13 research outputs found

    Online Testing of Real-Time Systems Using UPPAAL: Status and Future Work

    Get PDF
    We present TUPPAAL --- a new tool for online black-box testing of real-time embedded systems from non-deterministic timed automata specifications. We describe a sound and complete randomized online testing algorithm, and describe how to implement it using symbolic state representation and manipulation techniques. We propose the notion of relativized timed input/output conformance as the formal implementation relation. A novelty of this relation and our testing algorithm is that they explicitly take environment assumptions into account, generate, execute and verify the result online using the UPPAAL on-the-fly model-checking tool engine. A medium size case study shows promising results in terms of error detection capability and computation performance

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    Integration of analysis techniques in security and fault-tolerance

    Get PDF
    This thesis focuses on the study of integration of formal methodologies in security protocol analysis and fault-tolerance analysis. The research is developed in two different directions: interdisciplinary and intra-disciplinary. In the former, we look for a beneficial interaction between strategies of analysis in security protocols and fault-tolerance; in the latter, we search for connections among different approaches of analysis within the security area. In the following we summarize the main results of the research

    Specification and Test of Real-Time Systems

    Get PDF

    Timed Refinement for Verification of Real-Time Object Code Programs

    Get PDF
    Real-time systems such as medical devices, surgical robots, and microprocessors are safety- critical applications that have hard timing constraint. The correctness of real-time systems is important as the failure may result in severe consequences such as loss of money, time and human life. These real-time systems have software to control their behavior. Typically, these software have source code which is converted to object code and then executed in safety-critical embedded devices. Therefore, it is important to ensure that both source code and object code are error-free. When dealing with safety-critical systems, formal verification techniques have laid the foundation for ensuring software correctness. Refinement based technique in formal verification can be used for the verification of real- time interrupt-driven object code. This dissertation presents an automated tool that verifies the functional and timing correctness of real-time interrupt-driven object code programs. The tool has been developed in three stages. In the first stage, a novel timed refinement procedure that checks for timing properties has been developed and applied on six case studies. The required model and an abstraction technique were generated manually. The results indicate that the proposed abstraction technique reduces the size of the implementation model by at least four orders of magnitude. In the second stage, the proposed abstraction technique has been automated. This technique has been applied to thirty different case studies. The results indicate that the automated abstraction technique can easily reduce the model size, which would in turn significantly reduce the verification time. In the final stage, two new automated algorithms are proposed which would check the functional properties through safety and liveness. These algorithms were applied to the same thirty case studies. The results indicate that the functional verification can be performed in less than a second for the reduced model. The benefits of automating the verification process for real-time interrupt-driven object code include: 1) the overall size of the implementation model has reduced significantly; 2) the verification is within a reasonable time; 3) can be applied multiple times in the system development process.Several parts of this dissertation was funded by a grant from the United States Government and the generous support of the American people through the United States Department of State and the United States Agency for International Development (USAID) under the Pakistan ? U.S. Science & Technology Cooperation Program. The contents do not necessarily reflect the views of the United States Government

    Timed Refinement for Verification of Real-Time Object Code Programs

    Get PDF
    Real-time systems such as medical devices, surgical robots, and microprocessors are safety- critical applications that have hard timing constraint. The correctness of real-time systems is important as the failure may result in severe consequences such as loss of money, time and human life. These real-time systems have software to control their behavior. Typically, these software have source code which is converted to object code and then executed in safety-critical embedded devices. Therefore, it is important to ensure that both source code and object code are error-free. When dealing with safety-critical systems, formal verification techniques have laid the foundation for ensuring software correctness. Refinement based technique in formal verification can be used for the verification of real- time interrupt-driven object code. This dissertation presents an automated tool that verifies the functional and timing correctness of real-time interrupt-driven object code programs. The tool has been developed in three stages. In the first stage, a novel timed refinement procedure that checks for timing properties has been developed and applied on six case studies. The required model and an abstraction technique were generated manually. The results indicate that the proposed abstraction technique reduces the size of the implementation model by at least four orders of magnitude. In the second stage, the proposed abstraction technique has been automated. This technique has been applied to thirty different case studies. The results indicate that the automated abstraction technique can easily reduce the model size, which would in turn significantly reduce the verification time. In the final stage, two new automated algorithms are proposed which would check the functional properties through safety and liveness. These algorithms were applied to the same thirty case studies. The results indicate that the functional verification can be performed in less than a second for the reduced model. The benefits of automating the verification process for real-time interrupt-driven object code include: 1) the overall size of the implementation model has reduced significantly; 2) the verification is within a reasonable time; 3) can be applied multiple times in the system development process.Several parts of this dissertation was funded by a grant from the United States Government and the generous support of the American people through the United States Department of State and the United States Agency for International Development (USAID) under the Pakistan ? U.S. Science & Technology Cooperation Program. The contents do not necessarily reflect the views of the United States Government

    Explanation of the Model Checker Verification Results

    Get PDF
    Immer wenn neue Anforderungen an ein System gestellt werden, müssen die Korrektheit und Konsistenz der Systemspezifikation überprüft werden, was in der Praxis in der Regel manuell erfolgt. Eine mögliche Option, um die Nachteile dieser manuellen Analyse zu überwinden, ist das sogenannte Contract-Based Design. Dieser Entwurfsansatz kann den Verifikationsprozess zur Überprüfung, ob die Anforderungen auf oberster Ebene konsistent verfeinert wurden, automatisieren. Die Verifikation kann somit iterativ durchgeführt werden, um die Korrektheit und Konsistenz des Systems angesichts jeglicher Änderung der Spezifikationen sicherzustellen. Allerdings ist es aufgrund der mangelnden Benutzerfreundlichkeit und der Schwierigkeiten bei der Interpretation von Verifizierungsergebnissen immer noch eine Herausforderung, formale Ansätze in der Industrie einzusetzen. Stellt beispielsweise der Model Checker bei der Verifikation eine Inkonsistenz fest, generiert er ein Gegenbeispiel (Counterexample) und weist gleichzeitig darauf hin, dass die gegebenen Eingabespezifikationen inkonsistent sind. Hier besteht die gewaltige Herausforderung darin, das generierte Gegenbeispiel zu verstehen, das oft sehr lang, kryptisch und komplex ist. Darüber hinaus liegt es in der Verantwortung der Ingenieurin bzw. des Ingenieurs, die inkonsistente Spezifikation in einer potenziell großen Menge von Spezifikationen zu identifizieren. Diese Arbeit schlägt einen Ansatz zur Erklärung von Gegenbeispielen (Counterexample Explanation Approach) vor, der die Verwendung von formalen Methoden vereinfacht und fördert, indem benutzerfreundliche Erklärungen der Verifikationsergebnisse der Ingenieurin bzw. dem Ingenieur präsentiert werden. Der Ansatz zur Erklärung von Gegenbeispielen wird mittels zweier Methoden evaluiert: (1) Evaluation anhand verschiedener Anwendungsbeispiele und (2) eine Benutzerstudie in Form eines One-Group Pretest-Posttest Experiments.Whenever new requirements are introduced for a system, the correctness and consistency of the system specification must be verified, which is often done manually in industrial settings. One viable option to traverse disadvantages of this manual analysis is to employ the contract-based design, which can automate the verification process to determine whether the refinements of top-level requirements are consistent. Thus, verification can be performed iteratively to ensure the system’s correctness and consistency in the face of any change in specifications. Having said that, it is still challenging to deploy formal approaches in industries due to their lack of usability and their difficulties in interpreting verification results. For instance, if the model checker identifies inconsistency during the verification, it generates a counterexample while also indicating that the given input specifications are inconsistent. Here, the formidable challenge is to comprehend the generated counterexample, which is often lengthy, cryptic, and complex. Furthermore, it is the engineer’s responsibility to identify the inconsistent specification among a potentially huge set of specifications. This PhD thesis proposes a counterexample explanation approach for formal methods that simplifies and encourages their use by presenting user-friendly explanations of the verification results. The proposed counterexample explanation approach identifies and explains relevant information from the verification result in what seems like a natural language statement. The counterexample explanation approach extracts relevant information by identifying inconsistent specifications from among the set of specifications, as well as erroneous states and variables from the counterexample. The counterexample explanation approach is evaluated using two methods: (1) evaluation with different application examples, and (2) a user-study known as one-group pretest and posttest experiment

    Étude et implémentation d'une méthode de transformation des automates temporisés en automates à états finis

    Get PDF
    Les systèmes à événements discrets (SED) sont des systèmes dont le fonctionnement se traduit par des séquences d'interactions.Les SED peuvent être décrits par leurs séquences possibles d'interactions ou événements. Un SED temps-réel est un SED dont le bon fonctionnement dépend non seulement de comment il interagit avec son environnement mais aussi à quels moments ces interactions se produisent. Le modèle automate temporisé (AT) permet de modéliser convenablement les SED temps-réel.Les ATs, qui utilisent un modèle continu du temps, induisent un espace d'états infini pour le système modélisé. Le modèle d'automates à états finis (AEF) par contre permet de représenter de manière finie l'espace des états d'un SED.Les AEFs se prêtent mieux à l'étude (analyse, test, conception, contrôle...) par des méthodes formelles des SED. Une approche standard pour l'étude des SED temps-réel consiste alors à transformer l'AT modélisant le SED en un AEF équivalent sur lequel on réalise l'étude. Dans ce projet, il s'agissait pour nous d'apporter notre contribution à l'élaboration d'une nouvelle méthode de transformation d'un AT en un AEF équivalent.--Résumé abrégé par UMI
    corecore