9,372 research outputs found

    Flexible graph matching and graph edit distance using answer set programming

    Get PDF
    The graph isomorphism, subgraph isomorphism, and graph edit distance problems are combinatorial problems with many applications. Heuristic exact and approximate algorithms for each of these problems have been developed for different kinds of graphs: directed, undirected, labeled, etc. However, additional work is often needed to adapt such algorithms to different classes of graphs, for example to accommodate both labels and property annotations on nodes and edges. In this paper, we propose an approach based on answer set programming. We show how each of these problems can be defined for a general class of property graphs with directed edges, and labels and key-value properties annotating both nodes and edges. We evaluate this approach on a variety of synthetic and realistic graphs, demonstrating that it is feasible as a rapid prototyping approach.Comment: To appear, PADL 202

    Term-Specific Eigenvector-Centrality in Multi-Relation Networks

    Get PDF
    Fuzzy matching and ranking are two information retrieval techniques widely used in web search. Their application to structured data, however, remains an open problem. This article investigates how eigenvector-centrality can be used for approximate matching in multi-relation graphs, that is, graphs where connections of many different types may exist. Based on an extension of the PageRank matrix, eigenvectors representing the distribution of a term after propagating term weights between related data items are computed. The result is an index which takes the document structure into account and can be used with standard document retrieval techniques. As the scheme takes the shape of an index transformation, all necessary calculations are performed during index tim

    Using Natural Language as Knowledge Representation in an Intelligent Tutoring System

    Get PDF
    Knowledge used in an intelligent tutoring system to teach students is usually acquired from authors who are experts in the domain. A problem is that they cannot directly add and update knowledge if they don’t learn formal language used in the system. Using natural language to represent knowledge can allow authors to update knowledge easily. This thesis presents a new approach to use unconstrained natural language as knowledge representation for a physics tutoring system so that non-programmers can add knowledge without learning a new knowledge representation. This approach allows domain experts to add not only problem statements, but also background knowledge such as commonsense and domain knowledge including principles in natural language. Rather than translating into a formal language, natural language representation is directly used in inference so that domain experts can understand the internal process, detect knowledge bugs, and revise the knowledgebase easily. In authoring task studies with the new system based on this approach, it was shown that the size of added knowledge was small enough for a domain expert to add, and converged to near zero as more problems were added in one mental model test. After entering the no-new-knowledge state in the test, 5 out of 13 problems (38 percent) were automatically solved by the system without adding new knowledge

    FLEET: Butterfly Estimation from a Bipartite Graph Stream

    Full text link
    We consider space-efficient single-pass estimation of the number of butterflies, a fundamental bipartite graph motif, from a massive bipartite graph stream where each edge represents a connection between entities in two different partitions. We present a space lower bound for any streaming algorithm that can estimate the number of butterflies accurately, as well as FLEET, a suite of algorithms for accurately estimating the number of butterflies in the graph stream. Estimates returned by the algorithms come with provable guarantees on the approximation error, and experiments show good tradeoffs between the space used and the accuracy of approximation. We also present space-efficient algorithms for estimating the number of butterflies within a sliding window of the most recent elements in the stream. While there is a significant body of work on counting subgraphs such as triangles in a unipartite graph stream, our work seems to be one of the few to tackle the case of bipartite graph streams.Comment: This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Seyed-Vahid Sanei-Mehri, Yu Zhang, Ahmet Erdem Sariyuce and Srikanta Tirthapura. "FLEET: Butterfly Estimation from a Bipartite Graph Stream". The 28th ACM International Conference on Information and Knowledge Managemen

    Re-Use Dynamic Programming for Sequence Alignment: An Algorithmic Toolkit

    Get PDF
    International audienceThe problem of comparing two sequences S and T to determine their similarity is one of the fundamental problems in pattern matching. In this manuscript we will be primarily concerned with sequences as our objects and with various string comparison metrics. Our goal is to survey a methodology for utilizing repetitions in sequences in order to speed up the comparison process. Within this framework we consider various methods of parsing the sequences in order to frame their repetitions, and present a toolkit of various solutions whose time complexity depends both on the chosen parsing method as well as on the string-comparison metric used for the alignment

    Graph-Based Offline Signature Verification

    Get PDF
    Graphs provide a powerful representation formalism that offers great promise to benefit tasks like handwritten signature verification. While most state-of-the-art approaches to signature verification rely on fixed-size representations, graphs are flexible in size and allow modeling local features as well as the global structure of the handwriting. In this article, we present two recent graph-based approaches to offline signature verification: keypoint graphs with approximated graph edit distance and inkball models. We provide a comprehensive description of the methods, propose improvements both in terms of computational time and accuracy, and report experimental results for four benchmark datasets. The proposed methods achieve top results for several benchmarks, highlighting the potential of graph-based signature verification

    AsterixDB: A Scalable, Open Source BDMS

    Full text link
    AsterixDB is a new, full-function BDMS (Big Data Management System) with a feature set that distinguishes it from other platforms in today's open source Big Data ecosystem. Its features make it well-suited to applications like web data warehousing, social data storage and analysis, and other use cases related to Big Data. AsterixDB has a flexible NoSQL style data model; a query language that supports a wide range of queries; a scalable runtime; partitioned, LSM-based data storage and indexing (including B+-tree, R-tree, and text indexes); support for external as well as natively stored data; a rich set of built-in types; support for fuzzy, spatial, and temporal types and queries; a built-in notion of data feeds for ingestion of data; and transaction support akin to that of a NoSQL store. Development of AsterixDB began in 2009 and led to a mid-2013 initial open source release. This paper is the first complete description of the resulting open source AsterixDB system. Covered herein are the system's data model, its query language, and its software architecture. Also included are a summary of the current status of the project and a first glimpse into how AsterixDB performs when compared to alternative technologies, including a parallel relational DBMS, a popular NoSQL store, and a popular Hadoop-based SQL data analytics platform, for things that both technologies can do. Also included is a brief description of some initial trials that the system has undergone and the lessons learned (and plans laid) based on those early "customer" engagements

    Web Data Extraction, Applications and Techniques: A Survey

    Full text link
    Web Data Extraction is an important problem that has been studied by means of different scientific tools and in a broad range of applications. Many approaches to extracting data from the Web have been designed to solve specific problems and operate in ad-hoc domains. Other approaches, instead, heavily reuse techniques and algorithms developed in the field of Information Extraction. This survey aims at providing a structured and comprehensive overview of the literature in the field of Web Data Extraction. We provided a simple classification framework in which existing Web Data Extraction applications are grouped into two main classes, namely applications at the Enterprise level and at the Social Web level. At the Enterprise level, Web Data Extraction techniques emerge as a key tool to perform data analysis in Business and Competitive Intelligence systems as well as for business process re-engineering. At the Social Web level, Web Data Extraction techniques allow to gather a large amount of structured data continuously generated and disseminated by Web 2.0, Social Media and Online Social Network users and this offers unprecedented opportunities to analyze human behavior at a very large scale. We discuss also the potential of cross-fertilization, i.e., on the possibility of re-using Web Data Extraction techniques originally designed to work in a given domain, in other domains.Comment: Knowledge-based System

    Ohjelmointitehtävien klusterointi tarkistuksen ja tutkimisen tehostamiseksi

    Get PDF
    Programming courses often receive large quantities of program code submissions to exercises which, due to their large number, are graded and students provided feedback automatically. Teachers might never review these submissions therefore losing a valuable source of insight into student programming patterns. This thesis researches how these submissions could be reviewed efficiently using a software system, and a prototype, CodeClusters, was developed as an additional contribution of this thesis. CodeClusters' design goals are to allow the exploration of the submissions and specifically finding higher-level patterns that could be used to provide feedback to students. Its main features are full-text search and n-grams similarity detection model that can be used to cluster the submissions. Design science research is applied to evaluate CodeClusters' design and to guide the next iteration of the artifact and qualitative analysis, namely thematic synthesis, to evaluate the problem context as well as the ideas of using software for reviewing and providing clustered feedback. The used study method was interviews conducted with teachers who had experience teaching programming courses. Teachers were intrigued by the ability to review submitted student code and to provide more tailored feedback to students. The system, while still a prototype, is considered worthwhile to experiment on programming courses. A tool for analyzing and exploring submissions seems important to enable teachers to better understand how students have solved the exercises. Providing additional feedback can be beneficial to students, yet the feedback should be valuable and the students incentivized to read it

    Reasoning & Querying – State of the Art

    Get PDF
    Various query languages for Web and Semantic Web data, both for practical use and as an area of research in the scientific community, have emerged in recent years. At the same time, the broad adoption of the internet where keyword search is used in many applications, e.g. search engines, has familiarized casual users with using keyword queries to retrieve information on the internet. Unlike this easy-to-use querying, traditional query languages require knowledge of the language itself as well as of the data to be queried. Keyword-based query languages for XML and RDF bridge the gap between the two, aiming at enabling simple querying of semi-structured data, which is relevant e.g. in the context of the emerging Semantic Web. This article presents an overview of the field of keyword querying for XML and RDF
    • …
    corecore