
TIMED REFINEMENT FOR VERIFICATION OF REAL-TIME OBJECT CODE PROGRAMS

A Dissertation
Submitted to the Graduate Faculty

of the
North Dakota State University

of Agriculture and Applied Science

By

Mohana Asha Latha Dubasi

In Partial Fulfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY

Major Department:
Electrical and Computer Engineering

November 2018

Fargo, North Dakota



NORTH DAKOTA STATE UNIVERSITY

Graduate School

Title

TIMED REFINEMENT FOR VERIFICATION OF REAL-TIME OBJECT

CODE PROGRAMS

By

Mohana Asha Latha Dubasi

The supervisory committee certifies that this dissertation complies with North Dakota State Uni-

versity’s regulations and meets the accepted standards for the degree of

DOCTOR OF PHILOSOPHY

SUPERVISORY COMMITTEE:

Dr Sudarshan K. Srinivasan
Chair

Dr Scott C. Smith

Dr Dharmakeerthi Nawarathna

Dr Kenneth Magel

Approved:

November 1, 2018

Date

Dr Benjamin Braaten

Department Chair



ABSTRACT

Real-time systems such as medical devices, surgical robots, and microprocessors are safety-

critical applications that have hard timing constraint. The correctness of real-time systems is

important as the failure may result in severe consequences such as loss of money, time and human

life. These real-time systems have software to control their behavior. Typically, this software

has source code which is converted to object code and then executed in safety-critical embedded

devices. Therefore, it is important to ensure that both source code and object code are error-free.

When dealing with safety-critical systems, formal verification techniques have laid the foundation

for ensuring software correctness.

Refinement based technique in formal verification can be used for the verification of real-

time interrupt-driven object code. This dissertation presents an automated tool that verifies the

functional and timing correctness of real-time interrupt-driven object code programs. The tool has

been developed in three stages. In the first stage, a novel timed refinement procedure that checks

for timing properties has been developed and applied on six case studies. The required model

and an abstraction technique were generated manually. The results indicate that the proposed

abstraction technique reduces the size of the implementation model by at least four orders of

magnitude. In the second stage, the proposed abstraction technique has been automated. This

technique has been applied to thirty different case studies. The results indicate that the automated

abstraction technique can easily reduce the model size, which would in turn significantly reduce

the verification time. In the final stage, two new automated algorithms are proposed which would

check the functional properties through safety and liveness. These algorithms were applied to the

same thirty case studies. The results indicate that the functional verification can be performed in

less than a second for the reduced model.

The benefits of automating the verification process for real-time interrupt-driven object code

include: 1) the overall size of the implementation model has reduced significantly; 2) the verification

is within a reasonable time; 3) can be applied multiple times in the system development process.
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1. INTRODUCTION

Safety-critical embedded devices are used in a number of application areas that include,

but not limited to medical devices, surgical robots, avionic control systems. Table 1.1 presents

exhaustive areas of application of safety-critical systems. Typically, a software is used as a control

program in these applications. The execution of the software needs to be correct. Otherwise, it

would result in severe consequences such as loss of time, money [5,49] and human safety. Ensuring

the correctness of the control software is still an on-going challenge that warrants attention.

For example, during the time period 2001-2017, the Food and Drug Administration (FDA)

has issued 54 Class-I recalls on infusion pumps (medical devices used to deliver controlled doses

of fluid medications to patients intravenously) due to software issues [64, 65]. Class-I recalls are

applied when the use of a medical device is determined to cause adverse health consequences or

even death. Numerous other medical devices also have similar problems [55, 62]. Recalls and

problems due to software errors are not limited to the medical industry [7, 12, 14] alone. For

example, in the early 2000s, Toyota Camry’s electronic throttle system experienced some unintended

acceleration problems [17, 57, 63]. This even resulted in the loss of a human life. Initially, it was

assumed that the Toyota Camry’s electronic throttle system was faulty due to software errors.

But, later on, the problem was identified to be different. However, this incident infused fear not

to trust the software control programs in the automobile industry. Over the years, the use of

software codes in automobiles has increased to a greater extent. Nowadays, automobiles not only

consist of mechanical components but also software components. The use of these software has

grown significantly in recent years resulting in several risks such as the outsider’s ability to control

the automobile by hacking into its control systems [54]. New developments in the automobile

industry that has gained popularity in recent years such as self-driving cars are threatened by

similar problems. The reliability of these control software programs in the self-driven cars is critical

not only to the safety of the person in the car but also others on the road. In the past, numerous

testing-based methods [56] have been developed to test the reliability of this software. However,

current industry’s standard process of testing-based methods is inadequate [29,33,50].

1



Table 1.1. Application Areas for Safety-Critical Devices (source: google)

Area Examples

Aviation

aircrew life support systems

air traffic control system

avionics

drones

engine control systems

flight planning to determine fuel requirements for a flight

radio navigation system

rockets

Medical

defibrillator machines

dialysis machines

electocardiography (ECG or EKG)

electroencephalography (EEG)

heart-lung machines

infusion pumps

insulin pumps

mechanical ventilation systems

medical imaging devices

radiation therapy machines

surgical robots

Military
defense facilities

weapons

Railway

automatic train stop

platform detection to control train doors

Continued on next page
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Table 1.1 – Application Areas for Safety-Critical Devices (source: google) (continued)

Area Examples

railway control systems

railway signaling systems

Automotive

advanced driver-assistance systems

airbag systems

automated driver assistance system

battery management system

braking systems

drive by wire systems

electric park brake

electronic throttle control

park by wire

power steering systems

seat belts

shift by wire systems

Spaceflight

crew rescue systems

crew transfer systems

human spaceflight vehicles

launch vehicle safety

rocket range launch safety systems

Infrastructure

burner control systems

circuit beaker

emergency services dispatch systems

electricity generation, transmission and distribution

fire alarm

Continued on next page
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Table 1.1 – Application Areas for Safety-Critical Devices (source: google) (continued)

Area Examples

fire sprinkler

fuse (electrical)

fuse (hydraulic)

telecommunications

Nuclear engineering nuclear reactor control system

Recreation

amusement rides

climbing equipment

parachutes

SCUBA equipment

Others
communication protocols

microprocessors

Formal verification (FV) has become the foundation for ensuring software correctness when

dealing with safety-critical systems. These methods have been well-established to provide safety-

assurances. The use of formal verification has become an industry-standard when addressing soft-

ware correctness of safety-critical devices. There are many success stories and commercial adoption

of the formal verification process. Formal verification process has been widely adopted by industries

such as Intel [25, 39,53], ARM [61], Microsoft [4, 8], and Airbus [24].

Safety-critical embedded devices are programmed in high-level languages like C, Java,

Python, and many more, known as source code. When the program is executed on these em-

bedded devices, it is converted into object code, whose verification is imperative. Verification of

device-object code (code or the set of instructions that is executed by microcontrollers embedded

in the device) is a challenging task as the object code is of very low-level, real-time, and inter-

rupt driven. Interrupt-driven real-time object code programs can often have behaviors that are
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safety critical applications

embedded
applications real-time

applications

this research area

Figure 1.1. This Research Area Applications

very hard to emulate, capture, and analyze using only testing-based methods, that has been the

primary method for verification in the industries for a long time. The inadequacy of industrial

processes to address verification is evidenced by examples of buggy safety-critical embedded de-

vices [33,43,50,68]. Even though several different problems exist, a critical gap in the field of formal

verification is the lack of availability of efficient and scalable formal verification methods for the

real-time device-object code. Figure 1.1 presents the research area tackled in this dissertation.

Formal verification consists of refinement-based verification [45] which has been demon-

strated to be applicable to the verification of embedded control software at the object code level.

Refinement-based verification consists of two models: 1) implementation model, and 2) specifica-

tion model. Typically, the design artifact to be verified is called the implementation model. A

specification model is a formal model that captures the correct functionality for the implementa-

tion. The goal of refinement-based verification is to mathematically check that the implementation

model behaves correctly as defined by the specification model. Here, both the implementation

model and specification model are represented as transition systems (TSs). Transition system is a
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mathematical modeling framework for code that is based on states of the program and transitions

between these states.

Refinement-based verification consists of Well-Founded Simulation (WFS) refinement and

Well-Founded Equivalence Bisimulation (WEB) refinement [45]. WFS and WEB refinement ex-

plains how equivalence between two transition systems can be established and is applicable for

functional verification. However, both of them do not consider timing requirements and properties,

which are important elements in real-time interrupt-driven object code programs. Consequently,

in this dissertation, the notion of refinement for the verification of real-time object code programs,

called timed refinement, is first introduced. The concept of timed refinement is added to WFS and

WEB refinements, and therefore called as Timed Well-Founded Simulation (TWFS) refinement and

Timed Well-Founded Equivalence Bisimulation (TWEB) refinement. Timed refinement is a notion

of equivalence between two timed transition systems (TTSs) that allows for stuttering between the

implementation and specification, and also allows for the use of refinement maps. The incorporation

of stuttering and refinement maps allows for timed refinement to be applicable to the verification

of low-level interrupt-driven real-time object code against high-level specification models. In the

definition of timed refinement, stuttering is the phenomenon where multiple but finite transitions

of the implementation can match a single transition of the specification. Refinement maps allow

low-level implementations to be verified against high-level specification models. Therefore, timed

refinement verification for real-time interrupt-driven object code programs has been developed as

an automated tool in three stages.

Firstly, an algorithm (it may be noted that in this dissertation, the term algorithm is

interchangeably used with procedure) to verify timed refinement has been developed. It has been

formalized and its correctness proof has been developed. The models were developed and WEB

refinement has been established manually. Once the functional verification has been performed,

timed refinement verification has been performed using the automated tool. In order to illustrate

the effectiveness of the proposed technique, a set of six case studies has been used. The results

indicate that the abstractions based on stuttering reduce the size of the implementation TTS by

at least 4 orders of magnitude (Section 4.5).

Secondly, based on the results obtained in timed refinement, a novel abstraction technique

that exploits the phenomenon of stuttering called timed stuttering abstraction (TSA) is intro-
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duced. Timed stuttering abstraction is applied to timed transition systems. Specific additional

contributions include: (1) a formalization of TSA; (2) correctness of TSA in the context of TWFS

refinement; (3) dynamic timed stuttering abstraction, an algorithm to automatically apply TSA

during symbolic simulation of the object code. A comprehensive set of thirty case studies is used

to demonstrate the effectiveness of TSA. In this study, it has been shown that TSA provides a

reduction in the complexity of real-time object-code verification by several-orders-of-magnitude.

This, in turn, reduces the verification time of timed refinement.

In the previous stages of the studies, timed refinement was automated. However, WFS re-

finement verification was manually done, which is inadequate for large-scale programs. In addition,

the study of literature indicates none of the up-to-date studies have automated WFS refinement

verification for real-time interrupt-driven object code programs. In order to make a fully functional

automated tool requires both WFS refinement verification and timed refinement verification to be

automated. Therefore, in the final stage of this study, two algorithms for automatic WFS refinement

checking optimized for object code verification are proposed. The purpose of the two algorithms

is to check the following properties for timed transition systems: 1) safety and 2) liveness. Safety

informally means that if the implementation makes progress, the result of that progress satisfies

the specification requirements. Liveness verification checks for deadlock errors in the object code.

The algorithms have been implemented and the automated tool flow has been applied to several

object code control programs to demonstrate the effectiveness of the approach.

In summary, the unique contributions of this dissertation are as follows:

1. The notion of correctness called timed refinement for real-time interrupt-driven object code

programs has been introduced for the first time.

2. A novel abstraction technique called stuttering abstraction for transition systems and timed

stuttering abstraction (TSA) for timed transition systems.

3. New automated algorithms that check for safety and liveness properties for real-time interrupt-

driven object code programs are developed.
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2. BACKGROUND

This chapter presents information that could serve as the background to understand the

notion of correctness presented later. Also, the various notations that are used throughout the

dissertation are discussed. Most of these notations are pretty standard.

2.1. Set Theory

A set is defined as a collection of elements. An ordered pair is denoted as 〈i, j〉 whose first

component is i and whose second component is j. Function application is denoted by an infix dot

”.” and is left associative. Sometimes, a function is represented using curried brackets e.g., f.x.y

is written as f(x, y).

For any binary relation R, sRw represents 〈s, w〉 ∈ R [45]. The composition of binary

relations R and T is denoted by R;T or T ◦ R. A binary relation, R ⊆ XxX, is reflective if

〈∀x ∈ X :: xRx〉. R is symmetric if 〈∀x, y ∈ X :: xRy =⇒ yRx〉. R is transitive if 〈∀x, y, z ∈ X ::

xRy ∧ yRz =⇒ xRz〉. A binary relation is a preorder if it is reflective and transitive. A binary

relation is an equivalence relation if it is reflective, transitive and symmetric.

A function from [0..n) for some natural number n is called a finite sequence. A well-founded

structure is a pair 〈W,l〉 where W is a set and l is a binary relation on W such that there are

no infinitely decreasing sequences on W , with respect to l. < is used to compare natural numbers

and ≺ is used to compare ordinal numbers. Ordinal is a sequence in which something is in relation

to others of its kind. An ordinal number tells the position of an item in an ordered sequence.

Atomic propositions (APs) are statements that are used to represent the state information,

i.e., information about the current state in the system. Atomic propositions can be evaluated to

be either true or false. An invariant is a property that specifies which atomic propositions must

hold at all times for an application.

2.2. Formal Verification

The traditional methods for checking the correctness were testing and simulation [15].

While simulation and testing explored some of the possible behaviors and scenarios of the system,

it often left an open question, can there be fatal bugs in the unexplored cases? Simulation and

testing are not sufficient for systems with a large number of possible states and can easily miss

8



errors. Formal verification conducts an exhaustive exploration of all possible behaviors and hence

has become the foundation for ensuring software correctness. A system can be declared correct

after applying formal verification method, this means that all behaviors have been explored and the

question of adequate coverage or a missed behavior becomes irrelevant. Formal verification typically

consists of checking the implementation (the artifact to be verified) against a specification. The

specification is a high-level mathematical model that describes the correct behavior of the system.

Model checking and theorem proving are two leading verification paradigms in formal ver-

ification. In model checking, a desired behavioral property of a reactive system is verified over

a given system (specification) through exhaustive enumeration of all the states reachable by the

system and the behaviors that traverse through them [15]. A reactive system is described as non-

terminating computing system that maintains an ongoing interaction with its environment. Model

checking is a powerful method used extensively for hardware and software verification. It has been

used widely for checking applications in computer science. In model checking, the specification is

given as a formula in temporal logic, which can assert how the behavior of the system evolves over

time. The major disadvantage of model checking is the state explosion that can occur if the system

being verified has many components that can make transitions in parallel [15]. Theorem proving

is a formal logic that uses states and proves theorems. The proofs of theorem proving are checked

by computer programs. Theorem provers are based on set theory, higher-order logic, constructive

type theory, first-order logic, etc. Theorem provers consist of refinement based verification.

Refinement based verification has been demonstrated [45] to be applied to the verification

of embedded control software at the object code level. The goal of refinement-based verification is to

mathematically prove that the implementation behaves correctly as defined by the specification. In

refinement-based verification, both the specification and implementation are modeled as transition

system (TS). Transition systems are used to describe the configuration of an application as states

and transitions saying how and when to go from one state to another. For example, in a game of

chess, the configurations are the positions in the game (i.e., the placements of the chess pieces on

the board), and transitions describe the movement of the chess pieces according to the rules of the

game). A transition system may be used to describe a computer itself, networks, communication

systems, algorithms, etc. When a system is described as a transition system, the system can be

subjected to formal analysis, i.e., it allows to talk about the system properties in a precise manner.
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The formal definition of transition system is given below:

Definition 1. [45] A transition system (TS) M = 〈S, T, L〉 is a three tuple in which S denotes

the set of states, T ⊆ SXS is left-total and is the transition relation that provides the transition

between states, and L is a labeling function that describes what is visible at each state.

S represents the states in the transition system which is also the state space of the system. Often,

transition systems are drawn as directed graphs with states represented by vertices and transitions

represented by directed edges. For example, consider the transition system shown in Figure 2.1.

This is a simplified model of a traffic light, in which the light can be red or green. S = {R, G}, T

= {〈R,G〉, 〈G,R〉} and the label L(R) indicates the red light is ON and green light is OFF, and

L(G) indicates the green light is ON and the red light is OFF. Here it is also shown that R is the

initial state for the traffic light system. Initial state (s0) is a state in the set of states (s0 ∈ S)

indicates the state from which the application starts. Some applications may have multiple start

states from which an application may start. For example, consider a football match as an example.

In a football match, if each player is represented as a state then they would be a minimum of

two states that are assigned as an initial state since a football game consists of a player from each

team who could start the game. Depending on who starts the game the transition relation would

be different. Similarly, depending on the safety-critical application, they could be multiple initial

states and the corresponding transition relation could be different.

R

G

Figure 2.1. Pictorial Representation of the Traffic Light Transition System

Some of the properties of interest for a transition system are safety properties and liveness

properties. Safety properties capture the intuitive notion that ”nothing bad can happen in a

process”, i.e., it is impossible to enter an unwanted configuration. Liveness properties capture the

intuitive notion that ”eventually something happens in a process”, the safest way of avoiding errors
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is to do nothing, but systems of that kind are rather boring. Another property of interest for any

system is termination. Termination properties ensure that the system stops eventually at some

point. Termination is an example of the liveness property and cannot be expressed in terms of

invariant.

S0 S1

S2S3

(a) Deterministic TS

A B

C D

E F

(b) Non-Deterministic TS

Figure 2.2. Different Types of Transition Systems

Transition systems can be classified as deterministic systems and non-deterministic systems

(Figure 2.2). A transition system in which each state has only one successor state is known as

deterministic transition system. In Figure 2.2a, each state in the transition system has one and

only one successor. A transition system in which one or more states contain more than one successor

state is known as non-deterministic transition system. For example in Figure 2.2b, states A,C,E, F

contain multiple successor. Depending on the other parameters that describe the system, the

successor state for each of the state can be determined.

In a transition system , a path σ is a sequence of states such that for adjacent states s and

u, sTu where T is the transition relation.

2.3. Stepper Motor Control

Stepper motor control is used to describe the various algorithms presented in this disser-

tation for the verification of real-time interrupt-driven object code programs. A stepper motor is
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a brushless DC electric motor. Stepper motors are widely used in commercial applications such

as medical devices like infusion pump, computer peripherals, robotics like surgical robots, machine

tools, and process control [16, 41], and many of these applications are safety-critical. The current

pulse applied to the motor generates discrete rotation of the motor shaft. A stepper motor can

have 4 or 6 leads. Consider a motor with 4 leads say a, b, c, and d. Then the following repeating

sequence of values to the leads causes the motor to spin: abcd = 1000, 0100, 0010, 0001, 1000 etc.

There are other such repeating sequences that can cause a 4-lead or 6-lead stepper motor to spin.

Every next value in the sequence causes the motor to rotate by a small angle. Thus a stepper motor

can be controlled by software (that generates the above sequence of values to the leads), executing

on a micro-controller that is interfaced with the motor. The time delay between when each value

in the sequence is generated determines the speed of the motor. The speed also depends on the

angle the motor rotates at each step.

2.3.1. Specification of Stepper Motor Control

Figure 2.3 shows only one type of specification transition system (TS) for stepper motor

control with 4 leads. The states are represented as S0, S1, S2, S3, S4, S5. Here, S0 is the initial state

and S5 is the stop state. The stepper motor can reach the stop/terminating state from any of the

states once it has been turned on.

S0

S1 S2

S3S4

S5

Figure 2.3. Stepper Motor Control Specification TS with Termination State
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Throughout this dissertation, Figure 2.4 is considered as the specification transition system

(TS) (MS) for stepper motor control with 4-leads. The termination state is not considered for the

rest of this dissertation since it is assumed the motor can stop/terminate from any state once it has

been turned on. The states are represented as S0, S1, S2, S3, S4. The transition relation determines

the direction of the shaft. The labeling function gives the values of the leads, which determine

the state. The transition system has 4 states and captures the repeating sequence of values the

software controller must generate. The functionality of the controller is not fully described unless

the speed of rotation is specified.

S0

S1 S2

S3S4

L(S0) : 0000

L(S1) : 0001

L(S2) : 0010

L(S3) : 0100

L(S4) : 1000

Figure 2.4. Stepper Motor Control Specification TS

2.3.2. Implementation of Stepper Motor Control

The target is to verify the implementation model for the stepper motor control which is the

object code. The implementation model is obtained by generating a function for each instruction

that describes the effect of the instruction on the state of the microcontroller. The state of the

microcontroller is not as simple as the specification states (as shown in Figure 2.4) but consists

of registers, flags, and memory of the microcontroller. The set of all such functions (one for each

instruction) along with the initial state of the microcontroller defines the transition system model

of the implementation. Note that this set includes the instructions in interrupt service routines of

the interrupts that the program uses. The implementation model consists of millions of transitions

because of the various possible values that the registers, flags, memory and special registers of the

microcontroller can have during the execution of the object code program.
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Figure 2.5. Source Code to Object Code

The choice of representing the implementation model is the object code program instead of

the corresponding source code. Object code verification will find bugs that are introduced during

compilation. Also, for interrupt driven programs, the implementation behavior is more accurately

captured at the object level. For example, consider a C statement that is compiled into three

instructions in the object code (Figure 2.5). An interrupt can occur after the execution of the first

instruction and before the execution of the second instruction. This situation cannot be captured

in a C model, as the instructions are bundled together in one C statement.

Figure 2.6 shows an example TS that is an implementation of the stepper motor specification

TS shown in Figure 2.4. Looking at Figures 2.4 and 2.6, it can be seen that the specification TS

and implementation TS look quite different.

2.4. Theory of Refinement

Theory of refinement is a task of modifying a computer program and simplifying it so that

formal verification could be applied to it. Consider two systems S1 and S2 which are at different

levels of hierarchy. In order to prove that S1 and S2 represent the same application, we need to

define a relation between them. Simulation relations can be used to model the uniformity between

two systems that are at different levels of hierarchy.

R is a simulation relation [45] on a transition system M = 〈S,R,L〉 if R ⊆ S x S and for

s, w such that sRw then

1. L.s = L.w

2. 〈∀u : sRu : 〈∃v :: wRv ∧ uRv〉〉

Let S1 and S2 be two transition systems which belong to different levels of hierarchy. S1 simulates

S2 if every transition in S1 can correspond to a similar transition in S2. Here S1 is the lower level

model (implementation) and S2 is the higher level (specification) model.
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Figure 2.6. Stepper Motor Control Implementation TS

B is a bisimulation relation [45] on a transition system M = 〈S,R,L〉 if B ⊆ S x S and for

s, w such that sBw then

1. L.s = L.w

2. 〈∀u : sRu : 〈∃v :: wRv ∧ uBv〉〉

3. 〈∀v : wRv : 〈∃u :: sRu ∧ uBv〉〉

s is similar to w if there exists a simulation relation R such that sRw. Similarly s is bisimilar to

w if there exists a bisimulation relation B such that sBw. It must be noted that if s is similar

to w and w is similar to s, then s and w are not bisimilar. There exist a greatest simulation and

a greatest bisimulation. The greatest simulation is preorder and the greatest bisimulation is an

equivalence relation.
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Manolios [45] has developed a notion of correctness for transition systems based on the

simulation relation and bisimulation relation. His work provides reasoning about a single-step

rather than reasoning about infinite computations. An implementation is correct with respect to

a specification if the implementation is related to the specification as described by the notion of

correctness. A step of the specification may translate to multiple steps of the implementation.

A relation R ⊆ S x S is a stuttering simulation (STS) [45] on TS M = 〈S,R,L〉 iff for all

s, w such that sBw:

1. L.s = L.w

2. 〈σ : fp.σ.s : 〈∃δ : fp.δ.w : match(B, σ, δ)〉〉

2.4.1. WFS Refinement

Well-founded simulation (WFS) refinement is a notion of correctness which describes how

an implementation transition system is correctly implemented with respect to its specification

transition system. WFS refinement deals with only functional correctness. The formal definitions

and a detailed description of the WFS refinement are provided in [45]. Below is the definition of

WFS

Definition 2. [45] B ⊆ S × S is a WFS on TS M = 〈S, T, L〉 iff:

(1) 〈∀s, w ∈ S :: sBw :: L(s) = L(w)〉; and

(2) There exist functions, rankl : S × S × S → N, rankt : S × S →W,

such that 〈W,l〉 is well-founded, and

〈∀s, u, w ∈ S :: sBw ∧ sTu ::

(a) 〈∃v :: wTv ∧ uBv〉∨

(b) (uBw∧rankt(u,w) l rankt(s, w))∨

(c) 〈∃v :: wTv ∧ sBv ∧ rankl(v, s, u) < rankl(w, s, u)〉〉

Here condition 1 states that a relation exists between states s and w and there have the

same labels. In condition 2, case (a) denotes the non-stuttering transition on the implementation

side, case (b) denotes the stuttering on the specification side and case (c) denotes stuttering on the

implementation side. Progress on the model is denoted by a non-stuttering transition where the
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states have different labels. Whereas in the case of stuttering transition the states have the same

label. rankt and rankl are called as rank functions (discussed later).

When the specification and implementation systems are modeled as TSs, a step in the spec-

ification could be translated to multiple steps in the implementation. Hence, stuttering is a phe-

nomenon where multiple but finite transitions of implementation can match to the same specification

transition. WFS refinement has two key features: refinement-map and stuttering. Refinement-map,

r, is a function that, given an implementation state, gives the corresponding specification state. A

function like refinement-map is needed to bridge the abstraction gap between the implementation

and specification systems.

The advantage of using WFS refinement is it is sufficient to reason about a single step of

transition in the implementation and specification to check for correctness and find bugs. This

makes WFS refinement applicable to deal with the complexity of object code. To avoid deadlock

situations, in stuttering transitions, a witness function called rank is designed such that it decreases

with each transition. In Definition 2, two rank functions rankt and rankl corresponds to the

stuttering on specification and implementation side respectively.

Next is the definition of WFS refinement.

Definition 3. [45] (WFS Refinement) Let M = 〈S, T, L〉, M ′ = 〈S′, T ′, L′〉, and r : S → S′. We

say that M is a WFS refinement of M ′ with respect to refinement-map r, written M vr M ′, if there

exists a relation, B, such that 〈∀s ∈ S :: sBr(s)〉 and B is a WFS on the TS 〈S ] S′, T ] T ′,L〉,

where L(s) = L′(s) for s an S′ state and L(s) = L′(r(s)) otherwise.

In the above definition, M and M ′ are the implementation and the specification TS respec-

tively and r is the refinement-map function. The definition can be interpreted as every implemen-

tation transition should either be a stuttering or a non-stuttering transition. If it can be proved

that an implementation TS is a WFS refinement of a specification TS, then every behavior of the

implementation is guaranteed to match a behavior of the specification. If the implementation TS

has a label that does not match to its specification TS or a transition that does not match in

the specification TS, then these situations correspond to a bug in the implementation model (here

M 6vr M ′ ). If M is a WFS refinement of M ′ then, a state in M cannot be related to more than

one state in M ′ (as the refinement-map is a function which is used to relate states of M to M ′).
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WFS refinement satisfies composition property and is given by the theorem below.

Theorem 1. [45] (Composition for WFS refinement) If Ma vr Mb and Mb vq Mc then Ma vr;q

Mc.

The above theorem states that the refinement is a compositional notion. Here, Ma is a WFS

refinement of Mb w.r.t refinement map r is denoted as Ma vr Mb and r; q denotes composition,

i.e., (r; q)(x) = q(r(x)).

2.4.2. WEB Refinement

A formal and detailed description of Well-founded Equivalence Bisimulation (WEB) refine-

ment is provided in [44, 45]. Here, a brief overview of the key features is given. As stated earlier,

in the context of refinement, both the implementation and specification are treated as transition

systems. Informally, the implementation behaves correctly as given by the specification, if every be-

havior of the implementation is matched by a behavior of the specification and vice versa. However,

the implementation and specification may not have the same transition behavior.

Another issue is that to check equivalence, specification states and implementation states

need to be compared. However, these states can look very different. In the stepper motor specifi-

cation, each state is a four-bit value. However, the implementation state in this example includes

registers and memory in the microcontroller. WEB refinement employs refinement maps, functions

that map implementation states to specification states, to bridge this abstraction gap. Below is the

definition of WEB.

Definition 4. [45] B ⊆ S × S is a WEB on TS M = 〈S, T, L〉 iff:

(1) B is an equivalence relation on S; and

(2) 〈∀s, w ∈ S :: sBw :: L(s) = L(w)〉; and

(3) There exist functions erankl : S × S → N, erankt : S →W,

such that 〈W,l〉 is well-founded, and

〈∀s, u, w ∈ S :: sBw ∧ sTu ::

(a) 〈∃v :: wTv ∧ uBv〉∨

(b) (uBw∧erankt(u) l erankt(s))∨

(c) 〈∃v :: wTv ∧ sBv ∧ erankl(v, u) < erankl(w, u)〉〉
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In the third condition, case (b) denotes stuttering on the specification side and case (c)

denotes stuttering on the implementation side. In practice, stuttering rarely occurs on the spec-

ification side. To check WEB refinement, it is enough to reason about single transitions of the

implementation and the specification.

Next is the definition of a WEB refinement.

Definition 5. [45] (WEB Refinement) Let M = 〈S, T, L〉, M ′ = 〈S′, T ′, L′〉, and r : S → S′. We

say that M is a WEB refinement of M ′ with respect to refinement map r, written M ≈r M ′, if there

exists a relation, B, such that 〈∀s ∈ S :: sBr(s)〉 and B is a WEB on the TS 〈S ] S′, T ] T ′,L〉,

where L(s) = L′(s) for s an S′ state and L(s) = L′(r(s)) otherwise.

Refinement is a compositional notion as given by the following theorem [46]. Below, Mc ≈r

Mb denotes that Mc is a WEB refinement of Mb; and r; q denotes composition, i.e. (r; q)(s) =

q(r(s)).

Theorem 2. [46] (Composition for WEB Refinement) If Mc ≈r Mb and Mb ≈q Ma then Mc ≈r;q

Ma.
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3. CASE STUDIES

This chapter details the two control programs used extensively to apply the proposed notion

of refinement. The implementation model for these control programs is the device object code

instead of its corresponding source code. Device object code verification will find bugs that are

introduced during compilation. Also, for interrupt driven programs, the implementation behavior is

more accurately captured at the object level (as explained in Section 2.3.2). In formal verification,

the design artifact consists both implementation model and specification model. So, this chapter

explains the specification model for all the benchmarks used in the rest of the dissertation. All

the benchmarks were developed to run on an ARM Cortex-M3 based NXP LPC1768 [58] micro-

controller.

3.1. Stepper Motor Control Program

A number of object code programs for stepper motor control were used as benchmarks to

demonstrate the effectiveness of the proposed methodology. A stepper motor is a brushless DC

electric motor. Current pulse applied to the motor generates discrete rotation of the motor shaft.

A stepper motor can have 4 or 6 leads. Consider a motor with 4 leads say a, b, c, and d. It can

be energized in various repeated sequences that cause it to rotate. A general specification model

and implementation model for stepper motor are shown in Figure 2.4 and Figure 2.6, respectively.

Three typically used sequences were used to develop the benchmarks.

1. Full stepping or single stepping or wave stepping : This sequence is expressed as

〈0001〉, 〈0010〉, 〈0100〉, 〈1000〉, 〈0001〉. A stepper motor has two pairs of stator windings.

The two phases are energized in alternate fashion and in reverse polarity. Just as the rotor

aligns with one of the stator poles, the second phase is energized. There are four steps and

hence four discrete state transitions are required for one rotation of the stepper motor.

2. Double stepping : This sequence is expressed as 〈0011〉, 〈0110〉, 〈1100〉, 〈1001〉, 〈0011〉.

3. Half stepping : This sequence is expressed as 〈0001〉, 〈0011〉, 〈0010〉, 〈0110〉, 〈0100〉, 〈1100〉,

〈1000〉, 〈1001〉, 〈0001〉. The stepper motor has eight steps instead of four. This is cause

because the second phase is turned on before the first phase is turned off. Hence, two phases
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are energized at the same time. The rotor holds on between two full-step positions. There

are eight discrete state transitions for one rotation of the stepper motor.

For the stepper motor, the values on the leads determine the state, the transition relation

determines the speed and direction of the shaft. The direction of the shaft is classified as ”clock”

and ”anti” which indicate that the motor was controlled in clockwise and anti-clockwise direction,

respectively.

A stepper motor also has microstepping as a sequence. In microstepping technique, the

stator flux is moved smoothly. The step angle in this technique is divided into multiple subdivisions

to improve the control over the motor. This technique is used in applications where a refined motor

work with greater resolution is needed. The stepper motor produces less vibration and makes

noiseless stepping possible with no detectable ”stepping”. Hence it was not implemented as a

benchmark.

The goal of this dissertation is verification of interrupt-driven real-time object code pro-

grams. The time delay is introduced in the source code by using of either a timer or a counter.

”RIT” indicates that the interrupts were generated by Repetitive Interrupt Timer (RIT) to imple-

ment the timing delays for the motor control. ”noRIT” indicates that instead of the RIT timer,

code/counters was to implement timing delays.

3.1.1. Case Study A - Interrupt Driven Full Stepping Stepper Motor Control in Clock-

wise Direction

Stepper motor control with full stepping is implemented with the Repetitive Interrupt Timer

(RIT), which is a timer present in the LPC1768. The controller microcode enables the RIT unit

and also a register that RIT has to store a constant value. Then the code enters a while loop. The

RIT has a counter which increments every clock cycle. When the counter reaches the value stored

in the RIT register, an interrupt is generated. As soon as the interrupt is generated, the counter is

reset to 0 and flow of control changes to the RIT interrupt service routine (ISR). In the RIT ISR,

the FIOPIN register is updated to the next value of the leads required for full stepping, and then

returns control to the main program. The source code for this case study is shown in Appendix B.

The object code that is obtained from this source code is shown in Appendix C. It has to be noted

that just the object code would not make any sense without knowing where to start from and also
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where does the interrupt routine starts from. All this additional information is needed along with

the object code.

S0 S1 S2

S4S8

L(S0) : 0000

L(S1) : 0001

L(S2) : 0010

L(S4) : 0100

L(S8) : 1000

Figure 3.1. Stepper Motor Control Specification TS for Interrupt-Driven Full Stepping in Clockwise
Direction

The specification model for interrupt driven full stepping stepper motor control in clockwise

direction transition system is shown in Figure 3.1. The set of states S = {S0, S1, S2, S4, S8}, with

S0 as the initial state, the transition relation T = {〈S0, S1〉, 〈S1, S2〉, 〈S2, S4〉, 〈S4, S8〉, 〈S8, S1〉} and

the labeling function is shown on the left.

3.1.2. Case Study B - Interrupt Driven Full Stepping Stepper Motor Control in Anti-

Clockwise Direction

This interrupt control mechanism is similar to case study A. The RIT unit is employed

here. The ISR is modified to update the FIOPIN register based on full stepping in anti-clockwise

direction.

S0 S1 S2

S4S8

L(S0) : 0000

L(S1) : 0001

L(S2) : 0010

L(S4) : 0100

L(S8) : 1000

Figure 3.2. Stepper Motor Control Specification TS for Interrupt-Driven Full Stepping in Anti-
Clockwise Direction

The specification model for interrupt driven full stepping stepper motor control in anti-

clockwise direction transition system is shown in Figure 3.2. The set of states S = {S0, S1, S2, S4, S8},
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with S0 as the initial state, the transition relation T = {〈S0, S1〉, 〈S1, S8〉, 〈S8, S4〉, 〈S4, S2〉, 〈S2, S1〉}

and the labeling function is shown on the left.

3.1.3. Case Study C - Interrupt Driven Double Stepping Stepper Motor Control in

Clockwise Direction

This interrupt control mechanism is similar to case study A. The RIT unit is employed

here. The ISR is modified to update the FIOPIN register based on double stepping in clockwise

direction.

S0 S3 S6

S12S9

L(S0) : 0000

L(S3) : 0011

L(S6) : 0110

L(S12) : 1100

L(S9) : 1001

Figure 3.3. Stepper Motor Control Specification TS for Interrupt-Driven Double Stepping in Clock-
wise Direction

The specification model for interrupt driven double stepping stepper motor control in clock-

wise direction transition system is shown in Figure 3.3. The set of states S = {S0, S3, S6, S12, S9},

with S0 as the initial state, the transition relation T = {〈S0, S3〉, 〈S3, S6〉, 〈S6, S12〉, 〈S12, S9〉, 〈S9, S3〉}

and the labeling function is shown on the left.

3.1.4. Case Study D - Interrupt Driven Double Stepping Stepper Motor Control in

Anti-Clockwise Direction

This interrupt control mechanism is similar to case study A. The RIT unit is employed here.

The ISR is modified to update the FIOPIN register based on double stepping in anti-clockwise

direction.

The specification model for interrupt driven double stepping stepper motor control in anti-

clockwise direction transition system is shown in Figure 3.4. The set of states S = {S0, S3, S6, S12, S9},

with S0 as the initial state, the transition relation T = {〈S0, S3〉, 〈S3, S9〉, 〈S9, S12〉, 〈S12, S6〉, 〈S6, S3〉}

and the labeling function is shown on the left.
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S0 S3 S6

S12S9

L(S0) : 0000

L(S3) : 0011

L(S6) : 0110

L(S12) : 1100

L(S9) : 1001

Figure 3.4. Stepper Motor Control Specification TS for Interrupt-Driven Double Stepping in Anti-
Clockwise Direction

3.1.5. Case Study E - Interrupt Driven Half Stepping Stepper Motor Control in Clock-

wise Direction

This interrupt control mechanism is similar to case study A. The RIT unit is employed here.

The ISR is modified to update the FIOPIN register based on half stepping in clockwise direction.

S0 S1 S3 S2 S6

S4S12S8S9

L(S0) : 0000

L(S1) : 0001

L(S3) : 0011

L(S2) : 0010

L(S6) : 0110

L(S4) : 0100

L(S12) : 1100

L(S8) : 1000

L(S9) : 1001

Figure 3.5. Stepper Motor Control Specification TS for Interrupt-Driven Half Stepping in Clockwise
Direction

The specification model for interrupt driven half stepping stepper motor control in clockwise

direction transition system is shown in Figure 3.5. The set of states S = {S0, S1, S3, S2, S6, S4, S12, S8,

S9}, with S0 as the initial state, the transition relation T = {〈S0, S1〉, 〈S1, S3〉, 〈S3, S2〉, 〈S2, S6〉, 〈S6, S4〉,

〈S4, S12〉, 〈S12, S8〉, 〈S8, S9〉, 〈S9, S1〉} and the labeling function is shown on the left.

3.1.6. Case Study F - Interrupt Driven Half Stepping Stepper Motor Control in Anti-

Clockwise Direction

This interrupt control mechanism is similar to case study A. The RIT unit is employed

here. The ISR is modified to update the FIOPIN register based on half stepping in anti-clockwise

direction.
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S4S12S8S9

L(S0) : 0000

L(S1) : 0001

L(S3) : 0011

L(S2) : 0010

L(S6) : 0110

L(S4) : 0100

L(S12) : 1100

L(S8) : 1000

L(S9) : 1001

Figure 3.6. Stepper Motor Control Specification TS for Interrupt-Driven Half Stepping in Anti-
Clockwise Direction

The specification model for interrupt driven half stepping stepper motor control in anti-

clockwise direction transition system is shown in Figure 3.6. The set of states S = {S0, S1, S3, S2, S6, S4,

S12, S8, S9}, with S0 as the initial state, the transition relation T = {〈S0, S1〉, 〈S1, S9〉, 〈S9, S8〉, 〈S8, S12〉,

〈S12, S4〉, 〈S4, S6〉, 〈S6, S2〉, 〈S2, S3〉, 〈S3, S1〉} and the labeling function is shown on the left.

3.1.7. Case Study G - Full Stepping Stepper Motor Control without Interrupts in

clockwise direction

For this case study, full stepping control is implemented without using interrupts. The

delay required between full stepping control states is achieved using for loops with a large number

of iterations. The number of iterations of the for loop is determined so that the time required by

the microcontroller to execute the for loop matches the delay required between full stepping control

states. The drawback with this approach is that if the control program performs other functions

and has enabled other interrupts, it may not be possible to guarantee accurate speed of the motor.

The specification model for full stepping stepper motor control without interrupts in clock-

wise direction transition system is similar to Figure 3.1. The set of states S = {S0, S1, S2, S4, S8},

with S0 as the initial state, the transition relation T = {〈S0, S1〉, 〈S1, S2〉, 〈S2, S4〉, 〈S4, S8〉, 〈S8, S1〉}

and the labeling function is shown on the left. The specification transition system does not depend

on how the delays are produced in the system.

3.1.8. Case Study H - Full Stepping Stepper Motor Control without Interrupts in

Anti-Clockwise Direction

For this case study, the delay required between full stepping control states in anti-clockwise

direction is achieved using for loops with a large number of iterations, instead of interrupts.
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The specification model for interrupt driven full stepping stepper motor control in anti-

clockwise direction transition system is similar to Figure 3.2. The set of states S = {S0, S1, S2, S4, S8},

with S0 as the initial state, the transition relation T = {〈S0, S1〉, 〈S1, S8〉, 〈S8, S4〉, 〈S4, S2〉, 〈S2, S1〉}

and the labeling function is shown on the left. The specification transition system does not depend

on how the delays are produced in the system.

3.1.9. Case Study I - Double Stepping Stepper Motor Control without Interrupts in

Clockwise Direction

For this case study, the delay required between double stepping control states in clockwise

direction is achieved using for loops with a large number of iterations, instead of interrupts.

The specification model for double stepping stepper motor control without interrupts in

clockwise direction transition system is similar to Figure 3.3. The set of states S = {S0, S3, S6, S12, S9},

with S0 as the initial state, the transition relation T = {〈S0, S3〉, 〈S3, S6〉, 〈S6, S12〉, 〈S12, S9〉, 〈S9, S3〉}

and the labeling function is shown on the left. The specification transition system does not depend

on how the delays are produced in the system.

3.1.10. Case Study J - Double Stepping Stepper Motor Control without Interrupts in

Anti-Clockwise Direction

For this case study, the delay required between double stepping control states in anti-

clockwise direction is achieved using for loops with a large number of iterations, instead of inter-

rupts.

The specification model for interrupt driven double stepping stepper motor control in anti-

clockwise direction transition system is similar to Figure 3.4. The set of states S = {S0, S3, S6, S12, S9},

with S0 as the initial state, the transition relation T = {〈S0, S3〉, 〈S3, S9〉, 〈S9, S12〉, 〈S12, S6〉, 〈S6, S3〉}

and the labeling function is shown on the left. The specification transition system does not depend

on how the delays are produced in the system.

3.1.11. Case Study K - Half Stepping Stepper Motor Control without Interrupts in

Clockwise Direction

For this case study, the delay required between half stepping control states in clockwise

direction is achieved using for loops with a large number of iterations, instead of interrupts.

The specification model for interrupt driven half stepping stepper motor control in clockwise

direction transition system is similar to Figure 3.5. The set of states S = {S0, S1, S3, S2, S6, S4, S12, S8,
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S9}, with S0 as the initial state, the transition relation T = {〈S0, S1〉, 〈S1, S3〉, 〈S3, S2〉, 〈S2, S6〉, 〈S6, S4〉,

〈S4, S12〉, 〈S12, S8〉, 〈S8, S9〉, 〈S9, S1〉} and the labeling function is shown on the left. The specifica-

tion transition system does not depend on how the delays are produced in the system.

3.1.12. Case Study L - Interrupt Driven Half Stepping Stepper Motor Control in

Anti-Clockwise Direction

For this case study, the delay required between half stepping control states in anti-clockwise

direction is achieved using for loops with a large number of iterations, instead of interrupts.

The specification model for interrupt driven half stepping stepper motor control in anti-

clockwise direction transition system is similar to Figure 3.6. The set of states S = {S0, S1, S3, S2, S6, S4,

S12, S8, S9}, with S0 as the initial state, the transition relation T = {〈S0, S1〉, 〈S1, S9〉, 〈S9, S8〉, 〈S8, S12〉,

〈S12, S4〉, 〈S4, S6〉, 〈S6, S2〉, 〈S2, S3〉, 〈S3, S1〉} and the labeling function is shown on the left. The

specification transition system does not depend on how the delays are produced in the system.

3.1.13. Case Study M - Interrupt Driven Variable Speed Full Stepping Stepper Motor

Control in Clockwise direction

The RIT unit is used to implement full stepping control. However, the motor has 3 speed

modes and in each mode the motor runs at a different speed. The modes can be changed based

on input from a keyboard, which acts as an external interrupt. When any key on the keyboard

is pressed, an interrupt is generated (different from the RIT interrupt). The keyboard input is

processed to change the speed of the motor. Note that since the control program supports 2

interrupts, the RIT interrupt is given the higher priority.

The specification model for interrupt driven variable speed full stepping stepper motor is

not easy to depict as the state representation and state transition are no long represented with

single bits. Two bits are needed to signify the system has received a signal in the form of an

interrupt to change the speed of operation. ”00” means that the system has normal operation,

”01” indicates speed 2 as the operation speed and ”10” indicates speed 3 as the operation speed.

Here ”11” is considered as bug in the model. Another bit is used to signify that the transition has

happened from one speed to another speed. These bits have to be set and clear depending on the

situation and mode of operation. Hence the specification TS is not shown as a figure.
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3.1.14. Case Study N - Interrupt Driven Variable Half Full Stepping Stepper Motor

Control in Clockwise directon

3 mode variable speed is implemented using half stepping. The input from keyboard (which

acts as an external interrupt) and RIT interrupt are also employed here, with the RIT interrupt

having higher priority.

The specification model for interrupt driven variable speed half stepping stepper motor is

not easy to depict as the state representation and state transition are no long represented with

single bits. Two bits are needed to signify the system has received a signal in the form of an

interrupt to change the speed of operation. ”00” means that the system has normal operation,

”01” indicates speed 2 as the operation speed and ”10” indicates speed 3 as the operation speed.

Here ”11” is considered as bug in the model. Another bit is used to signify that the transition has

happened from one speed to another speed. These bits have to be set and clear depending on the

situation and mode of operation. Hence the specification TS is not shown as a figure.

3.2. Infusion Pump Control Program

An infusion pump is a medical device that is used to deliver controlled dosages of medications

or nutrients into the patient’s circulatory system intravenously. Typical medications delivered

include opioids, insulin, and chemotherapy drugs. Food and Drug Administration (FDA) has issued

54 Class-1 recalls on infusion pumps due to software errors from 2001 to 2017. The criticality of

the pump functionality is because of incorrect dosage delivery due to software errors. We have used

the Alaris Medley 8100 LVP module infusion pump [1,13] for our experiments. The Alaris Medley

pump uses pulse width modulation for dosage control. We implemented the pulse width modulation

control code for the Alaris pump on an ARM Cortex M3 based LPC 1768 micro-controller, which

was interfaced with the pump so that our code implementation can control the pump. We also

developed formal specifications for the pump control software based on the requirements in [67].

The transition system of the pump’s control code had about 24.3 million transitions.

3.2.1. Pulse Width Modulation (PWM)

Pulse Width Modulation (PWM) is a control mechanism that controls the power supply to

electrical device. PWM has a wide range of applications including servo control, telecommunication,
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tp

Figure 3.7. Pulse Width Modulation Signal for Infusion Pump Control

power delivered to a load, to regulate the voltage, for audio amplification and generation of electrical

signals. Any of these techniques can be used to control a safety critical application.

The PWM waveform (as shown in Figure 3.7) can be generated by a controller to control

the motor to which it is connected to. The average value of voltage (and current) that is fed to the

motor can be controlled by turning the switch between the supply and motor on and off at a fast

rate. Hence, PWM is a binary signal with two discrete values of 0 and 1. The width of the signal

can be varied between 0 and the time period of the pulse (tp). Duty cycle (td) is defined on the

the time period during which the signal is high. The duty cycle determines the amount of energy

delivered and hence controls the speed of the motor. The greater the duty cycle, faster is the speed

of the motor. The time period for which son is active determines the speed of the motor.

soff son

Figure 3.8. PWM Specification TS

The specification model for PWM as a transition system is shown in Figure 3.8. It has

two discrete states soff and son. Initially the signal is zero indicated by soff . The signal becomes

high indicated by son. Then the sequence keeps repeating. The set of states S = {soff , son},

the transition relation T = {〈soff , son〉, 〈son, soff 〉} and the labeling function L(soff ) = 0 and

L(son) = 1.
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4. TIMED REFINEMENT

The transitions in a transition system (TS) (described in Section 2.2) can be classified as

stuttering transitions and non-stuttering transitions which are defined next.

Definition 6. In a transition system (TS) M = 〈S, T, L〉, a transition of the form 〈w, v〉 is called

a stuttering transition st, if:

1. The states w, v ∈ S

2. The transition 〈w, v〉 ∈ T

3. L(w) = L(v)

For a transition to be stuttering, it should exist in the transition relation T and also should

have the same labelling function.

Definition 7. In a transition system (TS) M = 〈S, T, L〉, a transition of the form 〈w, v〉 is called

a non-stuttering transition nt, if:

1. The states w, v ∈ S

2. The transition 〈w, v〉 ∈ T

3. L(w) 6= L(v)

For a transition to be non-stuttering, it should exist in the transition relation T and the

states in the transition should not have the same labelling function.

4.1. Specification TTS of Stepper Motor Control

Now, consider the stepper motor controller that was discussed in Section 2.3. Microcon-

trollers can usually be used to control the working of a stepper motor. A software code can be

programmed into a microcontroller which is interfaced with the motor. The microcontroller will

generate a sequence of values which can be loaded onto the leads of a stepper motor. The func-

tionality of the controller is not fully described unless the speed of rotation is specified. The speed

of the motor depends on the angle the motor rotates at each step. The speed is determined by the
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time delay of each transition. The delay (d) of each transition is given by: d = Φ/6r, where, Φ is the

degree of rotation for each step of the motor, and r is the rotational speed of the motor in rpm. In

commercial applications, there is typically a tolerance in the speed of the motor. For example, the

expected speed is 100rpm, but it is acceptable for the speed to vary between 96rpm and 104rpm.

This tolerance results in a lower limit and an upper limit (lb and ub) on the delay of each transition.

If Φ = 1.8o, then for this example, lb=2.884ms (corresponding to speed 104rpm) and ub=3.125ms

(corresponding to speed 96rpm). However, these timing requirements on the transitions cannot be

incorporated in a transition system specification. Therefore, timed transition systems is used to

specify the specification.

Definition 8. A Timed Transition System (TTS) M is a 3-tuple 〈S, T, L〉, where S is the set of

states, T is the transition relation that defines the state transitions, and L is a labeling function

that defines what is visible at each state. T is of the form 〈w, v, lb, ub〉, where w, v ∈ S and lb, ub

are non-negative integers that indicate the lower bound and the upper bound on the time delay of

the transition, respectively.

The above definition is based on the TTS model from Henzinger et al. [34], which gives a very

detailed description of this TTS model. Note that this model is very amenable for modeling and

refinement-based verification of real-time object code programs. The time interval is considered

as lower and upper bound since tolerance is allowable in the speed of real-time applications. If

the delay bounds are excluded from the above definition, it corresponds to a transition system

(TS), which captures only the functional behavior and not the timing behavior (TS is defined in

Definition 1).

Figure 4.1 shows a timed transition system (TTS) specification for the stepper motor control

with transition system shown in Figure 2.4. The timing requirements are marked on the transitions

with lb=2.884ms, and ub=3.125ms.

4.2. Implementation TTS of Stepper Motor Control

The target is to verify the stepper motor object code control program. The implementation

model is obtained by generating a function for each instruction that describes the effect of the

instruction on the state of the microcontroller. The state of a microcontroller includes the registers

and memory of the microcontroller. The set of all such functions (one for each instruction) and the
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S0

S1 S2

S4S8

〈lb, ub〉

〈lb, ub〉

〈lb, ub〉

〈lb, ub〉

〈lb, ub〉

L(S0) : 0000

L(S1) : 0001

L(S2) : 0010

L(S4) : 0100

L(S8) : 1000

Figure 4.1. Stepper Motor Control Specification TTS

initial state of the microcontroller defines the TS model (Figure 2.6) of the implementation. This

set includes the instructions in interrupt service routines of the interrupts that the program uses.

Each instruction is also associated with a lower bound and an upper bound on the instruction

execution time. A number of techniques and tools exist for timing analysis, and to determine

worst case execution time (WCET) and best case execution time (BCET) [66]. The goal is not

timing analysis, but functional and timing verification. Also, the lower and upper delay bounds

on the specification side indicate requirements. On the implementation side, the delay bounds are

an estimate of the lower limit and upper limit of the execution time of the instruction/transition.

The delay bounds on the implementation side are used to verify if the implementation satisfies

the timing requirements of the specification. For real-time object code, the timing properties are

expressed in terms of the number of clock cycle needed to decode an instruction.

Figure 4.2 is an implementation TTS of the implementation TS (shown in Figure 2.6) which

has been constructed for the stepper motor specification TTS shown in Figure 4.1. This example

is used to introduce the notion of timed refinement.

4.3. Timed Refinement

The correct functioning of the stepper motor control program depends also on whether

it meets the timing requirements of the specification. The notion of WFS refinement or WEB

refinement does not consider time. The notion of timed refinement is introduced that accounts for

timing requirements in the context of refinement. Timed refinement is defined in the context of

timed transition systems (TTS).

32



1
2

3
4

5
6

7

8
9

10

1
1

12

1
3

14

15
16

17
18

19

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

33
34

3
5

39
40

414243

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

〈l
b,
u
b〉

F
ig

u
re

4.
2.

S
te

p
p

er
M

ot
or

C
on

tr
ol

Im
p

le
m

en
ta

ti
on

T
T

S

33



If there is no stuttering between the implementation TTS (MI) and the specification TTS

(MS), every step of MI should match a step of MS , and the delay of an implementation step should

”match” the delay of the corresponding specification step. By ”match” it means the following should

be satisfied:

lbs ≤ lbi ≤ ubi ≤ ubs

where, lbs, ubs, lbi, and ubi are the lower and upper delay bounds on corresponding specification

and implementation steps, respectively. If stuttering is involved, which is the case for the stepper

motor example (and would be the case for most real world examples), then the requirements on

the relationship between MI and MS is more complicated. The reason being that with stuttering,

multiple but finite steps of MI can match a single step of MS . Also, the number of stuttering steps

in each situation is arbitrary and depends on the behavior of the implementation that needs to be

verify.

Timed refinement is based on the idea that the implementation TTS MI satisfies the timing

requirements of its specification TTS MS, if in every case, the delay between the previous time that

MI made progress w.r.t. MS and the next time MI makes progress w.r.t. MS, matches the time

delay required for MS to make that progress.

specification :

1 2 3 4
implementation :

1 2 stuttering step

non−stuttering step

Figure 4.3. Example Comparing Implementation and Specification Transitions.

Timed refinement can be illustrated further with the example in Figure 4.3. In the figure, if

step 1 of the implementation matches step 1 of the specification, and step 4 of the implementation

matches step 2 of the specification, then steps 2 and 3 are stuttering steps of the implementation.

Also, steps 1 and 4 of the implementation are non-stuttering steps. Progress on the implementation

side corresponds to the non-stuttering steps. For this example, the following should be satisfied:

lb2
s ≤

4∑
n=2

lbni ≤
4∑

n=2

ubni ≤ ub2
s
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In the above and in the following discussions, in lbn and ubn, superscript n indicates tran-

sition n. The idea of timed refinement can be formalized. In defining a timed refinement between

an MI and an MS , it is assumed that a refinement relationship already exists between the two.

In practice, what this means is that verification of timed refinement is preceded by verification of

WFS refinement or WEB refinement. Since the refinement relationship has been established and a

witness refinement map exists, the stuttering and non-stuttering transitions of the implementation

TTS MI can be identified. This information is captured in a Marked TTS, which is defined below,

Definition 9. A Marked TTS MM is a TTS where every transition of the TTS is marked with a

label st or nt, indicating that the transition is a stuttering transition or a non-stuttering transition,

respectively.

Transitions of a marked TTS are of the form 〈w, v, lb, ub,m〉 where m ∈ {st, nt} (st and

nt indicating stuttering and non-stuttering transitions, respectively). The general theory of WFS

refinement (or WEB refinement) allows for stuttering to occur on the implementation side and

the specification side. In practice, situations in which the specification stutters is rare. Therefore,

an assumption can be made that the implementation can have stuttering steps. Hence, for timed

refinement, stuttering is ignored on the specification side. For object code verification, stuttering

rarely occurs on the specification side as the implementation (object code) typically has a much

larger number of transitions (millions) when compared with the specification. A marked specifi-

cation TTS MM S corresponding to a specification TTS MS , is one in which every transition is a

non-stuttering transition and is marked with nt.

Definition 10. A marked implementation TTS MM I of TTS MI w.r.t a marked specification

TTS MM S is a marked TTS where for every transition of MM I of the form 〈w, v, lb, ub,m〉, if

r(w) = r(v), then m=st, else m=nt. r is the refinement map used to establish that MI is a WEB

refinement of MS.

MM I will satisfy the timing requirements of the corresponding MM S , if every time the im-

plementation makes progress (non-stuttering step), then the sum of the delay of the non-stuttering

step and the delays of all preceding stuttering steps matches the delay of the corresponding spec-

ification step. Note that there may be many paths in the implementation that lead to a specific
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non-stuttering step. For example in Figure 4.2, there exist multiple paths to reach state 13 from

state 3. All these paths individually should satisfy the timing requirements of the corresponding

specification step. These finite paths as called as stuttering segments, which are defined below.

Note that in the following discussions, the delay bounds from T are omitted, if the delay bounds

are not relevant for the discussion.

Definition 11. A stuttering segment (φ) of a non-stuttering step 〈wa, wb〉 of an MM I is a sequence

of steps of MM I {〈wn−1, wn−2〉, 〈wn−2, wn−3〉, ... , 〈w2, w1〉, 〈w1, wa〉, 〈wa, wb〉}, such that:

1. For all i such that 2 ≤ i ≤ n− 1, 〈wi, wi−1〉 is a stuttering step of MM I .

2. 〈wn, wn−1〉 is a non-stuttering step of MM I .

3. 〈w1, wa〉 is a stuttering step of MM I .

w
n−1

w
n

w
n−2

w
2

w
1

w
a

w
b

. . .

Figure 4.4. Stuttering Segment

The above definition is illustrated in Figure 4.4. Note that the least length of a stuttering

segment is one. This occurs when a non-stuttering step is preceded by another non-stuttering

step. The stuttering segment then only consists of one transition which is the non-stuttering step.

Also, a non-stuttering step can have many associated stuttering segments. For the TTS shown in

Figure 4.2, the stuttering segments of 〈10, 13〉 are:

1. {〈3, 4〉, 〈4, 8〉, 〈8, 9〉, 〈9, 10〉, 〈10, 13〉}

2. {〈3, 4〉, 〈4, 5〉, 〈5, 6〉, 〈6, 7〉, 〈7, 9〉, 〈9, 10〉, 〈10, 13〉}.

The idea of stuttering segments when combined with suitable abstractions for timed refine-

ment verification significantly mitigates the path explosion problem that is often encountered in

verification of interrupt driven control programs. The reason being that verification is reduced to

analyzing stuttering segments.
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4.3.1. Timed Well-Founded Simulation Refinement

Timed refinement can be defined with respect to Well Founded Simulation (WFS). A notion

of correctness called Timed Well-Founded Simulation Refinement (TWFS) which is builds on WFS

refinement describes how an implementation satisfies both functional and timing requirements of

its specification. TWFS is defined below:

Definition 12. MI is a timed well-founded simulation (TWFS) refinement of MS if:

1. MI is a WFS refinement of MS w.r.t. refinement map r.

2. Let MMI be the marked TTS of MI w.r.t. MS. Then, for every non-stuttering transition

of MMI 〈wa, wb〉, and for every stuttering segment φ of 〈wa, wb〉, the following should be

satisfied:

lb〈r(wa),r(wb)〉
s ≤

∑
p∈φ

lbpi ≤
∑
p∈φ

ubpi ≤ ub〈r(wa),r(wb)〉
s

In the above definition, lb
〈a,b〉
s and ub

〈a,b〉
s denote the lower and upper delay bounds for the

transition 〈a, b〉 of MS . lbi and ubi denote the lower and upper delay bounds for a transition in

MI which belongs to the stuttering segment φ of 〈r(a), r(b)〉. In defining the TWFS refinement

between the implementation TTS (MI) and specification TTS (MS), it has been assumed that MI

is a WFS refinement of MS that has already been established.

The notion of TWFS given above is bisimilar in nature, even though it is not defined in a

symmetric manner. If the specification had a behavior that was not matched by the implementation,

the implementation would not be a WFS refinement of the specification and hence would not be

a TWFS of the specification. Note that for WFS refinement, an implementation state cannot be

related to more than one specification state (as the refinement map is a function used to relate

implementation states to specification states). So once WFS refinement has been established, it is

not needed to check the other direction for TWFS.

WFS refinement is a compositional notion (see Section 2.4.1). A similar property for TWFS

can be derived. Below, Mc 'r Mb denotes that Mc is a TWFS refinement of Mb using refinement

map r; and r; q denotes composition, i.e. (r; q)(s) = q(r(s)). Let MM c←b
I denote the marked MI

of Mc w.r.t. Mb. For the following discussion, let Mc 'r Mb and Mb 'q Ma.
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Lemma 1. If 〈w, v〉 is a non-stuttering transition of MM c←a
I , then 〈w, v〉 is a non-stuttering

transition of MM c←b
I .

Proof. If 〈w, v〉 is a non-stuttering transition of MM c←a
I , then q(r(w)) 6= q(r(v)). This implies that

r(w) 6= r(v), which implies that 〈w, v〉 is a non-stuttering transition of MM c←b
I .

Lemma 2. If 〈w, v〉 is a stuttering transition of MM c←a
I , then 〈r(w), r(v)〉 is a stuttering transition

of MM b←a
I .

Proof. We have that Mb 'q Ma. Therefore, for 〈r(w), r(v)〉 to be a stuttering transition of MM b←a
I ,

we need q(r(w)) = q(r(v)). We have that 〈w, v〉 is a stuttering transition of MM c←a
I , which implies

that q(r(w)) = q(r(v)).

Lemma 3. If φ is a stuttering segment of MM c←a
I , then φ can be partitioned into m (m ≥ 1)

segments φ1, φ2, ..., φm, such that φ1, ..., φm are stuttering segments of MM c←b
I .

Proof. From the definition of stuttering segments, we know that every stuttering segment φ is

preceded by a non-stuttering transition (say tp) and the last transition in φ is also a non-stuttering

transition (say tl). Since φ is a stuttering segment of MM c←a
I , from Lemma 1, we get that tp and

tl are non-stuttering transitions of MM c←b
I . The other transitions of φ may or may not be non-

stuttering transitions of MM c←b
I . If m of the transitions in φ are non-stuttering w.r.t. MM c←b

I ,

then these m non-stuttering transitions and the preceding stuttering transitions will result in m

stuttering segments of MM c←b
I .

Theorem 3. (Composition for TWFS refinement) If Mc 'r Mb and Mb 'q Ma then Mc 'r;q Ma.

Proof. To show that Mc 'r;q Ma, there are two conditions. First condition is that Mc vr;q Ma.

Since Mc 'r Mb →Mc vr Mb and Mb 'q Ma →Mb vq Ma, from Theorem 1 we get Mc vr;q Ma.

The proof of second condition is as follows (see Def. 12 for second condition). Without loss

of generality, consider any non-stuttering transition of MM c←a
I say 〈wa, wb〉 and the corresponding

stuttering segment φ. Every stuttering segment is preceded by a non-stuttering transition (say

〈wc, wd〉). From Lemma 3, we have that φ can be partitioned into m stuttering segments of

MM c←b
I : φ1, ..., φm. Let t1, t2, ..., tm be the non-stuttering transitions of Mb corresponding to the

m stuttering segments. Since Mc 'r Mb, each of these m stuttering segments individually will
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satisfy the timing requirements of the corresponding non-stuttering transitions of Mb. Therefore,

φ will satisfy the sum of all the timing requirements of t1, t2, ..., tm. Note that tm is 〈r(wa), r(wb)〉.

From Lemma 1, tm:〈r(wa), r(wb)〉 is a non-stuttering transition of MM b←a
I . The corresponding

non-stuttering transition in Ma is 〈q; r(wa), q; r(wb)〉. Also, from Lemma 2, t1, t2, ..., tm−1 are

stuttering transitions of MM b←a
I and t1, t2, ..., tm−1 is preceded by the non-stuttering transition

〈r(wc), r(wd)〉 of MM b←a
I . Therefore, t1, t2, ..., tm is a stuttering segment of MM b←a

I . Since Mb 'q

Ma, t1, t2, ..., tm will satisfy the timing requirements of 〈q; r(wa), q; r(wb)〉. Therefore, stuttering

segment φ of MM c←a
I will satisfy timing requirements of 〈q; r(wa), q; r(wb)〉. Second condition is

proved, we have: Mc 'r;q Ma.

TWFS refinement is based on the idea that MI satisfies the timing requirements of its MS ,

when in every case the delay between the previous time that MI made progress w.r.t. MS and the

next time MI makes progress w.r.t. MS , matches the time delay required for MS to make that

progress. If there is no stuttering between the MI and the MS , every step of MI should match a

step of MS , and the delay of an implementation step should ”match” the delay of the corresponding

specification step.

4.3.2. Timed Well-Founded Equivalence Bisimulation Refinement

Timed refinement can also be defined with respect to Well Founded Equivalence Bisimula-

tion (WEB). In defining a timed refinement between an MI and an MS , it can be assumed that a

refinement relationship already exists between the two. In practice, what this means is that veri-

fication of timed refinement is preceded by verification of WEB refinement. Since the refinement

relationship has been established and a witness refinement map exists, stuttering and non-stuttering

transitions of the implementation TTS MI can be identified and captured in a Marked TTS (de-

fined in Def. 9). The general theory of WEB refinement allows for stuttering to occur on the

implementation side and the specification side. In practice, situations in which the specification

stutters is rare. Therefore, an assumption can be made that the implementation can have stuttering

steps. Hence a marked specification TTS MM S corresponding to a specification TTS MS , is one in

which every transition is a non-stuttering transition and is marked with nt. MM I will satisfy the

timing requirements of the corresponding MM S , if every time the implementation makes progress

(non-stuttering step), then the sum of the delay of the non-stuttering step and the delays of all
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preceding stuttering steps matches the delay of the corresponding specification step. Note that

there may be many paths in the implementation that lead to a specific non-stuttering step. All

these paths individually should satisfy the timing requirements of the corresponding specification

step. These finite paths as called as stuttering segments (defined in Def. 11).

Timed Well-Founded Equivalence Bisimulation (TWEB) is builds on WEB refinement and

incorporates both functional and timing correctness. TWEB is defined below:

Definition 13. MI is a Timed Well-Founded Equivalence Bisimulation (TWEB) of MS if:

1. MI is a WEB refinement of MS w.r.t. refinement map r.

2. Let MMI be the marked TTS of MI w.r.t. MS. Then, for every non-stuttering transition

of MMI 〈wa, wb〉, and for every stuttering segment φ of 〈wa, wb〉, the following should be

satisfied:

lb〈r(wa),r(wb)〉
s ≤

∑
p∈φ

lbpi ≤
∑
p∈φ

ubpi ≤ ub〈r(wa),r(wb)〉
s

In the above definition, lb
〈a,b〉
s and ub

〈a,b〉
s denote the lower and upper delay bounds for the

transition 〈a, b〉 of MS . lbi and ubi denote the lower and upper delay bounds for a transition in MI

which belongs to the stuttering segment φ of 〈r(a), r(b)〉.

The notion of TWEB given above is bisimilar in nature, even though it is not defined in a

symmetric manner. If the specification had a behavior that was not matched by the implementation,

the implementation would not be a WEB refinement of the specification and hence would not be

a TWEB of the specification. Note that for WEB refinement, an implementation state cannot be

related to more than one specification state (as the refinement map is a function used to relate

implementation states to specification states). So once WEB refinement has been established, it is

not needed to check the other direction for TWEB.

WEB refinement is a compositional notion (see Section 2.4.2). A similar property for TWEB

is derived. Below, Mc �r Mb denotes that Mc is a TWEB of Mb using refinement map r; and r; q

denotes composition, i.e. (r; q)(s) = q(r(s)). Let MM c←b
I denote the marked MI of Mc w.r.t. Mb.

For the following discussion, let Mc �rMb and Mb �q Ma.

40



Lemma 4. If 〈w, v〉 is a non-stuttering transition of MM c←a
I , then 〈w, v〉 is a non-stuttering

transition of MM c←b
I .

Proof. If 〈w, v〉 is a non-stuttering transition of MM c←a
I , then q(r(w)) 6= q(r(v)). This implies that

r(w) 6= r(v), which implies that 〈w, v〉 is a non-stuttering transition of MM c←b
I .

Lemma 5. If 〈w, v〉 is a stuttering transition of MM c←a
I , then 〈r(w), r(v)〉 is a stuttering transition

of MM b←a
I .

Proof. We have that Mb�qMa. Therefore, for 〈r(w), r(v)〉 to be a stuttering transition of MM b←a
I ,

we need q(r(w)) = q(r(v)). We have that 〈w, v〉 is a stuttering transition of MM c←a
I , which implies

that q(r(w)) = q(r(v)).

Lemma 6. If φ is a stuttering segment of MM c←a
I , then φ can be partitioned into m (m ≥ 1)

segments φ1, φ2, ..., φm, such that φ1, ..., φm are stuttering segments of MM c←b
I .

Proof. From the definition of stuttering segments, we know that every stuttering segment φ is

preceded by a non-stuttering transition (say tp) and the last transition in φ is also a non-stuttering

transition (say tl). Since φ is a stuttering segment of MM c←a
I , from Lemma 4, we get that tp and

tl are non-stuttering transitions of MM c←b
I . The other transitions of φ may or may not be non-

stuttering transitions of MM c←b
I . If m of the transitions in φ are non-stuttering w.r.t. MM c←b

I ,

then these m non-stuttering transitions and the preceding stuttering transitions will result in m

stuttering segments of MM c←b
I .

Theorem 4. (Composition for TWEB) If Mc �rMb and Mb �q Ma then Mc �r;q Ma.

Proof. To show that Mc �r;q Ma, there are two conditions. First condition is that Mc ≈r;q Ma.

Since Mc �rMb →Mc ≈r Mb and Mb �q Ma →Mb ≈q Ma, from Theorem 2 we get Mc ≈r;q Ma.

Proof of second condition (see Def. 13 for second condition): Without loss of generality,

consider any non-stuttering transition of MM c←a
I say 〈wa, wb〉 and the corresponding stuttering

segment φ. Every stuttering segment is preceded by a non-stuttering transition (say 〈wc, wd〉). From

Lemma 5, we have that φ can be partitioned into m stuttering segments of MM c←b
I : φ1, ..., φm.
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Let t1, t2, ..., tm be the non-stuttering transitions of Mb corresponding to the m stuttering seg-

ments. Since Mc �r Mb, each of these m stuttering segments individually will satisfy the timing

requirements of the corresponding non-stuttering transitions of Mb. Therefore, φ will satisfy the

sum of all the timing requirements of t1, t2, ..., tm. Note that tm is 〈r(wa), r(wb)〉. From Lemma 4,

tm:〈r(wa), r(wb)〉 is a non-stuttering transition of MM b←a
I . The corresponding non-stuttering tran-

sition in Ma is 〈q; r(wa), q; r(wb)〉. Also, from Lemma 5, t1, t2, ..., tm−1 are stuttering transitions of

MM b←a
I and t1, t2, ..., tm−1 is preceded by the non-stuttering transition 〈r(wc), r(wd)〉 of MM b←a

I .

Therefore, t1, t2, ..., tm is a stuttering segment of MM b←a
I . Since Mb�qMa, t1, t2, ..., tm will satisfy

the timing requirements of 〈q; r(wa), q; r(wb)〉. Therefore, stuttering segment φ of MM c←a
I will sat-

isfy timing requirements of 〈q; r(wa), q; r(wb)〉. Second condition is proved, we have: Mc�r;qMa.

4.4. Checking Timed Refinement

Timed refinement (TWFS or TWEB depending on how the functional verification is per-

formed) verification is performed in three steps. The first step is to verify that the implementation

TTS (MI) is a WFS refinement or WEB refinement of the specification TTS (MS). The second

step is to compute Marked MS (MMS) and Marked MI (MMI) using the information from the

WFS or WEB refinement proof. The third step is to discharge the remaining proof obligations of

timed refinement (TWFS or TWEB), which is to compute all the stuttering segments of MMI and

check that the stuttering segments satisfy the timing requirements of MMS .

In this section, the proof obligations for the WEB refinement verification were generated

manually and discharged using a decision procedure. The details are described in Section 4.5. The

second step is straightforward, which is to identify the non-stuttering and stuttering transitions of

MI and mark them as such to get MMI . However, when computing MMI , the implementation

TTS has also been abstracted. A brief overview of this abstraction is provided in Section 4.5.

A detailed description of abstraction is provided in Chapter 5. The abstraction is required as

otherwise, the number of states and transitions of the implementation TTS will explode.

A procedure has been developed for the third step (given in Algorithm 1), which checks

the remaining timed refinement proof obligations. The input to the timed refinement verification

procedure is a list of transitions of MMI , a list of transitions MMS , and the refinement map used

for the WEB refinement proof (which is a list of implementation states and the specification states
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Algorithm 1 Procedure For Checking Timed refinement

1: procedure CheckTimedRef(MMI ,MMS , r)
2: for all t : 〈w, v, lb, ub,m〉 ∈ RI do
3: if m = nt then
4: sseg-list[0]← t;
5: sseg-set← {〈FALSE, 0, sseg-list〉};
6: repeat
7: termination-condition ← TRUE; sseg-set’ ← sseg-set;
8: for all sseg:〈sseg-complete, sseg-length, sseg-list〉 ∈ sseg-set’ do
9: if ¬sseg-complete then

10: tp : 〈wp, vp, lbp, ubp,mp〉 ← sseg-list[sseg-length];
11: sseg-set← sseg-set/sseg;
12: for all tq : 〈wq, wp, lbq, ubq,mq〉 ∈ RI do
13: if mq = nt then
14: sseg-set ← sseg-set ∪{〈TRUE, sseg-length, sseg-list〉};
15: else
16: sseg-list[sseg-length + 1] ← tq;
17: sseg-set ← sseg-set ∪{〈FALSE, sseg-length+1, sseg-list〉};
18: termination-condition ← FALSE;

19: until termination-condition
20: for all 〈sseg-complete, sseg-length, sseg-list〉 ∈ sseg-set do
21: for all 〈ws, vs, lbs, ubs,ms〉 ∈ RMMS

do
22: if (ws = r(w)) & (vs = r(v)) then

23: if ¬(lbs ≤
∑sseg−length

i=0 lbi ≤
∑sseg−length

i=0 ubi ≤ ubs) then
24: return sseg-list;

they map to). Each transition will include information about the delay of the transition (lower

bound and upper bound), and whether the transition is a stuttering or non-stuttering transition.

The procedure iterates through the non-stuttering transitions of MMI (lines 2 and 3). The

procedure computes all the stuttering segments for each non-stuttering transition. sseg-set is the

set of all stuttering segments corresponding to transition t. A stuttering segment is recorded in

the list of transitions sseg-list. The stuttering segments are stored in sseg-set as a three tuple:

〈sseg-complete, sseg-length, sseg-list〉. sseg-complete is a flag that keeps track of whether the

computation of the stuttering segment is complete. sseg-length keeps track of the length of the

stuttering segment as it is computed. Lines 7-18 are repeated until all the stuttering segments are

computed. During the procedure, sseg-set stores the partially computed stuttering segments.

The procedure then iterates through the partially computed stuttering segments (lines 8-9).

For each partially computed stuttering segment, the procedure looks at all incoming transitions to
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the tail of the segment (tp) in line 12. If there are n incoming transitions, the partially computed

stuttering segment will split into n partially computed stuttering segments. Thus the partially

computed stuttering segment is removed from sseg-set (line 11). If the incoming transition is

a non-stuttering transition, then the stuttering segment is complete as it is (line 14). Then sseg-

complete is set to TRUE and the stuttering segment is added to sseg-set. If the incoming transition

is a stuttering transition, the transition is added to the tail of the partially computed stuttering

segment and added to the sseg-set (lines 16-18).

As an example, the stuttering segments of 〈10, 13〉 (in Figure 4.2) are {〈10, 13〉, 〈9, 10〉, 〈8,

9〉, 〈4, 8〉, 〈3, 4〉} and {〈10, 13〉, 〈9, 10〉, 〈7, 9〉, 〈6, 7〉, 〈5, 6〉, 〈4, 5〉, 〈3, 4〉}. The procedure then

computes the sum of the lower time delays and upper time delays for each of the stuttering segments

in sseg-set. Based on the refinement map, every non-stuttering transition of the implementation

maps to a transition of the specification. The procedure then checks that the total of the lower

time delays and the total of the upper time delays for each stuttering segment of a non-stuttering

transition lie within the lower bound delay and the upper bound delay of the corresponding specifi-

cation transition (lines 21-22). For example, if the refinement map maps implementation state 10 to

specification state S1 and implementation state 13 to specification state S2, then the non-stuttering

transition 〈10, 13〉 maps to the specification transition 〈S1, S2〉. The procedure will check that

total delays of every stuttering segment of 〈10, 13〉 lie within the delay bounds of 〈S1, S2〉. The

stuttering segments that violate this requirement are counter examples. The procedure will output

these stuttering segments (line 24). If no violations are found, timed refinement is verified. Next,

completeness of the procedure is shown.

Lemma 7. For all stuttering transitions 〈w, v〉 of MMI , there exists a function rank : SI → N

such that rank(v) < rank(w) iff MMI does not have stuttering cycles.

Proof. ⇒: This is proved by contradiction. Consider that MMI has a stuttering cycle. Then, it

is not possible to assign a natural number value to every state in the cycle such that the value

decreases for every transition in the cycle. Therefore, there will be at least one transition in the

stuttering cycle for which rank(v) < rank(w) is not satisfied.

⇐: Consider the directed graph corresponding to MMI , where states are the vertices and

transitions are the directed edges. Now, remove all the non-stuttering transitions from RI . Since
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there are no cycles of stuttering transitions, the resulting graph should be a set of directed acyclic

graphs (DAGs). Natural number values can now be assigned to all the nodes in each DAG such

that the value decreases for every transition. This assignment of values is a witness rank function

that satisfies rank(v) < rank(w) for all stuttering transitions.

Theorem 5. (Completeness for TWFS) If MI ≈r MS, then Procedure CheckTimedRef will com-

plete for inputs MMI , MMS, and r.

Proof. If MI vr MS , then from the definition of WFS refinement and the definition of Marked

MI (MMI), there exists a function rank : SI → N such that rank(v) < rank(w) for all stuttering

transitions of MMI . From Lemma 7, MMI has no stuttering cycles. The repeat loop (lines 6-19)

terminates only when all partially computed stuttering segments eventually hit a non-stuttering

transition when tracing backward in RI . Since RI has no stuttering cycles and is left total, Proce-

dure CheckTimedRef will complete.

Theorem 6. (Completeness for TWEB) If MI ≈r MS, then Procedure CheckTimedRef will com-

plete for inputs MMI , MMS, and r.

Proof. If MI ≈r MS , then from the definition of WEB refinement and the definition of Marked

MI (MMI), there exists a function rank : SI → N such that rank(v) < rank(w) for all stuttering

transitions of MMI . From Lemma 7, MMI has no stuttering cycles. The repeat loop (lines 6-19)

terminates only when all partially computed stuttering segments eventually hit a non-stuttering

transition when tracing backward in RI . Since RI has no stuttering cycles and is left total, Proce-

dure CheckTimedRef will complete.

Theorem 7. The time complexity of the CheckTimedRef procedure is O(|RI |3).

Proof. Let ni, ns, nss, and ni−ns, be the number of transitions of MMI , number of transitions of

MMS , number of stuttering segments of MMI , and number of non-stuttering transitions of MMI .

The outer for loop starting in line 2 has ni passes. If initially the transitions of MMI were classified

as stuttering and non-stuttering transitions, the outer loop starting in line 2 can be reduced to ni−ns

passes. The initial classification would add an ni to the running time.

Each run of the repeat loop (line 6) increases the length of the partially computed stuttering

segments by 1. Therefore, the repeat loop has as many passes as the maximum length of all
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stuttering segments of MMI (max(ss-length)). The deletion in line 10 is (max(ss-length)). The for

loop in line 8 has nss passes and the for loop in line 12 executes ni times. So the running time of

lines 6-19 is max(ss-length)nssni.

The loop starting in line 20 executes nss times and the inner loop in line 21 executes ns

times. Therefore, the complexity of lines 20-24 is nssns. Therefore, taking into consideration

that the outer loop in line 2 executes ni−ns times and adding up all the components we get the

complexity of the procedure to be: ni + ni−nsnssnimax(ss-length) + ni−nsnssns. Since we consider

only stuttering on the implementation side, the number of transitions of the implementation ni >

the number of transitions of the specification ns. Therefore, the complexity of the procedure reduces

to ni−nsnssnimax(ss-length). In the worst case, if all transitions are non-stuttering transitions,

ni−ns = ni. Also, there would not be any stuttering transitions. Therefore, max(ss-length) =

1. Also, number of stuttering segments would be equal to the number of transitions: nss = ni.

ni = |RI |, therefore, the time complexity of the CheckTimedRef procedure is O(|RI |3).

4.5. Case Studies and Results

A stepper motor with 4 leads can be stepped in two different ways based on how the leads

are energized. When the following four values are applied in a repeating sequence to the leads:

〈0001〉, 〈0010〉, 〈0100〉, 〈1000〉, 〈0001〉, ..., it is known as full stepping. Instead if the following eight

values are applied in a repeating sequence to the leads: 〈0001〉, 〈0011〉, 〈0010〉, 〈0110〉, 〈0100〉,

〈1100〉, 〈1000〉, 〈1001〉, 〈0001〉, ..., it is known as half stepping.

A stepper motor can be controlled by a micro-controller. The ARM Cortex-M3 based NXP

LPC1768 [58] micro-controller has been used for stepper motor control. Four pins from PORT 2 of

the LPC1768 are connected to the stepper motor leads via an electronic circuit. The value of these

4 pins are determined by bits 28-31 of the FIOPIN register.

Case Study 1–Interrupt Driven Full Stepping Stepper Motor Control : Stepper

motor control with full stepping is implemented with the Repetitive Interrupt Timer (RIT), which

is a timer present in the LPC1768. The controller microcode enables the RIT unit and also a

register that RIT has to store a constant value. Then the code enters a while loop. The RIT

has a counter which increments every clock cycle. When the counter reaches the value stored in

the RIT register, an interrupt is generated. As soon as the interrupt is generated, the counter is
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reset to 0 and flow of control changes to the RIT interrupt service routine (ISR). In the RIT ISR,

the FIOPIN register is updated to the next value of the leads required for full stepping, and then

returns control to the main program. The RIT constant register value is initialized such that the

delays between consecutive interrupts generated by the RIT matches the delay required between

full stepping control states. Also, this delay determines the speed at which the motor runs.

Case Study 2–Interrupt Driven Half Stepping Stepper Motor Control : The con-

trol is similar to the mechanism used for case study 1. The RIT unit is employed here also. The ISR

is modified to update the FIOPIN register based on half stepping control instead of full stepping

control.

Case Study 3–Full Stepping Stepper Motor Control without Interrupts: For this

case study, full stepping control is implemented without using interrupts. The delay required

between full stepping control states is achieved using for loops with a large number of iterations. The

number of iterations of the for loop is determined so that the time required by the microcontroller to

execute the for loop matches the delay required between full stepping control states. The drawback

with this approach is that if the control program performs other functions and has enabled other

interrupts, it may not be possible to guarantee accurate speed of the motor.

Case Study 4–Half Stepping Stepper Motor Control without Interrupts: For this

case study, the delay required between half stepping control states is achieved using for loops with

a large number of iterations, instead of interrupts.

Case Study 5–Interrupt Driven Variable Speed Full Stepping Stepper Motor

Control : The RIT unit is used to implement full stepping control. However, the motor has 3

speed modes and in each mode the motor runs at a different speed. The modes can be changed

based on input from a keyboard, which acts as an external interrupt. When any key on the

keyboard is pressed, an interrupt is generated (different from the RIT interrupt). The keyboard

input is processed to change the speed of the motor. Note that since the control program supports

2 interrupts, the RIT interrupt is given the higher priority.

Case Study 6–Interrupt Driven Variable Half Full Stepping Stepper Motor Con-

trol : 3 mode variable speed is implemented using half stepping. The input from keyboard (which

acts as an external interrupt) and RIT interrupt are also employed here, with the RIT interrupt

having higher priority.
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WEB Refinement Verification: For all the six case studies, WEB refinement verifica-

tion was performed using the Bit-level Analysis Tool (BAT) [47,48], which is a decision procedure

for the theory of bit-vectors with arrays. Note that some of the proof obligations were encoded in

SMT-LIB v2 language [6] and discharged using the z3 SMT solver [21]. For the WEB refinement

verification, the specification TTS and the implementation TTS were encoded in the input language

of the BAT tool. For the WEB refinement proof, timing information is not required and was not

included in the descriptions of the implementation and specification TTS. The implementation TTS

consisted of the instruction functions (see Section 2.3) and the initial state of the micro-controller

registers and memory. The next step is to construct a refinement map, which is the function that

maps implementation states to specification states. The refinement map for the case studies is the

function that extracts bits 28-31 of the FIOPIN register, as these 4 bits are connected to the leads

of the stepper motor and directly determine the state of the stepper motor.

Each instruction function corresponds to one or more transitions of the implementation

TTS. It has been verified that each of the instruction functions satisfies the WEB refinement

correctness formula (see Section 2.4.2). The proof obligations were encoded in the BAT language

and checked using the BAT decision procedure. Many instructions corresponded to more than one

transition. In most cases, all the transitions corresponding to an instruction were similar and could

be verified together using symbolic states and symbolic simulation. For some instructions, there is

more than one case. An example of this is instructions whose execution could be altered by the

RIT or other interrupts. For such situations, we handled the cases separately. There were two

verification obligations, one for the case where the interrupt occurs and one for the case where

the interrupt does not occur. Note that the non-stuttering transitions corresponded to only those

instructions that updated the FIOPIN register. All other instructions corresponded to stuttering

transitions. For the proof, pre-conditions and post-conditions were used to propagate the required

hypothesis for each of the proof obligations.

Timed Refinement Verification: The CheckTimedRef procedure (see Section 4.4) was

implemented as a tool. The tool takes as input, transitions of abstracted MMI , transitions of MMS ,

and the refinement map. The marked implementation TTS of a real-time control program will have

a very large number of states and transitions. Hence, this marked TTS cannot be input directly

to the timed refinement verification procedure. We use a number of techniques to abstract MMI .
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The abstractions are based on the control flow graph of the object code program. Sets of states and

sets of transitions corresponding to an instruction are abstracted as symbolic states and symbolic

transitions. A basic block consisting of a sequence of stuttering transitions is abstracted as one

stuttering transition with a delay which is the sum of the delays of the transitions in the sequence.

Loops consisting of only stuttering transitions are replaced with one transition that mimics the

delay of the loop. Use of these abstractions resulted in tractable and efficient verification of the

stepper motor microcode control case studies.

Table 4.1. Verification Statistics for TWEB

Case Model Proof Refinement # of Transitions of # of Transitions

Study Size Size Verif. Time [sec] MM I of Abstract MM I

1 2,173 10,171 4.30 2.5 million 83

2 3,232 16,018 7.23 4.5 million 135

3 1,151 6,606 2.47 45 million 103

4 1,989 11,861 4.10 81 million 184

5 3,519 17,556 9.73 17.5 million 276

6 5,625 27,854 16.13 32 million 430

Table 4.1 shows the verification statistics for the 6 case studies. The verification experi-

ments were performed on a Intel(R) Celeron(R) CPU 540 1.86GHz processor with an L2 cache of

1MB. The ”Model Size” column gives the number of lines of the implementation model in the input

language of the BAT tool. The ”Proof Size” column gives the number of lines of BAT code for all

the WEB refinement proof obligations (includes the implementation model and the specification

model). The refinement verification time column gives the total time required to discharge all the

WEB and timed refinement proof obligations. The table also gives the approximate number

of transitions of the implementation TTS MMI and the number of transitions of the

abstracted MMI. As can be seen from the table, abstractions based on stuttering tran-

sitions and stuttering segments significantly reduce the number of transitions of the

implementation TTS making object code verification feasible. Several bugs both functional

and timing were found. Below one functional bug (found during WEB refinement verification) and
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one timing bug (found during timed refinement verification) are described. Any existing tools that

can check timed refinement were not found. Approaches to encode timed refinement verification

(when stuttering and refinement maps are involved) in UPPAAL/KRONOS like tools were also not

found. Therefore, results comparing our approach with other tools are not available.

Functional Bug: The bug was found for case study 1. Bits 28-31 of the 32-bit FIOPIN

register control the motor leads. Other bits of FIOPIN can be used for other purposes and should

not be updated. The FIOPIN register can only be updated as a whole and individual bits cannot

be updated. Therefore, the FIOPIN is updated by using OR masking to set bits to ’1’ and AND

masking to reset bits to ’0’. This was accomplished by first performing the OR mask on the FIOPIN

register and then the AND mask. Therefore, the motor state was transitioning from state 0001

to 0011, and then to 0010. This is incorrect as 0011 is not a correct state of the motor when full

stepping. The bug was found during WEB refinement verification. If an external interrupt had

occurred between the OR mask and the AND mask, then the motor would be stuck in a bad state.

Timing Bug: For both case studies 5 and 6, when switching from a lower speed to a

higher speed, it is required that the transition take place smoothly with an upper bound for the

delay of the transition as the delay for state transitions of the lower speed. However, this timing

requirement was not satisfied by the object code in certain states. Specifically, if the value of the

RIT counter was close to the compare value when the external interrupt occurred (forcing a change

in speed), there was not enough time to update the counter value and the compare value, and still

make the transition to the higher speed mode in time.

This chapter has presented timed refinement for real-time interrupt-drive object code pro-

grams. Timed refinement is defined as timed well-founded simulation (TWFS) refinement and timed

well-founded equivalence bisimulation (TWEB) refinement, depending on which type of functional

verification has been adopted. Next, a detailed description of stuttering abstraction will been

discussed and how it can be automated for real-time interrupt-drive object code is also presented.
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5. STUTTERING ABSTRACTION

Verification of device-object code (code or the set of instructions that is executed by mi-

crocontrollers embedded in the device) is very challenging because object code is very low-level,

real-time, interrupt driven, and extensively exhibits the phenomenon of stuttering. Informally,

stuttering means that the device executes millions of microprocessor instructions to account for

only a single progression of a higher-level requirements/specification model. A novel abstraction

technique that exploits the phenomenon of stuttering called stuttering abstraction (SA) was in-

troduced in Chapter 4. This abstraction technique has been extended to timed transition systems

(TTSs) called timed stuttering abstraction (TSA). This chapter extends and develops the idea of

TSA. This chapter’s contribution include: (1) a formalization of TSA; (2) correctness of TSA in

the context of TWFS refinement; and (3) dynamic timed stuttering abstraction, an algorithm to

automatically apply TSA during symbolic simulation of the object code.

5.1. Stuttering Abstraction for TS

The implementation model for real-time interrupt-driven object code consists of million

of transitions. A large portion of these transitions are usually stuttering transitions (Def. 6). In

Figure 2.6, it can be noticed that many paths in the implementation lead to a specific non-stuttering

step. All these finite paths are termed as stuttering segments. Stuttering segment φ of 〈w, v〉 [26]

where 〈w, v〉 is a non-stuttering transition can be described as a sequence of transitions in which

〈w, v〉 is preceded by zero to many stuttering transition(s) and another non-stuttering transition.

The least length of a stuttering segment is one. This occurs when a non-stuttering step is preceded

by another non-stuttering step. The stuttering segment then only consists of one transition which

is the non-stuttering step. Also, a non-stuttering step can have many stuttering segments. For the

TS shown in Figure 2.6, the stuttering segments of 〈10, 13〉 are:

1. {〈2, 3〉, 〈3, 4〉, 〈4, 5〉, 〈5, 6〉, 〈6, 7〉, 〈7, 9〉, 〈9, 10〉, 〈10, 13〉}

2. {〈2, 3〉, 〈3, 4〉, 〈4, 8〉, 〈8, 9〉, 〈9, 10〉, 〈10, 13〉}

Object code contains millions of transitions, hence applying suitable abstraction techniques

on the stuttering segments help to deal with path explosion problem. This reduces the verification
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problem to analysis of stuttering segments. Abstraction techniques can be applied on these seg-

ments based on its control flow graph. Sets of states and sets of transition corresponding to these

stuttering segments can be symbolic states and symbolic transitions. A basic block consisting of a

sequence of stuttering transitions in a stuttering segment is abstracted as one stuttering transition.

Loops consisting of only stuttering transitions can be replaced with one transition. First stuttering

abstraction (SA) for transition systems (TS) is discussed. Below is the definition of stuttering

abstraction:

Definition 14. M is a TS which has a sequence of two stuttering transitions, 〈w1, w2〉 and 〈w2, w3〉

such that w2 has only one incoming transition and only one outgoing transition, then the stuttering

abstracted TS Ma of M is constructed by replacing 〈w1, w2〉 and 〈w2, w3〉 with 〈w1, w3〉

Note that the definition above merges two transitions to one. Repeated application of

the above definition can be used to merge large sequences of stuttering transitions. Consider a

sequence shown in Figure 5.1a which is part of a stuttering segment. The idea with SA is that

a finite sequence of stuttering transitions can be merged into one transition, while still preserving

the functional behaviors of the original transition system. The sequence shown in Figure 5.1b is

obtained by applying SA to the sequence in Figure 5.1a. More specifically, stuttering transitions

〈19, 20〉, 〈20, 21〉 and 〈21, 22〉 are merged into one abstract transition 〈19, 22〉. Since the object code

TS typically has millions of stuttering transitions, SA will provide drastic reductions in the size of

the TS, and will therefore significantly improve efficiency and scalability of verification.

18 19 20 21 22 23

(a) Stuttering Segment

18 19 22 23

(b) Abstracted Segment

Figure 5.1. Basic Block in Abstraction

A condition (to ensure that the abstraction is sound) is imposed on when stuttering tran-

sitions can be merged. When applying SA, intermediate states are removed. In the abstraction
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example above, state 20 and 21 are removed. The condition is that states that are removed (or

abstracted away) can only have one incoming transition and one outgoing transition. From Fig-

ure 5.1a, it can be seen that states 20 and 21 satisfy this requirement. Another example is as

follows. In Figure 2.6, 〈3, 4〉, 〈4, 5〉, 〈5, 6〉, 〈6, 7〉, 〈7, 9〉, and 〈9, 10〉 form a sequence of stuttering

transitions. Using SA, it would be ideal to merge all these stuttering transitions into one abstracted

transition 〈3, 10〉. However, state 4 has multiple outgoing transitions and state 9 has multiple in-

coming transitions. Therefore, both states 4 and 9 cannot be abstracted. Thus, using SA, we can

reduce the above stuttering sequence to 〈3, 4〉, 〈4, 9〉, and 〈9, 10〉. Hence, when applying stuttering

abstraction, initial states are not removed.

5.2. Timed Stuttering Abstraction (TSA) for TTS

In this dissertation, the implementation model is the real-time interrupt-driven object code.

The implementation timed transition system (TTS) consists of instruction functions and the initial

state of the micro-controller registers and memory. Each instruction function corresponds to one

or more transitions of the implementation TTS. Hence, the size of the implementation TTS is in

the range of millions. Manually developing proof methodology for this large range of transitions

may introduce human errors. This section basically describes how abstraction can be applied on

the stuttering transitions for timed transition systems. Timed stuttering abstraction (TSA) is

described in terms of timed refinement.

5.2.1. Timed Stuttering Abstraction (TSA)

The complexity of object code behavior presents itself in the size of the resulting TTS. For

example, for the stepper motor case studies, the number of transitions of the object code TTS

is in the order of millions. TSA is targeted at addressing this complexity. The sequence shown

in Figure 5.2a is a stuttering segment of the MI from Figure 4.2. The idea with TSA is that a

finite sequence of stuttering transitions can be merged into one transition, while still preserving

the functional and timing behaviours of the original MI . The sequence shown in Figure 5.2b is

obtained by applying TSA to the sequence in Figure 5.2a. More specifically, stuttering transitions

〈19, 20〉, 〈20, 21〉 and 〈21, 22〉 are merged into one abstract transition 〈19, 22〉. The upper bound and

lower bound of 〈19, 22〉 is the sum of the upper bounds and lower bounds of the set of transitions

abstracted, respectively. Since the object code TTS typically has millions of stuttering transitions,

53



TSA will provide drastic reductions in the size of this TTS, and will therefore significantly improve

efficiency and scalability of verification.

20 21 22 23 24 25

(a) Stuttering Segment of TTS

20 21 24 25

(b) Abstracted Segment TTS

Figure 5.2. Basic Block in Abstraction for a TTS in Figure 4.2

A condition (to ensure that the abstraction is sound) is imposed on when stuttering tran-

sitions can be merged. When applying TSA, intermediate states are removed. In the abstraction

example above, state 22 and 23 are removed. The condition is that states that are removed (or

abstracted away) can only have one incoming transition and one outgoing transition. From Fig-

ure 4.2, it can be seen that states 22 and 23 satisfy this requirement. Another example is as follows.

In Figure 4.2, 〈3, 4〉, 〈4, 5〉, 〈5, 6〉, 〈6, 7〉, 〈7, 9〉, and 〈9, 10〉 form a sequence of stuttering transitions.

Using TSA, it would be ideal to merge all these stuttering transitions into one abstracted transi-

tion 〈3, 10〉. However, state 4 has multiple outgoing transitions and state 9 has multiple incoming

transitions. Therefore, both states 4 and 9 cannot be abstracted. Thus, using TSA, we can reduce

the above stuttering sequence to 〈3, 4〉, 〈4, 9〉, and 〈9, 10〉. The formal definition of TSA is given

below.

Definition 15. M is a TTS which has a sequence of two stuttering transitions, 〈w1, w2, lb12, ub12〉

and 〈w2, w3, lb23, ub23〉 such that w2 has only one incoming transition and only one outgoing transi-

tion, then the timed stuttering abstracted TTS Ma of M is constructed by replacing 〈w1, w2, lb12, ub12〉

and 〈w2, w3, lb23, ub23〉 with 〈w1, w3, lb13, ub13〉 in M, where lb13 = lb12+lb23 and ub13 = ub12+ub23

Note that the definition above merges two transitions to one. Repeated application of the

above definition can be used to merge large sequences of stuttering transitions.
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5.2.2. Correctness of TSA

Timed well-founded simulation (TWFS) refinement and timed well-founded equivalence

bisimulation (TWEB) refinement have compositional properties (Theorem 3, 4). Correctness of

TSA is established next.

1

2

3

...........

n

...........

m

(a) M

1

3

...........

n

...........

m

(b) Ma

Figure 5.3. Abstraction on One Stuttering Transition

Lemma 8. If M is a TTS and Ma is a TSA (Def. 15) TTS of M, then M 'r Ma.

Proof. Consider Figure 5.3 in which the implementation TTS (M) is represented in Figure 5.3a

and specification TTS (Ma) is given in Figure 5.3b. Condition 1 of TWFS refinement (Def. 12)

requires that M vr Ma. Using the refinement-map (r), L(state 1 of M) = L(state 1 of Ma), where

L is the labeling function. Each node of M can be assigned a natural number value such that

the value decreases for each transition. This assignment of values is a witness rank function for

stuttering transitions. From the refinement-map state 2 of M matches state 1 of Ma and rank(2)
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<rank(1). State 3 of M matches to state 3 of Ma. Hence we have M vr Ma (from the definition

of WFS in [45]).

For the stuttering segments, if lb and ub represent the lower and upper bounds respectively,

lb13−of−Ma ≤ (lb12 + lb23) ≤ (ub12 + ub23) ≤ ub13−of−Ma . Thus, satisfying condition 2 of Def. 12.

Since both the conditions of TWFS refinement have been satisfied, M 'r Ma

Theorem 8. (Correctness for TSA) Let Man be the abstracted implementation TTS, obtained by

applying TSA (Def. 15) on MI n times, where n is a positive integer. Then Man 'r MS →MI 'r

MS

Proof. A series of abstracted TTS Ma1 , Ma2 , ..., Man can be constructed, where Ma1 is obtained

by abstracting one stuttering transition from MI , M
a2 is obtained by abstracting one stuttering

transition from Ma1 , and so on until we get to Man . From Lemma 8, we get that MI 'r Ma1 ,

Ma1 'r Ma2 , ..., Man−1 'r Man . The hypothesis (as given above in the implication to be proved) is

that Man 'r MS . Theorem ?? can be repeatedly applied to string all the above TWFS refinement

relations together to get that MI 'r MS .

5.2.3. Procedure for Dynamic TSA

Algorithm 2 presents a procedure that performs symbolic simulation of the object code

to compute the TTS. The algorithm also performs dynamic TSA as it unfolds the object code

TTS. The input to the procedure is the object code, the initial state of object code (w0), a set

of states that should not be abstracted (non-abs-states) and the refinement-map (r). non-abs-

states contains a list of states that have multiple incoming transitions (for example, state 3, 9, 13,

20, etc in Figure 4.2). The non-abs-states are identified by their program counter values. They

should be determined statically and they are typically states that correspond to targets of branch

instructions. The procedure outputs the abstracted implementation TTS which is contained in RI .

The current state being processed is represented by ’w’ which is initialized to w0. ’v’ represents

the successor state and is initialized to null. The list of successors for a state are stored in RC .

The procedure explores a single path/trace at a time, hence RU contains the successor states that

have not been visited. RI , RC and RU are of the form 〈w, v〉 and are initialized to null. For

example, consider state 4 from Figure 4.2, the successor states are 5, 8 and 11. RC will have the

values: 〈4, 5〉, 〈4, 8〉 and 〈4, 11〉. If 〈4, 5〉 is the path that is being computed then RU gets the values
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Algorithm 2 Procedure for Symbolic Simulation and Dynamic Timed Stuttering Abstraction

1: procedure SymSimulation(w0, object-code, non-abs-states, r)
2: repeat
3: repeat
4: if ¬skip-simulation then
5: RC ← simulate-object-code(w, object-code);
6: Choose any 〈w, v〉 ∈ RC ;
7: RC ← RC \ 〈w, v〉;
8: RU ← RU ∪RC ;

9: if v ∈ I then
10: path-complete← TRUE;

11: if [(|RC | = 0)∧ (ref-map(w) = ref-map(v))∧
12: (v 6∈ non-abs-states)] then
13: ss-length + +;
14: else
15: if ref-map(w) 6= ref-map(v) then
16: RI ← RI ∪ 〈w, v, 0〉;
17: I ← I ∪ v;

18: if [(ref-map(w) = ref-map(v))∧
19: (v ∈ non-abs-states)] then
20: ss-length + +;
21: I ← I ∪ v;
22: RI ← RI ∪ 〈wabs, v, ss-length〉;
23: else
24: RI ← RI ∪ 〈wabs, w, ss-length〉;
25: if |RC | = 0 then
26: wabs ← v;
27: ss-length← 0;
28: else
29: wabs ← w;
30: ss-length← 1;

31: w ← v;
32: if skip-simulation then
33: skip-simulation← FALSE;

34: until ¬path-complete
35: RI ← RI ∪ 〈wabs, v, ss-length〉;
36: if RU 6= ∅ then
37: Choose any 〈w, v〉 ∈ RU ;
38: RU ← RU \ 〈w, v〉;
39: wabs ← w;
40: ss-length← 0;
41: path-complete← FALSE;
42: skip-simulation← TRUE;

43: until ¬(path-complete ∧RU = ∅)
44: return (RI);
45: exit;
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〈4, 8〉 and 〈4, 11〉. Consider state 6 as another example. Here RC will contain 〈6, 7〉. Since 〈6, 7〉 is

part of the trace that being computed, there is nothing to include in RU . As the states are being

computed dynamically, some of them cannot be abstracted. These states are stored in ’I’, which is

initialized to w0. ss-length keeps track of the no. of states that have been abstracted so far in the

stuttering segment. It is initialized to zero. The procedure uses two control flags path-complete

and skip-simulation, both initialized to false. In Figure 5.2a, consider the stuttering transitions

〈21, 22〉, 〈22, 23〉 and 〈23, 24〉. Here if 〈w, v〉 = 〈23, 24〉 and since state 23 satisfies the abstraction

criteria, the abstracted segment should be 〈21, 24〉. To keep track of the abstraction, the start

state of an abstraction (in this example state 21) is stored in wabs, which is initialized to w0. The

initializations described above are not show in the algorithm.

The algorithm is described using the implementation TTS in Figure 4.2. The initial state

w0 is state 1, the successor states are computed using function simulate-object-code (line 5). Here

state 1 has one outgoing transitions. 〈w, v〉 is assigned this transition where w = 1 and v = 2 (line

6). This transition is removed from RC (line 7). Since state 1 has only one successor, once 〈1, 2〉

transition is removed from RC it becomes empty. In line 8, when RC is concentrated to RU , for

state 1 RU remains empty since state 1 has only one transition. As another example, consider state

4. It has multiple outgoing transitions. Consider one of the successor transitions, say 〈4, 5〉. The

remaining successors are stored in RU (line 7-8). In order to abstract a transition, it should be a

stuttering transition, ’w’ should have only one out-going transition and ’v’ should have only one

incoming transition (line 11-13). 〈1, 2〉 does satisfy this criteria and ss-length is incremented by 1

(line 13); To proceed, state 2 is assigned as the current state (line 31) and the entire process is

repeated. The successor of state 2 is computed and assigned to 〈w, v〉. Since state 2 also has only

one successor, it is selected and proceeded to line 11. The condition on line 11 fails since 〈2, 3〉

is not a stuttering transition. The next step is to figure out which criteria has failed in order to

proceed further. The first criterion to check is if the transition is a non-stuttering transition (line

15-17). This condition is satisfied for 〈2, 3〉 and hence this transition is added to RI (line 16), which

contains the set of abstracted transition for the given MI . The state 3 should not be abstracted

since it is not part of a stuttering transition. Hence, this state is stored in ’I’ (line 17). The second

criterion to check is if ’v’ has multiple incoming transitions and 〈w, v〉 is a stuttering transition (line

18-22). This condition fails for 〈2, 3〉. In the else part of this condition, the stuttering transitions
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that have been visited so far has to be saved, hence is appended to RI (lines 23-24). w0 is initialized

to state 1, w is assigned state 2. Hence 〈1, 2, 1〉 is added to RI where the final part of the tuple says

that so far, the algorithm has seen one stuttering transition (line 24). The third criterion to check

the number of outgoing transitions for ’w’ (line 25-30). State 2 has only one transition, so lines

26-27 are executed. Here, wabs is assigned to state v since state 3 may have stuttering transitions

in its successors (line 26). The ss-length has been assigned to 0 to start the new count of stuttering

segment (line 27). State 3 is assigned to w to repeat the process again.

Consider 〈4, 5〉 where w is state 4 and v is state 5. This transition fails the stuttering

transition condition since state 4 has multiple outgoing transitions. In the else part, this transition

fails criteria 1, and criteria 2. It satisfies the else part of criteria 3. State 4 will be marked as the

beginning of the abstracted segment wabs (line 29). 〈4, 5〉 is part of the stuttering segment, hence

ss-length has the value 1. To proceed, state 5 is assigned as the current state (line 31) and the

entire process is repeated. This process is repeated until a state that has been visited previously is

seen again (lines 9-10). This sets path-complete flag to TRUE, as this path has been fully explored.

The procedure then checks if there are other unexplored paths in RU (line 36-42). If so, a transition

from RU is chosen. For example say 〈4, 8〉. Since state 8 is already computed, lines 5-8 should be

skipped. This is achieved by assigning skip-simulation to TRUE (line 42). Also, as a new path is

being explored, path-complete is set to FALSE (line 41). When state 8 becomes the current state

then skip-simulation flag is set to FALSE (line 32-33) as the successor states of 8 is unknown. The

algorithm (line 3-34) is repeated for 〈4, 8〉 until a state that has been previously visited is reached.

This could be state 9 for 〈4, 8〉 since 〈4, 5〉 trace has been computed previously. After finishing the

computation, the next transition in RU is chosen and the process is repeated until RU is empty.

The procedure terminates when RU is empty and path-complete is TRUE.

Since the procedure is unwinding and exploring the implementation TTS, its complexity is

linear in the number of transitions of the implementation TTS.

5.3. Case Studies and Results

Control Program - 1 : A number of object code programs for stepper motor control

were used as benchmarks to demonstrate the effectiveness of the methodology. Table 5.1 shows

the verification statistics for the benchmarks. A stepper motor can be energized in various re-

peated sequences that cause it to rotate. Three typically used sequences were used to develop the
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benchmarks. Sequence 〈0001〉, 〈0010〉, 〈0100〉, 〈1000〉, 〈0001〉, ..., is known as full stepping or single

stepping or wave stepping. Sequence 〈0011〉, 〈0110〉, 〈1100〉, 〈1001〉, 〈0011〉, ..., is known as double

stepping. Sequence 〈0001〉, 〈0011〉, 〈0010〉, 〈0110〉, 〈0100〉, 〈1100〉, 〈1000〉, 〈1001〉, 〈0001〉, ..., is

known as half stepping. The benchmark name indicates the type of control used. ”Full”, ”Double”,

and ”Half” indicate full stepping, double stepping, and half stepping were used, respectively. ”RIT”

indicates that the interrupts were generated by Repetitive Interrupt Timer (RIT) to implement the

timing delays for the motor control. ”noRIT” indicates that instead of the RIT timer, code was to

implement timing delays. ”clock” and ”anti” indicate that the motor was controlled clockwise and

anti-clockwise, respectively. Table 5.1 gives statistics for both correct and buggy versions of the

controllers. ”FuncBug” and ”TimBug” indicate that the object code error was either a functional

error or a timing error, respectively. The programs were developed to run on an ARM Cortex-M3

based NXP LPC1768 [58] micro-controller. Stepper motor leads were connected to four pins from

PORT 2 of the LPC1768 via an electronic circuit. Table 5.1 also includes the time for abstraction,

which is in the order of 100s of seconds.

Control Program - 2 : An infusion pump is a medical device that is used to deliver

controlled dosages of medications or nutrients into the patient’s circulatory system intravenously.

Typical medications delivered include opioids, insulin, and chemotherapy drugs. From 2001 to

2017, the Food and Drug Administration (FDA) has issued 54 Class-1 recalls on infusion pumps

due to software errors [64, 65]. Class-1 recalls are issued when the use of the device is determined

to cause serious harm or death to patients. The criticality of the pump functionality is because

of incorrect dosage delivery due to software errors. The Alaris Medley 8100 LVP module infusion

pump [1,13] was used for the experiments. The Alaris Medley pump uses pulse width modulation

for dosage control. Pulse width modulation control code for the Alaris pump was implemented

on an ARM Cortex M3 based LPC 1768 micro-controller, which was interfaced with the pump so

that the code implemented can control the pump. The formal specifications were developed for the

pump control software based on the requirements in [67]. Table 5.2 shows the verification statistics

for the infusion pump control case study. The transition system of the pump’s control code had

about 24.3 million transitions. With the application of dynamic stuttering abstraction, the abstract

transition system was computed in about 70 seconds and had less than 100 transitions. TWFS

refinement verification was then completed within a few seconds. Several bugs were found in the
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Table 5.1. Verification Statistics for TSA

S.No Object Code Benchmarks # of Trans. of MM I # of Trans. of TSA Time [sec]

[million] of Abstract MM a

1 Full-RIT-clock 2.5 10 26.95

2 Full-RIT-anti 2.5 10 15.29

3 Double-RIT-clock 2.5 10 15.31

4 Double-RIT-anti 2.5 10 15.35

5 Half-RIT-clock 4.5 18 31.85

6 Half-RIT-anti 4.5 18 31.85

7 Full-noRIT-clock 82.5 10 171.88

8 Full-noRIT-anti 82.5 10 172.23

9 Double-noRIT-clock 82.5 10 171.25

10 Double-noRIT-anti 82.5 10 171.32

11 Half-noRIT-clock 148.5 18 321.58

12 Half-noRIT-anti 148.5 18 322.84

13 FuncBug-Full-RIT-clock 2.5 10 15.1

14 FuncBug-Full-RIT-anti 2.5 10 15.25

15 FuncBug-Double-RIT-clock 2.5 10 15.12

16 FuncBug-Double-RIT-anti 2.5 10 15.15

17 FuncBug-Half-RIT-clock 4.5 18 31.59

18 FuncBug-Half-RIT-anti 4.5 18 32.05

19 FuncBug-Full-noRIT-clock 99 20 211

20 FuncBug-Full-noRIT-anti 99 20 210.79

21 FuncBug-Double-noRIT-clock 82.5 10 176.24

22 FuncBug-Double-noRIT-anti 82.5 10 173.3

23 TimBug-Half-noRIT-clock 82.5 18 172.72

24 TimBug-Half-noRIT-anti 120 20 255.3

control code implementation which can categorized as functional and timing errors. The results for

each of the buggy versions of the code and the correct code are summarized in Table 5.2. With this

case study, it can be concluded that the dynamic stuttering abstraction is applicable to complex

real-world control code verification.

In Table 5.1 and 5.2, the ”# of Trans. of MM I” column (column 3) given the total number

of transitions in the implementation model TTS. The ”# of Trans. of Abstract MM a” column
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Table 5.2. Verification Statistics for TSA for Infusion Pump Controller (IPC) Case Study

S.No Object Code Benchmarks # of Trans. of TSA Time [sec]

[million] of Abstract MM a

1 IPC 24.3 70.28

2 IPC-FuncBug1 20.25 60.52

3 IPC-FuncBug2 24.3 75.15

4 IPC-FuncBug3 27 83.99

5 IPC-TimBug1 20.25 60.04

6 IPC-TimBug2 24.3 72.32

(column 4 of Table 5.1) gives the total number of transitions in the abstract implementation TTS

(which is generated by applying dynamic TSA). Column 5 of Table 5.1 and Column 4 of Table 5.2

indicated as ”TSA Time” gives the timed stuttering abstraction time in seconds to generate MM a.

The verification experiments were performed on a Intel Core i7 3.1 GHz processor with 8 GB

memory. We also performed TWFS refinement checking on the abstracted TTS and were able to

prove correctness or flag the functional/timing bug in the benchmarks. TWFS refinement checking

was able to complete in less than a second for all the abstracted TTSs. Without abstraction, TWFS

refinement checking was not possible because of memory issues due to the size of the implementation

TTS.

This chapter has presented stuttering abstraction (SA) for transition systems (TSs), timed

stuttering abstraction (TSA) for timed transition systems (TTSs). Dynamic timed stuttering ab-

straction has been fruitfully applied to real-time object code verification. Dynamic TSA has been

demonstrated on two case studies, including stepper motor control and infusion pump control.

Verification results demonstrate the effectiveness of dynamic TSA and its application reduces the

number of transitions of the implementation TTS from millions to less than 100 for all bench-

marks. As expected, most of the time is spent in performing dynamic TSA. But, once abstraction

is applied, functional and timing verification times are very efficient.
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6. WFS REFINEMENT CHECKER

In Chapter 4, a formal verification methodology for real-time interrupt-driven object code

verification was described. Timed well-founded simulation refinement (TWFS) methodology is build

on the theory of Well-Founded Simulation (WFS) refinement. In the context of WFS refinement,

both the implementation and specification are modeled as transition systems (TSs). Transition

system is a mathematical modeling framework for code that is based on states of the program and

transitions between states. WFS refinement essentially defines what it means for an implementation

TS to correctly implement a specification TS.

For TWFS refinement, WFS refinement checking was demonstrated by manually generating

the required proof obligations for checking WFS refinement. However, this is insufficient for large

programs. In this chapter, this gap is addressed by proposing an algorithm for automatic WFS

refinement checking optimized for object code verification. The proposed algorithm checks for safety

property which is based on WFS refinement. Safety informally means that if the implementation

makes progress, the result of that progress satisfies the specification requirements. The algorithm

has been implemented and the automated tool flow has been applied to a comprehensive set of

thirty object code control programs to demonstrate the effectiveness of the approach.

6.1. Automated WFS Refinement for Object-Code

This section presents a procedure for automating WFS refinement for object code verifica-

tion. According to Definition 2, a TS satisfies WFS when the two conditions are satisfied. Usually,

in real-time object code verification, stuttering does not occur on the specification system. Hence

the refinement-based correctness formula can be reduced to,

〈∀w ∈ object-code :: v = object-code-step(w) ∧ s = r(w)

∧ u = SPEC-step(s) ∧ 〈s, u〉 ∈ SPEC then

(i) r(v) = s (for stuttering transition) or

(ii) r(v) = u (for a non-stuttering transition) 〉

(6.1)
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Here, once a refinement-map is constructed, in WFS refinement verification the idea is then

to look at each transition. For example, consider 〈w, v〉 from the implementation transition system

where w, v belong to the set of implementation states. To satisfy the refinement-based correctness

formula 6.1, the transition should capture one of the options of being either a stuttering transition

or a non-stuttering transition. If the implementation transition match to the same specification

state i.e., r(w) = r(v) = s where r() is the refinement-map and s is a specification state, then

it is called a stuttering implementation transition. If the implementation transition match to a

specification transition i.e., r(w) = s and r(v) = u where 〈s, u〉 is a transition in specification, then

it is called a non-stuttering implementation transition. If the implementation transition shows a

behavior that is neither stuttering nor non-stuttering then it indicates the presence of an error or

bug in the implementation transition system.

Typically object code (implementation TS (MI)) consists of millions of transitions where a

large portion of these transitions are of stuttering in nature. Hence, abstraction based on these stut-

tering transitions may be applied to the implementation TS (MI). Applying stuttering abstraction

heuristics on the TS (Section 7.1.1) makes the verification process faster and much more efficient.

Using the specification TS (MS), the set of states of the specification (SS) can be constructed. If

every behavior of MI has a match in MS then MI is a WFS refinement of MS with respect to

refinement-map r and is denoted as MI vr MS . The refinement-map is a function that maps the

symbolic states of MI to the symbolic states of MS .

6.1.1. Procedure for Checking WFS Refinement for Object-Code

Algorithm 3 presents a procedure that performs WFS refinement checking on the abstracted

object code TS, which is the implementation TS. The inputs to the procedure include a list of

transitions of MI , a list of transitions of MS , a set of states of the specification (SS) and the

refinement-map r. RCE is the counterexample set, which the procedure will populate with imple-

mentation transitions that do not satisfy the WFS refinement correctness criteria (6.1). RCE is

initially empty (line 2). The procedure iterates through each transition in MI (lines 3-19). The tran-

sitions of the implementation are of the form 〈w, v〉. State variables w and v are assigned to be the

predecessor-state (zeroth column value of MI [i]) and successor-state (first column value of MI [i]) of

transition MI [i], respectively (lines 4-5). Variable ’s’ is assigned to be the value refinement-map (w)

(line 6). Predicate match is used to keep track of whether the implementation transition has found
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a matching specification transition, or is determined to be stuttering, or is neither. The case where

it is neither is usually a counterexample or a bug.

Algorithm 3 Procedure for Checking WFS Refinement

1: procedure CheckwfsRef(MI , MS , SS , r)
2: RCE ← NULL;
3: for i ← 1 to length-of-MI do
4: w ←MI(0);
5: v ←MI(1);
6: s← r(w);
7: match ← FALSE;
8: if s ∈ SS then
9: if r(v) = r(w) then

10: match ← TRUE;
11: else
12: for j ← 1 to length-of-MS do
13: if s = MS(0) then
14: u←MS(1);
15: if r(v) = u then
16: match ← TRUE;
17: break;

18: if match = FALSE then
19: RCE ← RCE ∪ 〈w, v〉;
20: return RCE ;

A check is performed on ’s’ to see if it belongs to the set of states of specification (SS)

(line 8). If ’s’ does not belong to SS , then the w state has no corresponding specification state

and therefore points to an error and the transition is added to RCE (lines 18-19). When ’s’ exists

in SS , a check has to be performed on the implementation transition to see if it is a stuttering

implementation transition or a non-stuttering implementation transition. In case the transition is

a stuttering transition (lines 9-10), the predicate match is set to true and the procedure proceeds

to the next transition in the implementation. If the transition is a non-stuttering transition (lines

11-17), the procedure iterates through the specification transitions. In the specification transitions,

only transitions where the predecessor-state is s is considered (lines 13-17). The corresponding

successor-state is assigned to ’u’ (line 14). If a specification successor-state u is found such that r(v)

is equal to u, then match is assigned true (lines 15-16). Once a match is found, the procedure exits

iterating through the specification transitions and moves on to the next implementation transition
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(line 17). If for a non-stuttering transition, r(v) does not match with any u, then this point to an

error in the implementation and the corresponding implementation transition is appended to RCE .

When all the transitions of the implementation have been checked, the procedure ends by returning

the list RCE (line 20).

6.1.2. Time Complexity for Refinement Checker

The time complexity of this algorithm is O(|RI ||RS |). The outer for loop (line 3) has a

length of RI passes. The if condition on line 8 has a length of SS passes. The inner for loop (line

12) has a length of RS passes. The complexity of the algorithm is |RI | ∗ (|SS |+ |RS |). Usually, the

number of transitions of the specification (|RS |) is greater than equal to the number of states of

specification (|SS |) depending on the application. Hence, the overall time complexity isO(|RI ||RS |).

6.2. Case Studies and Results

The effectiveness of the algorithm presented in this chapter was demonstrated on 30 differ-

ent object code programs. A detailed description of the control programs has been explained in

Chapter 3.

Control Program - 1 : A number of object code programs for stepper motor control

were used as benchmarks to demonstrate the effectiveness of the methodology. Three sequences

of stepper motor control that uses 4 leads are used to develop the benchmarks. Double stepping

sequence an be described as 〈0011〉, 〈0110〉, 〈1100〉, 〈1001〉, 〈0011〉, so on. Full stepping sequence

an be described as 〈0001〉, 〈0010〉, 〈0100〉, 〈1000〉, 〈0001〉, so on. Half stepping sequence an be

described as 〈0001〉, 〈0011〉, 〈0010〉, 〈0110〉, 〈0100〉, 〈1100〉, 〈1000〉, 〈1001〉, 〈0001〉, so on. The

benchmark name indicates the type of control used. ”Full”, ”Double”, and ”Half” indicate full

stepping, double stepping, and half stepping were used, respectively. ”RIT” indicates that the

interrupts were generated by Repetitive Interrupt Timer (RIT) to implement the timing delays

for the motor control. ”noRIT” indicates that instead of the RIT timer, the code was used to

implement timing delays. ”clock” and ”anti” indicate that the motor was controlled clockwise and

anti-clockwise, respectively. ”FuncBug” and ”TimBug” indicate that the object code error was

either a functional error or a timing error, respectively. The programs were developed to run on an

ARM Cortex-M3 based NXP LPC1768 [58] micro-controller. Stepper motor leads were connected

to four pins from PORT 2 of the LPC1768 via an electronic circuit.
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Table 6.1. Verification Statistics for WFS Refinement Checker

Case Study Object Code Benchmarks # of Trans. of # of Trans. of WFS refinement

MM I of Abstract checker time

[million] MM a [microsec]

1 Full-RIT-clock 2.5 10 3

2 Full-RIT-anti 2.5 10 3

3 Double-RIT-clock 2.5 10 4

4 Double-RIT-anti 2.5 10 3

5 Half-RIT-clock 4.5 18 4

6 Half-RIT-anti 4.5 18 3

7 Full-noRIT-clock 82.5 10 3

8 Full-noRIT-anti 82.5 10 4

9 Double-noRIT-clock 82.5 10 4

10 Double-noRIT-anti 82.5 10 6

11 Half-noRIT-clock 148.5 18 3

12 Half-noRIT-anti 148.5 18 5

13 FuncBug-Full-RIT-clock 2.5 10 -

14 FuncBug-Full-RIT-anti 2.5 10 -

15 FuncBug-Double-RIT-clock 2.5 10 -

16 FuncBug-Double-RIT-anti 2.5 10 -

17 FuncBug-Half-RIT-clock 4.5 18 -

18 FuncBug-Half-RIT-anti 4.5 18 -

19 FuncBug-Full-noRIT-clock 99 20 -

20 FuncBug-Full-noRIT-anti 99 20 -

21 FuncBug-Double-noRIT-clock 82.5 10 -

22 FuncBug-Double-noRIT-anti 82.5 10 -

23 TimBug-Half-noRIT-clock 82.5 18 3

24 TimBug-Half-noRIT-anti 120 20 4

25 IPC 24.3 6 3

26 IPC-FuncBug1 20.25 5 -

27 IPC-FuncBug2 24.3 8 -

28 IPC-FuncBug3 27 3 -

29 IPC-TimBug1 20.25 6 3

30 IPC-TimBug2 24.3 6 4
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Control Program - 2 : An infusion pump is a medical device that is used to deliver

controlled dosages of medications or nutrients into the patient’s circulatory system intravenously.

Typical medications delivered include opioids, insulin, and chemotherapy drugs. From 2001 - 2017,

the Food and Drug Administration (FDA) has issued 54 Class-1 recalls on infusion pumps due to

software errors [64,65]. Class-1 recalls are issued when the use of the device is determined to cause

serious harm or death to patients. The criticality of the pump functionality is because of incorrect

dosage delivery due to software errors. The Alaris Medley 8100 LVP module infusion pump [1,13]

was used for the experiments. The Alaris Medley pump uses pulse width modulation for dosage

control. Pulse width modulation control code for the Alaris pump was implemented on an ARM

Cortex M3 based LPC 1768 micro-controller, which was interfaced with the pump so that the code

implemented can control the pump. The formal specifications were developed for the pump control

software based on the requirements in [67]. Table 6.1 also shows the verification statistics for the

infusion pump control case study. The transition system of the pump’s control code had about 24.3

million transitions. With the application of dynamic stuttering abstraction, the abstract transition

system was computed in about 70 seconds and had less than 100 transitions. WFS refinement

verification was then completed within a few seconds. Several bugs were found in the control code

implementation which can be categorized as functional and timing errors.

Table 6.1 gives statistics for both correct and buggy versions of the benchmarks. The

programs were developed to run on an ARM Cortex-M3 based NXP LPC1768 [58] microcontroller.

The verification experiments were performed on an Intel Core i7 3.1 GHz processor with 8GB

memory. Repetitive Interrupt Timer (RIT) was used to generate the interrupt at regular intervals

of time. In Table 6.1, the ”# of Trans. of MM I” column (column 3) given the total number

of transitions in the implementation model TS. The ”# of Trans. of Abstract MM a” column

(column 4) gives the total number of transitions in the abstract implementation TS. Column 5

indicated as ”WFS refinement checker time” gives the time taken to perform automated WFS

refinement checking on the abstracted implementation TTS MM a. The verification experiments

were performed on an Intel Core i7 3.1 GHz processor with 8 GB memory. WFS refinement checking

was able to complete in less than a second for all the abstracted TSs. Without abstraction, WFS

refinement checking was not possible because of memory issues due to the size of the implementation

TS. WFS refinement checking time is not shown for buggy models.
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This chapter has presented automated well-founded simulation (WFS) refinement checker

for large programs like real-time interrupt-driven object code programs. This algorithm checks for

the safety feature in transition systems (TSs). The time complexity of this algorithm is O(|RI ||RS |)

which is linear in terms of the number of transitions of the implementation TS and specification

TS. The refinement checker has been demonstrated on multiple benchmarks, where the verification

time is very efficient making it possible to apply this procedure multiple times in practice.
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7. LIVENESS

This chapter presents the algorithm for liveness verification of real-time interrupt-driven

object code programs. Liveness verification checks for deadlock errors in the object code. Liveness

property indicates that something good eventually happens. Deadlock in object code indicates that

the execution of the instructions is in an infinite loop and from which execution might never come

out from. This kind of situation usually indicates an error in the implementation transition system

(TS) i.e., the object code.

In graph theory, a strongly connected component (SCC) exists when every node in a graph

is reachable from every other node. Deadlock in the transition system indicates the presence of

a SCC. Tarjan’s strongly connected component algorithm is an algorithm in graph theory that

is usually used to find the SCC in a directed graph. Tarjan’s SCC algorithm has linear time

complexity.

Figure 7.1 shows a buggy implementation transition system for the specification transition

system shown in Figure 2.4. This buggy model is considered as an example for the explanation in

this chapter.

7.1. Liveness Detection for Object-Code

Deadlock errors in object code result from the software changing states but not making

progress with respect to the specification. Liveness verification checks for deadlock errors. Deadlock

shows up as a sequence of infinite stuttering steps because of progress w.r.t. the specification is

captured by non-stuttering transitions. Since the transitions in the implementation transition

system (TS) are finite, deadlock errors will show up as cycles of stuttering transitions in the

implementation TS.

Well-Founded Simulation (WFS) refinement uses rank functions to check for liveness. Rank

functions map implementation states to natural numbers. They are to be designed by the verifica-

tion engineer so that the rank value decreases on every stuttering transition, which is a requirement

for WFS refinement. If deadlock exists, the rank will eventually reach 0 or its minimum value and

stop decreasing on stuttering transitions. Therefore, violations of the property that the rank de-
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Figure 7.1. Buggy Stepper Motor Control Implementation TS

creases on every stuttering transition correspond to deadlock errors. Rank functions reduce liveness

verification to reasoning about single transitions and therefore lead to effective verification.

An approach has been proposed for liveness checking that directly searches for stuttering

cycles in the implementation TS. Rank functions are not used because they depend on the function

of the code and are not easy to automate. Rank functions provide efficient verification when the

implementation has a large number of transitions. While that is true for object code TSs, the fact

that stuttering abstraction drastically reduces the size of the implementation TS can be exploited.

Therefore, by checking for stuttering cycles after the implementation TS has been abstracted, both

automation and efficiency can be attained. In this section, a procedure for detecting stuttering

cycles is provided. Before that, the stuttering abstraction for transition system is revisited.
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7.1.1. Stuttering Abstraction for TS

In Chapter 5, stuttering abstraction for transition system (TS) and timed transition system

(TTS) has been discussed. From the definition of stuttering abstraction (Def. 14), two transitions

that are stuttering can be merged into one. Repeated application of the definition can be used

to merge large sequences of stuttering transitions. Also, the stuttering abstraction algorithm does

not remove initial states. The lemma below gives the soundness of checking for deadlock errors by

detecting stuttering cycles after applying stuttering abstraction to the implementation transition

system (MI).

Lemma 9. Stuttering abstraction does not add or remove stuttering cycles from an implementation

TS that are reachable from the initial states of the TS. The only impact that stuttering abstraction

has on stuttering cycles is to reduce their size.

Proof. From Definition 14, stuttering abstraction merges two transition into one and the state that

is removed due to this merger can only have one incoming and one outgoing transition. Such a

merger will not create new cycles. Also, for a stuttering cycle to occur, there exists at least one

state in the cycle with multiple incoming transitions (because the cycle has to be reachable from

the initial state) unless the cycle includes an initial state. Since initial states are not abstracted

and also states with multiple incoming transitions are not abstracted, stuttering abstraction will

not remove stuttering cycles from the TS. In stuttering cycles, if and only if it contains states that

have only one incoming and one outgoing transition, then those states can be abstracted which will

reduce the overall size of the stuttering cycle.

It can be seen in practice that stuttering abstraction often converts stuttering cycles to

self-loops.

Definition 16. A self-loop is a state that transitions to itself.

In Figure 7.1, transitions 〈27, 28〉, 〈28, 29〉, 〈29, 30〉,〈20, 31〉, 〈31, 32〉 and 〈32, 27〉 form a

stuttering cycle. Repeated application of stuttering abstraction reduces this cycle to a self-loop on

state 27 (as shown in Figure 7.2).

Lemma 10. Stuttering abstraction can reduce stuttering cycles to self-loops.
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Figure 7.2. An Example Snippet of Implementation TS from Fig. 7.1 that Contains Stuttering
Cycle

Proof. Stuttering abstraction will remove any state in a stuttering cycle that has only one incoming

and one outgoing transition. Stuttering abstraction will not remove a state with multiple incoming

or multiple outgoing transitions. Thus, if a stuttering cycle has only one state with multiple

incoming and multiple outgoing transitions, then that will be the only state not to be removed

from the cycle and such a stuttering cycle will reduce to a self-loop.

In Figure 7.1, transitions 〈35, 36〉, 〈36, 37〉, 〈37, 38〉 and 〈38, 35〉 form a stuttering cycle.

Repeated application of stuttering abstraction does not reduce this cycle to a self-loop because

state 37 contains two outgoing transitions (as shown in Figure 7.3).

Lemma 11. Not every stuttering cycle can be reduced to self-loop.

Proof. If a stuttering cycle has more than one state with multiple incoming or multiple outgoing

transitions, then all such states will be preserved by stuttering abstraction. Such a stuttering cycle

will not be reduced to a self-loop.
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Figure 7.3. An Example Snippet of Implementation TS From Fig. 7.1 that Contains Stuttering
Cycle which Cannot be Reduced to Self-Loop

7.1.2. Liveness Detection Procedure

Algorithm 4 presents the procedure for detecting stuttering cycles that applies the well-

known Tarjan’s Strongly Connected Component (SCC) analysis algorithm, which is the most effi-

cient algorithm for detecting cycles in a directed graph. The inputs to the procedure include the

list of transitions of MI . The procedure uses two boolean variables as flags called flag-self-loop and

flag-SCC. Flag-self-loop helps to identify the presence of self-loops in the TS. Flag-SCC is used

to identify the presence of strongly connected components (SCCs) in the TS. These variables are

initialized to FALSE (lines 2-3). Since we are only interested in detecting stuttering cycles, the

non-stuttering transitions are removed from MI to get MIStuttering (line 4).

Once the non-stuttering transitions are removed, the resulting MIStuttering may have states

that have no incoming and no outgoing transitions, called trivial SCCs. This can happen if, in MI ,

there are states that have incoming and outgoing transitions that are only non-stuttering. Such

trivial SCCs, however, will also be flagged as SCCs by Tarjan’s algorithm and will, therefore, lead
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Algorithm 4 Procedure for checking stuttering cycles

1: procedure CheckSC(MI)
2: flag-self-loop ← FALSE;
3: flag-SCC ← FALSE;
4: Remove the non-stuttering transitions in MI to get MIStuttering.
5: Remove trivial SCC from MIStuttering.
6: Eliminate duplicate transitions in MIStuttering.
7: flag-self-loop ← Detect self-loops in MIStuttering;
8: if flag-self-loop then
9: return counterexamples;

10: exit;

11: flag-SCC ← check-Tarjan-SCC;
12: if flag-SCC then
13: return SCCs;
14: exit;

15: return ”No stuttering circles in the TS”;

to spurious counterexamples. Such trivial SCCs are easily detected and removed from MIStuttering

(line 5) with just one pass through the states of MIStuttering.

13 14

15 16

17 18 19

20

(a) Implementation TS Snippet with Multiple Paths Between State 14 and State 20

13 14 20

(b) Abstracted Implementation TS Snippet that Contains Multiple Paths Between State 14 and State 20

Figure 7.4. An Example Snippet of Implementation TS from Fig. 7.1 that Contains Multiple Paths

In MI , there may be multiple paths from one unabstractable state say w to another un-

abstractable state say v. If these paths only consist of stuttering transitions, when stuttering

abstraction is applied, these paths will be reduced to single transitions from w to v that cannot be

distinguished. Such transitions will essentially be duplicates in MIStuttering and will unnecessarily
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reduce the efficiency of Tarjan’s algorithm. For example, consider Figure 7.4 which is a snippet from

Figure 7.1, the unabstractable state w is state 14 and the unabstractable state v is state 20. As can

be seen in Figure 7.4a, there exist two paths from state 14 to state 20 in which all the transitions

in both the paths are stuttering transitions. Since each of the stuttering transition in the multiple

paths consists of only one incoming transition and one outgoing transition, these transitions can be

abstracted. The abstracted transitions for these multiple paths can be seen in Figure 7.4b. There-

fore, such duplicate transitions are detected and removed with just one pass through the states of

MIStuttering (line 6). While the removal of trivial SCCs and the removal of duplicate transitions

are shown separately, they can be combined into one pass in the implementation.

In practice, it can be seen that many of the stuttering cycles reduce to self-loops. Therefore,

self-loops, which can also be checked using one pass through the states of MIStuttering by checking

if a state has a transition to itself, are detected first (line 7). Lemma 10 guarantees that some

stuttering cycles will reduce to self-loops. If self-loops are found, the procedure returns them as

counterexamples and exits (lines 8 - 10). Only if MIStuttering does not have self-loops does the

procedure employ Tarjan’s algorithm (line 11). Lemma 11 states that all not all stuttering cycles

will reduce to self-loops and therefore that Tarjan’s algorithm be employed is a requirement for

detecting all stuttering cycles. In practice, when detecting and correcting errors, the verification

tool is often employed multiple times. Detecting self-loops directly, therefore, reduces the number

of times Tarjan’s algorithm is employed and therefore improves the efficiency of the verification

process.

7.1.3. Time Complexity for Liveness Detection

The time complexity of this procedure is O(|RIStuttering|+ |SIStuttering|), where RIStuttering

denotes the transitions in MIStuttering and SIStuttering denotes the states in MIStuttering. As de-

scribed above, lines 4, 5, and 6, each require one pass through the states of MIStuttering and therefore

each of these steps require SIStuttering. The time complexity for Tarjan’s SCC algorithm (line 11)

for a graph with V vertices and E edges is O(|V |+|E|). For the implementation TS, the vertices and

edges correspond to the states and transitions, respectively. Therefore, the complexity of Tarjan’s

algorithm here is O(|RIStuttering|+ |SIStuttering|), which dominates the other steps in the procedure

and therefore also determines the complexity of the procedure.
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7.2. Case Studies and Results

The effectiveness of the algorithms presented in this chapter was applied to all the bench-

marks in Chapter 6.

Control Program - 1 : A number of object code programs for stepper motor control

were used as benchmarks to demonstrate the effectiveness of the methodology. Three sequences

of stepper motor control that uses 4 leads are used to develop the benchmarks. Double stepping

sequence an be described as 〈0011〉, 〈0110〉, 〈1100〉, 〈1001〉, 〈0011〉, so on. Full stepping sequence

an be described as 〈0001〉, 〈0010〉, 〈0100〉, 〈1000〉, 〈0001〉, so on. Half stepping sequence an be

described as 〈0001〉, 〈0011〉, 〈0010〉, 〈0110〉, 〈0100〉, 〈1100〉, 〈1000〉, 〈1001〉, 〈0001〉, so on. The

benchmark name indicates the type of control used. ”Full”, ”Double”, and ”Half” indicate full

stepping, double stepping, and half stepping were used, respectively. ”RIT” indicates that the

interrupts were generated by Repetitive Interrupt Timer (RIT) to implement the timing delays for

the motor control. ”noRIT” indicates that instead of the RIT timer, the code was to implement

timing delays. ”clock” and ”anti” indicate that the motor was controlled clockwise and anti-

clockwise, respectively. ”FuncBug” and ”TimBug” indicate that the object code error was either a

functional error or a timing error, respectively. The programs were developed to run on an ARM

Cortex-M3 based NXP LPC1768 [58] micro-controller. Stepper motor leads were connected to four

pins from PORT 2 of the LPC1768 via an electronic circuit.

Control Program - 2 : An infusion pump is a medical device that is used to deliver

controlled dosages of medications or nutrients into the patient’s circulatory system intravenously.

Typical medications delivered include opioids, insulin, and chemotherapy drugs. From 2001 to

2017, the Food and Drug Administration (FDA) has issued 54 Class-1 recalls on infusion pumps

due to software errors [64, 65]. Class-1 recalls are issued when the use of the device is determined

to cause serious harm or death to patients. The criticality of the pump functionality is because

of incorrect dosage delivery due to software errors. The Alaris Medley 8100 LVP module infusion

pump [1,13] was used for the experiments. The Alaris Medley pump uses pulse width modulation

for dosage control. Pulse width modulation control code for the Alaris pump was implemented

on an ARM Cortex M3 based LPC 1768 micro-controller, which was interfaced with the pump so

that the code implemented can control the pump. The formal specifications were developed for
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the pump control software based on the requirements in [67]. The transition system of the pump’s

control code had about 24.3 million transitions. The abstracted implementation model had less

than 100 transitions. It was possible to apply WFS refinement verification with few seconds.

Algorithm 4 have been on all the benchmarks in Chapter 6 after the safety feature has

been verified using the refinement checker algorithm 3. The programs were developed to run on

an ARM Cortex-M3 based NXP LPC1768 [58] microcontroller. The verification experiments were

performed on an Intel Core i7 3.1 GHz processor with 8GB memory. Repetitive Interrupt Timer

(RIT) was used to generate the interrupt at regular intervals of time. Liveness verification was

able to complete in less than a second for all the abstracted TSs. Without abstraction, liveness

verification was not possible because of memory issues due to the size of the implementation TS.

This chapter presents the effectiveness of the strongly connected components (SCCs) check-

ing on the real-time interrupt-driven object code programs. This algorithm first checks for self-loops

since that would the case for most abstracted implementation TS. Later Tarjan’s SCC is applied

to the abstracted implementation TS. The time complexity of this algorithm is O(|RIStuttering| +

|SIStuttering|) which is similar to the time complexity of Tarjan’s SCC algorithm. The liveness

verification has been demonstrated on multiple benchmarks, where the time taken is very efficient

making it possible to apply this procedure multiple times in practice.
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8. RELATED WORK

A large gap exists between high-level system models and the low-level actual code (i.e.,

object-code) which is executed on the embedded device. The number of states and transitions in

the high-level system models is typically less than 100, whereas, in the low-level models the number

of states and transitions may be in the order of millions. Catching the design bugs early in the

design cycle of the system-level models is very useful. To bridge the gap between system-level

models and actual code, model-driven approaches are adopted. Here the high-level system models

are represented as source code which is developed using platform-independent synthesis tools. The

source code is then augmented with the device peripheral information and then compiled and

assembled to generate the object code. During this process, numerous errors can creep into the

object code compromising its safety. This work is targeted at bridging the gap between the real-time

high-level models and real-time object code and also ensuring that the object-code is safe.

8.1. Refinement Based Verification for Real-Time Systems

Timed automata [3], is an extension of finite-state automata using clock variables. Tools like

UPPAAL [42] and Kronos [11] are based on timed automata [3], and have been very successful in

property-based verification of real-time system-level models and models of protocols. Another real-

time system verification tool is Epsilon [31], which is aimed at verifying communication protocols.

These real-time model checkers are targeted at checking properties of system-level models.

However, there is quite a large gap between the high-level models and the actual code that

is executed in the device. High-level models typically have less than 100 states and transitions,

while the timed transition system (TTS) corresponding to object code has millions of states and

transitions. This gap is bridged using a model-driven approach [40], where platform-independent

source code is generated from high-level models using synthesis tools. The platform-independent

source code is then manually augmented with glue code, which is used to configure hardware

interrupts and interface the software controller with low-level peripheral units and devices such as

timers, communication channels, ports, etc. The glue-code-augmented source code is then compiled

and assembled to generate object code. There are numerous sources of error that can compromise
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the safety of the object code in this process. Our work is targeted at guaranteeing that the software

controller at the object-code-level is safe.

David et al. [18] have developed an UPPAAL-based tool to check refinement between spec-

ifications of real-time systems. Boudjadar et al. [9] have developed a bisimulation relation for

real-time systems with priorities and provide a method for encoding and verifying the problem

using UPPAAL. The above refinement approaches for real-time systems are targeted at high-level

models and do not consider stuttering and refinement maps. Since we incorporate stuttering and

refinement maps, our approach is unique in this regard and applicable to the verification of low-level

implementations such as object code.

Alur et al. have defined bisimulation based equivalences for TTS [2], and have proposed

a method based on language inclusion for checking equivalence of TTS. However, these methods

have not been applied towards real-time object code verification.

Rabinovich [59] has shown how to lift the theory of automata for discrete timed systems

to continuous timed systems. The notion of stuttering is described in this context, but stuttering

abstraction is not addressed. Also, no verification experiments are described in the paper.

Ray and Sumners have used a notion of refinement based on stuttering trace containment to

verify concurrent programs [60]. Their focus is on functional verification and they do not consider

real-time programs.

Why should the theory of Well-founded equivalence bisimulation (WEB) refinement be

extend for checking equivalence of TTS? There has been a lot of previous work in developing

theory and optimized techniques for WEB refinement-based verification. By extending the theory

of WEB refinement to deal with TTS, the motivation is to leverage these techniques and also

exploit the properties of WEB refinement in object code verification. The very nice property of

WEB refinement is that, it is enough to reason about single steps of the implementation and

specification. This can be exploited in object code verification, by reasoning about one instruction

at a time. This property significantly reduces the verification burden. Also, the notion of timed

refinement is based on the ideas of stuttering segments and stuttering transitions, which provides a

natural way to abstract the implementation TTS corresponding to the object code. Without using

these abstractions, the number of states and paths would explode (Section 4.5). For the case
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studies verified, abstractions based on stuttering reduce the size of the implementation

TTS by at least 4 orders of magnitude (Section 4.5).

8.2. Timed Stuttering Abstraction

Hirshfeld and Rabinovich [35] have presented a logic to specify properties of real time high-

level models that may be discrete or continuous. Decidability of this logic is the main focus in [35].

They do not consider verification methods for these properties and as such no abstractions or

experiments for verification are presented. In contrast, the focus of our work is the verification of

object code programs. Bouyer et al. [10] have proposed an expressive temporal logic for specifying

properties of real-time models. The properties can then be checked using a model checker. They

do not consider stuttering or stuttering abstraction. Model checking is very popular in checking

correctness of higher-level models. However, model checking suffers from state explosion problem

when dealing with low-level artifacts such as object code. Our approach is developed on refinement-

based verification, which has been shown to be very scalable in formally checking low-level design

implementations such as object code against high-level models. As such, model checking and

refinement can be thought of as complimentary. Model checking is useful in verifying higher-level

models and refinement can then be used to verify lower-level implementations against these higher-

level models.

Namjoshi [51] have given a characterization of stuttering bisimulation, a notion of correct-

ness that defines what it means for two transition systems to be equivalent. As the name suggests,

stuttering is accounted for. The theory of equivalence we use for verification is based on a vari-

ation/extension of this characterization. Groote and Wijs [32] have presented an algorithm for

checking equivalence between two transition systems that accounts for stuttering. The theory of

equivalence used is based on bisimulation. Ray and Sumners have used a notion of refinement based

on stuttering trace containment to verify concurrent programs [60]. Jain and Manolios [38] have

developed a refinement-based testing method for functional correctness of hardware and low-level

software. Delahaye et al. [23] have introduced some abstractions in the context of probabilistic

automata, which are automata where probabilities are assigned to non-deterministic transitions.

They have introduced the notion of stuttering in this context but have not discussed the idea of

stuttering-based abstractions. For these works, the focus is on functional verification and they do

not consider real-time programs and they do not consider stuttering-based abstraction.
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Jabeen et al. [36] have shown how to use timed well-founded simulation (TWFS) refinement

for verification of real-time FPGA. Their method does not use timed stuttering abstraction (TSA),

but relies on manually generated invariants that characterize the reachable states of the FPGA

design. Such an approach will not work for object code as the number of instructions will be very

large and manually characterizing the reachable states of a program will not be feasible.

Etessami [27] and Dax et al. [19] have proposed specification languages for expressing

stuttering-invariant properties, which are properties that do not distinguish behaviors of systems

that differ only due to stuttering. The properties are verifiable using a model checker. Our work is

complimentary to their approach, in that our goal is to exploit stuttering through abstractions to

make verification more efficient and scalable.

Nejati et al. [52] have presented a similar idea, also called stuttering abstraction. They

have proposed this idea in the context of 3-valued model checking, but do not consider real-time

systems. De-Leon and Grumberg [20] and Deka et al. [22] have both proposed abstraction-based on

stuttering equivalence in the context of model checking. Their abstraction technique is applicable

to sequences of transitions that have the same atomic propositions of interest to the property

being verified. Our abstraction is applicable to sequences of transitions that map to the same

specification transition state (TS) state. We have also shown that our abstraction is correct in the

context of TWFS refinement-based verification. Model checking works well for verification of high-

level models, but suffers from state space explosion when used for low-level design artifacts such

as object code. Refinement-based verification, which is a general form of equivalence verification

is known to scale well for low-level design artifacts. As can be seen from the experimental results,

the TTSs of the object code that we verify have millions of states and transitions. The case studies

in [20] each have less than 50 states and the number of states in the case studies verified in [22]

have not been mentioned.

Furia et al. [28] have presented a survey on how real-time systems are modeled and an-

alyzed. They have explained what stuttering means for real-time systems. They have described

some abstraction techniques that are used, but they have not talked about stuttering abstraction.

Comparison of the various formalisms are presented in the paper. No verification results are pre-

sented. In contrast, our paper describes stuttering abstraction and how it can be fruitfully applied

to object code verification.
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TSA helps bridge this gap between object-code and higher-level models.

8.3. Refinement Checker and Liveness Detection

Jabeen et al [37] have used a theory of refinement for the verification of FPGA-based

stepper motor control using proof obligations. Manually developing proof obligations for real-time

interrupt driven object code is time consuming because of the size of the instructions and may

introduce human errors. In contract, our paper describes abstraction based on stuttering and how

its application can reduce the state space and in turn the verification time that checks for safety

and liveness for real-time object code.

Failures-Divergences Refinement (FDR) [30] is a refinement checking software tool, designed

to check formal models expressed in communicating sequential processes (CSP). This tool uses CSP

operators with functional programming language. However, this tool does not verify object code

programs.

In Chapter 4, the WEB refinement proof obligations were generated manually for the object

code and discharged using an SMT solver. The goal now is to develop a procedure/tool that given

the object code and specification TTS as input, will generate the TTS corresponding to the object

code and check that the implementation TTS is a WEB refinement of the specification TTS. We

are not aware of any previous work on procedures/tools that can check WEB refinement given the

object code. Since WEB refinement is a local property, i.e., , can be verified by reasoning about

single transitions of the implementation/specification, we will develop a procedure that will exploit

this property. Conceptually, the procedure will iterate through the implementation transitions and

check the WEB refinement verification conditions. Since WEB is an equivalence relation, a prequel

to checking verification conditions is to partition implementation TTS states and specification TTS

states into equivalence classes. Each equivalence class will consist of one specification state and all

the implementation states that map to that specification state under the refinement map.
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9. CONCLUSIONS

Safety-critical applications such as airplane control systems, nuclear control systems, rock-

ets, and many more have software codes whose failure could lead to disastrous consequences like

environmental damage, monetary, and human loss. Therefore, real-time safety-critical applications

need hard timing constraints that are required to be met. Some of the real-time safety-critical

applications can be used in the area of embedded devices like medical, surgical robots, and micro-

processors. These applications are usually programmed in high-level languages like C, Java, and

Python, known as source codes. Normally, errors are checked on the source code. However, the

source code is compiled/translated to object code and then executed on the device. During the

compilation/translations, errors may be introduced into the object code. Therefore, it is not only

necessary to ensure error-free source code, but also, it is important to check for errors in the object

code. Verification of object code programs is a hard problem because object code is low level,

real-time and interrupt-driven.

In this dissertation, an automated tool called timed refinement has been developed that can

verify real-time interrupt-driven object code programs. Timed refinement is a notion of equivalence

between two timed transition systems (TTSs) that checks for functional and timing properties.

Timed refinement incorporates stuttering and refinement maps. Stuttering is a phenomenon where

multiple but a finite number of transitions of low-level object code can match a single transition of

the high-level model. The use of refinement maps helps in building a relationship between low-level

object code against high-level models. The low-level object code is known as an implementation

model and the high-level model is known as the specification model.

The automated tool has been developed in three stages. In the first stage, a procedure

called timed refinement has been developed. It has been formalized and its correctness proof has

been developed. The models were developed and the functional verification has been established

manually. Once the functional verification has been performed, timed refinement verification has

been performed using the procedure. This procedure has been verified using six case studies from

the interrupt-driven motor control object code programs. The procedure has a complexity of

O(|RI |3) where RI is the number of transitions in the implementation model. To achieve better
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results for the case studies that have been verified, abstractions based on stuttering has been applied

manually , which reduced the size of the implementation TTS by at least 4 orders of magnitude.

Based on the results obtained from the timed refinement procedure (first stage of the dis-

sertation), the idea of automating abstraction techniques have emerged. Consequently, in the

second stage of the dissertation, a novel procedure called dynamic timed stuttering abstraction

(TSA) is developed. TSA can be applied to timed transition systems, which represent the real-

time object code. A procedure called dynamic TSA has been demonstrated by using thirty case

studies, which include stepper motor control and infusion pump control. Infusion pump control

program is an ongoing commercial issue with many recent Food and Drug Administration (FDA)

recalls on infusion pumps due to software errors. Verification results demonstrate the effectiveness

of dynamic TSA as its application reduces the number of transitions of the implementation from

millions to less than 100 for all benchmarks. As expected, most of the time is spent in performing

dynamic TSA. But, once abstraction is applied, functional and timing verification times are found

to be very efficient. The reason behind achieving efficient verification results in the second stage

is due to the novelty in the procedure that combines dynamic TSA with symbolic simulation. In

contrast to our procedure, performing symbolic simulation first followed by dynamic TSA will not

work as the object code timed transition system before abstraction is so enormous that it will

lead to memory issues. Other approaches that have been previously employed in literature have

not targeted millions of transitions in real-time object code. Therefore, this study is a significant

contribution to the literature.

From the definition of timed refinement, it can be seen that timed refinement is always

preceded by functional verification. This has given a reason to develop an automated refinement

checker as the final stage of the dissertation. Having an automated procedure is essential to ease

the verification of large-scale programs. Two new procedures have been developed which check

the following properties for timed transition systems: 1) safety and 2) liveness. Safety informally

means that if the implementation makes progress, the result of that progress satisfies the spec-

ification requirements. Liveness verification checks for deadlock errors in the object code. The

procedures have been implemented and the automated tool flow has been applied to several ob-

ject code programs to demonstrate the effectiveness of the approach. The results indicate that

the automated procedure can be applied to the verification of large-scale programs with ease, and
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reduced the verification time. The reason for these fruitful results is due to the application of

stuttering abstraction on the implementation model which reduces the number of transitions for

all the benchmarks. The effectiveness of the refinement checker along with the strongly connected

component (SCC) checking has been demonstrated from the verification results. The reduced size

of the implementation model enables detecting and correcting the errors very easily.

All the algorithms, given an implementation model and a specification model, together have

resulted in a comprehensive verification tool that can perform timed refinement. This verification

tools can be applied several times across the various stages in the development process of real-time

interrupt-driven object code for safety-critical embedded applications.

9.1. Future Works

Proposed future research directions include, but not limited to the following:

1. Explore static-timed stuttering abstraction for real-time object code verification before simu-

lation: It has been observed in this study that dynamic timed stuttering abstraction applied

during the symbolic simulation of the code reduces the memory issues. In order to reduce the

abstraction time, static TSA needs to be explored in detail. The idea with static TSA is to

apply TSA to the object code statically, before any simulation, i.e., to identify sequences of

instructions that will only lead to stuttering transitions in the object code timed transition

system and combine these instruction sequences to one complex operation. The hypothesis

with static TSA is that, if abstractions can be applied to the code before simulation, this will

greatly reduce the number of dynamic instructions to be simulated and therefore drastically

reduce the time for computing the abstract timed transition system.

2. Partial order reduction (POR) techniques: For real-time applications, the implementation

model is represented as the object code. The object code size is initially small since the loops

are not unwinded. During symbolic simulation, the loops in the object code are unwinded

which increase the state space of the system. For applications that have external interrupts,

the tree that is used to represent the flow of the object code expands exponentially in both

directions thus increasing the state space and memory space. Applying stuttering abstraction

is not easy in such cases since the basic idea for abstraction is that the object should have only

one incoming and one outgoing transition. Therefore, there is a need for better abstraction
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techniques that can be applied on the path of the tree. This situation normally occurs for

non-deterministic applications. One potential solution that can be explored as abstraction

technique is partial order reduction technique, which is a technique used to reduce the size

of state space in model checking. POR needs to be explored for real-time interrupt-driven

object code programs.

3. Developing formal specification models from natural language requirements: One of the cru-

cial challenges in applying refinement-based verification to commercial devices is the avail-

ability of formal specifications. For commercial devices, typically, the specification of a device

is given as natural language requirements. There are many approaches toward transforming

natural language requirement to formal specifications, however, none of the approaches are

targeted towards refinement-based verification. Hence, there is a need for formal specification

models.
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[23] Benôıt Delahaye, Kim G. Larsen, and Axel Legay. Stuttering for abstract probabilistic au-

tomata. The Journal of Logic and Algebraic Programming, 83(1):1–19, 2014.

[24] David Delmas, Eric Goubault, Sylvie Putot, Jean Souyris, Karim Tekkal, and Franck Védrine.
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APPENDIX. B: SOURCE CODE EXAMPLE

This is an example of the source code in C language for full stepping stepper motor in

clockwise direction with Repetitive Interrupt Timer (RIT). The interrupts are enabled using the

timer.

1 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

2 Stepper motor − Ful l s t epp ing with RIT in t e r r up t in c l o ckw i s e d i r e c t i o n

3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

4 #inc lude ” lpc17xx . h”}

5

6 #de f i n e RITENCLR (1UL<<1)

7 #de f i n e RITEN (1UL<<3)

8 #de f i n e RITENBR (1UL<<2)

9 #de f i n e ENABLE PCRIT (1UL<<16)

10

11 unsigned i n t i = 0 ;

12 unsigned i n t s tep [ ] = {28 ,29 ,30 ,31} ;

13

14 void RIT IRQHandler ( void ) {

15 LPC GPIO1−>FIOPIN = (1<<s tep [ i ] ) ;

16

17 // c l e a r the i n t e r r up t f l a g

18 LPC RIT−>RICTRL |= 1 ;

19

20 // step i in the order 0 −> 1 −> 2 −> 3 −> 0 −>...

21 i f ( i==3) i =0;

22 e l s e i++;

23 }

24

25 i n t main ( ) {

26 SystemInit ( ) ;

27 /∗ ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

28 Setup the Rep i t i t i v e In t e r rup t Timer f o r the s t epper motor

29 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ ∗/

99



30 LPC GPIO1−>FIODIR |= (0 xF0000000 ) ;

31

32 // c l e a r the b i t s 31 to 28

33 LPC GPIO1−>FIOPIN &= ˜(0 xF0000000 ) ;

34

35 /∗ enable RIT in PCON r e g i s t e r ∗/

36 LPC SC−>PCONP |= ENABLE PCRIT;

37

38 // c l e a r the CTRL r e g i s t e r //

39 LPC RIT−>RICTRL = 0 ;

40

41 // s e t the compare value //

42 LPC RIT−>RICOMPVAL = 1500000;

43

44 // c l e a r the counter r e g i s t e r //

45 LPC RIT−>RICOUNTER = 0 ;

46

47 // s e t the CTRL r e g i s t e r //

48 LPC RIT−>RICTRL = RITENCLR | RITENBR | RITEN;

49

50 // enable the RIT i n t e r r up t s

51 NVIC EnableIRQ(RIT IRQn) ;

52 // loop f o r e v e r

53 whi le (1 ) {

54 }

55 re turn 0 ;

56 }
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APPENDIX. C: OBJECT CODE EXAMPLE

This is an example of the object code for full stepping stepper motor in clockwise direction

with Repetitive Interrupt Timer (RIT). The interrupts are enabled using the timer. Also with this

code additional information regarding the registers, special registers, memory of the microprocessor

needs to be given as input. This code has not been unwinded.

1 0x00000220 480E

2 0x00000222 490F

3 0x00000224 6809

4 0x00000226 F8101021

5 0x0000022A 2001

6 0x0000022C 4088

7 0x0000022E 490D

8 0x00000230 6348

9 0x00000232 480D

10 0x00000234 7A00

11 0x00000236 F0400001

12 0x0000023A 490B

13 0x0000023C 7208

14 0x0000023E 4808

15 0x00000240 6800

16 0x00000242 2803

17 0x00000244 D103

18 0x00000246 2000

19 0x00000248 4905

20 0x0000024A 6008

21 0x0000024C E004
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22 0x0000024E 4804

23 0x00000250 6800

24 0x00000252 1C40

25 0x00000254 4902

26 0x00000256 6008

27 0x00000258 4770

28 0x00000270 4813

29 0x00000272 6A00

30 0x00000274 F0404070

31 0x00000278 4911

32 0x0000027A 6208

33 0x0000027C 4608

34 0x0000027E 6B40

35 0x00000280 F0204070

36 0x00000284 6348

37 0x00000286 480F

38 0x00000288 6800

39 0x0000028A F4403080

40 0x0000028E 490D

41 0x00000290 39C4

42 0x00000292 F8C100C4

43 0x00000296 2000

44 0x00000298 490B

45 0x0000029A 7208

46 0x0000029C 480B

47 0x0000029E 6008

48 0x000002A0 2000

49 0x000002A2 60C8

50 0x000002A4 200E
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51 0x000002A6 7208

52 0x000002A8 201D

53 0x000002AA 2101

54 0x000002AC 4081

55 0x000002AE 0942

56 0x000002B0 0092

57 0x000002B2 F10222E0

58 0x000002B6 F8C21100

59 0x000002BA BF00

60 0x000002BC BF00

61 0x000002BE E7FE

An input of this kind would not make any sense to the automated tool. Additional infor-

mation of the kind where should the simulation start has to be given.
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