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Abstract 

This thesis will give an introduction to specification methods for real­

time safety-critical systems includingformal methods. While formal meth­

ods offer various benefits for developing systems and software by virtue 

of their precise semantics, their uptake by a wider spectrum of users, in­

cluding system and software engineers, is hampered by various drawbacks. 

The mathematical notations of formalisms form the main stumbling block 

in their comprehension and hence lead to associated accessibility prob­

lems. Visual languages are excellent candidates as a means to overcome 

this problem. However, most visual languages lack a well-defined formal 

semantics. Hence, the creation of a visual development suite supporting 

refinement and abstraction based on a well-defined formalism has been 

attempted. The Interval Temporal Logic (ITL) formalism is described in 

detail as it forms the basis for our development method. A study was con­

ducted to see how visualisation helps in various domains in fostering in­

creased accessibility of information, language and technology. Identifying 

a design rationale, a simple, intuitive and readable visual language, called 

VisITL with a well-defined formal semantics was designed. A support­

ing visual framework of refinement and abstraction rules was also devised. 

Examples are given depicting the application of these rules to VisITL spec­

ifications. Case studies undertaken to illustrate the use of this visual frame­

work are described. The VisITL tool demonstrates the realisability of this 

approach. Comparisons to related work are made and suggestions are given 

for future efforts in this area. 
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Chapter 1 

Overview 

In the beginning of the year 2002, more than 75 different formal methods were listed 

on the formal methods repository at the WWW virtual library on formal methods [53]. 

These formal methods are in different stages of development. While many have little or 

no tool support, some have good tool support and industrial users. Formal methods are 

evolving at a rapid pace and making inroads into industry. A major issue in technology 

transfer to industry from research laboratories involves tool support. The tool support 

not only has to be adequate but also appropriate. In other words, the tools have to 

support a wide variety of users. They should cater not only for undergraduate users in 

education but also to users in real projects. While formal methods continue to grow in 

popularity, a number of misconceptions regarding formal methods continue to grow in 

tandem [20]. The tools built should collectively overcome these misconceptions. Lean 

Formal Methods as mentioned for the first time in [26] suggest a way forward. 

Scope 

The work broadly aims to contribute towards making formal methods more acceptable 

and convenient to a wide spectrum of users. It aims to integrate formal specifications 

into the system development process without burdening the users with many formal 

notations and the need to work with them manUally. Example specifications are devel-

1 



Chapter 1 1.0 Overview 

oped to show how this can be achieved in practice. Implementation challenges to be 

tackled are identified and future work directions are suggested. 

Original Contribution 

In brief, there are various existing software development process models according to 

which software can be developed. These may involve formal methods and/or system­

atic methods to varying extents. So far, most methods incorporate only systematic 

methods and therefore lack formal mathematical underpinnings. The development of 

real-time safety-critical systems necessitates more formal approaches. Our research 

work involves a lean, formal approach where the accessibility of a formal method is 

tackled through visualisation approaches. 

A formal method like Interval Temporal Logic (ITL) uses a lot of symbols. A user 

who has a lot of interest in Formal Methods (FMs) will not mind this and gets used to 

this pretty fast. However, users involved in other software development activities will 

not find a formal specification easy to read or understand let alone develop their own 

specifications. As a result, a simple graphical notation (called VisITL) was invented 

to enable the creation of more readable specifications. The design rationale for such a 

visual notation is highlighted. A development method involving visual refinement as 

well as abstraction is proposed. Case studies are given to illustrate the use of VisITL in 

a visual development framework. 

Thesis Outline 

Chapter 2 explores process models and strategies in software development and intro­

duces various formal approaches for the development of real-time, safety-critical sys­

tems. It also explains the rationale for the choice of Interval Temporal Logic (ITL) as 

the formalism for our work. 

Chapter 3 provides an insight into how visualisation helps in various domains in foster-

2 



Chapter 1 1.0 Overview 

ing increased accessibility of information, languages and technology through various 

means including better communication and ease of use. 

Chapter 4 first introduces Interval Temporal Logic (lTL) in detail and highlights some 

of the difficulties that have to be tackled to increase its uptake by a wider spectrum of 

users. Then, it details possible approaches to visualisation for ITL and introduces a 

visual notation for ITL called VisITL. The design rationale for such a visual notation is 

explained. Example specifications are given in the visual notation. 

Chapter 5 introduces a development technique based on ITL and integrates it with Vis­

ITL by providing a visual framework for refining and abstracting VisITL specifications. 

Chapter 6 involves case studies demonstrating the use of the visual framework. 

Chapter 7 gives details of the VisITL tool. 

Chapter 8 gives conclusions outlining further work in this area. 

3 



Chapter 2 

Formal Software Development 

Techniques 

The objectives of this chapter are to explore process models and strategies in software 

development, introduce formal approaches for the development of critical systems and 

state the rationale for the choice of Interval Temporal Logic (ITL) as the basis for my 

work. 

2.1 Software Development - Process Models and Strategies 

2.1.1 Software Development Process Model 

The goal of any development effort is to produce a product. A development process 

is a set of activities, together with an ordering relationship between activities, which, 

if performed in a manner that satisfies this ordering, will produce the desired product. 

A process model is an abstract representation of a development process. The goal in a 

software development effort is to produce high "quality" software. The software devel­

opment process is, therefore, the sequence of activities that will produce high quality 

software. The basic activities in a software development process include requirements 

analysis, specification, design, coding and testing which are further broken down into 

distinct activities. 

4 



Ph.D. Thesis 2.1 Software Development - Process Models and Strategies 

The following discusses some of the process models [129] : 

• Waterfall model 

The oldest and widely used process model is the wateifall model which states 

that the phases are organised in a linear order. A simple form of the waterfall 

model is described in Figure 2.1. 

Requirements 
Analysis 

Functional 
Specification 

Design 

Implementation 
(coding) 

Figure 2.1: A Simple Form of the Waterfall Model 

Testing 

A limitation of the waterfall model is that it assumes that the requirements of the 

system can be frozen before the rest of the process begins. 

• Prototyping based model 

In this model, instead of freezing the requirements before the other phases, a 

throwaway prototype is built to help understand the requirements. The client can 

get an "actual feel" of the system since the interactions with the prototype can 

enable the client to better understand the requirements of the desired system. 

5 



Ph.D. Thesis 2.1 Software Development - Process Models and Strategies 

Requirements Analysis 

Design 

Design Code Test 

Code 

Test 

Figure 2.2: The Prototyping Model 

The prototyping model is illustrated in Figure 2.2. 

The cost involved in this build-it-twice approach is usually a major disadvantage. 

• Iterative enhancement model 

The iterative enhancement model tries to combine the benefits of both the pro­

totyping and the waterfall model. The basic idea is that the software should be 

developed in increments, each increment adding some functional capability to 

the system. An advantage of this approach is that it can result in better testing as 

testing each increment is likely to be easier. Also, the increments provide feed­

back to the client and hence, it helps in determining the final requirements of the 

system. 

The iterative enhancement model is illustrated in Figure 2.3. 

Design-O Design-! Design-n 

Implement-O Implement-! Implement-n 

Analysis-O Analysis-! Analysis-n 

Figure 2.3: The Iterative Enhancement Model 

• Spiral model 
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Ph.D. Thesis 2.1 Software Development - Process Models and Strategies 

Review 

This is a model proposed by Boehm [17] where the activities are organised like 

a spiral. The spiral has many cycles. The radial dimension represents the cu­

mulative cost incurred in accomplishing the steps done so far, and the angular 

dimension represents the progress made in completing each cycle of the spiral. 

The model is shown in Figure 2.4. 

Determine objectiVes, 
.hern.liv .... eonstraiDts 

Commhment 

P.rtltlon 

Plan next pb_ 

Cumulalive coot 

PrOlP'''' throuKb step. 

Develop, verify 
next·level product 

Figure 2.4: The Spiral Model 

• The transform model 

This is another model that Boehm has identified as being significant. It is based 

upon the automatic conversion of a software specification into a program that 

satisfies the specification. Little practical progress has been made in this area. 

Limited versions of this model offer more scope for real progress [54] . 

• V-diagram 

7 



Ph.D. Thesis 2.1 Software Development - Process Models and Strategies 

The V-diagram [36] is a life-cycle model for software development that empha­

sises the relationship between the design, integration and testing processes. One 

such V-diagram is shown in Figure 2.5. 

, , , , , 

DESIGN DECOMPOSITION 

SYSTEM 
INTEGRATION 

AND TEST 

SOFTWARE 
INTEGRATION 

AND TEST 

CODE , 
IMPLIMENTATION , 

, 
,~ , 

INTEGRATION 

Figure 2.5: The V Diagram 

In the V-diagram, the level of detail increases down the page. The left leg of the 

"V" shows the design and building of the system. The right leg shows the cross­

checking and integration of the system. The diagram particularly emphasises 

the relationship between the phase of integration and the phase of design which 

provides the source of information for cross-checking. This is shown by the 

dotted lines. 

A key issue for most systems, especially safety-critical systems, is the approach 

taken to demonstrate that the system will operate when it is delivered. The V­

diagram approach divides the responsibilities for correctness into the two follow­

ing forms: 

- The progressive demonstration of consistency of the deliverables on the left 

leg of the "V", known as verification. Methods such as prototyping, proof 

of properties and reviewing are used here. 

- Cross-checking during the integration phases of development, on the right­

leg of the "V", establish that the delivered system meets the requirements 
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Ph.D. Thesis 2.1 Software Development· Process Models and Strategies 

established at the corresponding phase on the left leg of the "V". Methods 

such as testing are used here. 

2.1.2 Software Development Strategy 

We will use the term "Software Development Strategy" to mean an elaborate and sys­

tematic plan of the activities involved in the software development process. This strat­

egy mayor may not involve formal methods. 

We classify strategies for development as follows: 

• Structured method strategy 

This is a strategy for development involving systematic methods for the analysis 

and design of complex systems. These methods can be contrasted with more ad 

hoc approaches, which are largely based on the designer's experience and intu­

ition. There are many types of structured analysis. Most of these are semiformal, 

operational notations closely related to data flow diagrams (DFDs), a graphical 

notation used to describe the structure of an information system. 

The systematic software design methods make use of graphical representation 

forms, supported by varying degrees of structured text and free text. One problem 

with most of these notations is that they generally lack any rigorous syntactic and 

semantic foundations, and so it is difficult to reason about them in any 'formal 

manner'. Jackson's Structure Diagrams [36, 85], which are used to show both 

program and data structures, have a well-defined syntax but only some semantic 

content while Statecharts and Petrinets are more rigorous. 

The problem with this lack of firm-syntax and well-defined semantics for many 

of the diagrammatical notations used in systematic design practices is that no 

design verification is possible. So, it will become virtually impossible to make 

a comparison between the eventual design and the initial requirement. Hence a 

development strategy incorporating formal methods offers advantages. 

9 



Ph.D. Thesis 2.1 Software Development - Process Models and Strategies 

• Formal method strategy 

This is a development strategy incorporating a set of techniques and tools based 

on mathematical models that are used to specify and verify requirements and de­

signs for computer systems and software [120, 53, 95]. Such mathematical tech­

niques and tools constitute Formal Methods. They employ formal specification 

languages based on mathematical structures. The use of such formal languages 

permits the application of mathematical techniques in reasoning about a design 

and its properties. 

Although a number of formal methods are well developed, their industrial use 

has been limited so far but is undoubtedly growing. Some of the reasons for the 

slow adoption of formal methods are the conservative approach of many project 

managers, the reluctance of customers to accept 'unfamiliar' techniques and no­

tations, the need for familiarity with logic and discrete mathematics and the lack 

of adequate tool support. 

• Lean formal method strategy 

This is a development strategy where formal methods are involved in such a way 

that it accommodates a wide spectrum of users. Hence, Lean Formal Meth­

ods are Formal Methods which are more accommodative to a wider spectrum 

of users. The strategy aims to make users conveniently use and/or understand 

formal methods as explained below. Central to this strategy is the provision of 

means to more comprehensible and user-friendly formal specifications and an 

associated development technique within a single framework encompassing re­

finement}, abstraction2 and animation of specifications3. It is important to note 

that the lean approach does not compromise on fonnality ; it maintains the pre­

ciseness involved in a formal approach but incorporates new techniques to bring 

1 see chapter 5 
2see chapter 5 
3see section 4.3 
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the formal approach closer to the user. Such lean techniques could involve au­

tomation to perform several analyses on specifications, like proving desired prop­

erties, the use of visual languages and so on, to enable better accessibility. This 

approach is in contrast to approaches where researchers try to give a formal se­

mantics to a visual modelling framework like STATEMATE [69], Stateftow [11] 

or the Unified Process involving UML [33]. 

2.2 Specification 

System specification is the most crucial activity in software projects. Quite often, mas­

sive overruns in budget and project duration are due to errors in describing the required 

system behaviour [82]. Understandably therefore, this activity, amongst all the ac­

tivities in a software project, has been receiving the most attention over the last two 

decades. 

Developing a complex software product requires the developer to carry out sev­

eral software activities including system specification, system design and programming 

apart from testing and verification activities. System specification is the process of de­

scribing what a system is supposed to do. In order to develop the system specification, 

the developer is provided by the user with an informal statement of requirements. 

System design is the process of using the software specification and developing an 

architecture expressed in terms of their modules and their interfaces. The objective in 

system design is to develop a description of how the system should operate rather than 

describe what is required. We can note here, again, that describing what behaviour 

is required to be exhibited by the system is the objective of the system specification. 

Programming is the process of translating a system design into program code. 

A number of reasons make the task of specifying a system difficult [82]. Firstly, 

the informal statement of requirements given to the developer suffers from a number 

of deficiencies. In general, such statements are contradictory; incomplete; ambiguous; 

sometimes over-ambitious; and sometimes under-ambitious. They contain descriptions 
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of functionality at different levels intermixed together. Although these deficiencies are 

normally associated with the user's statement of requirements, many of them crop up 

in system specifications. The second reason for the specification task being difficult is 

the nature of the notations used to express system functionality. English has been used 

widely as a language for system specification. However, English, or any other natural 

language, is an excellent medium for activities such as writing poems where ambiguity 

is regarded as the norm. This property of ambiguity leads to many problems when such 

natural languages are used for specifying systems. The seemingly innocuous sentences 

in such descriptions in natural language could be interpreted by the system designer in a 

manner completely different from that which the customer intended. Another problem 

with system specification is the size of the documentation generated. The specifica­

tion of a simple stock control system for a retailer can occupy hundreds of pages of 

text, while the specification of a conventional engineered product, say a bridge, might 

occupy only two or three pages of text. 

Until the late sixties, developers produced programs as though the process was more 

of an art than science and engineering. The early specifications were expressed in En­

glish and, although this was an improvement over not writing down system function­

ality at all, it lead to the problems described above. Graphical notations for system 

specification, after a slow start, have now picked up in software projects. Notations 

associated with structured development methods such as Yourdon Structured Design 

[152], SSADM [43,5] etc. have gained widespread popularity for large-scale software 

development. At the most extreme end of the spectrum of specification notation is 

mathematics. It represents a radical change from current approaches. Mathematics has 

had a mixed impact on software projects, and has the longest history as a specification 

notation. In 1948, the English computer scientist Alan Turing used logic, the mathe­

matics of true and false statements, to define the action of an assembler subroutine [82]. 

In the late 1960s, a large amount of research was carried out into program proving, in­

stigated by the English computer scientist Tony Hoare [82, 80] and the Dutch researcher 

Edsger Dijkstra [82, 80]. The aim in program proving is to describe the function of a 
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piece of program code using mathematics. The aim was to write the program and then 

prove - without testing - that the program meets its mathematical specification. In the 

1960s, testing was a more difficult process than it is now4 as there were virtually no 

debuggers, no dynamic analysis tools, and no facilities to store and rerun tests. Conse­

quently, any alternative to testing - particularly one that required no testing effort at all 

- was treated very seriously. Unfortunately, a number of problems were discovered in 

program proving. The major one was that the process of proving that a program meets 

its specification was long and tedious and, more often than not, gave rise to proofs 

which were textually very much longer than the program itself. In order to overcome 

this problem, researchers attempted to develop automatic program provers : software 

tools which processed a mathematical specification and a program, and decided, with 

little human intervention, whether the program was correct. The search for an efficient 

program prover has been unsuccessful. Although the failure of automatic program 

proving lead to a diminution of research into fonnal methods of software development, 

the early eighties saw a dramatic resuscitation for two reasons. One reason was an 

increasing dissatisfaction with development performance on medium to large software 

projects. The other was a programme called the Alvey programme [82] whose software 

engineering component was, largely, concerned with fonnal methods of software devel­

opment. What the Alvey programme indicated was a subtle shift in emphasis. Program 

proving was concerned with developing a specification and a program independently, 

and then showing that there was a match between them. The fonnal methods envisaged 

by the Alvey programme tended to concentrate on the specification first. Once a math­

ematical specification had been developed, the program would be constructed using the 

specification as a guide. The program development was carried out in small chunks, say 

a subroutine at a time, so that the complexity associated with program proving would 

be eliminated. This process, called rejinemenf, will be illustrated in chapter 5. 

4Today, testing is still difficult because effective test cases have to be designed, a lot of time has to be 
spent on testing besides managing tests more conveniently 

5'Refinement' can be thought of as the process of elaborating on what is specified abstractly towards 
a specification that is executable. 
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Among the formal methods of software development currently being used on real 

projects are VDM (Vienna Development Method) [16] and Z [83]. The developer who 

uses VDM first identifies the objects and operations that occur in the application to 

be computerised. For example, in an air traffic control system typical objects would 

be planes and radars. Typical operations would be the creation of an aircraft when 

it came within radar range, the deletion of an aircraft when it landed and the reading 

of a radar signal from a particular radar installation. Once the objects and operations 

are identified, they are specified. Specification in VDM consists of defining the objects 

using a branch of mathematics called set theory which deals with collections of objects. 

Once the objects have been defined, the effect of operations is clarified. The effect is 

specified by means of a pre-condition and a post-condition. The former describes what 

must be true before an operation is executed ; the latter describes what must be true 

after an operation has been executed. Both these conditions are expressed using first 

order logic, to deal with the truth and falseness of statements. 

Another popular formal method is Z. Currently Z is just a specification notation 

rather than a development method. It is semi-graphical in that it consists of mathemat­

ics enclosed in boxes known as schemas. Each box describes some stored data and the 

effect of operations on that stored data. Its advantage, compared with VDM, is that it 

provides a much more modular description of a system. This enables staff concerned 

with design, and with requirements analysis, to enable only those parts of the specifi­

cation with which they were concerned. The disadvantage of Z, as compared to YDM, 

is that it lags behind in terms of facilities for transforming the notation into program 

code. 

There are a number of reasons for the resistance encountered to the attempts of 

formal methods to gain a widespread usage. Despite their need, especially for safety­

critical systems, there does not exist an integrated suite of software tools and tech­

niques, formal or non-formal, that can be used during the various stages of system 

development. There is a growing need for systems that are provably correct, especially 

if the systems are real-time and safety-critical, and for such systems, the development 
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of an integrated suite of tools and techniques together with an associated strategy is 

essential. 

2.3 Real-Time Safety-Critical Systems (RT-SC) Systems 

A Real-Time System is defined as a system which is capable of reacting to external 

events as they happen [101, 91]. Therefore, the computations of a real-time system 

not only depends upon the logical correctness of the computation but also upon the 

time at which the result is produced. Therefore, if the timing constraints of the system 

are not met, system failure is said to have occurred. Common examples of real-time 

systems include flight control programs, air traffic control systems, control systems for 

power plants, patient monitoring systems, weapons systems, and military command 

and control systems. To be acceptable, such systems must not only be functionally 

correct but also be temporally correct. Before we develop any program/system, we 

would have to start with a description of its intended behaviouli. Such a description of 

the program/system is nothing but a 'specification' as described already and we noted 

that a natural language like English, though convenient, is very imprecise. Therefore, 

logic, which can lead to an unambiguous description of the requirements, becomes 

most suitable. In order to specify systems with timing constraints, a logic which has 

temporal constructs is the most suitable one. Such a logic is called 'temporal logic'. 

Among other methods to specify and reason about real-time systems are state machine 

models and models that extend process algebra. Most logics designed to reason about 

real-time systems are either first-order logics or temporal logics. 

A system is safety-critical if the occurrence of unintended events could result in 

death, injury, illness, or damage to, or loss of, property. To avoid entering an unsafe 

state, a safety-critical system must often perform a given action by a specified deadline. 

Most (if not all) safety-critical systems are also real-time systems. For example, an air 

6The 'behaviour' of a system is the development of states and state transitions generated by actions 
of the system during the time interval in which it is studied. 
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traffic control system is a real-time system with many stringent timing requirements 

and since the failure of such a system to act in time can have disastrous consequences, 

it is a safety-critical system also. Such systems are often complex with behaviours that 

depend on inter-relationships among the timing of the events of the system. Often, 

testing of such systems is inadequate as the sole means for ensuring their correctness. 

2.4 Specification Methods for Real-Time Safety-Critical Systems 

This section introduces specification methods for real-time, safety-critical systems. 

2.4.1 A Note on Different Levels of Formality 

Many methods have both formal and informal components. Therefore, it is quite com­

mon to talk about semiformal methods, that is, methods that are only partially defined 

in a precise, mathematical way. Some aspects of the method are left undefined; under­

standing these aspects requires intuition and common sense. In many cases, semiformal 

methods define the syntax of a given notation rigorously but leave the notation's seman­

tics undefined. 

2.4.2 Models Based on Logic 

Some historical perspective on logics 

Early work on logic-based program verification includes work by R.W.floyd [50] 

in 1967 and C.A.R.Hoare [77] in 1969. General surveys on the role of temporal logic in 

computer science include Pnueli [126], Goldblatt [60] and Emerson [44]. A temporal­

like calculus for the specification and reasoning about concurrent programs was first 

proposed by Pnueli [127], and a temporal semantics for reactive programs was also 

proposed by Pnueli [128]. Some of the earlier applications of temporal logic for the 

specification and verification of concurrent programs are reported by Hailpem [65], 

Hailpem and Owicki [66], Owicki and Lamport [123], and Lamport [99]. More details 

and references can be found in [107]. 
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Using logic, one can describe and reason about the behaviour of a system without 

building the system first. Such reasoning could be based on correctness proofs and/or 

aided by prototyping if the logic specification is executable. 

The most widely known logic is first-order logic. For specifying a power production 

plant, in a first order theory, the plant and its properties can be described as follows. 

Variables such as Temp for temperature, Pres for pressure and PowerRequested for the 

amount of power requested are used to express all relevant system quantities. The 

variable t is used to represent the critical system component of time. Predicates are 

used to specify system properties and constraints. For example, the following predicate 

PowerProduced::; PowerRequested states that the power produced cannot exceed the 

requested power. The predicate can be rewritten to show the time dependence of the 

variables as : 

V(t)PowerProduced(t) ::; PowerRequested(t) 

In the power production plant example mentioned above, if we require a signal 

ModerateDanger to be raised when the temperature and pressure have been continu­

ously above the limits TTTUJX and PTTUJX respectively for 0 time units, then we can use the 

following: 

VtlT/t', t - D ::; t' < t : Pres(t') > PTTUJX 1\ Temp(t') > TTTUJX -+ ModerateDanger(t)]. 

Using such formulas, we can describe the required behaviour of the power plant 

completely. For example, requirements such as the following can be specified: 

• The system must be shut down within h time units after the HighDanger alarm 

sounds. 

• The amount of coolant injected into the plant is proportional to the product of 

the difference between the actual temperature and the ideal temperature times the 

difference between the actual pressure and ideal pressure. However, if there is no 

more coolant in the tank, the HighDanger alarm sounds immediately. 

The logic notation, unlike the SAIRT notation, can describe the above requirements 

and similar functional, control, or timing requirements completely and precisely. 
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The logical approach can be used to formalise basic system properties as axioms, 

i.e., fundamental facts that by assumption are guaranteed, and to derive additional prop­

erties as theorems, consequences that follow from the basic assumptions. As an exam­

ple, suppose the following two axioms are assumed: 

1. Once the plant is turned off, temperature and pressure decrease with time accord­

ing to some given mathematical function. 

2. As soon as temperature and pressure are again within safety limits, the plant is 

immediately restarted. 

Using these axioms, we can prove as a theorem that the plant will never be off for 

more than some maximum time. 

Since first-order logic is a basic mathematical formalism, it is not well suited for 

describing real-world complexities. Thus, in practical systems, logic is most useful 

for proving critical system properties rather than proving properties about the whole 

system. Another complication in the practical application of first-order logic is that 

sufficiently general theories are undecidable; that is, no algorithm exists that can deter­

mine whether a given property can be proven as a theorem. 

Although time, in principle, can be incorporated into a logic in the same way as 

other system variables, many researchers advocate a special role for time and have 

introduced new logics for reasoning about time. Some are first-order logics whereas 

others are temporal logics. A detailed discussion of one such temporal logic called ITL 

will follow in chapter 4. 

Some examples of first-order logics designed for reasoning about real-time are 

Real-Time Logic or RTL [88], TRIO [57] and ASTRAL [35]. A special feature of 

TRIO is that a special interpreter makes specifications in TRIO executable. ASTRAL, 

another logic-based language, combines the timing features of TRIO with the structur­

ing mechanisms of ASLAN [6], an earlier language for describing non-real-time sys­

tems. ASTRAL specifications describe a system in a fairly operational style by defining 
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its states and state transitions. Proof obligations are built to drive the formal analysis of 

the specification in a deductive style. The system specifications are treated as a set of 

axioms, from which the system properties are derived as theorems. Though presently 

no tools are available to support ASTRAL proofs, in principle, semiautomatic tools that 

generate proof obligations from a given specification could support formal analysis in 

a manner similar to that previously demonstrated for ASLAN. 

Most real-time logics describe systems in terms of events, points in time when 

something significant happens. In contrast, a few others called interval logics, focus 

on conditions (e.g., states) that hold for some nonzero time interval. Allen describes a 

classical example of an interval logic. The Duration Calculus [153, 154], a real-time 

formalism, is a special case of interval logic. Section 2.6 explains the rationale behind 

the choice of Interval Temporal Logic for this work. 

2.4.3 State Machine Models 

A state machine is a mathematical model of a system with input and output. A finite 

state machine (FSM) is a state machine with a finite number of states only. Formally, a 

finite automaton can be defined as a five tuple (Q, 1:,0, A, qo, F) where 

Q is a finite set of states, 

1: is the input alphabet, 

qo E Q is the initial state, 

F ~ Q is the set of final states 

o : Q x 1: ~ Q is the transition function. 

Section 3.1.6 gives additional information on the state machine. 

Timed Automaton Model 

This model [106. 110] is based on dense time. It allows infinitely many states unlike 

the classical state machine model which has a finite number of states. The model de­

scribes a system as a collection of automata (Le., state machines) interacting by means 

of common actions. Important actions in the model are input and output actions, both 
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of which are visible outside the system. Time is added to the model through a special 

time passage action. 

The state transitions are described by specifying the "preconditions" under which 

each action can occur and the "effect" of each action. 

To add time to the model, time bounds are associated with each action. With this 

technique, variables as well as constraints may be used to represent timing information. 

Representing time with variables allows constraints on variables to be derived later on 

from other information in the specifications. 

The timed automaton model overcomes the limitations of the classical state machine 

as time is built into the state. Also, general logic formulas may be used to specify 

transitions. 

To solve a problem using the timed automaton model, two system descriptions are 

developed, one specifying the problem, the other the solution. Proofs are constructed to 

show a "simulation mapping" between the two descriptions. If every behaviour of one 

description is a behaviour of the other, then the simulation mapping between the two 

descriptions holds. The two specifications are equivalent if the two sets of behaviours 

are equal. 

Esterel family 

Esterel is the most widely known member of a family of languages that uses the 

state machine model to describe real-time systems. The Esterel family is based on 

the synchrony hypothesis, which states that each system's response to a set of inputs 

is instantaneous. At the practical level, this means that the system must complete all 

computations before the next input from the environment arrives. The website [46] is a 

good reference for obtaining the compiler, related tools and additional information. 

The Esterel family places emphasis on the later phases of the software life cycle 

unlike many other real-time formalisms. Compilers are available which automatically 

produce running code from specifications written in the language of some family mem-

ber. 

Esterel and other members of the family have been applied to many industrial 
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projects, mainly in the fields of nuclear safety and avionics. 

A comprehensive description of the synchronous approach and the Esterel family 

oflanguages is given in references [14,67]. 

2.4.4 Process Algebras 

CCS [78], CSP [111], and ACP [13] are process algebras originally developed to spec­

ify and analyse concurrent systems without the notion of time. A process algebra has 

a concise language, a precisely defined semantics, a notion of equivalence or preorder, 

and a set of algebraic laws allowing syntactic manipulation. The language is based on 

a small set of operators and a few syntactic rules for constructing a complex process 

from simpler processes. The semantics describe the possible execution steps a process 

can take. Two processes are equivalent when they have the same behaviour, that is, 

when every execution step of one process is also an execution step of the other process 

and vice versa. A preorder between two processes exists when the behaviour of one 

process is a subset of the behaviour of another. To verify a system using a process 

algebra, one writes a specification as an abstract process and an implementation as a 

detailed process. To prove correctness, the two processes are shown to be equivalent or 

a preorder between the processes is shown. The proof of correctness is accomplished 

by syntactically manipulating the algebraic laws. 

A number of timed algebras have been proposed recently. These include ACSR 

[22, 100], which adds time to CCS ; Timed CSP [132], a timed version ofCSP ; Timed 

LOTOS [18], a timed version of the ISO standard LOTOS, which is also based on CSP 

and has already been applied to several industrial projects ; and a timed version of ACP. 

2.5 Analysis Techniques for Real-Time Safety-Critical Systems 

Simulation, model-theoretic and proof-theoretic reasoning are major classes of tech­

niques developed for formally reasoning about real-time systems. 
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2.5.1 SimuiatinglExecuting Specifications 

Many formal methods researchers underestimate the value of simulation in exposing 

defects in specifications. Using simulation, the user can ensure that the behaviour 

specified satisfies hislher intent. Unlike consistency checking, model checking, and 

mechanical theorem proving, which formally check the specification for properties of 

interest, simulation provides a means of validating a specification. In [72], Heitmeyer, 

c., mentions that a powerful, customisable simulation capability is very much neces­

sary in the formal development process. In running scenarios through the simulator, the 

user can also use the simulator to check properties of interest. Another use of simula­

tion is in conjunction with model checking; counter-examples obtained from a model 

checker can be fed to a simulator to demonstrate and validate them. 

2.5.2 Model-theoretic Reasoning 

A number of algorithms have been developed in recent years to verify properties of sys­

tems modelled as state machines. One class of algorithms, called model checkers, were 

invented by Clarke and Emerson in 1981 [34, 80] to verify properties of untimed speci­

fications. These algorithms take a finite state machine model of a system and a temporal 

logic formula and determine if the formula is true of the model. While design errors in 

practical systems have been detected using model-theoretic reasoning, the errors were 

in untimed specifications. The application of these techniques to timed specifications 

is a significant area of current research. Scale is a problem in the verification of spec­

ifications of real-time systems as the addition of time to system specification produces 

a model which is usually too large to analyse. 

For example, the Modechart verifier [89] is designed to analyse real-time specifica­

tions using model-based techniques. This tool builds a computation graph to represent 

all possible states that a system can enter. Various approaches are used to prune un­

reachable nodes in the graph and to combine duplicate nodes. If the number of states 

and the timing constants in the model become very large, the computation graph be-
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comes too large to build and analyse. Therefore, the Modechart verifier and similar 

tools can only verify small real-time models. 

Techniques to handle dense time also exist. One promising approach uses approxi­

mations to avoid dealing with timing information in a specification until it is needed. 

This method is more practical compared to the proof-theoretic reasoning because 

of its "push-button" nature. However, the proof-based methods can be made more 

practical by automating the process as much as possible and by providing built-in proof 

strategies. 

2.5.3 Proof-theoretic Reasoning 

In this technique, a theory about the system of interest has to be developed based on 

some logic. System properties are represented by formulas in the logic. Logical deduc­

tive techniques are applied to construct required proofs about the system. This requires 

mathematical maturity and theorem proving skills. 

Developing proofs will require a lot of effort and time. However, the deductive 

approach has some advantages over model-theoretic reasoning. First, the user will gain 

a deep understanding of the system specification and its properties while developing 

the proofs. Second, more abstract models can be handled in proof-theoretic techniques 

and hence, more general results produced. Further, deductive reasoning can be applied 

to any mathematical model unlike model checking and other similar techniques. 

A number of mechanical proof systems have been developed in recent years to 

support deductive reasoning. These include the Boyer-Moore theorem prover [21], -

EYES [98], and the Larch Prover [64], all based on first order logic, as well as HOL 

[63] and PYS [124], which are based on Higher Order Logic. Such systems can do 

some proofs automatically. Most nontrivial proofs, however, require user guidance ; 

the user must develop the overall proof strategy. Mechanical proof systems can be very 

useful in checking such hand proofs. For safety-critical systems, a proof system that 

validates each step in the formal reasoning is very important as it would lead to an 
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increase in the proof's validity as compared to a more informal proof which was not 

checked mechanically. 

2.6 On the Choice of ITL for this Work 

In the previous sections, we have explored various kinds of formalisms. This work is 

based on a logic-based formalism called Interval Temporal Logic (ITL) [84, 116]. 

ITL is a flexible notation for both propositional and first-order reasoning about peri­

ods of time found in descriptions of hardware and software systems. It can handle both 

sequential and parallel composition unlike most temporal logics. It offers powerful and 

extensible specification and proof techniques for reasoning about properties involving 

safety, liveness and projected time. Tempura provides an executable framework for 

developing and experimenting with suitable ITL specifications. Hence, this work uses 

ITL as its formalism and aims to explore approaches which may enhance its uptake by 

a wider spectrum of users. 

2.7 Drawbacks of Formal Methods 

There are many formal methods, each having their own notation and varied degree of 

learning curves. This fragmentation and lack of standards further hinders their uptake. 

This is particularly so when the current software development practices do not involve 

formal notations. Real world projects tend to be large in scale, which raises the is­

sues of scalability and communication of the chosen development technique. Formal 

methods neither support scalability nor ease of communication amongst members of a 

large team. Current work on compositional issues, which help in scalability, are still 

in their infancy. In addition, there is often a need for integrating many formalisms. 

For example, process algebraic styles of notation may be suitable for describing system 

interaction but they fail to describe the internal behaviour of a system. When many 

formalisms are involved in a development process, the user gets confronted with many 
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learning curves. 

The popularity of structured methodologies is often attributed to their associated 

graphical notation. What is required is a compositional formal method which enjoys 

both the preciseness of mathematical arguments and ease of communication associated 

with structured methodologies. 

Towards that goal, various strands of development have taken place. Integrating 

formal methods such as Z [86] with structured techniques such as SSADM [5, 23, 43] 

have been attempted but with little success. This is mainly due to lack of scalability 

and the continuing presence of formal notation. In addition, various formal notations 

have been integrated, for example CSP and Temporal Logic. This type of integration 

did not alleviate the limitation of formal methods. Instead, the developers were faced 

with learning various fonnal notations each with their own semantics domain and veri­

fication style. 

Another strand of development was directed towards executable/animatable spec­

ifications. This has met with some success as now fonnal notations look like a pro­

gramming language with which developers are more familiar. However, issues such as 

scalability, learnability and being industry-strength remain unsolved. 

It is therefore believed that a lean formal approach which combines a composi­

tional graphical notation, animation and a development process within a single fonnal 

framework will overcome some of the fundamental problems associated with the use of 

current fonnal methods. Such an approach, by integrating various activities that consti­

tute a development process in one single framework, would eliminate the burden of the 

user in terms of the "learning curve for formal methods" that he/she has to go through. 

In other words, this approach brings the fonnalism closer to the user and thereby en­

courages the user to adopt a fonnal development strategy in systems development. 
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2.8 Summary 

In this chapter, we first explored software development process models i.e., Water­

fall model, Prototyping based model, Iterative enhancement model, Spiral model, V­

diagram model and the Transform model. We then used the term "Software Devel­

opment Strategy" to mean an elaborate and systematic plan of the activities involved 

in the software development process and distinguished between three possibilities i.e., 

Structured method strategy, Formal method strategy and Lean formal method strategy. 

It was noted that structured methods had the advantages of being graphical in nature 

but lacked the advantages of being a formal notation. Formal methods, on the other 

hand, were very precise but had accessibility problems. A lean formal method strategy 

was defined as a strategy where the Formal Methods involved are more accommoda­

tive to a wider spectrum of users. Central to this strategy is the provision of means to 

more comprehensible and user-friendly formal specifications and an associated devel­

opment technique within a single framework encompassing refinement7, abstraction8 

and animation of specifications9 . It is important to note that the lean approach does not 

compromise on formality; it maintains the preciseness involved in a formal approach 

but incorporates new techniques to bring the formal approach closer to the user. Such 

lean techniques could involve automation to perform several analyses on specifications 

like proving desired properties, the use of visual languages and so on to enable better 

accessibility. We then looked at what a specification is and why it is a crucial step in the 

software development process. We then examined specification methods for real-time 

safety-critical systems i.e., models based on logic, state machine models and process 

algebras. Analysis techniques like executing specifications, model-theoretic and proof­

theoretic reasoning were explained. We stated the rationale for the choice of Interval 

Temporal Logic (ITL) as the formalism for this work. We also stated the drawbacks 

of formal methods, in general, and how a lean approach attempts to overcome these 

7 see chapter 5 
8 see chapter 5 
9see section 4.3 
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hurdles to wider accessibility. 

In the following chapter, we shall explore the nature of visualisation and its role 

in this work in the context of increasing the uptake of ITL as a formal development 

technique. In this context, we shall also examine existing graphical notations in speci­

fications. 
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Chapter 3 

Visualisation, Visual Languages and 

their Design Rationale 

The main objective of this chapter is to see how visualisation helps in various domains 

in making information, languages and technology accessible. 

3.1 The "What and Whys" of Visualisation 

Visualisation provides a tool for achieving a clear mental image of the object under 

study. Whether it is an abstract mathematical transformation, census data or a nicely 

rendered Computer Aided Design part, graphics allows us to see the object of our in­

terest more clearly than we could by other techniques. Graphics provides tools for 

visualisation and hence understanding of objects of interest. 

Visualisation provides enhanced communication at the human/machine interface. 

The following examples illustrate the power of communication through visual images. 

3.1.1 Public Signs 

Figure 3.1 shows several iconic signs that are becoming fairly standardised in interna­

tional usage, along with their meaning in English. The signs convey information in a 

language-free mode. The eyes are instinctively drawn to the iconic symbols first and 
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only later begin to browse the natural language interpretation. The iconic symbols re­

quire low-level cognitive processing. Alphanumeric symbols, however, are compound 

symbols, made up of sentences and words comprising of stJings of more elementary 

symbols (letters) that require a higher level of processing to extract their meaning. 

In summary, it can be noted that intuitive iconic signs convey information to people 

across barriers such as language, culture and levels of literacy. 

Parking space reserved for 
the handicapped 

No smoking 

Rest rooms 

Pedestrain crossing 
ahead 

Men at work 

Figure 3.1: Iconic Public Signs 
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3.1.2 Operating Systems and Programming Environments 

This provides an example of the extremes possible on the textuaUvisual spectrum. Tra­

ditional command-line languages such as MS-DOS and Unix fall at the textual end 

whereas Windows/IconslMenus/Pointer (WIMP) interfaces, exemplified by the Macin­

tosh operating system and Microsoft Windows on MS-DOS systems, fall at the visual 

end. 

A main advantage of textual operating systems is the power and flexibility they pro­

vide in performing any conceivable task. However, the price one pays for this power is 

the effort required in mastering arcane commands usually over a period of one or more 

years. Alan Kay [93] and his colleagues at the Xerox Palo Alto Research Centre con­

ceived the basic windows/icons/menuslpointer concepts which form part of the WIMP 

paradigm. Its basic principles are : 

• Windows associated with several user tasks are visible simultaneously 

• Switching between task windows requires only a mouse button push 

• Information is not lost in the process of switching 

• Screen space can be used economically 

The operations of the WIMP operating systems may be summarised by the follow­

ing three simple rules : 

1. Single click to select an object 

2. Double click to open an object 

3. When in doubt, scan the menu for the appropriate function or help. 

The knowledge of how to interact with and operate such systems is an intrinsic 

part of the system itself. In conventional command-line operating systems, however, 

this knowledge is archived in huge reference manuals. A WIMP system user does not 
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have to painfully memorise or reference any manual, the system can provide such help 

on-line. People unfamiliar with computers can learn to operate and become produc­

tive with WIMP systems in a matter of hours or days compared to weeks or months 

of training required for the more conventional command-line systems. Experienced 

WIMP users often take great pride in exploiting the full capabilities of a totally unfa­

miliar software system without either memorising arcane mnemonics like "copy a: *. * 
c:" or opening a user manual. The combination of an intuitive, easy-to-visualise desk­

top environment has resulted in a dramatic decrease in training times and costs with 

a corresponding increase in productivity. These practical, "bottom-line" results have 

led to a rout of command-line operating systems as evident in the rush towards GUI 

environments like Microsoft Windows, X Windows and so on. 

One example is the GNOME which is an acronym for the GNU Network Object 

Model Environment. It is a user-friendly desktop environment that enables users to 

easily use and configure their computers. GNOME includes a panel (for starting appli­

cations and displaying status), a desktop (where data and applications can be placed), 

a set of standard desktop tools and applications, and a set of conventions that make it 

easy for applications to cooperate and be consistent with each other. Users of other op­

erating systems or environments should feel right at home using the powerful graphics­

driven environment GNOME provides. GNOME has a number of advantages for users. 

GNOME makes it easy to use and configure applications using a simple yet powerful 

graphical interface. GNOME is highly configurable, enabling the user to set the desk­

top the way he or she wants it to look and feel. More details on GNOME can be found 

in [59]. 

KDE is a powerful graphical desktop environment for Unix workstations. It com­

bines ease of use, contemporary functionality and outstanding graphical design with 

the technological superiority of the Unix operating system. More details are available 

at [94]. 

The Common Desktop Environment (CDE) is a commercial graphical user interface 

for Unix in its various flavours (AIX, Digital Unix, HPIUX, Solaris etc.). It is built on 
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existing technologies from several Unix vendors (HP, Sun, 1MB, Novell) and the Open 

Software Foundation Inc. (OSF). Based on Motif and XII, it is visually appealing 

and offers many productivity features. The CDE was created by this group of Unix 

vendors to consolidate all the Unix desktop interfaces and define a consistent user and 

development environment. Standardising the user interface enables general users and 

system managers to work more effectively on systems from all vendors that provide 

CDE. 

To summarise, it can be stated that the use of user-friendly graphical environments 

have facilitated the interaction with and use of computer systems. A wide spectrum of 

users can be allowed accessibility with the use of such powerful visual environments. 

Such convenience to the user, particularly in terms of hiding the user from knowing 

intricate details of textual commands, helps in wider acceptance of such systems. 

3.1.3 Visual Programming and Program Visualisation 

The success of the visual paradigm for operating systems has also encouraged its ap­

plication to programming languages. A special issue of IEEE Computer on "Visual­

isation in Computing" [147] details progress in this area. Visualisation with respect 

to programming languages and environments can be subdivided into two areas which 

are, Visual Programming and Program Visualisation. Myers [119] states that program 

visualisation is where a "program is specified in a conventional textual manner, and 

graphics are used to illustrate some aspect of the program or its runtime execution". 

He describes visual programming as the ability "to specify a program in a two or more 

dimensional fashion". Visual Basic is one example of a graphical programming lan­

guage. PictID [58] is an example of a graphical programming environment where icons 

are used for visual programming. The user can compose simple programs for numeri­

cal computations using the subsystems represented such as programming (a flowchart 

metaphor), erase (a hand holding an eraser), icon editor (a hand holding a pen) and a 

user library (a shelf of books). The user can program an icon, edit it, or run its asso-
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ciated program. The resultant program can be denoted by a new icon, created by the 

user with the icon editor, and stored in the library for future use. Further references to 

additional information on visual languages can be found in [31] and [139]. 

3.1.4 Computer Simulations 

Computer simulations are valuable as research tools for modelling physical system 

properties that are too difficult, dangerous or expensive to measure. They are also of 

tremendous value to engineers in modelling mechanical, thermal, and electromagnetic 

systems by the techniques of Finite Element Analysis (FEA). 

Once simulations are performed, good computer graphics and high speed 3-D pro­

cessing are a necessity for post-processing. The ability to read selected results from 

analysis output database files is essential. 

Another interesting area where visualisation plays a central role in engineering de­

sign is Computer Aided Design (CAD). CAD has been a major influential force in the 

development of sophisticated computer graphics techniques. CAD systems are now 

essential tools for the design of integrated circuits (ICs), manufactured parts, complex 

mechanical systems, and architectural plans. Advanced CAD systems permit the direct 

connection of the CAD design phase to the Computer Aided Manufacturing (CAM) 

phase. Design parameters from the CAD program are directly used for the numeric 

control of machine tools. This eliminates the stage of hardcopy blueprints and thereby 

contributes to an increase in productivity. 

Specification Diagrams 

Structured Analysis/Real Time (SAlRT), State Transition Diagrams, Statecharts, 

Statechart-like notations such as Modechart and Timed-Transition Models, Petri Nets, 

Graphical Interval Logic (GIL), Ladder Logic Diagrams and UML Diagrams are graph­

ical notations for the specification of systems. 
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3.1.5 Structured Analysis 

Before considering structured analysis, it is worth noting that "flowcharts" were one of 

the earliest methods of showing programs in picture form. Figure 3.2 shows some of 

the main symbols used in a flowchart and a simple example of a flowchart. A major crit­

icism of the flowchart is that it mainly describes a solution in terms of the operations of 

the underlying machine, rather than in terms of the problem and its structures. It closely 

resembles the final program code in structure and hence is not much more abstract than 

the implementation. It also does not support structured design methods and hence was 

gradually replaced by design methods involving structured methods. Structured Anal­

ysis is a general term used to describe systematic methods for the analysis and design 

of complex software systems. These methods can be contrasted with more ad hoc ap­

proaches, which are largely based on the designer's experience and intuition. There are 

many types of structured analysis. Most of these are semiformal, operational notations 

closely related to data flow diagrams (DFDs), a graphical notation used to describe 

the structure of an information system. SAIRT (Structured Analysis/Real Time) is an 

enhancement of structured analysis designed to model real-time systems. Major con­

structs of SAIRT are Transformation Schemata (TS), an extension oftraditional DFDs. 

SAIRT provides refinement mechanisms useful in building large, well-structured 

specifications. Teamwork and Software Through Pictures are among commercial tools 

compatible with SAIRT. Such tools however are mainly documentation tools and cannot 

support semantic analysis. However, they prove useful for many industrial projects. 

Recently, object-oriented versions of structured analysis methods have been pro­

posed. Some of these are Shlaer and Mellor [138], HOORA [45] and ROOM [137] and 

are meant for developing real-time systems. 

3.1.6 State Transition Diagrams 

State transition diagrams originate from the theory of automata. A finite automaton is 

a mathematical model of a system with discrete inputs and outputs. The system is in 
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some symbols 

process 

A simple example 

Increase n by 1 

No 

y := square(n) 

Figure 3.2: Flowchart 

only a finite number of states. Such a state contains enough information over previous 

input to determine the behaviour of the system on the next input. The control system 

for an elevator can be represented as a state transition diagram, for example, in which 

not all requests are remembered but only the current floor, the direction of movement 

i.e, up or down and the not yet handled requests. Human brains can also be similarly 

described. However, these systems have such a huge number of states that treating them 

as finite state systems will serve no purpose. An example state transition diagram for 

an automaton is given in Figure 3.3. The automaton shown is in state qO to start with 
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and then transitions to other states qt, q2 and q3 based on the input it receives as shown. 

The state with the double circle i.e., state qO is also the final state for this automaton. 

start 1 

1 

1 

1 

Figure 3.3: An Example State Transition Diagram for an Automaton 

3.1.7 Statecharts 

Statecharts [68], a graphical language for specifying real-time systems, exploits the 

naturalness and simplicity of the classical finite state machine. This notation also over­

comes, to a large extent, the state machine's major shortcomings; the most important 

is the combinatorial explosion in the number of states. A system which combines two 

machines, one with h states and another with k states, has a state space of h x k states, 

that is, the Cartesian product of the original ones. AND and OR composition are two 

constructs used in statecharts to overcome this problem. The AND composition is de­

scribed below. 

The AND of two component machines fonnalises the composition of two concur­

rent subsystems into a single aggregate machine. Let us consider a railroad crossing 

example to illustrate the AND composition. Let Out, P and I be the states representing 

the location of the train with respect to the crossing i.e., the location of the gate, where 

the state Out is to mean that the train is far away from the crossing, state P is to mean 

that the train is near the crossing and state I is to mean that the train is in the crossing. 
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Let Up and Down represent the states for the gate at the crossing. 

The set of states in the composition of the two machines contains all possible com­

binations of the individual states, i.e., < Out, Down>, < Out, Up>, < P, Down>, < 

P, Up >, < [,Down> and < I, Up >. The transitions between states are combined sim­

ilarly : the set of possible transitions is the union of the original sets. In statecharts, the 

concurrent composition of the component machines is left implicit but formally defined 

through the AND construct, which composes the two components into a single, larger 

machine as shown below. Some state transitions may not be possible in the larger state 

TRAIN GATE 

OUT 
p 

MOVEUP(NOT I) 

Figure 3.4: Statecharts Specification showing AND-composition of Train and Gate 

machine because when the system is in a state in one of the smaller machines, it cannot 

enter a specified state in the second machine. One way to model the coordination of the 

two smaller machines is to label a transition with a formula. The transition can only be 

taken if the formula is true. For example, in Figure 3.4, attaching the formula "not in I" 

to the transition MoveUp specifies that the gate cannot be raised if a train remains in I. 

Figure 3.4 above illustrates some important limitations of the classical state machine 

model for describing real-time systems: 

• Time-dependent behaviour, e.g., "The gate must be down within 10 seconds after 

a train enters P", cannot be expressed. 
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• The figure captures only a small fraction of the required systems behaviour. For 

example, labelling MoveUp as described above prevents this transition when a 

train is in I but does not guarantee that the gate will be down whenever a train 

is in I because the gate could move up and remain there. More information is 

needed to describe the system in detail, such as when the gate must start moving 

down once a train has entered R. 

• If, in a generalisation of the system, several trains can be in R simultaneously, 

then, in the classical model, each train must be described separately. As the 

number of trains grows, the model becomes unwieldy. Also, the model cannot 

handle an unbounded number of trains. 

Statecharts have addressed these problems, at least in part. First, two simple classes 

of time-dependent behaviour can be expressed in Statecharts: a timeout event, an event 

scheduled to occur a fixed number of time units after another event, and a scheduled 

action, an operation (e.g., fire a missile) scheduled to occur a fixed number of time units 

after the current time. In addition, State charts allows parameterised states (e.g., "the ith 

train enters R") and the attachment of generalised formulas to transitions. 

The commercial version of Statecharts, called STATEMATE [81, 68, 69], offers 

these features as well as others. STATEMATE has had considerable success in indus­

try because it has a user-friendly interface that complements the intuitive appeal of 

the classical state machine formalism. Moreover, STATEMATE offers two forms of 

analysis: 

• The user can run STATEMATE's simulator to analyse the behaviour of a "system 

model" in scenarios of interest. 

• STATEMATE's Dynamic Tests tool can do reachability analysis. From the State­

charts specification, the tool builds a reachability graph containing possible states 

the system can be in. Using this graph, the tool can check for deadlock, nonde­

terminism and race conditions. It can also search for a reachable state in which a 
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condition is true. 

Like semiformal approaches, Statecharts provides documentation support but, un­

like them, Statecharts also supports some semantic analysis. However, compared to 

some of the newer formal methods (e.g., model checking techniques), Statecharts' 

analysis capability, which is confined to using reachability analysis to check a small 

set of properties, is quite limited. Moreover, the ability to specify and reason about 

a system's timing behaviour using Statecharts is also quite limited. Quite recently, a 

model-checker for Statecharts has been developed [39]. 

We note again that Statecharts overcomes the limitations of state transition diagrams 

in an intuitive way with depth represented by the use of substates i.e., having a nesting 

of states, orthogonality represented by the partitioning feature using a dotted line and 

the use of broadcast communication. 

3.1.8 Statechart-Iike Notations 

Modechart [89] and Timed Transition Model [121, 122] borrow heavily from Stat­

echarts but are more expressive than Statecharts for describing and reasoning about 

timing properties . 

• Modechart 

Important constructs in Modechart include modes, which correspond to states in 

Statecharts, and actions, which assign values to data variables. A third Modechart 

construct is the event. Different types of events are external events, which rep­

resent changes in the system environment (e.g., the operator pushing the START 

button); mode entry and mode exit events, which mark entry into or exit from a 

mode; and start and stop events, which mark the beginning and end of an action. 

Deadlines and delays, upper and lower bounds on the time interval from mode 

entry to mode exit, allow the specification of the time that a system can remain 

in a mode. Modechart uses a discrete time model ; so, its delays and deadlines 
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are represented as non-negative integers. In Modechart, events are instantaneous, 

whereas actions require at least one time unit to complete. 

In Modecharts, modes may be serial or parallel. Modechart's notion of serial and 

parallel modes corresponds to OR and AND composition in Statecharts. If M is 

a serial mode with child modes M I and M2, then at a given time the system is in 

exactly one of MI and M2. IfM is a parallel mode with child modes MI and M2, 

then when the system is in M, it is simultaneously in both modes MI and M2. 

Modechart's semantics are defined in terms of the real-time logic RTL [89]. 

• Timed Transition Models 

The activity variables (or activities) in a Timed Transition Model (TTM) specifi­

cation correspond to states in Statecharts. A group of subactivities may be com­

posed into an activity using the Statecharts notions of AND and OR composition. 

Other major components of a TTM specification are events and integer variables. 

TIM supports both the usual relational operators and integer arithmetic in con­

trast to Modechart which does not support arithmetic. As in Modechart, time in 

the TTM framework is discrete, and timing constraints are represented as lower 

and upper bounds on transitions between activities. 

3.1.9 Stateftow Diagrams 

Stateflow diagrams, like statecharts, also use a variant of the finite state machine [68]. 

A stateflow diagram is a graphical representation of a finite state machine where states 

and transitions form the basic building blocks of the system. Apart from these, a state­

flow diagram also enables the representation of hierarchy, parallelism and history. One 

important feature of a state flow diagram is that its execution is dependent on the geom­

etry of the diagram. For example, if there are conflicts to resolve regarding transitions, 

they are resolved based on the geometry of the outgoing transitions as depicted in an 

example in Figure 3.5. In other words, non-determinism is resolved by resorting to 

geometrical considerations. This resolution based on geometry applies to transitions 
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52 

51 s3 
[cl=-S] 

s4 

The three transitions are evaluated In a clockwise progression 
starting at the upper, left comer of state 51. 

If the condition "c1=I" holds, then the transition to slls taken. 
Only If that condition does not hold Is the condition on the the transition 
to s3 checked and so on. 

Figure 3.5: An Example of Resolving Non-determinism in Stateftow 

which are equivalent with respect to their labels i.e., what the transitions are annotated 

with among the four following possibilities given in the order of priority. 

1. Events and Conditions 

2. Events 

3. Conditions 

4. No label 

In Figure 3.5, the transitions were all equivalent as they all had only conditions. The 

non-determinism among those equivalent transitions was resolved by geometry. In 

stateftow, parallel states are depicted using rounded boxes unlike STATEMATE. For 

additional details regarding stateftow, the reader is referred to [143]. 
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3.1.10 Petri Nets 

A Petri Net [125] consists of a set of places, usually denoted as circles, and a set of 

transitions, usually denoted as bars. Arrows connect places to transitions and transitions 

to places. A place is called an input of a transition (a transition is called an input of a 

place) if there is an arrow going from the place to the transition (from the transition to 

the place). A similar definition holds for output places and transitions. The Figure 3.6 

illustrates a simple Petri net. Petri nets are an operational formalism; they support the 

r------------------, --------------------, 
I I 

-------------------~ ---------------------
Figure 3.6: Example Petri Net 

notion of a state and its evolution. The state of a Petri net is represented graphically as 

a marking of its places with an assignment of a nonnegative number of tokens to each 

place. The evolution of a Petri net occurs according to the following rules : 
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• A transition is enabled in a given marking if all of its input places are marked. 

i.e., each has at least one token. 

• An enabled transition may fire. This means that one token is removed from each 

input place of the transition and one token is put into each output place thereof. 

Thus the firing of a transition produces a new marking. 

Some of the problems that need to be addressed before Petri nets can be used ef­

fectively in designing real-time systems are given below followed by a summary of 

approaches that have been proposed over the years to solve these problems. 

• Because basic Petri nets are designed to describe concurrency rather than the 

passage of time, they cannot express timeouts and durations. 

• Petri nets lack abstraction mechanisms and thus become large and unmanageable 

when one moves from small examples to practical applications. 

• Petri nets only model a systems's control features, not its data dependencies. Be­

cause tokens are "anonymous". dependencies between control and data cannot be 

modelled. For example. a rule, such as "uncorrupted message must be forwarded 

through channell. whereas damaged ones must be sent back through channel 2", 

cannot be described formally. 

A number of approaches. some with tool support. have been proposed to solve these 

problems. Some of them are : 

• Time has been added to Petri nets in many different ways. One of the most 

general extensions associates a minimum and a maximum firing time with each 

transition [109]. Once enabled. a transition cannot fire before the minimum time 

and must fire by the maximum time. unless previously disabled by the firing of a 

conflicting transition. 
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• Several abstraction and modularisation mechanisms, essential in modelling real­

world systems, have been proposed to support the construction of hierarchical, 

well-structured Petri nets. Recently, such mechanisms have exploited the object­

oriented paradigm. 

• Tokens may have associated values: the firing of transitions can depend on these 

values. 

Many tools are available to support the development of real-time systems using 

Petri nets, including editors, tools for analysing system properties, and, often, tools that 

help drive the system implementation through the lower level phases of the life cycle. 

Among the available tools are Artifex, Cabernet and DesignlCPN. Some have already 

been applied successfully in industrial projects. For instance, Artifex has been used for 

about a decade by several Italian and other European companies, largely in automobile 

manufacturing. 

The significant properties of Petri nets are either intractable or undecidable and 

this is an unfortunate difficulty in modelling with Petri nets. Therefore, simulation is 

used, in most cases, for analysing properties of interest. An important exception is 

the Berthomieu-Diaz algorithm [15] for analysing a timed Petri net for reachability. 

The reachability problem for Petri nets is to determine whether a marking m
l 

can be 

reached from another marking m through a suitable firing sequence. In some sense, this 

is the fundamental problem for Petri nets, since many other problems can be reduced 

to it. Under some reasonably general conditions, this analysis can be completed in 

polynomial time. 

3.1.11 GIL 

Graphical Interval Logic (GIL) is a visual temporal logic in which formulas resemble 

the informal timing diagrams used by system designers. It has a formal model-theoretic 

semantics and can express all properties that can be expressed using linear temporal 
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logic with the until operator [41] . It is a linear-time temporal logic that models a com­

putation as a linear sequence of states. The logic allows the user to construct arbitrary 

intervals of time and to express properties that apply to those intervals. It helps to visu­

alise the relative temporal ordering of states in the system with the horizontal dimension 

used to indicate the passage of time. The interval operator limits the scope of properties 

to the interval on which they must hold. The vertical dimension shows the composition 

of formulas using logical connectives and interval operators. It allows intervals to be 

nested arbitrarily deeply to express complex temporal relations . 

The syntax and semantics of GIL is explained below with some example formulas 

used to specify the operation of a simple system. The system consists of two concurrent 

processes that requests the exclusive use of a shared resource. In Figure 3.7, sigl/sig 

2 is used to indicate that process 1/process 2 signals for exclusive access to the shared 

[ ) 
fig. (a) 

-.sigl 
-.sig2 

[ ) fig. (b) 
turnl 

-.turn2 

[ fig. (c) 

• ~I 
turn 1 
sigl 

~ ·1 

[ 
-.sigl 

<> ) 
csl 

Figure 3.7: GIL Specifications 
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resource. The formula cs l/cs2 denotes that process l/process 2 has exclusive permis­

sion to use the resource, i.e., it may enter the critical section. The formula tum lIturn 2 

denotes that process l/process 2 has higher priority than process 2/process 1. 

The Figure 3.7(a) asserts that sigl and sig2 are false at the beginning of the opera­

tion. The interval symbol here denotes the entire computation and the formula placed 

left-justified below it is deemed to hold at the first state of the interval. The formula is 

formed by the vertical concatenation of two other formulas which indicates their logical 

conjunction. 

The Figure 3.7(b) illustrates how a property can be asserted to be an invariant over 

an interval. The formula is placed below the interval and indented to the right to indicate 

that it holds at every state within the interval. Here the formula states that if process I 

has priority, then process 2 does not, and vice versa. 

The Figure 3.7(c) expresses the property that, if the process that currently has higher 

priority requests the resource, it must be granted permission to access the resource 

before it cancels the request. 

3.1.12 Ladder Logic Diagrams 

Ladder Logic Diagrams are used to describe the logic of electronic control systems. 

They are the primary programming language for programmable logic controllers (PLCs). 

Ladder logic programming is a graphical representation of the program designed to 

look like relay logic. This convention goes back to the early days of PLCs when elec­

tricians and technicians were trained in relay logic and expected to troubleshoot these 

new devices as well. 

The Ladder logic consists of expressions R that are defined inductively as follows: 

A set of variables, with a typical element x, is assumed. 

-[x]- represents the variable x. 

-[/x]- represents -,x. 

R-[x]- represents the conjunction R II X. 
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R-[/x]- represents the conjunction R /\ -'x. 

RI -+- R2 - represents the disjunction RI V R2. 

Since each formula is equivalent to a formula in disjunctive normal form, it is easy 

to see that each formula can be described by means of an expression R. 

A ladder logic diagram consists of a vertical list of assignments of the form 

RI : Xl R2 : X2 : : Rn: Xn meaning that the variable Xi, called a coil, is assigned the 

truth value of Ri for i = 1, .. ,n. Each expression Ri : Xi is called a rung. 

A ladder logic diagram consists of 5 types of variables : 

• Input Variable: Its value is determined by the environment (Le., the logistic layer 

and the infrastructure). 

• Output variable : Its value is computed by means of the ladder logic diagram, 

and passed on to the environment. 

• Latch: 

Its value is computed by means of the ladder logic diagram, and not passed on to 

the environment, but only used in the computation of values of other variables. 

• Timer: 

This variable is either on or off, which is determined by the value of its trigger. 

If it is off, then its value is O. If it is on, then its value is increased by one with 

every cycle, until it reaches a preset duration, after which its trigger is switched 

off (Le., is assigned the value 0). 

• Trigger: 

This indicates whether a certain timer operation is on or off. 

Input variables, output variables, latches and triggers have Boolean values (ie., 0 

or 1), while the values of timers are natural numbers. Each output variable, latch or 

trigger X is the coil of exactly one assignment R : X in the ladder logic diagram. Input 
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variables and timers are not allowed as coils. Only input variables, latches and triggers 

are allowed to occur in the left-hand side of rungs. 

[51] reports work related to the conversion of a ladder logic diagram into a Boolean 

formula, so that the validity of these dependencies in the control tables can be verified 

using a theorem prover. 

3.1.13 Z Schema 

Z [86] is a typed formal specification language based on set theory and first order predi­

cate logic. It has been developed at Oxford University since the late 1970's by members 

of the Programming Research Group (PRG). The problems with large specifications 

using set theory and logic is that specifications become unreadable and unmanageable. 

Therefore, a schema notation was introduced to aid the structuring of specifications in 

Z. This provides the framework for textual combinations of sections of mathematics 

known as schema using schema operators. 

A Z schema 1 is presented graphically to highlight its contents within a specification. 

It normally has two areas: a signature part and a predicate part as shown in Figure 3.8. 

The signature part contains a declaration of the variables to be used in the schema. The 

predicate part shows relationships between the variables declared in the signature. The 

signature part is above the middle dividing line. The predicate part may be omitted in 

which case there will be no middle line. 

The example in Figure 3.8 denotes a Z schema named "S" which introduces a vari­

able of type "N' that can only take values satisfying the predicate "P". 

3.1.14 Specification Diagrams in UML 

The Unified Modelling Language (UML) [140] is a language that unifies the industry's 

best engineering practices for modelling systems. It is a language, not simply a nota­

tion, for capturing knowledge about a subject and expressing knowledge regarding the 

1 "Schema" is not in the plural sense of a scheme; it is called a "schema" by convention 
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~----------------- Schema name 

Signature part 

Predicate part 

ZSchema 

S 

x: A 

P 

An Example 

Figure 3.8: A Z Schema 

subject for the purpose of communication. It is used for specifying, visualising, con­

structing, and documenting systems. Figure 3.9 shows the scope of UML. Its goals are 

to :-

• Be a ready-to-use expressive visual modelling language that is simple and exten­

sible. 

• Have extensibility and specialisation mechanisms for extending, rather than mod­

ifying, core concepts. 

• Allow adding new concepts and notations beyond the core. 

• Allow variant interpretations of existing concepts when there is no clear consen­

sus. 
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The UML Scope 

}-------i _ The UML Goa .. 

VIouaUze Dowment 

Figure 3.9: The Scope of UML 

• Allow specialisation of concepts, notations, and constraints for particular do-

mains. 

• Be implementation independent. 

• Be process independent. 

• Encourage the growth of the object-oriented tools market. 

• Support higher-level concepts (collaborations, frameworks, patterns and compo­

nents). 

• Address recurring architectural complexity problems (physical distribution and 

distributed systems, concurrency and concurrent systems, replication, security, 

load balancing, and fault tolerance) using component technology, visual pro­

gramming, patterns, and frameworks. 

• Be scalable. 

• Be widely acceptable (general purpose and powerful) and usable (simple, widely 

accepted, and evolutionary). 

• Integrate the best engineering practices. 
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The UML defines nine types of diagrams which are class, object, use case, se­

quence, collaboration, statechart, activity, component and deployment diagrams. 

All of these diagrams are based on the principle that concepts are depicted as sym­

bols and relationships among concepts are depicted as paths (lines) connecting symbols, 

where both of these types of elements may be named. 

Additional information on these diagrams can be obtained in [140]. 

In summary, one of the important reasons for UML's widespread acceptance is that 

it has placed a lot of emphasis on diagrams for modelling systems. 

3.2 Important Design Features for Visual Representations 

Based on a study of visual representations in various areas, the following were identi­

fied as key features that should be taken into account while designing a visual language. 

• Simplicity 

This is one of the most important features of a good visual notation. The simpler 

the diagram, the easier and quicker it is to extract the meaning from it. 

• Intuitiveness 

The diagram should draw the attention of the reader quickly to the suggested 

meaning. 

• Unambiguity 

The diagram should not be causing any confusion in interpretation. 

• Readability 

The diagram should have text put at suitable locations to enhance readability 

without overcrowding the diagram. 

• Communicativeness 
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It should be possible to communicate with other people using the diagram. In 

other words, it should be possible to suitably abstract the diagram, when nec­

essary, and see the new diagram clearly. It should be possible to navigate the 

diagram contents with ease. 

• Manipulatability 

It should be possible to manipulate the diagram to suitable equivalent forms. The 

meaning of any manipulation should be clear. 

• Composability 

It should be possible to suitably compose two diagrams. 

• Customisability 

It should be possible to customise the basic notation in some restricted ways for 

which guidelines should be provided. 

• Realisability 

It should be possible to realize the visual language conveniently in a suitable tool. 

• Scalability 

It should be possible to deal with huge descriptions nearly as conveniently as 

smaller ones. 

• Expressivity 

It should have enough expressivity in terms of available language constructs so 

that expressing anything in context can be done directly rather than by round­

about methods. 

3.3 Chapter Summary 

We have seen how visualisation helps in various domains in fostering increased accessi­

bility of information, languages and technology through various means including better 
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communication and ease of use. We noted that the use of a user-friendly graphical envi­

ronment facilitated the interaction with and use of computer systems. A wide spectrum 

of users can be allowed accessibility with the use of such powerful visual environments. 

Such convenience to the user, particularly in terms of hiding the user from knowing in­

tricate details of textual commands, helps in wider acceptance of such systems. We saw 

how computer simulations are valuable as research tools for modelling physical system 

properties that are too difficult, dangerous or expensive to measure. We saw that the 

success of the visual paradigm for operating systems also encouraged its application 

to programming languages. PictID [58] is an example of a graphical programming 

environment where icons are used for visual programming. We also examined spec­

ification diagrams like Structured Analysis/Real Time (SAlRT), State Transition Dia­

grams, Statecharts, Statechart-like notations such as Modechart and Timed-Transition 

Models, Petri Nets, Graphical Interval Logic (GIL), Ladder Logic Diagrams and UML 

Diagrams. We explained in section 3.2 the important design features to be taken into 

account while designing a visual language. The application of visualisation aids to an 

ITL-based formal method will be examined. Before that, the following chapter intro­

duces ITL in detail and highlights some of the difficulties that have to be tackled to 

increase its uptake by a wider spectrum of users. Having done that, it details the design 

of a visual notation for ITL and gives examples. 
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VisITL 

The main objective of this chapter is to design a visual notation for the chosen logic­

based fonnalism i.e., ITL [116, 29], based on the design principles identified in the 

previous chapter. Therefore, this chapter begins with the syntax and semantics of ITL 

followed by some examples. The current limitations of ITL are also discussed. In 

a following section, the executable subset of ITL i.e, Tempura, is discussed. After 

providing this background, a visual notation for ITL is designed and discussed with 

some examples. 

4.1 Interval Temporal Logic (ITL) 

An interval <1 is defined as a (in)finite sequence of states <10, <11, <12, .. where <1j is a 

mapping from the set of variables 'Var' to the set of values 'Val'. The length of (J is 

one less than the number of states in the interval. 

In ITL, there are the conventional logical operators such as 1\ and -, and the pred­

icates. There are temporal operators like 0 and 0 extending the conventional logic to 

temporal reasoning. Additionally, in ITL, there are temporal operators like ";", "*" and 

"skip". 
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4.2 Syntax of the Logic 

The syntax of ITL is defined in fig.4.1 where J-l is an integer value, a is a static variable 

(doesn't change within an interval), A is a state variable (can change within an interval), 

v is a static or state variable, g is a function symbol and p is a predicate symbol. 

I Expressions 

I Formulae 

Figure 4.1: Syntax of ITL 

Details of the syntax are explained with some examples below and in section 4.2.2. 

1. Syntax of expressions 

Expressions are built inductively as follows: 

• Constants: J-l 

Constants are denoted by letters of the form J-l. 

Examples: J.lO, J-ll etc. to denote values like 0, 3, and so on. 

• Individual variables: A, B, C, .. ,a, b, c, .. , v, .. 

By convention, capital letters are used to denote state variables which are 

variables whose values can change within an interval and small letters to de­

note static variables which are variables whose values do not change within 

an interval. Letters of the form v are used to denote a variable which can 

either be a static or a state variable. 

• Functions: g(eo,eI,e2, .. ,ek) where k ~ ° and eO,eI,e2, .. ,ek are expres­

sions. + and mod are among common functions used. Constants (such as 0, 

1 etc.) are treated as zero-place functions. 

Examples include: A + B, a - b, A + a, v mod C and so on. 

• la: f : choose a value of a such that f holds. If there is no such a, then la: f 

takes an arbitrary value from a's range. 
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An example of the usage of such an expression is given below : 

o exp = ta: 0 (exp = a) 

Some examples of syntactically legal expressions are given below: 

.1+(OJ)+2 

This expression adds the value of I in the current state, the value of J in the 

next state and the constant "2". 

• I + (OJ) - 00 (I) 
This expression adds the value of I in the current state to the value of J in 

the next state and subtracts the value of I in the next to next state from the 

result. 

2. Syntax of fonnulae 

Formulas are built inductively as follows: 

• Predicates: p(eo,el,e2, .. ,ek), where k ~ 0 and eo,el,e2, .. ,ek are expres­

sions. For example, ~ is a predicate. 

Examples include: eo ~ e7, e3 < eo and so on. 

• Logical connectives: -,f and II I\h, where f,fl and h are formulas. 

• Universal Quantifier: 'Vv. f 

• skip means a unit interval i.e., an interval of length 1 

• chop: lI;h holds if the interval can be decomposed ("chopped") into a 

prefix and suffix interval, such that II holds over the prefix and h over the 

suffix, or if the interval is infinite and fl holds for that interval. 

• chop-star: f* holds if the interval is decomposable into a finite number of 

intervals such that for each of them f holds, or if the interval is infinite and 

can be decomposed into an infinite number of finite intervals for which f 

holds. 

56 



Ph.D. Thesis 4.2 Syntax of the Logic 

Some examples of syntactically legal fonnulas are given below: 

• (J=2)1\0(K=4) 

This fonnula states that the value of J is "2" in the current states and the 

value of K is "4" in the next state . 

• 0(0[1 = 2] 1\ 0 0 [J = 2]) 

This formula states what fonnula will be true in the next state ; from the 

next state, 1 would always be equal to "2" and the value of J in the next to 

next state would be "2". 

Apart from the basic syntax, additional operators are defined in terms of the basic 

ones as abbreviations. Frequently used abbreviations are listed in tables 4.1-4.4. 

Table 4.1: Frequently used Non-temporal Abbreviations 

true :;::: 0 = 0 true value 
lalse :;::: ...,true false value 

II v 12 :;::: ""(""/1 1\ ""12) or 
II :::> h :;::: ...,/1 V 12 implies 

/I == 12 :;::: (fl :J h) /I. (12 ::> II) equivalent 
3v • I :;::: ...,Vv • ""1 exists 

Table 4.2: Frequently used Temporal Abbreviations 

01 :;::: skip ;f next 
more :;::: Otrue non-empty interval 
empty::: ...,more empty interval 

inl ::: true ;Ialse infinite interval 
finite ::: ...,inl finite interval 

01 ::: finite; I sometimes 
of ::: ...,O...,f always 
®f ::: ...,O...,f weak next 

~ I ::: finite; I; true some subinterval 
r!JI :;::: ...,( ~""/) all subintervals 
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Table 4.3: Frequently used Concrete Abbreviations 

if 10 then II ~ if 10 then II else empty 

fin I ~ o(empty :) I) 
halt I ~ o( empty == I) 
keep I ~ (!](skip :) I) 
while 10 do II ~ (fa ,,/!)* "fin -'10 
repeat 10 until /! ~ 10; (while -'11 do 10) 

if then 

final state 

tenninate interval when 

all unit subintervals 

while loop 

repeat loop 

Table 4.4: Frequently used Abbreviations related to Expressions 

Oexp ~ Ia:O(exp = a) 

finexp ~la:fin(exp=a) 

A := exp ~ OA = exp 
eXPI +- exp2 ~ finite" (fin eXPI) = exp2 
eXPI gets exp2 ~ keep (exPI +- exp2) 

next value 

end value 

assignment 

temporal assignment 

gets 

stable exp 
intlen (exp) 

~ exp gets exp stability 

~ 31 • (I = 0) " (I gets I + I) "I +- exp interval length 

4.2.1 Model 

A model is a triple (D, 1:, M) containing a data domain D, a set of states 1: and an 

interpretation M giving meaning to every function and predicate symbol. For the dis­

cussion here, let the data domain D be the set of integers. A state is a function mapping 

variables to values in D. Let 1: be the set of all such functions. For a state s in 1:, let seA] 

denote A's value. Each k-place function symbol g has an interpretation M[g] which is 

a function mapping k elements in D to a single value which is written mathematically 

as : M[g] E (IJk --t D). Interpretations of predicate symbols map to truth values: 

M[f] E (IJk --t {true, false}). It is assumed that M gives standard interpretations to 

operators such as + and <. The semantics given here keep the interpretations of func­

tions and predicate symbols independent of intervals. They can however be generalised 

to allow for functions and predicates that take into account the dynamic behaviour of 

parameters. Using the states in 1:, intervals can be constructed from 1:+. the set of all 

non-empty, (in)finite sequences of states. If s, t and u are states in 1:, then the following 

are possible intervals: < s >, < sttssust >, < uuu > . An interval should contain at 

least one state. The following introduces a basic notation for manipulating intervals. 
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Let I denote the set of all intervals. For the sake of discussion here, let I be the set 1:+. 

For an interval C'J in I, let IC'JI denote the length of C'J. By convention, an interval's length 

is one less than the number of states. The individual states of an interval are denoted 

by C'Jo, C'Jl , ..... ,C'Jlal. For example, if the variable A has the value 5 in C'J's final state, then, 

the following is true : C'Jlal = 5. In the above model, even though time is viewed as 

being discrete, it provides a sound basis for reasoning about many interesting dynamic 

phenomena involving time-dependent and functional behaviour. A discrete time view 

of the world corresponds, often, to our mental model of digital systems and computer 

programs. In any case, the granularity of time can be made arbitrarily fine. 

The following is a small example regarding the model explained above. Let the data 

domain D be the set of integers. Let us consider an interval 1: consisting of states C'Jo, 

C'Jl, and C'J2. Let a be some static variable i.e, variable whose value cannot change within 

an interval. Let A be some state variable. Then, we give the following interpretation: 

C'Jo(A) = Valueo, 

C'Jl (A) = Valuel and 

C'J2(A) = Value2 

where Valueo, Valuel and Valuel are the values in the data domain D for the state 

variable A. For the static variable a, since its value in the data domain has to be the 

same throughout the interval, we give the following interpretation: 

O'o(a) = vala, 

O'l(a) = vala and 

0'2(a) = vala 

where vala is the value in the data domain D for the static variable a. In other words, 

the value of a is the same throughout the interval 1:. 

4.2.2 Basic ITL Terminology 

The basic terminology of ITL is introduced with the help of examples. 
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Operators 

chop: The operator ";" is called chop. A formula 11;12 is true on an interval a iffl 

there is at least one way to split a into two subintervals such that the formula II is true 

on the left subinterval and the formula 12 is true on the right subinterval. That is, 

Mo[/I;f2] = true iff for some i:::; lal, M<oo, ... ,o;>[Jd = true and M<o;, ... ,Olal> [12] = true. 

It can be noted here that aj is a common state for the left and right subintervals. 

In case the interval is infinite, then, it has to be true on a. 

empty and more: The formula empty is true on an interval iff the interval has length 

zero. The formula more is just the opposite being true on an interval iff the interval has 

nonzero length. 

next and weak next: In order for the construct next viz., 0 to be true on an inter­

val a, the length of a must be at least one. Therefore, this operator is referred to as 

strong next. The related construct weak next viz., (!)is true on an interval a if either 

a has length zero or the subformula w is true on < al· .alol >. So, we can express 

the weak next in terms of strong next as : 81 - empty V 01 where (next w) means 

(strong next w), by default. This way, the weak next provides a concise and natural 

way to express a construct as a conjunction of its immediate effect and future effect. 

The operator 0 The construct 0 I is true on an interval a if there is some suffix 

subinterval on which the formula I is true : 

Mo[O/] = true iff for some i:::; lal,M<o;, .. ,o,a,>[/] = true and i f. 00. 

In other words. it means that I is true sometime in the interval. It can be defined in 

terms of the chop operator as : 01 -de f f init e ; f 

The operators halt and lin This operator can be used. in the form halt I. to specify 

that a formula f becomes true only at the end of an interval. 

1 iff is the usual abbreviation for "if and only if' used in mathematics 
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halt f = O(j = empty). 

For example, halt (I > to) is true on cr iff the value of the variable I exceeds 10 in 

exactly the last state of cr. 

The formula fin f is true on an interval cr iff the formula f is itself true on the final 

subinterval (crlal) i.e., the last state of cr. 

fin f -de! o (empty :::> f)· 

Temporal equality The construct el ~ e2 is called temporal equality. It is true iff the 

expressions el and e2 are always equal : 

el ~ e2 =de! o(el = e2). 

Length The formula len(e) is true on an interval having length exactly e. 

Ma[/en(e)] = true iff Ma[e] = Icrl· 

The length of cr can also be denoted as Icrl. 

Existential quantifier: Let us consider the states viz., s, t and u, and the values of 

variables 'M' and 'N' in those states as in table 4.5. 

M N 
s 2 4 
t 0 4 
u 2 3 

Table 4.5: Example for Existential Quantification 

Now, the formula (3/) • O(N = 2 * J) is intuitively true on any interval on which 

we can construct an 'I' such that 'N' always equals twice of 'I' and the length of the 

interval is the same as that to which the formula corresponds which is 2 here (because 

there are 3 states under consideration here). In other words, 'N' should always be even 

on such an interval of length 2. The interval < ttt > satisfies the formula. So does 

< sss >. There are many such intervals which satisfy the formula. < U >, < stut > and 

< uuu > are some intervals that do not satisfy the formula. 
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Bounded universaVexistential quantifier Formulas of the following form are re­

ferred to as bounded universal quantification: 

'Vv ::; e. f, where v is a static variable, e is an expression and f is a formula. 

'Vv::; e.f -de! 'VV. v::; e :> f· 

Formulas of the following form are referred to as bounded existential quantification: 

:Iv ::; e. f, where v is a static variable, e is an expression and f is a formula. 

:Iv::; e. f =de! :Iv. v::; e 1\ f· 

Of course, the ranges in the above formulas could be v < e, el < v::; e2 etc .. 

assignment and gets: An assignment simply gives the value of the expression in the 

next state. For example, el := e2 means that the value of el in the next state will be e2. 

To say that one expression, say el. equals another expression, say e2 with a one-unit 

time delay, the gets construct is used to say, el gets e2. So, in the whole of the interval. 

at any state, if el is true, then e2 will be true in the next state, if there is one. 

Temporal assignment The formula e2 f- el is true for an interval if the initial value 

of the expression el equals the final value of the expression e2· 

We define this as follows : 

e2 f- el -de! 3a: [(a = el) I\fin(e2 = a) 1\ finite] 

4.2.3 Interpretation of Expressions and Formulas 

The interpretation M can be extended, as follows, to give meaning to expressions and 

formulas on intervals. The constructs M<r[e] and M<r[fl are defined to be equal to the 

value, in D, ofthe expression e and the formula f, respectively, on the interval o. 

Let X be a choice function which maps any non-empty set to some element in the 
I • 

set. We write 0 "'v 0 if the intervals 0 and 0 are identical with the possible exception 

of their mappings for the variable v. 

The following list defines some basic operators . 

• M<r[v] = 00 [v] • where v is a variable 
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This means that a variable's value on an interval is its value in the interval's initial 

state. 

• Ma[g(el' .. , ek)] = M[g](Ma[etJ, .. , Ma[ek)). 

• Ma[la:f] = { 
X(u) ifut-O 

X(Vala) otherwise 

where u = {cr' (a) I cr "'a cr' /\ Ma' [J] = true}. 

• Ma[...,f] = true iff Ma[f] = false. 

• Ma[J1 /\12] = true iff Ma[JI] = true and Ma[J2] = true. 

• Ma['v'v. f) = true iff for all cr' s.t. cr "'v cr', Ma' [f) =true. 

• Ma[skip] = true iff Icrl = 1. 

• Ma[Jl;h] = true iff 

(exists a k, s.t. Mao, .. ,ak[fd = true) and 

((cr is infinite and Mak,..[h] = true) or 

(cr is finite and k :S Icrl and Mak. .. ,alal [h) = true») 

or (cr is infinite and Ma[Jd)· 

• MaLt*] = true iff 

if cr is infinite then 

(exist 10, ... , In s.t. 10 = 0 and 

Ma/n, .. Lt] = true and 

for all 0 :S ; < n, I; < 1;+1 and Ma/i, .. ,a/i+1 
[f] = true) 

or 

(exist an infinite number of I; s.t. 10 = 0 and 

for all 0 :S i, I; < I;+! and Ma/i, .. ,a/i+l [J] = true) 

else 
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(exist 10, ... ,In s.t. 10 = 0 and In = 10'1 and 

for all 0 :::; i < n, Ii < [HI and MG1j' .. ,G1HI [/] = true). 

4.2.4 Validity and Satisfiability 

Interpretation of a formula 

Let s, t and u be states in which the variables T and '1' have the values as shown in 

table 4.6. 

I J 
s 1 2 
t 3 4 
u 3 1 

Table 4.6: Values of I and J in 3 Different States 

The formula (1=2) /\ 0 (1=3) is true on an interval 0' iff 10'1 ~ 1, the value of '1' 

in the first state i.e., 0'0 is 2 and the value of 'I' in the next state i.e., 0'1 is 3. Thus the 

formula is true on the interval < stu >. On the other hand, the formula is false on the 

interval < ttu > because the initial value of 'J' on this interval is 4 instead of 2. 

Validity of a formula 

Consider the following formula: 0(1 = 1) /\ 0(1 = 2). This formula is true on an 

interval 0' if 101 ~ 1, the variable 'I' always equals 1 and in the state 0'1, 'I' equals 2. 

No interval can have all of these characteristics. Therefore, the formula is false on all 

intervals and its negation is always true and hence valid. It is written as follows: 

F= .(0(/= 1) /\ 0(1=2)). 

The F= stands for "is valid". 

4.2.5 Proof System for ITL 

A proof system is required in any logic so that reasoning can be performed by applying 

appropriate rules. As an example of a rule in propositional logic, let us consider the 

simple rule of double negation. It simply states that there is no difference between cp 

and •• cp which is intuitively true. Applying this rule to the sentence "It is not true that 
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it does not rain.", we can infer the sentence "It rains". Books on logic will show several 

such rules in propositional logic and predicate logic and how they can be applied to 

infer conclusions from premises. [SO] is one such good reference. 

Similarly, for ITL, there are several rules in its proof system. Soundness and Com­

pleteness are important issues with respect to such a proof system. For example, the 

soundness of propositional logic is useful in ensuring the non-existence of a proof for 

a given conclusion from a given set of premises. In other words, soundness will let 

us know if a formula cannot be inferred from a set of other given formulas. Without 

knowing this bit of information, a failure in establishing a proof will not let us know 

whether it is due to our lack of skill or whether such a proof cannot be constructed at 

all. Completeness of a proof system implies that any true formula in that logic can be 

proved true using some set of proof rules in the system. 

The following table 4.7 gives the propositional rules and axioms for ITL. 

Table 4.7: Propositional Axioms and Rules for ITL. 

ChopAssoc I- (fo;/d;h - 10; (fl;h) 
OrChopImp I- (fo v Id;h ~ (fO;/2) v (fl ;12) 
ChopOrImp I- 10;(JI v h) ~ (fo;/l) v (fo;h) 
EmptyChop I- empty; II - II 
ChopEmpty I- II;empty - II 
NextlmpNotNextNot I- 010 ~ -,0-,/0 

BoxInduct I- 101\ D(fo ~ ®/o) ~ 0/0 
InfChop I- (fo 1\ in/) ; II - (fo 1\ inj) 
ChopStarEqv I- 10 - (empty v ((fo 1\ more) ;10)) 
MP I- 10 :J II, I- 10 :::} l- II 
BoxGen I- 10 :::} I- 0/0 

Some axioms for the first order case are shown in table 4.S where v refers to both 

static and state variables, and I: denotes that in the formula f, expression e is substi­

tuted for variable v. For example, in the SubstAxiom axiom in table 4.S, in formula f, 

the state variable B is substituted for A. 

[117] and [lIS] are references for work on completeness of the ITL proof system. 

The following paragraphs briefly explain some of the above proof rules. 

65 



Ph.D. Thesis 4.2 Syntax of the Logic 

Table 4.8: Some First Order Axioms and Rules for ITL. 

ForallSub 

Foralllmplies 

SubstAxiom 
StaticWeakNext 

ExislsChopRight 

ExistsChopLeft 

ExistslmpDesc 

ForallGen 

r- "Iv • I :J IS, 
where the expression e has the same data and tem­
poral type as the variable v and is free for v in I. 
r- "Iv· (fl :J h) :J (fl :J "Iv· h), 
where v doesn't occur freely in fl. 
r- o(A = B) :J I == Ii. 
r- w:J ®W, 
where w only contains static variables. 
r- :Iv· (fl ;12) :J (:Iv. II );12, 
where v doesn't occur freely in h. 
r- :Iv· (fl ;12) ::) fl; (:Iv. 12), 
where v doesn't occur freely in fl. 
r- (:Iv· f) " (tv:/) = v :J I, 
where v is a static variable. 
r- I ~ r- "Iv • I, 
for any variable v. 

The rule "ChopAssoc" states that the chop operator of ITL is associative just as the 

name of the rule implies. So, for example, if you can "chop" an interval such that fo ; fl 

is true in the left subinterval and h is true in the right subinterval, then, you can also 

chop the same interval into a left subinterval where fo is true and a right subinterval 

where fl ; h is true. In other words, the chop operator is associative. 

The "ChopEmpty" is a rule stating that any formula followed by the chop operator 

and empty is equivalent to the formula itself. This simply follows from the definition 

of "chop" and "empty" operators. 

The "BoxInduct" states if fo is true in the initial state and always fo being true 

implies the formula efo, then, always fo is true can be inferred. 

The "InfChop" rule simply states that if fo is true and the interval is infinite in the 

left subinterval of a "chop", then, the right hand side formula is immaterial. 

The definitions of the ITL constructs can be used to understand the above axioms 

and rules for ITL. It is important to note that there is a proof system for ITL that can 

help in performing deductive reasoning in ITL. 

The importance of these rules lie in the fact that required, important properties of an 
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ITL specification can be formulated in ITL themselves and then proved to be satisfied 

by the specification (or otherwise) using the proof system for ITL. At present, the proof 

system of ITL has been embedded in the Prototype Verification System (PVS) proof 

tool [84] to enable computer-assisted proof construction. It is worth noting here that 

a lot of guidance is needed to perform proof tasks and hence only experts in theorem 

proving who are experienced in such tasks can do it. Further work in this area will 

involve the creation of proof strategies to assist non-experts in performing ITL proofs. 

With such proof strategies being offered to inexperienced users, the users would be 

able to select a proof strategy and let the computer automatically perform the proof 

tasks involved in sequence. 

4.2.6 Examples using the ITL Constructs 

1. Tree summation [116] 

Let us consider a binary tree such as either of the ones shown in the linearly 

represented list structures : 

(((1,2), (3,4)), ((5,6), (7,8))) and ((1, (2,3)), (4,5)). 

Let the function leaf -sum(tree) determine the sum of a tree's leaves: 

leaf -sum(tree) --

if iSJnteger(tree) then tree 

else leaf -sum (treeo) + leaf -sum(treet}. 

The predicate is-integer is true when the parameter tree is an integer(Le., a leat) 

and false when tree is a pair. 

Let us now consider the task of designing an algorithm to reduce a tree-in-place 

to a single value indicated by leaf -sum. If the variable Tree initially equals such 

a binary tree, we can specify the problem as : 

Tree ~ leaf Jum(Tree). 

The following are predicates for a serial solution: 
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serial~umJree(Tree) ~ 

if is-integer(Tree) then empty 

else( 

sum~ubt ree (T ree, 0) ; 

sum~ubtree(Tree, 1); 

skip 1\ (Tree f- Treeo + Tree}) 

) 

) . 

sumJubtree(Tree, i) ~ 

serial~umJree(Treei) 

/\ stable Treel-i· 

The following may be noted: 

4.2 Syntax of the Logic 

• If the tree is already an integer-valued leaf. serialJumJree terminates. Oth­

erwise. the predicate sum~ubtree is used to reduce the left subtree first and 

then the right subtree. 

• skip /\ (Tree f- Treeo + Treed is used to finally reduce the tree to a single 

value. 

• The tree is initialised and serial~umJree is invoked by a formula of the 

following form : 

Tree = () 
/\ seriaIJumJree(Tree) /\ Odisplay(Tree). 

The following are predicates for a parallel solution: 
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par ...sumJree(Tree) -. 

if is.integer(Tree) then empty 

else( 

3Done: ( 

(Done ~ [isJnteger(Treeo) 1\ isJnteger(Tree.)]) 

1\ halt Done 

1\ sum...subJree_process(Done, Treeo) 

I\sumJree_process(Done, Tree.) 

); 

skip 1\ (Tree +- Treeo + Treed 

) 

). 

sum_tree_process(Done, Tree) ...... 

process ( 

par ...sumJree(Tree); 

( 

halt Done 

1\ stable Tree 

) 

). 

The following may be noted: 

4.2 Syntax of the Logic 

• The predicate par ...sumJree is similar to serial...sumJree except that it re­

cursively reduces each half of a pair in parallel rather than sequentially. 

• The variable Done is used to monitor the progress of the two subtrees. It 

equals true when they are both finally integers. 
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• The subordinate predicate sumJree_process(Done, Tree) reduces its tree 

parameter and keeps the Tree stable until the flag Done becomes true. This 

ensures that the two parallel invocations of sumJree_process finish at the 

same time. 

2. An example of an automobile cruise control system 

Let us consider an automobile cruise control system. A cruise control system 

sets the speed of a vehicle with the touch of a finger. Once the system is set, 

unintended speeding is avoided. The system constantly measures the changes 

in engine loading and vehicle speed. Functions on the steering wheel allow for 

slowing down or accelerating without touching the accelerator (gas pedal). So, 

a cruise control system increases comfort by reducing fatigue and prevents fuel 

wastage from unintended speeding. 

The state space of the system is represented by the following variables and their 

constraints: 

• Driver Input 

Driver initiated inputs are represented by EngineState, BrakeState, GasState 

and CruiseVaI. The possible values for the variables are given by the sets 

below: 

EngineState = {off, on} 

BrakeState = {off, on} 

GasState = {off, on} 

CruiseVal = {constant, neutral, off, resume} 

• CarSpeed 

Information on car speed is represented by SpeedVaI and SpeedState. Ad­

ditionally, DesiredSpeedSetting can be set to any real value from Zero to 

Max, indicating the speed to be attained by the cruise control system. 
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SpeedVal = {Zero .. Max} 

SpeedState = {Const, Up, Down} 

DesiredSpeedSetting = {Zero .. Max} 

• Car Internal States 

4.2 Syntax of the Logic 

The internal state of the car is modelled by the state variable Carlnternal­

State. It takes values from the following set: 

CarInternalState = {Idle, Manual, Accelerating, Cruising, Resuming} 

We can now specify a constraint on the state space as below: 

(a) If the value of the speed is either Zero or Max., then, SpeedS tate is 

going to be constant 

Implicit in this constraint is the fact that the SpeedState mayor may not be 

constant when the SpeedVal is neither Zero or Max. 

Its ITL specification is : 

SpeedVal = Zero V SpeedVal = Max ::> SpeedState = Const 

The Initial State Specification 

We can define a formula, FInitial, for initial states of the cruise control system. 

The initial states include, say, the engine being off, the cruise lever set to off, the 

car speed being zero, the internal state being idle and the desired speed not being 

set yet. 

Its ITL specification is : 

FInitial ...... CarInternalState = Idle /I CruiseVal = off /I SpeedVal = Zero /I 

EngineState = on 

Safety and Liveness Specification 

If the engine is off, then, the car will eventually stop 

Turning off the engine implies that eventually the speed will become zero. 
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Its ITL specification is : 

EngineState = off ::> OSpeedVal = Zero 

If the lever of cruise const is applied, and the brake is off at that time, the 

desired speed, DesiredSpeedSetting, will eventually be set, whether it has 

been set previously or not. 

Its ITL specifications is : 

BrakeState = off 1\ CruiseVal = constant::> OSpeedVal = DesiredSpeedSetting 

Examples with real time constraints : 

Let us first make some assumptions and introduce certain constants. Let CAccel­

eration denote the magnitude of a constant value of both acceleration and deceler­

ation rates. The maximum value for the car speed has already been introduced as 

Max. Hence the maximum time required for a car to achieve its maximum speed, 

say CMaxTime, will be MaxlCAcceleration. Let CInfinity denote an arbitrary 

large number for time greater than CMaxTime. 

Now we can introduce some example specifications with real-time constraints. 

If the current speed is below the desired speed, and if the car increases its 

speed continuously for a period longer than CMaxTime, then the speed of 

the car will eventually reach the desired speed. 

Its ITL specification is : 

SpeedVal < DesiredSpeedSetting 1\ SpeedS tate = Up 

::> t 2: CMaxTime 1\ t < Clnfinity 1\ OSpeedVal = DesiredSpeedSetting 

Once again, it can be noted that textual specifications are monotonous in their ap­

pearance in that they are full of text and symbols. The structuring of the specifications 

in intuitive graphical notations will be one big step forward in attempts to increase the 

accessibility of ITL specifications. 
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4.2.7 Limitations in the usage of ITL 

The following explains the limitations in the usage of ITL. 

• Readability of the specifications has to be enhanced. In this context, we have 

already seen the use of abbreviations which were defined in terms of the basic 

constructs. This is not enough as ITL is a mathematical approach involving many 

symbols. This is especially a problem when large specifications are considered. 

Moreover, this hinders wider accessibility. 

• In order to address schedulability and resource allocation problems, ITL has to 

be integrated with another suitable formalism. An approach along the lines of 

[26], which has an example where the formalism Temporal Agent Model (TAM) 

[105, 135, 136] was given ITL semantics and used to specify a robot control 

system, is required. 

• In order to prove properties about the system specification in ITL, a user-friendly 

proof tool has to be integrated with ITL. ITL has been embedded in the Prototype 

Verification System (PVS) thus enabling ITL proofs to be worked out. However, 

a model-checker is necessary so that the state space based on an automata rep­

resentation for an ITL formula can be explored to check for required properties. 

[117] describes some work in this direction. 

• Some benchmark case-studies have to considered to demonstrate the suitability 

of ITL for the specification of real-time safety critical systems. The following 

case-studies are good case-studies for such benchmarking: The mine pump con­

trol system [91], a robot control system for a robot exhibiting some specified 

behaviour which is more complicated than in [26] and railroad crossing systems 

[74]. These case-studies would also demonstrate the scalability potential of ITL. 

Apart from this, new case-studies including new domains have to be considered 

in order to test these techniques as well as increase confidence in them. This will 

go a long way in increasing their accessibility to industrial users. 
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• Software tool support that enables a user to either write specifications in some 

graphical language or ITL specifications directly and, if necessary, convert to 

the other form would help ITL become more accessible. This tool would help 

inexperienced users to specify using the more convenient graphical language and, 

if interested, learn ITL using this tool. The resulting ITL specification could be 

linked with other tools for simulation or proving properties. The experienced 

ITL user could always write ITL specifications directly. Even for such a user, 

visual ising the ITL specification would be possible if the ITL specification is 

convertible to a graphical form. 

• Refinement and proofs performed on ITL specifications will further burden the 

user in terms of formal methods and hence, if they are performed on intuitive 

graphical ITL specifications, various levels of users can be accommodated in 

such processes which are particularly important while developing safety-critical 

systems. 

4.3 Execution of Specifications 

4.3.1 Executable Specifications 

Specifications playa central role in systems development in more than one way. They 

define all the required characteristics of the system to be implemented. To define the 

required characteristics precisely and concisely, specifications must be written in for­

mal and highly expressive languages [151]. For an immediate reflection of the con­

sequences of the specifications, and for an early validation, it has been suggested that 

specifications should, furthermore, be executable [2]. Hayes and Jones [70], however, 

argue that the demands of high expressiveness and executability are mutually exclu­

sive. Norbert E. Fuchs [55] argues that high expressiveness and executability need not 

exclude each other if specifications are written in declarative languages. The following 

summarises the arguments for the use of executable specifications written in declarative 
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languages [55]. 

• Executable specifications allow us to demonstrate the behaviour of a system be­

fore it is actually implemented. This has the following positive consequences for 

systems development. 

- Executable components are available much earlier than in the traditional 

life-cycle. Therefore, validation errors can be corrected immediately, with­

out incurring costly development. 

- Requirements that are initially unclear can be clarified and completed by 

hands-on experience with the executable specifications. 

- Execution of the specification supplements inspection and reasoning as means 

for validation. This is especially important for the validation of non-functional 

behaviour. 

Declarative languages, especially logic languages, combine high expressiveness 

with executability. They allow us to write both property-oriented and model­

oriented executable specifications on the required level of abstraction. Logic 

specification languages permit us to express non-determinism in a natural way. 

• Executable specifications are constructive i.e., they not only demand the exis­

tence of a solution, but also, actually construct it. 

• As long as there is an executable subset in the specification language, the non­

executable specification can be transfonned by the process of refinement (and the 

incorporation of appropriate design decisions) into an executable specification. 

This executable specification may either be at almost the same level of abstraction 

as the non-executable one or at a very different level of abstraction. 

• Executable specifications do not constrain the choice of possible implementa­

tions because only minimal design and implementation decisions are necessary 

to obtain executability. In addition, these decisions are revisable. 
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• Verification of an implementation against the specification becomes superfluous 

if we use the transfonnational approach. This is because transformations per­

fonned using correctness-preserving sound rules result in verification automati­

cally being done in each of the transfonnation steps. This is not the case when 

one starts with a specification and end up with an implementation without any 

fonnal transfonnations. In such a case, verification is necessary to show that the 

implementation is a correct refinement of the specification. 

Executable Temporal Logics 

The development of executable temporal logics is becoming increasingly important 

while a variety of verification systems based upon temporal logic, particularly involv­

ing model-checking techniques, have been produced. An introduction to five temporal 

logic-based programming languages: Chronolog, F-LIMETTE, Concurrent METATEM, 

Tempura and Tokio can be found in [49]. These languages can be classified depend­

ing on the type of logic upon which they are based, their execution schemes and their 

applicability. Chronolog and Concurrent METATEM use Linear-Time Temporal Logic 

(LTTL); Tempura and Tokio use Interval Temporal Logic (ITL); and F-LIMETTE uses 

Metric Temporal Logic (FMTL). Concurrent METATEM and Tempura use determinis­

tic execution schemes suitable for practical programming languages while others fea­

ture backtracking mechanisms. Concurrent METATEM is naturally applicable to con­

current object-based (and agent-based) systems, while the others are intended for single 

object implementation. Thus, together, these languages cover much of the range of el­

ements being actively explored throughout the field of executable temporal logics. 

The following are some useful WWW sites: 

• http://www.csl.sri.comllucidlintense for InTense, a language which includes the 

original Chronolog as a subset. 

• http://www.cse.dmu.ac.ulUcaulitlhomepagelindex.html for Tempura. 
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4.3.2 Introduction to Tempura 

Tempura provides an executable framework for developing and experimenting with 

suitable ITL specifications. It is a programming language based on ITL and, hence, 

is an executable subset of ITL. In what follows, we discuss Tempura and outline its 

limitations. For more discussion, we refer the reader to [116, 84]. 

4.3.3 Syntax of Tempura 

The syntax of Tempura corresponds to the syntax of the executable subset of ITL. The 

basic statements of Tempura include the more, empty, A = exp, true, false, if then else, 

while, repeat constructs, the ITL!I /\ 12 represented as !I and 12, <> represented as 

sometimes and 0 represented as always. Further details can be obtained from [116]. 

4.3.4 Tempura Interpreter 

Let us consider the following Tempura program: «(next)(next)empty) and (1=0) and 

(I gets (1+1) and always(1=2.I». This program is simple enough to make a mental 

calculation and corne to the conclusion that this is true on intervals of length 2 in which 

'I' assumes the value 0, 1 and 2 while '1' simultaneously assumes the values 0, 2 

and 4. One way to execute such a formula is to transform it to a logically equivalent 

conjunction of two formulas as (present-state and (weak next)what-remains) where 

the formula present-state consists of assignments to the program variables and also 

indicates whether or not the interval is finished while the formula what Jemains is what 

is executed in subsequent states if the interval does indeed continue on. For the formula 

under consideration, present...state has the value, ( (1=0) and (1=0) and more). The 

value of what-remains is the formula, «(next)empty) and (1=1) and (I gets(l+ 1» and 

always(1=2.I». A detailed account of the transformation of the formula is given in 

Figure 4.2. 

The operation of the Tempura interpreter is based on the technique just described. 

For details on the variables used by the interpreter and the basic execution algorithm, 
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Before state 0: «next)(next) empty and (1=0) and (I gets (1+ 1» and always(1=2.1» 

After state 0 : [(1=0) and (1=0) and more] and 
(weak next)[ (next empty) and (1=1) and (I gets (1+1) and always(J=2.1)] 

Before state 1: (next empty) and (1=1) and (I gets (1+1» and always(1=2.1) 

After state 1: [(1=1) and (1=2) and more] and 
(weak next)(empty and (1=2) and (I gets (1+ 1) and always(J=2.1)] 

Before state 2 : empty and (1:=2) and (I gets (1+ 1» and always(J=2.1) 

After state 2: [(1=2) and (1=4) and empty] and 
(weak next)[false and (I gets (1+ 1) and always(J=2.1)] 

Figure 4.2: Transformation of the Formula by the Interpreter 

we refer to [116]. The various constructs of Tempura are implemented by using re-write 

rules [116]. 

4.3.5 Examples in Tempura 

1. The following is a very simple example. 

Problem description : There are three system variables, X, Y, and Z. The user 

inputs the initial values of X and Y. The value of X in subsequent states is to be 

incremented by a constant value of 10 and the value of Y in subsequent states is 

to be decremented by a constant value of 1. Z should take the sum of the values 

in X and Y. This should continue for an interval length of n to be specified by 

the user. When the final state is reached, the square of Z is to be displayed. 

A sample Tempura program : 

define mainO = { 

exists X, Y,Z,n : { 

define first(n) = { 

{empty and input X and input Y and input n}; 
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{X gets X+lO and Y gets Y-1 and Z gets X+Y and len(n)} ; 

{empty and output X and output Y and output Z*Z} 

} 

and 

define secondO ={ 

always { 

format("X = %tY = %tZ = %t/ n",X,Y,Z) } 

} 

and 

secondO and first(n) 

} 

}. 

The output: 

Tempura 12> load "mono1". 

[Reading file /exportlhomeO/users/arunc/tempu..eX/oklmono 1.t] 

Tempura 13> run mainO. 

StateO:> X =?lO. 

StateO:> Y =?100. 

Stat eO :> n =?3. 

Stat eO : X = 10 Y = 100 Z =? 

State1:X=20 Y=99 Z= 110 

State2:X=30 Y=98 Z= 119 

State3 : X = 40 

State3 : Y = 97 

State3: (Z *Z) = 16384 

State3 : X = 40 Y = 97 Z = 128 
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Done! Computation length: 3. Total Passes: 7. 

Total Reductions: 175 (150 successful). 

Maximum reduction depth: 10. 

4.3 Execution of Specifications 

Comments : It must be noted that Z is shown undefined in the initial state and 

is in accordance with the specification. The value of Z in state 1 is 110 as shown 

and not 119 as one might expect by mistake. If 119 was actually required in 

the system, then the statement Z = X + Y would have to be used instead of 

Z gets X + Y. The specification in this case would have "Z should take the 

sum of the values in X and Y in the current state". This is a simple example 

where simulation results can help in communication between the customer and 

the developer at an early stage in the development cycle and get things right. 

It can also be noted that the statement exists in the program which is used to de­

clare variables is not very good for readability. There is. in fact. a lot of syntactic 

additions to be done in Tempura. 

4.3.6 Non-executability in Tempura 

• 1 gets (1+ 1), is a non-executable statement since the initial value of 'I' is undefined 

in the above statement. «1=0) and (I gets (1+ 1) has an initial value for 'I' but the 

execution will not terminate. (next(l=l) or next(I=2» is non-executable because the 

value of 'I' in the next state is non-deterministic. The use of 'sometimes' also can 

cause a problem as can be seen in the following example: «1=0) and (I gets (1+ 1) and 

halt(l=2) and sometimes(I=3») where haltw means that the formula w becomes true 

only at the end of the interval under consideration. Therefore, the program is supposed 

to stop execution when 'I' gets the value '2' apart from '1', in some state. having had 

the value of '3', which is clearly not going to be the case. So, one has to be cautious 

while writing programs in Tempura. 

Here are some example programs and the corresponding outputs: 
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• Tempura program with undefined initial value: 

define mainO = { 

exists X: { 

define firstO = { 

{(X gets X + I)} 

} 

and 

define secondO = { 

always{ 

format ("x=%tI n",X)} 

} 

and 

secondO and firstO } 

}. 

Tempura 9> load "nonexec". 

[Reading file lexportlhomeDlusers/arunc/tempu...exlok!nonexec.t] 

Tempura 10> run mainO. 

StateD: X =? 

* * *Tempura error: state #0 (pass#3) is not completely defined. 

Evaluating: X gets (X + ... ) 
Undefined: {empty}{}{X}{}{} 

Abort (a). Break (b) or Continue (c)? 

• Tempura program with Sometimes 

define mainO = { 

exists X: { 

define firstO = { 
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{ (X=O) and (X gets X + 1) and halt(X=9) and sometimes(X= 10) } 

} 

and 

define secondO = { 

always { 

format("X = %t / n'''X) } 

} 

and 

secondO and firstO 

} 

}. 

Tempura 11> load "sometime". 

[Reading file lexport!homeO/users/arunc/tempu...exloklsometime.t] 

Tempura 12> run mainO· 

StateO: X = 0 

Statel:X = 1 

State2: X = 2 

State3: X = 3 

State4:X =4 

State5: X = 5 

State6: X = 6 

State7: X = 7 

StateS: X = S 

* * * Tempura error: attempt to re-assign interval length. 

Evaluating: next sometimes (X = 10) 

Abort (a), Break (b) or Continue (c)? 
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4.3.7 Limitations of Tempura 

Increasing Readability of Specifications : 

Constructs could be added in Tempura in order to increase readability. While shared 

variables could be used for synchronisation between processes, having explicit channel 

communication constructs in ITLffempura would be better. To be able to deal with 

deadlines for computations or delay, we could use constructs which mean these by 

virtue of their names and this will lead to more readable specifications. 

Improvements to User-interface: 

There is no doubt that a helpful and "user-friendly" interface is required in order for 

these software techniques to become popular. If such a user-interface is easy to learn, 

simple to use, straightforward, and forgiving, the user will be inclined to make good 

use of these techniques. In order to achieve this, amongst many other things, it would 

be necessary to insulate the user from the intricacies that are of no consequence to the 

user and provide only useful information for effective interaction and hence a proper 

and efficient usage of these software techniques. Therefore validating user inputs, han­

dling errors and displaying appropriate error messages would be very important. Also, 

features like' on-line help' and giving useful examples and possibly even allowing the 

user to customise the interface will all go a long way towards enabling more people to 

become aware of the usefulness of these techniques. 

Integration with Other Toolsffechniques : 

With the help of Tempura, we can write a specification as has already been discussed. 

Executing the specification and then experimenting with the specification will give us 

a lot of insight into the system/program that we hope to develop. In order to have 

confidence in what we hope to develop, which is especially crucial if the applications 

are safety-critical, we would need to mathematically prove that certain properties are 

satisfied by the specification. For this task of proving properties, there are some excel-
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lent tools already available. Prototype Verification System (PVS) is such a tool [131]. 

Though they are excellent from the performance point-of-view, these tools are suited 

only for experienced users. In our proposed lean approach, we aim to get over these 

problems and provide better accessibility to proof techniques. Ultimately, we aim to 

have such an integrated set of tools to be able to do all the various possible things with 

a specification before actually developing the safety-critical systems. Also, there are 

possibilities for improving upon the techniques used by Tempura and these have to be 

examined. For example, Tempura does not keep track of the information in past states 

and hence it cannot use backtracking techniques. Therefore, it is very deterministic at 

the moment. 

Automatic Code Generation : 

This would involve converting the final specification into Ada or C code. Of course, 

the use of the above tools and techniques will help in ensuring that after each step of 

refinement from the first specification to the final one, the specification continues to 

satisfy the desired properties. Since the final code in Ada/C would be extracted from a 

Tempura program about which we would be more confident, it will lead to systems that 

can be more confidently deployed in safety-critical applications. 

A step further would be to either have the compiler from Tempura to Ada/C val­

idated or to have the process of translation from Tempura carried out through some 

defined correctness-preserving refinement laws. 

A Note on Case Studies : 

These techniques are yet to be tested on industrially-relevant case studies. Such an 

effort can lead to improvements that can make these techniques popular with industry. 

Many case studies like those relating to control systems for a robot used for bomb 

disposal or control systems for a nuclear reactor or timing problems in mobile phone 
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communication systems can be considered to test and demonstrate these techniques. 

4.4 Summary of the Sections on ITL 

In the above sections, Interval Temporal Logic (lTL) has been introduced in detail. Ex­

ample specifications are given highlighting some of the problems with textual ITL. An 

introduction to Tempura, an executable subset of ITL, is also given with some exam­

ples. The following section details possible visualisation approaches in ITL as a means 

of increasing the uptake of ITL as a fonnal method. 

4.5 VisITL 

In chapter 3, we examined ways in which visualisation helps in various domains. 

Possible approaches to visualisation in ITL include: 

• Graphical output for simulation through Tempura 

4.3 introduced Tempura, an executable framework for developing and experi­

menting with suitable ITL specifications. For such simulations through Tempura, 

a graphical output is now possible due to the work of Cau [84]. If a graphical out­

put is desired, then, a Tempura file has to be provided with a Tclffk file to define 

the graphics accordingly. This helps in visualising the simulation output and thus 

provides an insight into the ITL specification. 

• Automata representation 

[117] and [118] describe work on representing ITL fonnulas as an automaton. 

As we have seen before, a finite automaton can be represented as a state tran­

sition diagram which is a directed graph wherein the nodes correspond to the 

states and the edges correspond to the transition as indicated by the transition 

function. Briefly. the so-called Chop-automaton for ITL is defined as a quintuple 

(V, K, qO, 0, "C) for which V is a possibly empty finite set of boolean and numerical 
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state variables, K is a nonempty finite set of automaton states, qo E K is the initial 

state, B is the transition function mapping K x K to quantifier-free state formulas 

over variables in V, t is the termination function mapping K to quantifier-free 

state fonnulas over variables in V. 

• Graphical Notation For ITL 

This is one interesting possibility with respect to visualisation for ITL which 

has been previously unexplored and which fonns the basis of this work. The 

following sections detail the design rationale and the visual notation itself. I wish 

to clarify here that the visual language is designed with the purpose that the user 

shall only be required to learn the visual language and not be required to know 

the notations of textual ITL. An implementation would be able to take care of 

this translation; such an implementation is described in chapter 7. 

4.6 Design Rationale for a Visual Notation for ITL 

In section 3.2, key features of various representations were described and summarised. 

Let us now look at how the development of a visual notation for ITL commenced. 

4.6.1 Key Requirements for a Visual Notation for ITL 

In the development of a visual language for ITL, a textual, formal logic based lan­

guage, the following were identified as major requirements and hence were the primary 

influences on our first visual notations. 

• Simplicity 

• Intuitiveness 

• Unambiguity 

• Readability 
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• Communicativeness 

• Manipulatability 

• Composability 

• Customizability 

• Expressivity 

4.6.2 Experiences in the Process of Design of such a Visual Notation 

[n the process of designing a visual language for [TL, there are several issues that 

gradually emerged. At first, a simple boxed notation for formulas and a circled no­

tation for expressions was chosen. This was reported in [30]. The primary idea was 

to keep the notation simple and intuitive and experiment with an implementation of 

it. Another intention was obviously not to introduce any notation that can mislead 

the reader/user with his knowledge of any other visual language (formal/non-formal 

specification/programming language). The visual notation reported in the paper is re­

produced below in Figure 4.3 and Figure 4.4 : 

where· = /J I a I A 

w:! 

Figure 4.3: First Visual Notation for ITL Expressions 

While an attempt was made to somehow have expressions in visual form, it did not 

tum out to be a feasible one. The expressions got complicated and introduced unneces­

sary processing of graphical information in an implementation without contributing to 

any gain in its understanding. Therefore, it was decided to introduce visual notations 

only for [TL formulae. 
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4.6 Design Rationale for a Visual Notation for ITL 

[4J 
c1iJ 

\:Iv. I 

II ;12 

Figure 4.4: First Visual Notation for ITL Fonnulae 

The primary considerations were therefore to keep the notation simple and intuitive 

and experiment with them. 

Some of the visual notations for more frequently used ITL abbreviations are repro­

duced in Figure 4.5 from [30]. 

Some of the salient features of the above visual notation for ITL are : 

1. The visual notation for the' and composition' is the same as in Statecharts. 

2. The visual notations for 'and' and 'chop' are simple and intuitive. 

3. The visual notations for other constructs like sometime, always, next and so on, 

follow the same format as not, len, chopstar (*) in the figure thus aiding readabil­

ity and adding simplicity to the formal specification. 

4.6.3 Further Design Considerations 

Any arbitrary visual notation could be chosen and given ITL semantics. An arbitrary 

notation can mean anything insensible also. Even among sensible notations, there can 
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f. v h Of 

not sometime 

not not f 
r--- I r---

f. 
I 

h 

of (whilefo do f.) 

not 
sometime while 
not fo II It 
f ~ 

fin 
I not I -

to 

Figure 4.5: First Visual Notations for some Frequently used ITL Abbreviations 

exist many possibilities. For example, [52] has several visualisations that various stu­

dents suggested for representing an integer variable within the context of a program 

fragment. Figure 4.6 shows some of them. Many students, just like many program-

(8) (b) (c) (d) (e) (f) 

Figure 4.6: Various Ways of Representing "int i" 

ming text books, came up with figures similar to (a). Those who chose (b) wanted to 

show that a value could go into and come out of an open box. Students who chose (c) 

programmed the lid to open to receive a value or pass a copy out and the lid was always 

shown slightly ajar to show that the value could change any time. Variable identifiers 

were mostly placed as shown in (a), (b) and (c) but also above, below, and to the right 

of the variable box. A minority of students chose to tie the identifier to the variable box 

as in (d), (e) and (0. For more details on the animations that were being tried in this 

context. the interested reader is referred to [52]. So. coming back to visual notations for 

ITL. as already mentioned. one could invent any notation. However, since the visual 
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notation was being designed for ITL, a formal language, it was realized that there are 

fine points that could be addressed in order to make such a visual language more robust. 

In other words, in addition to being simple, intuitive and readable, we have to ensure 

that the semantics of the diagrammatic representations are uniquely defined with re­

spect to any transformations on the diagram. We also have to specify how the diagram 

can be modified by operations like addition etc.. This is important to make sure that 

there are no confusions with respect to seemingly different visual representations of the 

same textual ITL formula. For example, a diagram on rotation should not only have the 

same semantics but also not lose its intuitive appeal. 

Before these points are discussed further and addressed, a related problem with the 

notational format for temporal operators etc. above is now discussed. 

The notation for operators like always, sometime, length, chopstar etc. were all 

represented in a rectangular box with a horizontal line separating the formula in the 

box with a text at the top indicating the operator as shown in Figure 4.4 and Figure 

4.5. While this notation is simple and readable, an objection to this was that it would 

be difficult to distinguish the textual formula in the box from the textual name of the 

operator. This was not a problem in implementation as the top portion had a text which 

had to be the operator name and the portion demarcated for the formula had the textual 

formula. Another criticism was how one would read such a formula if the box and its 

contents are inverted (except the text, of course), for example. Therefore, the following 

additional requirements for a visual notation for ITL had to be addressed: 

• No confusions with regard to simple transformations of the diagram 

• Semantics of operations like addition and deletion to a diagram had to be defined 

A rounded box within the rectangular box was introduced to contain the operator 

information. When this is done as shown in Figure 4.7, the problem of giving a unique 

semantics to the notation is taken care of, if a transformation like rotation was per­

formed, for example. The text within the rounded box inside the rectangular box is the 
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operator while the text inside the rectangular box but outside the rounded box is the 

textual formula. For a simple formula with no operator like always etc., we can leave 

out the rounded box altogether to make the diagram look simpler. We call the text in 

the rounded box portion of the formula the "label". 

( label) 

formula 

(a) 

formula 

(b) 

Figure 4.7: The New Format for the Formula 

Coming to the basic ITL constructs, just as we decided to do away with circled 

notation for expressions, we decided to write predicates, just as they are, in a rectangu­

lar box. At this point, however, it is necessary like to draw the attention of the reader 

to another interesting way of representing predicates. [130] describes work on visual 

notations which use visual cues to make the structuring of logical expressions more 

intuitive. The authors have used one of the more successful graphical metaphors in 

mathematics, the set inclusion, combined with other well known methods of represent­

ing relations graphically, like the graph formalism to reduce undue difficulties of use 

and interpretation of existing textual notations in the Hom clauses subset2 of First Or-

280m formulas are practically important subclasses of formulas which have efficient ways of decid-
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der Logic (FOL). In their visual logic, there are two different types ofterms: FOL terms 

- defined as usual in FOL - that represent elements, and a new type of terms called set 

terms that represent sets of elements that satisfy a given predicate. The following is the 

textual definition of this new type of terms : 

Definition (Set Terms in the Visual Logic of [130]) 

• A unary predicate p is a set term. 

• A predicate application p(SI, .. ,Sn-l) is a set term, where p is a n-ary predicate 

symbol (p,q,r, .. of arity n ~ 2) and SI, ",Sn are either FOL terms, set terms or 

set terms prefixed by an asterisk, '*s'. 

• Given two set terms, SI and S2, SI n S2 and S1 U S2 are also set terms. 

• Given a set term s, S is a set term. 

• Nothing else is a set term. 

Figure 4.8 shows examples of terms in their visual logic. A predicate is represented 

as a square box with the predicate symbol on a comer, while a function is represented by 

a rounded box, also with the function symbol on a comer. Variables are represented as 

circles whereas constants are represented in a rounded box with the constant symbol, 

for example a, in Figure 4.8, on a comer. The difference between a function and a 

constant is that there are no arrows leading to the rounded box for a constant. Only 

arrows can originate from a rounded box for a constant. A double arrow is used where 

the textual form contains an asterisk, '*s'. It can be seen that the visual representation 

for likes (*man) i.e., "likes every man", contains a double arrow, whereas intersecting 

boxes are used to depict intersection as in "likes some tall men". For additional details, 

the reader is referred to [130]. 

ing their satisfiability. 'Hom' is derived from the logician A.Hom's last name 
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While it is a very interesting way to represent predicates, we still stick to represent­

ing them textually within a rectangular box in order to avoid the proliferation of many 

graphical primitives. 

likes(*man) 
(Ukes every man) 

f(x, g(x,a), y) 

taU 

Iikes(man" tall) 

(likes some tall men) 

p(*q(a,x), x, f(a,y» 

Figure 4.8: Examples of Terms in the Visual Logic of [130] 

The discussion of other changes in visual notations for ITL is given below. 

The negation has to involve, either the label "not", or some substitute for it. One 

possibility is to cross out the whole box indicating negation. Another is to use a cross 

in the label portion of the rectangular box. The latter is preferable as it follows the 

format being used and keeps the formula clean and readable as shown in Figure 4.9. 

An intuitive way to represent "chop" would be to have two boxes, one corresponding to 

the resulting left sub-interval, and another corresponding to the right sub-interval with 

an arrow from the former box to the latter as shown if Figure 4.10. The direction of 

the arrow indicates that the formula enclosed by the box on which the arrow originates 

corresponds to the formula that is true on the left sub-interval. Since chopstar should 
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[Xl 

f 

Figure 4.9: Negation of a Formula 

, 

Figure 4.10: The Chop 

suggest that a formula repeats i.e., loops in a way according to its definition, Figure 

4.11 is a good, intuitive choice for it. 

r 

Figure 4.11: The Chopstar 

4.6.4 The Syntax 

The previous sections discussed some of the ideas that influenced the choice of our vi­

sual notations. In the definition of a visual language, the choice of an appropriate visual 

syntax is very important. Figure 4.12 summarises the syntax of our visual notation for 

primitive ITL constructs. In the previous section, the rationale for the visual notation 
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has already been covered. The salient features of the notation can be summarised below 

as follows: 

D Fonnula f Negation 

And composition 

Universal Quantifier 

I skip I skip 

------, 
) chopstar Chop 

f 

Figure 4.12: Final version of the Visual Notation for Primitive ITL Formulae 

• Expressions are written as in textual ITL. 

• A formula is enclosed in a rectangular box which also contains a rounded rect­

angular box for holding any operator information ; the rounded rectangular box 

maybe omitted if there is no operator involved. 

• The "And composition" has dotted lines between the components in the formula. 

• The negation has a cross mark in the label portion of the rectangular box. 

• The existential quantifier also follows the labelled rectangular box format. 

• The chop has a directed arrow between the two rectangular boxes containing the 

formulae for the left and right subintervals respectively. 
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• The chopstar has a directed arrow from the rectangular box to itself indicating a 

looping construct. 

4.6.5 Visual Notations for Frequently used Abbreviations 

So far, visual notations have been introduced for the primitive constructs. Now the other 

constructs of ITL can be expressed visually using the basic primitive visual constructs 

in Figure 4.12. This is done for the convenience of the user. In other words, we have 

a meta visual language layer above the primitive visual language layer primarily for 

user convenience and visual appeal. As an additional possibility, we will allow the user 

to define his/her own convenient visual representations for any constructs (or parts of 

specifications) and thereby customise the visual notation. Such customisation will be 

allowed, however, with specified guidelines so that the language conforms to our design 

principles. 

Using the visual syntax for a formula with a label, we can define the temporal con­

structs "sometime" and "always" as in Figure 4.13 and Figure 4.14 respectively. The 

( Sometime) 

f 

Figure 4.13: Sometime 

( AlWays) 

f 

Figure 4.14: Always 
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"Or" is defined as in Figure 4.15 because the branches coming out from a filled circle 

in the box indicate, intuitively, that one of them is to be selected (as "true"). Figure 

Figure 4.15: Or 

4.16 shows the construct for implication. One of the arguments is shown in a shaded 

box "sort-of suggesting" something more detailed. By enclosing the left argument of 

It ~ h in a shaded box, we mean that /1 is a more detailed formula. 

Figure 4.16: Implication 

Figure 4.17 summarises some frequently used visual ITL abbreviations. 

4.6.6 Visual Notations for Concrete Constructs 

The "While" concrete construct could be defined as in Figure 4.18 as the label suggests 

a "while" and the user visualises two arguments to it, one to keep "repeating" while the 

other is true. The box in the left portion of the "double line separation" contains the 

first argument to check while the box in the right portion is the second argument. An 

explicit arrow could also be added in the double line portion to suggest the direction of 

reading as in Figure 4.19. An explicit arrow was chosen as this removes any chance for 

misinterpretation even when the figure is turned upside down, for example. Instead of 

the straight arrow we used, we could have other possibilities as shown in Figure 4.20 

to suggest that it is a looping construct. However, I prefer to have as few graphical 
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I ( ~7Y') I (sometime) 
Sometime Always 

f 

'1 GJ GJ 
~ 

Or Implication 

Figure 4.17: Summary of the Visual Notation for Some Abbreviations 

primitives as possible for the visual construct in order not to crowd it for the reader 

as well as for the tool that implements it. So, the notation in Figure 4.19 is chosen. 

Also, we annotate the arrow optionally as shown with [1m] to depict the execution time 

for the body of the while loop. Omitting this annotation means an execution time of 

1. However, we could explicitly add [1] for unit execution time. Instead of the straight 

arrow we used, we could have used other possibilities as shown in Figure 4.20. 

Figure 4.21 shows the visual constructs for the concrete "If..then" constructs. 

( Whire ) 

I '. " " I 
Figure 4.18: While 
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( While ) 

I '. ~ '1 I 
Figure 4.19: While2 

( While ) 

I '. 1')1 '1 I 

( While ) 

'. IY '1 
~ .-/' 

Figure 4.20: While3 

[90] is a good reference to demonstrate the flow of control notations with respect 

to pancode and boxchart notations which are visually-oriented programming language 

templates. The dynamic mental images evoked by the Boxchart notation and the Pan­

code notation make program behaviour easy to understand. 

Also, we optionally include a diamond box inside the visual fonnula to indicate that 

the formula is expandable for details. A "+" inside the diamond indicates that zoom-in 

is possible whereas a "-" indicates that zoom-out is the only possibility. The default 

case is where there is nothing to zoom into, in which case the diamond box is omitted. 

This is illustrated in Figure 4.22. 
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( 1I .. then ) 

" I, 

" r- I, 

'z I z 

( 1I .. tben • .e.... ) 

" 
I, 

I, 

Figure 4.21: If Then Concrete Statements 

• ~ 
I 

f. I f. 
I 

f , 
l f1 I 

denotes that r can be zoomed Into 

the resulting formula for r could be this one. for example 

this formula can be now zoomed-out to r 

Figure 4.22: Denoting Zoom 

4.6.7 Additional Concrete Constructs for Timing constraints, Resource Alloca­

tion and Concurrency 

In [27]. shortcomings of ITL as a formalism in dealing with explicit expressibility of 

timing constraints, resources and concurrency were identified. These were addressed 

in [29] by providing a timed-communication model allowing explicit representation of 

concurrency. resources and timing. This model is very closely related to that of the 

Temporal Agent Model (TAM) [135] which is a well-established formalism for the 

development of real-time safety-critical systems [105]. For a description of the timed 

communication model, the reader is directed to appendix A. 

There follows an example of the TAM concrete constructs. 
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• Channel communication 

Synchronous communication links are called channels where read and write oc­

cur at the same time. 

Channel C in P introduces a new channel within P. 

C!e denotes an output agent that sends the value of expression e over C. 

c?x denotes an input agent that stores the value received over C in x. 

C.X denotes the value of x in C. 

Figure 4.23 presents the TAM constructs using the visual notation for channel 

communication with informal semantics. The textual formulae involves "!", "1" 

I Channel C In P Introduces a new c1l1lDnel C In P 

Cle denotes l1li output lIKent that sends the v.lue or expr_lon e over C 

C?x 
denotes l1li Input lIKent that stores tbe value received over C In x 

C.x denotes the value or x In C 

Figure 4.23: Channel Communication Constructs 

and "." and the current visual notation merely encloses formulae containing those 

in boxes. I think, we could do more, especially during implementation, by util­

ising the possibility of using the optional label within the fonnula box. Within 
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the label, we could use a suitable icon to introduce visual cues regarding these 

symbols. The fact that we can do more to a visual language during implementa­

tion is one additional advantage over a purely textual notation. Figure 4.24 shows 

one such possibility. The optional use of icons within labels could be made as a 

['_0::0 1 
C!e 

C?x 

C.x 

output agent that sends the value 
ore over C 

input agent that stores value received 

overC in x 

denotes the value or x in C 

Figure 4.24: Channel Communication Constructs with Icons in Labels 

feature of the tool implementing VisITL. 

• Shunt communication 

Shunts are defined as asynchronous communication links in appendix A. 

Variables s represent shunts whose values are tuples (t, v) where t is a stamp and 

v is the value written. The stamp value of s is denoted by ,;s and the value stored 

in s by read(s). 
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The agent Shunt s in P introduces a new shunt s within P. 

The agent (x,y) ~ s performs an input from shunt s storing the value in y and 

the timestamp in x. 

The agent v --t s writes the current value of expression v to shunt s, increasing 

the stamp by one. 

Figure 4.25 presents the TAM constructs for shunt communication with informal 

semantics. 

Shunts in P ( exists shunt: s ) 
introduces a new shunt s in P 

p 

stamp(s) gives the stamp or shunt s 

wrlte(v,s) value v Is written to shunt s 

read(s) 
gives the value stored in shunt s 

Figure 4.25: Shunt Communication Constructs 

• Delay and timeout 

delaYn describes an agent which first holds up for n time units and then termi­

nates with all global variables untouched. 

The notation P :::ld Q denotes an agent which behaves like P if P is executed 

within d time units, and like Q otherwise. Figure 4.26 presents the TAM con­

structs for delay and timeout. 
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delay n 

( timeout) 

p f4 Q I 
Figure 4.26: Delay and Timeout Constructs 

• Resource Allocation 

request (v, res) denotes an agent that requests v units of resource res. If these v 

units are unavailable, the agent waits for them. release ( v, res) denotes the agent 

that releases v units of resource res. Figure 4.27 presents the TAM constructs for 

resource allocation with informal semantics. 

request(v, res) 

release( v, res) 

denotes the agent that 
requests v units or resource res 

denotes the agent that 
releases v units or resource res 

Figure 4.27: Resource Allocation Constructs 

4.6.8 Geometrical Guidelines on Constructing VisITL Specifications 

As far as operations like addition, deletion etc. are concerned, we give rules/guidelines 

as to what constitutes a meaningful visual specification. Some of them are enumerated 

below: 

1. No box can be added such that it overlaps another. 
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2. Deletion of the rounded box within the rectangular box is allowed, and recom­

mended, if the label portion is empty. 

3. For the chop construct, there are two boxes on each end of the directed arrow; 

none of them can be independently deleted leaving a dangling directed arrow. 

4. There cannot exist any bits and pieces of formulae that are not connected to each 

other through the "And" composition or the "chop" primitives unless at the meta 

level layer, they are connected through some abbreviations like the "Or" operator. 

Hence any additions or deletions performed should conform to this constraint in 

the final complete diagram. 

4.7 Summary on the Choice of Visual Notation 

The choice of the visual notation has been influenced by various factors as seen in 

section 4.6. These influences were a direct result of the the important design features 

identified for visual representations from section 3.2. The following paragraph sum­

marises some key points. 

In section 3.1.11, we saw how an Interval Logic, namely GIL [41], depicted for­

mulae in the logic visually. It is dependent on constructing different sub-intervals and 

then depicting the predicates that are true in such subintervals. Hence, it needed dif­

ferent kinds of graphical primitives like a solid line to represent strong intervals i.e., 

non-empty intervals, a double solid line to depict a weak interval, a single arrowhead 

to indicate a weak search while an interval is constructed, a double arrowhead to indi­

cate a strong search and so on apart from using temporal operator symbols in the visual 

representation. Also, the placement of the predicate relative to the line depicting the 

interval has a meaning; for example, if it is the middle of the interval, then, it is an 

invariant as in Figure 3.7(b). In the context ofVisITL language, a much simpler, more 

intuitive and readable language was needed which also integrated TAM for concrete 

communication constructs. 
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It was also considered in section 4.6.3 how predicates were depicted using set theory 

concepts in a visual logic in [130]. This logic, being based on set theory, has graphical 

primitives like overlapping boxes which are unnecessary in VisITL, and circles for 

variables and constants additionally which we found unnecessary as it over-crowds the 

visual representation as well as leads to unnecessarily complicating the implementation. 

Moreover, this visual logic is not a temporal logic. 

We also saw in chapter 3 how parallel states were depicted in statecharts-based for­

malisms. The same "dotted-Iine"representation was chosen for the "and-composition" 

in VislTL so that no new notation is introduced for similar concepts in other languages. 

This would help avoid any confusion for users previously accustomed to other lan­

guages. 

For the ITL "chop", a line with arrow was chosen to represent the meaning of chop 

i.e .• sequential composition. For "chopstar". a loop was depicted around the box. The 

label in the box was used for readability. The concrete constructs like "While". "If 

Then" etc. also followed a similar format. This is true for the TAM communication 

constructs as well. Hence, VisITI was not only made simple. intuitive, readable and 

unambiguous but also one that integrated abstract constructs and concrete constructs in 

similar notations. This aids communicativeness between users at all abstraction levels. 

The geometrical guidelines for constructing VislTL specifications show how a spec­

ification can be manipulated and composed. The VisITL abbreviations allow us to 

manipulate diagrams to suitable equivalent forms. In a similar way, the user can add 

new abbreviations as a way of extending the syntax and thus customise the notation. 

Chapter 6 demonstrates the scalability of this approach. Chapter 7 will demonstrate the 

realisability of this approach. The VisITL language derives its expressivity from ITL. 

The salient features of the visual notation can be summarised as follows: 

The visual notations for Negation. Chop and Chopstar use simple intuitive concepts 

to depict the meaning of the formula. The "And-composition" uses dotted lines similar 

to statecharts-based formalisms. The abstract and concrete constructs both follow the 

box-format. A label within the box aids readability. To be more visual, the label could 
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also hold icons as in the case of TAM constructs. All these constructs, as we saw, 

adhere to our design principles identified in section 3.2. 

4.8 Collection of Visual Constructs Introduced 

This section simply presents the already introduced visual constructs in one place for 

the convenience of the reader. 

[J Formula r ~ NepUon 

~ And composlUon I (,.~,,) I Unlve ..... Quaintlfter 

skip skip 

'I 
c:bopslBr 

+ 
Chop 

f 

'2 

Figure 4.28: Primitive Visual ITL Formulae 
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I [-~~) I SmaeliJn. 

f 
I(""~)I AI-f' 

r 

Or 

Figure 4.29: Frequently used Visual Abbreviations 

( While] 

I " M " I 
Figure 4.30: The Concrete Visual Construct for While 
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( Ir .. then ) 
r. I. 

r, I-- I, 

r2 12 

[ U .. then •. elae ) 

r. I. 

I, 

Figure 4.31: The Concrere Visual Constructs for If Then, If Then Else 

I ChaDDel C In P = 

Cte 

C?x 

C.x 

( esiIII diann .. : C 

P 

Introduces a Dew chaDDel C In P 

deDotes an output ageDt that sends lbe value of expressloD e over C 

denotes aD Input ageDt that stores the value received over C ID x 

denotes the value of x ID C 

Figure 4.32: The Visual Channel Communication Constructs 
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Shunts in P = ( exists shunt: s ) 
introduces a new shunt s in P 

p 

stamp(s) gives the stamp of shunt s 

wrlte(v,s) 
value v Is written to shunt s 

read(s) 
gives the value stored in shunt s 

Figure 4.33: The Visual Shunt Communication Constructs 

delay n 

( timeout) 

p 14 Q 

Figure 4.34: The Concrete delay and timeout Constructs 
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request(v, res) 

release(v, res) 

4.9 Examples in Visual Notation 

denotes the agent that 
requests v units of resource res 

denotes the agent that 
releases v units of resource res 

Figure 4.35: The Concrete Resource Allocation Constructs 

4.9 Examples in Visual Notation 

In this section, simple examples are given. The Automobile Cruise Control System 

introduced in section 4.2.6 is also re-worked using the VisITL notation. 

4.9.1 Some Abstract Examples 

Figure 4.36: Simple Examples 

Figure 4.36 is equivalent to (/ = 4). Figure 4.37 (a) is equivalent to 0(/ = 4). This 

means that / takes the value of 4 in the next state. Figure 4.37 (b) means that / takes 

the value of 4 in all the states of the interval. Its ITL equivalent is 0(/ = 4). Figure 

4.37 (c) means that 1 takes the value of 4 in some one/more states in the interval. Its 

ITL equivalent is 0(/ = 4). Figure 4.37 (d) means that 1 takes the value of 4 in the 

next state if there is one. Its ITL equivalent is €{I = 4). Figure 4.38 (a) is equivalent 

to the ITL fonnula (I = 1) 1\ 0(1 = 0). Figure 4.38 (b) is equivalent to the ITL fonnula 

(J = 1) 1\ 0(1 = 0). Figure 4.39 (a) is satisfied by an interval if (1=0) is true in the left 

subinterval and (1= 1) is true in the right subinterval. Its ITL equivalent is / = 0; / = 1. 
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( next) [ alWays) 

1=4 1=4 

(a) (b) 

[sometime) [ weaknext) 

1=4 1=4 

(c) (d) 

Figure 4.37: Simple Examples with Different Formula Labels 

I 

Bi~next ) 
I 1 .. 0 
I 

(a) 

1,...------., B: [someu_) 
I 1.0 

(b) 

Figure 4.38: Simple Examples using Parallel Composition 

1=0 

1=1 

Figure 4.39: Simple Example using Chop 
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4.9.2 An Example of An Automobile Cruise Control System 

Let us consider the automobile cruise control system again. 

We can now specify a constraint on the state space as below: 

If the value of the speed is either Zero or Max., then, SpeedS tate is going to be 

constant 

This is specified in Figure 4.40. 

Implicit in this constraint is the fact that the SpeedState mayor may not be constant 

when the SpeedVal is neither Zero or Max. 

SpeedVal=Zero 

SpeedState=Constant 

SpeedVaI=Max 

Figure 4.40: Constraint3 

The Initial State Specification 

We can define a formula. Flnitial, for initial states of the cruise control system. The 

initial states include, say, the engine being off, the cruise lever set to off, the car speed 

being zero, the internal state being idle and the desired speed not yet being set. This 

can be specified in VisITL as in Figure 4.41. 

Safety and Liveness Specification 

If the engine is otT, then, the car will eventually stop 

Turning off the engine implies that eventually, the speed will become zero. 

The spec. is given in Figure 4.42. 

If the lever of cruise const is applied, and the brake Is ott at that time, the 
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I INITIALST ATE: FInitla. ] 

CarInternalState = Idle 

~------------------
Cruise V aI = OtT 

~------------------
Speed Val = Zero 

~------------------
EngineState = Oft' 

Figure 4.41: Initial State 

(Sometime) 

Speed Val = Zero 

Figure 4.42: Liveness 1 

desired speed, DesiredSpeedSetting, will eventually be set, whether it has been set 

previously or not. 

The spec. is given in Figure 4.43. 

Examples with real time constraints : 

Let us first make some assumptions and introduce certain constants. Let CAccel­

eration denote the magnitude of a constant value of both acceleration and deceleration 

rate. The maximum value for the car speed was already introduced as Max. Hence the 

maximum time required for a car to achieve its maximum speed, say CMaxTime. will 

be MaxfCAcceleration. Let CInfinity denote an arbitrary large number for time greater 
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BrakeState = OtT 
( sometime) 

Cruise Val = Const 
SpeedVal = DesiredSpeedSettlng 

Figure 4.43: Liveness2 

than CMaxTime. 

Now we can introduce an example specification as in Figure 4.44 with real-time 

constraints. 

lethe current speed is below the desired speed, and if the car increases its speed 

continuously for a period longer than CMaxTime, then the speed of the car will 

eventually reach the desired speed. 

t >= CMaxTime 

~--------------
SpeedS tate = Up 

t < CInftnity 

~--------------

Speed Val < DeslredSpeedSetting 
( Sometime) 

SpeedVal = DeslredSpeedSettlng 

Figure 4.44: RealI 
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4.10 Chapter Summary 

In this chapter, we have introduced ITL with example specifications highlighting some 

of the problems with textual ITL. A visual notation for ITL has been introduced after 

elaborating on the design rationale. Several example specifications have been shown 

visually. However, just having a formal and visual language is not enough for formal 

development. There is a development method needed to derive an implementation from 

the VisITL specification. A development method should also support the derivation of a 

high-level specification from an existing implementation. Therefore, we need a Visual 

Framework for formal systems development that not only consists of a formal and 

visual language but also rules for transforming VisITL specifications suitably to either 

make it more concrete or more abstract depending on whether the user wishes to derive 

an implementation or a high-level abstract specification. In the next chapter, we shall 

explore how the development process in VislTL is made possible. 
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A Visual Framework for VisITL 

The main objective of this chapter is to introduce the Visual Framework for VisITL. 

5.1 The Visual Framework 

In chapter 4, the VisITL language was introduced with examples. Although this visual 

language captures the requirements formally, there is a need for a development process 

in which an implementation can be derived formally. Moreover, in order to redevelop 

or understand already existing implementations, there is a need to extract a high-level 

specification from the implementation. In other words, the Development Process aims 

to incorporate the possibility of Redevelopment of existing implementations. Therefore, 

we need a suitable formal framework. This is defined as the Visual Framework for 

Fonnal Systems Development using Interval Temporal Logic or simply the Visual 

Framework for VisITL. As explained below, it consists of the following components: 

• The VisITL visual and formal language 

• Visual Refinement Rules for deriving an implementation 

• Visual Abstraction Rules for deriving a high-level specification from an existing 

implementation 
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The Figure 5.1 depicts the development process using VisITL. In this Visual Frame­

work, apart from the VisITL language, there are visual refinement rules and abstrac-

The Development Process In a VIsITL Framework 

Valldale Requiremenb Abstract 
' ........ - ......... VIsITL spedftcatllotfo ... --...... ~ 

!Ulna PVS 

FORWARD 
ENGINEERlNC 

reftne abstract 

VIsITL spec:lftcatlo, ...... ---"* 
I 

more reftnements I 

~ 
• I more abstractions 

REVERSE 
ENGINEERING 

I 

VIsITL speclftcatlo ...... _--.... 

reftne abstract 

Concrete 
VIsITL speclftcatlorfoo .... --...... ~ 
I.e., Implementation 

Code &enerator Abstraction via CSL 

Implementation 
In C, Ada etc. 

Simulation O8ln& 

Tempura to check 

behaviour orthe system 

as speclfted In VIsITL 

Ian&UB&e 

Figure 5.1: The Development Process in a Visual Framework using VisITL 

tion rules for systems development using VisITL specifications. Initially, with a VisITL 

specification capturing requirements, the user could perform validation using the proof 

system of ITL. Also, the user would be able to simulate the system behaviour at any 

abstraction level using Tempura. To allow the user to seamlessly go forward from the 

abstract VisITL specification, we need to provide sound visual refinement rules in the 

framework. In other words, just having a VisITL specification capturing requirements 

is not enough. To derive an implementation i.e., forward engineer the specification, we 

need visual refinement rules in the framework. Similarly, in order for the user to per­

form reverse engineering [103], i.e. derive a high-level specification from an existing 

implementation, we need to provide sound abstraction rules in the VisITL framework. 
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This chapter is therefore devoted to the development of visual refinement and abstrac­

tion rules. As the Figure 5.1 depicts, a concrete VisITL specification could be translated 

into an implementation in a suitable language like Ada, C etc .. In reverse engineering, 

the source code in C or Ada etc. is first translated into a Common Structural Language 

(CSL) [103] and then into a Concrete VisITL specification. 

5.2 Refinement 

This section will introduce refinement and visual refinement rules. 

S.2.1 An Overview of Refinement 

The term refinement is used in several related but subtly different ways in technical 

contexts [87]. One usage which is relevant to us is it being used as a relation on speci­

fications and treating an implementation as a special case of a specification. In simple 

informal terms, we could view the process of refinement as adding some detail or im­

provement to a specification to obtain a new specification. This way, implementations 

can be derived from specifications incrementally in a stepwise manner. 

For untimed systems, a refinement calculus was developed by Back [7]. It extends 

Dijkstra's weakest precondition semantics for total correctness of programs between 

program statements. The refinement calculus was extended to provide a framework 

for total correctness for parallel systems in [8, 9]. Morgan's work [112] details how 

refinement calculus could be applied in practical program derivations. 

For real-time systems, a number of refinement calculi exist. They include one for 

PLtime [76], a real-time language with eSP-like syntax with extensions for real time. 

[105] describes refinement of complex systems based on the Temporal Agent Model 

and its associated calculus. 
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5.2.2 Refinement in ITL 

A refinement calculus for ITL, which is based on the TAM refinement calculus, is read­

ilyavailable [29]. In this technique, we distinguish between two levels of representa­

tion. The first is "abstract" and the second is "concrete". At the first level, systems are 

specified at their highest level of abstraction where design and implementation issues 

are ignored. These issues are only considered during the transition from the abstract 

level to the concrete level. This transition is performed using correctness preserving 

refinement laws. Using such a calculus, an ITL formula could be refined into concrete 

code written in languages such as Ada or C. 

The development technique using VisITL specifications is based on refinement. We 

define the refinement relation ~ in the normal way as : 

Since refinement is defined in terms of "implication", we use the visual notation 

for "implication" to denote refinement. So, Figure 5.2 denotes refinement visually. It 

suggests intuitively that h contains more details than /1 because of the shaded box. 

Figure 5.2: Visual refinement 

The process of refinement is the same as that of program derivation. When a pro­

gram is derived by the application of sound refinement rules, we can derive a proof of 

correctness for the statement that the program implies the specification, by tracing the 

steps from the program back to the specification. The process of refinement follows a 

common pattern for refinement calculus developments. Ordinary laws are used, first, 
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to transform the formula until it matches the left hand side of a refinement law. Then, 

the matching refinement law is used to replace the formula with the right hand side part 

of the refinement law. Doing this successively, the formulas are replaced by program 

code. 

This common pattern for refinement calculus developments presents us with a pos­

sibility to abstract a wide variety of users from the depth of mathematics involved in 

the underlying formalism. 

For refining ITL specifications, one has to apply the rules defined in ITL. In par­

ticular, for refinement on VisITL specifications, we require "Visual Refinement Rules" 

which are defined in the following section. For each rule in VisITL, the corresponding 

textual ITL rule is also given for reference. We can quickly ascertain the meaning of 

the rule depicted visually as compared to the equivalent textual rule loaded with many 

notations. Also, the shaded box always quickly guides us to the meaning that what it 

contains is "more detailed" or "refined". 

5.2.3 Visual Refinement Rules 

In order to refine VisITL specifications visually, we define several visual refinement 

rules below. This repository of rules is extendable by the user with additional rules 

provided they are proved to be sound. 

In our visual framework, we can view this as a replacement of one picture (or dia­

gram) by another picture according to the rules of the logic. Correct refinement is thus 

viewed as replacing pictures with other pictures according to sound visual rules. In this 

way, we try to give the user a feeling that he/she is doing nothing more than a normal 

task which is far removed from mathematics and formal logic ! 

In software tools supporting this framework, annotations about the rules, i.e. an 

informal description of the rules, could be incorporated into the visual depiction of the 

rules. Such support in a visual framework will help users in feeling comfortable in a 

formal approach to the development of systems. 
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We classify the visual refinement rules into the following categories based on the 

purpose for which they are used. 

• Visual Refinement Rules 

I. General The rules enable us to refine specifications on the same logical 

level. 

2. Concrete These rules enable us to introduce more concrete constructs dur­

ing the process of refinement. 

The following are some Visual Refinement Rules. 

1. General Visual Refinement Rules : 

• Transitivity Rule (General Visual Refinement Rule 1) 

Textually, the rule is : 

(ITL ~ -1) (fo ~ lI)and(f1 ~ 12)implies(fo ~ h) 

In VisITL, this is shown as in Figure 5.3 

Figure 5.3: General Visual Refinement Rule 1 

This rule states that if II is a refinement of fo and h is a refinement of f1' 

then, 12 is a refinement of fo. 

• General Visual Refinement Rule 2 

Textually, the rule is : 

122 



Ph.D. Thesis S.2 Refinement 

(ITL ~ -2) (fo ~ ft) and(h ~ /3) implies (fo 1\ f2) ~ (f1 1\ /3) 

In VisITL, this is shown as in Figure 5.4 

Figure 5.4: General Visual Refinement Rule 2 

This rule states that if fo is refined by !I and h is refined by /3, then, the 

"and-composition" of fo and h is refined by the "and-composition" of fl 

and/3. 

• General Visual Refinement Rule 3 

Textually, the rule is : 

(ITL ~ -3) (fo ~ ft) and(h ~ /3) implies (fo V h) ~ (fl V /3) 

In VisITL, this is shown as in Figure 5.5 

4 <ffi 
Figure 5.5: General Visual Refinement Rule 3 

This rule states that if fo is refined by f1 and h is refined by f3, then, the 
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disjunction of fa and 12 is refined by the disjunction of It and h . 

• Chop Monotonicity Rule (General Visual Refinement Rule 4) 

Textually, the rule is : 

(ITL !; -4) (fl !; h) implies (fa ; ft) !; (fa; h) 

In VisITL, this is shown as in Figure 5.6 

KJm 

~ ~ 
Figure 5.6: General Visual Refinement Rule 4 

This rule states that if II is refined by 12, then, fa; fl is refined by fa ; h. 

• General Visual Refinement Rule 5 

Textually, the rule is : 

(ITL !; -5) (fa !; ft> implies (fa)* !; (fd* 

In VisITL, this is shown as in Figure 5.7 

This rule states that if fa is refined by fl' then, (fa) * is refined by (fl)·. 

2. Concrete Visual Refinement Rules : 

• Assignment Rule (Concrete Visual Refinement Rule 1) 

Textually, the rule is : 

(ITL := -1) Ox = exp !; x:= exp 

In VisITL, this is shown as in Figure 5.8 

This rule states that the ITL statement 0 x = e is refined by the assignment 

statementx := e. 
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Figure 5.7: General Visual Refinement Rule 5 

Figure 5.8: Concrete Visual Refinement Rule 1 

• If.1 (Concrete Visual Refinement Rule 2) 

Textually, the rule is : 

5.2 Refinement 

(ITL if - 1) (fo II ft) V (12 II /3) C if fo then fl 012 then /3 fi 

In VisITL, this is shown as in Figure 5.9 

This rule states that the logic statement (fo 1\ It) V (12 1\ /3) is refined by 

the "if .. then" concrete construct in the shaded box which simply means that 

if fo holds, then, fl holds and, otherwise i.e., if 12 holds, then, /3 holds . 

• While· I (Concrete Visual Refinement Rule 3) 
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Figure 5.9: Concrete Visual Refinement Rule 2 

Textually, the rule is : 

(ITL while - 1) (fo 1\ ft)* 1\ fin ( -,fo) ~ while fo do f1 

In VisITL, this is shown as in Figure 5.10 

, 

~i at) 
lrnl'lD 
: to 

Figure 5.10: Concrete Visual Refinement Rule 3 

This rule introduces a "while loop" concrete statement for a corresponding 

abstract VisITL formula . 

• While-2 (Concrete Visual Refinement Rule 4) 

(ITL while - 2) (it)* ~ while true do it 

In VisITL, this is shown as in Figure 5.11 

( while) 

Figure 5.11: Concrete Visual Refinement Rule 4 

This rule states that the logic statement (fI) * • representing a non-terminating 

loop in which fl is true, is refined by the concrete "while" statement in the 

shaded box. 
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• Var-1 (Concrete Visual Refinement Rule 5) 

Textually, the rule is : 

(IT L var - I) 3 x • f ~ var x in f 

In VisITL, this is shown as in Figure 5.12 

exists: X varX in 

f f 

Figure 5.12: Concrete Visual Refinement Rule 5 

This rule is for the introduction of local variables . 

• Execution-t (Concrete Visual Refinement Rule 6) 

Textually, the rule could be represented in ITL as : 

(/TL Execution - t) f ~ f 1\ (len = t) 

In VisITL, this is shown as in Figure 5.13 (a). 

5.2 Refinement 

Figure 5.13 (b) shows how it is depicted on a while loop when we choose 

an execution time of t steps for the body of the while loop. 
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(a) 

(b) 

Figure 5.13: Concrete Visual Refinement Rule 6 
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S.2.4 Some Examples using Visual Refinement Rules 

1. Usage of the Transitivity Rule 

As shown in Figure 5.14, if 0 < x < 10 refines x > 0 and 5 < x < 7 refines 0 < 

x < 10, then applying the General Visual Refinement Rule i.e., the Transitivity 

Rule, we obtain 5 < x < 7 as a refinement for x > O. 

BB 

Figure 5.14: Usage of the Transitivity Rule 

2. Usage of the General Visual Refinement Rule 2 

As shown in Figure 5.15, if 0 < x < 10 refines x > 0 and y < -5 refines y < 0, then 

applying the General Visual Refinement Rule 2, we obtain 0 < x < 10 1\ Y < -5 

as refinement for the specification x > 01\ Y < O. 

BB II~ 13 I 
I 

s>o 1<8 • < x < 10: J <.5 
I 

Figure 5.15: Usage of the General Visual Refinement Rule 2 
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3. Usage of the Assignment Rule 

As shown in Figure 5.16, if in the next state x gets incremented by 1, then, we 

can introduce the assignment statement x := x + 1 using the Assignment Rule. 

Figure 5.16: Usage of the Assignment Rule 

5.3 Abstraction 

This section will introduce abstraction and visual abstraction rules. 

5.3.1 Introduction 

Abstraction is a process of generalisation, removing restrictions, eliminating details 

and removing inessential information [149]. Unlike transformations, which keep the 

semantics unchanged, abstraction endeavours to weaken the original semantics of the 

system implementation. Thus abstractions cannot be applied without a clear idea of 

which information contained in the program refers simply to the implementation, and 

not to the function of the program [102]. A crucial aspect in the field of reverse engi­

neering is this notion of abstraction since the implementation, design and specification 

are at different levels of abstraction. 

An abstraction relation t is defined [103] as a function relating two agents. If an 

agent 11 is an abstraction of 10, it is written as 10 tR 11 = R(fo,/1) (read as 11 

is an abstraction of /0 in respect of R) where R is defined as bending to the type of 

abstraction. 

Abstractions can be classified as follows : 
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• Weakening Abstraction 

/0 !::WA /1 = /0 :::> /1 

5.3 Abstraction 

Weakening abstraction refers to semantics weakening of representations (specifi­

cation or code), during abstraction. In other words, if some information is taken 

out of the original representation and the semantics of the original representa­

tion implies the new one, then, the new representation is said to be a weakening 

abstraction of the original one. 

• Hiding Abstraction 

/0 !::HA /1 - HA(fo'/.) 

means that B is a hiding abstraction of A on the condition that a part of A is 

hidden. This is a special case of Weakening Abstraction, where a part of the 

agent's data space is considered as irrelevant. Hiding Abstraction is often used to 

get rid of local variables and internal communication channels. 

• Temporal Abstraction 

If the duration of A is denoted as T(A) and defined as T(A) = {x E t I A /\ len = 

x}, then, 

/0 trA It = (/0 ::> /1) /\ Rr(T(A),T(8)) 

is the formal definition of temporal abstraction. 

Rr(T(A), T(8)) is a relation between the execution times of A and B. In temporal 

abstraction, the execution time of the new representation can either be speeded 

up or slowed down compared to that of the original representation. 

• Structural Abstraction 

Structural Abstraction is concerned with making structural simplification in sys­

tem representation. With structural abstraction, sequential and parallel compo­

sition structures are reduced and their effects recorded in a more abstract rep­

resentation. Two basic conditions which determine whether a change in system 
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representation is a structural abstraction are firstly. whether any sequential or par­

allel composition is reduced in the new representation and secondly. whether the 

semantics of the new representation is a weakening of the original. 

Structural abstraction on sequential composition. for example. is defined as fol­

lows: 

fo tSA it = (fo :) ft} 1\ #seq - op(fo) > #seq - op(ft} 

where #seq - op(fo) and #seq - op(fl) represent the number of sequential com­

position operators in fo and it respectively. 

• Data Abstraction 

It is a general technique by which the state space can be changed. So. one can 

change the original data types to higher level data types. In data abstraction. 

a data abstraction relation must be defined first. which maps the original data 

structures to new data structures and therefore the original data states to new 

data states. The condition of data abstraction is that the semantics of the new 

representation must be a weakening abstraction of the original one. 

The formal data definition of data abstraction is as follows: 

Assuming fo and fl are two representations. r is a data abstraction relation: 

r={(x,y): xEX,yEY,X={statesof fo},Y={statesof f.}}. 

Therefore. fo is data abstracted to it on relation r. is defined as : 

fo tDA it = r(fo) :) fl 

The above definition means that fl is a data abstraction of fo on relation r on the 

condition that. if the states of fo are mapped to those of it. then. the semantics 

of fl is a weakening of the mapped semantics of fo. 

5.3.2 Abstraction Rules 

It has been already mentioned that in order to reverse engineer an implementation to 

extract a specification. one has to cross several levels of abstraction. To do this. there is 
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a repository of abstraction rules. [103] classifies abstraction rules into two categories: 

• Elementary abstraction rules 

These are rules to abstract source statements into logic formulae which may be 

redundant and specific. These are further classified as : 

1. Primitive abstraction rules 

2. Compound abstraction rules 

• Further abstraction rules 

These rules abstract a more concise and abstract specification from the formulae 

through composition and semantics weakening. 

It is beyond the scope of this thesis to cover the whole topic of abstraction in detail. 

However, many of the rules mentioned in [103] will be covered and examples in the 

context of how abstraction can benefit from visual ITL specifications and visual rules 

of abstraction given. 

In this context, only the elementary abstraction rules which include primitive and 

compound abstraction rules will be covered. 

5.3.3 Visual Abstraction Rules 

The abstraction rules are covered below in accordance with the VisITL syntax. These 

rules are by no means exhaustive. 

The visual abstraction rules are classified as follows : 

• Visual Abstraction Rules 

1. Elementary primitive These are simple rules that enable us to abstract 

source code statements which may be redundant and specific into logic for­

mulae. 
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2. Elementary compound These are less simple rules that enable us to ab­

stract source code statements which may be redundant and specific into 

logic formulae. 

1. Visual Elementary Primitive Abstraction Rules : 

• Assignment (Visual Primitive Abstraction Rule 1) 

This rule extracts a logic formula from an assignment statement which as­

signs the value of expression e to variable x. 

Textually, the rule is: x := e t Ox = e. 

This could be shown in VisITL framework as in Figure 5.17 

Figure 5.17: Visual Primitive Abstraction Rule 1 : Assignment 

This is same as the refinement rule for introducing assignment except that 

the shaded box appears on the left. This change in position is just to indi­

cate that the rule is going to be used in replacing the concrete shaded box 

on the left with the abstract box on the right. Otherwise, the abstraction rule 

formula is the same as the refinement rule formula. However, this introduc­

tion of a "new rule" which is only slightly different from the corresponding 

visual refinement rule could confuse the user. A better idea would be not 

to associate any meaning to left and right positions. As a result, one rule 

could be used either for refinement or for abstraction. In other words, dur­

ing refinement, if the contents of the specification matched the un shaded 
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box in the rule, then, we could use the transformation rule for refinement. 

During the process of abstraction, we look for a match between the VisITL 

specification and the contents of the shaded box in the transformation rule 

to determine if it could be applied for abstraction. In this manner, a vi­

sual transformation rule incorporates both refinement and abstraction. This 

simplifies the repository of visual rules too. I emphasise again that a vi­

sual transformation rule within the VisITL framework has one shaded box 

and one unshaded box to indicate the relation between the two formulae in­

volved i.e., that the former box contains a formula that is more refined than 

the formula in the unshaded box. Therefore, the visual transformation rules 

could have these shaded and unshaded boxes in any positions relative to one 

another. The user simply has to think about the contents of the shaded and 

un shaded boxes and not worry about their positions. 

• Input Statement (Visual Primitive Abstraction Rule 2) 

This rule extracts a logic formula from the assignment statement which 

reads the value in shunts (see section 4.6.7) to var y and stores the timestamp 

in x. 

Textually, the rule is : 

(x,y) +- s t x = ..; S 1\ Y = read(s) 

This is shown in visITL as in Figure 5.18 

Figure 5.18: Visual Primitive Abstraction Rule 2: Input Statement 

• Output Statement (Visual Primitive Abstraction Rule 3) 

This rule extracts a logic formula from the output statement which writes the 
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value of the variable or expression x to shunt s, and changes the timestamp 

of s to the time when the last write operation occurred. 

Textually, the rule is : 

x -+ s t skip 1\ Os = (Js+ I,x) 

This is shown in visITL as in Figure 5.19 

I 
I 

Ikip I 0 ... (.(1+ I,ll) 
I 
I 

Figure 5.19: Visual Primitive Abstraction Rule 3: Output Statement 

• Type Definition (Visual Primitive Abstraction Rule 4) 

This rule abstracts a declaration statement declaring a variable x of type T 

by a logic formula which states that ''there exists a variable x which has 

features of type T". 

Textually, the rule is : 

x : T ?: Type(x, T) 

This is shown in visITL as in Figure 5.20 

Type(x,T) 

Figure 5.20: Visual Primitive Abstraction Rule 4: Type Definition 

• Delay (Visual Primitive Abstraction Rule 5) 

This abstracts a delay statement using the "len" operator in ITL. 

Textually, the rule is: 

delay n t len = n 
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This is shown in VisITL as in Figure 5.21. 

...... _d_e_la_y_n_.... I len = n 

Figure 5.21: Visual Primitive Abstraction Rule 5 : Delay 

• Sequential (Visual Primitive Abstraction Rule 6) 

This abstracts a sequential composition formula into an "and-composition". 

This is because the sequential composition is one of two possible refine­

ments to an "and", the other being parallel composition. 

The rule is applicable iff 10 ; 11 is of the form (/0 1\ empty) ; 11. This con­

dition is to be satisfied so that the abstraction is sound. So, if this soundness 

condition is satisfied, then, applying this abstraction would then allow a 

later refinement to parallel composition if desired by the user. These sound­

ness criteria for rule application could be signalled to the user when he/she 

attempts to apply a rule manually. If it is an automatic application of the 

rule, then, this condition has to be checked by the tool automatically. 

Textually, the rule is : 

10 ; 11 t: 10 1\ It 

This is shown in VisITL as in Figure 5.22. 

Figure 5.22: Visual Primitive Abstraction Rule 6: Sequential 
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The soundness criteria for applying this abstraction rule is given by Figure 

5.23. 

~ I empty 
I 
I 

Figure 5.23: Soundness Criteria for Visual Primitive Abstraction Rule 6 

2. Visual Compound Abstraction Rules 

• Sequential Composition (Visual Compound Abstraction Rule 1) 

/0 t h 

/1 t /3 

/0 ;/1 t h;/3 

If two representation fragments have a sequential relation, they can be ab­

stracted separately, and the resultant representation composed with a se­

quential operator. 

This is shown in visITL as in Figure 5.24 

Figure 5.24: Visual Compound Abstraction Rule 1 : Sequential Composition 

• Iteration Statement (Visual Compound Abstraction Rule 2) 
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This rule extracts a logic formula from an iteration statement. The iteration 

is mapped into "chopstar" formula in ITL while the iteration body can be 

abstracted separately and then joined into the chopstar structure. 

Textually, the rule is : 

fo ~ it 
while g do fo ~ (g /\ fl)* /\ fin(-,g) 

In VisITL, the rule is represented as in Figure 5.25 . 

Figure 5.25 : Visual Compound Abstraction Rule 3 : Iteration Statement 

• Parallel (Visual Compound Abstraction Rule 3) 

This rule states that two concurrent or parallel representations can be ab­

stracted separately and the results composed through the conjunction oper-

atar. 

Textually, the rule is : 

fo ~ 12, fl ~ 13 

fo II fl ~ (/2 /\ 13) 

In VisITL, the rule is represented as : 
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Figure 5.26: Visual Compound Abstraction Rule 3 : Parallel 

5.4 Summary 

This chapter introduced the development process in VisITL as a supporting framework 

to the VisITL language developed in Chapter 4. Initially, with a VisITL specification 

capturing requirements, the user could perform validation using the proof system of 

ITL. Also, the user would be able to simulate the system behaviour at any abstraction 

level using Tempura. To allow the user to seamlessly go forward from the abstract Vis­

ITL specification, sound visual refinement rules in the framework are needed. In other 

words, just having a VisITL specification capturing requirements is not enough. To de­

rive an implementation Le., forward engineer the specification, visual refinement rules 

are needed in the framework. Similarly, in order for the user to perform reverse engi­

neering [103], i.e. derive a high-level specification from an existing implementation, 

we needed to provide sound abstraction rules in the VisITL framework. For refinement 

of VisITL specifications in a visual framework, visual refinement rules were introduced 

with some illustrative examples. This framework now enables users to simply use ap­

propriate visual rules incorporated into the repository and refine VisITL specifications. 

Also, abstraction rules were introduced to facilitate the re-engineering process in a vi­

sual framework. In the next chapter, simple examples and case studies in VisITL will 

be seen. 
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Chapter 6 

Case Studies in VisITL 

In chapter 4, a simple notation for VisITL was introduced along with examples in Vis­

ITL. In this chapter, we shall look at a case-study in VisITL specification considering 

the development technique of refinement introduced in the previous chapter. In addi­

tion, we shall, briefly, consider an example where abstraction is performed within the 

visual framework to obtain an abstract VisITL specification. 

6.1 A Robot Control System 

This case study is an application involving multiple processes [26] for a robot control 

system. An informal description of the system is given below: 

"The tele-operated robot is a tracked device which was originally developed for mil­

itary use. The carriage can easily traverse over rough terrain. The vehicle schematic 

is shown in Figure 6.1. The vehicle has on-board a manipulator arm that has three 

degrees of freedom controlled by hydraulic actuators. The electric drive motors, ma­

nipulator actuators and on-board lamps are controlled manually by the operator via a 

control box that is linked to the vehicle. Currently one controller caters for the main 

control, one for the infrared sensor interfacing and processing, and a third for the on­

board camera control. 

The actual vehicle is driven by two motors, left and right, indicated as L and R in 

141 



Ph.D. Thesis 6.1 A Robot Control System 

Figure 6.1. Both of these motors can move forwards and in reverse. The vehicle is 

steered by moving one motor faster than the other. 

From a control point of view, commands are issued to the motors via a operator 

joystick (L and R of the operator console in Figure 6.1 which issues integer values in 

the range 0 ... 127 for forward motion and 0 ... -128for reverse motion. It is possible to 

drive only one motor at a time, in such a case, the robot will turn. The speed of the 

motors is directly proportional to the value written to them. 

The robot is equipped with 8 infra red sensors. These return an integer value in 

the range 0 ... 255 depending on whether an obstacle is present or not. 0 indicates no 

obstacle, 255 indicates obstacle very near. We normally operate with a threshold of 

around 100, above which we take notice of the sensor readings, i.e., an obstacle is of 

interest. At this point, reactive control takes over from the manual control by moving the 

vehicle away from the obstacle until the 100 threshold is not set. The sensor positions 

are as follows : N, NE, E, SE, S, Sw, W and Nw, covering the body of the robot as 

shown in Figure 6.1." 

The following presents the specification and the design of the driving part of the 

robot control system. 

The specification can be divided into 3 parts, one each for motor control, infra-red 

control and operator control. The specification for the robot control system is given by 

Figure 6.2. The ITL formula for it is : 

ROBOT CONTROL SYSTEM = 
(MOTOR CONTROL SYSTEM) /\ (INFRA-RED CONTROL SYSTEM) /\ (OPERA-

TOR CONTROL SYSTEM) 

We can, now, separately consider each of the three components for specification 

and refinement. 
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NW N NE 

= = 
W E ®~® 

L R II 
000 

OPERATOR CONSOLE 

SW S SE 

ROBOT 

Figure 6.1: A Schematic of the Robot Control System 

MOTOR CONTROL SYSTEM 

ROBOT CONTROL SYSTEM . 
IINFRA.RED CONTROL SYSTEM I 

I OPERATOR CONTROL SYSTEM I 

Figure 6.2 : VisITL specification of the Robot Control System 
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1. Motor Control : 

If the sensor detects an object, then the control system takes over control ; oth­

erwise, if the operator requests a new movement, then it is actioned. Let l-i-c 

and r-i-c denote respectively the left and right motor commands issued by the 

infra-red control. Let i-act denote the presence/absence of an object. Let l-o-c 

and r-o-c denote the left and right motor command issued by the operator and let 

o-act denote an active operator request. Let move(l,r) denote the sending of left I 

and right r motor commands to the two motors. 

The motor control system (MCS) is formally specified as in Figure 6.3. Applying 

i-act = 1 move(l-i-c, r-i-c) 

o-act = 1 move(l-o-c, roo-c) 

i-act = 0 o-act = 0 

Figure 6.3: VisITL specification of the Motor Control System 

the refinement rule "Concrete Visual Refinement Rule 4 (VisRetRule : While2)" 

as in Figure 6.4, we obtain Figure 6.5. 
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( while) 

Figure 6.4: The While-2 Refinement Rule 

i-act = 1 move(l-i-c, r-i-c) 

o-act = 1 move(I-o-c, roo-c) 
true 

i-act = 0 o-act= 0 

Figure 6.5: VisITL MCS specification after Applying the While-2 Refinement Rule 
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Introducing the "If then" with the "Concrete Visual Refinement Rule 2 (VisRe­

fRule : In" as shown in Figure 6.6, we obtain Figure 6.7. Now, the decision to 

Figure 6.6: The If-I Refinement Rule 

( "bUe) 

( If" then ) 

I .. ct-l 
IDOve(l·I-c:. r·I-c:) 

f-true o-act-l - move(I-o-c:. r-o-c:l 

I 

I 
l .. ct_O I o-act.o true 

I 

Figure 6.7: VisITL MCS specification after Applying the If-l Refinement Rule 

be taken for the issuing of the move commands is not deterministic in case both 

infrared and operator are active. Let us say that we want to design the control in 

such a way that the operator is given precedence. We can state this in the form 

of a design decision rule as shown in Figure 6.8. Applying this design decision 

rule, we obtain the specification in Figure 6.9. The design rules could be imple­

mented as general rules as in Figure 6.10 and during the development process, 

the parameters 'f' and 'g' could be mapped to the parameters desired. This is a 

way forward in aiding the user with Visual design decision rules. 
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B I 
I 

l.ad=1 I o.ac:t-O 
I 
I 

Figure 6.8: Refinement of i-act due to our Design Decision 

( while) 

( II .. then ) 

I 
load .. 1 I 04c:t- 0 move(l.k:, r·k:) 

I 
true - o-ac:t -1 I- move(l-o<, r-o<) 

I 

I 

load- 0 I o-act- 0 true 

I 

Figure 6.9: VisITL MCS specification after Applying the Design Decision 

o I 

Figure 6.10: Visual Refinement Rule - General Design Decision 1 
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Now, applying the Concrete Visual Refinement Rule 6 (Execution-t Rule) for 

choosing a specific execution time of 'f steps for the body of the while loop, we 

obtain the specification in Figure 6.11. 

( whUe) 

( If •• then ) 
I 

I 
I .. ct-I I o-ad_O move(l-l-c. r-I-c) 

It] I 
true f--. 

o-act-I I--- move(l-o-c. r-o-c) 

I 

I 

I .. ct-O I o-act.O true 

I 

Figure 6.11: VisITL MCS specification for an Execution Time of t Steps 

The following is the refinement in textual ITL for comparison in sect. 6.2. 

MOTOR CONTROL Sf ST EM 

( 

( (i - act = 1) /\ move (1- i - c, r - i - c)) v 

( (0 - act = 1) /\ move (1- 0 - c, r - 0 - c)) v 

( (i - act = 0) /\ (0 - act = 0)) 

)* 

Applying the ITL C while-2, we obtain: 

while true ( 

( (i - act = 1) /\ move (1- i - c, r - i - c)) v 

( (0 - act = 1) 1\ move (1- 0 - c, r - 0 - c)) v 

((i-act = 0) 1\ (o-act = 0)) 

) 

Strengthening the guard of the infra-red move as before, by applying the 
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design decision rule: (i - act = 1) ~ (i - act = 1) 1\ (0 - act = 0). 

we obtain 

while true ( 

((i-act = 1) 1\ (o-act = 0) 1\ move(l-i-c,r-i-c» v 

((o-act = 1) 1\ move(l-o-c,r-o-c» v 

( (i - act = 0) 1\ (0 - act = 0» 

) 

Applying the ITL ~ if-l rule. we obtain: 

while true ( 

if ((i - act = 1) 1\ (0 - act = 0» then move (1- i - c, r - i - c) 

o (o-act = l)thenmove(l-o-c,r-o-c) 

o ((i - act = 0) 1\ (0 - act = 0» then true) 

fi) 

2. Infra-red Control: 

The sensors are to be read and for each sensor reading that is greater than the 

threshold of 100, the motor commands are to be adjusted accordingly. 

Let ir - c(i) denote the sensor i(N: i=O, NE: i=l, E: i=2. SE : i=3, S: i=4. SW : 

i=5. W: i=6, NW : i=7). Let mvJ(i) and mvr(i) denote respectively the left and 

right steering commands corresponding to sensor i. Also. let us denote the sum 

of all mvl (i) values by sum( mvl (i» and the sum of all mvr( i) by sum( mvr( i) ). In 

our example. the sum function could be defined as : 

sum(X) = (if ir - c(O) > 100 then X (0) else 0) + 
(ifir-c(l) > 100thenX(1) else 0) + 
(if ir - c(2) > 100 then X (2) else 0) + 

( ...... ) + 
(if ir - c(7) > 100 then X (7) else 0) 

This function adds up the values corresponding to the 8 sensors. Each sensor 
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contributes a value only if it is above the given threshold of 100. 

Here, we note that the function implementation is not given a visual representa­

tion. However, we could extend our visual framework with a graphical way of 

depicting functions. In this context, it is interesting to note how it could be done 

similar to the graphical functions within the stateftow formalism [143]. Such a 

graphical function integrated into the VisITL framework would look like in Fig­

ure 6.12. The condition/the guard is put in square brackets and the corresponding 

[1<8)1 
(i+i.l; 
compule_sum(X) } 

Figure 6.12: A Graphical Depiction for Computing the Sum of Sensor Contributions 

action, if any, in flower brackets. 

The specification for ICS is given formally by the VisITL specification in Figure 

6.13. Using rule Vis-while2, we obtain the specification in Figure 6.14. 
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( r_ ..... ) 

( .... : 0<_101) • 1 .... c(1) > 108 ... ... 1 

l-1d_O 

Figure 6.13: VisITL Specification for the Infra-red Control System 

( _I. ) 
( If.1ben ) 

(_:0"" ... 7) .... «1» 100 '-1-1 

1 ... 1_0 

--------------------------
true ~ I·k • 8IIm(D1"I(I» 

~--------------------------

r-k. _(D1vr(l)) 

Figure 6.14: VisITL ICS Specification after Applying Vis-while2 
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Applying the Concrete Visual Refinement Rule 6 (Execution-t Rule) for choosing 

an execution time of "t" steps for the body of the while loop would result in Figure 

6.15. So, for an execution time of t, the specification can be shown in refined form 

[ W1U~ ) 

( If .• !beD ) 
(_:0<-1<-7) ..... (1»100 1_1-\ 

1_1_0 

--------------------------
[IJ 

true .. 1·1..., • sum(mvl(l) 

--------------------------
r-loe:. sum(mvr(l) 

Figure 6.15: VisITL ICS Specification for an Execution Time of t Steps 

as in Figures 6.16 and 6.17. This will sample the sensors at the beginning of the 

execution interval, set i-act accordingly and disable i-act during the rest of 

the execution interval. 
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( While) 

~ 

infra-red active 

[t) 
true f-e 

~------------------

I I-i-e = sum(mvl(i) I 
~------------------

I r-i-e .. sum(mvr(l) I 
Figure 6.16: The VisITL ICS Specification with Zoom-in for infra-red active 

I ( If.A_ ) 
I 
I 
I (_, ... 1<-7) ..... (I».ee .... _I 

tmpty • 
I 
I .... -0 
I 
I 

~ 

I *'p I 
~ 

II ~ .• 
. 

I : .... 1e(1o.a) : ".1·2 
I I , 
I *'P I 

Figure 6.17: The Zoomed-in infra-red active for Execution Time of t 
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If we choose an execution time of 1 i.e., one time step, then, the specification 

would be represented as in Figure 6.18. 

( If_lboa ) 
( ...... :Oc-l.a.'7) .11' .• (1» 100 I..:t-l 

1_1.0 

--------------------------
lnIe - I-I-c. sum(mvl(l» 

--------------------------
r-I-c • sum(mvr(l» 

Figure 6.18: Final Refined ICS for the Special Case of Unit Execution Time 

3. Operator Control: 

If the operator requests some changes, then, these are to be processed. 

Let ll- 0 - c and Ir - 0 - c denote respectively the last left and last right steering 

commands received from the operator. 

The specification of the OCS is given by Figure 6.l9. Using rule Vis-varl, we 

can introduce local variables and obtain the specification Figure 6.20. Using 

rule Vis-while2, we can obtain the specification in Figure 6.21. The assignment 

statements can be introduced using Visual Refinement Rule 6 to obtain Figure 

6.22. 
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( exists: U-o-c, Ir-o-c ) 

II-o-c = 0 Ir-o-c = 0 

( 1'.!beD ) 

\ (I....., <> II~) V (r-o-c <> Ir-o-c) o-act.l 

04<1_0 

~---------------------------

I 
i 

I ) O(II-o-c) = l-o-c 
i O(lr-o-c) = r-o-c 1 
i 

Figure 6.19: VisITL Operator Control System Specification 

( var IJ-o-c, Ir-o-c in ) 

II-o-c = 0 Ir-o-c = 0 

---------------------------------
( 1'.!beD ) 

\ (J.o.e <> II ..... ) V (r ..... <> I ...... ) 04<1_1 

__ 0 

~---------------------------

I 
i 

I ) O(II-o-c) = l-o-c 
I O(lr-o-c) = r-o-c I 
I 

Figure 6.20: VisITL OCS Specification after Applying Vis-var! 
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( var II-o-c, Ir-o-c in ) 
I 

I II-o-c = 0 I Ir-o-c =0 I • 

----------------------------------. 
(While) 

[If_lllen) 

(I-o-c <>~) V (r-o-e <> tr-o-c) o-Kl_t 

o-ed .0 
tna ... 

---------------------------

I 
i 

I O(II-o-c)=I-o-c • O(lr-o-c)=r-o-c I 

• 

Figure 6.21: VisITL DeS Specification after Applying Vis-while2 

( var II-o-c, Ir-o-c in ) 
i 

I I II-o-c = 0 I Ir-o-c = 0 
I 

----------------------------------1 
(While) 

[If_III •• ) 

(1-0-<0 ..... )V (..-.: 0 ......... ) 

__ I 

__ 0 

true .. 

----------------------------

I 
I 

I I 
Ir-o-c := r-o-c O-o-c:=I-o-c • • 

Figure 6.22: VisITL OCS Specification after Introducing the Assignment Statements 
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Finally, applying the Execution-t Rule for choosing an execution time of "t" steps 

for the body of the while loop results in the concrete code in Figure 6.23. So, 

( var II-o-c, Ir-o-c in ) 
I 

I II-o-c = 0 I Ir-o-c =0 I I 

~----------------------------------. 

( While ) 

( IfHlben] 

(i+c <> u..c) V (I'+C <> Ir-o-c) .,.. ... 1 

[I] """"_0 
true. 

~---------------------------. 

I 
I 

I I 
Ir-o-c := r-o-c II-o-c := l-o-c I 

I 

Figure 6.23: VisITL oes Specification for an Execution Time of t Steps 

for an execution time of t, the specification can be shown in refined form as in 

Figures 6.24 and 6.25. This will sample the operator signals at the beginning of 

the execution interval, set 0 - act accordingly and disable 0 - act during the rest 

of the execution interval. 
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( var II-o-c, Ir-o-c in ) 

I 
I 

I II-o-c = 0 I Ir-o-c =0 
I 

~----------------------------------. 

(While ) 

~ 

operator-active 

lru 
[I) 

r--
~---------------------------

I 
i 

I U-o-c:=I-o-c 
I 

Ir-o-c := r-o-c I 
I 

Figure 6.24: VisITL OCS Specification with Zoom-in for operator-active 

1 ~ I I 
I I I 
I (a.cOI+c)V(~<>1I'-+oc) .--1 

empty skip I ii-o-e :- i-o-c I ir-o-c :_ r-o-c 
I I I 
I 0411:1.0 

I 

Y 

r .kip I 
• 

ro-Kl
" ° I ltable(o-Kl) I Ien=I·Z I 

I I m stable(lioc) I stable(lroc) I len-t·1 
1 I 

Figure 6.25: Operator-active for an Execution Time oft Steps 
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If we choose an execution time of 1 i.e., one time step, then, the specification 

would be represented as in Figure 6.26. 

( var II-o-c, Ir-o-c in ) 
I 

I II-o-c = 0 I Ir-o-c =0 I I 

-----------------------------------
( While ) 

( it_die.) 

(~ <> u...e) V (r.o-c <> Ir-o-c) .. eel_. 
__ 0 

,",01_ 

---------------------------

I 
I 

I I 
Ir-o-c := r-o-c U-o-c:=I-o-c I 

I 

Figure 6.26: Final Refined OCS for the Special Case of Unit Execution Time 

6.2 Comments on the Two Approaches 

It is easy to see that the transformations on purely textual ITL specifications are not 

that easy to keep track of despite good indenting. There are not many visual cues to 

rely on, despite good indentation of the textual specification. This is a crucial point in 

dealing with even larger specifications on which we might end up applying numerous 

transformations. This adds further strain, especially on a user who is not dealing with 

mathematical specifications on a regular basis. Even formalists would be hard-pressed 

to keep track of the development process especially when automated tools are being 

used on ITL specifications. One advantage however with textual specifications is that 

they are very concise. The refinement of MCS in textual ITL fits on a single page unlike 

the refinement in VislTL which takes several pages. Also, one could manage to write 

down textual specifications using "pen and paper" despite their inevitable dependency 
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on "not-so-easy-to write" mathematical symbols whereas visual specifications are more 

suited for use with an appropriate software tool. In this context, it is interesting to 

mention that the ancient Egyptian Hieroglyphic script is a writing system that employs 

characters in the form of pictures and dates back to the end of 4th millennium S.C .. 

In [19] the interested reader has a nice "self-learning" reference to learn how to write 

using "complicated pictures" without being too much of an artist! 

In contrast, in the visual framework. it was easy to see what happened to the spec­

ification on application of a refinement rule. It was possible to see that the contents 

of boxes were being moved around as depicted by the visual refinement rule adding to 

the confidence of the user that the process was progressing as specified. The user gains 

better control of the formal development process with such visual cues. 

Hence, sacrificing the conciseness of textual specifications for wider accessibility 

of the formal approach is a worthy compromise indeed. In any case, one could always 

translate a VisITL specification to its concise ITL form for the experienced formalist. 

Another interesting point to mention here is that a visual specification provides a 

possible benefit in resolving non-determinism. In the above example. we removed the 

non-determinism that existed by applying a design decision rule to strengthen the guard 

of the infra-red move. However, we could incorporate some geometry rules in order to 

automatically resolve non-determinisms. Maybe. as a default, we could apply some 

geometry rules to resolve non-determinism which could be over-ridden by the user, if 

required, through appropriate design rules. 

Let us consider the specification for motor control system as shown in Figure 6.27. 

Here, the guards are put on the outgoing lines ofthe visual "Or" construct. This is a 

possible new special notation for the "or". We could have a default rule to consider the 

guards in a particular order. If we consider the guards from a 12 '0' clock position on 

the node at which the "or" lines originate in a clockwise manner as depicted in Figure 

6.29, then, the guard i-act gets the first priority. In this case, we ignore the guards 

o - act and (..., i-act 1\ -, 0 - act). If i-act is not satisfied, then, we check 0 - act 

and so on. In this way, we assign the guard i-act the highest priority. This approach is 
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move(I-I-c, r-I-c) 

move(l-o-c, r-o-c) 

Figure 6.27: The i-act Component of the Visual-Or has Higher Priority. 

similar to the approach used within the stateflow visual formalism [143] for resolving 

non-determinism based on geometry. 

For the operator to be able to override infrared control as we did using a design 

decision rule, we have to re-order the boxes as shown in Figure 6.28. 

move(l-o-c, r-o-c) 

move(l-i-c, r-i-c) 

Figure 6.28: The Box Positions are now changed to give the Operator Higher Priority. 

Alternately, it may be a good idea not to attach any meaning to the geometry so that 

non-determinism might be resolved only by the user using some design decision rule. 

In my examples, I have not attached any meaning to the geometry of the "or" lines 

in the Visual "Or" construct. 
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6.3 A Mine Pump Control System 

Figure 6.29: Guard rule using Geometry for Resolving Non-determinism 

6.3 A Mine Pump Control System 

In the previous example, a case study in VisITL involving refinement was considered. 

In the re-engineering of systems, extracting an ITL specification from an existing im­

plementation becomes important. For this purpose, the techniques of abstraction in ITL 

described in [102, 103] are of utmost importance. The following case study demon­

strates how abstraction in ITL can be incorporated in our visual framework. 

This is a commonly occurring case study in formal methods literature. An elab­

orate description of the problem can be found in [24]. An informal specification of 

the problem is reproduced from [91] below with a schematic diagram shown in Figure 

6.30: "Water percolating into a mine is collected in a sump to be pumped out of the 

mine. The water level sensors D and E detect when water is above a high and low level 

respectively. A pump controller switches the pump on when the water reaches the high 

water level and off when it goes below the low water level. If, due to a failure of the 

pump, the water cannot be pumped out, the mine must be evacuated within one hour. 

The mine has other sensors (A, B, C) to monitor the carbon monoxide, methane and 

airfloW levels. An alarm must be raised and the operator informed within one second 

of any of these levels becoming critical so that the mine can be evacuated within one 

hour. To avoid the risk of explosion, the pump must be operated only when the methane 

162 



Ph.D. Thesis 

-Pump -

F 
'-

-= -

UD 

- - -

A 
8 
C 

-

-
.. 

-

6.3 A Mine Pump Control System 
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Figure 6.30: A Mine Pump Control System 

level is below a criticallevel. 

Human operators can also control the operation of the pump, but within limits. An 

operator can switch the pump on or off if the water is between the low and high water 

levels. A special operator, the supervisor, can switch the pump on or off without this 

restriction. In all cases, the methane level must be below its critical level if the pump is 

to be operated. Readings from the sensors, and a record of the operation of the pump, 

must be loggedfor later analysis. 

The main safety requirement is that the pump should not be operated when the level 

of methane gas in the mine reaches a high value due to the risk of explosion. 

For demonstrating an application in abstraction, an implementation of the above 

requirements in ADA which was subsequently translated into a Common Structural 

Language (CSL)l in [103] is chosen as the basis. This case study demonstrates abstrac­

tion using VisITL specifications. 

lCSL was developed [103] to enrich statements in Time Guarded Command Language and make 
Reengineering Wide Spectrum Language (RWSL) compatible to WSL in Maintainer's Assistant tool 
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One module called the "pump module" is selected from the CSL code and trans­

lated it into Tempura code. The Tempura code is given below : 

define Motor-unsafe() = { 

if (Motor-status On) 

Sw := Off 

Motor-status := Off i 

format (' 'motor-stopped \n ") 

} i 

Motor-condition := Disabled 

format("motor-unsafe \n") 

and 

define Motor-safe() = { 

if (Motor-status = Off) 

Sw := On ; 

Motor-status := On i 

format("motor-started \n") 

} i 

Motor-condition := Enabled 

format (' 'motor-safe \n ' ') 

and 

define set-pump (Pump-status) { 

if (Pump-status = On) { 

if (Motor-status = Off) 

if (Motor-condition = Disabled) 

format("pump-not-safe \n") 

if (Ch4-status = Motor-safe) 

Motor-status := On ; 

Sw:=Oni 
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} i 

format (' 'motor-started \n' ') 

else format("pump-not-safe \n") 

else if (Motor-status = On) { 

Motor-status := Off 

if (Motor-condition = Enabled) { 

Sw := Off; 

format("motor-stopped \n") 

Let us take each of the above 3 procedures one by one for abstraction. 

• The motor-unsafe procedure : 

Figure 6.31 is the procedure for motor-unsafeO written using the visual notation. 

Transforming the Visual "If Then" construct using the "if-I" rule for abstraction2• 

we get the transfonned specification in Figure 6.32. 

2Using a rule for abstraction means that we consider the transformation rule for the purpose of ab­
straction. As we saw in chapter 5, we could use any transformation rule for both refinement and abstrac­
tion as loog as it is applicable. 
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( if •• then ) 

I Sw, .. Off I 
j 

Motor •• tatus = On .. I Motor .. tatua I" Off I 
j 

I rormat("motoMtopped In") I , 
Motor-condition 1= Disabled 

• 
rormat("motor·ulllBl'e In") 

Figure 6.31: The Procedure as it is in Tempura 

: I sw:.orr I 
I I 

Motor.status .. 00 : I Motor .. tatus :. orr I 
I I 
I I rormat("motor-stopped \DOl) J 
I 

Motor-CODdidoD ... Dlubled 

lormat("motor'WIIIIleln ") 

Figure 6.32: After Visual Abstraction using if-l 
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Some "chop" operators could be replaced by logic conjunction using VisPA Rule 

6 resulting in further logic composition. The rule is reproduced below from chap­

ter 5. 

Figure 6.33: Visual Primitive Abstraction Rule 6 : Sequential 

Applying this rule, we obtain Figure 6.34. 

I Sw:_ Oft' 

I , 
I 

Motor-status = On I Motor-status :- orr 
I ----------
I lormat("motor-stopped \II") 
I 

! 
Motor-coaditlon := Disabled 

---------------------
lormat("motor-unaare \II") 

Figure 6.34: After Logic Composition 

There are quite a lot of exception test and handling details in the specification 

which need to be abstracted away. After doing this, we obtain Figure 6.35. After 

applying the Visual Primitive Abstraction Rule 1 which extracts a logic formula 

from an assignment statement, we obtain Figure 6.36. 
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I 

I I Sw:- Oft' 
I , 
I 

Motor-status = On I 
I I Motor-status :- Oft' 

I 
I 

Motor-condition :- Disabled 

Figure 6.35: After leaving out Unnecessary Details 

I 

I o (Sw)-otr 
I , 
I 

Motor-status = On I o (Motor-status) - Off 
I 
I 
I 

o (Motor-condiUon) '" Disabled 

Figure 6.36: After applying the Visual Primitive Abstraction Rule 1 
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• motor-safeD procedure 

Figure 6.37 is the procedure for motor-safeD written using the visual notation. 

Transforming the Visual "If Then" construct using the "if-I" rule. we get the 

( if •• then ) 

I Sw:.On I 
1 

Motor-status = Off .. I Motor-status :- On I 
J 

I forJl1llt("motor·.tarted In"> 1 , 
Motor-coodition :- Enabled , 

fonnat("motor ... re \n") 

Figure 6.37: The Procedure as it is in Tempura 

transformed specification in Figure 6.38. Some "chop" operators could be re­

placed by logic conjunction using VisPA Rule 6 resulting in further logic compo­

sition. 

Applying this rule. we obtain Figure 6.39. 
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• 
I L Sw:=On I 
I 1 
I 

1 I Motor-status = Off I Motor-status :. On 

I 1 
I L format("motor-started \0") I 
I 

Motor-condition := Enabled , 
formatC"motor-..re \0 ") 

Figure 6.38: After Visual Abstraction using if-l 

I 

I Sw:_On 

I J I 
Motor-status ,. Off I Motor-status :- On 

I -----------
I format("motor-started \0") 
I 

! 
Motor-colldltion :. Enabled 

~--------------------
format("motor-safe \0") 

Figure 6.39: After Logic Composition 
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There are quite a lot of exception test and handling details in the specification 

which need to be abstracted away. After doing this, we obtain Figure 6.40. After 

I 

I I S",:-On 
I l I 

Motor-status = Off I I Motor-status :- On 
I 
I 
I 

Motor-condition :a Enabled 

Figure 6.40: After leaving out unnecessary details 

applying the Visual Primitive Abstraction Rule 1 which extracts a logic formula 

from an assignment statement, we obtain Figure 6.41. 
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T 

I o (Sw) .On 
I , 
I 

Motor-status == OtT I o (Motor-status) • On 
I 
I 
I 

o (Motor-condltlon) == Enabled 

Figure 6.41: After applying the Visual Primitive Abstraction Rule I 

• set-pumpO procedure 

Figure 6.42 represents the procedure using the visual notation. The zoomable 

portions in it are given by Figures 6.43 and 6.44. 

The abstractions performed lead to the following specifications, Figures 6.45, 

6.47 and 6.48. The final abstracted specification is shown in Figure 6.49. The 

explanations are provided in the captions associated with the specification fig-

ures. 
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( 1I •• then ) 
~ 

<) 

Pump_stalus = On Motor«alul • orr I- r 

CiLiW 

Pump_stalus = Off I-·~ ~ ~I II 

Figure 6.42: The Procedure in Visual Notation 

[if .. lhcal 

I Motor-coaditlo. z Dbabled 8 ' ........ t( .. pump-IIO .. ..r.1a .. ) I 
~ 

I M ............ Iua:.O. I 
t 

I 5.:.0. J c ...... ta .... z MoCor-taf. 
t 

I ron-t( ......... 1I1arted Ia") J 

ron-t( .. pum,.-.r. Ia") 

Figure 6.43: The Zoomable part 'f' 
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Motor .. ta ... ,. 0Ir 

1 Sw,-OIr J 
Motor-concUlion • Enabled I-

t formal("lIIOIor-Iloppecllll") I 

Figure 6.44: The Zoo mabie part 'g' 

I 

<) I I 

I Motor.status .. orr I 
Pump_status = On 

I I r. 

/ I I 

I~ I 

4> \ I I 
I Motor-tlttltus .. On I 

Pump_status .. orr I I I. 
I I 

Figure 6.45: The Procedure Abstracted using if-I 
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CLiiW , , 
, , 

J Motor·eondldon • DlI8bled rorm.l(npum ... ~*"', \an) , , 
, , 

~ 

I MoloJ'.elalUa ,. O. J 
t 

I 8w;.0. J ClJ4.IIaIua .. Moto,....,. , t , 
I fol'llllll(nmo,.(lfrled \an) J . , 

, , , , 
, ' rOl'llllll(n~ot-..r. \an) , , , , , 

Figure 6.46: The Zoomable part 'f' with Unnecessary Details marked with Crosses 

Motor_lUI := Oa 

Cb4_1Ua = Motor·safe 

8w: .. Oa 

Figure 6.47: The Zoomable part 'f' after Dropping Unnecessary Details and using if-l 

Motor-status := Ott 

I 

Motor-condition = Enabled I Sw:=OtT 
I 

Figure 6.48: The Zoomable part 'g' after Dropping Unnecessary Details and using if-l 
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f 

I I 
: I I I M ............ l.O' ... ,_ ..... -0.: M ............ OII' I c .......... M.........,. I 1 

J 
I : I h,.o- I I I 

~ 
\ I I I .............. 1.01( I 

I I I "'p~ ..... onl ,.. ........... 0. I 
I I 

I M __ ._ : h •• on I 
I I 
I I 

Figure 6.49: The Composed Abstracted Visual Specification for set-pump 

We can now abstract assignment statements by applying the Visual Primitive 

Abstraction Rule 1 on this composed specification. 

I I : I O(M_,·o.l 
I I / ..... ___ .0.: MIIIoMIa_ = Oft I c ............ ,....,...,. I I 

I : I 0(").0- 1 I 

~ 
\ I I I O(M_I·OIr I 

I I ,..,_ ....... 0«. M ........... ·O'I I 

I I fM---- O(h'.on 1 
I I 
I I 

Figure 6.50: The Composed set-pump Specification after Abstracting Assignments 
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6.4 Comments on Visual Abstraction 

In this section, we saw how visual abstraction could also be performed in our visual 

framework to obtain a VisITL specification. The starting point was from a translation 

ofthe implementation (Le., CSL code in our example) to a VisITL form (rather its exe­

cutable equivalent). Using the visual transformation rules for abstraction, we obtained 

a VisITL specification. The first step of translating an implementation (in CSL or ADA, 

C etc.) to Tempura requires some experience in these languages. After this step, the 

abstraction is possible within our VisITL framework. 

We used the zoom feature to manage the specification by abstracting bits of specifi­

cations using rules and then composing them. In other words, the approach is scalable 

to large specifications. 

6.S Summary 

In this chapter, we saw how both refinement and abstraction in ITL are performed in 

a visual framework involving VisITL specifications. This framework facilitates a con­

trolled development of systems either in forward or reverse engineering. It was easy to 

see that the refinements on purely textual ITL specifications are not that easy to keep 

track of despite good indenting. There were not many visual cues to rely on, despite 

good indentation of the textual specification. This is a crucial point in dealing with 

even larger specifications on which we might end up applying numerous transforma­

tions. This adds further strain, especially on a user who is not dealing with mathemat­

ical specifications on a regular basis. Even formalists would be hard-pressed to keep 

track of the development process especially when automated tools are being used on 

ITL specifications. We also saw how visual abstraction could also be performed in the 

visual framework to obtain a VisITL specification. The starting point was from a trans­

lation of the implementation (i.e., CSL code in our example) to a VisITL form (rather 

its executable equivalent). Using the visual transformation rules for abstraction, we ob-
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tained a VislTL specification. The first step of translating an implementation (in CSL 

or ADA, C etc.) to Tempura requires some experience in these languages. After this 

step. the abstraction is possible within our VislTL framework. We also saw additional 

benefits of a visual framework for a formal method like ITL including scalability. In 

the following chapter, I will give an account of the implementation of the VislTL tool 

and suggestions for future work. 
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Chapter 7 

Implementation 

7.1 The Visual Tool 

This chapter gives details of the VisITL tool implemented during the course of the 

development of the visual language, VisITL. Also given is an insight into the experience 

gained and the feedback obtained for the development of the visual language. 

7.1.1 Block Diagram of the VISITL Tool 

The VisITL tool has been implemented in Tclffk. Figure 7.1 gives a block diagram of 

the tool implementation. The VisITL tool has all the standard drawing tool features 

of the tkpaint tool. Apart from this, it also provides special buttons on the tool menu 

for several VisITL constructs so that they could be drawn on the canvas by drag-and­

drop. Once VisITL specifications are constructed, they could be transformed using the 

VisITL-Funcs menu. As depicted in Figure 7.1, these functions include refinement in 

the visual framework. abstraction in the visual framework 1, the possibility to convert a 

VisITL specification to its ITL equivalent as well as pretty-printing2 a VisITL specifica­

tion. The VisITL-Help menu provides help on VisITL constructs, informal semantics 

of constructs, help on refinement and so on. 

Inot implemented in the current version 
2In this context, meaning that the diagram is made neat by centering formulas in boxes etc. 
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Transformations on Visual speclftcatlon 
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7.1 The Visual Tool 
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VIlITL &'IOIIItrIIdI 

Helpoa ITL 

LIak \0 ITL blip oa 

Ibowebp .... 

Helpoa RoII __ 

Help features 

Figure 7.1: A Block Diagram of the VislTL Tool 

The Figure 7.2 shows a screen dump of the tool. The drawing portion of the tool is 

an extended version of the tkpaint tool [146] freely available. tkpaint is a graphics 

program based on the canvas widget of the tool command language. TcUTk. It runs 

on several platforms including Linux. Windows 95, NT and Solaris. It is very easy to 

learn and use. Hence, it was decided to base the drawing feature of the VlsITL tool 

on it. Developing another drawing tool itself would not not have been possible due to 

time constraints apart from the fact that it would have amounted to "re-inventing the 

wheel". In other words. the tkpaint tool was an "off-the-shelf' component for these 

research purposes. I could therefore start implementing VislTL constructs rather than 

worry about implementing graphical primitives like lines. rectangles and so on. 

7.1.2 Features of the VisITL Tool 

The following is a description of the features of the tool implemented. 

• Draw visual ITL specifications easily by selecting the visual constructs on 

the tool bar/menu 
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Figure 7.2: The Visualisation Tool forITL 

The buttons shown on the VisITL tool could be clicked and then, using the mouse, 

the construct could be automatically drawn by first clicking (the left-mouse but­

ton) on the canvas to select the left-top comer for the box and then dragging the 

mouse and releasing it at the position for the right-bottom comer for the box. This 

way, the size of the box could be adjusted. The buttons for VisITL constructs are 

provided to speed up the process of constructing a specification . 

• Convert the visual ITL specification to a textual form by the click of a button 

The VisITL specification created could be converted to its equivalent textuallTL 

form by choosing an option in the menu button VisITL-Funcs on the toolbar. 

This would enable other tools in the workbench to be integrated in this visual 

framework. Also, the feature could be used to automatically generate a docu­

mentation with textual specifications. The Figure 7.3 shows the options availab le 

in the VisITL-Funcs menu. The Convert to option allows conversion to ITL in 

the current version. A future option could allow a direct conversion to Tempura 
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Apply refinement 

Convert to 

Visual-Zoom 

Pretty-print 

Figure 7.3 : The Visualisation Tool VisITL-Funcs Menu 

if the VisITL specification is executable. Otherwise, the user has to refine the 

VisITL specification using the following feature of refinement in Vis lTL. 

• Refine a visual ITL specification 

An option in the VisITL-Funcs menu allows the user to refine a VisITL specifi­

cation choosing a refinement rule from a rule repository. 

• Help feature for VisITL tool 

This provides information on visual ITL constructs together with informal se­

mantics in a visual form. This will aid the user in learning more about the for­

malism apart from providing help during the development process. 

• Sample VisITL specifications 

This provides some simple example specifications in VislTL for the user. 

7.1.3 Some Core Procedures of the VisITL Tool 

This section gives a brief insight into some of the key procedures of the VisITL tool. 

Since some of the procedures are inter-dependent, they are explained with dependency 

graphs. 

• The drawing procedures 
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startCbopstar{} startNext(} startAlways{} ItartSomeUme{} 

""1 // 
startFormula_enlwK:er{quallfler} , 

makefonnule_enbancer{x y} 

ltanMore{} startEmpty{} startFlniteO 

startChop_llne{} 

startAnd-comp{} , 

Figure 7.4: The Dependencies of some Drawing Procedures 

Figure 7.4 shows a dependency graph of some of the drawing procedures. The 

procedure proc startFormula~nhancer{ qualifier} implements the feature of au­

tomatically creating VisITL constructs on the drawing canvas by using the but­

tons provided on the toolbar. The "qualifier" is the argument which gets sup­

plied automatically by clicking the menu button. For example, clicking on the 

"Always" button provides "Always" as the qualifier to the procedure to allow 

it to draw this construct automatically. As the dependency graph shows, the 

procedures for "Chopstar", "Next", "Always" and "Sometime" depend on proc 

startFormul~nhancer{ qualifier}. This procedure sets parameters for primitive 

constructs like line, rectangle and text involved in the creation ofthese visual con­

structs3 and also notes the starting x-y co-ordinates selected on the canvas. This 

3Note : The implementation is not based on using labels but on the earlier visual notation which used 
a separator line between the formula and the qualifier. 
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procedure then passes the co-ordinates of the positions at which the mouse was 

released to the makeformula-.enhancer{ x y} which completes the drawing of the 

figure. Depending on the qualifier passed as argument, one could change settings 

for the fonts or colour for the visual construct. The proc startPlain_formula { argF} 

implements the drawing of simpler formulas like "empty", "finite" etc. which are 

just text enclosed in boxes. 

• Procedures for conversion to textual ITL 

These procedures are required so that the user can produce the textual form of 

ITL and derive the benefit of existing tools in the ITL-workbench like Tempura, 

PVS and so on which depend on textual ITL input. This way the user can benefit 

from all current and any future support tools for textual ITL without knowing ITL 

syntax but by just using visual ITL in the graphical VisITL tool conveniently. 

Figure 7.5 shows the dependency of procedures implementing this feature. Proc 

convertlITL{} 

/1 ~ 
sort-boxes{} visual2latex{supplied} write-tex {arg.ror-Iatex} 

I 
make-ustor.boxesO 

Figure 7.5: The Procedures for Converting to Textual ITL 

convert2ITL{} converts the VisITL formula to a equivalent textual ITL form. It 

depends on procedures proc sort-boxes{}, proc visual2Iatex{supplied} and proc 

write-tex { arg_for .latex}. Proc sort -boxes {} ensures that the textual formula gen­

erated is correct irrespective of the order in which the boxes were drawn (inner 

boxes first or outer boxes first or in some mixed order). This was necessary as 
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the implementation of the tkpaint tool keeps information of primitive items in 

the order they were drawn. Hence, a new list of primitive items had to be gen­

erated according to the semantics of the VisITL language. Also since constructs 

like "chop" could be drawn by the user in any of the ways shown in Figure 7.6 

which are all legal in this framework, this generated list had to be appropriately 

modified. Thus, the semantics of the VisITL language comes into considera-

Figure 7.6: Using Chop in Several Forms 

tion. Such processing in done in this procedure. The current VisITL tool allows 

"chop" in all the above forms i.e., with horizontal and vertical arrows, as well 

as with slanted arrows. The proc visual2latex { supplied} brackets this listing ob­

tained in terms of the number of arguments expected for each visual construct. 

In other words, this list is transformed into a flattened tree-structure correspond­

ing to the equivalent textual ITL formula. This is passed as arg_for Jatex to the 

procedure proc write-tex{arg-for-Iatex} which generates a latex program. This 

program could be used to obtain the textual ITL specification in postscript form. 

The current implementation automatically generates the postscript and displays 

it to the user. 

• Procedures for refinement 

Figure 7.7 shows some procedures for refinement and their dependencies. As 

refinement rules could be visualised as moving sub-formulas around into newer 

locations within possibly different visual constructs, they depend on procedures 

like proc sub-ITLformula-in{xA yA xB yB} which was written to find out sub­

formulas in given locations, proc visualizejn {xA y A xB yB treejnfo} which 

was written to re-draw the sub-formula in the new location. Other drawing pro­

cedures could also be called during refinement as, for example, a chopstar would 
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sub-ITLfonnula-in{xA yA xB yB} 

One or more drawing procedures 

Figure 7.7: The Dependencies of Some Procedures for Refinement 

get refined to a while construct and so on. 

Further details on these procedures are given in Appendix B. 

7.2 Lessons Learnt and Problems Encountered 

As already mentioned in chapter 4. expressions were found to be better written as in 

textual form in order not to introduce too many graphical primitives. Formulae in boxes 

with a separator line for the qualifiers were sometimes found to be confusing when dis­

tinguishing the formula text and the qualifier text. It was decided to incorporate labels 

into the VisITL language. During implementation. as many constructs as possible were 

based on a similar format. But. for the sake of intuitiveness. the visual language had to 

have more appropriate visual constructs for "chopstar", for example. Hence, there was 

always a compromise that had to be made. Moreover, for some constructs like "while", 

I chose a simpler form of visual construct so as not to overload the picture with many 

graphical primitives. 

As the visual language for ITL was non-existent at the start of my research. it was 
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difficult to design an implementation. In other words, there was no specification on 

which to base the implementation. As a result, the aim of my implementation was to in­

vestigate and obtain valuable insight into the evolving visual language itself. Therefore, 

the current version of the implementation uses some older form of visual notations as 

already mentioned. Modifying the visual constructs implemented to match the current 

visual language would not be that difficult now but it would have its effect on all other 

functionality of the tool. Based on the current level of development of the language, 

better implementations could be designed. One could even go for implementations that 

abstract away the exact form of the visual notation itself. This focus could not have 

been entirely implementation as the visual language was evolving. In order to explore 

many more different implementation algorithms and designs, one could first develop a 

library of some core functions which could be utilised by all the implementations. This 

would enable some new implementations to be explored as future work in this area. 

As already mentioned in an earlier section, conversion of a VisITL formula to its 

equivalent textual ITL formula had to consider an algorithm based on all primitive 

objects on the canvas in terms of the VisITL constructs they constituted and not on the 

order in which they were drawn. Also, as mentioned earlier, "chop" could be drawn 

in several ways and hence, the ordering was not purely based on co-ordinates of boxes 

but sometimes had to be adjusted. The current version of the VisITL tool, as mentioned 

earlier, allows the drawing of chop in any form i.e., horizontal, vertical or slanted arrow. 

7.3 Future Work 

A textual ITL formula could now be visualised based on the VisITL language. Such a 

procedure would need an argument which encodes a tree structure for the formula. This 

procedure would be similar to proc visual21atex{supplied} which constructed a tree 

structure for the VisITL formula drawn on the canvas. This way, one could incorporate 

already existing textual ITL specifications into this framework. 

Further work could also be done on incorporating restrictions on the attempted Vis-
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ITL specifications through appropriate warnings generated by the implementation. 

Also, one could create a library of VisITL specifications or specification-chunks 

which could be dragged and dropped on the canvas to have ready-made blocks of spec­

ifications. Then, the general parameters could be mapped to specific identifiers to re­

alize the VisITL specification. This would speed-up the specification process further 

and hence enable further accessibility of the formal method. One more possibility with 

implementation, now that no practical distinction between transformation rules for re­

finement and abstraction are made, is that we could just have one set of transformation 

rules and use any rule either for refinement or abstraction based on a user selection on 

a radio-button. In other words, the user could select one rule from a list and apply it on 

the VisITL specification to either refine or abstract. 

With regard to executions of concrete VisITL specifications, further work needs to 

concentrate on integrating Tempura into the framework to allow the user to visualise 

simulations graphically. 

7.4 Chapter Summary 

Details of a tool developed for the VisITL language were given. The features of the 

VisITL tool i.e., drawing, conversion to textual ITL and refinement were explained. 

Also, with the help feature on the tool, a user could learn VisITL syntax and semantics 

with examples. Lessons learnt and problems encountered during implementation are 

explained in order to benefit future work in this area. Conversion of a VisITL formula 

to its equivalent textual ITL formula had to consider an algorithm based on all primitive 

objects on the canvas in terms of the VisITL constructs they constituted and not on the 

order in which they were drawn. Also, as mentioned earlier, "chop" could be drawn 

in several ways i.e., horizontal, vertical or slanted arrow and hence, the ordering was 

not purely based on co-ordinates of boxes but sometimes had to be adjusted. Core 

procedures of the implementation are given in the appendix for the sake of future users. 
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Chapter 8 

Conclusions 

8.1 Summary 

Chapter 1 contains the background and motivation for the work and an outline of the 

thesis. 

In chapter 2, process models and strategies in software development were explored 

and various formal approaches for the development of real-time, safety-critical systems 

introduced. While formal approaches were found to have benefits in development espe­

cially for safety-critical systems, they have many drawbacks to overcome especially for 

enabling them to be more suitable for widespread use. Mentioning the rationale for the 

choice of Interval Temporal Logic (ITL) as the formalism for the work, the objective 

of this thesis is to contribute to the development of ITL as a lean formal method i.e., a 

formal method that is more accessible. 

In chapter 3, we saw how visualisation helps in various domains in fostering in­

creased accessibility of information, languages and technology through various means 

including better communication and ease of use. We examined how we could apply 

visualisation aids to an ITL-based formal method. Specifically in order to design a 

visual language for ITL, a design rationale was developed and key requirements to be 

satisfied by such a visual language identified. To recapitulate, these requirements are 

briefly summarised here : 
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Based on a study of visual representations in various areas, the following were 

identified as key features that should be taken into account while designing a visual 

language. 

• Simplicity 

This is one of the most important features of a good visual notation. The simpler 

the diagram, the easier and quicker it is to extract the meaning from it. 

• Intuitiveness 

The diagram should draw the attention of the reader quickly to the suggested 

meaning. 

• Unambiguity 

The diagram should not be causing any confusion in interpretation. 

• Readability 

The diagram should have text put at suitable locations to enhance readability 

without overcrowding the diagram. 

• Communicativeness 

It should be possible to communicate with other people using the diagram. In 

other words, it should be possible to suitably abstract the diagram, when nec­

essary, and see the new diagram clearly. It should be possible to navigate the 

diagram contents with ease. 

• Manipulatability 

It should be possible to manipulate the diagram to suitable equivalent forms. The 

meaning of any manipulation should be clear. 

• Composability 

It should be possible to suitably compose two diagrams. 
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• Extensibility 

The visual notation should support extensions to the basic language with mecha­

nisms/suggestions on how to do so. 

• Customisability 

It should be possible to customise the basic notation in some restricted ways for 

which guidelines should be provided. 

• Realisability 

It should be possible to realize the visual language conveniently in a suitable tool. 

• Scalability 

It should be possible to deal with huge descriptions nearly as conveniently as 

smaller ones. 

• Expressivity 

It should have enough expressivity in terms of available language constructs so 

that expressing anything in context can be done directly rather than by round­

about methods. 

In chapter 4 • we then explored ITL in detail with example specifications highlight­

ing some of the problems with textual ITL. We examined how we could apply visuali­

sation aids to an ITL-based formal method. The approaches until then concentrated on 

graphical output for simulation through Tempura and work on automata representations 

for ITL formulae. An interesting possibility as yet unexplored. was the development 

of a visual language for ITL. Hence a visual language for ITL was developed adhering 

to the requirements of a good visual language identified earlier. The visual notation is 

summarised in Figure 8.1 and Figure 8.2 below. 

The salient features of the notation can be summarised as follows : 

• Expressions are written as in textual ITL. 
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, 

[J Fonnula f ~ Negation 

[ili] And composition I (r~,,) I Universal Quantlfter 

I skip I skip 

'1 

) chopstar ,r Chop , 
-..... - '2 

Figure 8.1: Summary of the Visual Notation for Primitive ITL Fonnulae 

• A Formula is enclosed in a rectangular box which also contains a rounded rect­

angular box for holding any operator infonnation ; the rounded rectangular box 

maybe omitted if there is no operator involved. 

• The "And composition" has dotted lines between the components in the fonnula. 

• The negation has a cross mark in the label portion of the rectangular box. 

• The existential quantifier also follows the labelled rectangular box fonnat. 

• The chop has a directed arrow between the two rectangular boxes containing the 

formulae for the left and right subintervals respectively. 

• The chopstar has a directed arrow from the rectangular box to itself indicating a 

looping construct. 
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I r-rti
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Figure 8.2: Summary of the Visual Notation for Some Abbreviations 

The choice of the visual notation has been influenced by various factors as seen in 

section 4.6. These influences were a direct result of the the important design features 

identified for visual representations from sectionSect:KeyVis. The following paragraph 

summarises some key points. 

In section 3.1.11, we saw how an Interval Logic, namely GIL [41], visually depicted 

fonnulae in the logic. It is dependent on constructing different sub-intervals and then 

depicting the predicates that are true in such subintervals. Hence, it needed different 

kinds of graphical primitives like a solid line to represent strong intervals, i.e. non­

empty intervals, a double solid line to depict a weak interval, a single arrowhead to 

indicate a weak: search while an interval is constructed, a double arrowhead to indicate 

a strong search and so on apart from using temporal operator symbols in the visual 

representation. Also, the placement of the predicate relative to the line depicting the 

interval has a meaning; for example, if it is the middle of the interval, then, it is an 
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invariant as in Figure 3.7(b). In the context ofVislTL language, a much simpler, more 

intuitive and readable language was needed which also integrated TAM for concrete 

communication constructs. 

It was also considered in section 4.6.3 how predicates were depicted using set theory 

concepts in a visual logic in [130]. This logic, being based on set theory, has graphical 

primitives like overlapping boxes which are unnecessary in VisITL, and circles for 

variables and constants additionally which we found unnecessary as it over-crowds 

the visual representation as well as unnecessarily complicating the implementation. 

Moreover, this visual logic is not a temporal logic. 

We also saw in chapter 3 how parallel states were depicted in statecharts-based for­

malisms. The same "dotted-line"representation was chosen for the "and-composition" 

in VisITL so that no new notation is introduced for similar concepts in other languages. 

This would help avoid any confusion for users previously accustomed to other lan­

guages. 

For the ITL "chop", a line with arrow was chosen to represent the meaning of chop 

i.e., sequential composition. For "chopstar", a loop was depicted around the box. The 

label in the box was used for readability. The concrete constructs like "While", "If 

Then" etc. also followed a similar format. This is true for the TAM communication 

constructs as well. Hence, Vism was not only made simple, intuitive, readable and 

unambiguous but also one that integrated abstract constructs and concrete constructs in 

similar notations. This aids communicativeness between users at all abstraction levels. 

The geometrical guidelines for constructing VislTL specifications show how a spec­

ification can be manipulated and composed. The VislTL abbreviations allow us to 

manipulate diagrams to suitable equivalent forms. In a similar way, the user can add 

new abbreviations as a way of extending the syntax and thus customise the notation. 

Chapter 6 demonstrates the scalability of this approach. Chapter 7 demonstrates the 

realisability of this approach. The VisITL language derives its expressivity from ITL. 

ITL examples given earlier were re-worked using the VislTL language constructs. 

Although with VislTL, we had a graphical notation for ITL, we still lacked a visual 
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framework in which formal development could take place in an accessible manner. 

In chapter 5, in order to facilitate the development process using the VisITL lan­

guage, visual refinement and abstraction rules were introduced with examples. Thus a 

visual framework for both forward and reverse engineering in a formal visual frame­

work supporting both convenience and accessibility are developed. The notation for 

visual refinement and abstraction is summarised below: 

Figure 8.3 denotes a transformation (which can be either refinement or abstraction) 

visually. It suggests intuitively that h contains more details than /1 because of the 

shaded box. The rule could be applied either during forward or reverse engineering. 

Figure 8.3: Visual Refinement 

In chapter 6, case studies showing how the visual framework supported both refine­

ment and abstraction were developed. Also an additional possibility with respect to 

the visual notation while developing the case studies were explored, like for example. 

resolving non-determinism through geometrical considerations. Currently, in the vi­

sual framework, it was decided to use design decision rules to resolve non-determinism 

rather than attach meaning to geometrical features in VisITL. This lets the user be in 

control rather than automatically resolving conflicts which the user may fail to notice. 

In chapter 7, the experimental VisITL tool that was built and used in the process 

was described in detail giving directions for further implementation efforts. 

To summarise, we state that a simple, intuitive and readable visual language has 

been designed which enjoys the benefits of being a formal language. The supporting 

viSual framework of refinement and abstraction enables easy manipulatability as well 

as communicativeness. The visual notations for abstract VisITL specifications as well 
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as the concrete ITL and TAM constructs are integrated in a similar fonnat. The Vis­

ITL tool demonstrates realisability. Extensibility, customisability, composability and 

scalability are demonstrated through examples and case-studies. 

8.2 Review of Work Done and Comparisons to Related Work 

This work aimed to contribute to the development of ITL as fonnal method for the de­

velopment of critical systems. Towards that goal, the research explored visualisation 

approaches for increasing the accessibility of the formal method. The visual framework 

that has evolved is an exciting way forward in this direction. A valuable foundation has 

been laid by designing a visual language as well as evolving a framework in which 

development can be carried out. This approach insulates the user from as many for­

mal notations and difficulties as possible in a user-friendly manner. Valuable feedback 

obtained from the tool that was developed for experimentation is passed on to guide 

further explorations for implementation and development of the visual language itself. 

Related work done by others include the Visual Logic of [130], Graphical Interval 

Logic (GIL) [41] and statecharts-based fonnalisms such as those supported by Statem­

ate and Stateflow. 

The Visual Logic of [130] aimed to make fonnal specifications accessible to non­

programmers by using familiar notions of set theory, such as set inclusions and their 

graphical representations. They have made attempts to link their visual logic specifi­

cations to executable specifications in Prolog. VisITL is a similar effort based on ITL 

though not following the concepts of set theory. VisITL uses simpler intuitive visual 

notations suitable to ITL syntax and semantics. In VisITL, the number of graphical 

primitives is deliberately optimised keeping implementation issues in mind. Therefore, 

it is a much more practical approach and more suitable to ITL syntax. 

The Graphical Interval Logic, on the other hand, is intuitive but uses a different 

approach, one that depicts intervals as horizontal lines. This approach is unsuitable to 

VisITL as one of the aims was to seamlessly merge VisITL with its executable subset 
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i.e., Tempura. Further, integration with the Temporal Agent Model (TAM), allowed us 

to incorporate concrete communication constructs in the same framework. With both 

forward and reverse engineering supported by the visual refinement and abstraction 

rules developed in this work, a unified visual framework has now resulted in which for­

mal development of systems is possible in a intuitive and accessible manner as demon­

strated through examples and case-studies. 

Statecharts-based formalisms, like those supported by Statemate and Stateftow, are 

supported with verification capabilities through model-checkers. This model-checking 

capability is lacking today in the VisITL framework. When this capability is realized. 

this framework will have the benefit of the model specified in VisITL checked against 

a property also specified in the same language. This is unlike in statecharts-based for­

malisms where the properties are specified in a temporal-logic based language while 

the model is statecharts-based. Also, in stateftow, non-determinism is resolved through 

geometrical considerations in the stateftow diagram whereas no such automatic reso­

lution of non-determinism is provided in the VisITL framework. This is deliberately 

done so in VisITL to avoid the user getting confused by any unintended semantics be­

ing automatically given to the resulting implementation. The user is given the choice 

of applying his own design decision rules instead. 

The VisITL framework is therefore not just a visual language for ITL, but is sup­

ported by a development process encompassing both forward and reverse engineering 

through visual refinement and abstraction rules. The user need not know the notations 

of ITL but can use the more intuitive VisITL language in the convenient VisITL tool 

and derive the benefit of all the support tools in the ITL-workbench. Therefore, the 

VlSITL specifications can be validated using the ITL proof system. The executable 

specifications obtained by using refinement rules, could be explored by simulation us­

ing Tempura. Hence the VisITL framework which has been developed is a powerful 

way of fonnally and visually capturing requirements, validating them, exploring them 

by simulation as well forward or reverse engineering them in an accessible way. 
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8.3 A Final Note on the Visual Notation and the Visual Framework 

The visual notations for Negation, Chop and Chopstar use simple intuitive concepts to 

depict the meaning of the formula. The "And-composition" uses dotted lines similar 

to statecharts-based formalisms. The abstract and concrete constructs both follow the 

box-format. A label within the box aids readability. The label could also hold icons 

as in the case of TAM constructs to be more visual. All these constructs adhere to the 

design principles identified in section 3.2. For refinement in the visual framework, we 

depicted the refinement of a formula intuitively using a shaded box. Through examples 

and case studies, we saw how the visual framework for formal systems development 

using ITL can be done in an accessible manner. The implementation of the VisITL tool 

demonstrated realisability. 

8.4 Further Work 

Refinement strategies could be built-into the VisITL tool to aid the user in perform­

ing refinement. Work regarding more advanced features like integration with a proof 

tool like PVS for constructing proofs could also be carried out. Also, in order to per­

form verification tasks on VisITL specifications, a model checker for ITL is necessary 

for integration into the VisITL framework. Work in this area is currently underway 

[117, 118]. A model checker would provide counter-examples if the property is found 

to be violated by the model in which case, the user could be shown the scenario leading 

to property violation through animation in Tempura. Further development with regard 

to implementation should be carried out with more case-studies supported by industry. 

This will test the visual language and the framework which has been developed with 

real users. An investigation should be carried out with a carefully prepared question­

naire to obtain feedback from such users to enable further development and appropriate 

customisation of the VisITL tool. This would help us build on the initial encouraging 

results for its evaluation. This would also aid, in general, further development of the 
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formalism and associated tools in the workbench in a direction towards more accessi­

bility. 

8.S Conclusions 

It is hoped that this thesis has made a useful contribution to enable ITL to be used by a 

wider spectrum of users. It is also hoped that further developments in the area of ITL. 

and particularly VisITL. will see a growing number and a wider spectrum of users. 
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Appendix A 

Temporal Agent Model 

A.1 Computational Model 

A model of computation defines mathematically an abstract architecture upon which 

applications will execute. A system is a collection of agents (which is our unit of 

computation), possibly executing concurrently and communicating synchronously or 

asynchronously via communication links. Systems can themselves be viewed as sin­

gle agents and composed into larger systems. Systems have timing constraints im­

posed at three levels; system wide communication deadlines, agent deadlines and sub­

computation deadlines (within the computation of an individual agent). Deadlines are 

all considered to be hard. A system has a static configuration, and it must have at most 

a finite number of communication links and agents. At any instant in time. a system 

can be thought of as having a unique state. The system state is defined by the values 

in the communication links and the state variables of the system. the so-called frame. 

This frame defines the variables that can possibly change during system execution. the 

variables outside this frame will certainly not change. Computation is defined to be a 

sequence of system states, i.e. an interval of states. ITL enables us to describe these 

sets of computations in an eloquent way. An agent is described by a computation which 

may transform a local data-space and may read read and write to communication links 

during execution. The local data-space for the agent is created when the agent star 
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ecution and is destroyed when the agent tenninates. No agent may read or write another 

agent's local data-space. The computation may have both minimum and maximum ex­

ecution times imposed. An agent may perform both computation and communication. 

Only an agent which performs no computation or communication may terminate in­

stantaneously. Such an agent is called an empty agent. An agent may start execution as 

a result of either a condition of the current time or a write event occurring on a specific 

communication link. 

An agent may write to at most a finite number of communication links and read from 

at most a finite number of them. Synchronous communication links are called channels 

where read and write occurs at the same time. Asynchronous communication links are 

called shunts. Synchronous communication links modelled by a shared variable which 

contains three values: the first one indicates if there is an agent willing to read from 

the channel, the second one if there is an agent willing to write to the channel and the 

third is the value transmitted over the channel. Asynchronous communication links are 

modelled by a shared variable which contains two values: the first one is a stamp which 

is increased by one each time a new write to the shunt takes place, and the second one is 

the value which was most recently written. Shunt writing is destructive, shunt reading 

is not. 

Communication link readership may be restricted to a set of agents. These agents 

can then be considered as a subsystem where communication links which are read or 

written by the agents within the subsystem define the subsystem's boundary. Sub­

systems may not overlap. The stamps within the shunts enable the reading agents to 

compute according to the freshness of the data. The need for stamps in shunts is a di­

rect consequence of the decision to use non-destructive asynchronous communication. 

When an agent performs two consecutive inputs from a shunt and reads the same data 

item twice, it may need to know if each value is a result of two different writes or a 

single write. 

For a detailed treatment of the syntax and semantics of TAM, the reader is referred 

to [135. 105. 29]. The following gives. in more detail, the concrete constructs intro-
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duced in chapter 4. 

TAM concrete constructs 

This following introduces the concrete constructs for reasoning about communica­

tion, timing and resource allocation. 

• Channel communication: 

Let C be a channel then channel C E P denotes that a new channel is introduced. 

C!e denotes an output agent that sends the value of expression e over C. C?x 

denotes an input agent that stores the value received over C in x. 

channel C in P 
-. 

3C·P 

C? 
-. nl(C) = true 

C! 
-. n2(C) = true 

C.X 
-. n3(C) = x 1\ C? 1\ C! 

C!e 
-. 

(..,C? 1\ C! 1\ stable (C) ; skip) v empty; C.e 

C?x 
-. (..,C! 1\ C? 1\ stable (C) ; skip) vempty;C.x 

TIj is the projection function that for i = 1 gives the "willing to read" value. for 

i = 2 gives the "willing to write" value and for i = 3 the actual value in the 

channel. In the first interval the agent is waiting for its partner and in the second 

interval communication takes place. 

Let d E TIME. The notation C!de (C?dX) specifies an agent which is willing to 

perfonn the communication at time d. However. the agent will be held up forever 

if the environment fails to react promptly. 

C!de -. C!e 1\ (finite :> len = d) 

C? dX -. C?x 1\ (finite :> len = d) 

• Shunt communication: 
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Let s be a shunt then shunt s in P denotes that a new shunt s is introduced. 

write ( v, s) denotes that value v is written to shunt s. read (s) gives the value stored 

in shunt s and y's gives the stamp of shunt s. These agents are defined as follows: 

y's 
...... 

nt(s) 

shunts in P 
...... 3s.y's=O"P 

write (v, s) 
...... 

skip"Os= (y's+l,v) 

read (s) 
...... n2(S) 

where ni is the projection function that for i = 1 gives the stamp and for i = 2 

gives the value stored in the shunt. 

Let dE Time - {O}. The notation writed(v,s) specifies an agent that writes value 

v to shunt s at time d. 

write d (v, s) ...... len = d - 1 ; skip" Os = (y' s + 1, v) 

Note: the value of the stamp is defined to be the value of the stamp in the previous 

state plus 1. 

If one wants a version of write d which remains stable except in the last state of 

the interval one can take pwrite d (v, s) which is defined as 

pwrited(v,s) ...... writed(V,S) "padded(s) 

• Delay and timeout: 

Let d E TIMEU {oo}. The notation delaYd describes an agent which first holds 

up for d time units and then terminates with all global variables untouched. Its 

execution does not claim any resource time 

delaYd ...... len = d 

Let dE TIME U {oo}. The notation P Sld Q defines an agent which behaves like 

P if P is executed within d time units. otherwise it behaves like agent Q. 

P Sld Q ...... if (P :) finite" len ~ d) then P else Q 
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• Resource allocation : 

Let res be a resource then request (v, res) is the agent that requests v units of 

resource res. If these v units are not available it waits for them. release ( v, res) is 

the agent that releases v units of resource res. 

request ( v, res) ..... if res ~ v then res := res - v else C( request ( v, res) ) 

release (v, res) ..... Ores = res + v 
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AppendixB 

Core Tcl-Tk procedures for the VisITL 

tool 

B.l Core Drawing Procedures for VisITL Constructs 

The following procedure is used in the drawing of VisITL constructs like "Next". "Al­

ways", "Sometime" etc .. when the user selects a VisITL construct on the tool-bar and 

starts drawing on the canvas. 

proc start Formula_enhancer {qualifier} 

global Formula_enhancer Graphics 

global enhancer_line Graphics 

global enhancer_text Graphics 

global textstr 

set Formula_enhancer(shape) Formula_enhancer 

set enhancer_line (shape) enhancer_line 

set enhancer_text(shape) enhancer_text 

set textstr $qualifier 

bind .c <Button-I> { 

global xl yl x2 y2 
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set x [.c canvasx %x $Graphics(grid,snap)] 

set y [.c canvasy %y $Graphics(grid,snap)] 

set xl $x 

set yl $y 

set Formula_enhancer (coords) "$x $y $x $y" 

set Formula_enhancer (options) [list \ 

-width 4 \ 

-outline blue \ 

-stipple $Graphics(fill,style) \ 

-tags {Formula_enhancer obj} \ 

set enhancer_line (options) [list \ 

-width 2 \ 

-tags {enhancer_line obj} \ 

-fill black 

set enhancer_text (options) [list \ 

-tags {enhancer_text obj} \ 

-text $textstr \ 

-font {-size 15 -weight bold -slant italic} \ 

} 

bind .c <Bl-Motion> { 

global xl y1 x2 y2 

set x [.c canvasx tx $Graphics(grid,snap)] 

set y [.c canvasy %y $Graphics(grid,snap)) 

makeformula_enhancer $x $y 

bind .c <Bl-ButtonRelease> { 
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global xl y1 x2 y2 yline Formula_enhancer enhancer line 

if ! [info exists Formula_enhancer(id)] {return} 

set utag [Utag assign $Formula_enhancer(id)] 

set x2 [ . c canvasx %xl 

set y2 [. c canvasy ty] 

set yline [expr ($y1 + O.25*($y2 - $y1))] 

set x3 [expr ($x1 + O.50*($x2-$x1))] 

set enhancer_line (id) [eval . c create line $x1 $yline $x2 \ 

$yline $enhancer_line(options)] 

#if ! [info exists Formula_enhancer(id)] {return} 

# set utag [Utag assign $Formula_enhancer(id)] 

# .c addtag $utag closest $x3 $yline 

# The "exists" part was shifted above the lines for the creation of 

# the enhancer line so that a mouse click and release at the same point 

# does not end up creating a line (at the same point) thereby entering 

# an additional line in the .pic file ............ 12 August 1999 

.c addtag $utag withtag [eval set tag_line [Utag assign \ 

$enhancer_line(id)]] 

set ytext [expr $yline - 5] 

set fillcolor black 

if {$textstr == "always"} 

set fillcolor red 

else if {$textstr == "next"} 

set fillcolor blue 

else { set fillcolor black 

if {$textstr == "chopstar"} { 

set fillcolor DodgerBlue 

set enhancer_text (id) [eval . c create text $x3 $ytext \ 
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$enhancer_text(optionsl -fill $fillcolorl 

.c addtag $utag withtag [eval set tag_tex [Utag assign \ 

$enhancer_text(idlll 

set taginfo [.c itemcget $ Formul a_enhancer (id) -tags] 

# puts $taginfo 

set taginfo [.c itemcget $enhancer_line(id) -tagsl 

# puts $taginfo 

set taginfo [.c itemcget $enhancer_text(idl -tagsl 

# puts $taginfo 

} 

History add [getObjectCommand $utag 1] 

Undo add ".C delete $utag" 

unset enhancer text 

unset enhancer line 

unset Formula enhancer 

Message "Found any bugs?" 

The following procedure was called in the previous procedure. It completes the 

drawing of the VisITL construct at the point the user releases the left mouse-button. 

proc makeformula_enhancer {x y} { 

global Formula_enhancer xl y1 yline 

set Formula_enhancer (coordsl [lreplace $ Formula_enhancer (coordsl \ 

2 3 $x $y] 

catch {.c delete $Formula_enhancer(idl} 

set Formula_enhancer (idl \ 

[eval .c create rectangle $Formula_enhancer(coordsl \ 
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$Formula_enhancer(options) 

###### END OF FORMULA ENHANCER SECTION 

The following procedure is used when the VisITL construct is to be created in a 

specific location (as is required by refinement rules). 

###### FORMULA ENHANCER SECTION GIVEN COORDS 

proc startFormula_enhancer-with {xl yl x2 y2 qualifier} 

global Formula_enhancer Graphics 

global enhancer_line Graphics 

global enhancer_text Graphics 

global textstr 

set textstr $qualifier 

set Formula_enhancer (coords) "$xl $yl $x2 $y2" 

set Formula_enhancer (options) [list \ 

-width 3 \ 

-outline brown \ 

-stipple $Graphics(fill,style) \ 

-tags {Formula_enhancer obj} \ 

set enhancer_line (options) [list \ 

-width 2 \ 

-tags {enhancer_line obj} \ 

-fill black 

set enhancer_text(options) [list \ 

-tags {enhancer_text obj} \ 
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-text $textstr \ 

-font {-size 15 -weight bold -slant italic} \ 

makeformula_enhancer $x2 $y2 

if ! [info exists Formula_enhancer(id)] {return} 

set utag [Utag assign $Formula_enhancer(id)] 

History add [getObjectCommand $utag 1] 

Undo add ".c delete $utag" 

unset Formula_enhancer 

set yline [expr ($y1 + O.25*($y2 - $y1))] 

set enhancer_line (id) [eval .c create line $x1 $yline $x2 \ 

$yline $enhancer_line(options)] 

if ! [info exists enhancer_line(id)] {return} 

.c addtag $utag withtag [eval set tag_line [Utag assign \ 

$enhancer_line(id)]] 

set ytext [expr $yline - 5] 

History add [getObjectCommand $utag 1] 

Undo add ".c delete $utag" 

unset enhancer_line 

set fillcolor black 

if {$textstr == "always"} 

set fillcolor red 

} else if {$textstr == "next"} 

set fillcolor blue 

else { set fillcolor black 

} 

if {$textstr == "chopstar"} 

set fillcolor DodgerBlue 

set x3 [expr ($x1 + O.50*($x2-$x1))] 

set enhancer_text (id) [eval .c create text $x3 $ytext \ 
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} 

$enhancer_text(optionsl -fill $fillcolor) 

if ! [info exists enhancer_text(idl] {return} 

.c addtag $utag withtag [eval set tag_tex [Utag assign \ 

$enhancer_text(idl)) 

History add [getObjectCommand $utag 1] 

Undo add ".c delete $utag" 

unset enhancer text 

iiii## END FORMULA ENHANCER SECTION GIVEN COORDS 

B.2 Procedures for Conversion to Textual ITL 

The following procedure is called when the user selects the menu button for converting 

a VisITL formula to textual ITL. The procedures it calls are given below it. 

proc convert2ITL {} { 

global Graphics Canv utagCounter TextInfo Image Zoom fileID line 

global order enhancer_id ordered_boxinfo 

sort-boxes 

# calls make-listof-boxes 

set arg_for_latex [visual2latex $ordered_boxinfo) 

write-tex $arg_for_latex 

proc sort-boxes {} { 

global enhancer_infolist list_enhancer_coords 

global and_infolist list_and_coords num_enhancers num and 

global plain_formula_infolist list-plain_coords num-plain 
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global or_infolist list_or_coords num_or 

global anon_infolist list_anon_coords num_anon 

global while_infolist list_while_coords num_while 

global quantifier_infolist list_quan_coords num_quan 

global sortedOnX IDfor chopFrom chopTo 

global enhancer textval 

global boxtype ordered_boxinfo formulatext andltext and2text 

global formula_is_text argl_is_text arg2_is_text 

global orl_is_text or2_is_text orl_text or2_text 

global anonl_is_text anon2_is_text anonl_text anon2 text 

global whilel_is_text while2_is_text whilel_text while2_text 

global quantext quan_is_text quantifier_name quantifier_var 

global coords_for_or_rectl coords_for_or_rect2 

global coords_for_or_rect3 coords_for_or_rect4 

global treel tree2 tree3 tree4 In_Or plain_text val t only text 

set ordered_boxinfo "" 

make-listof-boxes 

if {$t == l} { 

set ordered_boxinfo only text 

set ordered_boxinfo [concat $ordered_boxinfo $onlytextl 

} else { 

set this_list [concat $list_enhancer_coords $list_and_coords \ 

$list-plain_coords $list_or_coords $list_anon_coords \ 

$list_while_coords $list_quan_coordsl 

set sortedOnX [lsort -command listCompare $this_listl 

set total [llength $this_listl 

set orderedIDs "" 

for {set counter a} {$counter < $total} {incr counter} { 
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set a [lindex $sortedOnX $eounter] 

lappend orderedIDs $IDfor($a) 

for {set k 1} {$k < [expr $num_or + 1]} finer k} { 

puts "Or info. : $or_infolist ($k) II 

foreaeh id [.c find withtag chop_line] 

set eoords_ehopline [.e eoords Sid] 

set chopX1 [lindex $eoords_chopline 0] 

set chopY1 [lindex $eoords_chopline 1] 

set chopX2 [lindex $coords_ehopline 2] 

set ehopY2 [lindex $coords_chopline 3] 

for {set i o} {$i < $total + 1} finer i} 

set currBoxCoords [lindex $sortedOnX $i] 

set boxX1 [lindex [lindex $sortedOnX $i] 01 

set boxY1 [lindex [lindex $sortedOnX $i] 1] 

set bOxX2 [lindex [lindex $sortedOnX $i] 21 

set boxY2 [lindex [lindex $sortedOnX $i] 3] 

if {$chopX1 > $boxXl} { 

if {$ehopX1 < $boxX2} { 

if {$chopY1 > $boxYl} { 

if {$ehopYl < $boxY2} { 

set chopFrom($id) $IDfor($eurrBoxCoords) 

} 

} 

if {$chopX2 > $boxXl} { 

if {$chopX2 < $boxX2} { 

if {$chopY2 > $boxYl} { 
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} 

} 

} 

} 

if {$chopY2 < $boxY2} { 

set chopTo($id) $IDfor($currBoxCoords) 

puts "chop Sid is from box: $chopFrom($id)" 

puts "chop Sid is to box: $chopTo($id)" 

set lower [lsearch $orderedIDs $chopFrom($id)) 

set higher [lsearch $orderedIDs $chopTo($id)) 

if {Slower > $higher} { 

# These were swapping i I will now change the algo -> insert just before 

# set fullyorderedIDs [lreplace $orderedIDs Slower Slower $chopTo($id)) 

# set fullyorderedIDs [lreplace $fullyorderedIDs $higher \ 

# $higher $chopFrom($id)) 

# So, I will insert .. 

set fullyorderedIDs [linsert $orderedIDs $higher $chopFrom($id)) 

set newlower [expr Slower + 1) 

set fullyorderedIDs [lreplace $fullyorderedIDs $newlower \ 

$newlower] 

set orderedIDs $fullyorderedIDs 

# So, I have overwritten on orderedIDs 

puts "The orderedIDs after considering chops a $orderedIDs" 

# Added 11 May 00 -> start 

foreach id [.c find withtag Or) 

set xl [lindex $coords_for_or_rect1($id) 0) 

set y1 [lindex $coords_for_or_rect1($id) 1) 
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} 

set x2 [lindex $coords_for_or_rectl($id) 21 

set y2 [lindex $coords_for_or_rectl($id) 3] 

puts "rectl : $xl $yl $x2 $y2" 

foreach idee [.c find enclosed $xl $yl $x2 $y21 { 

set In_Or ($idee) yes 

set tags [.c gettags $idee] 

puts "$idee : Stags : $In_Or($idee)" 

set xl [lindex $coords_for_or_rect2($id) 0] 

set y1 [lindex $coords_for_or_rect2($id) 1] 

set x2 [lindex $coords_for_or_rect2($id) 2] 

set y2 [lindex $coords_for_or_rect2($id) 3] 

foreach idee [.c find enclosed $x1 $yl $x2 $y2] 

set In_Or ($idee) yes 

set xl [lindex $coords_for_or_rect3($id) 0] 

set y1 [lindex $coords_for_or_rect3($id) 1] 

set x2 [lindex $coords_for_or_rect3($id) 2] 

set y2 [lindex $coords_for_or_rect3($id) 3] 

foreach idee [.c find enclosed $xl $y1 $x2 $y2] 

set In_Or ($idee) yes 

set xl [lindex $coords_for_or_rect4($id) 0] 

set yl [lindex $coords_for_or_rect4($id) 1] 

set x2 [lindex $coords_for_or_rect4($id) 2] 

set y2 [lindex $coords_for_or_rect4($id) 3] 

foreach idee [.c find enclosed $x1 $y1 $x2 $y2] 

set In_Or ($idee) yes 
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# 11 May 00 end 

# 16 May 00 I have to use a different 1 for the for loop below .. which 

# includes the sum of all ids. of boxes in orderedIDs which are NOT in 

# any or box 

set 1 [llength $orderedIDs] 

set orderedIDs notinor "" 

for {set i o} {$i < [expr $l]} {incr i} { 

set id [lindex $orderedIDs $i] 

if {$In_Or($id) == "no"} { 

set orderedIDs notinor [concat $orderedIDs_notinor Sid] 

puts "The orderedIDs_notinor $orderedIDs_notinor" 

# set 1 [llength $orderedIDs] 

set 1 [llength $orderedIDs_notinor] 

for {set i o} {$i < [expr $l]} {incr i} 

set thisID [lindex $orderedIDs $i] 

foreach id [.c find withtag chop_line] 

if {[string compare $chopFrom($id) $thisID] == o} { 

set ordered_boxinfo [concat $ordered_boxinfo chop] 

if {$boxtype($thisID) == o} { 

set textval $enhancer_textval($thisID) 

if {$formula_is_text($thisIDl == 1} { 

set textval [concat $textval $formulatext($thisIDl] 

elseif {$boxtype($thisID) == 1} { 

set textval and 

if {$argl_is_text($thisIDl == 1} { 

230 



Ph.D. Thesis D.2 Procedures for Conversion to Textual ITL 

set textval [concat $textval $andltext($thisIDl) 

if {$arg2_is_text($thisIDl ==l} 

set textval [concat $textval $and2text($thisIDl) 

elseif {$boxtype($thisIDl == 2} { 

if {$In_Or($thisIDl == "noll} 

puts "NOTI''l"tI"I"tr'l'TI'TT in Or" 

set textval $plain_textval($thisIDl 

elseif {$boxtype($thisIDl == 3} { 

set textval or 

if {$orl_is_text($thisIDl == l} { 

set textval [concat $textval $orl_text($thisIDl) 

if {$or2_is_text($thisIDl ==l} { 

set textval [concat $textval $or2_text($thisIDl] 

} 

elseif {$boxtype($thisIDl == 4} { 

set textval anon 

if {$anonl_is_text($thisIDl == l} { 

set textval [concat $textval $anonl_text($thisIDl) 

if {$anon2_is_text($thisIDl ==l} { 

set textval [concat $textval $anon2_text($thisIDl] 

} elseif {$boxtype($thisIDl == 5} { 
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# 

} 

set text val while 

if {$whilel_is_text($thisID) l} { 

set textval [concat $textval $whilel_text($thisID)] 

if {$while2_is_text($thisID) ==l} { 

set textval [concat $textval $while2_text($thisID)] 

elseif {$boxtype($thisID) == 6} { 

set textval $quantifier_name($thisID) 

set textval [concat $textval $quantifier_var($thisID)] 

if {$quan_is_text($thisID) a= l} { 

set textval [concat $textval $quantext($thisID)) 

elseif {$boxtype($thisID) 7} { 

set textval or 

set textval [concat $textval orargl $treel ($thisID) ] 

set textval [concat $textval orarg2 $tree2 ($thisID)) 

set textval [concat $textval orarg3 $tree3 ($thisID)] 

set textval [concat $textval orarg4 $tree4 ($thisID)] 

set ordered_boxinfo [concat $ordered_boxinfo $textval] 

set ordered_boxinfo [concat $ordered_boxinfo $textval] 

puts "Finally, the order of IDs = $orderedIDs" 

puts "The ordered info. translates to : $ordered_boxinfo" 

# NOW the ordered_boxinfo could be bracketed nicely as a tree 

# going thro' it in reverse order 
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} 

The following procedure is too long to be included here. The source code in STRL 

could be referred to for further infonnation. This procedure makes a list of all items on 

the canvas (in terms of various VisITL constructs and orders it based on co-ordinates). 

The sort-boxes procedure does further re-ordering based on different possibilities of 

having the chop construct. 

proc make-listof-boxes {} { 

# please refer to source code in STRL if interested in details. 

The following procedure does bracketing of the expression supplied according to 

the number of arguments expected for each construct. The expression supplied would 

be correct in accordance with VisITL semantics if procedure sort-boxes{} was called 

before this. 

proc visual2latex {supplied} { 

set len [llength $supplied1 

set resultant "" 

for {set i [expr $len - Il} {$i > -I} {incr i-I} { 

set Lb n {" 

set Rb "}" 

set str [lindex $supplied $il 

switch -exact -- $str { 

next { set argl [lindex $resultant 0] ; 

set currLen [llength $resultantl; 

set theRest [lreplace $resultant 0 01; 
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always 

chopstar 

sometimes 

not 

B.2 Procedures for Conversion to Textual ITL 

set resultant [concat $Lb \\Next $Lb $arg1 $Rb \ 

$Rb $Lb $theRest $Rb]} 

set arg1 [lindex $resultant 0] ; 

set currLen [llength $resultantl ; 

set theRest [lreplace $resultant 0 0]; 

set resultant [concat $Lb \\Always $Lb $arg1 $Rb \ 

$Rb $Lb $theRest $Rb]} 

set arg1 [lindex $resultant 0] 

set currLen [llength $resultant] ; 

set theRest [lreplace $resultant 0 0]; 

set resultant [concat $Lb \\Chopstar $Lb $arg1 \ 

$Rb $Rb $Lb $theRest $Rb]} 

set arg1 [lindex $resultant 0] 

set currLen [llength $resultant] i 

set theRest [lreplace $resultant 0 0] i 

set resultant [concat $Lb \\Sometime $Lb $arg1 \ 

$Rb $Rb $Lb $theRest $Rb]} 

set arg1 [lindex $resultant 0] 

set currLen [llength $resultant] i 

set theRest [lreplace $resultant 0 0]; 

set resultant [concat $Lb \\Not $Lb $arg1 $Rb \ 

$Rb $Lb $theRest $Rb]} 

and set argl [lindex $resultant 0] 

orarg1 

set arg2 [lindex $resultant 1] 

puts "resultant now: $resultant" 

set currLen [llength $resultant] i 

set theRest [lreplace $resultant 0 1] i 

set resultant [concat $Lb \\And $Lb $arg1 $Rb \ 

$Lb $arg2 $Rb $Rb $theRest] } 
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} 

orarg2 { 

orarg3 

} 

orarg4 { 

or 

anon 

B.2 Procedures for Conversion to Textual ITL 

set or_argl [lindex $resultant 0]; 

set theRest [lreplace $resultant 0 0] ; 

set resultant $theRest 

set or_arg2 [lindex $resultant 0]; 

set theRest [lreplace $resultant 0 0] ; 

set resultant $theRest 

set or_arg3 [lindex $resultant 0]; 

set theRest [lreplace $resultant 0 0] ; 

set resultant $theRest 

set or_arg4 [lindex $resultant 0]; 

set theRest [lreplace $resultant 0 0] ; 

set resultant $theRest 

puts "resultant now: $resultant" 

set currLen [llength $resultant]; 

set theRest [lreplace $theRest 0 0]; 

set resultant [concat $Lb "Or $Lb $or_argl $Rb , 

$Lb $or_arg2 $Rb $Lb $or_arg3 $Rb $Lb $or_arg4 , 

$Rb $Rb $theRest] 

set anonl [lindex $resultant 0] 

set anon2 [lindex $resultant 1] 
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set eurrLen [llength $resultant] ; 

set theRest [lreplaee $resultant 0 11 ; 

set resultant [eoneat $Lb \\Dese $Lb $anon1 $Rb \ 

$Lb $anon2 $Rb $Rb $theRest] 

while set whilel [lindex $resultant 0] 

set while2 [lindex $resultant 1] 

set eurrLen [llength $resultantl ; 

set theRest [lreplaee $resultant 0 1] ; 

set resultant [concat $Lb \\While $Lb $whilel \ 

$Rb $Lb $while2 $Rb $Rb $theRest] 

chop set argl [lindex $resultant 01 

set arg2 [lindex $resultant II 

set eurrLen [llength $resultant] ; 

forall 

exists 

set theRest [lreplace $resultant 0 II ; 

set resultant [coneat $Lb \\Chop $Lb $argl $Rb \ 

$Lb $arg2 $Rb $Rb $theRestl } 

set arg1 [lindex $resultant 0] 

set arg2 [lindex $resultant 1] 

set eurrLen [llength $resultant] ; 

set theRest [lreplaee $resultant 0 1] ; 

set resultant [coneat $Lb \\Forall $Lb $argl $Rb \ 

$Lb $arg2 $Rb $Rb $theRest] } 

set argl [lindex $resultant 0] 

set arg2 [lindex $resultant II 

set eurrLen [llength $resultant] ; 

set theRest [lreplaee $resultant 0 1] ; 

set resultant [coneat $Lb \\Exists $Lb $arg1 $Rb \ 

$Lb $arg2 $Rb $Rb $theRest] 

only text { set arg1 [lindex $resultant 0] ; 

set theRest [lreplaee $resultant 0 0] ; 
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set resultant [concat $Lb \\Onlytext $Lb $argl \ 

$Rb $Rb $theRestl} 

default { set resultant [concat $Lb $str $Rb $resultantl} 

} 

return $resultant 

proc write-tex {arg_for_latex} { 

########### FILE OPERATIONS 

set fileID [open /export/homeO/users/pub/arun/visual/program/ \ 

test_tex/testing.tex w 06001 

puts $fileID "\\documentclass\[12pt,a4paper\1 {report}" 

puts $fileID "\\usepackage{latexsym,amssymb,times}" 

puts $fileID "\\usepackage\ [dvips, final\J {graphicx} " 

puts $fileID "\\paperwidth 597.50787pt" 

puts $fileID "\\paperheight 845.04684pt" 

puts $fileID "\\textwidth 416.83289pt" 

puts $fileID "\\textheight 670.50687pt" 

puts $fileID "\\oddsidemargin 18.0675pt" 

puts $fileID "\\evensidemargin 18.0675pt" 

puts $fileID "\\topmargin O.Opt" 

puts $fileID "\\heaciheight O.Opt" 

puts $fileID "\\headsep O.Opt" 

puts $fileID "\\footskip 30.0pt" 

puts $fileID "\ \hoffset O. Opt" 

puts $fileID "\\voffset O.Opt" 

puts $fileID "\\newcomrnand{\\Always}\[l\J{\\Box \[#l\J}" 
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puts $fileID "\\newconunand{\\Sometime} \ [1 \1 {\\Diamond \ [#1 \1 }" 

puts $fileID "\\newconunand{\\Not}\[l\I{\\neg \[#l\l}n 

puts $fileID n\\newconunand{ \\And} \ [2\1 {\ [#1 \1 \\mathrel {\\scriptstyle \ 

\\wedge}\[#2\1}n 

puts $fileID n\\newconunand{\\Or} \ [4\1 {\[#1\1 \\mathrel{\\scriptstyle \ 

\\vee} \[#2\1 \\mathrel{\\scriptstyle\\vee} \[#3\1 \ 

\\mathrel{\\scriptstyle\\vee} \[#4\1}" 

puts $fileID n\\newconunand{\\Equiv}{\\quad\\equiv\\quad}n 

puts $fileID n\\newconunand{\\desc}{\\mathord{\\imath}}" 

puts $fileID n\\newconunand{\\Desc} \ [2\1 {{\\mathord{\\imath} #1} \ 

\\colon #2}n 

puts $fileID n\\newconunand{\\Nextsym}{\\raise O.20em\\hbox{$\\ \ 

scriptstyle \\bigcirc\\mskip -2.Smu$}}" 

puts $fileID n\\newconunand{ \\Next} \ [1 \1 {\\mathop{\\Nextsym} \ [#1 \1 }" 

puts $fileID n\\newconunand{\\Chop} \ [2\J{\ [#1 \1 \\mathbin{;} \ [#2\1 }" 

puts $HleID n\\newconunand{ \\Chopstar} \ [1 \J{ \ [#1 \1 ~ *} n 

# puts $fileID "\\newcommand{\\While1}{\\tempop{\\sf while}}" 

# puts $fileID "\\newcommand{\\Do}{\\temprel{\\sf do}}n 

# puts $fileID n\\newcommand{\\While} \ [2\1 {\\While1 \[#1\1 \\00 \[#2\1}n 

puts $fileID n\\newconunand{\\While}\ [2\J{While \ [#1\1 do \ [#2\J}n 

puts $HleID n\\newconunand{\\Onlytext}\[1\1 {\[#1\1}" 

puts $fileID n\\newconunand{ \\Forall} \ [2\J{ \\forall \ [#1 \J \\colon \ 

\[#2\1}n 

puts $fileID n\\newconunand{\\Exists} \ [2\1 {\\exists \[#1\] \\colon \ 

\ [#2\J} " 

puts $fileID "\\begin{document}n 

puts $fileID "The following is the equivalent textual ITL formula :\\\\n 

puts -nonewline $fileID n$n 
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puts -nonewline $fileID $arg_for_latex 

puts $fileID "$" 

puts $fileID "\\end\ {document \}" 

close $fileID 

B.3 Refinement-related Procedures 

exec latex /export/homeO/users/pub/arun/visual/program \ 

/test_tex/testing.tex 

exec mv testing.dvi .. /test_tex 

exec xdvi .. /test_tex/testing.dvi 

B.3 Refinement-related Procedures 

The following procedure refines a VisITL construct using the while-l rule. 

proc ref_whilel {} { 

# uses visualize_in 

global While_repeat Graphics latex_arg sub_tree_info 

set ref_text (options) [list \ 

-tags {result ref whilel obj} \ 

-font {-size 15 -weight bold -slant italic} \ 

foreach id [.c find withtag While_repeat] 

set coordinates [.c coords Sid] 

set next1 [getObjectAbove Sid] 

set next2 [getObjectAbove $next1J 

set xl [lindex $coordinates 0] 
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set y1 [lindex $coordinates 1] 

set x2 [lindex $coordinates 2] 

set y2 [lindex $coordinates 3] 

B.3 Refinement-related Procedures 

set encl [.c find enclosed $x1 $y1 $x2 $y2] 

#These will be deleted later 

set y3 [expr $y1 + O.25*($y2 - $y1)] 

set x3 [expr $x1 + O.50*($x2 - $x1)] 

set next [.c find enclosed $x1 $y1 $x2 $y3] 

set required_txt "" 

eval lappend required_txt [getObjectOptions $next 1] 

set position [lsearch $required_txt -text] 

set texposn [expr $position + 1] 

set text en [lindex $required_txt $texposn] 

if {$text_en == "while"} { 

puts "I should refine now !!" 

set xO [expr $x2 - $x1] 

set yO [expr $y2 - $y1] 

set xlandl [expr $xl - 1.5*$xO] 

set y1and1 [expr $y1 - O.5*$yO] 

set x2and1 [expr $x2 + 1.5*$xO] 

set y2and1 [expr $y2 + O.5*$yO] 

startAnd-comp-with $x1and1 $yland1 $x2and1 $y2and1 

set x1fe1 [expr $x1 - 1.25*$xO] 

set y1fe1 [expr $y1 - O.25*$yO] 

set x2fe1 [expr $x1 + O.25*$xO] 

set y2fe1 [expr $yl + 1.25*$yO] 

startFormula_enhancer-with $x1fe1 $y1fe1 $x2fe1 $y2fel chops tar 

set xlfe2 [expr $xl + O. 75*$xO] 

set ylfe2 [expr $yl - O.25*$yO] 

set x2fe2 [expr $x1 + 2.25*$xO] 
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set y2fe2 [expr $yl + 1.25*$yO] 

startFormula_enhancer-with $xlfe2 $ylfe2 $x2fe2 $y2fe2 fin 

set xlfe3 [expr $xl + $xO] 

set ylfe3 [expr $yl + 0.125*$yO] 

set x2fe3 [expr $xl + 2*$xO] 

set y2fe3 [expr $yl + 1.125*$yO] 

startFormula_enhancer-with $xlfe3 $ylfe3 $x2fe3 $y2fe3 not 

set xland2 [expr $xl - $xO] 

set yland2 [expr $yl + O.125*$yO] 

set x2and2 [expr $xl] 

set y2and2 [expr $yl + 1.125*$yO] 

startAnd-comp-with $xland2 $yland2 $x2and2 $y2and2 

set xand [expr 0.5* ($xland2 + $x2and2)] 

sub-ITLformula-in $xl $y3 $x3 $y2 

puts "xly3x3y2 => $sub_tree_info" 

set ylfe3p [expr $ylfe3 + 0.25*($y2fe3 - $ylfe3)] 

visualize_in $xlfe3 $ylfe3p $x2fe3 $y2fe3 $sub_tree_info 

set xand-2 [expr $xland2 + 0.5*($x2and2 - $xland2)] 

visualize_in $xland2 $yland2 $xand-2 $y2and2 $sub_tree_info 

sub-ITLformula-in $x3 $y3 $x2 $y2 

puts "x3y3x2y2 => $sub_tree_info" 

visualize_in $xand-2 $yland2 $x2and2 $y2and2 $sub_tree_info 
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foreach item $encl 

.c delete $item 

.c delete Sid 

set alltags [.c find all] 

set total [llength $alltags] 

D.3 Refinement-related Procedures 

for {set i o} {$i < [expr $total]} {incr i} { 

set itemid [lindex $alltags $i] 

set itemtag [.c gettags $itemid] 

.c addtag result ref whilel withtag $itemid 

set z 0.50 

Zoom $z 

The following procedure finds the equivalent sub-ITL formula in a given region of 

the canvas. It is too long to be included here. 

proc sub-ITLformula-in {xA yA xB yB} { 

# please refer to the source code at STRL for additional details. 

###### Proc. to DRAW A VIS-ITL given textual ITL in tree form 

proc visualize_in {xl yl x2 y2 tree_info} { 

set current 0 
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set prey 0 

set prev-of-prev 0 

set total and 0 

set total fe 0 

set total txt 0 

set length [llength $tree_infoJ 

for {set i [expr $length - I]} {$i > -I} {incr i-I} { 

set arg [lindex $tree_info $i] 

switch -exact -- $arg { 

and set total and [expr $total_and + 1] 

next set total fe [expr $total_fe + IJ 

sometimes set total fe [expr $total_fe + 1] 

always set total fe [expr $total_fe + 1] 

chopstar set total fe [expr $total_fe + 1] 

not { set total fe [expr $total_fe + IJ 

onlytext {} 

default { set total txt [expr $total_txt + 1] 

puts "Details in tree_info :" 

set total_boxes_to_vis [expr $total_and + $total_fe] 

set xO [expr $x2 -$xl] 

set yO [expr $y2 - $yl] 

set cx [expr 0.5*($xl + $x2l] 

set cy [expr O.5*($yl + $y2l] 

} 

for {set i l} {$i < [expr $total_boxes_to_vis + 11} {incr i} { 

set xxO ($il [expr $xO * 0.9* pow (0.7, [expr \ 

$total_boxes_to_vis -Sill] 

set yyO($i) [expr $yO* 0.9* pow(0.7, [expr \ 

$total_boxes_to_vis -Sill] 
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set box count 0 

for {set i [expr $length - Il} {$i > -I} {incr i-I} { 

set arg [lindex $tree_info $il 

puts "arg $i : = $arg" 

switch -exact -- $arg 

next {set current 3; puts "$i $arg -> $current"; 

incr box count 

set xfactor [expr 0.5* ($xxO ($box_count) ) 1 

set yfactor [expr 0.5* ($yyO ($box_count) )] 

set ax [expr $cx - $xfactorl 

set ay [expr $cy - $yfactor] 

set bx [expr $cx + $xfactorl 

set by [expr $cy + $yfactor] 

startFormula_enhancer-with Sax Say $bx $by next 

} 

set prev-of-prev $prev ; 

set prey 3 

sometimes {set current 3; puts "$i $arg -) $current"; 

incr box count 

set xfactor [expr 0.5* ($xxO($box_count))] 

set yfactor [expr 0.5* ($yyO($box_count))] 

set ax [expr $cx - $xfactor] 

set ay [expr $cy - $yfactor] 

set bx [expr $cx + $xfactorj 

set by [expr $cy + $yfactor] 

startFormula_enhancer-with Sax Say $bx $by sometimes 

set prev-of-prev $prev ; 

set prey 3 
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always {set current 3; puts !I$i $arg -> $current!l; 

not 

incr box count 

set xfactor [expr 0.5* ($xxO ($box _ count) ) ] 

set yfactor [expr 0.5* ($yyO ($box _count) ) ] 

set ax [expr $cx - $xfactor] 

set ay [expr $cy - $yfactor] 

set bx [expr $cx + $xfactorl 

set by [expr $cy + $yfactor] 

startFormula enhancer-with Sax Say $bx $by always 

set prev-of-prev $prev ; 

set prev 3 

{set current 3; puts "$i $arg -> $current"; 

incr box count 

set xfactor [expr 0.5* ($xxO ($box_ count) ) ] 

set yfactor [expr 0.5* ($yyO ($box_count))] 

set ax [expr $cx - $xfactor] 

set ay [expr $cy - $yfactor] 

set bx [expr $cx + $xfactorl 

set by [expr $cy + $yfactor] 

start Formula enhancer-with Sax Say $bx $by not 

set prev-of-prev $prev ; 

set prev 3 

chopstar {set current 3; puts "$i $arg -> $current"; 

incr box count 

set xfactor [expr 0.5* ($xxO($box_count))] 

set yfactor [expr 0.5* ($yyO($box_count))] 

set ax [expr $cx - $xfactorl 

set ay [expr $cy - $yfactor] 
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and 

B.3 Refinement-related Procedures 

set bx [expr $cx + $xfactorl 

set by [expr $cy + $yfactor] 

startFormula enhancer-with Sax Say $bx $by chopstar 

set prev-of-prev $prev ; 

set prey 3 

{set current 2; puts "$i : $arg -> $current"; 

set xfactor [expr 0.5* ($xxO ($box_count))] 

set yfactor [expr 0.5* ($yyO ($box_count))] 

set ax [expr $cx - $xfactor] 

set ay [expr $cy - $yfactor) 

set bx [expr $cx + $xfactor] 

set by [expr $cy + $yfactor) 

startAnd-comp-with Sax Say $bx $by 

set prev-of-prev $prev 

set prey 2 

only text 

default {set current 1; puts "$i: $arg -> $current"; 

set delta 25; 

set xtext [expr 0.5*($xl + $x2)] 

set ytext [expr 0.5*($yl + $y2) 1 

if {$prev == I} { 

set xtext [expr $xtext + $deltal 

set ytext [expr $ytext + $delta] 

} ; 

set texid [eval .c create text $xtext $ytext -text \ 

$arg -tag obj] 
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set prev-of-prev $prev 

set prev 1 
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