579 research outputs found

    OpenAlea: A visual programming and component-based software platform for plant modeling

    Get PDF
    International audienceAs illustrated by the approaches presented during the 5th FSPM workshop (Prusinkiewicz and Hanan 2007, and this issue), the development of functional-structural plant models requires an increasing amount of computer modeling. All these models are developed by different teams in various contexts and with different goals. Efficient and flexible computational frameworks are required to augment the interaction between these models, their reusability, and the possibility to compare them on identical datasets. In this paper, we present an open-source platform, OpenAlea, that provides a user-friendly environment for modelers, and advanced deployment methods. OpenAlea allows researchers to build models using a visual programming interface and provides a set of tools and models dedicated to plant modeling. Models and algorithms are embedded in OpenAlea components with well defined input and output interfaces that can be easily interconnected to form more complex models and define more macroscopic components. The system architecture is based on the use of a general purpose, high-level, object-oriented script language, Python, widely used in other scientific areas. We briefly present the rationale that underlies the architectural design of this system and we illustrate the use of the platform to assemble several heterogeneous model components and to rapidly prototype a complex modeling scenario

    Systems and architectures for visualization

    Get PDF

    VtkSMP: Task-based Parallel Operators for VTK Filters

    Get PDF
    International audienceNUMA nodes are potentially powerful but taking benefit of their capabilities is challenging due to their architec- ture (multiple computing cores, advanced memory hierarchy). They are nonetheless one of the key components to enable processing the ever growing amount of data produced by scientific simulations. In this paper we study the parallelization of patterns commonly used in VTK algorithms and propose a new multi- threaded plugin for VTK that eases the development of parallel multi-core VTK filters. We specifically focus on task-based approaches and show that with a limited code refactoring effort we can take advantage of NUMA node capabilities. We experiment our patterns on a transform filter, base isosurface extraction filter and a min/max tree accelerated isosurface extraction. We support 3 programming environments, OpenMP, Intel TBB and X-KAAPI, and propose different algorithmic refinements according to the capabilities of the target environment. Results show that we can speed execution up to 30 times on a 48-core machine

    Knowledge visualizations: a tool to achieve optimized operational decision making and data integration

    Get PDF
    The overabundance of data created by modern information systems (IS) has led to a breakdown in cognitive decision-making. Without authoritative source data, commanders’ decision-making processes are hindered as they attempt to paint an accurate shared operational picture (SOP). Further impeding the decision-making process is the lack of proper interface interaction to provide a visualization that aids in the extraction of the most relevant and accurate data. Utilizing the DSS to present visualizations based on OLAP cube integrated data allow decision-makers to rapidly glean information and build their situation awareness (SA). This yields a competitive advantage to the organization while in garrison or in combat. Additionally, OLAP cube data integration enables analysis to be performed on an organization’s data-flows. This analysis is used to identify the critical path of data throughout the organization. Linking a decision-maker to the authoritative data along this critical path eliminates the many decision layers in a hierarchal command structure that can introduce latency or error into the decision-making process. Furthermore, the organization has an integrated SOP from which to rapidly build SA, and make effective and efficient decisions.http://archive.org/details/knowledgevisuali1094545877Outstanding ThesisOutstanding ThesisMajor, United States Marine CorpsCaptain, United States Marine CorpsApproved for public release; distribution is unlimited

    Animation of a process for identifying and merging raster polygon areas

    Get PDF

    Evaluating techniques for parallelization tuning in MPI, OmpSs and MPI/OmpSs

    Get PDF
    Parallel programming is used to partition a computational problem among multiple processing units and to define how they interact (communicate and synchronize) in order to guarantee the correct result. The performance that is achieved when executing the parallel program on a parallel architecture is usually far from the optimal: computation unbalance and excessive interaction among processing units often cause lost cycles, reducing the efficiency of parallel computation. In this thesis we propose techniques oriented to better exploit parallelism in parallel applications, with emphasis in techniques that increase asynchronism. Theoretically, this type of parallelization tuning promises multiple benefits. First, it should mitigate communication and synchronization delays, thus increasing the overall performance. Furthermore, parallelization tuning should expose additional parallelism and therefore increase the scalability of execution. Finally, increased asynchronism would provide higher tolerance to slower networks and external noise. In the first part of this thesis, we study the potential for tuning MPI parallelism. More specifically, we explore automatic techniques to overlap communication and computation. We propose a speculative messaging technique that increases the overlap and requires no changes of the original MPI application. Our technique automatically identifies the application’s MPI activity and reinterprets that activity using optimally placed non-blocking MPI requests. We demonstrate that this overlapping technique increases the asynchronism of MPI messages, maximizing the overlap, and consequently leading to execution speedup and higher tolerance to bandwidth reduction. However, in the case of realistic scientific workloads, we show that the overlapping potential is significantly limited by the pattern by which each MPI process locally operates on MPI messages. In the second part of this thesis, we study the potential for tuning hybrid MPI/OmpSs parallelism. We try to gain a better understanding of the parallelism of hybrid MPI/OmpSs applications in order to evaluate how these applications would execute on future machines and to predict the execution bottlenecks that are likely to emerge. We explore how MPI/OmpSs applications could scale on the parallel machine with hundreds of cores per node. Furthermore, we investigate how this high parallelism within each node would reflect on the network constraints. We especially focus on identifying critical code sections in MPI/OmpSs. We devised a technique that quickly evaluates, for a given MPI/OmpSs application and the selected target machine, which code section should be optimized in order to gain the highest performance benefits. Also, this thesis studies techniques to quickly explore the potential OmpSs parallelism inherent in applications. We provide mechanisms to easily evaluate potential parallelism of any task decomposition. Furthermore, we describe an iterative trialand-error approach to search for a task decomposition that will expose sufficient parallelism for a given target machine. Finally, we explore potential of automating the iterative approach by capturing the programmers’ experience into an expert system that can autonomously lead the search process. Also, throughout the work on this thesis, we designed development tools that can be useful to other researchers in the field. The most advanced of these tools is Tareador – a tool to help porting MPI applications to MPI/OmpSs programming model. Tareador provides a simple interface to propose some decomposition of a code into OmpSs tasks. Tareador dynamically calculates data dependencies among the annotated tasks, and automatically estimates the potential OmpSs parallelization. Furthermore, Tareador gives additional hints on how to complete the process of porting the application to OmpSs. Tareador already proved itself useful, by being included in the academic classes on parallel programming at UPC.La programación paralela consiste en dividir un problema de computación entre múltiples unidades de procesamiento y definir como interactúan (comunicación y sincronización) para garantizar un resultado correcto. El rendimiento de un programa paralelo normalmente está muy lejos de ser óptimo: el desequilibrio de la carga computacional y la excesiva interacción entre las unidades de procesamiento a menudo causa ciclos perdidos, reduciendo la eficiencia de la computación paralela. En esta tesis proponemos técnicas orientadas a explotar mejor el paralelismo en aplicaciones paralelas, poniendo énfasis en técnicas que incrementan el asincronismo. En teoría, estas técnicas prometen múltiples beneficios. Primero, tendrían que mitigar el retraso de la comunicación y la sincronización, y por lo tanto incrementar el rendimiento global. Además, la calibración de la paralelización tendría que exponer un paralelismo adicional, incrementando la escalabilidad de la ejecución. Finalmente, un incremente en el asincronismo proveería una tolerancia mayor a redes de comunicación lentas y ruido externo. En la primera parte de la tesis, estudiamos el potencial para la calibración del paralelismo a través de MPI. En concreto, exploramos técnicas automáticas para solapar la comunicación con la computación. Proponemos una técnica de mensajería especulativa que incrementa el solapamiento y no requiere cambios en la aplicación MPI original. Nuestra técnica identifica automáticamente la actividad MPI de la aplicación y la reinterpreta usando solicitudes MPI no bloqueantes situadas óptimamente. Demostramos que esta técnica maximiza el solapamiento y, en consecuencia, acelera la ejecución y permite una mayor tolerancia a las reducciones de ancho de banda. Aún así, en el caso de cargas de trabajo científico realistas, mostramos que el potencial de solapamiento está significativamente limitado por el patrón según el cual cada proceso MPI opera localmente en el paso de mensajes. En la segunda parte de esta tesis, exploramos el potencial para calibrar el paralelismo híbrido MPI/OmpSs. Intentamos obtener una comprensión mejor del paralelismo de aplicaciones híbridas MPI/OmpSs para evaluar de qué manera se ejecutarían en futuras máquinas. Exploramos como las aplicaciones MPI/OmpSs pueden escalar en una máquina paralela con centenares de núcleos por nodo. Además, investigamos cómo este paralelismo de cada nodo se reflejaría en las restricciones de la red de comunicación. En especia, nos concentramos en identificar secciones críticas de código en MPI/OmpSs. Hemos concebido una técnica que rápidamente evalúa, para una aplicación MPI/OmpSs dada y la máquina objetivo seleccionada, qué sección de código tendría que ser optimizada para obtener la mayor ganancia de rendimiento. También estudiamos técnicas para explorar rápidamente el paralelismo potencial de OmpSs inherente en las aplicaciones. Proporcionamos mecanismos para evaluar fácilmente el paralelismo potencial de cualquier descomposición en tareas. Además, describimos una aproximación iterativa para buscar una descomposición en tareas que mostrará el suficiente paralelismo en la máquina objetivo dada. Para finalizar, exploramos el potencial para automatizar la aproximación iterativa. En el trabajo expuesto en esta tesis hemos diseñado herramientas que pueden ser útiles para otros investigadores de este campo. La más avanzada es Tareador, una herramienta para ayudar a migrar aplicaciones al modelo de programación MPI/OmpSs. Tareador proporciona una interfaz simple para proponer una descomposición del código en tareas OmpSs. Tareador también calcula dinámicamente las dependencias de datos entre las tareas anotadas, y automáticamente estima el potencial de paralelización OmpSs. Por último, Tareador da indicaciones adicionales sobre como completar el proceso de migración a OmpSs. Tareador ya se ha mostrado útil al ser incluido en las clases de programación de la UPC

    Auto-Pipe and the X Language: A Toolset and Language for the Simulation, Analysis, and Synthesis of Heterogeneous Pipelined Architectures, Master\u27s Thesis, August 2006

    Get PDF
    Pipelining an algorithmis a popularmethod of increasing the performance of many computation-intensive applications. Often, one wants to form pipelines composed mostly of commonly used simple building blocks such as DSP components, simple math operations, encryption, or pattern matching stages. Additionally, one may desire to map these processing tasks to different computational resources based on their relative performance attributes (e.g., DSP operations on an FPGA). Auto-Pipe is composed of the X Language, a flexible interface language that aids the description of complex dataflow topologies (including pipelines); X-Com, a compiler for the X Language; X-Sim, a tool for modeling pipelined architectures based on measured, simulated, or derived task and communications behavior; X-Opt, a tool to optimize X applications under various metrics; and X-Dep, a tool for the automatic deployment of X-Com- or X-Sim-generated applications to real or simulated devices. This thesis presents an overview of the Auto-Pipe system, the design and use of the X Language, and an implementation of X-Com. Applications developed using the X Language are presented which demonstrate the effectiveness of describing algorithms using X, and the effectiveness of the Auto-Pipe development flow in analyzing and improving the performance of an application
    • …
    corecore