieved by varying the transmission line sections with different electrical lengths. 

A schematic of the switched delay line phase shifter is depicted in Figure 4.4. There are 

four switches in the circuit to control the phase shifts. When the switches SW1 and SW3 are 

closed, while SW2 and SW4 are open, the RF signal is travelling through transmission line l1. 

When the switching states are reversed, RF signal transmission is through the upper length 

l1+Δl/2+Δl/2= l1+Δl. The phase shift Δφ between the two switching states is β(Δl), where β 
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represents the propagation constant of the transmission line. PIN diodes and transistors are 

widely used as switching elements in switched delay line semiconductor phase shifters 

implementations [118]. 

 

Figure 4.4: Basic Schematic of Switched Delay Line Phase Shifter 

In Figure 4.4, basic switched delay line phase shifter is constructed on microstrip 

transmission lines with characteristic impedance of Z0 [110]. Propagation constant of the 

transmission lines could be determined using the Equations (4.1) to (4.5) [37]: 

The effective dielectric constant of microstrip transmission line is calculated by: 

                                                       εe = 
ε   

 
   

ε   

          
                                             (4.1) 

Where, εr represents the dielectric constant of the substrate, h is the substrate thickness 

and w stands for the signal conductor width. Then the propagation constant is given by: 

                                                                     
  

 
                                                            (4.2) 

                                                               
 

 
                                                         (4.3) 

                                                              
 

   
                                                       (4.4) 

From Equations (4.2) to (4.4), propagation constant β can be expressed as: 

                                                                
 

 
                                                              (4.5) 

In some practical designs, multiple stages of the switching sections can be integrated in 

order to build reconfigurable phase shifters (as discussed in Chapter 3, Section 3.6). Another 

example of the reconfigurable geometry is illustrated in Figure 4.5, which shows three stages. 

Each stage generates a different electrical length of Δl. These values are typically selected so 

that the circuit is able to provide 360° phase shift by suitably controlling the switching circuit. 
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Each stage requires a bit (0/1) of the control circuit, therefore this configuration (shown in 

Figure 4.5) is defined as a 3-Bit phase shifter. Switching elements utilised in these phase 

shifters can be Pin diodes, FETs, and MEMS switches with appropriate biasing networks and 

DC blocking arrangements. 

 

Figure 4.5: 3-Bit Switched Delay Line Phase Shifter 

4.2.2.1.1 PIN Diodes Switched Delay Line Phase Shifter 

Figure 4.6 demonstrates a typical circuit layout of a series-diode switched delay line phase 

shifter using microstrip transmission lines. When diodes D1 and D3 are supplied with forward 

bias and D2 and D4 are reverse biased, RF signal travels through l1. While D2 and D4 are 

forward biased and D1 and D3 are reverse biased, RF signal follows the transmission line of l2. 

 

Figure 4.6: Series Diode Switched Line Phase Shifter 

4.2.2.1.2 FETs Switched Delay Line Phase Shifter 

MESFETs can also be used to implement switched delay line phase shifters. Compared to 

the P-I-N diode, the GaAs MESFET provides many advantages such as ultra fast switching 

and minimum DC power consumption. Moreover, dual gate FET (DGFET) is preferred over 

the single gate FET due to its much higher on-off switching ratio. Figure 4.7 demonstrates the 
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schematic of a phase shifter using DGFET [110]. It is assumed that two FETs have the same 

transfer phase and gain. At the input port, a Wilkinson power divider splits the signal equally 

and feeds the in-phase outputs to first gates (G1B and G1A) of the two FETs. Then the second 

gates G2B and G2A are applied with control voltages. The two DGFETs are operated in a 

complementary manner, which means when FET B in on state, FET A is in pinched off state, 

and vice versa. Thus switching between the two transistors, signal is allowed to pass through 

alternate transmission line paths (Path B or Path A). Due to Δl, the relative phase delay 

between two paths generates the differential phase shift. Finally, another Wilkinson power 

combiner recombines the two output paths into a single terminal. In this configuration, there 

is a 3dB power loss in each of the power diver and combiner. Assuming the mismatch and 

other circuit losses are negligible, if G is the gain of the DGFET, the overall gain of the phase 

shifter is (G-6) dB. 

 

Figure 4.7: Schematic of Dual Gate FET (DGFET) Phase Shifter [110] 

4.2.2.1.3 MMIC Phase Shifter 

The semiconductor phase shifter is based upon microwave integrated circuit (MIC). In 

hybrid MIC, all of the passive components are deposited on the low loss dielectric substrate 

surface. Discrete semiconductor devices are either soldered or bonded onto the passive 

circuits. For the monolithic microwave integrated circuit (MMIC) technique, the entire circuit 

consisting of active devices, passive circuit elements, and interconnections are formed on or 

within a semi-conducting, semi-insulating substrate. The main advantages of MMIC over the 

hybrid MIC are its light weight, small dimensions, improved reliability, reproducibility 

through elimination of wire bonding, and its ability to incorporate multifunctional 

performance on the single chip. Elimination of wire bonding and embedding of active devices 

within the semi-conducting substrate reduces the undesired parasitics and also improves the 
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bandwidth performance. The MMIC circuit diagram is illustrated in Figure 4.8 [119], which is 

comprised of FETs, resistors, capacitors and inductors. Figure 4.9 demonstrates the 

photograph of MMIC. All of the components are fabricated on a single substrate of GaAs 

[119]. 

 

Figure 4.8: MMIC Circuit Configuration [119] 

 

Figure 4.9: Photo of the Fabricated MMIC [119] 

4.2.2.1.4 MEMS Phase Shifter 

Microelectromechanical Systems (MEMS) is a novel technology and is being considered 

as a promising method for RF circuits because of high RF performance, low DC power 

consumption and high linearity compared to semiconductors. MEMS phase shifters are also 

configured into two directions: switched delay line MEMS phase shifter and varactor loaded 

transmission line MEMS phase shifter. MEMS phase shifters are implemented using MEMS 

switches. 

RF MEMS switch is realised with air bridges as presented in Figure 4.10. The structure is 

made of air bridges anchored at one or more points and a bottom electrode under the bridge 

which is covered with thin dielectric materials. Air bridges are electrostatically actuated to 
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achieve the switching or varactor actions. Hence this device can replace the PIN diodes and 

semiconductor phase shifters presented previously. Bias voltage is supplied between the air 

bridge and the bottom electrode for electrostatic actuation. When the air bridge touches the 

bottom dielectric, the MEMS operates as a switch and while the air bridge is actuated below 

pull-in voltage, the device is used as a varactor. Pull-in voltage is the bias voltage at which the 

air bridge snaps on the dielectric layer. 

 

Figure 4.10: RF MEMS Switch, ON and OFF State 

MEMS switched delay line phase shifter is implemented by applying MEMS switches in 

the Figure 4.10. Operating principles of MEMS switched delay line phase shifter is similar to 

the semiconductor phase shifter. Figure 4.11 demonstrates an 4-bit switched delay line MEMS 

phase shifter [112].  

 

Figure 4.11: 4-Bit RF MEMS Switched Delay Line Phase Shifter [112] 
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4.2.2.2 Loaded Transmission Line Phase Shifter 

In a loaded transmission line phase shifter, a transmission line is reactively loaded to 

control the phase shift of the output signal. There are two methods to obtain phase shifters 

utilising loaded transmission lines: lumped and distributed. The conventional circuit of the 

lumped approach incorporates two identical capacitances C1 at the ends of a transmission line 

with length of 2l, and a variable capacitance C2 located at the middle of the line, as presented 

in Figure 4.12. The end capacitances C1 will control the phase shift, whereas the middle C2 is 

adjusted to provide a suitable input matching [110]. 

 

Figure 4.12: Loaded Transmission Line Phase Shifter with Shunt Varactors 

Varactors loaded transmission line phase shifter use voltage-controlled varactors shunted 

at intervals across the transmission line. The capacitance of the varactor is a function of 

control voltage as expressed below: 

                                                         C(V)=ε0A/d(V)                                                      ( 4.6) 

For the distributed approach, the transmission lines are periodically loaded with variable 

capacitors, as illustrated in Figure 4.13.  

 

Figure 4.13: Distributed MEMS Transmission Line Phase Shifter 
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The separation “s” between these capacitors is too small that the modified telegraphic 

equation could be used to explain the propagation performance of the loaded transmission 

lines. Assuming the transmission lines are lossless:   

                                                             
 

 
                                                                  (4.7) 

                                                      
 

   
 

 

     
                                                           (4.8) 

Where Z0 is the characteristic impedance of the transmission line, L and C are the 

inductance and capacitance of transmission line, respectively. Using the Equation (4.7) and 

(4.8), the following formulas can be obtained:   

                                                              
     

   
                                                             (4.9) 

                                                                  
                                                             (4.10) 

Where,                                                   
   

 
                                                        (4.11) 

Ct is the distributed capacitance of the transmission line, while Cb0 is the variable 

capacitance [120]. Cb0 can be modified by various approaches such as tunable metal-

insulator-metal (MIM) capacitors, inter-digital capacitors, varactors, and building bridges 

above the transmission line. The Propagation phase constant (β) is calculated by: 

                                                                  
 

 
                                                             (4.12) 

The capacitance C is controlled by the appropriate bias, which will change the phase of 

propagation, and so generating an effective ‘φ’ phase shift.  

 

Figure 4.14: Lumped-Element Periodically Loaded Transmission Line Model [120] 
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4.2.2.2.1 Diode Distributed Transmission Line Phase Shifter 

PIN diodes and Schottky diodes could be utilised as voltage variable capacitors. Schottky 

diodes are preferred in high frequency and low loss applications [112]. In [121], a phase 

shifter implemented using GaAs Schottky diode has been presented, as demonstrated in 

Figure 4.15. In this configuration, a transmission line is periodically loaded with Schottky 

varactor diodes. By controlling the DC bias, the varactor capacitance across the diode is 

changed, which varies the phase velocity and generates the phase shift.  

 

Figure 4.15: (a) Schematic of the Schottky Diode Varactor Loaded CPW Transmission Line (b) 

SEM Photographs of the Fabricated Phase Shifter [121] 

4.2.2.2.2 Barium Strontium Titanate Distributed Transmission Line Phase 

Shifter 

Barium strontium titanate (BST) is a nonlinear ferroelectric material and its permittivity is 

a function of the DC bias. BST Distributed transmission line phase shifter could be 

implemented either with parallel plate capacitors or inter-digital capacitors. Figure 4.16 

presents the phase shifter implemented with BST tunable parallel plate capacitors periodically 

loaded on the transmission line [122]. Figure 4.17 illustrates the phase shifter implemented 

with inter-digital capacitors [123]. By changing the capacitance value of the loading BST 

capacitors, the phase velocity and phase shift can be controlled.  
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Figure 4.16: Fabricated Distributed Transmission Line Phase Shifter Using BST Parallel Plate 

Capacitor [122] 

 

Figure 4.17: Fabricated Distributed Transmission Line Phase Shifter Using BST Inter-Digital 

Capacitor [123] 

4.2.2.2.3 Distributed MEMS Transmission Line Phase Shifter 

Distributed MEMS transmission line phase shifters are implemented with periodic 

distributed MEMS varactors on the transmission line, as illustrated in Figure 4.18 [112].  

 

Figure 4.18: Distributed MEMS Transmission Line Phase Shifter [112] 

Distributed MEMS transmission line phase shifters are mainly configured on CPW 

transmission lines due to ease in mounting the shunt MEMS bridges, because the signal and 

ground tracks are on the same plane of the substrate. Each MEMS varactor has the 

configuration similar to the MEMS switch structure presented in Figure 4.10, but is not 
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actuated by snapping down. By applying a bias voltage to the MEMS varactors, proper phase 

shift will be achieved.  

Distributed MEMS transmission line phase shifters are usually fabricated using micro-

machining. Distributed MEMS transmission line phase shifters on quartz and silicon 

substrates are demonstrated in [124] and [125], respectively (as illustrated in Figure 4.19 and 

Figure 4.20).   

 

                   (a)                                                                              (b) 

Figure 4.19: (a) Photograph of the Unit Cell of a Phase Shifter with MEMS Bridge (b) 

Photograph of the Fabricated MEMS Phase Shifter, on Quartz Substrate [124] 

 

Figure 4.20: SEM Photograph of the Fabricated Phase Shifter on Silicon Substrate 

The actuation voltage of MEMS varactor is higher than the bias voltage for semiconductor 

devices. Different technologies can be used to reduce the actuation voltage, such as changing 

the beam configurations to cantilever, longer fixed-fixed geometry and meandered structure. 

The cantilever can realise the air bridges, but its fabrication reliability is low, as it is only 

fixed on one end. The both ends are fixed at the fixed-fixed beam structure. Meandered beam 

configuration is able to even decrease the actuation voltage of the fixed-fixed beam design, as 

presented in Figure 4.21 [126].  
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Figure 4.21: SEM Photograph of the Fabricated MEMS Device with Meander-Hinge Switches 

[126] 

Distributed MEMS transmission line phase shifters are operated under the pull-in voltage. 

Pull-in phenomenon appears around 2/3
rd

 of the total air gap. The tuning ratio for fixed-fixed 

beam phase shifter is around 1.5. There are several researches to increase the tuning ratio, 

such as in [116], a two-levelled bridge structure is being used.   

 

Figure 4.22: High Tuning Two-Levelled Bridge Capacitor Profile [116] 

 

Figure 4.23: Photograph of the Fabricated Phase Shifter [116] 
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Based on the above phase shifter researches, a high accuracy and low loss analogue phase 

shifter from Hittite Microwave Corporation has been chosen and fully evaluated for the smart 

antenna array system. Detailed description and the fully characterisations will be presented in 

the following section.  

4.3 Hittite Analogue Phase Shifter Evaluation 

4.3.1 Hittite Analogue Phase Shifter Description 

In the smart antenna array, analogue phase shifter HMC928LP5E, which is from Hittite 

Microwave Corporation [127], has been utilised between the 1:4 UWB feeding network and 

the planar monopole antennas, in order to provide suitable phase excitations. The high 

accuracy HMC928LP5E is a monolithic microwave integrated circuit (MMIC) analogue 

phase shifter which is controlled via an analogue voltage from 0 to 13V, providing a 

continuously variable phase shift of 0° to 450° from 2 to 4GHz with extremely consistent low 

insertion loss and proper return loss. The HMC928LP5E phase shifter is monotonic with 

respect to control voltage and features a typical low phase error of ±5 degrees over the wide 

bandwidth. The analogue phase shifter is useful for EW receiver, military radar, satellite 

communication and beamforming modules. The HMC928LP5E is housed in a RoHS 

compliant 5x5 mm QFN leadless package. Figure 4.24 shows the functional diagram of the 

HMC928LP5E MMIC analogue phase shifter. 

 

Figure 4.24: HMC928LP5E MMIC Analogue Phase Shifter Functional Diagram [127] 



Chapter 4: Smart Antenna Array Implementation 

  143 

In the HMC928LP5E analogue phase shifter package, Pin 6 and Pin 19 are the input and 

output of the RF signal. Both of the RF ports have been DC blocked, which confirms the DC 

voltage will not affect the RF performance, as illustrated in Figure 4.25(a). Pin 7 and Pin 8 are 

the ground connections of the chip. Backside of the package has exposed metal ground slug 

that also should be connected to the RF ground thru a short path. Vias under the device have 

been utilised. Pin 14 is the voltage control. Application of a voltage between 0 and 13 volts 

causes the transmission phase to change. The DC equivalent circuit is a series connected 

diode and resistor, as shown in Figure 4.25(d) [127]. 

                      

                                      (a)                                       (b)                                           (c) 

 

(d) 

Figure 4.25: Interface Schematic of the Pins of HMC928LP5E MMIC Analogue Phase Shifter 

(a).RFIN (b).RFOUT (c).GND (d).Control Voltage 
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Figure 4.26 and Figure 4.27 demonstrates the measured return loss of the HMC928LP5E 

analogue phase shifter at the input and output, respectively. It is clear that the phase shifter 

generates suitable return loss across 1.5GHz to 4.5GHz. 

 

Figure 4.26: Input Return Loss of the HMC928LP5E MMIC Analogue Phase Shifter, for Vctl=0-

13V [127] 

 

Figure 4.27: Output Return Loss of the HMC928LP5E MMIC Analogue Phase Shifter, for 

Vctl=0-13V [127] 
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The measured insertion loss of the phase shifter is presented in Figure 4.28. From 2GHz to 

4GHz, the insertion loss is between 3 to 4 dB. Figure 4.29 illustrates the measured phase shift 

vs. operating frequency at various control voltages. 

 

Figure 4.28: Insertion Loss of the HMC928LP5E MMIC Analogue Phase Shifter, for Vctl=0-13V 

[127] 

 

Figure 4.29: Phase Shift vs. Frequency, for Vctl = 0-13V [127] 
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4.3.2 Hittite Analogue Phase Shifter Characterisation 

The manufacture provides an evaluation PCB design in order to test the HMC928LP5E 

MMIC Analogue Phase Shifter, as shown in Figure 4.30.  

 

Figure 4.30: HMC928LP5E MMIC Analogue Phase Shifter Evaluation PCB [127] 

Where, J1 to J3 are PCB mounted SMA connectors and U1 is the HMC928LP5E MMIC 

analogue phase shifter. The evaluation board in this application should use RF circuit design 

techniques. The signal transmission lines are 50 ohm impedance while the package ground 

leads and exposed paddle are connected directly to the ground plane. A sufficient number of 

via holes are applied in order to connect the top and bottom ground planes. Based on the 

design guide, an evaluation PCB using copper and FR4 substrate has been design, simulated, 

fabricated and characterised. 

 

                                (a)                                            (b)                                                (c) 

Figure 4.31:  (a) Standard Evaluation PCB for HMC928LP5E MMIC Analogue Phase Shifter (b) 

Top Layer (c) Bottom Layer 
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In this implementation, copper transmission lines with a conductivity of 5.89  10
7
 was 

etched on an FR4 printed circuit board (with a thickness h=1.6mm and relative dielectric 

constant, εr=4.55). All of the transmission line dimensions have been calculated using the 

formulas provided in Chapter 3. Finally, the evaluation board configuration has been 

optimised to achieve suitable S-Parameters. The input and output impedance of the 

transmission lines are calculated, in order to obtain the 50 ohm impedance matching. 

This standard evaluation board has been fabricated and fully tested with a phase shifter. 

Figure 4.32 presents the manufactured and assembled layout. Dimension of the implemented 

layout is 18.5mm   32mm.   

   

Figure 4.32: Photo of the Fabricated Standard Evaluation PCB for HMC928LP5E MMIC 

Analogue Phase Shifter: Front View and Back View 

The proposed standard evaluation PCB has been subsequently characterised with an 

HP8753C vector network analyser (VNA). Short-Open-Load-Through (SLOT) calibration 

was done in order to improve measurement accuracy. Two digital power supplies are used to 

generate the DC control voltage to the analogue phase shifters, as shown in Figure 4.33. Table 

4.1 and Table 4.2 summarise the measured S-Parameters in magnitude and phase format for 

2.45GHz and 2.6GHz, respectively.  

 

Figure 4.33: Digital Power Supply to Control the Analogue Phase Shifter 
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Table 4.1: Measured S-Parameters of the Standard Phase Shifter Evaluation PCB at 

2.45GHz 

 
Control Voltage: 

0V 

Control Voltage: 

3.16V 

Control 

Voltage:7.93V 

S11(Magnitude) -12.43dB -13.91dB -15.12dB 

S11(Phase) 151.26° 162° 137.73° 

S21(Magnitude) -3.38dB -3.21dB -3.10dB 

S21(Phase) -91.1° 88.86° -91.55° 

S22(Magnitude) -13.45dB -13.56dB -15.01dB 

S22(Phase) 130.64° 122.89° 161.81° 

 

Table 4.2: Measured S-Parameters of the Standard Phase Shifter Evaluation PCB at 

2.6GHz 

 
Control Voltage: 

0V 

Control Voltage: 

3.12V 

Control 

Voltage:7.89V 

S11(Magnitude) -13.42dB -14.87dB -15.01dB 

S11(Phase) 122.21° 137.31° 103.15° 

S21(Magnitude) -3.36dB -3.25dB -3.12dB 

S21(Phase) -118.51° 61.4° -118.53° 

S22(Magnitude) -14.21dB -15.02dB -15.12dB 

S22(Phase) 105.26° 100.27° 130.11° 

 

It is evident from the measurement results that analogue phase shifter is adequate for both 

of WiFi/Bluetooth (2.45GHz) and LTE (2.6GHz) applications. The reflection coefficients S11 

are smaller than -10dB and the insertion losses are around 3dB, similar performance as in the 

datasheet. The higher control voltage will generate high return loss and low insertion loss. 

The presented structure can achieve 180° phase shift at 3.16V and 3.12V, 360° phase shift at 

7.93V and 7.89V, for 2.45GHz and 2.6GHz, respectively. 

The HMC928LP5E MMIC analogue phase shifter will be applied in the smart antenna 

array developed in Chapter 2 and Chapter 3. In order to fully test the device, an improved and 

simplified evaluation PCB has been designed, to simulate the phase shifter performance in an 

antenna array, as illustrated in Figure 4.34. 

 

                               (a)                                              (b)                                              (c) 

Figure 4.34: (a) Modified Evaluation PCB for HMC928LP5E MMIC Analogue Phase Shifter (b) 

Top Layer (c) Bottom Layer 
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Compared to the standard evaluation PCB structure, the layout has been simplified and 

miniaturised. The calibration part has been removed and the phase shifter is directly 

connected to two SMA connectors. Two voltage control pins are near the chip and a 

significant number of vias are used in order to combine the top and bottom ground planes. 

Later the UWB feeding network and antenna elements will be placed at two sides of the 

analogue phase shifter. There is a slot cut on the backside of the evaluation PCB, for the 

purpose of placing the voltage control line. This modified evaluation PCB has exactly the 

same configuration as later in the smart antenna array, so it is able to fully estimate the phase 

shift and RF performance. The proposed structure has also been fabricated and measured, as 

shown in Figure 4.35. Dimension of the implemented layout is 9.5mm   23mm. Table 4.3 and 

Table 4.4 present the measured S-Parameters in magnitude and phase format for 2.45GHz and 

2.6GHz, respectively. 

    

Figure 4.35: Photo of the Fabricated Modified Evaluation PCB for HMC928LP5E MMIC 

Analogue Phase Shifter: Top View and Back View 

Table 4.3: Measured S-Parameters of the Modified Phase Shifter Evaluation PCB at 

2.45GHz 

 
Control Voltage: 

0V 

Control Voltage: 

3.64V 

Control 

Voltage:8.22V 

S11(Magnitude) -12.82dB -14.14dB -15.02dB 

S11(Phase) 112.27° 162° 160.15° 

S21(Magnitude) -3.32dB -3.21dB -3.17dB 

S21(Phase) -107.52° 72.48° -107.13° 

S22(Magnitude) -12.98dB -14.98dB -15.13dB 

S22(Phase) 114.03° 151.61° 152.22° 

Table 4.4: Measured S-Parameters of the Modified Phase Shifter Evaluation PCB at 

2.6GHz 

 
Control Voltage: 

0V 

Control Voltage: 

3.59V 

Control 

Voltage:8.11V 

S11(Magnitude) -13.01dB -14.45dB -15.06dB 

S11(Phase) 89.12° 132.13° 130.56° 

S21(Magnitude) -3.28dB -3.18dB -3.11dB 

S21(Phase) -121.51° 58.49° -121.49° 

S22(Magnitude) -13.43dB -14.78dB -15.65dB 

S22(Phase) 90.12° 123.22° 121.03° 
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It is clear that the modified evaluation PCB demonstrates suitable S-Parameters and phase 

shift for both of WiFi/Bluetooth (2.45GHz) and LTE (2.6GHz) standards. This 

HMC928LP5E analogue phase shifter obtains 180° phase shift at 3.64V and 3.59V, 360° 

phase shift at 8.22V and 8.11V, with high return loss (10dB) and low insertion loss (3dB), at 

2.45GHz and 2.6GHz, respectively. The proposed analogue phase shifter is adequate for the 

smart antenna array implementation. 

4.4 UWB CPW-to-Microstrip Transition Structure 

The phase shifter is developed for RF applications and the manufacturer recommends 

connecting the device utilising coplanar waveguide (CPW), for the purpose of 50Ω 

impedance matching [127]. 

The UWB feeding network and monopole antennas are both microstrip structures. In 

order to connect the phase shifter, two UWB CPW-to-Microstrip transitions have been 

developed, which obtain smooth field transformation and impedance matching.  

4.4.1 Field Matching 

In a microstrip configuration, the electric field lines are mainly vertical as terminating 

perpendicularly at the ground of the substrate, as illustrated in Figure 4.36(a). In a CPW, the 

electric field lines are generally horizontal and concentrated between the signal track and two 

ground strips, as depicted in Figure 4.36(b).  In order to gradually match the field distributions 

between the microstrip and CPW, a conductor backed coplanar waveguide (CBCPW) has 

been intervened (as shown in Figure 4.36(c)). Furthermore, a ground-shaped conductor backed 

coplanar waveguide structure has also been developed, where the electric field lines change to 

those of the CPW as the signal propagates along the transition (as illustrated in Figure 4.36(d)) 

[128]. The proposed UWB Microstrip-to-CPW transitions are based on the CBCPW geometry. 

 

(a)                                              (b) 

 

(c)                                              (d) 

Figure 4.36: Electric Field Lines at Each Cross-Section along the Transitions [128] 
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4.4.2 Impedance Matching 

Because the characteristic impedance of a CPW with actual fabrication limitations or with 

the required signal-to-ground separations could be different from that of the microstrip 

structure, the transition should be able to match the impedance differences between the two 

transmission lines. As for the antenna array copper tracks were etched on 1.6mm FR4 printed 

circuit board material. Because of its relatively low dielectric constant (εr=4.55), the actual 

characteristic impedance of the CPW is usually greater than that of the microstrip line.  As the 

ground gap of the transition becomes narrower, the capacitance of the transmission line is 

greater, and so the transition impedance becomes lower, finally reaching to that of microstrip. 

The impedance calculation was performed by utilising CST Microwave Studio.  

For the purpose of optimally matching the impedances between two  transmission lines, a 

Klopfenstein taper [37] has been applied. The Klopfenstein taper length is miniaturised to 

reduce the mismatch at the lowest operating frequency. With the transition length of 7.3mm 

and the maximum reflection coefficient Γm for the taper should be around 0.02. If better 

impedance matching is needed at lower frequencies, the length of the transition should be 

extended. The tapered transition shape is synthesised with the desired impedance variation, 

and the implemented layouts are demonstrated in Figure 4.37 and Figure 4.38. Since the width 

of the UWB feed network and the feed of the monopole antenna are slight different, two kinds 

of UWB transition configurations are required. Figure 4.37 presents the transition between the 

feeding network and phase shifter (Transition I), while Figure 4.38 shows the transition 

structure between the phase shifter and monopole antenna (Transition II).   

                

                             (a)                          (b)                         (c)                               (d) 

Figure 4.37:  (a) Proposed UWB Transition between the Feeding Network and Phase Shifter 

(Transition I) (b) Top Layer (c) Bottom Layer (d) Side View 
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                           (a)                             (b)                          (c)                                (d) 

Figure 4.38:  (a) Proposed UWB Transition between Phase Shifter and Monopole Antenna 

(Transition II) (b) Top Layer (c) Bottom Layer (d) Side View 

To prevent radiation from the grounded CPW into substrate modes, it is required to add 

via holes at a distance less than λeff, where λeff stands for the effective wavelength of the odd 

transmission line mode [129]. In this implementation, via holes are placed at both transition 

wings for the purpose of providing the ground continuity. In the proposed transition, three via 

holes are placed at each transition wing to achieve good performances up to 9GHz. Both of 

the UWB transition configurations have been designed, simulated and optimised in CST 

Microwave Studio. Figure 4.39 and Figure 4.40 present the simulated S-Parameters, which 

confirm the designs are suitable for WiFi/Bluetooth (2.45GHz) and LTE (2.6GHz) 

applications.   

 

Figure 4.39: Simulated S-Parameters (Magnitude) of the Proposed UWB Transition between the 

Feeding Network and Phase Shifter (Transition I) 
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Figure 4.40: Simulated S-Parameters (Magnitude) of the Proposed UWB Transition between the 

Phase Shifter and Monopole Antenna (Transition II) 

4.4.3 UWB CPW-to-Microstrip Transition Characterisation  

There are two transition designs for the smart antenna array: Transition I between the 

feeding network and phase shifter and Transition II between the phase shifter and monopole 

antenna. The two configurations have been fabricated and evaluated separately. Figure 4.41 

and Figure 4.42 present the evaluation board structures to test the Transition I and Transition 

II, respectively. In the evaluation PCB design, the phase shifter is placed in the middle, only 

one transition is connected and the other side is using standard CPW transmission line. 

 

                          (a)                                                  (b)                                               (c) 

Figure 4.41: (a) Geometry of the Evaluation PCB for Testing the Transition between the Feeding 

Network and Phase Shifter (Transition I) (b) Top Layer (c) Bottom Layer 

 

                              (a)                                                    (b)                                            (c) 

Figure 4.42: (a) Geometry of the Evaluation PCB for Testing the Transition between the Phase 

Shifter and Monopole Antenna (Transition II) (b) Top Layer (c) Bottom Layer 
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The two evaluation PCBs have been fabricated, assembled and fully characterised with an 

HP8753C vector network analyser (VNA) (as illustrated in Figure 4.43 and Figure 4.44). 

Table 4.5 and Table 4.6 demonstrate the measured S-Parameters in magnitude and phase at 

2.45GHz and 2.6GHz for Transition I. Table 4.7 and Table 4.8 show the measured S-

Parameters for Transition II. 

    

Figure 4.43: Photo of the Fabricated Evaluation PCB for Testing the Transition between the 

Feeding Network and Phase Shifter (Transition I): Top View and Back View 

Table 4.5: Measured S-Parameters of the Fabricated Evaluation PCB for Testing the 

Transition between the Feeding Network and Phase Shifter at 2.45GHz 

 
Control Voltage: 

0V 

Control Voltage: 

3.39V 

Control 

Voltage:7.96V 

S11(Magnitude) -12.68dB -13.03dB -14.06dB 

S11(Phase) 138.31° 145.27° 178.12° 

S21(Magnitude) -3.32dB -3.22dB -3.17dB 

S21(Phase) -95.35° 84.65° -95.49° 

S22(Magnitude) -12.78dB -13.18dB -14.11dB 

S22(Phase) 134.87° 135.32° 160.59° 

Table 4.6: Measured S-Parameters of the Fabricated Evaluation PCB for Testing the 

Transition between the Feeding Network and Phase Shifter at 2.6GHz 

 
Control Voltage: 

0V 

Control Voltage: 

3.31V 

Control 

Voltage:7.88V 

S11(Magnitude) -12.88dB -13.45dB -14.24dB 

S11(Phase) 105.18° 112.18° 153.77° 

S21(Magnitude) -3.25dB -3.15dB -3.11dB 

S21(Phase) -113.32° 66.68° -113.49° 

S22(Magnitude) -13.43dB -13.78dB -15.05dB 

S22(Phase) 100.12° 105.25° 147.03° 

    

Figure 4.44: Photo of the Fabricated Evaluation PCB for Testing the Transition between the 

Phase Shifter and Monopole Antenna (Transition II): Top View and Bottom View 
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Table 4.7: Measured S-Parameters of the Fabricated Evaluation PCB for Testing the 

Transition between the Phase Shifter and Monopole Antenna at 2.45GHz 

 
Control Voltage: 

0V 

Control Voltage: 

3.22V 

Control 

Voltage:7.93V 

S11(Magnitude) -12.64dB -13.06dB -14.26dB 

S11(Phase) 118.59° 125.91° 167.02° 

S21(Magnitude) -3.36dB -3.19dB -3.15dB 

S21(Phase) -94.78° 85.22° -94.79° 

S22(Magnitude) -12.78dB -13.05dB -14.16dB 

S22(Phase) 113.41° 129.61° 169.22° 

 

Table 4.8: Measured S-Parameters of the Fabricated Evaluation PCB for Testing the 

Transition between the Phase Shifter and Monopole Antenna at 2.6GHz 

 
Control Voltage: 

0V 

Control Voltage: 

3.18V 

Control 

Voltage:7.88V 

S11(Magnitude) -13.21dB -14.05dB -14.46dB 

S11(Phase) 90.17° 105.77° 141.06° 

S21(Magnitude) -3.29dB -3.15dB -3.11dB 

S21(Phase) -112.11° 67.89° -112.19° 

S22(Magnitude) -13.23dB -14.18dB -15.05dB 

S22(Phase) 88.14° 101.23° 137.03° 

 

It is clear from the measurement results that the both transition structures achieve good S-

Parameters and accurate 180º and 360º phase shifts for 2.45GHz and 2.6GHz, respectively. 

Finally an analogue phase shifter has been connected between the two UWB CPW-to-

microstrip transitions. The design and fabricated layout are presented in Figure 4.45 and 

Figure 4.46. 

 

                             (a)                                                (b)                                                (c) 

Figure 4.45: (a) Geometry of the Evaluation PCB for Testing the Two Transitions (b) Top Layer 

(c) Bottom Layer 
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Figure 4.46: Photo of the Fabricated Evaluation PCB for Testing the Two Transitions: Top View 

and Bottom View 

The measured results of the phase shifter integrated with the two UWB transitions at 

2.45GHz and 2.6GHz are summarised in Table 4.9 and Table 4.10, respectively. 

Table 4.9: Measured S-Parameters of the Fabricated Evaluation PCB for Testing the 

Two Transitions at 2.45GHz 

 
Control Voltage: 

0V 

Control Voltage: 

3.01V 

Control 

Voltage:7.73V 

S11(Magnitude) -14.78dB -15.11dB -16.01dB 

S11(Phase) 142.09° 144.23° 173.47° 

S21(Magnitude) -3.18dB -3.15dB -3.12dB 

S21(Phase) -87.16° 92.84° -87.16° 

S22(Magnitude) -14.12dB -14.98dB -15.01dB 

S22(Phase) 138.21° 141.02° 166.45° 

 

Table 4.10: Measured S-Parameters of the Fabricated Evaluation PCB for Testing the 

Two Transitions at 2.6GHz 

 
Control Voltage: 

0V 

Control Voltage: 

2.98V 

Control 

Voltage:7.98V 

S11(Magnitude) -15.22dB -15.67dB -15.98dB 

S11(Phase) 111.65° 117.34° 155.65° 

S21(Magnitude) -3.06dB -2.98dB -2.90dB 

S21(Phase) -115.43° 64.57° -115.43° 

S22(Magnitude) -17.34dB -17.98dB -18.87dB 

S22(Phase) 105.56° 113.54° 149.76° 
 

It is significant to note that the integrated structure achieves suitable reflection coefficients. 

From the manufacture datasheet [127], the insertion loss of the phase shifter is around 3dB, 

and the measurements demonstrate a good agreement. The proposed configuration is able to 

generate 180° phase shift at 3.01V and 2.98V, 360° phase shift at 7.73V and 7.98V, for 

2.45GHz and 2.6GHz, respectively. 
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4.5 Smart Antenna Array Implementation  

4.5.1 Adaptive 1:4 UWB Feeding Network Integration 

Based on the above analysis, the phase shifters and UWB transitions have been combined 

with the UWB feeding network. Figure 4.47 presents the fully integrated layout and Figure 

4.48 illustrates the fabricated design. The measurement results are demonstrated in Table 4.11 

and Table 4.12. 

 

(a) 

 

(b) 
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(c) 

Figure 4.47: (a) Geometry of Adaptive 1:4 UWB Feeding Network (b) Top Layer (c) Bottom 

Layer 

 

(a) 

 

(b) 

Figure 4.48: Photo of the Fabricated 1:4 Adaptive UWB Feeding Network: (a) Top View (b) 

Bottom View 
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Table 4.11: Measured S-Parameters of the Fabricated 1:4 Adaptive UWB Feeding 

Network at 2.45GHz 

 
Control Voltage: 

0V 

Control Voltage: 

2.79V 

Control 

Voltage:7.79V 

S11(Magnitude) -17.63dB -17.69dB -17.72dB 

S22(Magnitude) -16.54dB -16.57dB -16.61dB 

S33(Magnitude) -17.14dB -17.22dB -17.26dB 

S44(Magnitude) -17.26dB -17.27dB -17.32dB 

S55(Magnitude) -17.02dB -17.23dB -17.33dB 

S21 (Magnitude) -9.52dB -9.49dB -9.41dB 

S21 (Phase) 9.64° -170.32° 9.72° 

S31 (Magnitude) -9.58dB -9.52dB -9.49dB 

S31 (Phase) 10.98° -167.45° 10.46° 

S41 (Magnitude) -9.76dB -9.65dB -9.51dB 

S41 (Phase) 9.59° -172.63° 9.96° 

S51 (Magnitude) -9.57dB -9.51dB -9.47dB 

S51 (Phase) 11.92° -169.73° 10.74° 

S23(Magnitude) -25.11dB -25.22dB -25.32dB 

S34(Magnitude) -28.35dB -29.01dB -29.23dB 

S45(Magnitude) -26.22dB -26.54dB -26.99dB 

 

Table 4.12: Measured S-Parameters of the Fabricated 1:4 Adaptive UWB Feeding 

Network at 2.6GHz 

 
Control Voltage: 

0V 

Control Voltage: 

2.85V 

Control 

Voltage:7.91V 

S11(Magnitude) -18.23dB -18.45dB -18.98dB 

S22(Magnitude) -17.05dB -17.13dB -17.35dB 

S33(Magnitude) -17.13dB -17.42dB -17.61dB 

S44(Magnitude) -16.98dB -17.02dB -17.23dB 

S55(Magnitude) -17.02dB -17.24dB -17.56dB 

S21 (Magnitude) -9.42dB -9.41dB -9.41dB 

S21 (Phase) 41.34° -138.65° 41.36° 

S31 (Magnitude) -9.49dB -9.46dB -9.42dB 

S31 (Phase) 43.23° -137.32° 44.73° 

S41 (Magnitude) -9.52dB -9.46dB -9.44dB 

S41 (Phase) 42.45° -138.17° 43.57° 

S51 (Magnitude) -9.48dB -9.46dB -9.42dB 

S51 (Phase) 41.52° -140.73° 42.84° 

S23(Magnitude) -27.15dB -27.34dB -27.55dB 

S34(Magnitude) -30.16dB -30.45dB -30.81dB 

S45(Magnitude) -28.12dB -28.56dB -28.77dB 

 

The measured reflection coefficients are similar to the results as in Table 3.7. Sn1 

(Magnitude and Phase) are the only differences, and the measured results have been 

summarised in the above tables. Based on calculation, the theoretical insertion loss is 6.4dB 
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for a four ports network. There is another 3dB loss caused by the phase shifter. The measured 

-9.5dB reveals a good consistency to the calculated -9.4dB. Furthermore, it is clear from the 

tables that the adaptive 1:4 UWB feeding network demonstrates 180° phase shift at 2.79V and 

2.85V, 360° phase shift at 7.79V and 7.91V, for 2.45GHz and 2.6GHz, respectively. The 

proposed integrated feeding network provides good S-Parameters and generates accurate 

phase shifts, which is suitable for the smart antenna array implementation. 

4.5.2 Smart Antenna Array Integration and Characterisation 

Based on the above design procedure, the four-element linear antenna array, UWB 

feeding network, analogue phase shifters and UWB transitions are assembled, in order to 

establish a complete smart antenna system (as illustrated in Figure 4.49). 

For the finalised smart antenna array system, the radius of the monopole antenna is 15mm 

and inter-element spacing is 40mm. The physical dimension of the manufactured circuit is 

110mm × 155mm. DC bias voltages have been supplied to the analogue phase shifters. Figure 

4.51 depicts the measured reflection coefficients of the proposed smart antenna array with 

different DC bias voltages. 

 

(a) 
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(b) 

 

(c) 

Figure 4.49:  (a) Geometry of the Fully Integrated Smart Antenna Array (b) Top Layer (c) 

Bottom Layer 

 

(a) 
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(b) 

Figure 4.50: Photo of the Fabricated Smart Antenna Array (a) Top View (b) Bottom View 

 

Figure 4.51: Measured Reflection Coefficient of the Proposed Smart Antenna Array with DC 

Bias 0V, 2V, 4V, 6V and 8V 

The proposed smart antenna structure operates from 2.25GHz to 2.8GHz frequency band, 

covering the WiFi/Bluetooth (2.45GHz) and LTE (2.6GHz) standards. After applying the DC 

bias voltages to the phase shifters, the operating frequency range is even wider. This smart 

antenna array obtains suitable reflection coefficients.  

The radiation pattern measurements were carried out in an anechoic chamber having walls 

that are covered with RF absorbers, as shown in Figure 2.36 (Chapter 2).  

The main beam steering is performed in H-Plane and all of the H-Plane measurement 

results have been analysed. The measured gain is illustrated in Figure 4.52 and Figure 4.53, for 

2.45GHz and 2.6GHz, respectively. 
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Figure 4.52: Measured Gain vs. Theta in the H-Plane for Different Scanning Angles, at 2.45GHz 

 

Figure 4.53: Measured Gain vs. Theta in the H-Plane for Different Scanning Angles, at 2.6GHz 

Compared to the simulation results (discussed in Chapter 2), the measured gain is reduced 

by 2.5dB, which is caused by the loss of analogue phase shifters, feeding network and UWB 

transitions. At 2.45GHz, the smart antenna array is able to steer from -50° to +50°. For 

2.6GHz, the scanning range reaches ±52°, while maintaining low side lobes. The smart 

antenna array demonstrates a gain of 8.5dBi with 40° 3dB bandwidth in broadside direction, 
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and has more than 10dB side lobe level suppression across the scan. Further work will use 

MEMS devices integrated into the design to replace the analogue phase shifters. By digitally 

controlling the DC bias voltages, this smart antenna array could be implemented into mobile 

devices for reconfigurable applications. 
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4.6 Summary 

This chapter addressed the smart antenna array full integration and characterisation. The 

antenna array design has been described in Chapter 2 and the UWB feeding network structure 

was discussed in Chapter 3. This chapter firstly shows all of the different phase shifter 

developments, which include ferrite phase shifter and planar phase shifter. The planar phase 

shifter is divided into two sections: switched delay line phase shifter and loaded transmission 

line phase shifters. Both of the two structures could be implemented using PIN diodes, FETs, 

MMIC and MEMS devices. All of the phase shifter configurations have been reviewed and 

studied. Based on the comparison, a high accuracy and low loss MMIC analogue phase shifter 

from Hittite has been chosen for the smart antenna array implementation. Several evaluation 

boards were designed and fabricated to test the analogue phase shifter. From the measurement 

result, the phase shifter achieves suitable S-Parameters and phase shift for both of 

WiFi/Bluetooth (2.45GHz) and LTE (2.6GHz) standards. This HMC928LP5E analogue phase 

shifter obtains 180° phase shift at 3.64V and 3.59V, 360° phase shift at 8.22V and 8.11V, 

with return loss of 10dB and insertion loss of 3dB, at 2.45GHz and 2.6GHz, respectively, 

which confirms that the analogue phase shifter is adequate for the smart antenna array 

application. 

Then two UWB transitions have been designed, simulated, fabricated and characterised 

between the UWB feeding network, phase shifters and the monopole antennas.  The two 

transitions are able to transfer the RF signal from CPW to microstrip and achieve smooth field 

transformation and impedance matching. The proposed structure shows return loss of 10dB 

and suitable insertion loss of 0.2dB from 0.5GHz to 9GHz. 

Finally, a novel smart antenna array integrating planar monopole antennas, UWB feeding 

network, analogue phase shifters and UWB transitions is proposed and fully evaluated. The 

dimension of the individual antenna element is 35mm×35mm and the design demonstrates 

high return loss (19dB, 30dB), high efficiency (79%, 87%) and large gain (2.72dBi, 2.88dBi) 

at 2.45GHz and 2.6GHz, respectively. A four-element planar antenna array combining the 

unit antenna has been designed, simulated and characterised. By appropriately controlling the 

analogue phase shifters and adjusting the excitations of the elements, beam steering for ±50° 

and ±52° in H-plane with the gain fluctuation less than 3dB and low side lobe level at 

2.45GHz and 2.6GHz are achieved. Both simulated and measured results verified the validity 

of the array configuration. Due to its advantages of compact size, simple structure, accurate 

control, easy fabrication and low power consumption, the proposed smart antenna array has 

applications to multiband and multifunctional wireless communication systems. 
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Figure 4.54: The Investigation of Smart Antenna Array Full Implementation 
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3. The physical dimension of the full integrated smart antenna array is 110mm × 155mm. 

4. According to the return loss, the smart antenna array operates from 2.25GHz to 2.8GHz frequency 

band, covering the WiFi/Bluetooth (2.45GHz) and LTE (2.6GHz) standards. 

5. At 2.45GHz, the smart antenna array is able to steer from -50° to +50°.  

6. For 2.6GHz, the scanning range reaches ±52°, while maintaining low side lobes. 

7. The smart antenna array demonstrates a gain of 8.5dBi with 40° 3dB bandwidth in broadside 

direction, and has more than 10dB side lobe level suppression across the scan. 
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5.1 Introduction 

In the previous chapter, the fully integrated smart antenna array has been characterised 

and analysed. By appropriately controlling the analogue phase shifters and adjusting the 

excitations of the elements, beam steering is achieved for the required frequency bands. 

However, the control voltage was generated by an external DC power supply, as presented in 

Figure 4.33, which is large, heavy and difficult to achieve the automatic control. This chapter 

demonstrates the design, fabrication and evaluation of hardware systems in order to digitally 

control the smart antenna array. The smart antenna system is developed for mobile 

applications, so the hardware control section should be miniaturised, light weight, low power 

consumption and able to be integrated into smart phones or tablets.  

The smart antenna array is controlled by software installed on the mobile devices. The 

controlling system includes software package installed on the mobile terminal and a USB 

interface board hosting a microprocessor. The USB interface board sends a set of controlling 

commands to the antenna array and transfer WiFi signal into the USB WiFi adapter. The 

smart antenna is made adaptive by digitally tuning the analogue phase shifters to support the 

beam steering. Finally, the software installed on the mobile terminal will indicate the WiFi 

signal information at different main beam directions. 

Two USB interface boards are presented in this chapter, by utilising different 

microcontrollers, PIC18F4550 and LPC1768, respectively. Voltage booster of NJM2360 

increases the power from 3.3V to 30V, and several digital potentiometers will generate the 

variable output voltages. By supplying these output voltage levels to the analogue phase 
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shifters, the smart antenna array can be reconfigured. Figure 5.1 shows the system layout of 

the hardware implementation for the smart antenna array system. 

 

Figure 5.1: System Block Diagram of the Smart Antenna Array System 

This chapter is mainly divided into five sections. Section 5.1 describes an overview of the 

hardware implementation. Section 5.2 focuses on key component characterisations in the 

control system. Two control PCB design, fabrication and evaluation using microcontroller 

PIC18F4550 and LPC1768 are discussed in Section 5.3 and Section 5.4, respectively. Section 

5.5 presents the WiFi adapter applied in the hardware control system.  Finally, the summary is 

addressed in Section 5.6. 

5.2 Key Components Characterisations 

In the USB interface control board, there are several key components and their 

characterisations determine the circuit design.  
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5.2.1 Microcontroller PIC18F4550 

 

Figure 5.2: PIC18F4550 PIN Diagram [130]  

PIC18F4550 from Microchip Technology Inc is one of the microcontrollers applied in the 

smart antenna array hardware control system. It is a 44-pin high performance USB microchip 

with nano watt technology [130]. 

The PIC18F550 microcontroller incorporates a fully featured universal serial bus 

communications module which is compliant with the USB Specification Revision 2.0. Low 

speed and full speed communications are both supported by this USB module for all data 

transfer types. Furthermore, the microcontroller contains an on-chip transceiver and a 3.3V 

regulator, and also supports the application of external transceivers and voltage regulators. 

In the hardware control system, the microcontroller PIC18F4550 establishes the 

communication between mobile terminals and the PCB board. Oscillator of the microchip 

decides the data transfer speed and is the “heartbeat” of the digital circuit. The operation of 

oscillator in PIC18F4550 device is controlled by two configuration registers and two control 

registers. CONFIG1L and CONFIG1H are the configuration registers, which determine the 

oscillator mode and USB prescaler/ postscaler options. As configuration bits, they are set 

when the microchip is programmed and remain that configuration until the microchip is 

reprogrammed. For the control registers, the OSCCON register selects the active clock mode, 

which is primarily applied in controlling clock switching in power-managed modes. The 

OSCTUNE register is utilised to trim the INTRC frequency source and also choose the low 

frequency clock source for several special features. The PIC18F4550 microchip is able to 
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operate in twelve distinct oscillator modes. HSPLL (High-Speed Crystal/Resonator with 

Phase Locked Loop Enabled) is the ideal oscillator mode for the smart antenna array 

hardware control board. In this configuration, a crystal or ceramic resonator is connected to 

the OSC1 and OSC2 pins in order to generate oscillation. Figure 5.3 demonstrates the pin 

connections. 

 

Figure 5.3: Oscillator Pin Connections [130] 

Various capacitor values have been evaluated in order to produce acceptable oscillator 

operation. Higher capacitance will increase the stability of oscillator, but also increases the 

start-up time. In the PIC18F4550 USB interface control board, the crystal of 20MHz has been 

used, which requires the capacitance (C1 and C2) around 20pF. After testing the oscillator 

performance over the expected VDD (5V) and temperature range for the application, 22pF for 

C1 and C2 have been selected. In the circuit presented in Figure 5.3, the series resistor Rs is 

used to avoid overdriving crystals with low drive level specification. The operating frequency 

of this microchip is 20MHz, which is already very high and Rs is not necessary for this 

design. Typically, the resistor in parallel with the crystal (RF) is 1MΩ.  

The phase locked loop (PLL) is enabled in HSPLL oscillator mode. It produces a fixed 96 

MHz reference clock from a fixed 4 MHz input. Then, the output could be divided and 

applied for both USB and microcontroller core clock. In this implementation, the PLL 

frequency is used for the Bootloader program in order to control the microchip, which will be 

discussed in Chapter 6 software design section.  

Before programming the microchip, it is required to reset the device. The reset command 

will control the master clear reset (            ) pin and the circuit diagram is displayed in Figure 

5.4. The               pin provides a method for triggering an external reset for the microcontroller. 

A reset is achieved by holding the pin low. There is a noise filter in the               reset path 

which detects and ignores small pulses. The diode D helps discharge the capacitor quickly 

when VDD power is down. Normally, the resistor R is smaller than 40 kΩ to make sure the 

device’s electrical specification will not be violated by the voltage drop across R. 
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Figure 5.4: External Power Reset Circuit [130] 

From Figure 5.2, it is noted that there are more than 30 Input / Output (I/O) ports on the 

microchip. Depending on the device selected and features enabled, up to five ports are 

available for each series (RA, RB, RC and RD). Moreover, some of the I/O ports are 

multiplexed with an alternate function from the peripheral features on the device. Each I/O 

port has three kinds of registers: TRIS register (data direction register), PORT register (reads 

the levels on the pins of the device) and LAT register (output latch). For instance, in the RA 

series, PORTA is an 8-bit wide, bidirectional port and TRISA is the corresponding data 

direction register. When TRISA bit = 1, the PORTA pin becomes an input, which means the 

corresponding output driver is in a high impedance mode. When TRISA bit = 0, PORTA pin 

changes into an output, and the contents of the output latch will be transferred to the selected 

pin. The PORTA register reading illustrates the status of the pin and its writing value will 

finally go to the port latch (LATA). More descriptions of the three registers will be presented 

in Chapter 6.  

There is a real serial peripheral interface (SPI) port on the PIC18F4550 microcontroller. 

The SPI mode allows 8 bits data to be transmitted synchronously and received 

simultaneously. To establish the communication, three pins will be utilised: serial clock 

(SCK), serial data in (SDI) and serial data out (SDO). However, in the hardware system, 

sixteen digital potentiometers will be connected to the microchip and there is only one real 

SPI mode in the chip, which is not enough to control all of the devices. For the purpose of 

configuring the potentiometers individually and make full use I/O ports, virtual SPI 

communications are applied. In the smart antenna array hardware control system 

implementation, sixteen I/O ports control the digital potentiometers. Another two I/O pins 

generate virtual clock (CLK) and chip select (     ) in order to simulate the SPI communication 

method.  

A Bootloader code is required to configure the PIC18F4550 microchip and an ICSP 

programmer is used to burn the code into the microcontroller. ICSP programming utilises the 
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PGD and PGC ports on the microchip and two pull-up resistors are connected to VDD. Finally, 

several LEDs are linked to the PIC18F4550 chip to indicate the communication status.      

5.2.2 Microcontroller LPC1768  

 

Figure 5.5: LPC1768 PIN Configuration [131] 

The LPC1768 is an ARM Cortex-M3 based microcontroller for embedded applications 

featuring a high level of integration and low power consumptions. The ARM Cortex-M3 is a 

next generation core that offers system enhancements such as enhanced debug features and a 

higher level of support block integration. The operating CPU frequency of LPC1768 is up to 

100MHz. The ARM Cortex-M3 CPU incorporates a three-stage pipeline and applies a 

Harvard architecture with separate local instruction and data buses as well as a third bus for 

peripherals. This microcontroller also includes an internal prefetch unit that provides 

speculative branching. 

The peripheral complements in LPC1768 includes a flash memory (up to 512 kB), data 

memory (up to 64kB), USB Device/Host/OTG interface, UARTs, eight-channel general 

purpose DMA controller, SPI interface, I
2
C-bus interfaces, Ethernet MAC, eight-channel 12-

bit ADC, 10-bit DAC, motor control PWM, timers, ultra-low power Real-Time Clock (RTC) 

and up to 70 general purpose I/O outputs. The device is in LQFP100 package and the pin 

configuration is displayed in Figure 5.5. 

The LPC1768 includes three independent oscillators. These are the main oscillator, RTC 

oscillator and the IRC oscillator. Each oscillator could be utilised for several purposes as 

required in particular applications.  

Following reset, the LPC1768 operates from the internal RC oscillator until switched by 

software. This allows the microcontroller to operate without any external crystal and 

Bootloader code to work at a known frequency. In the smart antenna hardware design, the 

oscillator is driven by a clock in slave mode. A capacitor Ci = 100 pF is placed between the 
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clock and oscillator. To limit the input voltage to the specified range, an additional capacitor 

to ground Cg is applied which attenuates the input voltage by a factor Ci/(Ci+Cg). Figure 5.6 

presents the circuit diagram of the oscillator.  

 

Figure 5.6: Oscillator Circuit Diagram [131]  

Device pins that are not connected to a specific peripheral function are controlled by the 

general purpose input/output (GPIO) registers. These pins can be dynamically configured as 

inputs or outputs. Separate registers allow writing or clearing any number of outputs 

simultaneously. Similar to the PIC18F4550 microcontroller, several GPIO pins are used in 

order to simulate the SPI communication. Detailed descriptions will be addressed in Section 

5.3. 

The LPC1768 microcontroller will be controlled by USB connection. In the chip, the 

universal serial bus (USB) is a four-wire bus that allows communication between a host and 

several peripherals. The host controller allocates the USB bandwidth to attached devices 

through a token-based protocol. The bus supports hot plugging and dynamic configuration of 

the devices. All of the transactions are initiated by the host controller, which is the mobile 

terminal in the hardware design. The USB connection for the LPC1768 microchip is 

demonstrated in Figure 5.7. 

 

Figure 5.7: LPC1768 USB Connection [131] 
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5.2.3 Digital Potentiometer AD5290 

In the hardware control system, compact  30V/ 15V 256-position digital potentiometer 

AD5290 from Analog Device is used for providing control voltages to the phase shifters, as 

displayed in Figure 5.8.  

   

                                                         (a)                                                          (b) 

Figure 5.8: (a) AD5290 Functional Block Diagram (b) AD5290 PIN Configuration [132] 

AD5290 is a low cost, high voltage, high performance, and compact digital potentiometer. 

It has been widely utilised for the applications such as programmable voltage supply, high 

voltage DAC, audio volume control and programmable gain and offset adjustment.  

AD5290 performs the same electronic adjustment function as variable resistors, 

mechanical potentiometers and trimmers, with solid state reliability, enhanced resolution and 

superior temperature stability. Since the device is digital control instead of manually, it shows 

layout flexibility and allows closed-loop dynamic controllability. In the hardware 

implementation, AD5290 with 100 kΩ maximum resistor and MSOP-10 package is selected. 

 

Figure 5.9: Rheostat Mode Configuration [132] 

When only the W-B or W-A terminals are used as variable resistors, the floating terminal 

is opened or shorted by W. This operation is defined as rheostat mode, as illustrated in Figure 

5.9. The resistance between terminal A and B is 100 kΩ with ±30% tolerance and it provides 

256 tap points accessed by the wiper terminal (W). The 256 possible positions are selected by 

an 8-bit data decoded in the RDAC latch. The 8-bit data is controlled by SPI interface.  
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Equation 5.1 presents the programmable output resistance between the terminal W and A. 

                                                 D  
     

   
                                                   (5.1) 

Where, D represents the decimal equivalent of the binary code loaded to the 8-bit RDAC 

register from 0 to 255. RAB is the maximum resistance, 100kΩ in this application. RW shows 

the wiper resistance caused by the internal switch. RW is a function of VDD and temperature. 

Compared to the temperature coefficient of RAB which is only 35 ppm/°C, the temperature 

coefficient for the wiper resistance is significantly higher because the wiper resistance 

doubles from 25°C to 125°C. However, in this application, the room temperature remains the 

same and RW stays at 150Ω. Contrary to RAB which is 100kΩ, RW is small enough to be 

neglected.  

Terminal A and W generate the output resistance of AD5290 in the hardware system. RWA 

starts at the maximum value and starts to reduce when the latch data increases. 

Based on the rheostat mode, the digital potentiometer easily provides a voltage divider at 

W-B and W-A proportional to the input voltages at terminal A to B (as shown in Figure 5.10).  

 

Figure 5.10: Voltage Divider Mode Circuit Diagram [132] 

                                                   D  
 

   
    

     

   
                                              (5.2) 

Connecting A to 30 V and B to ground produces an output voltage at W. The output 

voltage (V0) is defined by the position of potentiometer divider and the value is decoded from 

the 8-bit RDAC register. For instance, if the 8-bit data is 11010011(binary), the decimal value 

of D is 211, resistance RWA from Equation 5.1 is 17.58kΩ and the output voltage at W (VW) is 

24.73V. 

Compare to the rheostat mode, this voltage divider mode is dependent mainly on the ratio 

of the internal resistors RWA and RWB and not the absolute values. Therefore, it demonstrates 

an obviously reduce of the temperature drift, which makes the device more accurate.   
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AD5290 is communicating with SPI, which contains a three-wire digital interface:      , 

CLK, and SDI (as presented in Figure 5.11). In order to avoid clocking incorrect data into the 

serial input register, the positive edge sensitive CLK input needs clean transitions. When the 

chip select pin       is low, the clock loads data into the serial register on each positive clock 

edge and the MSB of the 8-bit serial is loaded first. The data hold and setup times in Figure 

5.11 determine the valid timing requirements. After eight clock cycles, the 8-bit serial input 

data register transfers the words into internal RDAC register and the       line changes to logic 

high. Extra MSB bits are ignored. The detailed timing diagram is discussed in Chapter 6. 

  

Figure 5.11: AD5290 Timing Diagram [132] 

Furthermore, since SDO shifts out the SDI content in the previous frame, AD5290 could 

be connected as daisy-chaining multiple devices.  

 

Figure 5.12: AD5290 Daisy-Chain Operation [132] 

In Figure 5.12, two AD5290 devices are daisy-chained, and a total of 16 bits of data is 

needed for each operation. The first set of 8 bits transfer into U2, and the second set of 8 bits 

go to U1. This communication method can simplify the design structure, but the whole 

system will break down if any of the potentiometer is damaged. For the system stability, this 

daisy-chain connection is not applied in the hardware implementation. The sixteen digital 

potentiometers are connected and controlled in parallel.  
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5.2.4 Voltage Booster NJM2360 

The control board is powered with the USB port which supplies 5V DC voltage and the 

digital potentiometer requires 30V power supply. A voltage booster NJM2360 that increases 

the DC voltage from 5V to 30V is included in the hardware design.   

 

Figure 5.13: NJM2360 Block Diagram [133] 

NJM2360 is a DC-DC converter control IC which is designed to be incorporated in Step-

Down, Step-Up and inverting applications with a minimum number of external components. 

The operating voltage is from 2.5V to 40V and the output voltage varies between 1.25V to 

40V. 

In the hardware implementation, a Step-Up converter is being used, as displayed in Figure 

5.14. 

 

Figure 5.14: Voltage Booster Step-Up Circuit 

By applying 30V to the digital potentiometers, the output voltages are varied between 0V 

to 30V, which can provide suitable control voltages to the phase shifters.  
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5.2.5 USB to UART Interface FT232RL 

A USB to UART interface FT232RL device is used for microcontroller LPC1768 to 

achieve the real-time control. 

The FT232RL is a USB to serial UART interface with optional clock generator output, 

and new FTDI security dongle feature. Moreover, synchronous and asynchronous bit bang 

interface modes are available. USB to serial designs using the FT232RL have been further 

simplified by fully integrating the external EEPROM, clock circuit and USB resistors onto the 

device. Figure 5.15 shows the FT232RL pin configuration. 

 

Figure 5.15: FT232RL Pin Configuration [134] 

The FT232RL translates USB into UART interface and connects to the microcontroller 

LPC1768. Using this method, the LPC1768 can communicate through USB connection to 

mobile terminals and generate a real-time control. The circuit diagram is illustrated in Figure 

5.16. 
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Figure 5.16: FT232RL to USB Configuration [134] 

In this implementation, the USB bus power is utilised to control the RESET Pin of the 

FT232R device. When the USB host is powered up, the internal 1.5kΩ resistor on USBDP is 

pulled up to 3.3V, thus identifying the device as a full speed device to USB. When the USB 

host power is off, RESET will be low and the device is held in reset. As RESET is low, the 

internal 1.5kΩ resistor will not be pulled up to 3.3V, so no current will be forced down 

USBDP via the 1.5kΩ resistor when the host is powered down. 

FT232RL is in a USB self powered configuration. A USB self powered device obtains 

power from its own power supply and does not draw current from the USB bus.  

Using the key components described in this section, two separate control PCBs using 

PIC18F4550 and LPC1768 microcontrollers for the smart antenna array system have been 

designed, tested, fabricated and evaluated. 

5.3 Control PCB Implementation Using PIC18F4550 

5.3.1 Circuit Diagram  

The complete circuit is composed of microcontroller, voltage booster, digital 

potentiometers, USB module and testing elements. The circuit and board design are built and 

analysed in a PCB design tool, namely KiCad.  

Figure 5.17 demonstrates the microcontroller circuit diagram. 
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Figure 5.17: Microcontroller 18F4550 Circuit Diagram 

In this microcontroller schematic, PIN2, PIN3, PIN4, PIN5, PIN8, PIN9, PIN10, PIN11, 

PIN19, PIN20, PIN21, PIN22, PIN23, PIN24, PIN25 and PIN26 are used to generate SDI 

signals to the sixteen digital potentiometers. These pins send 8-bit data to control the output 

voltages. PIN14 and PIN15 are followed by two switches to test the microchip. PIN16 and 

PIN17 are utilised for ICSP programming. There is a pull-up resistor linked to PIN18 in order 

to reset the device. PIN30 and PIN31 are driven by a crystal oscillator. PIN35 and PIN36 

provide       and CLK signals to the potentiometers. PIN38, PIN39, PIN40 and PIN41 are 

connected with LEDs to show the connection status. PIN27 also controls a LED to run the 

Bootloader and Hello World program to initialise the microcontroller.  PIN42 and PIN43 are 

used for the USB module. Power supply goes into the device through PIN7 and PIN28. 

The digital potentiometer circuit diagram is illustrated in Figure 5.18. 

 

Figure 5.18: Digital Potentiometer AD5290 Circuit Diagram 

In order to achieve 30V maximum output voltage, PIN1 (Terminal A) is connected to VDD 

and PIN2 (Terminal B) is combined to ground. Therefore, the output voltage at PIN10 

(Terminal W) varies from 0V to 30V with 255 possible positions. The 8-bit data comes from 
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PIN7 (SDI).       and CLK control signals go to PIN5 and PIN6, respectively. There is a 

resistor of 1kΩ placed between PIN9 and VDD with the function of protecting the 

potentiometer when the supply voltage increases suddenly. Finally, a decouple capacitor is 

added between VDD and ground.  

Figure 5.19 shows the voltage booster NJM2360 circuit diagram. 

 

Figure 5.19: Voltage Booster NJM2360 Circuit Diagram 

In this schematic, the input voltage at Vcc is 5V and the output voltage is 30V. 

The USB connection is shown in Figure 5.20. There is a ferrite bead between Vcc and 

VUSB with the purpose of reducing electromagnetic interference (EMI) and radio frequency 

interference (RFI). 

 

Figure 5.20: USB Module Circuit Diagram 

There are several other and testing components on the PCB. Figure 5.21(a) demonstrates 

the crystal oscillator to the microcontroller. LED D0 in Figure 5.21(b) illustrates the power 

supply. LED D1 D2, D3 and D4 are connected to some specified I/O ports of the microchip to 

indicate the USB connection statue. LED D6 is applied for a Hello World program to initialise 

the device. Figure 5.21(c) shows a 6-Pin connection for ICSP programming. The first switch 

in Figure 5.22(a) is connected to MCLR of PIC18F4550 to reset the device. The other two are 

for running the Bootloader code. Figure 5.22(c) presents the output voltage pins.  
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                           (a)                                             (b)                                              (c) 

Figure 5.21: (a) Crysital Oscillator (b) Testing LEDs (c) 6-Pin ICSP Connector 

 

                                           (a)                                                                               (b) 

Figure 5.22: (a) Reset Switches (b) Output Voltage Pins 

The complete circuit diagram of the smart antenna hardware control board design using 

PIC18F4550 microcontroller is displayed in Figure 5.23. 
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Figure 5.23: Schematic of Control PCB Using PIC18F4550 

5.3.2 Breadboard Testing  

The design circuits have been constructed on a breadboard for prototyping of electronics. 

Figure 5.24 presents the breadboard testing. 
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Figure 5.24: Breadboard Testing of Control Board Using PIC18F4550 

On the prototype board, a PIC18F4550 microcontroller in TQFP40 package is used to test 

the circuit design. The whole control system is divided into several sections. 

Section I shows the voltage booster, which increases the input voltage from 5V to 30V 

for digital potentiometers.   

Section II is the digital potentiometer circuit. On the breadboard, only one digital 

potentiometer is being tested. A small socket for AD5290 is used to put the surface mount 

device (SMD) onto the prototype board. The green wire is the Terminal W of the device, 

which shows the variable output voltage.   

Section III and Section IV are connecting the USB module. The red wire is VUSB, two 

orange wires are D+ and D-, and the ground is in black. 

Section V demonstrates a crystal oscillator with a frequency of 20MHz. Both of the 

loading capacitors are 22pF, which have been calculated from Section 5.2.1. 
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Section VI illustrates a switch with a pull-up resistor for the purpose of resetting the 

microchip. 

In Section VII, there are four LEDs with important functions. A Bootloader code is 

required to be burnt into the microcontroller PIC18F4550 in order to communicate with 

mobile terminal through USB connection. The four LEDs are showing the communication 

status. Bootloader program sets the suitable configuration bits of the microcontroller and 

initialises the whole control system. After programming the Bootloader into PIC18F4550, the 

mobile terminal treats the control board as a normal USB device and installs a firmware. 

After that, the first LED is on, showing the initialisation has been done correctly. Then, it is 

required to press the reset switch in Section VI to wake up the microcontroller. LED2 and 

LED3 will start to blink and show the microchip is waiting for commands. The blinking 

frequency is determined by the crystal oscillator. If any configuration bit in the microchip 

goes wrong, LED3 and LED4 will start to blink. The configuration bit is very important in the 

hardware implementation, because it decides the memory location, switches on/off the watch-

dog, and selects the oscillator types. None of the LEDs will be lighted when the 

communication is totally wrong, which means it is necessary to reload the Bootloader.  

Section VIII displays a yellow LED to run a Hello World program. Based on the 

Bootloader program, it is possible to write user’s control code into this PIC18F4550. In the 

microchip, the Bootloader program occupies the memory from 0x00 to 0xFF. The new 

program starts from 0x100 in the memory in order not to disturb the configuration bits used 

by Bootloader. In this method, the new codes are regarded as part of the Bootloader, which 

increases the system stability. When the yellow LED blinks at the frequency of 1Hz, it means 

the configuration bits are suitable for the design and all of the components have been 

connected correctly. Then the microcontroller PIC18F4550 is able to control the digital 

potentiometers.  

Several decoupling capacitors are placed in Section IX near the power supply.  

5.3.3 PCB Fabrication  

The breadboard testing confirms the design structure, and the circuit has been established 

on a compact PCB. The PCB geometry is constructed in KiCad, which is an open source 

integrated package for schematic circuit capture and PCB layout. 

The complete design schematic is shown in Figure 5.23. For the PCB layout, the 

microcontroller PIC18F4550 is in 44Pin TQFP, digital potentiometer AD5290 is in MSOP10 

and DMP8 package is for voltage booster NJM2360. All of the inductors, capacitors and 
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resistors are in SMD0805 dimensions and Mini USB B type is used for the USB connector. 

The PCB size has been miniaturised. In the design, the minimum tracks width is 0.008 mils, 

the minimum vias diameter is 0.035 mils, the minimum micro vias diameter is 0.02 mils and 

the clearance for the net class is 5.0 mils. The signal tracks are 0.013 mils and 0.017 mils are 

for the power supply. The PCB structure has two metal layers, with the front layer placing all 

of the components and the back one is a common ground. Control lines are added on both of 

the layers. Figure 5.25 demonstrates the final PCB design. 

 

 

Figure 5.25: PCB Design Using Microcontroller PIC18F4550 

The front copper layer and back copper layer are presented in Figure 5.26 and Figure 5.27, 

respectively. Figure 5.28 illustrates the silk screen showing all of the components.  
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Figure 5.26: Front Layer of PCB Design Using Microcontroller PIC18F4550 

 

 

Figure 5.27: Back Layer of PCB Design Using Microcontroller PIC18F4550 
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Figure 5.28: Silk Document of PCB Design Using Microcontroller PIC18F4550 

3D view of the PCB design is shown in Figure 5.29. 

 

Figure 5.29: 3D View of the PCB Design Using Microcontroller PIC18F4550 

The PCB design has been manufactured by Multi Circuit Board Ltd in Germany [135] and 

assembled by a technician in the University of Edinburgh. The fabricated layout is 

demonstrated in Figure 5.30. Dimensions of the final layout are 57mm 74 mm. 
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(a) 

 

(b) 

Figure 5.30: Fabricated PCB Design Using Microcontroller PIC18F4550 (a) Front View (b) Back 

View 

5.3.4 PCB Evaluation  

Devices in the PIC184550 family incorporate a fully featured universal serial bus 

communication module that is compliant with the USB Specification Revision 2.0. A 

Bootloader is needed to setup the configuration bits and initialise the microchip. There are 

eight source files and thirteen header files required in the Bootloader code and a 

BootModified.18f4550_g.lkr has been added into the Linker Script. To configure this smart 

antenna array application, some modifications have been made in io_cfg.h and main.c to map 

pin ID and pin functions. Some key settings are listed as follows. 
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#include <P18f4550.h>         // Include the 18f4550 head file 

#pragma config PLLDIV   = 5    // 20 MHz crystal on PICDEM FS USB board    

#pragma config CPUDIV   = OSC1_PLL2 // OSC1/OSC2 Src:/1, 96MHz PLL Src:/2 

#pragma config USBDIV   = 2     //Clock source from 96MHz PLL/2 

#pragma config FOSC     = HSPLL_HS //HS oscillator, PLL enabled, HS used by USB 
#pragma config BORV     = 3 

#pragma config VREGEN   = ON  //USB Voltage Regulator 
#pragma config WDTPS    = 32768 

#pragma config ICPRT    = OFF        // Dedicated In-Circuit Debug/Programming 

#pragma config XINST    = OFF   // Extended Instruction Set 

#pragma config WRTB     = OFF  // Boot Block Write Protection 

……………………………………… 
The Bootloader code has been compiled using MPLAB (a compiler provided by 

Microchip) and translated into a hexadecimal document.  

There are two available ICSP programmer can be used to copy the Bootloader code into 

microcontroller PIC18F4550, as shown in Figure 5.31 and Figure 5.32. 

 

Figure 5.31: PICSTART Plus Programmer [136] 

PICSTART Plus (as illustrated in Figure 5.31) is a development programmer from 

Microchip. It connects through serial RS232 port to PC and is operated by Microchip’s 

integrated development environment (IDE) software, namely MPLAB IDE. This programmer 

supports most of the DIP packaged microcontroller products available from Microchip.  

 

Figure 5.32: PIC-PG2 Programmer 
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PIC-PG2 (as shown in Figure 5.32) is a programmer based on JDM design which takes all 

necessary signals and power supply from RS232 serial port. It supports 8Pin, 18Pin, 28Pin 

and 40pin PIC microcontrollers which allow serial programming and I
2
C EEPROM memories. 

The programmer utilises ICSP cable for direct connection to PIC prototype boards. 

The PICSTART Plus programmer is used for the breadboard testing, and PIC-PG2 is 

applied for the PCB initialisation.  

After the microchip initialisation and firmware installation, a software program can be 

used to control the Bootloader and PIC18F4550 microcontroller, as demonstrated in Figure 

5.33. 

 

Figure 5.33: Bootloader Program Interface 

The PCB using microcontroller PIC18F4550 has been evaluated by a laptop. The laptop 

sends commands to PIC18F4550 through USB connections, and the microchip control the 

digital potentiometers to generate different output voltages.  By controlling the switching 

speed, the PCB is able to provide stable DC voltage (from 0V to 30V, as shown in Figure 5.34) 

and square wave signal with low switching frequency (as illustrated in Figure 5.35). It is clear 

to note that, this PCB structure is able to configure the phase shifters and finally control the 

smart antenna array system. 
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Figure 5.34: Stable DC Output Voltage from PCB Design Using Microcontroller PIC18F4550 

 

Figure 5.35: Square Wave Output Signal from PCB Design Using Microcontroller PIC18F4550 

5.4 Control PCB Implementation Using LPC1768 

The microcontroller PIC18F4550 cannot perform real time control, which means every 

new command to the microchip needs to go through the Bootloader program again and reset 

the device. In order to achieve the real time control, a PCB design using LPC1768 has been 

implemented.  

5.4.1 Circuit Diagram  

Similar to the PIC18F4550 control board, this circuit consists of microcontroller, voltage 

booster, digital potentiometers, USB module and testing components. The circuit and layout 

are constructed in a PCB design tool, namely DesignSpark PCB.  

Figure 5.36 shows the microcontroller circuit diagram. 
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Figure 5.36: Microcontroller LPC1768 Circuit Diagram 

There are 100 pins on the microcontroller LPC1768 and only 40 pins are used in this 

application. In this schematic, digital outputs PIN6, PIN7, PIN8, PIN20, PIN21, PIN46, 

PIN47, PIN48, PIN49, PIN60, PIN61, PIN62, PIN68, PIN69, PIN70, and PIN73 to PIN81 

provide SDI signals to control twelve digital potentiometers. PIN9 generates the common 

CLK signal. A crystal oscillator of 12MHz is connected to the microchip PIN22 to provide 

external clock oscillation. PIN8 and PIN9 link to FT232RL device for USB communication. 

PIN17, PIN53, PIN98 and PIN99 are for ISP programmer to initialise LPC1768. Several pull-

up resistors and coupling capacitors are applied to protect the microcontroller. The main 

power supply goes into PIN10.   

Figure 5.37 and Figure 5.38 present the digital potentiometer AD5290 and voltage booster 

NJM2360 circuit diagram, respectively, which are similar to the PIC18F4550 control board.  

 

Figure 5.37: Digital Potentiometer AD5290 Circuit Diagram 
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Figure 5.38: Voltage Booster NJM2360 Circuit Diagram 

A FT232RL device is connected to the microcontroller in order to establish a real time 

control between the microchip and mobile terminal. The circuit diagram for FT232RL is 

shown in Figure 5.39.  

 

Figure 5.39: FT232RL Circuit Diagram 

Furthermore, there are a number of ferrite bead and capacitors in the design to decrease 

EMI and RFI. The complete circuit diagram is demonstrated in Figure 5.40. 
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Figure 5.40: Schematic of Control PCB Using LPC1768 

5.4.2 Breadboard Testing  

Based on the schematic in Figure 5.40, the design was built on prototype boards. Since the 

microcontroller LPC1768 is only in LQFP100 SMD package and an adapter was used to 

connect the microchip onto the breadboard, as illustrated in Figure 5.41. The structure in 

Figure 5.42 is too complicated and the space is not enough to evaluate all of the circuit designs. 

Another prototype board was utilised to characterise the digital potentiometers and voltage 

booster, while the original board is only for testing the microcontroller LPC1768 and 

FT232RL USB module.  

 

(a) 
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(b) 

Figure 5.41: LPC1768 Microcontroller and Adapter 

Figure 5.42 and Figure 5.43 display the two separate breadboards to test the 

microcontroller LPC1768. 

 

Figure 5.42: Breadboard_I to Test Control Board Using LPC1768 
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On the Breadboard_I, as shown in Figure 5.42, the microcontroller LPC1768 is placed on 

an adapter and some jumper wires are connecting the chip to the prototype board. In Section 

II, some voltage regulators transfer the 5V USB voltage to 3.3V, supplying the microchip, 

and also protecting the power circuit.  Section III demonstrates the oscillator part of LPC1768, 

with the frequency of 12MHz. The FT232RL USB to UART interface control chip also stands 

on an adapter and the design circuit has been tested in Section IV. Finally, the Breadboard_I 

is able to establish the USB communication between the microcontroller LPC1768 and a 

laptop, which confirms both of the microchip and USB module are working properly. 

 

Figure 5.43: Breadboard_II to Test Control Board Using LPC1768 

Breadboard_II evaluates the control loop between microcontroller LPC1768 and digital 

potentiometers. In this implementation, an mbed LPC1768 evaluation kit has been used 

instead of the microchip. The kit includes LPC1768 chip and also an USB module, which 

allows evaluation of the high level integration and low power consumptions. The evaluation 

kit is able to provide the same functions as Breadboard_I. Furthermore, the kit could be used 

as an ISP programmer to initialise the LPC1768 microchip. In Section II, a voltage booster 

circuit which increases the voltage from 5V to 30V has been characterised. Digital 
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potentiometers geometries are shown in Section III. Several decoupling capacitors are placed 

near the power supply. Finally, the mbed LPC1768 evaluation kit is able to control the digital 

potentiometers to generate different output voltages. 

5.4.3 PCB Fabrication  

After breadboard testing, the circuit design is translated in to PCB structure. The PCB 

geometry is constructed in DesignSparkPCB, which is also an open source integrated package 

for schematic circuit capture and PCB layout. 

This PCB is using four metal layers structure, as presented in Figure 5.44. The top and 

back layers are for signal tracks and two middle layers are occupied with separate power 

supply and ground. The multiple layers PCB geometry demonstrates many advantages, 

including dimension miniaturisation, easy component arrangement, stability, reduced EMI 

and RFI, and also less complexity.  

 

Figure 5.44: Four Layers PCB Structure 

Furthermore, from the manufacture, several additional gold and nickel layers are 

implemented to protect copper layers. The copper layers are used as PCB structures (as shown 

in Figure 5.44) and 0.5mm FR4 are isolating the metal layers. Figure 5.45 illustrates the 

detailed design layers. 

 

Figure 5.45: Detailed Multi-Layer PCB  
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There are four design layers in the PCB implementation. All of the components are placed 

on the top layer, including LQFP100 microcontroller LPC1768, MSOP10 digital 

potentiometer AD5290, DMP8 voltage booster NJM2360, SSOP28 USB interface FT232RL 

and several passive components. The second power layer is divided into several sections to 

arrange different voltage levels, as presented in Figure 5.47, including 3.3V, 5V and 30V. The 

third layer is a common ground and the bottom layer is occupied by some signal lines. The 

four layers are connected by vias. In this control board implementation, the track dimensions 

and pad size are both 0.15mm, for the purpose of miniaturisation. Figure 5.46 and Figure 5.47 

display the final PCB layout, with the dimensions of 42mm 92mm. 

 

Figure 5.46: PCB Design Using Microcontroller LPC1768 

      

(a)                              (b) 
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(c)                                   (d)                                 (e) 

Figure 5.47: PCB Layout Using Microcontroller LPC1768 (a) Top Copper Layer (b) Power 

Layer (c) Ground Layer (d) Bottom Copper Layer (e) 3D View  

After carefully design rule check, the PCB structure has also been manufactured by Multi 

Circuit Board Ltd in Germany [135] and assembled by the technician in the University of 

Edinburgh. The fabricate layout is presented in Figure 5.48. 

        

(a)                                   (b) 

Figure 5.48: Fabricated PCB Design Using Microcontroller LPC1768 (a) Top View (b) Bottom 

View 
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5.4.4 PCB Evaluation  

Similar to the microcontroller PIC18F4550, it is also necessary to initialise the microchip 

LPC1768 before testing.  An mbed LPC1768 evaluation kit is used as an ISP programmer to 

run the Bootloader code, as displayed in Figure 5.49.  

  

Figure 5.49: Mbed LPC1768 Evaluation Kit and the PCB Under Programmed 

To bridge control the pins, and bridge the Bootloader serial port to PC, the mbed 

LPC1768 evaluation kit is utilised as a serial pass through and to drive the ISP and nReset 

pins. It can be referred as an mbed ISP. To initialise the microcontroller LPC1768, firstly the 

nReset pin is set low to reset the device. Then the ISP pin (P0.14) is also set low, to indicate 

the ISP is intended. By pulling high the nReset, the LPC1768 comes out of reset and samples 

the ISP pin. If the ISP is low, the Bootloader starts to run. Finally, the Bootloader 

communicates over a serial connection on UART0: TXD0 = P0.2 = Pin 98, RXD0 = P0.3 = 

Pin 99. A software Flash Magic is applied to burn the Bootloader into LPC1768 and reads the 

microchip signature. After this synchronisation, a complete control program is transformed 

into the microchip and the PCB design is able to control the digital potentiometers in real time. 



Chapter 5: Hardware Control Systems for Smart Antenna 

  202 

  

Figure 5.50: Flash Magic to Initialise Microcontroller LPC1768 

Different output voltages from 0V to 30V are obtained from the digital potentiometers, 

which can fully control the phase shifters on smart antenna array to achieve main beam 

steering. Figure 5.51 demonstrates several stable DC voltages and a square wave output signal 

is displayed in Figure 5.52. 

       

                    (a)                                      (b)                                      (c)                                   (d) 

Figure 5.51: Stable DC Output Voltage from PCB Design Using Microcontroller LPC1768 

(a)0.626V (b)6.56V (c)11.67V (d)29.7V 
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Figure 5.52: Square Wave Output Signal from PCB Design Using Microcontroller LPC1768 

5.5 EDUP WiFi Adapter    

In the smart antenna hardware control system, an EDUP wireless USB adapter with SMA 

connector (as shown in Figure 5.53) is used to transfer the WiFi signal into the control 

terminal. In the current implementation, a laptop is utilised as the control device, since the 

Window system is more stable to test the whole system. However, both of the two control 

boards descried in the previous sections are compatible with Android and IOS system.  

 

Figure 5.53: EDUP Wireless USB Adapter with SMA Connector 

For the original EDUP wireless USB adapter, it easily connects USB equipment to 

wireless network for internet or file sharing with minimum power consumption (less than 

350mA). It is a compact design and supports Windows 98SE /ME /2000 /XP /Vista/7/8 

systems.  

In this hardware implementation, the original antenna is replaced by the smart antenna 

array using SMA connectors. The control PCB provides variable DC voltages to the phase 

shifters, generating the beam steering. The WiFi signal collected by the WiFi adapter will be 

transferred into the control terminal, which is a laptop in the current design. Figure 5.54 
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demonstrates the complete smart antenna system hardware implementation. Some basic 

algorithms have been included into the control software program to configure the smart 

antenna array. More descriptions about the software will be discussed in Chapter 6. 

 

Figure 5.54: Smart Antenna System Hardware Implementation 

The hardware control devices presented in this chapter are all compatible with Android 

and IOS system. The future work will focus on establishing other control loops using Android 

and IOS mobile devices.  
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5.6 Summary 

In this chapter, the complete hardware control systems for smart antenna array in mobile 

applications are proposed. The full hardware implementation consists of a smart antenna array 

integrated with phase shifters, a control PCB containing a microprocessor, a WiFi adapter and 

a control mobile device. The PCB generates different DC voltages to the phase shifters and 

achieves the antenna array beam steering. WiFi signal is tested in this design. A WiFi adapter 

collects the wireless signals and transfers the information into a mobile device. Two separate 

PCB structures based on microcontroller PIC18F4550 and LPC1768 have been evaluated, 

respectively. Several digital potentiometers, voltage booster and USB modules are integrated 

into the PCB layouts. After schematic design and breadboard testing, both of the miniaturised 

PCB configurations are manufactured and assembled. The two control boards are able to 

provide required voltages to the analogue phase shifters. Furthermore, the LPC1768 PCB can 

generate a real time control. Both of the PCB designs are suitable for the hardware control 

systems.   

In the current implementation, a laptop running Windows system is used to evaluate the 

design due to stability of Windows system. Finally, all of the WiFi signal information 

including SSID, RSSI, MAC address, channel and vendor at different main beam directions 

will be distributed on the control software. The software is able to detect signal information 

and also rotate the main beam to a required direction. Chapter 6 will demonstrate the software 

design and characterisation.       
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Figure 5.55: The Investigation of Hardware Control Systems for Smart Antenna 
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1. The hardware control system is easy integrated with mobile device. 

2. The control PCB is able to provide suitable DC voltages required by the phase shifters. 
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respectively. 
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reduced EMI and RMI. Moreover, real time control between mobile terminal and PCB is achieved. 
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wireless signals. 

8. The full hardware control system has been characterised and generates suitable beam steering 

performance. 
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6.1 Introduction 

The smart antenna array hardware implementation has been discussed in the previous 

chapter. A PCB containing microcontroller provides suitable DC voltages to the phase shifters 

and generates the smart antenna array beam steering. The detected WiFi signals are 

transferred into a mobile device through a WiFi adapter. This chapter will focus on the 

software design to automatically control the complete smart antenna array system. Since two 

microcontrollers PIC18F4550 and LPC1768 are used to build control PCBs. There are also 

two specifically designed software programs developed in order to configure the individual 

PCB.  

For the PIC18F4550, a graphical user interface (GUI) was developed to communicate 

between a laptop and the control PCB. The GUI sends commands to a Microchip compiler 

called MPLAB and transfers the control C code into a Hexadecimal (Hex) document. 

Through the Bootloader program, this Hex code will be copied into the microchip 

PIC18F4550 and then configures the digital potentiometers to generate variable output 

voltages. A script using VB is made to link all of the control steps automatically 

Several improved versions of the GUI are investigated for the LPC1768 control PCB. By 

utilising the microcontroller LPC1768, it is able to achieve the real time control, which means 

there is no need for the Bootloader program again after initialisation. Due to the advantage of 

LPC1768, two advanced GUIs have been implemented. Both of the GUIs allow the user to 

detect service set identity (SSID) and received signal strength indicator (RSSI) of WiFi 

signals surrounding the mobile device. The basic GUI is able to manually configure the 
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digital potentiometers and display the WiFi information. The control signals are transformed 

from GUI to a virtual COM port, which is established by the FT232RL, and directly go into 

the microcontroller.  By varying the phase shifter, the beam direction of the antenna array 

could be changed in order to analyse and optimise the signal strength of the received WiFi 

signals. Moreover, this chapter provides beta version of an advanced software package, which 

performs a basic smart antenna adaptive beamforming. 

There are mainly four sections in this chapter. Section 6.1 presents the software 

implementation introduction. GUI designs for PIC18F4550 and LPC1768 are demonstrated in 

Section 6.2 and Section 6.3, respectively. Finally Section 6.4 summarises this chapter. 

6.2 Software Implementation for PIC18F4550 Control System 

Figure 6.1 presents the block diagram of software implementation using PIC18F4550 

microcontroller. 

 

Figure 6.1: Functional Block Diagram for PIC18F4550 

The software control system is generally comprised of three parts, as illustrated in Figure 

6.1. Part I contains the main algorithm to configure the microchip and digital potentiometers, 

which simulates the SPI communication. The program is made in C language and compiled in 

Dev-C++ [137]. Then the C code is transferred into microchip C language to set correct 

configuration bits, suitable I/O ports and accurate delay time. Finally, MPLAB compiles the 

program again and generates a hexadecimal document which could be recognised by the 

microchip. 

Part II in the software design is the Bootloader program with the function of 

communicating between laptop and microcontroller PIC18F4550. After initialisation 

(discussed in Chapter 5), the hexadecimal code generated by MPLAB is transferred through 

Bootloader into the microchip.  

Finally, Part III is a GUI designed in VC++ for Windows system. The GUI provides two 

control methods for the phase shifter: manual control and switching control. In the manual 



Chapter 6: Software Control Systems for Smart Antenna 

  209 

control, some specific values will be sent to the digital potentiometers and generate particular 

DC voltages. While in the switching control, the output voltages are in square waves. This 

GUI is used for briefly evaluating the digital potentiometers and phase shifters. More 

advanced control method will be demonstrated using microchip LPC1768.   

6.2.1 Programme PIC18F4550  

There are three programs in PIC18F4550: SPI communication, manual control and 

switching control. These C codes have been evaluated in Dev- C++. Dev- C++ is an 

integrated development environment (IDE) distributed under the GNU general public license 

for programming in C and C++. It is bundled with MinGW, a free compiler. The IDE is 

written in Delphi. 

6.2.1.1 SPI Communication  

A virtual SPI communication has been established between microcontroller PIC18F4550 

and digital potentiometer AD5290. The algorithm is based on the potentiometer’s timing 

diagram.  

 

Figure 6.2: Digital Potentiometer AD5290 Timing Diagram [132] 

PIC18F4550 controls three signal lines for these digital potentiometers:     , CLK, and SDI. 

Clean transitions are needed by the positive edge sensitive CLK input to avoid clocking 

incorrect data into the serial input register. When       is low, the potentiometer loads data into 

the serial register on each positive clock edge and the MSB of the 8-bit serial is loaded first. 

The data setup and data hold times determine the valid timing requirements. After eight clock 

cycles, the 8-bit serial input data register transfer the words to the internal RDAC register and 

the       line returns to logic high. Extra MSB bits will be ignored. 
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There are two methods to configure the potentiometers: manual control and switching 

control.  

6.2.1.2 Manual Control 

In manual control, it is able to control digital potentiometer to generate specific voltage 

levels to the phase shifter.  An example code showing configure only one potentiometer using 

C in Dev- C++ is as follows: 

#include <conio.h> 

void init();                                                         // Declare the  initialisation function 

void write_byte(uchar data);            // Declare the write_byte function    
int CLK, dout[8], cs_bar; 

void init()                                                
{ cs_bar=1;                                       // Before data transfer,       should be logic high 
 CLK=0;  }                   // Initialise the clock signal 
int main() 

{ uint i,t; 

 for (i=1;i>0;i--)                        // Just run the main function once 
 { init(); 
 write_byte(0xfb);//11111011,251              //Write data “251” into the memory 
 } 
 for(t=0;t<8;t++)                         //Show the data written into the memory one by one 
 {   printf("%d",dout[t]); }  

      getch(); 

       return 0;  } 

void write_byte(uchar data) 

{ uint i; 

 uchar temp;                               
 cs_bar=0;                   // Data starts to transfer,       should be logic low 
 for (i=0;i<8;i++)                         // 8-bit data needs the transfer function 8 times 
 { CLK=0;                       // CLK goes to low to simulate a clock signal 

   temp=data&0x80;    // Check this bit is 0 or 1 
  if (temp==0x80)        // If this bit is 1 

   dout[i]=1;    // The output data should be logic high 
  else                               // If this bit is 0 

   dout[i]=0;    // The output data should be logic low 
   CLK=1;        // CLK returns to high to finish a clock cycle 

data=data<<1; }    // Left shift the data to write next bit into the memory 
cs_bar=1;  }    //After the function runs for eight times,  
      // all of the eight bits have been    
      // transferred into the memory, 
                          //        returns to high and finish the write_byte function  

 

This program is exactly following the timing diagram provided in Figure 6.2. The purpose 

of this code is to write an 8-bit data into the microcontroller and then transfer the data into a 

digital potentiometer bit by bit on positive clock cycle. The delay time is ignored to simplify 

the program. If a number 251 is written into the microchip PIC18F4550, its output to the 
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digital potentiometer should be “11111011”. A Printf function is added into the C code, so the 

result of 1111011 is showing on the screen, as presented in Figure 6.3.   

 

Figure 6.3: C Code Result for SPI Communication 

From the results in Figure 6.3, the virtual SPI communication has been successfully 

established between PIC18F4550 and the digital potentiometers. The algorithm is fully 

matching the timing diagram. Then, the C code is re-written in MPLAB to configure the 

microchip I/O ports. MPLAB integrated development environment (IDE) is an integrated 

toolset for development of embedded applications employing Microchip's PIC and dsPIC 

microcontrollers [136].  The following example demonstrates using PIC18F4550 configure 

only one potentiometer in MPLAB. 

#include <p18f4550.h>                                                            // Include the 18f4550 head file 
#define REMAPPED_RESET_VECTOR_ADDRESS 0x1000 // Memory from 0x1000 
#define cs_bar LATCbits.LATC1    // Set PIN RC1 as       
#define dout LATAbits.LATA0       // Set PIN RA0 as output data 
#define CLK LATCbits.LATC2       // Set PIN RC2 as CLK 
extern void _startup (void);        // Set start up 
#pragma code REMAPPED_RESET_VECTOR = REMAPPED_RESET_VECTOR_ADDRESS 

void _reset (void) 

{  _asm goto _startup _endasm } 

#pragma code                          // Set the suitable configuration bits 
void delay(uint x); 

void init(); 

void write_byte(uchar data); 

void delay(uint x)                   // Make a delay function 
{ uint a,b; 

 for(a=x;a>0;a--) 

  for(b=275;b>0;b--); }   // After simulation, x represent x milliseconds 
void init() 

{ TRISAbits.TRISA0=0;    // Set PIN RA0 as an output, for the output data 

 TRISCbits.TRISC1=0;    // Set PIN RC1 as an output, for       
 TRISCbits.TRISC2=0;     // Set PIN RC2 as an output, for CLK 
 cs_bar=1;                      // Before data transfers,       should be logic high 
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 CLK=0;    }                      // Initialise the clock signal 
void main() 

{ uint i; 

 for (i=1;i>0;i--)                // Run the main function once 
 init(); 

 write_byte(0x84);//10000100,132 }//Write 132  into the microcontroller’s memory 
void write_byte(uchar data) 

{ uint i; 

 uchar temp; 

 cs_bar=0;                   // Data starts to transfer,       should be logic low 
 Nop();                            // Make a delay for        
 for (i=8;i>0;i--)            // 8-bit data needs the transfer function 8 times 

 { CLK=0;          // CLK goes to low to simulate a clock signal 
   temp=data&0x80;     // Check this bit is 0 or 1 

  if (temp==0x80)        // If this bit is 1 

   dout=1;      // The output data should be set as logic high 

  else                            // If this bit is 0 

   dout=0;    // The output data should be set as logic low 

  Nop();                      // Wait for the data processing 
  CLK=1;                    // CLK returns to high to finish a clock cycle 
  Nop();                 // Wait for the clock signal 

  data=data<<1; }  // Left shift the data to write next bit into the memory 
  CLK=0;                                // After data transfers, CLK returns to 0 

cs_bar=1;                       //After the function runs for eight times,  
                    // all of the eight bits have been    
       // transferred into the memory,   
  }             //        returns to high and finish the write_byte function   

……………………………………………………………………… 

Some I/O ports of PIC18F4550 are utilised as      , CLK, and SDI signals to simulate the 

SPI communication. In the code, data 132 is transferred into the digital potentiometer. 

 According to the Equation 6.1: 

                                                 D  
 

   
    

     

   
                                          (6.1) 

When D is 132 in decimal, it is 10000100 in binary and 84 in hexadecimal.    D  = 

15.47 V 

In MPLAB, after compiling, the code is translated into a hexadecimal document. 

Bootloader program is used to send the “.hex” file into PIC18F4550. After reseting the 

control PCB, a voltage of 15.47V is measured at the terminal W of the digital potentiometer, 

which could configure the phase shifters in the smart antenna array.   
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Figure 6.4: Measurement Result of PIC18F4550 Manual Control 

Figure 6.4 illustrates the measurement of PIC18F4550 manual control for single digital 

potentiometer, which matches the calculation. Then the algorithm is extended to configure all 

of the sixteen digital potentiometers together on the control PCB.  Finally the PIC18F4550 

manual control program will work with the manual control GUI to control the smart antenna 

array beam steering.  

6.2.1.3 Switching Control  

In switching control, the target is to generate square waveforms from the digital 

potentiometers, as presented in Figure 6.5. 

 

Figure 6.5: Square Waveforms from Switching Control 

The fundamental algorithm is similar to the manual control, however, in this 

implementation, the delay time is very important. In the microchip C code, a delay time has 

been added after sending the 8-bit values and a for-loop is included in the main function to 

judge the delay time.    

void delay(uint x) 

{ uint a,b; 

 for(a=x;a>0;a--) 

 for(b=275;b>0;b--);}             // Delay function 
 

The value of b determines the accuracy of delay time, which has been simulated in 

MPLAB, as illustrated in Figure 6.6.  
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Figure 6.6: Delay Time Simulation in MPLAB 

In Figure 6.6, several breakpoints (Red B) are set at the beginning and end of the delay 

function.  The Stopwatch in MPLAB is used to observe the running time. After simulations 

and optimisations, the value of b is set at 275 and x equals to 1. The program will run for 1 

millisecond (Red cycle), and later by controlling the value of x, the required milliseconds can 

be achieved.   

The simulated delay time function has been added into the switching control main code 

and transferred into the microcontroller PIC18F4550. Figure 6.7 demonstrates the measured 

results by an oscilloscope. In this code, the DC voltage is switching between 0 and 12V with a 

delay time of 9 milliseconds. 

 

Figure 6.7: Measured Result of the Switching Control 

6.2.2 Graphical User Interface for PIC18F4550  

A graphical user interface is built to automatically configure the PIC18F4550 control PCB. 

Figure 6.8 shows the communication loop between GUI and microchip.  

 

Figure 6.8: Control Loop between GUI and Microchip 
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The control commands from GUI will automatically generate a C code. MPLAB transfers 

the C code into a hexadecimal document which will be sent into the microchip through 

Bootloader. Finally the microcontroller configures the digital potentiometers to provide 

suitable DC voltages to the phase shifter in smart antenna array.   

Figure 6.9 shows the GUI main interface for PIC18F4550. Two control methods are 

provided according to the algorithm described in Section 6.2.1. 

 

Figure 6.9: GUI Main Window for PIC18F4550 

6.2.2.1 Manual Control 

The GUI is made using Microsoft Visual Studio 2010 [138], which is a commercial 

integrated development environment (IDE) product engineered by Microsoft for the C, C++, 

and C++/CLI programming languages. In this software program, the main section is written 

in C++.  

The manual control interface is illustrated in Figure 6.10. 
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Figure 6.10: Manual Control GUI for PIC18F4550 

In manual control GUI, there are sixteen sliders to control the digital potentiometers, with 

the voltage level from 0V to 30V in the precision of 0.1V. The scale is above the slider and 

there stands a number showing the position. By using the scales and sliders, it is able to 

configure the digital potentiometers quickly and accurately. The text boxes are on the right 

demonstrating the output voltages. The required voltage of the phase shifter is from 0V to 

13V, which can be fully covered by this implementation. After pressing the Generate button, 

a script written in VB will send these sixteen voltage values into a predefined C code. Then 

MPLAB reads this C code, compiles the program and transfers it into a hexadecimal file. 

Finally Bootloader burns the .hex document into the microcontroller PIC18F4550 and control 

the digital potentiometers. By using the manual control GUI, it is able to manually configure 

the phase shifters in the smart antenna array and estimate the beam steering.     

6.2.2.2 Switching Control  

In switching control, the digital potentiometers will generate square waveforms to the 

phase shifters and the main beam of the smart antenna will switch just between two directions. 

It is a basic evaluating method for the smart antenna array.  

Figure 6.11 shows the output waveforms. The voltage levels are different but they share an 

identical switching period. The software interface is displayed in Figure 6.12. 
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Figure 6.11: Output Square Waveforms 

Same as the manual control, for the square waveform, the voltage range is from 0V to 

30V with a precision of 0.1V. There are scales and positions of the sliders added into the GUI 

to achieve the accurate control. Furthermore, in this switching control application, the delay 

time has been added into the design to setup a switching period. Also, a script is made to 

automatically link the GUI to MPLAB, Bootloader and PIC18F4550.    

 

Figure 6.12: Switching Control GUI for PIC18F4550 

Based on research and investigation, it is noted that PIC18F4550 is difficult to achieve the 

real time control, which means the Bootloader program cannot be ignored during the control 

loop. The script built in the GUI is able to generate an automatic control but each command 
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requires a long data transfer period and the program is not stable. The basic control methods 

(manual control and switching control) have already made the algorithms complicated. So the 

GUI of PIC18F4550 is only used to generally estimate the digital potentiometers and the 

phase shifters. More advanced software programs are developed using the microcontroller 

LPC1768.        

6.3 Software Implementation for LPC1768 Control System 

6.3.1 Programme LPC1768 

Figure 6.13 shows the block diagram for programming LPC1768. The microchip control 

code is written in C language and compiled by an online compiler provided by mbed, as 

illustrated in Figure 6.14. The compiler generates a binary document. A DOS based program 

transfers the binary file into a hexadecimal code. Flash Magic burns the .hex file into the 

microcontroller LPC1768, as demonstrated in Figure 6.15 and Figure 6.16. Flash Magic is a 

PC tool for programming flash based microcontrollers from NXP utilising a serial protocol 

[139]. An ISP programmer is communicating between laptop and control PCB.    

 

Figure 6.13: LPC1768 Programming Block Diagram  

 

Figure 6.14: LPC1768 Online Compiler 
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Figure 6.15: LPC1768 BIN to HEX Transformer 

 

Figure 6.16: Flash Magic to Program LPC1768 

Compared to PIC18F4550, the microchip LPC1768 is more advanced. After initialising 

the microcontroller, as shown in Figure 6.13, the compiler, transformer, flash magic and ISP 

programmer are not required in the final communication. When the configuration bits and 

algorithms have been setup correctly, the LPC1768 will generate a virtual COM port (by the 

FT232RL chip), which can be recognised by a terminal emulator named Tera Term [140]. 

The GUI for LCP1768 can directly control the digital potentiometers through Tera Term. It is 

able to achieve the real time control. The communication block diagram for LPC1768 is 

presented in Figure 6.17.    
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Figure 6.17: Real Time LPC1768 Communication Block Diagram 

Similar to PIC18F4550, the LPC1768 also controls the digital potentiometers using virtual 

SPI communication, and with the same algorithms in Section 6.2.1. 

6.3.2 Graphical User Interface for LPC1768  

There are also two GUI developed for LPC1768: Manual Control and Automatic control. 

Both of the software programs are able to detect service set identity (SSID) and received 

signal strength indicator (RSSI) of WiFi signals surrounding the laptop.  

The GUI software can be installed on a computer with the following minimum 

requirements: 

• PC Compatible with Windows XP/7/Vista/ 8 – 32 or 64 bit 

• At least 2 free USB Ports 

Usually Windows 7 and later versions will recognise the LPC1768 microcontroller 

automatically and there will be no need to install the drivers. However, for previous Windows 

version, two drivers for FT232RL microchip and the WiFi adapter are required to be installed.  

6.3.2.1 Driver Installation 

The driver for LPC1768 has been written into FT232RL microchip and the program will 

automatic start when the USB port is connected to a PC running Windows. Figure 6.18 

presents the steps to install the FT232RL.   
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(a)                                             (b) 

   

(c)                                                             (d) 

   

(e)                                                               (f) 
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(g)                                                            (h) 

Figure 6.18: FT232RL Diver Installation 

FT232RL provides a USB serial port which can be recognised by Windows system. The 

laptop communicates to LPC1768 through FT232RL USB to UART. 

The installation steps for WiFi adapter are illustrated in Figure 6.19. 

 

(a)                              (b) 

  

(c)                                                       (d) 
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(e)                                                     (f) 

  

(g)                                        (h) 

Figure 6.19: WiFi Adapter Driver Installation 

After installation, the WiFi adapter will replace the laptop’s original WiFi antenna and the 

smart antenna array will be used to detect WiFi signals around the laptop. The following 

sections will focus on the GUI design to configure the smart antenna array beam steering.    

6.3.2.2 Manual Control  

As discussed in Section 6.3.1, the GUI sends the control commands into Tera Term and 

then directly transfers to the microprocessor LPC1768. Figure 6.20 presents the Tera Term 

software which makes LPC1768 a virtual COM port to the laptop.  
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(a)                                        (b) 

Figure 6.20: Tera Term Connection Setup 

 

Figure 6.21: Manual Control GUI Start Screen for LPC1768 

Figure 6.21 presents the GUI start screen developed for microprocessor LPC1768. This 

software program is written in VC++ and C#. After clicking the Basic SmartWiFi button, the 

main interface will appear, as displayed in Figure 6.22. 
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Figure 6.22: Manual Control GUI Main Screen for LPC1768 

In the upper right corner, there is a drop down menu item to select the wireless adapter for 

evaluation. In the smart antenna array system, an EDUP wireless adapter is used in the 

implementation. So in the menu, “EDUP IEEE 802.11 b+g USB Adapter – Packet 

Scheduler Miniport” is selected. 

 

Figure 6.23: Wireless Adapter Selection for LPC1768 

There are generally three sections in the software design. On top is the main window 

showing MAC Address, SSID, RSSI, Channel, Vendor, Privacy, Max Rate, Network Type 

and Detected Time for all of the WiFi signals around a laptop, as demonstrated in Figure 6.24.  

 

Figure 6.24: WiFi Information of the GUI for LPC1768    
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On the bottom right, a window is drawing all of the real time signal strength curves (in 

dBm) for the WiFi signals (as shown in Figure 6.25(a)). Another tab in this window illustrates 

the signal amplitudes in different channels. 

   

(a)                                                         (b) 

Figure 6.25: (a) WiFi Signal Strength Real Time Curve (b) WiFi Signal Strength in Different 

Channels 

On the bottom left, there exist eight real time sliders controlling the eight Hittite analogue 

phase shifters on the smart antenna board.  

 

Figure 6.26: Real Time Control Slider for LPC1768 

By changing the voltages to the phase shifters, the main beam direction of the antenna 

array is rotated, which generates a variation of the received RSSI in the manual control GUI. 

Figure 6.27 shows the evaluated results. Different voltage levels are provided to the antenna 

array and the received WiFi signal strength curves are able to reflect the diversity.  
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Figure 6.27: Manual Control Evaluating Results for LPC1768  

6.3.2.3 Automatic Control  

An improved version of the GUI has been developed which can provide the smart antenna 

array automatic control. The main screen is illustrated in Figure 6.28. 

 

Figure 6.28: Automatic Control GUI for LPC1768 
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Figure 6.29: Antenna Array and WiFi Adapter Selection 

In the current smart antenna array implementation, the four-element linear antenna array 

with Archimedean spiral slots is used. In Figure 6.29, the “4 Element Linear Antenna Array” 

and “EDUP 802.11 b+g USB adapter” should be selected. This automatic GUI is also 

compatible with more elements antenna arrays. By selecting the EDUP USB adapter, the 

original WiFi card of the laptop will be disabled. The smart antenna array will detect and 

monitor the WiFi signals for the control laptop.   

 

Figure 6.30: Current Connected WiFi Information 

On the bottom left of the advanced GUI, the current WiFi information is displayed, as 

shown in Figure 6.30. Furthermore, in the software program, some information windows help 

to describe RSSI and Link Quality, as illustrated in Figure 6.31 and Figure 6.32, respectively. 

 

Figure 6.31: RSSI Description 

RSSI is the relative received signal strength in a wireless environment, in arbitrary units. 

 

Figure 6.32: Link Quality Description 
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Link Quality is calculated from the correlation value obtained when code lock is achieved 

between the local PN code and the incoming PN codes. 

There are three functions included in the Advanced GUI for LPC1768: Scanning, Best 

Signal and Choose WiFi. 

6.3.2.3.1 Scanning Function 

Scanning: In scanning mode, the program enables scanning of the surrounding 

environmental for WiFi signals. This takes place by steering the main beam of the smart 

antenna array.  

 

Figure 6.33: Scanning Function of the GUI for LPC1768 

In Figure 6.33, the scan interval and scan step can be selected. Scan interval is the time 

between two sequential scans. Scan step is the angle separation between two sequential scans 

after steering the beam. 

 

 

Figure 6.34: Scan Interval and Scan Step Definition 

Two modes for the scanning are provided: Full scan and Zone scan. 
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Figure 6.35: Scan Mode Selection 

In Full Scan, this mode performs a full 360 degrees scanning for all WiFi signals. The 

Scan Repeat is a parameter to apply the rescanning for another round, up to 5 times, default 

value is 1. 

After clicking the Start button, the full scan will begin and a bar shows the progress.  

While scanning, another window near the “Reset” button is showing the current main beam 

direction, as shown in Figure 6.36. 

 

Figure 6.36: Status Bar and Current Main Beam Direction 

When the scan finished, a popup table will show the WiFi signals information in 

surrounding environment. For the current four element linear antenna array, the main beam is 

able to steer from -50º to +50º for WiFi application. The full scan function has been modified 

to show only ±50º directions.  

 

Figure 6.37: Full Scan Results Using Four-Element Linear Antenna Array  
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The table in Figure 6.37 presents the full scan results for the four-element linear antenna 

array with the main beam steering from -50º to +50º in the step of 10º. At each direction, the 

table is displaying Main Beam Direction, SSID, MAC Address, RSSI and Link Quality. It is 

clear that along with the beam rotating, the RSSI and link quality are showing different values. 

In Zone Scan mode, it allows scanning a defined area or zone by only steering the beam 

within this defined zone. When the scan finishes, a popup table will show the WiFi signals 

information within the selected area. The table presented in Figure 6.38 shows the defined 

zone scan results for the four-element linear antenna array with the main beam steering from -

30º to +30º in the step of 10º.   

 

Figure 6.38: Zone Scan Results Using Four-Element Linear Antenna Array  

6.3.2.3.2 Best Signal Function 

The second tab in the GUI is called Best WiFi, as demonstrated in Figure 6.39. This 

function enables the user to identify the best available WiFi signals at the location. This is 

carrying out by fully steering the main beam to enable the full scan the surround environment 

for the best WiFi signals.  
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Figure 6.39: Best Signal Function of the GUI for LPC1768 

After selecting the scan interval and scan step, the program will automatically perform a 

full scan and accurate fine tuning.  Finally, the detailed best WiFi connect information will be 

listed, which includes SSID, MAC Address, Signal Strength and Link Quality. 

 

Figure 6.40: Best Signal Scan Results Using Four-Element Linear Antenna Array 

6.3.2.3.3 Choose WiFi Function 

In this function, the system allows the user to connect to the desired WiFi network. The 

system will keep steering the beam in order to keep the signal strength above the signal 

threshold. In this mode, the user has to select the desired WiFi network resulted from the pre-

scanning, define the first and second threshold and then start the scanning. The system will 

automatically connect to the desired wireless network while steering the main beam in the 

surround environment in order to identify the direction of the best signal strength. The 

function continues monitoring the performance of the connected signal. If the signal drops 
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below the first threshold, this will trigger the fine tuning mode. If the system fails to recover it 

or the signal drop below the second threshold, it will switch to the full scan mode. The system 

will try to recover the WiFi network of the best signal at all times. If the WiFi network is 

unavailable, the system will display a warning message.  

 

Figure 6.41: Choose WiFi Function of the GUI for LPC1768 

Figure 6.41 shows the Pre-scan. In this mode, the system is capturing all WiFi networks 

(SSID) available to allow the user to select the desired network.  

 

 

Figure 6.42: Pre-Scan in Choose WiFi Function 

The user is able to select a particular WiFi network from the drop down list. 

 

Figure 6.43: Threshold in Choose WiFi Function 

Furthermore, it is able to setup the threshold values for the chosen WiFi. In Figure 6.42, 

First Threshold will trigger the fine tuning to take place in order to keep the signal strength 

above the first threshold. Second Threshold will trigger the full scan mode to search for the 

direction with the highest signal strength for the chosen network. The first threshold value is 

smaller than the second one. 
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After setting up the parameters, the software program automatically performs a full scan 

and accurate fine tuning. Finally, the detailed chosen WiFi information will be listed, which 

includes SSID, MAC Address, Signal Strength and Link Quality. The system continues 

monitoring the RSSI using threshold values to maintaining the strongest WiFi signal.  

 

Figure 6.44: Choose WiFi Scan Results Using Four-Element Linear Antenna Array 

In the above Scanning, Best WiFi and Choose WiFi functions, all of the algorithms are 

able to cover the main beam steering from 0º to 360º. However, limited by the four elements 

linear antenna array characterisation, only -50º to 50º beam rotating is performed. Further 

research will produce a wider scanning range smart antenna array to generate more accurate 

scanning results.  
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6.4 Summary 

This chapter presents the software implementation to automatically configure the smart 

antenna array system. Two series of control systems are developed for microprocessor 

PIC18F4550 and LPC1768, respectively.   

For microcontroller PIC18F4550, research begins with a virtual SPI communication 

algorithm between the microchip and digital potentiometers. A graphical user interface has 

been proposed to control the microchip through a laptop. After initialising PIC18F4550, the 

GUI transfers the control signal into a Microchip compiler called MPLAB and changes the C 

code into a Hexadecimal (Hex) document. By utilising the Bootloader program, this Hex code 

will be delivered into the microchip PIC18F4550 and then configures the phase shifters on the 

smart antenna array. Two control methods: Manual Control and Switching Control are 

provided to achieve particular DC voltage or square waveforms from the digital 

potentiometers. The PIC18F4550 software control system is able to generally configure the 

smart antenna array but requires other application to check the WiFi signal variations.  

Two improved versions of the GUI are developed for microcontroller LPC1768. This 

microchip provides real time control between a laptop which makes the GUI more advanced. 

Both of the GUIs allow the user to detect SSID, RSSI, MAC Address and Link Quality of 

WiFi signals surrounding the laptop. The basic GUI can manually configure the phase shifters 

and display all of the WiFi information.  By changing the phase shifters, it is able to rotate the 

antenna array main beam direction in order to analyse and monitor the received WiFi signals. 

Furthermore, this chapter proposes a beta version of an advanced software package for 

LPC1768, which demonstrates full scanning and basic adaptive beamforming for WiFi 

signals.   
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Figure 6.45: The Investigation of Software Control Systems for Smart Antenna 

 

 

 

 

Software Control System for 

Smart Antenna 

Design Challenges Operational 

Requirements 

GUI for 

Microcontroller   

LPC1768  

GUI for 
Microcontroller 

PIC18F4550 

DC Voltage 0-30V 

 

Stable 

Windows System 

Virtual SPI 

Design Methods 

Design Process 

1. The software control system is compatible with Windows XP/Vista/7 and 8, with stable 

performance. 

2. The virtual SPI algorithm is able to accurately configure the digital potentiometers. 

3. The GUI for PIC18F4550 is able to generate particular DC voltages and square waveforms for the 

digital potentiometers to control the smart antenna array.  

4. A VB script is developed for PIC18F4550 to achieve an automatic control between the 

microcontroller and laptop.  

5. Real time control is obtained for microprocessor LPC1768 with steady connections.   

6. The GUI for LPC1768 demonstrates Manual Control and Automatic Control. Both of the GUI 

illustrate detailed received WiFi information based on the smart antenna array system 

7. The advanced GUI using LPC1768 is able to perform an automatic antenna beam steering and 

select a best WiFi signal around the control terminal.  

 

 

 

Accurate Control 

Manual Control 

Real Time Automatic 

Switching Control 

Microprocessor Study 

Virtual SPI Algorithm 

Code Translation 

Bootloader 

GUI Development 

Full System Evaluation 

Performance Verification 

 

Achievements 

MPLAB Bootloader Online 
Compiler 

BIN to Hex Flash 

Magic 
Tera 

Term 

Virtual SPI 

Manual Control Automatic Control 

Scanning Best 

WiFi 
Choose 

WiFi 



Chapter 7: Conclusions 

  237 

 

7.1 Summary and Conclusions 

This thesis covers the research studies of fully implemented smart antenna systems for 

future mobile devices. Specifically, the studies are divided into five major directions: (a) 

Novel antenna and array configuration to achieve wide scanning range (b) Reconfigurable 

and UWB feeding network geometry to produce suitable amplitude excitation (c) Phase 

shifter evaluation and UWB transition structure to provide proper phase excitation (d) 

Hardware implementation for intelligently configuring the phase shifters (e) Software 

program to demonstrate smart antenna automatic control. 

To achieve satisfactory adaptive beamforming, it is necessary to have suitable radiating 

elements. Chapter 2 presents a novel compact planar monopole antenna with Archimedean 

spiral slots for WiFi/Bluetooth and LTE applications. The effects of varying slot dimensions 

and positions on the monopole antenna performance have also been analysed. It is illustrated 

when the value of Archimedean spiral slots key parameter t is from 0 to 1mm, the presented 

design demonstrates low reflection coefficient (-19dB, -30dB), high efficiency (79%, 87%), 

large gain (2.72dBi, 2.88dBi) and omni-directional radiation patterns for 2.45GHz and 2.6GHz, 

respectively. This antenna structure has application to multi-functional wireless 

communication systems. Furthermore, a four-element linear planar monopole antenna array 

using the unit antenna has been designed, simulated and optimised. Different inter-element 

spacing values are investigated and compared. When the spacing is 40mm, the array geometry 

displays low reflection coefficient (-17dB, -29dB), suitable mutual coupling (-15dB, -14dB), 

large efficiency (75%, 84%), high gain (9.9dB, 10.3dB) and directional radiation patterns for 

WiFi/Bluetooth (2.45GHz) and LTE (2.6GHz) standards. In simulation, by providing proper 
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amplitude and phase excitations, array beam steering from -57° to +54° for 2.45GHz, and -59° 

to +57° at 2.6GHz in H-plane with the gain fluctuation less than 3dB, narrow half power 

beamwidth (40°) and low side lobe level (-10dB) have been obtained.  

The second aspect of the research focuses on the design and development of feeding 

networks for the smart antenna array.  The feeding network provides RF signal to the radiating 

element and also controls the excitations. Different power dividers and feeding network 

geometries have been analysed and compared. Based on the fundamental Wilkinson power 

divider, a miniaturised structure built on silicon wafers are designed, simulated and 

characterised. By optimising the λ/4 transmission line, the circuit dimension can be reduced by 

65% without significantly increasing the insertion loss or decreasing the bandwidth. At the 

desired frequency (2.4GHz), the proposed novel silicon-based Wilkinson divider can provide 

low reflection coefficient (-42dB), suitable forward gain (-3.2dB) and high isolation (-38dB). 

Then, another novel feeding network structure is proposed, which consists of four 2-way 

conventional Wilkinson power dividers with outputs revolving at an angle of 45° to suit 

circular antenna array geometry. Subsequently, a novel reconfigurable feeding network which 

enables electronic switching of circular polarisation direction in an antenna array is presented. 

By digitally controlling the PIN diodes, the lengths of the transmission lines are various, 

leading to different phase shifts between output ports. Integrated with any four antenna 

elements, the feeding network is able to switch the polarisation between LHCP and RHCP. 

Both simulation and measurement results demonstrate that high return loss (10dB), suitable 

insertion loss (8dB) and good isolation (-12dB) can be obtained. Phase errors of ± 9º are 

achieved for required output ports. Furthermore, another reconfigurable feeding network is 

investigated, which allows for the electronic switching among four frequency bands: 600MHz-

900MHz, 1.2GHz-1.6GHz, 1.8GHz-2.2GHz and 2.4GHz-2.6GHz, in order to cover GSM, 

GPS, 3G, WiFi and LET applications in different countries. Both simulation and measurement 

results show that high return loss (20dB) and good insertion loss (3.8dB) have been obtained. 

Based on the above research, an UWB feeding network configuration is presented. The 

dimensions of the proposed UWB power divider configuration are only 9.5mm×15mm and the 

design demonstrates high return loss (10dB), suitable insertion loss (3.2dB) and high isolation 

(-10dB) through 0.5GHz to 10GHz, providing an ultra wide band performance. Moreover, 

various output separations are developed, which include 12mm, 16mm, 20mm, 36mm, 40mm 

and 45mm, which could satisfy different antenna array inter-element spacing. By performing 

the third order intermodulation distortion measurements, the linearity performance of the 

UWB device is confirmed.  Finally, a linear 1:4 UWB feeding network with separations of 

40mm is developed and characterised for the smart antenna array. Suitable S-Parameters are 

obtained.      
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 Chapter 3 firstly reviews and analyses all of the different phase shifter developments, 

including ferrite phase shifter, switched delay line phase shifter and loaded transmission line 

phase shifter. PIN diodes, FETs, MMIC and MEMS are employed as control elements in 

different configurations. Based on the comparison, a high accuracy and low loss MMIC 

analogue phase shifter from Hittite has been selected and fully characterised. Through the 

evaluation board testing, this HMC928LP5E analogue phase shifter demonstrates 180° phase 

shift at 3.64V and 3.59V, 360° phase shift at 8.22V and 8.11V, with high return loss (10dB) 

and low insertion loss (3dB), for WiFi/Bluetooth (2.45GHz) and LTE (2.6GHz) standards, 

respectively, which confirms that the analogue phase shifter is adequate for the smart antenna 

array application. In addition, two UWB CPW-to-Microstrip transitions are designed to 

produce smooth field transformation and impedance matching. The proposed structure shows 

high return loss (10dB) and suitable insertion loss (0.3dB) from 0.5GHz to 9GHz. Finally, the 

complete smart antenna array is integrated and fully characterised. By appropriately 

controlling the phase shifters and adjusting the excitations of the elements, beam steering for 

±50° and ±52° in H-plane with the gain fluctuation less than 3dB and low side lobe level (-

10dB) at 2.45GHz and 2.6GHz have been achieved.  

However, in mobile applications, it is necessary to have compact control units with low 

power consumption. Chapter 5 presents two hardware implementations to configure the smart 

antenna array using microprocessors PIC18F4550 and LPC1768, respectively. Both of the 

microchips are integrated with digital potentiometers, voltage boosters, oscillators and USB 

modules. The miniaturised and fabricated PCB control boards are able to accurately control the 

phase shifters and manage the beam steering. In particular, real time control is achieved by 

using microcontroller LPC1768. Both of the two control units are compatible with Windows, 

Android and IOS mobile operating systems.  

Several preliminary software programs to configure the adaptive beamforming are 

explored in Chapter 6. In the developed smart antenna, a laptop running Windows is used as a 

processing device and WiFi signals (2.45GHz) are detected and evaluated. Using a microchip 

PIC18F4550, the developed graphical user interface is able to manually send various DC 

voltages and square waveforms to the phase shifters. Moreover, the software programs 

investigated for the microprocessor LPC1768 can achieve both of manual control and 

automatic steering. In manual control, it is able to send particular control voltages to the phase 

shifters and observe the variation of WiFi signals detected by the array. For automatic 

steering, some basic algorithms are implemented and the software program could perform a 

full scan first and then select the strongest WiFi signal direction in the environment. This 

work demonstrates that the fully integrated smart antenna can be applied for future mobile 

applications.  
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Overall, it is concluded that the required adaptive antenna performance can be achieved 

using the fully integrated smart antenna systems. Therefore, it is possible to embed the 

complete smart antenna into future mobile devices in wireless communication industry. 

7.2 Summary of Contributions 

This section summarises the areas and the challenges in designing smart antenna systems 

that have been addressed in this thesis.  In particular, the research areas include antenna 

design, array geometry, feeding network structure, phase shifter evaluation, CPW-to-

Microstrip transition configuration, hardware implementation and software control system, 

which are discussed as follows. 

7.2.1 Miniaturised and Multiband Antenna Design 

The main contribution in this section is the concept of etching Archimedean spiral slots 

onto planar monopole antenna, in order to generate a compact multiband antenna performance.  

For planar monopole antenna, the low frequency limitation will increase the size of the 

element. Due to this reason, the base of the proposed antenna is a circular patch that operates 

in high frequency range, targeting compact circuit dimension. To create a multiband antenna, 

Archimedean spiral slots, acting as resonance paths, have been integrated with the circular 

patch antenna. Analysis of the current distributions on the antenna reveals that at low 

frequencies the additional of the slots create new circular current paths, which form a 

wideband low-frequency response. Different shapes of Archimedean spiral slots have been 

investigated and compared. In this smart antenna implementation, WiFi (2.45GHz) and LTE 

(2.6GHz) standards have been targeted. However, based on the presented design topology and 

by varying the dimension of the Archimedean spiral slots, it is able to develop compact 

antenna elements for other mobile applications, such as GSM, GPS and Galileo. 

7.2.2 Adaptive Array Geometry with Wide Scanning Range  

The radiation pattern of an array is determined by the geometrical construction and the 

relative displacement between the antenna elements. In this thesis, the four-element linear 

antenna arrays with different inter-element spacing are evaluated from the perspective of 

adaptive beamforming. The optimised array geometry achieves optimum results as it provides 

high directivity (10dB), low side lobe level (-10dB), and the main beam and nulls are placed 

accurately at the desired and interference angles, respectively, even when the desired signal is 

away from boresight (θ = 57°). The limited number of antenna elements and the linear 
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geometry simplify the array structure, which is aiming at compact mobile applications. The 

microstrip technology provides easy integration and reduces the design complexity. 

7.2.3 Reconfigurable and UWB Feeding Network 

In this research, several novel feeding network structures are investigated and developed 

for various mobile applications.  In literature, the T-Junction, resistive and conventional 

Wilkinson power dividers suffer from the issues of energy loss, mismatch, low isolation, large 

dimension and narrow operating frequencies.  

Firstly, this thesis proposed a silicon-based and miniaturised Wilkinson power divider. 

With this technique, not only the circuit dimensions are reduced, it also demonstrates better S-

Parameters.  

Secondly, this research illustrates a particular feeding network for circular antenna arrays. 

Nowadays, circular antenna arrays have been widely used in mobile, radar, sensor and 

commercial satellite communication systems. The proposed network is comprised of four 2-

way conventional Wilkinson power dividers with outputs revolving at an angle of 45° to suit 

circular configuration. 

Subsequently, a novel miniaturised reconfigurable, switchable feeding network for a four 

elements dual circularly polarised antenna array is discussed. The four feeds are in phase 

quadrature to give a phase shift of 90º between each neighbouring antenna element, producing 

a circularly polarised pattern. Integrated with any four antenna elements, the feeding network 

provides the ability to switch the polarisation between LHCP and RHCP quickly and 

accurately. 

Furthermore, this thesis produces another miniaturised reconfigurable and feeding 

network to cover GSM, GPS, 3G, WiFi and global LET standards. By controlling the bias 

voltages of PIN diodes on the device, the length of λ/4 transmission lines are varied, which 

changes the operating frequency to apply for different mobile applications. In this research, 

three types of PIN diode models were constructed and simulated in order to improve accuracy. 

The developed feeding network can be hence applied to multiband wireless communication 

systems. This work forms an important step towards realising a truly global mobile phone.  

Finally, an UWB feeding network for smart antenna arrays have been investigated. A 

literature review illustrates that the existing power divider structures have relatively limited 

abilities in miniaturising circuit dimensions and perform inefficiently in low frequency bands. 

This research demonstrates a compact power divider design with operating frequency from 
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0.5GHz to 10GHz, which covers all of the mobile communication standards. With the 

proposed technique, it is able to establish UWB wireless communication systems.  

7.2.4 Phase Shifter Evaluation 

One of the techniques to establish the adaptive antenna array is applying phase shifters for 

the antenna elements. By varying the phase excitations, main beam direction can be 

configured and rotated. In this thesis, different phase shifter topologies are investigated and 

compared, which included the ferrite phase shifter, the switched delay line phase shifter and 

the loaded transmission line phase shifter. Pin diodes, FETs, MMIC and MEMS are employed 

as control elements in different configurations. The selected and evaluated MMIC phase 

shifter demonstrates the advantages of small size, reduced control voltage, wide frequency 

range, high phase shift, suitable insertion loss, low power consumption and excellent linearity.   

7.2.5 UWB CPW-to-Microstrip Transition  

Moreover, this research presents an UWB CPW-to-Microstrip transition structure for 

smart antenna application. The proposed transition provides the field and impedance 

matching between adjacent transmission lines with low insertion loss (0.3dB). This transition 

geometry is able to reduce antenna array design complexity and increase reliability of the 

adaptive beamforming. 

7.2.6 Smart Antenna Hardware Implementation 

This work also develops the miniaturised hardware control units for smart antenna 

systems in mobile devices. Two complete control devices are investigated using 

microprocessor PIC18F4550 and LPC1768, respectively. All of the communication chips are 

integrated onto the control PCBs, including digital potentiometers, voltage boosters, 

oscillators and USB modules. The control units have been initialised, evaluated and 

programmed with basic algorithms. With the proposed designs, it is able to accurately 

configure the phase shifter so as to achieve the antenna beam steering. Moreover, the control 

units provide a wide range of DC voltage values (from 0V to 30V), which also can be used to 

control other RF devices, such as PIN diodes, FETs and MEMS. The presented control PCBs 

are compatible with Windows, Android and IOS mobile systems. With this strong 

compatibility, miniaturised dimension, low power consumption, stable performance, accurate 

control and simplified structure, the developed control PCBs have wide applications in future 

mobile communication systems.      
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7.2.7 Smart Antenna Software Control System 

The main contributions in this section are several preliminary software programs to 

manage the adaptive beamforming. Using the microchip PIC18F4550, the developed 

graphical user interface is able to manually provide particular DC voltage level and square 

waveforms to the phase shifters. However, for the microcontroller LPC1768, due to its 

advantage of real time control, not only the manual control is achieved, it also enables some 

advanced functions to automatically perform the antenna main beam steering. Furthermore, 

using some basic algorithm, the software program can intelligently compare the signal 

information at various beam directions and estimate the best signal in the environment. In the 

demo, laptop running Windows is utilised to detect and analysis WiFi signals. Nevertheless, 

the developed software program can be easily transferred into Java and Objective-C for 

Android and IOS mobile systems. With this technique, it is able to realise intelligent 

applications on mobile device to configure the smart antenna array adaptive beamforming.      

7.2.8 Complete Smart Antenna System Integration  

This research demonstrates a complete smart antenna system for future mobile devices. 

The work includes antenna analysis, RF circuit design, digital circuit implementation and 

software programming. The proposed design structures have been calculated, analysed, 

simulated, optimised, manufactured and fully evaluated. The system dimensions are 

miniaturised to suit compact mobile terminals and the measured results illustrate that the basic 

adaptive beamforming is achieved. The presented technique will contribute to realise 

advanced smart antenna on mobile communication systems.  

7.3 Future Work 

The following are possible topics for further investigations: 

7.3.1 Antenna Design 

Future work with the proposed antenna design is to further miniaturise the structure. 

Techniques such as using high permittivity substrates, adding more slots loading and shorting 

pins can be explored. The challenge will be to maintain the multiband performance and 

suitable radiation patterns while applying those miniaturising techniques. 

7.3.2 Array Geometry 

a. Evaluate the Array Performance for DoA Estimation 
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In this thesis, the performance of the antenna array is evaluated from its 3 dB scanning 

range and its adaptive beamforming ability. Another important aspect of adaptive array 

antennas is the ability to estimate the DoA of a signal. Future studies will investigate the 

performance of the array geometry in estimating the DoA using advanced algorithms such as 

Capon, Bartlett and MUSIC. 

b. Increase the Number of Elements 

Four antenna elements are used in the presented array and the limited number restricts the 

scanning range and gain. Further research will concentrate on increasing the number of 

radiating elements and enlarge the beam steering range.  

c. Array Geometry with Non-Identical Elements 

The arrays in this thesis were synthesised for wide scanning range and these geometries 

consist of omni-directional elements. Future work on this topic would be to evaluate the 

scanning ranges of antenna array that is comprised of elements with different radiation 

characteristics such as directional and bi-directional antennas or a possible combination of 

these elements. 

d. Change Antenna Array Configuration 

In this work, linear configuration is implemented. Circular, rectangular or faceted 

geometries will be further investigated to optimise the adaptive beamforming. 

7.3.3 Feeding Network Structure 

a. Silicon Feeding Network 

In this research, silicon-based feeding network has been designed and developed. Further 

study will integrate this feeding network with antenna elements in order to establish smart 

antenna array on silicon substrate.  

b. Feeding Network for Circular Antenna Array 

A feeding network for circular array geometry is demonstrated in this study. Further work 

will focus on building circular smart antenna arrays using the proposed structure.  

c. Reconfigurable Feeding Network  

Furthermore, this study investigates two reconfigurable feeding networks to control the 

polarisation and operating frequency. The next step is to integrate the design with a reliable 

switching mechanism. Issues regarding the feeding network and switch integrations include 
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the design of bias network for PIN diodes and the power handling requirement of RF MEMS 

switches. The additional structures needed to allow the reconfiguration may interfere with the 

performance of the network.  

d. UWB Feeding Network  

Similar to the antenna design, future work with the proposed UWB feeding network is to 

further miniaturise the dimension, by utilising using high permittivity substrates, such as 

ceramic and silicon. 

7.3.4 Phase Shifter Investigation 

a. MEMS Phase Shifter 

In this thesis, different phase shifter techniques are studied and compared. Several 

commercially available phase shifters were used in the prototype to validate the design 

approach. The selected MMIC devices demonstrate high phase shift, excellent linearity and 

low power consumption. However, the phase shifter is still generating 3dB insertion loss, 

which will significantly affect the antenna gain and efficiency. Future research will 

concentrate on RF MEMS phase shifters in order to reduce the insertion loss and improve the 

adaptive beamforming.  

b. Antenna Array and Phase Shifter Integration 

Another future direction would be developing the proposed smart antennas with the RF 

MEMS phase shifters on the same platform to achieve smaller size and lower reflection loss. 

7.3.5 Hardware Control 

a. Control PCB Miniaturisation 

Another compact hardware control unit has been designed, simulated and transferred into 

PCB layout, as illustrated in Figure 7.1. This board is also using LPC1678 as the 

microprocessor, and several new components are integrated to further reduce the PCB 

dimension, such as a switch, a USB module and ISP connectors. This structure is only 34mm 

  62.5mm, saving half of the space compared to the original configuration. Future research 

will focus on the new PCB fabrication and evaluation.      
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Figure 7.1: Miniaturised PCB Control Unit Using Microprocessor LPC1768 

b. Control System Integration 

In this work, the ultimate aim would be integrating the proposed hardware control system 

into a microchip and combining with RF phase shifters through flip chip technology. Figure 

7.2 demonstrates the integrated system underneath the encapsulation. Through the single 

package integration, it is able to avoid high voltage exposure on the system. Furthermore, this 

technique eliminates the requirement of electrostatic discharge (ESD) network capacitors, 

which significantly reduces 20pF to 30pF capacitances at input/output (IO) pads. This 

integration also provides a much smaller packaging than traditional carrier based packaging 

both in area and height. The short wires in the flip chip technology will greatly decrease the 

parasitic inductance and allow wider frequency operations.  

 

Figure 7.2: Control System Package Level Integration through Flip Chip Technology 
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7.3.6 Software Programming 

a. Transfer the GUI into Android and IOS 

This research presented several prototype software programs to detect and analyse WiFi 

signals using the proposed smart antenna in Windows. Future work will continue to improve 

the control software and also transfer the algorithms into Android and IOS mobile operating 

systems. Figure 7.3 presents a developed initial WiFi analyser application on Android device.   

       

Figure 7.3: Prototype WiFi Analyser on Android 4.4.4 System 

b. Analysis Other Mobile Communication Standards 

Moreover, other mobile communication standards, such as GPS/Galileo/LET and 4G will 

be detected and analysed by the developed the software control system.  

7.4 Final Comments 

Smart antenna and adaptive beamforming used in mobile applications brings many 

attractive features, such as increasing directivity, extending  signal coverage, interference 

suppression and energy saving. However, the complexity of the system has limited its 

widespread application in the commercial sector. This thesis demonstrates several techniques 

to establish and evaluate complete smart antenna systems for mobile communication. 

The future mobile devices will be light, compact, flexible, intelligent and multifunctional. 

The development of smart antennas will also make its contributions to produce advanced 

smart phones. This thesis proposes a number of solutions that will help to achieve this goal.  
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