
Smith ScholarWorks Smith ScholarWorks 

Computer Science: Faculty Publications Computer Science 

6-26-2019 

Graph-Based Offline Signature Verification Graph-Based Offline Signature Verification 

Paul Maergner 
University of Fribourg, Switzerland 

Nicholas Howe 
Smith College, nhowe@smith.edu 

Kaspar Riesen 
University of Applied Sciences and Arts Northwestern Switzerland 

Andreas Fischer 
University of Fribourg, Switzerland 

Follow this and additional works at: https://scholarworks.smith.edu/csc_facpubs 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Maergner, Paul; Howe, Nicholas; Riesen, Kaspar; and Fischer, Andreas, "Graph-Based Offline Signature 
Verification" (2019). Computer Science: Faculty Publications, Smith College, Northampton, MA. 
https://scholarworks.smith.edu/csc_facpubs/221 

This Article has been accepted for inclusion in Computer Science: Faculty Publications by an authorized 
administrator of Smith ScholarWorks. For more information, please contact scholarworks@smith.edu 

http://www.smith.edu/
http://www.smith.edu/
https://scholarworks.smith.edu/
https://scholarworks.smith.edu/csc_facpubs
https://scholarworks.smith.edu/csc
https://scholarworks.smith.edu/csc_facpubs?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.smith.edu/csc_facpubs/221?utm_source=scholarworks.smith.edu%2Fcsc_facpubs%2F221&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@smith.edu


Graph-Based Offline Signature Verification

Paul Maergnera, Nicholas R. Howeb, Kaspar Riesenc, Rolf Ingolda,
Andreas Fischera,d

aUniversity of Fribourg, Department of Informatics, DIVA Group, Fribourg, Switzerland
bSmith College, Department of Computer Science, Northampton, Massachusetts, USA

cUniversity of Applied Sciences and Arts Northwestern Switzerland, Institute for
Information Systems, Olten, Switzerland

dUniversity of Applied Sciences and Arts Western Switzerland, Institute of Complex
Systems, Fribourg, Switzerland

Abstract

Graphs provide a powerful representation formalism that offers great promise

to benefit tasks like handwritten signature verification. While most state-of-

the-art approaches to signature verification rely on fixed-size representations,

graphs are flexible in size and allow modeling local features as well as the global

structure of the handwriting. In this article, we present two recent graph-based

approaches to offline signature verification: keypoint graphs with approximated

graph edit distance and inkball models. We provide a comprehensive description

of the methods, propose improvements both in terms of computational time and

accuracy, and report experimental results for four benchmark datasets. The

proposed methods achieve top results for several benchmarks, highlighting the

potential of graph-based signature verification.

Keywords:

offline signature verification, structural pattern recognition, graph edit

distance, Hausdorff edit distance, inkball models

1. Introduction

Handwritten signatures are commonly used for personal authentication in

many areas. Along with the broad use of signatures comes an interest in the

verification of their authenticity. Signature verification is a challenging task

even for humans since the decision has to be made using only a few genuine
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samples. The development of automatic signature verification systems started

decades ago and remains an active field of research [1, 2]

Two different cases of signature verification are commonly distinguished;

viz. online (also termed dynamic) and offline (also termed static) signature

verification. The former leverages dynamic characteristics like speed, timing,

and pressure. This also implies that the signatures have to be collected with a

special device like a pen tablet or a touchscreen. Offline signature verification,

on the other hand, uses only the image of the signature, e.g. a scan of a signature

written on paper. Overall, the offline case can be applied to more use cases,

but it is also considered the more challenging task due to the lack of additional

information. The work presented in this paper considers the offline case.

The majority of state-of-the-art offline signature verification systems rely on

statistical pattern recognition, i.e. handwritten signatures are represented using

fixed-size feature vectors (or sequences of feature vectors). The feature vectors

either rely on manually engineered features or more recently on features auto-

matically learned from signature images using neural networks. The engineered

features commonly represent either local information such as local binary pat-

terns (LBP) and histogram of oriented gradients (HOG) [3], or Gaussian grid

features taken from signature contours [4], or they represent global information,

for example, geometrical features like Fourier descriptors, number of holes, num-

ber of branches in the skeleton, moments, projections, distributions, position of

barycenter, tortuosities, directions, curvatures and chain codes, and many oth-

ers [5, 6, 7, 8, 9, 10, 11]. With the advances in deep learning, we can see a shift

from handcrafted features towards learned features, for example by using deep

convolutional neural networks (CNN) [12]. In both cases, engineered as well as

learned features, the fixed-size feature vectors are then used in conjunction with

statistical classifiers or matching schemes that operate on statistical streams,

e.g. hidden Markov models (HMM), support vector machines (SVM) [13, 14],

dynamic time warping (DTW) [15], or neural networks [16].

While most state-of-the-art systems for signature verification rely on feature

vectors and statistical classifiers, there exists a more powerful representation
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formalism: graphs. Not only can they model a variable amount of information

by means of nodes but they also directly model binary relations between them

by means of edges. When used to represent signatures, nodes usually represent

elementary strokes of the handwriting or keypoints in the signature images.

Edges model the relations between these parts in the global structure. Consid-

ering the vast number of ways that graphs can be used to represent signatures,

it is somewhat surprising that they have only rarely been applied to signature

verification in the past. One of the main reasons may be the typically high

computational complexity of graph operations such as graph matching. Previ-

ous works include the early proposal by Sabourin et al. to represent signatures

based on stroke primitives [17], the proposal by Bansal et al. to use a modular

graph matching approach [18], and the proposal by Fotak et al. to use basic

concepts of graph theory [19].

A more recent approach for graph-based signature verification has been pro-

posed by Maergner et al. [20]. The introduced framework is based on the graph

edit distance between labeled graphs representing individual signatures. In the

experiments, keypoint graphs have been used, which have also been considered

for handwriting recognition [21] and keyword spotting [22] in the past. The well-

known bipartite approximation [23] of graph edit distance has been employed

to reduce the high computational complexity of matching two graphs.

Inkball models are another recent structural approach for handwriting analy-

sis proposed by Howe in [24]. This approach has been introduced as a technique

for segmentation-free word spotting that requires few training data. In addition

to keyword spotting, inkball models have been used for handwriting recognition

as a complex feature in conjunction with HMM [25]. Inkball models are visu-

ally similar to keypoint graphs since they are using very similar points on the

handwriting as nodes. But the inkballs are connected to a rooted tree that is

directly matched with a skeleton image using an efficient algorithm.

In a preliminary work [26], we introduced an inkball-based signature verifi-

cation system. The method was evaluated individually as well as combined with

the graph edit distance based approach, demonstrating a promising signature
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verification performance on two benchmark datasets.

In the present article, we continue this line of research and extend our pre-

vious work as follows. First, we provide a more thorough description of the two

graph-based signature verification systems, i.e. one based on graph edit distance

and the other based on inkball models. Secondly, we propose improvements for

both methods. The graph edit distance approach is rendered more efficient by

using the quadratic-time Hausdorff edit distance [27] instead of the cubic-time

bipartite approximation [23]. The inkball approach is rendered more accurate by

means of an augmented inkball model that is introduced in the present article.

It considers angular information in addition to the inkball position. Thirdly, we

conduct an extensive experimental evaluation of both methods on four publicly

available benchmark datasets, in order to compare them with the current state

of the art. The systems are evaluated individually as well as combined, to profit

from their complementary properties. We demonstrate that graph-based signa-

ture verification is able to reach and, in some cases, surpass the current state

of the art in signature verification, motivating further research on structural

approaches to signature verification.

This paper is structured in the following way. In Section 2, keypoint graphs,

the graph matching approach, and the dissimilarity based on graph edit distance

are formally introduced. In Section 3, inkball models, the augmented matching

approach, and the inkball dissimilarity are described. In Section 4, we discuss

how we use the two dissimilarity models individually as well as in combination

for offline signature verification. In Section 5, we present and discuss our exper-

imental results. Finally, we draw conclusions in Section 6 and provide pointers

to future lines of research.

2. Graph Edit Distance

Our first structural approach to signature verification is based on the graph

edit distance (GED). Initially, this approach has been introduced in [28] and was

further refined in [20]. The main idea is that signature images are represented

4



Original Difference of Gaussians Binary Skeleton

Figure 1: Image processing for keypoint graph shown on first signature of user 3902 from the

GPDSsynthetic dataset [31].

using graphs and these graphs are then compared using GED. GED is one of

the most flexible graph matching approaches available since it can be used to

match any kind of labeled graph given an appropriate cost function. We are

using keypoint graphs as our graph representation. As an approximation for

GED, we consider the Hausdorff edit distance [27] as opposed to the bipartite

approximation that has been used in previous publications [20, 26, 29]. In the

following sections, the individual building blocks of this approach are described

in more detail.

2.1. Image Processing and Graph Representation

Keypoint graphs are built from a skeleton image of handwriting. Thus, the

signature images have to be binarized and skeletonized first. This is achieved

using the following steps:

• A local edge enhancement is performed using a difference of Gaussian

(DoG) filter on grayscale signature images.

• The enhanced image is binarized using a global threshold.

• The binary image is finally thinned to single pixel width using the algo-

rithm proposed in [30].

The three preprocessing steps are visualized in Fig. 1.

A labeled graph g is defined as a four-tuple g = (V,E, µ, ν), where V is the

finite set of nodes, E ⊆ V × V is the set of edges, µ : V → LV is the node

labeling function, and ν : E → LE is the edge labeling function.
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Figure 2: Example keypoint graph generated from the first signature of user 3902 from the

GPDSsynthetic dataset [31]

In keypoint graphs, the nodes represent keypoints on the handwriting and

the node labels are the coordinates of these points, i.e. LV = IR× IR. The edges

are unlabeled and undirected, i.e. LE = ∅ and (u, v) ∈ E ⇐⇒ (v, u) ∈ E, and

connect two nodes if their corresponding points are directly connected on the

handwriting.

Specifically, the nodes and edges are extracted from the skeleton image of

the signature. The keypoints are selected iteratively. First, junction-points and

end-points are added to the set of keypoints. Secondly, the left outer most pixel

of circular structures is added to the keypoints if they contain no keypoints,

yet. Then, additional points are added by sampling the skeleton. This is done

by tracing along the skeleton while starting at already selected keypoints. Once

the traveled distance without meeting a keypoint is larger or equal to DGED, a

new keypoint is added. While tracing along the skeleton, we also place edges

to connect neighboring keypoints. The node labels are finally normalized to

make the graph representation translation invariant by subtracting the average

node label from each node label in the graph. Thus, the nodes in the graph are

centered around the origin (0, 0) in the two dimensional plane. An example of

a keypoint graph is shown in Fig. 2. In this paper, we call a keypoint graph gR

if it is based on a signature image R.
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2.2. Edit Distance

Graph edit distance (GED) offers one of the most flexible ways to measure

the dissimilarity between two labeled graphs [32, 33]. It calculates the cost

of the minimal cost transformation of graph gR = (VR, ER, µR, νR) into graph

gT = (VT , ET , µT , νT ). Hereby, a valid transformation is a sequence of edit op-

erations that completely transform graph gR into graph gT . Commonly, the edit

operations are defined as substitution, deletions, and insertions of both nodes

and edges. An appropriate cost function defines the cost of each of these edit

operations. This allows GED not only to handle any kind of labeled graphs but

also to be adapted to a specific task using tailored cost functions. Unfortunately,

exact computation of GED have a major disadvantage: its computational com-

plexity. Exact computation of GED belongs to the group of NP-hard problems

and its complexity is exponential in the number of nodes in the two graphs. In

practice, this means that exact GED can be calculated within reasonable time

only for rather small graphs.

To be able to use the concept of GED, we have to use an approximation for

GED. A very popular approximation of GED is the bipartite approximation1

(BP) proposed by Riesen and Bunke [23]. BP reduces the problem of GED

to an instance of a linear sum assignment problem (LSAP) and thus has a

cubic time complexity, specifically, it is in O((n + m)3), where n = |VR| and

m = |VT | are the number of nodes in the two graphs. We used BP in our

previous publications [20, 26, 29]. In the present article, we are going to use

a more efficient approximation based on Hausdorff edit distance (HED) [27],

which operates in quadratic time complexity, specifically, O(n ·m). The method

is described in more detail in the next section.

2.3. Hausdorff Edit Distance

The Hausdorff Edit Distance (HED) proposed by Fischer et al. [27] computes

a lower bound of GED, i.e. it is always smaller than or equal to GED. The main

1Sometimes also referred to as assignment edit distance (AED).
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idea is to find locally optimal assignments between substructures of one graph

and substructures of the other graph. For HED, such substructures consist of

nodes together with their adjacent edges. Formally, the HED of two graphs gR

and gT given a cost function c is defined as

HED(gR, gT , c) =
∑
u∈VR

min
v∈VT∪{ε}

c∗(u→ v) +
∑
v∈VT

min
u∈VR∪{ε}

c∗(u→ v) (1)

Where c∗(u→ v) takes into account the cost of substituting node u with node v

as well as matching the adjacent edges of u with the adjacent edges of v. Similar

to the Hausdorff distance, this assignment is performed in both directions: all

nodes of gR are assigned to nodes of gT or ε (indicating deletion or insertion),

and vice versa.

2.4. Cost Function

To compute an edit distance, we have to define an appropriate cost function

c for the chosen graph representation. The cost function c assigns a cost to

substitutions, deletions, and insertions of both nodes and edges.

In our scenario, we set the node substitution cost to the Euclidean distance

between the node labels of u and v:

c(u→ v) =
√

(xu − xv)2 + (yu − yv)2, (2)

where µR(u) = (xu, yu) and µT (v) = (xv, yv) are the node labels of nodes u ∈ VR
and v ∈ VT , respectively.

We use a constant cost cnode for both deletions and insertions of nodes:

c(u→ ε) = c(ε→ v) = cnode (3)

The edge substitution cost is set to zero:

c(eR → eT ) = 0, (4)

where eR ∈ ER and eT ∈ ET .

The cost of edge deletion and insertion is set to a constant value cedge.

c(eR → ε) = c(ε→ eT ) = cedge (5)
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2.5. Normalization of Graph Edit Distance

In the following, we use GED(·) as a placeholder for a GED approximation,

i.e. BP(·) or HED(·). Previous publications have shown that it is crucial to

apply a good normalization when using GED for signature verification. We

normalize our GED with what we call ”maximal GED”, i.e. the cost of deleting

the first graph and then inserting the second graph.

Formally, given two graphs gR = (VR, ER, µR, νR) and gT = (VT , ET , µT , νT )

and a cost function c, we define GEDmax as

GEDmax(gR, gT ) =
∑
u∈VR

c(u→ ε) +
∑
e∈ER

c(e→ ε)

+
∑
v∈VT

c(ε→ v) +
∑
e∈ET

c(ε→ e)
(6)

When using the cost function defined in section 2.4, this equation can be sim-

plified to

GEDmax(gR, gT ) = (|VR|+ |VT |) · cnode + (|ER|+ |ET |) · cedge (7)

We now define the normalized GED-based dissimilarity of two signature

images R and T as

dGED(R, T ) =
GED(gR, gT )

GEDmax(gR, gT )
, (8)

where gR and gT are the keypoint graphs for the signature images R and T

respectively, and GED(gR, gT ) is an approximation of the GED using either BP

or HED.

3. Inkball Models

Inkball models are a type of part-structured model [34] introduced by Howe

as a technique for word spotting [24] but have since been used for matching

handwritten symbols of various kinds, recently including signatures [35, 26].

Inkball models may be visualized as a combination of rigid displacements that

give a default shape, with spring potentials at each joint that add the flexibility

to match spatially varying versions of the target.
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Like the keypoint graph models discussed above, an inkball model can be

built from a single signature image. The process is similar, although the details

differ mostly thanks to their independent development. The signature is first

thinned to single pixel width, then inkball nodes are placed at regular intervals

along the skeleton. The first nodes are placed at all endpoints and junctions.

Additional nodes are then inserted in a greedy manner on skeleton points at

distance Dinkball from any existing node until such insertion is no longer pos-

sible. Finally, to fill in any large gaps that might remain, nodes are inserted

at locations as far as possible from existing nodes, stopping when the inserted

nodes would be less than
√

2
2 Dinkball from existing nodes. (Note that for better

presentation the use of Dinkball in this paper differs from earlier presentations

of the inkball method [26] by a factor of
√

2; the method itself is unchanged.)

Prior work on inkball matching has not relied on any information about the

nodes other than their relative positions. This simplicity stands in contrast to

much of the body of work on part-structured models, which often incorporate

descriptive properties for each part that can be used to improve matching ac-

curacy [36]. This paper works with the traditional inkball models used by prior

work, but also introduces a novel augmented inkball model that incorporates dis-

tinguishing information about each inkball node. Specifically, the augmented

model records the local tangent angle of the ink skeleton in the neighborhood of

the inkball’s location. This tangent information is computed as follows. First,

we separate the skeleton into one-dimensional arcs by splitting it at every junc-

tion point. For each arc, we then smooth the pixel-to-pixel tangent sequence

using a 1D Gaussian filter (σ = 2) to suppress noise. Finally, each node takes

the tangent angle of its nearest arc point (nodes that represent junctions take

the value from one of their connected arcs by random).

Once all the nodes are identified and described, they are linked into a tree

structure that allows for efficient matching. Linking also takes a greedy ap-

proach. First, connections are added between pairs of the nearest disconnected

nodes (w.r.t. their Euclidean distance). This process is repeated until the en-

tire set of nodes is connected. Next, a single node is designated as the root
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of the tree. By convention the node closest to the centroid is chosen. Before

any approximations, the matching energy described below is mathematically

equivalent regardless of the root choice.

Using a tree structure means that the model cannot fully represent loops

in the original signature. Each loop will include a break at some arbitrary

location, and the model will sometimes allow the nodes on either side of the

break to separate when matching. This disadvantage is the price of the efficient

tree matching algorithm described below.

The term “inkball model” arises from the fact that when the separation be-

tween nodes is small enough, balls of ink placed at each node location will overlap

to reproduce an approximation of the original handwritten symbol. With each

connection displaced by sampling from a 2-dimensional normal distribution, the

model can generate novel variations on the original form. This enables use of a

Bayesian inference framework, where likelihood is estimated by computing the

probability of the model under a given set of observations. As described in the

next section, a dynamic programming implementation makes this computation

tractable.

3.1. Inkball Matching

Inference seeks to maximize the likelihood of the model configuration (e.g.,

deformation on a sample signature) given an observation (e.g., a test signa-

ture). Likelihood captures both the placement of inkballs near observed ink

and the deformation of the default model displacements required to achieve

such a placement. The best configuration typically trades off both types of

error, and spreads any necessary deformation across the model, as shown in

Fig. 3. A match can only be considered plausible if both considerations are well

satisfied. In the case of augmented inkball models, for a satisfactory likelihood,

the nodes must be placed near ink that shows the same or similar tangent angle.

First, it is necessary to establish notational conventions. For a given model,

assign each node a numeric index, with the root at index 0 by convention. A

configuration C is an assignment of 2D positions {vi} to the nodes of the model.
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Figure 3: Three possible configurations for a hypothetical model (left) matched to an obser-

vation (right). The lowest energy configuration (far right) places every node near a skeleton

point, with small deformations at every link.

In any configuration, it is the 2D vector displacements between each node and

its parent that are of primary interest. These are designated ~si and may be

computed from the raw configuration positions and a knowledge of the model’s

connectivity: ~si = ~vi↑−~vi. (Here i ↑ indicates the index of the parent of node i

with respect to the tree structure.) The displacements in the originally observed

configuration of the model (as taken from the sample signature) have special

significance and are denoted ~oi. These are known as the default offsets, and the

configuration that produced them is the rest configuration.

Rather than maximizing likelihood directly, it suffices to minimize a related

energy function over all possible configurations of the model. This energy has

two terms, one (EΩ) related to the quality of the node placement relative to

the observations, and the other (Eξ) related to the deformation implied by that

placement. In the equations below, R is the sample signature and T is the test

signature.

E(R,C, T ) = Eξ(R,C) + λEΩ(C, T ) (9)

Eξ(R,C) =

n∑
i=2

‖~si − ~oi‖2 (10)

EΩ(C, T ) =

n∑
i=1

ΩT (~vi)
2 (11)
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Equation 11 above relies on an expression Ωt(~vi) that describes the placement

quality of node with index i. To define it precisely, let {~tj} represent the 2D

vector coordinates of each of the skeleton points in T .

ΩT (~vi) = min
j
δij‖~tj − ~vi‖ (12)

For the ordinary inkball match, δij = 1 in all cases. For the augmented

match, it depends on a comparison of the local tangent angles, αi and βj .

δij = wα min((αi − βj) mod π, (βj − αi) mod π) (13)

Equation 9 can be minimized efficiently via dynamic programming by orga-

nizing the sums of Equations 10 and 11 according to the nodes involved. Let

C(i) refer to the configuration of the model subtree rooted at node at index i,

and define E∗(i)(~v) as a functional giving the minimal energy on that subtree for

configurations satisfying ~vi = ~v.

E∗(i)(~v) = min
C(i)|~vi=~v

E(R,C(i), T ) (14)

The terms of E∗(i)(~v) can be arranged to compute the desired energy in terms

of similar expressions on the children of node at index i. (The set of their indices

is denoted i ↓ below).

E∗(i)(~v) = ΩT (~v)2 +
∑
j∈i↓

[
min
~u
E∗∗(j)

]
(15)

E∗∗(j) = ‖(~v − ~u)− ~oi‖2 + E∗(j)(~u) (16)

Equation 15 is trivial to compute for leaf nodes of the model since the sum-

mation has no terms. Starting with the leaves, their parent nodes can be com-

puted next, and so on until the root node energy functional E∗(0)(~v) is found.

Each functional on ~v is represented discretely on a pixel-resolution grid, and

the minimization in Equation 15 is computed using the generalized distance

transform [34].
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Figure 4: Sample matches of a model to an observation. Left is the original inkball match;

right is the augmented match.

In many cases, the quadratic error of Equations 10 and 11 places too much

emphasis on badly mismatched nodes. A form of truncated quadratic serves

better in practice, and is used in the experiments.

E∗′(i)(~v) = min(E∗(i)(~v), Niτ) (17)

Here Ni represents the number of nodes in the subtree rooted at index i and

τ is a free parameter optimized by experiment.

The tools developed above allow the comparison of two signature images R

and T . The former is converted to an inkball model and the latter becomes the

observation to be compared against as illustrated in Figure 4.

To ensure scale invariance it is important to normalize the minimal energy

by the number of inkballs in the model (N0), yielding the average energy per

inkball. This normalization is similar to that applied to the graph edit distance.

Putting everything together, the inkball dissimilarity of R and T is given by

Equation 18 below.

dinkball(R, T ) =
1

N0
min
~v
E∗′(0)(~v) (18)

4. Signature Verification System

In our signature verification system, the decision of whether an unseen signa-

ture is a genuine signature of the claimed user is made based on a setR of known
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genuine signatures from that user, termed references. An unseen signature T

is compared with all reference signatures R ∈ R and a signature verification

score is calculated. The signature T is accepted as genuine if the signature

verification score is below a certain threshold. In the following subsections, the

process of calculating the signature verification score is described in more detail.

This process is independent from the chosen dissimilarity score. In the following

equations, d(·, ·) can stand for either dGED(·, ·) or dinkball(·, ·)

4.1. Reference-based Normalization

It is expected that each user shows a different degree of variability in his/her

signatures. Based on the reference signatures of a given user, we want to predict

how much variability we expect for this user and normalize the score accord-

ingly. This is done by applying a normalization with respect to the average

dissimilarity among the reference signatures [37]. Specifically, each reference

signature is compared against the other reference signatures and the average of

the minima is calculated. Formally,

δ(R) = avg
R∈R

min
S∈R\R

d(R,S) (19)

This score is used to normalize the dissimilarity scores of each user. Formally,

we define d̂(R, T,R) as the reference normalized score:

d̂(R, T,R) =
d(R, T )

δ(R)
, (20)

where T is the questioned signature image, R ∈ R is a reference signature.

4.2. Signature Verification Score

The signature verification score d(R, T ) is calculated given a set of reference

signature images R and the questioned test signature image T . Formally,

d(R, T ) = min
R∈R

d̂(R, T,R) =
minR∈R d(R, T )

δ(R)
(21)

The signature T will be accepted if the minimum dissimilarity d(R, T ) between

the references R and T is below a certain threshold.
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4.3. Multiple Classifier System

We define a linear combination of the two dissimilarity scores dGED and

dinkball as a combined dissimilarity score dMCS. The idea is to leverage comple-

mentary aspects of the two dissimilarity measures to achieve better verification

results using this multiple classifier system (MCS). The dissimilarity scores are

combined on an image pair basis, i.e. the GED dissimilarity score between refer-

ence image R and test image T is combined with the inkball dissimilarity score

between R and T . Both dissimilarity scores are z-score normalized based on all

reference signatures before they are combined with each other. Formally,

dMCS,w(R, T ) = min
R∈R

(
w · d̂∗GED(R, T,R) + (1− w) · d̂∗inkball(R, T,R)

)
(22)

where w ∈ [0, 1] is a weighting factor, and

d̂∗(R, T,R) =
d̂(R, T,R)− µD

σD
, (23)

where the mean µD and the standard deviation σD are calculated over the set

D = {R1, . . . ,Rn} of all references signature sets Ri of all n users in the current

dataset. Formally, the mean µD is calculated as

µD = avg
R∈D

(
avg
R∈R

(
min

S∈R\R
d̂(R,S,R)

))
(24)

and the standard deviation σD is calculated as

σD =

√
avg
R∈D

(
avg
R∈R

(
min

S∈R\R
d̂(R,S,R)− µD

)2)
(25)

5. Experimental Evaluation

5.1. Datasets

We use four publicly available datasets to evaluate the performance of our

structural approaches. Table 1 gives an overview of the datasets, which are

described in more detail in the following paragraphs.

GPDSsynthetic-Offline is a large dataset [31] of synthetic Western signa-

tures. It is the replacement for the popular GPDS-960 dataset and its earlier
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variants, which are no longer available [38]. The new dataset consists of 4,000

synthetic users with 24 genuine signatures and 30 simulated forgeries for each

user. All signatures have been generated with differently modeled pens at a

simulated resolution of 600 dpi. We are using two subsets of this dataset:

• GPDS-last100: Containing the last 100 users of the dataset (users 3901

to 4000).

• GPDS-75: Containing the first 75 users of the dataset (users 1 to 75).

The GPDS-last100 dataset is used as the training set for both structural meth-

ods. All parameters are tuned on this subset exclusively. While GPDS-75 is

only used for testing and comparing against the state of the art.

UTSig is a rather new Persian signature dataset [39]. It consists of 115 users

with 27 genuine signatures, 3 opposite-hand signatures2, and 42 forgeries for

each user. The users have been instructed to sign within six differently sized

bounding boxes to simulate different conditions. The resulting signatures have

been scanned with 600 dpi. We use this dataset only for testing and comparing

against the state of the art.

MCYT-75 is a offline signature dataset within the MCYT baseline cor-

pus [40, 41]. It consists of 75 users with 15 genuine signatures and 15 forgeries

for each user. The users signed in a 127mm×97mm box and each signature has

been scanned at 600 dpi. We use this dataset only for testing and comparing

against the state of the art.

The CEDAR dataset consists of 55 users [42] with 24 genuine signatures

and 24 forgeries for each user. The users signed in a 50mm × 50mm box and

each signature has been scanned at 300 dpi. We use this dataset only for testing

and comparing against the state of the art.

2The opposite-hand signatures are treated as forgeries as suggested by the authors of the

dataset.

17



Table 1: Signature datasets

Name Users Genuine Forgeries dpi
used for used for

tuning testing

GPDS-last100 [31] 100 24 30 600 x

GPDS-75 [31] 75 24 30 600 x

MCYT-75 [41] 75 15 15 600 x

UTSig [39] 115 27 45 600 x

CEDAR [42] 55 24 24 300 x

5.2. Types of Forgeries

We evaluate the performance of our classifiers to distinguish between genuine

signatures and forgeries. We are using two types of forgeries, which are common

in the signature verification community:

• Skilled forgeries (SF): The target’s genuine signature is known to the

forger and usually, the forger has time to practice it. This often leads to

forgeries that have high resemblance with their genuine counterpart.

• Random forgeries (RF): Genuine signatures of other users are used

in a brute force attack on the verification system. Another reasoning

is that the forgers use their own signatures since they have no knowledge

about the target’s signature. In our experiments, we are using one genuine

signature from each other user as random forgeries.

5.3. Number of References

How many genuine signatures are used as references per users varies in lit-

erature even for the same dataset. We are labeling our results with Rx where x

is replaced with the number of references used, e.g. R10 means ten references

are used for each user. We are always using the first x genuine signature for

each user. The remaining genuine signatures are used as positive samples for

the evaluation.
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5.4. Evaluation Metrics

We evaluate the performance of our graph-based verification systems using

the equal error rate (EER). The EER is the error rate when the false rejection

rate (FRR) is equal to the false acceptance rate (FAR). The FRR refers to

the percentage of genuine signatures that are rejected by the system and the

FAR refers to the percentage of forgeries accepted by the system. In order to

determine FRR and FAR directly, we have to decide on a decision threshold (see

Section 5.6). We distinguish EER and FAR based on the type of forgeries. For

skilled and random forgeries, we call them EERSF/FARSF and EERRF/FARRF,

respectively. We calculate an average error rate (AER) using the following

equation.

AERSF =
FRR + FARSF

2
(26)

Furthermore, we calculate two types of EER, i.e. the global EER and the user-

specific EER. The global EER (EERglobal
RF and EERglobal

SF ) is calculated by using

the same (global) threshold for all users. The user-specific EER EERuser
RF and

EERuser
SF ) is the average of all individual EERs calculated per user.

5.5. Parameter Tuning

We tune the parameters of our graph-based methods on our tuning set

GPDS-last100. We are using ten references per user (R10) and optimize the

parameters with respect to EERSF. We also measure the runtime per compari-

son since we expect a significant increase of the computation time with growing

graph sizes.

5.5.1. Graph Edit Distance

In a first step, we create several sets of graphs using different values for

DGED. Table 2 shows the minimum, median, average, and maximum number

of nodes in the graphs for a given DGED. The number of nodes is increasing as

expected when lowering DGED.

The first question we want to answer is whether BP or HED performs better

for the task of signature verification. For this experiment, we use the keypoint
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Table 2: Nodes in keypoint graph based on DGED for first 10 genuine per user of GPDS-last100

dataset.

DGED minimum median average maximum

100 9 42 45 120

50 15 70 73 194

45 16 76 79 214

40 17 84 87 236

35 18 93 98 265

30 19 106 111 307

25 23 125 130 355

20 25 152 159 439

15 31 198 206 568

10 42 286 299 835

graphs for DGED ∈ {25, 50, 100}. We optimize the cost function, i.e. cnode and

cedge, individually using a grid search for each DGED and the approximations

BP and HED. In Table 3, we report the results and runtime3 for GPDS-last100

R10. The EER results of HED are very similar to BP, while being much faster.

This speed-up is particularly significant when using graph representations with

more nodes. Due to the speed-up and the similar performance in EER, we

continue the following experiments with the HED approximation.

We extend the grid search to smaller DGED using the HED approximation.

The best EERSF results on GPDS-last100 R10 is achieved by DGED = 25,

cnode = 12.5, and cedge = 200. We use this setup as our proposed GED approach.

5.5.2. Inkball

For the inkball approach, we again started with creating models using dif-

ferent values for Dinkball. Table 4 shows the minimum, median, average, and

maximum number of nodes in the inkball models for a given Dinkball.

3Runtime is with respect to a Java implementation and AMD Opteron 2354 nodes with

2.2 GHz CPU.
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Table 3: Comparison of GED approximations on GPDS-last100 R10 using EERSF and average

runtime per comparison. The overall best result is shown in bold font.

DGED Approx. EERSF runtime cnode cedge

25
BP 7.87 1029 ms 25 25

HED 7.47 113 ms 12.5 200

50
BP 7.77 175 ms 12.5 50

HED 8.27 38 ms 20 150

100
BP 10.53 51 ms 50 50

HED 11.03 17 ms 50 100

Table 4: Nodes in inkball model based on Dinkball for the first 10 genuine per user of the

GPDS-last100 dataset.

Dinkball minimum median average maximum

100 8 33 35 82

50 17 56 59 133

40 20 69 72 166

32 26 86 89 202

25 35 110 114 261

16 52 170 177 398

10 76 270 279 626

8 90 334 347 784

6 119 438 454 1034

4 174 650 677 1544
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To compare the novel augmented inkball models with the normal inkball

models, we test both approaches with different values forDinkball ∈ {4, 6, 8, 16, 32}.

The results and runtime4 for GPDS-last100 R10 are shown in Table 5. The aug-

mented inkball matching shows consistently better results than the standard

inkball matching while being about 50% slower considering the same Dinkball,

i.e. the same number of inkballs. We can also see that the inkball matching is

significantly slower than the HED approximation approach. This is in part due

to the smaller values for Dinkball and therefore the much larger models. Addi-

tionally, the models are matched against a skeleton image, which contains more

matching points than a keypoint graph with DGED > 1. But it is probably also

due to the overall higher computational complexity of the inkball matching.

Note that instead of increasing Dinkball, the resolution of the signature im-

ages can also be lowered to speed up computation. This reduces the runtime

significantly, however, it may also lead to a decrease in verification performance

due to the loss of details in the signature image.

As shown in Table 5, the best results on our tuning set are achieved using the

augmented inkball matching using Dinkball = 6, mdsq = 64, and angwgt = 64.

We use this configuration as our proposed inkball approach.

5.5.3. Multi-Classifier System

We combine the GED approach with the inkball approach using the MCS ap-

proach described in Section 4.3. To find the optimal weight for this combination,

we evaluate different weights w ∈ {0.0, 0.1, . . . , 0.9, 1.0} on the GPDS-last100

R10 with respect to EERSF. The results are shown in Table 6. The best result

is achieved when applying equal weights to both methods, i.e. w = 0.5.

The results of our proposed MCS system clearly outperforms our proposed

individual methods as shown in Table 7.

4Runtime is with respect to a C implementation and AMD Opteron 2354 nodes with 2.2

GHz CPU.

22



Table 5: Augmented inkball compared to normal inkball models on GPDS-last100 R10 using

EERSF and average runtime per comparison. The overall best result is shown in bold font.

Dinkball Approach EERSF runtime mdsq angwgt

32
normal 12.33 5.65 s 96 -

augmented 11.20 8.58 s 128 64

16
normal 9.97 11.19 s 96 -

augmented 9.27 16.86 s 96 64

8
normal 9.83 22.53 s 64 -

augmented 8.63 33.53 s 128 64

6
normal 9.63 28.80 s 32 -

augmented 8.27 44.37 s 64 64

4
normal 9.53 42.83 s 16 -

augmented 8.33 66.07 s 32 64

Table 6: EERglobal
SF results for a MCS with different weights w on GPDS-last100 R10. The

overall best result is shown in bold font.

w 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

EERglobal
SF 8.3 7.2 6.8 6.3 6.0 5.5 5.7 6.0 6.8 7.2 7.5

Table 7: Comparing proposed MCS system with proposed GED and proposed inkball on the

development set (GPDS-last100 R10). The best results are highlighted in bold font.

System EERuser
SF EERglobal

SF

Proposed GED 6.03 7.47

Proposed Inkball 5.33 8.27

Proposed MCS 3.30 5.50
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5.6. Threshold Selection

A decision threshold is required to calculate the FRR, FARSF, FARRF, and

AER. The threshold that leads to the EERglobal
SF on the GPDS-last100 dataset

is used as the decision threshold for each proposed system. Since we are dealing

with three proposed systems, namely proposed GED, proposed Inkball, proposed

MCS, we end up with three decision thresholds. The decision threshold for a

specific proposed system is employed for all users, test sets, and experiments

(skilled and random forgeries). Choosing the decision threshold this way is a

simple approach. However, it relies on a good tuning dataset to find a good

decision threshold. The decision threshold is only applied for FRR, FAR, and

AER. The EER calculation is not affected by this decision threshold.

5.7. Test Results

The three proposed systems, which have been tuned on the GPDS-last100

dataset, are applied without further adaptation on the four test sets (GPDS-75,

MCYT-75, UTSig, and CEDAR). Several different evaluation protocols have

been used in past publications making meaningful comparison often not trivial.

We adopt an evaluation protocol that has been utilized in recent state-of-the-

art publications and measure the performance with regard to eight evaluation

metrics (see Section 5.4). The results are compared against several published

state-of-the-art results that have been obtained using the same (or almost iden-

tical) evaluation protocol. Tables 8 to 11 present the results and Fig. 5 shows

the DET curves for the results of the proposed systems.

First, we compare the three proposed systems with each other. The proposed

MCS achieves better results than the individual proposed systems on two of the

four test sets (GPDS-75 and UTSig) and better results for random forgeries

on the MCYT-75. The proposed inkball system obtains better results than

proposed GED and MCS on CEDAR and on MCYT-75 for skilled forgeries.

Overall, the proposed MCS achieves the best results on the four datasets.

On GPDS-75 (Table 8), the proposed MCS produces excellent results with

achieving the best result with regards to five of the eight evaluation metrics.
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Only, the results on random forgeries are a little weaker. The used training

data is similar to this test set and thus, particularly useful. Overall, these

results demonstrate the excellent performance that can be achieved when using

specific training data.

On UTSig (Table 9), the proposed MCS obtains the best results with regard

to five of the eight evaluation metrics. This is particularly impressive since

this test set consists of Persian signatures, while the proposed systems have

been trained on synthetic Western signatures. These results highlight that the

proposed system works even on unseen scripts.

On MCYT-75 (Table 10), the proposed inkball system obtains top-3 results

with regard to seven of the eight evaluation metrics (it achieves the best result

according to three metrics). As mentioned before, the proposed MCS achieves

slightly worse results than the proposed inkball system. Even though our re-

sults are very good, the best-reported results are significantly better in some of

the metrics. This might be caused by the absence of dataset-specific training.

However, overall the proposed method performs well on this specific signature

dataset, especially considering that our method is trained on synthetic data

only.

On CEDAR (Table 11), the proposed inkball system achieves top-2 results

with regard to six of the eight evaluation metrics. However, the number of

publications that follow the same evaluation protocol on this test set is limited,

which is reducing the number of published results we can use for comparison.

Overall, the state of the art achieves better results than our proposed systems.

Especially, the proposed GED system obtains poor results affecting also the

performance of our proposed MCS. It is possible that this is due to the lower

resolution of the signature images in this test set (see Table 1). Nonetheless, the

performance of the proposed inkball system in the user-specific metrics (EERuser
RF

and EERuser
SF ) indicates that our structural approach has potential on this test

set.

To sum up, the results show that structural approaches have a high po-

tential for signature verification, especially when dealing with skilled forgeries.
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Table 8: GPDS-75 dataset: Comparison with other published methods. The best result is

highlighted in bold font and the top three results are marked with numbers.

System #Refs FRR FARRF EERuser
RF EERglobal

RF FARSF AERSF EERuser
SF EERglobal

SF

GPDS website , 2016 [38] 10 - - - 0.76 (2) - - - 16.01

Soleimani et al., 2016 [16] 10 6.51*(3) 0.11*(1) - 1.08 (3) 18.23* 12.37* - 12.83

Maergner et al., 2018 [29] 10 - - - 0.56 (1) - - - 7.24 (3)

Maergner et al., 2018 [26] 10 - - - 2.05 - - - 6.84 (2)

Narwade et al., 2018 [43] 12 3.51*(1) - - - 13.91* 8.71*(2) - -

Proposed GED 10 8.00 1.21 (3) 1.53 (3) 3.89 10.76 (3) 9.38 6.67 (2) 9.33

Proposed Inkball 10 8.76 1.42 1.42 (2) 3.42 9.11 (2) 8.94 (3) 6.71 (3) 9.02

Proposed MCS 10 6.38 (2) 0.25 (2) 0.59 (1) 2.27 6.76 (1) 6.57 (1) 4.67 (1) 6.62 (1)

*: The starred numbers have been calculated for 2500 users (Soleimani et al. [16]) and 90 users (Narwade et al. [43]).

However, results for 75 users should be similar since this dataset is quite stable for different user counts (see results on GPDS website [38]).

Table 9: UTSig dataset: Comparison with other published methods. The best result is

highlighted in bold font and the top three results are marked with numbers.

System #Refs FRR FARRF EERuser
RF EERglobal

RF FARSF AERSF EERuser
SF EERglobal

SF

Soleimani et al., 2016 [39] 12 39.27 0.08 (3) - - 21.29 30.28* - 29.71

Soleimani et al., 2016 [16] 12 18.96 0.00 (1) - - 16.15 (2) 17.56* - 17.45

Soleimani et al., 2016 [44] 12 16.34 0.01 (2) - - 15.69 (1) 16.02*(2) - 16.00 (2)

Narwade et al., 2018 [43] 9 7.41 (1) - - - 24.95 16.18 (3) - -

Proposed GED 12 17.80 0.85 2.14 (2) 4.00 (2) 16.75 (3) 17.28 14.11 (2) 17.33 (3)

Proposed Inkball 12 14.14 (3) 2.11 2.38 (3) 5.02 (3) 22.26 18.20 14.61 (3) 18.03

Proposed MCS 12 8.75 (2) 0.98 1.11 (1) 2.97 (1) 22.98 15.86 (1) 11.75 (1) 15.01 (1)

The proposed inkball system shows a more consistent performance across all

four datasets when compared to the proposed GED system. However, the long

runtime of the inkball approach might be an issue for a real-world application.

The performance of the proposed systems when encountering random forgeries

is not as strong as the state of the art. As proposed by [29], a combination

with a neural network should further improve the performance of the structural

approach on random forgeries. The results also show that the difference be-

tween the user-specific and the global EER is quite large. This indicates that

the proposed approaches could benefit from improved user adaptation in the

future. Overall, the results are quite remarkable, especially when considering

that the proposed systems are applied on four different test sets without any

further adaptation while being trained on synthetic signatures only.
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Table 10: MCYT-75 dataset: Comparison with other published methods. The best result is

highlighted in bold font and the top three results are marked with numbers.

System #Refs FRR FARRF EERuser
RF EERglobal

RF FARSF AERSF EERuser
SF EERglobal

SF

Fierrez-Aguilar et al., 2004 [41] 10 - - 1.14* - - - 9.28* -

Alonso-Fernandez et al., 2007 [45] 10 - - 7.26 - - - 22.13 -

Gilperez et al., 2008 [9] 10 - - 1.18 - - - 6.44 -

Vargas et al., 2011 [5] 10 12.61 1.53 - 2.20 7.53 (1) 10.07* - 8.80

Ooi et al., 2016 [46] 10 - - - - - - - 9.87

Soleimani et al., 2016 [16] 10 6.13 (2) 0.00 (1) - 0.37 (2) 12.71 (2) 9.42*(2) - 9.86

Hafemann et al., 2018 [47] 10 - - 0.03 (1) 0.19 (1) - - - 3.64 (1)

Maergner et al., 2018 [29] 10 - - 0.25 (2) 0.79 (3) - - 10.13 11.11

Maergner et al., 2018 [26] 10 - - 0.52 1.24 - - 5.78 (3) 8.71

Narwade et al., 2018 [43] 10 - - - - - - - 9.26

Proposed GED 10 7.20 1.78 1.39 3.87 22.84 15.02 8.36 12.71

Proposed Inkball 10 5.60 (1) 0.92 (3) 0.29 (3) 2.70 12.89 (3) 9.24 (1) 3.02 (1) 7.73 (2)

Proposed MCS 10 6.40 (3) 0.43 (2) 0.29 (3) 1.91 13.69 10.04 (3) 3.47 (2) 8.00 (3)

Table 11: CEDAR dataset: Comparison with other published methods. The best result is

highlighted in bold font and the top three results are marked with numbers.

System #Refs FRR FARRF EERuser
RF EERglobal

RF FARSF AERSF EERuser
SF EERglobal

SF

Chen et al., 2006 [48] 16 7.70 (1) - - - 8.20 7.95*(1) - -

Bharathi and Shekar, 2013 [49] 12 9.36 (2) - - - 7.84 (2) 8.60*(2) - -

Hafemann et al., 2018 [47] 10 - - 0.37 (2) 1.14 (1) - - - 3.60 (1)

Proposed GED 10 18.70 0.51 (3) 2.09 5.93 16.36 17.53 12.20 (3) 17.50

Proposed Inkball 10 16.88 0.00 (1) 0.24 (1) 2.05 (2) 3.94 (1) 10.41 4.17 (1) 7.80 (2)

Proposed MCS 10 10.39 (3) 0.03 (2) 0.61 (3) 2.96 (3) 8.18 (3) 9.29 (3) 5.76 (2) 9.55 (3)
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Figure 5: DET curves.

6. Conclusions and Outlook

In this paper, two structural methods for signature verification are investi-

gated. It is shown that the graph edit distance based approach can be speeded

up significantly while maintaining verification accuracy by using the Haus-

dorff edit distance as the approximation of the graph edit distance. A novel

augmented inkball matching that considers angular information is introduced,

which leads to significant improvements in verification accuracy. While the run-

time of the inkball matching is certainly an issue that needs to be addressed for

28



a real-world application, the verification results are impressive. Additionally,

our experiments show that the verification accuracy can be improved even fur-

ther by combining the two structural methods. Overall, the proposed structural

approach achieves excellent performance on four publicly available signature ver-

ification datasets. On two datasets, the proposed combined approach achieves

the lowest EER on skilled forgeries compared to previously published results

that have applied the same evaluation protocol.

Several future lines of research can be pursued to improve the proposed sig-

nature verification system. First, the user-adaptation might be improved by

modeling the signature stability of each user more closely using our structural

models based on the reference signatures. It is challenging to model the sig-

nature stability based on only a small number of reference signatures, but we

believe that powerful structural representations offer a promising way to achieve

this goal. Finally, the proposed structural approaches would probably benefit

from the complementary perspective of a statistical approach like convolutional

neural networks, making the biometric authentication more robust.
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