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Abstract: Fuzzy matching and ranking are two information retrieval
techniques widely used in web search. Their application to structured
data, however, remains an open problem. This article investigates how
eigenvector-centrality can be used for approximate matching in multi-
relation graphs, that is, graphs where connections of many different
types may exist. Based on an extension of the PageRank matrix,
eigenvectors representing the distribution of a term after propagating
term weights between related data items are computed. The result is
an index which takes the document structure into account and can
be used with standard document retrieval techniques. As the scheme
takes the shape of an index transformation, all necessary calculations
are performed during index time.
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1 Introduction

Approximate (or fuzzy) matching is a technique widely used when data are to
be retrieved that resemble a given sample, called a query: the search engine sifts
through the data and retrieves all items approximately matching the query. The
assessed relevance of data items to the query is nuanced, allowing to differentiate
looser results from results that adhere strictly to the query. For example, returned
data items might not contain a word occurring in the query, but instead its plural
or a synonym or a slightly differently spelled word. Approximate matching is often
used in conjunction with a ranking scheme that orders the answers with respect
to a relevance measure. The result of such a search is then an ordered list of data
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items that are judged to be sufficiently relevant to the query, regardless of whether
or not they constitute a strict match.

This article investigates how eigenvector-centrality can be used for approximate
matching when the data searched takes the shape of a multi-relation network
where data items may be related to each other by one or more of several different
types of relations. The approximate matching considered here is furthermore term-
based, that is, terms expressed in the query are to be approximately matched with
terms in the data searched.

Approximate querying in multi-relation networks and structure-aware
document, querying are closely related. Indeed, a portion of a document might
serve as a relevant approximate answer because of its structural embedding
within the document. The same is true for documents inter-related by hyperlinks:
A document might constitute a convenient approximate answer because of its
hypertextual surrounding. As far as approximate querying is concerned, structure
does not necessarily only refer to the document structure (in sections, paragraphs,
etc.) and to the hyperlink structure of a collection of documents. Instead, structure
might refer as well to semantic relationships between (components of) documents
or to social relationships in a digital social network. Furthermore, the structure
that may be considered in computing approximate answers can be a mix of
document structure, semantic (or ontological) structure, and social structure. In
such cases, multi-relation networks are indispensable.

Combining document structure with other relations opens the path to term-
specificity: A term in a data item (such as a document in a hypertext application
or a person’s description in a social network) may be considered a vertex of the
network related to other vertices not only indirectly through the relations of its
embedding document, but also directly through its owns relations.

This article presents the concept of term-specific multi-relation eigenvector
centrality, a scheme that uses the structural properties of vertices and networks
to re-estimate the weights of terms occurring in data items such as documents
or personal pages, thereby realizing term-based and multi-relation-based fuzzy
matching and ranking for networked data.

The approach presented in this article is based on content graphs (see
Section 4), a simple, but flexible model for multi-relation networks that
arguably captures a wide range of knowledge management systems and (tree-
or graph-shaped) structured data applications. Content graphs consist of
vertices, representing data items, and edges, representing (structural or semantic)
relationships between vertices. Both vertices and edges in a content graph are
typed and the strength of the relation depends on the weight assigned to the
type of connection, that is, the types of the vertices and of the edge connecting
them. Edge weights can be seen to represent the degree of (structural or semantic)
relatedness indicated by a connection of a specific type. For example, in a
hypertext network, the connection between a web page and a tag that has been
assigned to it can be seen to be closer than that between two web pages where one
links to the other — tags are a kind of semantic annotation describing content, while
web pages may link to other web pages without their content being similar or even
related. Consequently, the approach presented in this article can accommodate rich
graphs that represent, for example, both hypertext linking as well as semantic and
social relationships.
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The approach presented in this article investigates how eigenvector-centrality
can be extended to yield a term-specific ranking which takes multi-relational
structure into account. The aim of the research reported in this article is to
accommodate within a single eigenvector-centrality measure rich graphs with
different types of vertices and edges representing for example hypertextual linking,
document structure, semantic relationships, and social connections.

In contrast to many other fuzzy matching approaches for structured data (see
Section 3), the approach presented in this article relies solely on modifying term
weights in a data index and requires no further computations at query time.
Furthermore, it can be implemented using existing information retrieval tools
such as Lucene. Finally, as the modified term weights computed by the proposed
approach represent how well a data item is connected to others within the network,
with the proposed approach a separate adjustment of the answer ranking as in
PageRank is not necessary.

Though the matrix used for computing the proposed novel eigenvector-
centrality measure is inspired by the Google Matrix used in PageRank, the
approach presented here deviates from, and generalizes, PageRank in two
significant aspects:

1. Our approach uses the network structure not only for ranking but also for
answer approximation: it finds even relevant answers that do not explicitly
contain the considered keyword. To this aim, we propagate terms between
vertices using structural relationships and an informed leap based on the
term weight distribution rather than a random leap. The informed leap
is similar to personalised PageRank’s random leap probability which is
based on users’ preferences, but with different goal and outcome; where
personalized PageRank only computes a ranking, our approach computes a
new vector-space representation of the data items that integrates propagated
term weights with relevance based on the relations of a data item.

2. Since the term weight distribution and thus the informed leap is in general
different for each term, the approach needs to consider term propagation
separately for each term. Though this increases index time compared to
PageRank, the term-dependent computation is only a small part of the
overall indexing time and can be computed independently for each term (and
is thus easily parallelized).

Contributions

The approach described in this article improves on existing approaches for
approximate keyword search over structured data (see Section 3) in several
respects:

(1) It is based on content graphs, a simple, but flexible novel model for multi-
relation networks that captures a wide range of applications. Section 2 discusses
a number of areas in which the application of our approach can improve search
results and help users locate information relevant to them. Content graphs are
introduced in Section 4. In Section 4.3, we how social networks can be captured as
content graphs.
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(2) Another contribution of this article is the matrix of Section 5 for
propagating term weights in a multi-relation network. This matrix allows the
propagation of term weights at index time and yields a modified vector space
representation that can be used by any information retrieval engine based on the
vector space model.

(3) In a first experimental evaluation, we show that an implementation of our
approach behaves as expected, returning not only strict matches, but also other
relevant results, while also improving the result ranking.

2 Motivating Scenarios

Data retrieval in multi-relation networks is relevant to a wide range of application
domains and different types of data, that is, networks. The authors of this article
are convinced that the eigenvector-centrality measure proposed in this article can
improve search results in a wide range of applications. Three application scenarios
described in the following sustain this conviction.

2.1 Social Networks

Over the past years, digital social networks have evolved from relatively simple
networks based on a small and limited number of relations to rich multi-relation
networks encompassing more and more relations. The various types of relations
serve to express different kinds of social relationships (for example different kinds
of personal relationships and group memberships) as well as interests in various
subjects. Each service added to a digital social network usually enriches it with
additional relations. Furthermore, the activity on the digital social network can be
tapped, yielding additional relations like co-movements, useful in tracking various
social phenomena such as influence. So far, however, the search facilities offered on
digital social networks mostly perform exact matching and do not fully exploit the
relation richness of the networks. Thus, much of the information available on the
digital social network remains unused.

With the social networks analyzed in social sciences and biology, the situation
is different. The multiple relations of a social network are usually all considered for
network analysis. Indeed, if not for being exploited the data would not have been
collected in the first place. However, the standard social network analysis methods
make it difficult, or at least rather technical, to consider more than one type of
relation at a time. Thus, a global analysis of the multi-relation network is difficult.

The eigenvector-centrality approach proposed in this paper makes it possible to
consider multi-relation networks as a whole. Furthermore, it provides approximate
querying and term-specific ranked answers. The authors of this article are therefore
convinced that it provides a very appropriate basis both for search services in the
current rich and evolving digital social networks and for global analysis methods
tuned to multi-relation social networks.

2.2 Semantic Web

The Semantic Web vision is that of web pages embedded in a multi-
relation semantic network with each type of relation expressing different and
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complementary semantic notions. The RDF language, which is aimed to be an
essential vector of the Semantic Web vision, is basically a language for expressing
all binary semantic relations application developers might wish.

So far, querying on the Semantic Web is limited to either logic-based deduction
(with logic languages such as the various flavors of OWL), or database-like
querying of RDF specifications. Approximate answers taking into account the
semantic embedding of web pages or RDF concepts do not yet exist.

The eigenvector-centrality approach proposed in this paper provides a
convenient basis for semantic-aware approximate querying on the Semantic Web
because it copes with multi-relation networks, and because it delivers ranked and
term-specific answers.

2.3 Business Process Management

Business Process Management (BPM) is about composing relatively generic
software components into complex systems relying on rather simple descriptions
of the software components. In other words, BPM can be seen as gathering
components from term-based specifications. BPM, however, does not assume a
global approach to specifying software components one must perfectly adhere to.
BPM is for the open Web where even if standards and conventions are agreed
upon, no authority can, or wishes, to enforce them. Thus, BPM is much about
delivering approximate answers to queries.

In BPM, directed graphs of activities, events and decision points are used
to describe the work flow in a process such as a loan application. Previous
approaches to querying BPM graphs such as [14, 4] rely on query languages with
expressive graph pattern languages, e.g., to express queries such as “In every
process execution (path) from an implemented component activity to an integrate
component activity there must be a perform test component activity.”. However,
formulating such queries is difficult and prone to omitting all constraints relevant
to a given, e.g., “perform test component”. Approximate keyword queries can serve
as a means to explore large BPM graphs with little knowledge about the structure,
e.g., a search for “test component” will return not only the actual test components
but also components that most of these rely on. This allows engineers unfamiliar
with a BPM to gain a first insight into the model. With ever growing process
models [14] and thousands of such models managed by a single company [4],
efficient exploration of BPM models is essential. We believe that the approach
proposed in this article provides a very convenient basis for exploratory search
targeted at BPM. Arguably, ranked approximate answers taking the global multi-
relation nature of software specifications into account are an essential ingredient
for such search.

2.4 Combined Use Cases

Use cases like the three outlined above can be combined. For example, the search
in a digital social network and the search for software components can be improved
with ontologies. With the approach proposed in this article, adding one or several
ontologies to a multi-relation network is no more than an extension of this
network with new vertices and new edges between existing and new vertices. The
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eigenvector-centrality computation proposed in this article requires no adaptation
and is directly applicable to the extended network.

3 Related Work: Approximate Matching on Structured Data

Approximate matching on data structure has been researched mainly in the
context of XML [26]. The majority of work belongs to one of two classes: Tree
edit distance approaches [25, 10, 6, 22] and related approaches [1, 2, 24] are based
on a quantification of the similarity between XML trees through the number of
steps and types of operations needed to eliminate the differences between them.
These approaches require expensive calculations at query time. Another class of
approaches [19, 8, 23| aims, as ours, to adapt the vector space model, a well-
established IR technique, to the application on XML data.

Further, Anh et al. [3] use activation propagation for approximate matching
over XML structure. This approach resembles ours in that activation propagation
and the vector space are used to realize approximate matching over structure.
However, here, propagation happens upon query evaluation and is unidirectional.

The approach presented in this paper differs from the majority of approximate
matching approaches including those mentioned above in the following in several
important aspects:

e It does not realize fuzzy matching by defining a structural distance function
and ranking results according to how close they are to a strict match.
Instead, it uses the structure of the data to determine which terms are
relevant to a document, regardless of whether or not they explicitly occur
in it. As a consequence, not only are new matches introduced, but strict
matches may also be re-ranked depending on their structural connections.

o It is designed for graph-shaped data rather than purely hierarchical data like
the XML-based approaches discussed in the following.

e It can be used with any information retrieval engine based on the vector
space model. The only modification to the evaluation process is the
computation of the actual term weights. Otherwise existing technology (such
as Lucene or similar search engines) can be utilized. In particular, the
propagation matrix is query independent and can be computed at indez time.
No additional computations such as query transformations are needed during
query evaluation.

PageRank: Where the above approaches for approximate (keyword) search
and querying on XML data are similar in aim, PageRank is closely related to
our approach in technique, but differs considerably in aim and scope. The original
PageRank article [7] suggests to exploit anchor-tags for web search. The anchor
text of a link to a web page is treated as if it is part of the text of that web page.
This suggestion can be seen as a special case of the approach suggested in this
paper where the only kind of propagation is that from anchor tags to linked pages
and where links weights are ignored. The application of this approach is limited
to anchor tags and does not apply to general graphs or generalize to different link
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types. However, there are a number of extensions [5] of the original PageRank that
share more of the characteristics of the eigenvector centrality approach presented
in this article.

PageRank is based on the intuition that a link from one webpage to another
can be seen as an endorsement of the linked page. A page then is important if
many important pages link to it, even more so if the number of pages linked to by
these important pages is low. This idea is implemented by transforming the link
graph into a transition matrix which is augmented by a random leap component
that ensures that the probability to transition from any state, that is, page, to
any other state is nonzero. The contribution of the random leap relative to the
transition values is determined by the factor a. As a consequence of introducing
the random leap and setting « to a non-zero value, the normalized matrix is
stochastic and strictly positive and the principal eigenvector (called PageRank
vector) for eigenvalue 1 exists and is unique. In standard PageRank, the random
leap operates using a uniform distribution, that is, the likelihood to transition to
a state is identical for all states. For a set of N pages, the corresponding leap or
teleportation vector can be seen to consist of N entries with value % Brin and
Page [7] point out the possibility to realize a personalized version of PageRank by
using a non-uniform leap vector.

Several schemes for improving the scalability of personalized PageRank have
been presented in recent years [17, 18, 15, 20] which are discussed in the following.

Topic-sensitive PageRank [15] builds on the idea of a personalized teleportation
vector by introducing a number of topic-specific leap vectors, each assigning a
uniform value to all pages relevant to the respective topic and 0 otherwise. The
topic-dependent importance scores for each page are calculated offline. At query
time, a weighted classification of the query into topics is computed. A query-
specific PageRank can then be calculated as a mixture of topic-specific scores. The
motivation behind topic-sensitive PageRank is to avoid generally important pages
getting highly ranked despite not containing information relevant to the query.

Query-dependent PageRank [20] is another extension of PageRank which is
based on the idea that webpages matching a query that are connected to other
matching webpages should be ranked higher. The PageRank algorithm is adapted
in such a way that the probability of a transition from one webpage to another is
determined by how relevant the target webpage is to the query. Towards this end,
both the distribution underlying the leap vector as well as the mode of calculating
transition probabilities are adjusted. In both cases, the probability to transition
to a webpage is given as the proportion between that webpage’s relevance score
and the sum of all matching pages’ relevance scores. When a webpage has no non-
zero outlinks, the leap vector is used to jump to another webpage. The transition
matrix is not strictly positive and vertices which do not contain the relevant term
are ignored. The PageRank vector is calculated for each term at index time, the
scores for each term in the query are combined upon query evaluation.

The approach presented in this article differs from the methods described in
various ways. In contrast to PageRank (but similar to topic-sensitive and query-
dependent PageRank), several matrices and eigenvectors are calculated, namely
one per term, each using a term-dependent leap vector. In contrast to topic-
sensitive PageRank as well as PageRank, the leap vectors do not use a uniform
distribution.
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Most importantly, differences to the three described approaches consist in the
following ways:

e None of the approaches implement approximate matching over structured
data or generally add additional relevant results; they are purely approaches
to ranking sets of webpages.

e The assignment of edge weights is more flexible in that edge weights can be
set explicitly and individually or different weights can be chosen depending
on the type of edge. In contrast, in PageRank and topic-sensitive PageRank
edge weights are uniform and in query-dependent PageRank, edge weights
are derived from keyword matches.

e While our approach can be used on webpages with linking as the only
relation between pages, its versatile and extensible data model allows for the
application to many other types of graph-shaped data such as a fine-grained
modeling of structured web data.

e The probability of a leap is variable depending on the number and weight of
outgoing edges of a vertex, thus encoding the intuition that a user jumps to
a new page when he cannot find what he is looking for by following links.

ObjectRank [16] is a system for authority-based ranking for keyword search in
databases that, like our eigenvector centrality approach, uses PageRank to exploit
the connections between data items for propagating authority with respect to a
keyword across a data graph. Given a database modeled as a labeled graph and
a schema graph that assigns bidirectional authority transfer rates to the different
types of edges, an Authority Transfer Data Graph is derived. The weight of a
vertex with respect to a given keyword is then established by a modified version of
PageRank where a random surfer walks across the graph either traversing edges or
jumping to any of the vertices that literally contain the keyword. The probability
for following any outgoing edge or jumping to one of the keyword vertices is steered
by the damping factor d: The probability to follow an edge is given as the product
of d and the authority transfer rate of the edge, while the probability to randomly
jump to one of the vertices containing the keyword is (1 — d).

While ObjectRank clearly shares characteristics, it differs in various significant
ways and has various drawbacks:

e ObjectRank uses a binary measure to represent literal keyword containment.
Differences in the frequency of the keyword between documents are ignored
and do not factor into the ranking. However, term frequencies are an
important factor for ranking, particularly in text-heavy areas of application
where it is of high relevance whether a term only occurs once or is frequently
used.

e There are no jumps to vertices that do not contain the keyword and
those vertices can only be reached through an edge traversal. Therefore,
ObjectRank cannot be applied to graphs that are not strongly connected.
While this may be of less concern in the area of databases, this constraint
severely limits the possibility of applying ObjectRank to other types of
graph-shaped data such as web or wiki pages which are frequently not
strongly connected.
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e Unlike our approach, ObjectRank is not a simple modification of term
frequency distributions. As such, it cannot be directly used with standard
information retrieval engines and easily used in conjunction with the vector
space model.

e Queries are limited to simple keywords combined using disjunction and
conjunction and it remains unclear whether ObjectRank could be combined
with more powerful query languages.

e The probability to make a leap is steered only by the damping factor d and
thus remains constant regardless of whether there is a promising edge that
could be followed or not. Moreover, due to the way that authority transfer
weights are assigned and normalized, the probability of all possible events
may not add up to 1, which is unintuitive in terms of the random surfer
model and the idea of spreading authority.

There is a significant body of research [11, 9, 21] on ranking entities in, e.g.,
entity-relationship graphs. These approaches share the aim to rank connected
items by considering not only local, but also global properties, viz. what other
items they are related to. However, they differ from the approach presented in
this article in two main aspects: (1) They require a new query engine with
sophisticated, multi-part ranking functions, whereas our approach computes a
modified vector space model that can be used with any existing vector-space IR
system. (2) They are tailored to ranking of entities such as dates, prices etc. where
our eigenvector centrality approach is tailored to domains such as semantic wikis
or concept search in ontologies where the items of interest are self-contained and
clearly identified.

The approach presented in this article can be applied to any type of structured
data, including RDF ontologies. Ranking of RDF query results is discussed, e.g.,
in [12] and [13]. However, these works differ by focusing on general RDF data and
by using statistical language models with limited propagation.

4 A Formal Model for Structured Data

In this section, we formally define a generic graph-based model of structured
content that is capable of capturing the rich representation features of a wide
range of multi-relation networks such as social networks, the Semantic Web etc.
Furthermore, we extend this model with a weight function so that different
strenghts of connections in the graph can be modeled.

4.1 Content Graph

A content graph is defined based on a type structure 7 = (V, &) where V is the
set of types for data items and £ the set of edge types.

Content graph: For a given type structure T, a content graph is a tuple G =
(V,E, type, T, wr) where V is the set of vertices (or data items) in G and E CV x
V' x & its set of typed edges. type : V. — V assigns a type to each vertex. The textual
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content of data items is represented by a set T of terms and a function wy : V X
T — R that assigns a weight to each pair of a vertex and a term. We assume that the
term weights for each vertex v form a stochastic vector (i.e., Y . wi(v,7) = 1).

By using different types of data items and edges, this model becomes very
flexible and can be used for a variety of purposes without adaption. In a social
network as described in Section 2.1, for example, V consists of person and group
and & of friendship and member-of-group. Then, a link between a person and a
group through a member-of-group connection can be weighted differently than a
friendship connection and thus the propagation effect adapted adequately in its
strength.

4.2 Weighted Propagation Graph

By extending the content graph with a weight function for edges, we ascertain that
differences in the importance of connections are accounted for during the ranking
process.

Weighted propagation graph: A weighted propagation graph is a content
graph extended with a function w,. : E — R? for assigning weights to edges.

In this article, we set edge weights according to the type of the edge and the
types of the two vertices connected by the edge. We call a weighted propagation
graph type-weighted, if for any two edges e; = (v1,wn,t),e2 = (vy,wa,t) € E it
holds that, if type(vi) = type(vs) and type(wy) = type(ws), then we(e1) = we(es).
In other words, the weights of edges with the same type and with start and
end vertices of the same type respectively must be the same in a type-weighted
propagation graph. In the following, we only consider such graphs.

4.8 Specific Adjustments for Social Networks

As the approach is not tailored to one specific type of network, to achieve the best
results, adjustments have to be made to account for peculiarities of a specific type
of multi-relation network. In the following, the formalization of social networks a
content graphs is exemplarily discussed.

We define a social network as a graph consisting of vertices, representing e.g.
persons, groups, company profiles, or single web pages, and edges between them
that express, e.g., friendship, membership, employment, or authorship. The result
of the algorithm presented in this paper depends on how the data items and
connections are formalized in terms of the data model.

As an example, consider a social networking site like Facebook!. Here, users can
describe themselves on their personal pages, join interest groups, publish content
(e.g., text or photos), annotate it in form of comments, and keep in touch with
friends. These multi-relational data make it difficult to locate relevant information
through simple full-text search. For example, joined groups or comments on photos
provide valuable information about a user, but data retrieval is only performed on
single data items. Consequently, when searching for a specific topic of interest, e.g.
linguistics, only the pages of users and groups are returned that directly contain
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the queried term. In contrast, our propagation algorithm ensures that a user whose
personal page does not contain the term linguistics but who is engaged in several
groups about linguistics is returned as a result to the query.

Several approaches exist to formalize a social network in such a way that the
algorithm presented in this article is applicable and can improve search results as
discussed above. One could, for example, take only users and groups into account
and attach information to these two data items, allowing group memberships and
friendships as relations. The number of data items is of a manageable size and
if the interest is focused on users or groups, the relevant pieces of information
can be retrieved. Another possibility consists in adding comments and other
published content to the graph structure and interlink all vertices accordingly.
The exhaustive graph can produce more fine-grained result rankings as multiple
relations are used and can be balanced more exactly. Furthermore, different queries
can be evaluated that, for example, return photos that could be seen as best
matching for a specific topic (defined by one or several terms) as they are posted
in several groups of the topic and mentioned by people interested in this topic.
Thus, the decision on what data items to include not only influences the result
ranking but furthermore extends or restricts it.

Depending on the types of vertices in the graph, the extension with additional
vertices and edges helps to improve the propagation of terms through the graph
and can facilitate searching for certain data items. For example, when a query
language is used that allows to select specific types of data items, empty comment
data items should be added to users and groups which do not yet have a
comment attached in case a search restricted only to comments is performed.
Then, appropriate links have to be added to the graph.

One further important aspect of our approach consists in the propagation of
terms through the graph. Therefore, terms appropriate for propagation have to
be chosen from many possibilities. The terms in a web page yield a good starting
point, and also title or tags are valid choices. The selection of these terms is
dependent on the allowed search queries and should be adapted to these.

5 Computing the Matrix for the Propagation of Term-Weights

Based on the model above, we now formally define the propagation of term-
weights over multi-relation networks represented in a content graph by means of
an eigenvector computation.

As a common property of the scenarios described in Section 2, an association
between data items always carries information that can be seen as contexual
similarity. We thus suggest to exploit these relationships for approximate matching
over multi-relation networks by using them to propagate the data items’ contents.
A data item thereby is extended by the terms contained in other data items it is
related to. Then, standard information retrieval engines based on the vector space
model can be applied to find and rank results oblivious to the underlying structure
of term-weight propagation.

In analogy to the random surfer of PageRank, the term-weight propagation
can be explained in terms of a semi-random reader who is navigating through the
content graph looking for documents relevant to his information need expressed by
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a specific term 7 (or a bag of such terms). He has been given some—incomplete—
information about which vertices in the graph are relevant to 7. He starts from one
of the vertices and reads on, following connections to find other documents that
are also relevant for his information need (even if they do not literally contain 7).
When he becomes bored or loses confidence in finding more matches by traversing
the structure of the graph, he jumps to another vertex that seems promising and
continues the process.

To encode this intuition in the matrix, we first consider which connections are
likely to lead to further matches by weighting the edges occurring in a content
graph. Let H be the transposed, normalized adjacency matrix of the resulting
graph. Second, we discuss how to encode, in the leap matrix L., the jump to
a promising vertex for the given term 7 (rather than to a random vertex as in
PageRank)

The overall matrix P is computed as (where « is the leap factor)

P,=(1—-a)H+L,.

Each entry m; ; € P, that is, the probability of transitioning from vertex j to
vertex i, is thus determined primarily by two factors, the normalized edge weights
of any edge from j to ¢ and the term weight of 7 in j.

5.1 Normalizing the Weighted Propagation Graph’s Adjacency Matriz

Let A, be the weighted adjacency matrix of a weighted propagation graph
G defined in Section 4.2. Then we normalize and transpose A, to obtain the
transition matrix H for G as follows (where outdegree(v) denotes the number of
outgoing edges of v):

_ L T
N <0utdegree(vi) (Aw)ivj). :

2,9

By normalizing with the number of outgoing links rather than the total weight of
the outgoing edges, edge weights are preserved to some extent. At the same time,
vertices with many outgoing edges are still penalized. Normalization with the out-
degree proved the most effective in our experiments compared to, e.g., normalizing
with the maximum sum of outgoing term weights (over all vertices) or with the
sum of outgoing term weights for each vertex. Different choices for normalization
preserve different properties of the original matrix and, for other applications, a
different choice of normalization may be advisable.

5.2 Informed Leap

Given a leap factor « € (0,1], a leap from vertex j occurs with a probability
P(leaplj) = a+ (1 - a)(1 - Y H;;)

A leap may be random or informed. In a random leap, the probability of
jumping to some other vertex is uniformly distributed and calculated as ("4 (i, j) =

W for each pair of vertices (i, 7).
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An informed leap by contrast takes the term weights, that is, the prior
distribution of terms in the content graph, into account. It is therefore term-
dependent and given as " (4, 5) = % for a term 7 € 7. Thus, when the
probability of following any of the outgoing edges of a vertex decreases, in turn a
leap becomes more likely.

In preliminary experiments, a combination of random and informed leap, with
heavy bias towards an informed leap, proved to give the most desirable propagation
behavior. The overall leap probability is therefore distributed between that of a
random leap and that of an informed leap occurring according to the factor p €
(0, 1], which indicates which fraction of leaps are random leaps.

Therefore, we obtain the leap matrix L, for term 7 as

Ly = (Pleapli) - (1 ) 27003) + - 1(0.0) )
(2]
5.8 Properties of the Propagation Matriz

Definition 5.1: Let o € (0,1] be a leap factor, H be the normalized transition
matriz of a given content graph (as defined in Section 4.2) and L, the leap matriz
(as defined in Section 5.2) for H and term 7 with random leap factor p € (0,1].
Then the matriz P, is the matriz

P.=1-aH+L,.
Theorem 5.2: The matriz P, for any content graph and term 7 is column-
stochastic and strictly positive (all entries > 0).
Proof: Tt is easy to see that P, is strictly positive as both « and p are > 0 and
thus there is a non-zero random leap probability from each vertex to each other

vertex.
P is column stochastic, as for each column j

Z(PT)i,j = Z((l —a)H; ; + (L))
SCR) B R (CRRCERSIED )}
7 l

(1) S B d) 40 S0 0) )

=1 =1
=(1-a)) H;+(1-a)1-Y H;)+a
7 l

=l—-at+a=1
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Figure 1: Weighted propagation graph of a social network. Edge weights are given
as pairs of numbers, one for traversing the edge in its direction, one for traversing
it against its direction.

Corollary 5.1: The matriz P, has eigenvalue 1 with unique eigenvector p, for
each term .

The resulting eigenvector p, gives the new term-weights for 7 in the vertices of
the content graph after term-weight propagation. It can be computed, e.g., using
the power method (which is guaranteed to converge due to Theorem 5.2).

The vector space representation of the content graph after term-weight
propagation is the document-term matrix using the propagation vectors p. for
each term 7 as columns.

6 Social Networks — a Proof of Concept

In order to confirm that the application of the scheme presented here extends and
ranks results in a useful manner, a prototype implementation was devised and
small-scale experiments were conducted in order to verify the algorithm’s viability.

In Figure 1, the weighted propagation graph of a social network consisting
of four users and two groups is displayed. Each data item (i.e., user, group, or
tag) contains a list of terms of a certain term weight which relate to information
displayed on the user’s or group’s page; in case of tags, the term weight 1 for the
only term is omitted. Furthermore, tags, indicating the users’ interests and the
groups’ topics, are attached to users and groups. The remaining edges represent a
“following” resp. “liking” relationship with the former receiving more weight than
the latter as the authors derive ‘liking” to be more important in terms of its
propagation influence. The tags U2.1 and G2.1 have been added to the weighted
propagation graph as part of the specific adjustments process (see Section 4.3) in
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RDF XML IR programming java lucene search

U1l 0.46 0.03 0.11 0.11 0.26 0.08 0.07
Ul1 0.11 0.02 0.05 0.23 0.07  0.04 0.07
U1l.2 0.11 0.02 0.24 0.04 0.07  0.04 0.07

U2 0.03 0.02 0.03 0.02 0.03 0.03 0.02
U21 0.03 0.02 0.04 0.03 0.02  0.02 0.03

U3 0.02 0.08 0.09 0.04 0.04 0.22 0.09
U3.1 0.02 0.04 0.03 0.04 0.02  0.06 0.22
U3.2 0.02 0.04 0.23 0.04 0.02  0.06 0.03

U4 0.01 0.53 0.02 0.08 0.17 0.02 0.02
U4.1 0.01 0.12 0.02 0.22 0.04 0.02 0.02

G1 0.10 0.02 0.05 0.05 0.06 0.21 0.09
G1l.1 0.06 0.02 0.06 0.06 0.04 0.06 0.24

G2 0.01 0.02 0.01 0.03 0.11 0.11 0.01
G2.1 0.01 0.01 0.01 0.02 0.03  0.03 0.01

Table 1 Document-term matrix after term-weight computation with all values > 0.08

highlighted.

order to ease direct propagation of terms between tags. In the same step, (dashed)
edges are added between tags which are indirectly connected through the data
items they are attached to.

The evaluation of the approach for this examplary multi-relation network and
the calculation of the modified term weights for all terms appearing in the network
results in the document-term matrix shown in Table 1. To verify the veracity of
our approach, let us consider a number of desirable properties an approach to fuzzy
matching on a multi-relation network should exhibit:

1.

Users or groups containing a term directly (e.g., “java”) with a significant
term weight should still be ranked highly after propagation. This should
hold to guarantee that direct search results (that would have been returned
without fuzzy matching) are retained.

Indeed, User 1 and 4 and Group 2, all containing “java”, are highest ranked
for that term, though the tags of User 1 come fairly close. This result
is desired, as User 1 contains “avae” with high term weight and tag-user
associations are among the closest relations.

. A search for a term 7 should also yield data items not containing 7 but

data items directly connected to ones containing 7. Their rank should depend
on the weight of 7 in the connected data item and the type (and thus
propagation strength) of the connection.

Looking at the results for “lucene”, “Joe Smith” receives weight from the liked
“Lucene User Group” and thus becomes a valid search result as well.

. Searching for “IR programming” should also rank highly data items that do

not include these terms, but that are tagged with “IR” and “programming”.
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User 1 is such a case and is indeed the next highest ranked data item for such
a query after the three data items directly containing “IR” or “programming”
(using either boolean or cosine similarity).

Though this evaluation can, by design, only illustrate the effectiveness of the
proposed term-weight propagation approach for fuzzy matching, we believe that it
is a strong indication that it will prove efficient and effective also for larger and
more diverse document collections.

Perspectives and Conclusion

In this paper, we have proposed a unique approach to fuzzy matching that
combines the principles of structural relevance from approaches such as PageRank
with the standard vector space model. Its particular strength is that it runs
entirely at index time and results in a modified vector space representation. We
show that it is applicable in a wide-range of scenarios, including social network
analysis. It allows us to find, e.g., a user group based on interests of its members.
There are two major open questions in evaluating the proposed approach:

1. A large-scale evaluation in multiple scenarios of the proposed approach,
including a user study. Preliminary evaluations point toward the veracity of
the approach but further experimental validation is needed. In particular,
the effect of the shape of the data (e.g., social network) on the quality of the
approach is to be investigated.

In particular, we are currently estimating the values for a and p as well
as for the edge weights manually rather than by empirical observation. A
guide to choosing these values might be possible to derive from studying the
behaviour of our approach on data with different characteristics.

2. A main concern about the approach is its scaling to very large datasets.
First, we need to compute one propagation matrix for each term.
Fortunately, in homogeneous data sets after an initial warm-up phase, the
number of distinct terms increases only slowly with increasing data size. We
plan to investigate the effect of this observation on our approach as well as
a number of simple heuristics for avoiding the computation for low entropy
terms and to cut off very low term weights.

The latter is also necessary to maintain the high performance of typical
vector space indices such as inverted files that rely on most terms occurring
only in few documents. We plan to investigate of our approach with various
cut-off points on the query performance of typical keyword queries.

In addition, there are a number of ways to improve the approach beyond what
is outlined in this paper:

(1) Edge values, in particular, could also be amenable to various machine
learning approaches, using, for example, average semantic relatedness as a
criterion, or to semi-automatic approaches through user-feedback.

(2) Any fuzzy matching approach suffers from non-obvious ezplanations for
returned answers: In the case of a boolean query semantics, the answer is obvious,
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but when term propagation is used, a document might be a highly-ranked query
result without as much as containing any query terms directly. In this case,
providing an explanation, for example that the document in question is closely
connected to many documents containing query terms, makes the matching process
more transparent to users. However, automatically computing good, minimal
explanations is far from a solved issue.

(3) We want to apply this approach to a wide range of applications: Ranking
and fuzzy matching in Semantic wikis where documents, authors, and meta-data
are connected with a number of relations and propagation allows authors to
be considered relevant answers for keywords that occur frequently in documents
they authored. Similarly, in image search for art history we can propagate tags
(assigned, e.g., by users in a game-with-a-purpose) based on known relations
between artefacts such as created by the same artist in the same period. Here,
propagation strongly depends on the tag type (e.g., style of painting vs. content
of painting). Finally, in object search we want to find structured objects, often
extracted from web pages or deep web databases, based on attributes, but often
also simple keyword queries (since users have little knowledge of the schemata
used). Propagation is very useful here as information is often incomplete, but
structurally related entities can provide a way of making an informed guess: E.g.,
if a users searches for a flat that is not a house share in Oxford, we would rank
results from an agency with many house shares lower than those from an agency
with few house shares even if we have no knowledge whether that specific flat is a
house share or not.
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