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Pipelining an algorithm is a popular method of increasing the performance of many compu-
tation-intensive applications. Often, one wants to form pipelines composed mostly of
commonly used simple building blocks such as DSP components, simple math opera-
tions, encryption, or pattern matching stages. Additionally, one may desire to map these
processing tasks to different computational resources based on their relative performance
attributes (e.g., DSP operations on an FPGA).

Auto-Pipe is composed of the X Language, a flexible interface language that aids the
description of complex dataflow topologies (including pipelines); X-Com, a compiler for
the X Language; X-Sim, a tool for modeling pipelined architectures based on measured,
simulated, or derived task and communications behavior; X-Opt, a tool to optimize X
applications under various metrics; and X-Dep, a tool for the automatic deployment of
X-Com- or X-Sim-generated applications to real or simulated devices.

This thesis presents an overview of the Auto-Pipe system, the design and use of the X
Language, and an implementation of X-Com. Applications developed using the X Lan-
guage are presented which demonstrate the effectiveness of describing algorithms using
X, and the effectiveness of the Auto-Pipe development flow in analyzing and improving
the performance of an application.
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1

Chapter 1

Introduction

This thesis introduces Auto-Pipe, a toolset and development environment that aids the

creation of applications developed in a pipelined and/or parallel manner. Tools are pro-

vided to analyze performance and explore the many options in the design space. These

options include, for example, the use of both real and hypothetical processing devices and

connection topologies.

The X Language has been created to express the applications that use the Auto-Pipe tools.

Analyses of these applications are performed with the X-Sim tool, a federated simulation

environment which uses the X Language compiler. An optimization tool tentatively called

X-Opt is proposed to find optimal mappings of algorithms onto complex sets of intercon-

nected processing platforms and explore the design space. The capabilities and use of the

X Language, X-Sim, and X-Opt are presented herein.

This chapter investigates the background and motivation for creating a new language and

a new toolset. A set of prior work in this area is reviewed, including projects with similar

techniques but dissimilar goals, some of which are complementary to the Auto-Pipe sys-

tem. The design of the Auto-Pipe system and contributions thus far are discussed broadly

as an introduction to the detailed discussion of the X Language and compiler found in the

following chapter. An outline of the thesis is provided at the end of the chapter.
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1.1 Background

Auto-Pipe is a development environment concentrating on high-performance applications.

Auto-Pipe aids developers in creating and understanding applications distributed across

multiple, potentially dissimilar computational nodes and interconnection resources.

Such applications are easily found in many areas of science and industry, including:

• Networking and communications

• Scientific computing, including real-time experimentation and offline data analysis

• Media creation and playback

• Data mining

The process of creating an efficient implementation of a given application can be broken

into the following components:

1. Develop the algorithm:

(a) Identify the tasks involved in the computation and program control.

(b) Determine the communication structure of these tasks.

(c) Implement (e.g., in C, C++, VHDL, etc.) the tasks as needed.

(d) Evaluate the implementation’s correctness by executing the algorithm on a sim-

plified platform, such as a development machine.

2. Identify the computation resources (CRs) on which the application tasks may be de-

ployed.

3. Identify potential communication topologies of these resources, specifically the inter-

connect resources (IRs) connecting sets of CRs.

4. Determine a mapping of the application tasks and communications onto the CRs and

IRs. This mapping must be valid, thus it must:
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• map all tasks and communications to compatible CRs and IRs in the topology,

• not exceed the resource limitations of any CR or IR, and

• map tasks in a manner that satisfies algorithm requirements for correctness.

5. Implement the mapping, creating the code to connect the tasks using the available

IRs.

6. Execute the implementation and analyze the performance. Execution here may take

place on real CRs and IRs, simulations of CRs and IRs, or a combination of both.

7. As needed, improve the application’s performance based on the analysis of 6 by

redoing the mapping in step 4, and repeating the subsequent steps.

As will be described in Section 1.3, the X Language enables expression of steps 1 through

4 above. Auto-Pipe tools then perform the remaining steps. The following discussion will

examine, at a high level, the process described above.

Dataflow languages are languages that express an algorithm in terms of the flow of data

between connected tasks with precise interfaces. The algorithm portion of the X Language

can be considered as a dataflow language. Tasks in such a language can form a partially

ordered set of data dependencies. This set is naturally visualized as a directed graph.

Task 1

Task 5

Task 7Task 6Task 4b

Task 3b

Task 4a

Task 3a

Task 2

Figure 1.1: An example application dataflow

An example of such a directed graph is shown in Figure 1.1. This graph can be used to

determine valid task execution schedules — for instance, Task 2 cannot run until Task 1

has completed, and Task 5 will depend on the output of at least one of Task 1 or Task 2, and
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possibly both. To completely understand the algorithm, though, additional information is

needed. The semantics of both tasks and edges must be known — does Task 1 produce data

on both of its outputs, or just one or the other? And does Task 6 consume the three forward

inputs at the same time, or individually? Furthermore, the feedback loop edge that connects

Task 7 to Task 6 can clearly present a scheduling challenge, and may even introduce the

risk of deadlock.

In this thesis, only feed-forward pipelines are considered. More advanced techniques may

be employed to deal with topologies containing feedback loops, however these will not be

presented in this thesis. A feed-forward pipeline is a sequence of tasks that contains only

forward-directed edges; no edges may connect to tasks occuring earlier in the sequence.

These pipelines may be expressed as acyclic directed graphs.

Task 6Task 3

Task 2 Task 5

Task 1 Task 4

Figure 1.2: An example feed-forward pipeline

Figure 1.2 shows a simple pipeline of six tasks that will be used as an example. The process

of determining what tasks 1 through 6 do, and how they are connected, is equivalent to

steps 1(a) and 1(b) in the procedure from page 2. To create an executable application from

this pipeline, the processing architecture must also be determined.

Processing architectures are graphs of connected computation resources (CRs). A CR is a

generic term for a device that is capable of performing tasks, and includes general pur-

pose processors (e.g., the Intel x86 series), embedded processors, network processors, field-

programmable gate arrays (FPGAs), digital signal processors, and others. Identifying the

CRs on which the user may potentially place the algorithm constitutes step 2 of the overall

procedure.
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Processor

Processor

Processor

FPGA

FPGA

Network System Bus

Figure 1.3: An example processing architecture

Also important to the behavior of a processing architecture are the connections, or inter-

connect resources (IRs). Identifying the IRs corresponds to step 3 of the application devel-

opment process. IRs can be one-way or bidirectional, and can be point-to-point or shared.

Sometimes processors are not directly connected to each other, but rather communication

must be forwarded over one or more other processors. Additionally, real-world connec-

tion fabrics can be almost arbitrarily complex when resource sharing, non-uniform access,

non-deterministic performance (such as the Internet), and other behaviors are taken into

account.

An example of a processing architecture is given in Figure 1.3. In this figure, three pro-

cessors share a switched network. Another two CRs, FPGAs, are connected to one of the

processors using a system bus. For this example, it will be assumed that the processors

are roughly equivalent when performing the same operations, while the FPGAs may have

very different performance for the same task.

Mapping is the operation of assigning a specific task to a CR, or a specific interconnecting

edge to an IR. A complete mapping of an application involves performing this step for ev-

ery task and edge. In order to implement and execute an application, a complete mapping

must be performed. Determination of a mapping is step 4 of the development procedure

and completes the X Language program description.
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The choice of a “good” mapping can become quite difficult, both in a computation sense

(the minimum parallel processor total flow time problem is NP-Hard [19]) and in choos-

ing the proper method and performance metric to evaluate what constitutes a “good”

mapping. In general, a good mapping choice cannot simply consider the best resource

available for a single task, due to a large number of conflicting factors such as:

• Relative performance of each task on different resources

• Relative performance of the different interconnections

• Resource contention within the processing resources

• Resource contention within the interconnection resources

System

Task 6

Task 4

Task 5

Task 3

Task 2

Task 1

FPGAProcessor
Bus

Figure 1.4: An example of mapping the algorithm to the processing architecture

Figure 1.4 demonstrates one potential mapping of the example application onto the exam-

ple architecture. In this example, tasks 1, 2, and 3 have been mapped to one FPGA, and

tasks 4, 5, and 6 have been mapped to the first processor. This mapping causes task 3 to

communicate with tasks 4 and 5 over the system bus, while other task communications

take place within the processor; in an FPGA, this might be a simple handshaking protocol,

and on a processor this could be a function call or a job queue.

Figure 1.5 demonstrates another possible mapping of the same application and architec-

ture. In this example, the tasks have been distributed more evenly across the processors.
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Network

Task 4

Task 5

Task 1

Task 2

Task 3

Task 6

FPGAProcessor
Bus

System

Figure 1.5: Another example of mapping the algorithm to the processing architecture

Depending on their relative performance, this may cause the tasks to execute more effi-

ciently than in the first mapping; execution of tasks 4 and 5 have been distributed to two

processors, and there is more potential for parallel task execution.

Note that the second mapping may not actually perform better than the first, even with

better distribution of computation since there is much more communication over the net-

work interconnect. Communication overhead, especially over the shared link, may offset

the faster computation. This demonstrates a common tradeoff that occurs in parallel com-

puting — the balancing of algorithmic parallelism versus the reduction of communications

overhead. Determining which mapping results in higher overall performance requires

consideration of the overall system performance including the performance of each task

and communication link in the system. This analysis is performed in step 6 (page 3), and

the results are used for step 7, which regenerates the mapping to improve performance.

A second level of resource association called binding is considered later. Binding concerns

the deployment of CRs and IRs onto particular real-world devices (or simulations/emula-

tions of such devices). Mechanisms to bind and deploy are not examined in depth in this

thesis; our approach to this operation will be briefly discussed in Chapter 3.
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The performance of streaming applications are generally evaluated in terms of two met-

rics: latency, the time from input to output of time-sensitive data, and throughput, the quan-

tity of data processed per unit time. Other metrics such as power consumption and total

implementation costs are also used. This thesis concentrates primarily on maximizing

throughput, which is often the most important metric in high-performance applications

without strict latency requirements.

1.2 Motivation

Auto-Pipe was created to overcome several difficulties in developing applications that are

distributed across diverse computational nodes, particularly those that benefit from being

decomposed into pipelines and other parallel structures.

The difficulties addressed by Auto-Pipe include:

• Implementing an application expressed in both hardware and software program-

ming languages (often referred to as hardware/software co-design), or multiple soft-

ware languages, is awkward and error-prone.

• Debugging and simulating such a mixed infrastructure (co-simulation or federation

simulation) to ensure functional correctness.

• Developing efficient communication interfaces to transport data between CRs. This

is tedious, time-consuming, and often unnecessarily repeats work done by others.

• Measuring the implications of different CR partitionings, performance-area trade-

offs, performance-memory tradeoffs, and various mappings. This is generally time-

consuming and lacks sufficient tool support.

• Optimizing system performance over a large design space.

Due to these obstacles, designers are presently faced with a set of choices:
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• Put a large amount of effort into developing, debugging, and optimizing the appli-

cation across multiple platforms: This approach requires time, money, and program-

mers skilled in developing and optimizing for each of the platforms used.

• Limit the application to only general purpose CPU platforms for which development

tools are available and which tend to be less expensive and easier: This results in

an implementation that may not fully exploit the speed and unique performance

capabilities of general purpose processors, programmable hardware (e.g. FPGAs),

and special-purpose CPUs (e.g. DSPs).

• Limit the simulation and optimization of the co-designed system: This also may re-

duce the performance of the application. Developers choosing this option are often

left with a system having unpredictable performance, and for which development

efforts may concentrate on the wrong set of components.

In each of these choices, the developer ends up with a limited implementation of the ap-

plication that cannot be easily extended to new processing platforms.

Auto-Pipe is an option that provides developers with a rich set of development and anal-

ysis tools to overcome these obstacles. It also provides an infrastructure to easily add

support for new platforms and efficient communications links.

1.3 The Auto-Pipe System

The Auto-Pipe system and its components were created to aid developers of streaming

applications. Auto-Pipe comprises a set of tools, compiler-level libraries, and user-level

libraries to create an environment for the development of individual applications.

The three primary tool components are discussed below: the compiler, the simulation en-

vironment, and the performance optimizer. The X Language and compiler are the main

subject of this thesis; the simulator and optimizer are currently under development and

only their preliminary design is introduced here.
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1.3.1 The X Language and Compiler

The primary means of expressing the programs created and analyzed using Auto-Pipe is

the X Language. While its compiler, X-Com, does not depend on other Auto-Pipe tools, X

has been developed specifically for the Auto-Pipe system and application development is

greatly enhanced by use of its tools. The X Language is a coarse-grained dataflow coor-

dination language where the actual tasks are expressed and executed utilizing other tra-

ditional and non-traditional programming languages. X programs describe a hierarchy of

tasks, called blocks, and the interconnections of their interfaces, called edges. The language

also provides a syntax to describe classes of computation resources on which tasks are to

eventually execute and to describe the specific instances of these resources. A block-to-CR

mapping may then be specified to indicate on which resources the tasks are to execute. The

X Language has syntax to place portions of the application on different CRs, and easily

change this allocation in order to explore the performance of the system under different

partitionings.

As part of X-Com, an internal interface has been developed to connect modules that per-

form code generation. This interface is easily extended so that users can target new devices

and languages without changing the dataflow synthesis and analysis details that form the

core of X-Com and other tools.

Application programmer interfaces (APIs) have been created for a variety of programming

environments to allow users to create their own blocks which can be used by X. Particular

attention has been paid to the usability of these interfaces, as it is expected that most users

of X and Auto-Pipe will want to create their own blocks for application-specific tasks (such

as sensor or database I/O).

The output of X-Com is a set of “almost executable” source code files corresponding to each

CR in the processing architecture. A second tool, X-Dep, the X application deployer, is used

to perform the final linking steps and deploy the application to real hardware devices or

simulations (or emulations) of devices. This tool does not affect the actual behavior of the
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generated executable; it only makes the X-Com-generated code deployable to its intended

real target. X-Dep is discussed further in Section 3.2.

1.3.2 The X-Sim Simulation Environment

Another core component of the Auto-Pipe toolset is X-Sim, a simulator for X applications

partitioned across multiple simulated devices. X-Sim incorporates software and hardware

simulations (of various fidelity) to characterize the performance of the system and of in-

dividual blocks, edges, and interconnects. These characteristics can be interpreted by the

designer (using analysis tools) to locate performance bottlenecks and motivate design de-

cisions. X-Sim also permits the testing of hypothetical devices and topologies to further

drive the design process.

X-Sim comprises a set of steps surrounding the X compiler. When performing an X-Sim

simulation, “simulation bindings” are passed to X-Com that indicate which components

are to be simulated, along with the type of simulator and potential simulation options. For

instance, the C generator might support simulation using either native processor execution

or execution under SimpleScalar [5], where the latter could be passed options indicating

what degree of simulation fidelity is desired. The output of X-Com is a set of code that may

be directly compiled, cross-compiled, or specially linked (depending on the requirements

of the simulator) through binding.

The code generated by the simulation-bound applications uses a simulation-mode inter-

connect mechanism. This mechanism uses an intermediate data file to store the data trans-

mitted along an edge; this common format permits communication between different sim-

ulators. Depending on the simulation environment, it may also generate a file containing

processing times and potentially other run-time information (e.g., instantaneous power,

cache misses, etc.). After each intermediate data set is written, X-Sim uses a communi-

cation model corresponding to the edge’s IR to model the time delay before the data is

available to the receiving block. A second timestamp file is generated that reflects the

transmission delay, and the data and timestamps are then provided to the simulator of the
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receiving block. Since simulators of widely varying quality are supported, the simulator

might or might not actually make use of the timestamps.

X-Sim is used to gather performance statistics and processing characteristics for each sim-

ulated device, to better understand the execution of the application. X-Sim will also be

used with a performance analysis tool to further examine and optimize the data flow. This

analysis is then used with the third major component of Auto-Pipe, the X-Opt performance

optimizer, which is described in the following section.

1.3.3 The X-Opt System Performance Optimizer

The final main piece of the Auto-Pipe toolset is X-Opt, an optimizer for X applications.

Given a feed-forward pipelined, streaming application, X-Opt will use a combination of

the simulator and a throughput (or latency) optimization algorithm to find optimal or

near-optimal task-to-CR and CR-to-device allocations.

StatisticsStats Lib

Communication

Model Library

X-Opt X-Sim

MappingResource

Allocation

Algorithm

X-Compiler

Run Simulations

Generate

Statistics

Statistics

Collector

Complete 

Statistics

X-Analysis

Analysis 

Timestamp

Files

Timestamp

Files

X-Algorithm

Resource List

Input Data

Compiled 

Executables

Source Files

Results

Sim. Binding

Figure 1.6: X-Opt Flow Chart
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Figure 1.6 diagrams the design of X-Opt and its connection with X-Sim. X-Opt (or the user)

creates an initial mapping and binding of blocks and edges to devices which are then sim-

ulated using X-Sim. X-Opt is responsible for ensuring that this mapping-binding is valid,

with all blocks and edges properly mapped to resources. After gathering and analyzing

statistics for this mapping, X-Opt revises its mapping-binding and repeats the simulation.

This continues until a satisfactory result or some other end condition is reached.

This thesis does not deal directly with implementation of X-Opt and X-Sim. To demon-

strate overall system capabilities, the “resource allocation algorithm” block for examples

presented here utilize a human trial-and-error approach. The goal, however, is to eventu-

ally have a largely automated computer algorithm.

1.3.4 Auto-Pipe Development Flows

The X Language is open-ended and the Auto-Pipe tools permit the user to approach devel-

opment of an application in a number of ways. There are four progressively more thorough

development procedures or “flows” for the Auto-Pipe system discussed here which most

users will likely use or expand upon for their development.

Proceed to next 

development stage

Revise algorithm for correctness

Block implementations

no

yes

Algorithm

X Language

Correct?

User

Code
User

Code
User

Code

User

Code
User

Code
Lib.

Code

X-Com .c gcc Run

Figure 1.7: X-Com algorithm design flow

The most basic flow is depicted in Figure 1.7. Here, the user first creates an X Language

file containing their algorithm partitioned into X blocks which are implemented in C (the
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default for testing). This algorithm instantiates blocks from the available libraries and

any user-defined blocks that are needed. X-Com processes the file and creates a top-level

source file that can be compiled to a single-threaded executable that runs on the native ma-

chine. The user examines the output for functional correctness, redesigning the algorithm

as necessary, until a implementation has been created that is correct.

Note that this flow does not yet create hardware components, nor does it use multiple

computational resources. In general, block implementations are easier to write, test, and

debug when written in software using single-threaded execution. Most users will desire to

first develop their overall algorithm using this model, before introducing the complexities

of hardware device programming and concurrent execution. It may not be desirable to

directly deploy the result of this flow, as the generated program does not take advantage

of any degree of parallelism. Rather, this is a useful initial testing stage before proceeding

further.
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Figure 1.8: X-Com flow
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The Figure 1.8 X-Com flow introduces user-selected processing architectures. In this flow,

X-Com creates a top-level source file for each CR in an appropriate language (this mech-

anism is described in Chapter 2). Compilation of the generated source files is done us-

ing the appropriate language compiler for the target system, which may necessitate cross-

compilation. After compiling, the user can deploy the finished application onto real com-

pute and interconnect resources, execute the distributed application, and examine the out-

put for correctness.

Revise algorithm for correctness

Revise mapping for performance

Processing 
Architecture

Algorithm
Compile

Finish

X-Sim Compile

Real

Bindings

User

Code
User

Code
User

Code

User

Code
User

Code
Lib.

Code

Simulation
Bindings

Resource
mapping

bad

good
Check
Perf.

no

Correct?
yes

Figure 1.9: X-Com plus X-Sim flow
“Compile” incorporates X-Com and the compiler steps depicted in Figure 1.8

The first performance-improving flow involves the X-Sim simulator, depicted in Figure 1.9.

In this flow, compilation proceeds as before, except that the generated programs are bound

to simulated environments instead of real devices. This causes X-Com to create simulation-

mode source files that enable X-Sim to analyze the communications between blocks and

run the executables on simulation platforms (such as SimpleScalar [5] or ModelSim [6]). As

before, the generated source files are compiled using their respective compiler, potentially

a cross-compiler or hardware synthesis tool. In addition to the correctness check as in the

previous flow, the user may also examine the X-Sim performance report, which will give

insight into what components of the processing architecture are potential performance

bottlenecks. From this information, the user may attempt to revise the mappings to achieve
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greater performance, such as by improving the task partitioning. Once performance is

satisfactory, the simulation bindings are replaced with their “real” equivalents so that a

deployable set of executables are created.

Revise algorithm for correctness
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Figure 1.10: X-Com plus X-Sim plus X-Opt flow

Figure 1.10 modifies the flow of Figure 1.9 by replacing the user performance check with

the X-Opt tool. X-Opt will explore the design space and be capable of quickly checking

different performance characteristics. X-Opt will continually revise the mappings to test

different configurations, until an end condition specified by the user is met (such as a

minimum performance requirement or maximum exploration time).

1.4 Related Work

The sequential programming model is widely understood to be the most basic and ubiq-

uitous way to develop an application on present-day machines. Other models exist, how-

ever, to exploit the physical and logical parallelism present on many modern processing

platforms and thus potentially achieve higher performance.
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Dataflow is a programming model that delineates the parallelism available in a program.

Originally, dataflow was developed to exploit the massive parallelism available in some

applications. It does this by departing from the globally updated memory model which

had become a bottleneck for traditional von Neumann processors [16]. In dataflow, an

application is expressed as a directed graph of processing tasks, each with all its inputs and

outputs explicitly provided. In fine-grain dataflow, these tasks may be single instructions

or logic operations. In coarse-grain (also called large-grain) dataflow, these tasks may be

arbitrarily more complex, but usually describe a single high-level operation that is not

efficiently or conveniently broken into smaller pieces [24].

Whereas early work concentrated on fine-grain dataflow to replace the classic von Neu-

mann architecture, later work recognized that practically, better performance was reached

on traditional machines through hybrid approaches, which use coarse-grain dataflow to

direct internally von Neumann processes [25]. Modern dataflow architectures, especially

in the digital signal processing (DSP) domain, have seen benefits from using such a hy-

brid approach [3]. Recently, Johnston, et al. have suggested that coarse-grain approaches

“[offer] the most potential for improvements to dataflow programming” [16].

Dataflow languages tend to have many advantages, as well as limitations. By explicitly

specifying the inputs and outputs of every task, the flow of data through the application

may be optimized, which allows for an effective allocation of operations to resources. Cer-

tain applications, particularly DSP and audio/video media processing are easily expressed

using dataflow, and several dataflow languages exist in these domains [12, 23, 33, 21].

Additionally, dataflow lends itself to visualization, which has a positive effect on the com-

municability of dataflow programs even to those not familiar with the language. This has

led to the popularity of data flow visual programming languages (DFVPLs) such as Lab-

View [14] with researchers in the natural sciences.

A recent development in dataflow has been the recognition of the streaming application

domain. These are applications that operate on large sequential “streams” of consistently

formed data such as audio, video, radio-frequency communications, network traffic, and
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sensor network readings. The authors of the StreamIt language ascribe the following char-

acteristics to streaming applications (paraphrased from [28]):

• The application operates on large or virtually infinite sequences of data.

• The algorithm performs a sequence of independent, self-contained transformation

“filters” on the stream.

• The algorithm operates in a stable computation pattern, where the set of filters are

“repeatedly applied in a regular, predictable order”.

• The application will occasionally pass out-of-stream communications, such as error

messages or changes to run-time configurations such as volume settings or filter co-

efficients.

• Users of the application expect high performance, in terms of resource efficiency,

throughput, and latency.

Note that while this list is generally accurate, not all streaming applications rely on all

these characteristics. Many limit or avoid the amount of out-of-stream communications

passed through the system in order to simplify the portion of the application that needs

to be fine-tuned. Also, it is quite common to leverage an increase in end-to-end latency in

order to get an improvement in throughput through the use of pipelining techniques.

Given a sequential series of tasks and a pipeline of computation resources, it is possible

to optimize the mapping of tasks to resources based on the performance (modeled or pro-

filed) of each task. A variety of algorithms to perform this optimization in the context

of network processors is presented in [7]. These algorithms are generalizable to the het-

erogenous systems supported in Auto-Pipe. Similar algorithms may be able to optimize

for other metrics such as those mentioned in Section 1.1.

In order to optimize a mapping as mentioned above without a combinatorial explosion

(every input data set, and every assignment of task to resource), the system must be mod-

eled with certain assumptions. These analytically-based models can take many forms, the
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simplest and most common of which assumes that every task takes a different but con-

stant time to perform its operation. This model, which often uses the mean value of the

task execution time (and is thus called the “mean value model”), is often sufficient when

task execution times have low variance. This simple model may also be extended [18]

to support tasks with arbitrary degrees of processing time variance and covariances with

other tasks. Additional models are needed to take into account data-correlated processing

times and other complexities.

Auto-Pipe incorporates a wide set of features from many areas of computer technology.

Thus, Auto-Pipe and the X Language share features with many related projects, both com-

mercial and academic. The X Language has common goals with a diverse range of pro-

gramming languages in the linguistic domains of dataflow, hardware description, simu-

lation, and application-specific codesign. However, X is the only language to date that

incorporates the broad set of features discussed below. Further empowered by X-Sim and

X-Opt, the Auto-Pipe system builds on previous work in pipeline optimization.

Table 1.1 provides an overview of selected related projects, including languages, compi-

lation tools, and design environments. Check marks (
√

) indicate that the project (row)

possesses that feature (column). The “Language” heading lists the languages (or language

types) supplied by the user when creating applications. When multiple languages are

used for different purposes within the project environment, the design or coordination

language (or languange type) is listed first, followed by the implementation language(s).

“Visual” refers to whether the dataflow graphs are visualized and/or edited through a

graphical interface; “in” here means that dataflow graphs are input and edited visually,

and “out” means that dataflow graphs may be visualized. “SW Gen” and “HW Gen”

specify whether the parser or other tools can create components that are deployable to

software or hardware using the application description. “Sim[ulation],” “Perf[ormance]

Ana[lysis],” and “Optimization” indicate if the project supports reasonably useful algo-

rithm simulation, application performance analysis, and analysis-based algorithm opti-

mization, respectively.
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Table 1.1: Overview of related projects

Project name Language(s) Visual SW HW Het. Sim. Perf. Optim-
(design; impl) in/out gen. gen. codes. ana. ization

GLU functional; C
√

Ptolemy scripted; C, asm
√

/
√ √ √ √ √

PtolemyII XML; Java
√

/
√

*
√ √ √

LabView visual only
√

/
√ √

*
√

*

StreamC C++-like; C++
√ √ √ √

StreamIt C++-like; C /
√ √ √ √ √

X-Com only X; C, VHDL, ... /
√ √ √ √

Auto-Pipe as above /
√ √ √ √ √ √ √

* See text for details.

Granular Lucid or GLU [15] is a language that, similar to X, employs a hybrid dataflow-

procedural structure. Rather than use a simple structural language, however, GLU uses

Lucid as its coordinating language. Lucid [2] is a functional dataflow language whereby

function evaluations form the “flow” of the data. GLU uses the concurrency and control

mechanisms of Lucid, but with procedurally defined (written in C) basic functions and

datatypes. As a functional language, GLU’s coordination syntax is more sophisticated

than X at expressing control flow. However, this is at some detriment to large or deep

algorithms, or those with high flow complexity such as highly branched topologies.

Ptolemy II [8] is “a set of Java packages supporting heterogeneous, concurrent modeling

and design.” It supports the simulation of a number of computation model domains, in-

cluding dataflow, discrete-event and continuous-time systems, finite state machines, and

process networks, and many other domains and sub-domains. Ptolemy II uses a GUI

called Vergil to create XML descriptions of interconnected tasks. These tasks, or “actors,”

are implemented using Java, and are invoked by the appropriately scheduled calls from

customized computation model domain controllers. Some work on code generation from

Ptolemy II models does exist [29], but it is not a primary goal of Ptolemy II, and the gener-

ators neither concentrate on high performance, nor do they yet support any targets other

than a desktop Java environment. Ptolemy II is a very vast, complex, and diverse en-

vironment, encompassing many different development and research goals as well as the

different computation models.
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Ptolemy [27], or Ptolemy Classic, is a predecessor to (but not a previous version of) the

Ptolemy II project. Ptolemy was created to aid development of embedded processing en-

vironments, particularly digital signal processing. Ptolemy is capable of generating code

for a number of platforms; implemented generators exist for C, C++, VHDL (incomplete),

and DSP assembly (on the Texas Instruments 320 series) targets. A variety of computation

models are supported for simulations, however code generation targets may only use tra-

ditional data flow and some close derivatives. Ptolemy is now fairly dated, and execution

of the tools are only supported on the Solaris and HP-UX operating systems. Ptolemy is

not as complex as Ptolemy II, but it still encompasses an entire design methodology rather

than just a combination of traditional tools.

LabView [14] is a popular proprietary programming environment among scientists and

engineers. Users design dataflow graphs using the graphical language “G,” where the

tasks can be of varying degrees of complexity from simple adders to robust data visual-

ization modules. Interconnects can contain the traditional set of scalar and array integer

and floating point values as well dynamic types such as key→value maps. LabView pro-

grams are edited and executed in real-time, and offer performance not far from traditional

procedural languages. The interface is intuitive for many applications such as DSP and

sensor visualization, and is relatively quite easy to use — to the point that many proficient

LabView users have little or no procedural programming experience. Recently, National

Instruments (the creator of LabView) has developed a set of FPGA development boards

and software support to target LabView designs to these devices.

StreamC [11] and StreamIt [28] are two projects that focus on the design of efficient stream-

ing applications. Each language uses a different expansion of C++-style syntax to express

interconnected tasks (“kernels” in StreamC of “filters” in StreamIt), which are expressed in

line with the coordination language. The languages support common stream-related con-

cepts such as synchronous dataflow consumption/production ratios, array composition

and dimensions, and data access strides. Also of note is that each language was, in part,

designed to aid development of a particular streaming multi-processor. StreamC can thus

create parallel assembly code for the Stanford Imagine [1] processor, while StreamIt can
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generate parallel C code for the MIT RAW processor. Additionally, a StreamC-to-FPGA

compiler exists [11] that targets a particular FPGA development board, and makes use of

some of the basic optimization techniques available to the main StreamC compiler.

The stream optimization procedures that X-Opt will support are very similar to those em-

ployed by StreamC and StreamIt. X-Opt will have to support more complex, heteroge-

neous systems and irregular (not just synchronous data flow) tasks, thus it will require

somewhat more complicated modeling and analysis techniques. X-Opt will also support

optimization over metrics beyond mean-value throughput.

X is unique as a coordination language that strives to support the high-performance, concur-

rent execution of an assortment of implementation languages on arbitrary combinations of

resources. X, and thus the Auto-Pipe system, is as powerful and as capable as the platforms

that it can support through the X-Com code generators. It is important that X-Com and

the Auto-Pipe system as a whole grow to support more platforms as new languages and

resources are developed.

Streaming programming languages can be expected to gain popularity as they become

more robust and support a greater number of platforms, especially non-traditional com-

putation resources such as graphics processors [4]. Current streaming languages use the

data flow computation model, so a one-to-one relationship can be established between,

for example, the StreamC task interface and X’s task interface. Therefore, they have the

potential of becoming a favorable X task implementation language for individual blocks

or even compound blocks.

1.5 Overview of Thesis

This thesis presents the X Language and the X Language compiler, a significant subset of

the Auto-Pipe design environment. Chapter 2 contains a discussion of the goals and de-

sign of Language X, and a formal specification of the X Language. Chapter 3 presents an



23

overview of the software components used by the X Compiler. In Chapter 4, sample X ap-

plications are provided and analyzed. Chapter 5 summarizes the contributions associated

with this thesis, and future work that needs to be completed to fully reach the goals of the

Auto-Pipe system.
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Chapter 2

The X Language

The X Language is a dataflow coordination language specifically designed to incorporate

traditionally programmed tasks developed for a wide variety of processing platforms, both

software and hardware.

This chapter introduces the X Language in four parts. Section 2.1 discusses the goals which

have guided the design of the X Language. Section 2.2 walks through the language in an

increasingly complex manner to introduce the language in a practical manner. The last

two sections are provided for reference and present a more detailed explanation of the

language. Section 2.3 is a glossary of terminology that is used in the X Language. Finally,

Section 2.4 contains a formal specification of the language.

2.1 Goals

The X Language was developed to meet the needs of domain-specific developers that have

experience using traditional procedural languages. These users could be, for instance, re-

searchers in the natural sciences who are competent in basic scientific C programming, but

do not have detailed experience in developing and debugging inter-procedure communi-

cations and optimizing queuing systems.

There are three primary goals that have driven development of the X Language:



25

• The first main goal is that of aiding the user in expressing a wide variety of algorithms,

resource types, and resource architectures. This goal also includes the converse of not

trying not to impede the user’s ability to express task and resource structures in the

domains we support.

• The second main goal involves making X easy to use. Given the high degree of expres-

siveness of X, this goal requires that it be relatively easy to exercise the capabilities of

the language. This applies not just to the ease with which the user writes X Language

files, but also how easy it is to write modules that interact with the language (such

as new resources and task implementations), and how clear and understandable the

procedures are from a user’s point of view.

• The third main driving goal is the support of using X to develop high-performance

applications. It is expected that many users of X and the Auto-Pipe system will be

seeking to improve the realized performance compared to traditional programming

languages and processing devices.

The goal of linguistic expressiveness takes many forms in the X Language. An important

and unique feature of the language is its ability to express complex architectures of diverse

computation and interconnection resources. Particular attention was given to support de-

velopment and deployment to both heterogeneous (e.g., FPGA and GPP) and widely par-

allel (e.g., clusters) processing architectures, especially algorithms organized in a pipelined

manner. Additionally, X expresses complex topologies of resources, supporting the wide

and deep hierarchies of resource interconnections found in real-life architectures.

An intuitive syntax which takes advantage of the well-organized nature of dataflow pro-

grams is an important aspect of the expressiveness of the language. Blocks, resources, and

other entities are created to be parameterizable for convenient reconfiguration of the ap-

plication. Data types are chosen to be easily recognized and understood by inexperienced

programmers, yet support reasonably complex data structures. Also, the X Language is ca-

pable of expressing common simple topological operations such as the splitting/merging

of composite data types into/from multiple edges; it was decided that more complicated
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operations like multiplexing and reordering would be best handled by permitting the user

to define their own blocks.

The X Language enables the goal of easing development by heavily supporting the ex-

ploration of many design decisions. Decisions such as algorithm organization, compo-

nent parameterization, communication topology, and block and link mapping are all easily

changed using the syntax provided by X.

An important aspect of supporting development with reduced effort is the reduction of

tedium in writing X Language descriptions of systems. A balance is found between reduc-

ing the quantity of code needed to express language structures (resulting in fatigue and

“copy-and-paste” errors), and retaining a certain degree of redundancy to prevent mis-

takes. Code reuse — whether extending or just reusing old X modules — is supported to

further reduce development time and tedium.

X has been developed with modestly experienced programmers in mind. These include

developers who are capable of traditional development of domain-specific (e.g., science,

engineering, networking) applications, but would like to improve their performance by

employing less-traditional technologies (e.g., FPGAs), diverse architecture organizations,

and detailed simulation, analysis, and optimization tools.

As discussed in Section 1.4, hybrid dataflow is becoming a particularly favorable approach

to creating high-performance applications. Supporting this approach furthers the goal of

high performance. This involves ensuring that the language does not hinder algorithms

which are appropriately written in a large-grain dataflow manner 1.

While the performance of the task implementations is certainly the most fundamental as-

pect of performance, there are a tremendous number of languages which can be used to

achieve performance at that level. The unique approach of X is that it does not try to

1Some applications benefit from a completely Von Neumann architecture or fine-grain dataflow and are
indeed hindered by large-grain dataflow, however these are outside the domain of this language and are
generally not found in streaming applications. They can still be expressed, however their performance will
not be improved by adjustments at the mapping and communication layer.
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outperform all or indeed any of these implementation languages, and instead seeks to

improve the performance of the coordination of tasks.

Much of the actual performance gain from using X is through the capabilities of X-Opt

and the rest of the Auto-Pipe tools. Since X and Auto-Pipe were developed specifically to

support each other, the performance gains of these two go hand-in-hand.

2.2 Tutorial Walkthrough

Chapter 1 introduced the concepts of tasks, processing architectures, and mapping. Data-

flow graphs are made of a set of interconnected tasks, which combine together to form an

algorithm. A processing architecture is the set of computation resources and interconnect

resources (connecting the CRs) that will execute the tasks and transmit data between the

tasks. The tasks are assigned to resources in the architecture through mapping.

This section will incrementally expose the syntax of the X Language through the use of ex-

amples. This walkthrough contains four sections which will introduce the specification of

algorithms as interconnected blocks, the specification of resources comprising a processing

architecture, and the mapping of an algorithm onto an architecture.

Figure 2.1 is a high-level view of the steps involved in the X Language description portion

of application development. As indicated by the figure, the algorithm and processing

architecture are developed independently, and then brought together through mapping.

Once completely mapped, the X Language description of the application can be compiled,

and the actual block implementations are brought in (this portion is discussed further in

Chapter 3).

Sections 2.2.1 and 2.2.2 present two different algorithm descriptions. Section 2.2.3 presents

a set of resource class hierarchies and instantiates the resources to create a processing ar-

chitecture. Section 2.2.4 introduces the mapping operation and develops two complete

mappings of the Section 2.2.2 algorithm onto the Section 2.2.3 architecture.
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Figure 2.1: Overview of X Language description

2.2.1 A simple algorithm

The key concepts; block, data type, compound block, block instantiation, and edge are discussed

first. This section will create a small algorithm, starting with a single block and expanding

to combinations of blocks. The blocks are combined through the instantiation of multiple

blocks within a compound block, and connecting them together with edges.

RNG y
1 block RNG {
2 output FLOAT32 y;
3 };

Figure 2.2: A basic block

A single block, RNG (i.e., Random Number Generator), is presented in Figure 2.2, along-

side the X Language code used to create it. Blocks are the basic computation elements

expressed in the X Language. Since the actual implementations lie outside the language

description, the only distinguishing characteristic of a block is its identifier (RNG) and its

port specification (output port y, of type FLOAT32).

The block identifier is RNG (line 1), and will be understood here as a random number gener-

ator, although it is up to the actual implementation(s) of the block to agree to the appropri-

ate semantics of how the block functions. The actual implementation may be, for example,

a set of C functions implementing a random number generator. The language support for
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associating implementations with blocks is discussed further in Section 2.4 and in Chapter

3.RNG has one output port, y (line 2) and associated data type, FLOAT32. FLOAT32 is a 32-bit

IEEE floating point type, and it is one of the basic data types supported by the X Language.

For a complete list of basic data types, refer to Section 2.4.4. The port identifier, y, is used

to connect to other blocks, as will be seen later in this section.

Expx f

power

5 block Exp {
6 input FLOAT32 x;
7 output FLOAT32 f;
8 config FLOAT32 power = 1.0;
9 };

Figure 2.3: Another block

Another block, Exp, is defined in a similar manner as RNG (Figure 2.3). The keyword input
on line 6 is used to create an input port, x, much like the output port in the previous

example. Again, the datatype is a FLOAT32 value.

On line 8 is another new keyword, onfig. The onfig statement syntax is much like a

port declaration. It describes a block configuration parameter that is used to parameterize

blocks at compile-time. In this case, power is the name of the configuration option, and it

has been provided a default value of 1.0. The default value is a value that is passed to the

block when no overriding value is specified during instantiation of that block. The default

value is optional; for instance, the �= 1.0� portion could be omitted. In that case, the user

would be required to provide a value for power when instantiating Exp.

Shown with a dashed border in Figure 2.4 is MyRNG, a compound block. A compound block

is one that contain “subblocks” and edges within itself. Note that compound blocks can

still have inputs and outputs, and indeed MyRNG contains a FLOAT32 output named s.MyRNG contains two blocks, gen and square, which have been instantiated on lines 14 and

15. A block instantiation is used inside a compound block to create subblocks of a given

block type and with a unique (to the compound block) identifier (e.g., gen and square).
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gen

MyRNG

RNG

y

Exp

s

2.0

squarex f

11 block MyRNG {
12 output FLOAT32 s;
13

14 RNG gen;
15 Exp square(power=2.0);
16

17 gen.y −> square.x;
18 square.f −> s;
19 };

Figure 2.4: A compound block

Configuration options may be passed to instantiated blocks, using the syntax seen on line

15. If a default configuration option is not available within the subblock, then configura-

tion must be provided.

Edges connect the blocks together, from block output to block input. Line 17 creates an

edge from the y output of the gen block to the x input of the square block. Line 18 creates

an edge from the f output of square and connects it to MyRNG’s output port s.MyRNG is itself a block which can be instantiated like any other, and will behave in accor-

dance with the combination of its subblocks.

mygen

MyRNG

RNG

gen y f s v

Print

pr

App

x

2.0

square

Exp

21 block App {
22 MyRNG mygen;
23 Print pr;
24

25 mygen −> pr;
26 };
27

28 use App;

Figure 2.5: A complete algorithm

Figure 2.5 demonstrates a compound block, App, which contains the previous MyRNG block

and a new block, Print. Because App has neither inputs nor outputs, it may be used as an

algorithm, which here means a fully self-contained arrangement of blocks that implements

an application. The use statement on line 28 tells the compiler to indeed instantiate App in

this manner (i.e., as a complete algorithm).
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Note that the language intentionally requires that all data sources and data sinks are con-

tained and described within the top-level algorithm. Source- and sink-less algorithms can

easily be developed within a compound block, and then attached to various sources and

sinks in a top-level “wrapper” instantiating the filter block.

Notice that on line 25, no ports were specified in edge declaration. This is because X sup-

ports the idea of a default input and/or output port, which may be inferred only when

there is only one port that will function in the given context.The exact same behavior could

have been reached with the explicit statement:

25 mygen.s −> pr.v;

Figure 2.6 provides the full code listing of the above example.

2.2.2 Another algorithm

The key concepts presented in this section include array data type, block array, edge label,

split edge, and merge edge. This section expands upon the block structures in the previous

section by introducing arrays of blocks, edges with array data types, and special edges that

merge/split arrays from/into their individual elements.

Figure 2.7 depicts a more complex algorithm with new language constructs that will be

introduced in this section. The full code listing of this algorithm is available in Figure 2.8.

The Cross block description on lines 5–8 of Figure 2.8 introduces the array data type. Whereas

scalar data are created from a set of X “basic data types,” the ARRAY keyword can create ho-

mogeneous arrays of a specified data type and length. The statement on line 21,

21 output ARRAY<SIGNED8>[2] p;

creates an output port p that is an array of two SIGNED8 values. On line 30, SendData uses

a similar statement to specify its input port, an array of two UNSIGNED32 values.

This example also introduces the block array, used in line 6 of the description of Algo:

6 RunSum sum[2];
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1 block RNG { // generate a normal random number
2 output FLOAT32 y;
3 };
4

5 block Exp { // raise <x> to <power>
6 input FLOAT32 x;
7 output FLOAT32 f;
8 config FLOAT32 power = 2.71828;
9 };

10

11 block MyRNG { // generate a χ
2 random number

12 output FLOAT32 s;
13

14 RNG gen;
15 Exp square(power=2.0);
16

17 gen.y −> square.x;
18 square.f −> s;
19 };
20

21 block App {
22 MyRNG mygen;
23 Print pr;
24

25 mygen −> pr;
26 };
27

28 use App;

Figure 2.6: The complete Section 2.2.1 example
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Figure 2.7: A more complex algorithm
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1 use Algo app;
2

3 block Algo {
4 RNG gen1, gen2; // create two random number generators
5 Cross xprod;
6 RunSum sum[2]; // create an array of two running summers
7 SendData send; // send is a data sink
8

9 ea: gen1 −> xprod.a;
10 eb: gen2 −> xprod.b;
11 ec: xprod =< { sum[1].x, sum[2].x }; // split xprod’s output into two SIGNED8s
12 ec: sum >= send; // merge the two UNSIGNED32s into send’s input
13 };
14

15 block RNG {
16 output FLOAT32 y;
17 };
18

19 block Cross {
20 input FLOAT32 a, b;
21 output ARRAY<SIGNED8>[2] p;
22 };
23

24 block RunSum {
25 input SIGNED8 x;
26 output UNSIGNED32 sum;
27 };
28

29 block SendData {
30 input ARRAY<UNSIGNED32>[2] in;
31 };

Figure 2.8: The complete Section 2.2.2 example
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Lines 9–12 describe the edges in Algo. Note the addition here of edge labels, at the beginning

of each edge construction. The statements ea:, eb:, and e: attach a label, which does not

need to be unique, to each edge. Note that the last two edges are given the same label, e.

These will be used later (Section 2.2.4) to refer to the edges for the mapping operation.

Two new types of edges are introduced in the Algo block description. The first is the split

edge, on line 11.

11 xprod =< { sum[1].x, sum[2].x };

This statement creates an edge from the p (default) output of xprod that splits the data typeARRAY<SIGNED8>[2℄ into its two component SIGNED8 types, providing them to the elements

of the ordered array. That is, the first element of the array goes to the x input of sum[1℄,

and the second element goes to the x input of sum[2℄.

The second new type of edge is the merge edge, seen on line 12.

12 sum >= send;

The merge edge follows similar syntax to the split edge but in reverse, with a list of scalar

outputs provided to an array input. In this case, we use a convenient method to express a

merge edge when the source blocks are all members of the same array. This edge connects

the default sum output of sum[1℄ and sum[2℄ to the default in input of send, which is of

type ARRAY<UNSIGNED32>[2℄. Note that this could instead have been written explicitly to

achieve the same behavior:

12 { sum[1].sum, sum[2].sum } >= send.in;

2.2.3 Platforms, Linktypes, and Resources

This section explores the following key concepts: platform, subclass, linktype, computational

resource, and interconnect resource. The concepts presented here are used to first express

the class-space of computational and interconnect resources, and then to create processing

architectures from such resources.
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HDL_Virtex4

HDL 1 platform HDL;
2

3 platform HDL_Virtex4 : HDL {
4 config STRING part;
5 };

Figure 2.9: Example HDL platform hierarchy

Figure 2.9 shows the declaration of the HDL platform hierarchy. In line 1, the platform
statement informs the compiler that HDL is an available platform. Platforms are classes of

computational resources; that is, all computational resources are an instance of a particular

platform.

On line 3, the HDL_Virtex4 platform is declared as a subclass of the HDL platform. If a

platform is a subclass of another platform, it is capable of implementing anything that its

parent class is able to implement. For instance, if HDL can implement the block Foo, thenHDL_Virtex4 can also implement Foo.

Platforms can contain configuration options using the same syntax used for block config-

uration options. An example of this is on line 4. Here, part identifies a configuration

parameter of type STRING, that must be provided in order to create a resource instance of

the platform. Platform configuration options are used to affect compile-time code gen-

eration. part, for instance, specifies a hardware part description that is used by the HDL

code generator to customize the generated hardware for a particular FPGA device. Default

configurations are also permitted, just like for block configurations.

Figure 2.10 presents a hierarchy of platforms based on the C platform. C_x86 and C_MIPS are

subclasses of the C platform, and C_Pentium4 is a subclass of the C_x86 platform. Thus, an

implementation of a block which has been designed specifically to execute on an instance

of C_x86 will also execute on an instance of C_Pentium4, but not on an instance of C orC_MIPS. The X Language compiler detects permissable mappings and informs the user if

an invalid mapping is attempted.
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C

   C_x86

C_Pentium4

   C_MIPS

10 platform C;
11

12 platform C_x86 : C {
13 config STRING hasMMX = "no";
14 config UNSIGNED16 freq; // in MHz
15 };
16

17 platform C_MIPS : C;
18

19 platform C_Pentium4 : C_x86 {
20 config STRING hasMMX = "yes";
21 };

Figure 2.10: Example C platform hierarchy

Notice also that on line 13, C_x86 contains the configuration option hasMMX, which defaults

to the string value �no�. In the C_Pentium4 platform, however, this value is overridden

by the new default value �yes�. Any resources of the platform C_Pentium4 will thus be

parametrized with hasMMX=�yes�. However, if line 20 were not present, then the defaultC_x86 value specified on line 13 would be operative. In general, a single code generator

will apply to a large tree of platforms (e.g. C_x86 and its subclasses) thus providing a

convenient way to configure the large number of code-affecting parameters occuring in

both software and hardware devices.

switch_ether

switch 25 linktype bus;
26

27 linktype bus_pci : bus {
28 config UNSIGNED16 freq = 66, width=32;
29 };

Figure 2.11: Example bus linktype hierarchy

Whereas computation resources are instances of platforms, interconnect resources are in-

stances of linktypes. In Figure 2.11 we see an example of a linktype hierarchy. Linktypes

are declared using the linktype statement, with the remaining syntax being identical to

the platform statement for platforms. As computation resources are quite distinct from
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interconnect resources in terms of their implementation, the linktype/platform distinction

has been created to reduce confusion.

To create a computation resource, we must first have created the appropriate platform. Then,

the resoure statement is used to instantiate that platform. For example:

resource proc is C_Pentium4 ( freq=3400 );

instantiates the C_Pentium4 platform type as a specific computation resource with identi-

fier pro, and configures its freq parameter to the value 3400. Note that freq here is a

parameter inherited from the C_x86 platform, which must be specified in order to instan-

tiate the resource (since there is no default value).

Similarly, we can describe two computation resources with different identifiers, bigfpga
and lilfpga, and different configurations, but that are of the same platform type:

resource bigfpga is HDL_Virtex4 ( part="XC4V8000" );
resource lilfpga is HDL_Virtex4 ( part="XC4V100" );

proc

bus_pci
sysbus

bigfpga

lilfpga

1 resource sysbus is bus_pci (
2 { proc, bigfpga, lilfpga },
3 freq=133, width=64
4 );

Figure 2.12: IR instantiation and small processing architecture example

Given the previous computation resource instantiations, we can now instantiate the inter-

connect resource found in Figure 2.12. In this example, the resoure statement is used to

instantiate sysbus, which is of linktype bus_pi. Interconnect resources are parameterized

by configuration options, just like computation resources, the first parameter is always a

list of resources connected to the interconnect. In the example, pro, bigfpga, and lilfpga
are each connected to the sysbus interconnect resource.

Interconnect resources may also connect to other interconnect resources, although whether

this is valid, modelable, or implementable depends on the particular interconnect.
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proc[1]

net
switch_ether

proc[2]

proc[3]

bus_pci
sysbus

bigfpga

lilfpga

1 resource proc[3] is C_Pentium4 {
2 (freq=3400), (freq=2800), (freq=2800)
3 };
4

5 resource net is switch_ether (
6 { proc[1], proc[2], proc[3] },
7 rate = 1000;
8 );
9

10 resource sysbus is bus_pci (
11 { proc[1], bigfpga, lilfpga },
12 freq=133, width=64
13 );

Figure 2.13: Larger processing architecture example

A final example of a processing architecture is found in Figure 2.13. This processing archi-

tecture is composed of five computation resources and two interconnect resources.

Lines 1–3 describe a resource array of three C_Pentium4 type resources. Resource arrays are

provided for convenience, as it is expected that users will often having homogeneous or

nearly-homogeneous sets of resources available to them (clusters of processors, on-board

FPGA arrays, etc.) Note the change of syntax in configuring a resource array; configuration

is given as a brace-enclosed list of the usual parenthesis-enclosed configuration format.

This processing architecture connects each member of the pro resource array to the net
interface. Resources are connected to sysbus in the same manner as the previous example.
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2.2.4 Mapping

This section presents the ideas of mapping and complete mapping. A complete mapping,

made up of individual block-to-CR and edge-to-IR mappings, describes the assignment of

an algorithm to a processing architecture.

The following examples of mapping assume the processing architecture of Figure 2.13, and

the block descriptions of Section 2.2.2 (summarized in Figures 2.7 and 2.8).

bigfpga

gen1
map { app.gen1 } to bigfpga;

Figure 2.14: Mapping to a computation resource

Figure 2.14 performs a single mapping of a block onto a resource. The map statement maps

a list of fully-specified blocks to a computation resource, or fully-specified edges to onto

an interconnect resource. In this example, app.gen1 specifies the gen1 block contained in

the Algo block named app by the use statement (on line 31 of Figure 2.8).

A single mapping does not necessarily constitute an implementable assignment of blocks

to resources; each block in every used algorithm must be mapped, as will be seen later in

this section.

proc bigfpga

cross gen1

sysbus
1 map { app.gen1 } to bigfpga;
2 map { app.xprod } to proc;
3

4 map { app.ea } to sysbus;

Figure 2.15: Mapping to an interconnect resource

Figure 2.15 demonstrates the mapping of app’s gen1 to bigfpga and xprod to pro using the

syntax of the previous example. It also shows a mapping of edge ea onto an interconnect
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proc[1]net
Bus

System bigfpga

sum[2]

sum[1]
cross

ea

eb gen2

gen1

send

ec

ec

1 map { app.gen1, app.gen2, app.xprod } to bigfpga;
2 map { app.sum, app.send } to proc[1];
3

4 map { app.ec } to sysbus;

Figure 2.16: A complete mapping

resource. The edge from gen1 to xprod is mapped onto sysbus, using the label assigned to

the edge in the edge’s construction (line 25 of Figure 2.8).

Figure 2.16 provides a complete mapping (different from the partial mapping of Figure 2.15)

of the algorithm onto the processing architecture. Here, all blocks have been assigned to

computation resources, and the edges connecting blocks on different resources have each

been mapped to the appropriate interconnect resource.

In line 2 of the example, the use of app.sum causes all members of the sum array to be

mapped. The compiler expands any occurance of a block array identifier without subscript

to mean all the members of that block array.

Also notice that not all edges must be mapped. The edges in label app.ea are contained

within bigfpga, thus there is no requirement to map them to an interconnect resource.

Furthermore, note that while app.e describes both the edges from xprod to the sum array

and the edges from the sum array to send, the map statement does not cause the latter

merge edge to actually map to sysbus. This is because the merge edge is contained withinpro[1℄, and thus are ignored for mapping by the compiler.
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gen1

sum[1]

sum[2]

gen2

cross

send

procnet
sysbus

bigfpga

lilfpga

ea

eb

ec

ec

1 map { app.gen1 } to bigfpga;
2 map { app.gen2 } to lilfpga;
3 map { app.xprod, app.send } to proc[1];
4 map { app.sum[1] } to proc[2];
5 map { app.sum[2] } to proc[3];
6

7 map { app.ea, app.eb } to sysbus;
8 map { app.ec } to net;

Figure 2.17: Another complete mapping
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An alternative complete mapping example is provided in Figure 2.17. Here, blocks and

edges are distributed more evenly (in terms of quantity) among the resources. app.gen1
and app.gen2 are mapped to the two HDL_Virtex4 resources, and their outputs are con-

nected to app.xprod on pro by mapping their respective edges app.ea and app.eb tosysbus. The single mapping statement on line 8 connects app.xprod to the app.sum blocks

(now on different resources) and back to app.send over the net resource.

This concludes the tutorial. All constructs of the X Language required to produce an imple-

mentable application have been presented above. Other factors remain, however, before

a complete application can be synthesized and deployed. All blocks occurring in the al-

gorithm must have a corresponding implementation in a supported language, and each

implementation must be created for the platform to which the block is mapped. Addi-

tionally, a deployment must be described that associates each resource with a real-world

device. These mechanisms are discussed further in chapter 3.
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2.3 Terminology

To differentiate the many different layers of abstraction that are necessary when using the

X Language, a specific terminology is used when discussing applications. The terms found

in alphabetic order in this section are specific to the X Language. They are largely based

on those used in related literature and academic projects.

• Algorithm: An algorithm here refers to the particular arrangement (a directed graph)

of blocks and edges which make up the X Language description of an application.

The algorithm is the highest-level compound block which is instantiated by the com-

piler.

• Atomic block: An atomic block is a block that does not contain any internal blocks or

edges. Atomic blocks are generally the blocks to which physical implementations are

eventually associated.

• Block: A block is an X Language description of a processing task. The description

contains any number (including zero) of each: inputs, outputs, and configuration.

Blocks may be atomic blocks, which may be associated with implementations and

eventually placed on devices, or compound blocks, which contain blocks and edges

and are used to organize tasks consisting of smaller subtasks.

• Compound block: A compound block is a block that itself contains instances of blocks

and edges, usually connected to its own inputs and outputs.

• Deployment: Deployment is the specification, or the specification process that in-

volves associating a computation or interconnect resource (IR) with a specific com-

putation or interconnect device. Deployment is an injective operation; that is, each

resource is deployed to a unique device, but not all devices need contain a resource.

Deployment takes place in the X-Dep tool, after the X Language description compi-

lation; it is discussed further in Chapter 3.
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• Device: A device is a tangible object of a specified platform or linktype. That is, a de-

vice corresponds to a particular real-world or simulation-world entity. Interconnect

resources (IRs) and computation resources (CRs) are deployed to interconnect devices

and computation devices outside the X Language description (see Chapter 3).

• Edge: An edge is a virtual interconnect from one block’s output port to another

block’s input port. The X compiler collapses composite edges, maps them to IRs,

and generates their implementations.

• Implementation: An implementation is a platform-specific function (e.g., a C function

or HDL entity) which is used to implement a block’s or link’s functional task. A

mapping indicates which implementation a block or edge will use.

• Instance: Instantiation is the operation of creating an entity of a particular type. In

X, a block instance is a named object of a particular block type within a compound

block (or at the top level). Compound blocks may contain multiple instances of the

same block, as long as they do not share the same name (including subscript).

Instantiation is also used in the processor architecture. A computation resource (CR)

is an instance of a platform, and an interconnect resource (IR) is an instance of a

linktype.

• Linktype: Similar to a platform, a linktype is a class of interconnect resource (IR)

recognized by the X Compiler, over which data may be passed between implementa-

tions of X blocks. For example, an ethernet switch, PCI system bus, or on-chip shared

memory interface could be used as a linktype.

• Mapping: Mapping refers to either the specification, or the act, of assigning a block to

a computational resource, or an edge to an interconnect resource.

• Platform: A platform is a class of computation resource (CR) recognized by the X

Compiler for which the compiler may generate an executable. Due to the construc-

tion of the compiled environment, a language is often a necessary attribute of the

platform. Examples include “C-x86,” “C-Alpha,” and “HDL-Virtex4.” Platforms are

organized in a hierarchy; for instance, an implementation written for the “C-x86”
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platform may run on the “C-Pentium4” platform, but not the “C-Alpha” platform.

Computation resources are specific, named objects of a specified platform.

• Resource: Resources refer to both computation resources (CRs) and interconnect re-

sources (IRs). Computation resources, such as “a C-Pentium4 resource” are instances

of specific platforms. Interconnect resources, such as “an ethernet switch” are in-

stances of specific linktypes.

2.4 Language Specification

This section describes the syntax and semantics involved in creating a system specification

compliant with the X Language. Most of the specification is presented here, however some

less important details (comment styles, etc.) have been left out. [30] contains the verbose

specification and is updated as the language evolves.

An Extended Backus-Naur Formalism (EBNF) notation 2 is used throughout, with some

additional style changes made for clarity. To summarize:

• A symbol on the left-hand side of the ::= is defined by its substitution on the right.

• Symbols in upright boldface are non-terminal symbols (defined further in this sec-

tion), and begin with an uppercase letter.

• Symbols in slanted boldfae are terminal symbols (without a further definition

provided).

• The remaining plainfae words, and those found in single quotes ` ' are X Lan-

guage literals (keywords, delimiters, etc.).

• The pipe | character delineates symbol substitution choices.

• Parentheses ( ) group a set of symbols into one logical symbol.

2There are a variety of different notations claiming the title “EBNF” (some of which are supported by
different standards organizations). The notation in this section is based on [31].
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• Square brackets [ ℄ group a set of optional symbols into one logical symbol.

• An asterisk * follows a symbol that may be replicated zero or more times.

• A plus sign + follows a symbol that may be replicated one or more times.

• White space has been ignored to make the notation more readible.

To aid interpretation of the symbols, literal constant symbols end with C, top-level state-

ment symbols end with S, blok-level statement symbols end with BS, and platform-level

statement symbols end with PS.

2.4.1 Lexical conventions

char ::= nextline | digit | letter | somepuntuation
comment ::= // (har)* nextline | /* (har)* */
natural ::= (nonZeroDigit) (digit)*
integerC ::= [-|+℄ (natural | (0)*)
floatC ::= (digit)* [.℄ (digit)* [e (digit)+℄
stringC ::= " (har)* "
identifier ::= (letter | �) (letter | digit | _ | � )*

“C++ style” comments are allowed.

Integer and floating-point constants are permitted in certain circumstances. All values are

entered in decimal (base 10) format unless otherwise specified, with optional exponen-

tiation using the e character (e.g., 11.2e2 is equivalent to 1120). Entering floating-point

constants when integers are expected produces undefined behavior.

String constants consist of a series of one-byte ASCII characters, surrounded by the double-

quote character ". Only printing characters (ASCII values above decimal 31 and below

decimal 127) excluding the double-quote character are supported, unless otherwise speci-

fied.

Identifiers consist of a sequence of letters, numbers, underscores `_', and at `�' characters

An identifier may not begin with a number or underscore character. Identifiers, keywords,
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and numerical constants are case-insensitive. String constants may be case-sensitive in

some cases; this behavior is specified where relevant.

The following keywords may not be used as identifiers:array bind blok onstantonfig devie impl inputlinktype map output platformresoure strut target typedefuse �blokrank �devierank �starttime�unique
2.4.2 Pre-processing directives

X-Com, the X Language file compiler, uses the C Preprocessor (cpp) before parsing the

file directly, thus any directives supported by the native cpp are available to the user. Of

particular note are the cpp statements #inlude, #if[def℄/#else/#endif, and #define.

Use of these directives is recommended to improve readability and reduce redundancy

in the X code. cpp identifiers may also be passed in on the command line to facilitate

automated construction of systems using the X Language.

2.4.3 Statements

TopLevel ::= (BlockS | ConstantS | LinktypeS | PlatformS |
ResourceS | MapS | TypedefS | UseS)* EOF

X Language files are created from the top-level declarations and statements enumerated

in the above grammar. Synthesizable X files contain at least one block and at least one use
statement indicating an architecture to implement. The following sections examine the

top-level statements in further details.
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2.4.4 Data type syntax

X data types aid in the parsing and type-checking of block parameters and the type-

matching of edges connected to block ports and other edges. Statements discussed below

include typedef, used to define new types for convenient referencing, and onstant, used

to create named constants of a given value and type.

BasicType ::= (signed | unsigned) (8 | 16 | 32 | 64) |float (32 | 64 | 128) | string
Native X Language data types are constructed from a set of basic data types, including

floating-point numbers and signed and unsigned integers, each of various bit widths.

DataType ::= array < DataType > [ ( natural | `*') ℄ |strut < DataType (, DataType)* > |
identifier | BasicType

Homogeneous arrays of data types are constructed by using the array keyword. array
requires a non-negative length to be specified when creating the data type, or * indicating

variable length. Variable length arrays are of indeterminate length and their handing by

the system is platform-specific.

To create heterogeneous data structures (i.e., consisting of multiple data types), the strut
keyword is used. This data type is provided with an ordered and unnamed list of types that

are contained in the structure. As an example, a data type containing two 16-bit unsigned

values, an array of eight 8-bit signed values, and another 16-bit unsigned, in that order,

would be declared with:strut<unsigned16,unsigned16,array<signed8>[8℄,unsigned16>
Note that, as in the above example, array and strut data types may be nested to create

arbitrary data types of larger dimension.

TypedefS ::= typedef identifier DataType ;
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User-named data types are created using the typedef statement. X-Com does not distin-

guish these named types from their fully expanded contents.

ConstantS ::= onstant DataType identifier = Constant ;
Constant ::= (integerC|floatC|stringC) | identifier ([ natural ℄)*{ Constant (, Constant)* }onstant creates a named constant of a specified type, and sets it to a value or an array of

values. Array constants are surrounded with braces { } and their elements delimited with

commas. Array constants may be nested (e.g., {{1,2},{3,4}}).

2.4.5 Platform syntax

The platform statement is used to identify platforms, their class hierarchy, the configura-

tion options for resources of their type, and the available block implementations for that

platform.

PlatformS ::= platform stringC [: stringC℄[ { (ImplPS | ConfigPS)* } ℄
ImplPS ::= impl identifier stringC ;
ConfigPS ::= onfig DataType identifier [= Constant℄(, identifier [= Constant℄)* ;

The platform statement associates library and user-supplied implementations with blocks.

The first string constant specifies the name of the platform. The platform can optionally

derive the implementations and configuration of another platform by specifying a second

string constant.

Specific implementations are attached to blocks using the impl statement. The block name

is specified, followed by the function identifier. Function identifiers are specific to their

native language.onfig works similarly by indicating possible configuration options; the set of valid con-

figuration options is particular to the code generator used for that platform.
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2.4.6 Block syntax

BlockS ::= blok identifier { ( PortBS | ConfigBS | BlockInst || EdgeBS | SplitBS | MergeBS )* } ;
Blocks are the abstract processing elements with which algorithms are specified in the X

Language. The blok statement encloses a description of a single block. Describing a block

does not create the block; only blocks specified by the use statement, or subcomponents of

those blocks, are actually created.

PortBS ::= (input|output) DataType identifier(, identifier)* ;
ConfigBS ::= onfig DataType identifier [= Constant℄(, identifier[= Constant℄) ;

Within a blok statement are port declarations containing the type and name of input and

output ports, and one-time configuration inputs. These are indicated by the input, output,

and onfig keywords, respectively. Each declaration is followed by the expected data type

and a unique identifier. onfig ports may optionally include a default value provided by

a constant value or a named constant with optional indexing.

BlockInst ::= identifier BlockIdent [BlockOpts℄(, BlockIdent [BlockOpts℄)* ;
BlockIdent ::= identifier [`[' natural `℄'℄
BlockOpts ::= `(' identifier = Constant(, identifier = Constant)* `)'

Blocks may also contain other blocks by declaring an instance using the block’s identifier

and an instance name. Configuration may be provided by following the identifier with

arguments in the form SomeBlok(onfig1=onst1, onfig2=onst2). Same-type blocks

with different names may be declared by separating the identifiers with commas. Same-

type arrays of n blocks may be declared by immediately following the identifier with [n ℄.

The array b[3℄, for instance, will consist of block instances b[1℄, b[2℄, and b[3℄.
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2.4.7 Edge Syntax

EdgeBS ::= (Port -> (DefaultEdge ->)* Port) ;
DefaultEdge ::= DefaultPort (-> DefaultPort )*
Port ::= DefaultPort | BlockIdent . identifier | identifier

DefaultPort ::= BlockIdent
SplitBS ::= (DefaultEdge ->)* Port =< CompoundPort ;
MergeBS ::= CompoundPort >= (DefaultEdge ->)* Port ;
CompoundPort ::= Port | { Port (, Port)* }

Edges may be created between block instances within a compound block. The most explicit

form for an edge is:blokA.outportX -> blokB.inportY;
However, for convenience and readability, “default” ports may be used when the input

or output is unambiguous. For example, if the only output of blokA is outportX and the

only input of blokB is inportY, then the above example can be simplified to:blokA -> blokB;
Additionally, unambiguous strings of blocks may be connected in one statement by using

their default ports. Note that this is only possible if all interior blocks in the statement

satisfy the requirement of having only one input and one output. Referring again to the

above example, if blokA also has only one input and blokB has only one output, then a

legal string of edges would be:blokC.outputW -> blokA -> blokB -> blokD.inportZ;
The =< split operator allows array and strut data types to be divided into parts and

distributed to multiple ports. A port list, usually a list of ports surrounded by braces and

separated by commas, is provided in place of a single port for the destination. The number

and order of elements in the port list must completely agree with the data type being split.

The >= merge operator is similar to split, but in the opposite direction. A port list is merged

into a single port having a compound data type. If the merged port data types are different,
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then a strut will be automatically inferred. If the types are the same, then either a strut
or array will be formed, depending on the destination data type. As with split, the number

order of the data types must completely agree.

Block array members must be referred to using an index subscript (i.e., [n℄) unless they

are used in a split or merge operation. In the case of a split, a non-indexed array block

identifier may be used as the destination block. Similarly, in the case of a merge, a non-

indexed array block identifier may be used as the source block. For example, if E is an

array of five blocks with a scalar data type output y, and F is a single block with one input

that is an array of five elements of the same data type, then{ E[1℄.y, E[2℄.y, E[3℄.y, E[4℄.y, E[5℄.y } >= F;
is equivalent toE.y >= F;
The input to a compound block can be provided directly to the input of a block within that

same compound block. The same holds for outputs.

The split operation =< and merge operation >= are used to trivially separate and collate

compound data types. Splits allow an edge to connect an output of type array<T >[n ℄
on a source block to an input of type T on an array of n blocks. Similarly, merges allow

outputs of type T on an array of n blocks to connect to a single input of type array<T >[n ℄.

When a split or merge operate on a strut<> data type, the semantics are the same over

the heterogeneous data types.

The behavior of splits and merges on edges is intended to be as transparent as possible.

Once data is transmitted on the source of the edge, it is to be ready on the destination of the

edge without preference to any single element, in the same manner as an equal number of

simple one-to-one edges.
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This particular method of splitting/merging data was included in the language because it

was assumed to be a very common, straightforward operation that would quickly become

tedious without compiler support. Other methods of splitting and merging data (time-

multiplexing as well as array concatenation) exist as well. These methods were assumed

to be too numerous and not straightforward enough to include in the language. In these

cases, it is necessary to create a block implementation to perform the more complicated op-

eration, by creating a block with the necessary input and output ports and hand-writing

the operation in each desired implementation language. More split and merge techniques

may be incorporated into the language if it becomes clear that they are commonly encoun-

tered and too inconvenient to write by hand.

2.4.8 Generation syntax

The remaining syntax, found below, is used to define the resources on which structures

from the X algorithm are placed, and to perform the mapping operation for code genera-

tion.

UseS ::= use BlockInst [identifier℄ ;
The use statement is used to indicate all block hierarchies that are to be actually synthe-

sized by X-Com. Only a single instance of the highest-level block containing all subcompo-

nents should be used to create a single fully connected algorithm. Multiple use statements

are permitted to implement multiple top-level blocks. An optional name may be given to

the architecture; otherwise, the name will be the same as the instantiated block’s.

ResourceS ::= resoure ResIdent : stringC[ ResOpts | { ResOpts (, ResOpts)* }℄ ;
ResOpts ::= `(' (identifier = Constant ,)* `)'
ResIdent ::= identifier [`[' natural `℄'℄

Actual computation and interconnect resources (CRs and IRs) available to the code gen-

erator are specified using the resoure statement. This statement identifies a name for

the resource or resources, and the type of resource (from platform or linktype). In this
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statement, the user may also provide configuration information. For scalar (non-array)

resources, only a single configuration of the form (onfigA=valueA, onfigB=valueB,...) is accepted. Resource arrays may be configured identically using a single config-

uration, or differently by nesting configurations within an additional pair of braces. An

empty ({} or missing) configuration is also accepted in all cases. Resource configuration

must specify all configuration items from platform or linktype that lack a default value.

MapS ::= map { [FullIdent (, FullIdent)* ℄ } to ResIdent ;
FullIdent ::= (BlockIdent .)* BlockIdent

Blocks and edges in the used algorithm(s) are mapped to resources using the map state-

ment. Using map, a CR identifier is associated with a set of one or more blocks, or an IR

identifier is associated with a set of one or more edges. Blocks and edges are identified

as fully specified children of the toplevel block instances provided by the use statement.

Multiple map statements for the same resource identifier are permitted and will be merged.

If a non-terminal block (i.e., a block containing other blocks) is specified, then all contained

blocks (if a CR) or edges (if an IR) will be assigned to that resource as well.

2.4.9 Behavior

The X Language is strongly, statically typed with respect to the data types of blocks’ ports.

Types are checked during compilation and may not necessarily be re-checked when syn-

thesizing block implementations in the native languages (although most languages pro-

vide some partial support for this).

Any named types (corresponding to typedef statements) with the same fully expanded

type may be used interchangeably. For instance, in the following example, types T and U
are identical:typedef array<unsigned8>[8℄ S;typedef array<S>[4℄ T;typedef array<array<unsigned8>[8℄>[4℄ U;
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However, simply having the same number of elements of the same basic type will not

guarantee type compatibility. In the statement below, the type V is not compatible with

either type T or U, above, even though they all contain 32 unsigned8 elements:typedef array<array<unsigned8>[4℄>[8℄ V;
An exception to the type checking is allowed in the case of variable-length array outputs

connected to static-length array inputs. An output port of type array<T>[n℄ may be con-

nected to an input port of type array<T>[*℄, but the reverse is not permitted.

To increase the flexibility of the X Language and enable more complex structures to be cre-

ated, all constants are evaluated after the initial parsing of the language file. This includes

but is not limited to the special constants, block and constant array indices, and onstant
assignments.

The utility of this is apparent in the block instantiaton expression:onstant array<unsigned8>[5℄ _array = {5, 3, 1, 4, 2};Blok myBlok[5℄ ( = _array[�BLOCKRANK℄);myBlok[1℄ will be configured with c=5, myBlok[2℄ with c=3, and so on.

An important feature in the behavior of the platform statements is that implementations

for a specific platform may be distributed across any number of equally identified platform
statements. For instance, if an implementation for a new block Foo has been written for

platform Bar, then a new platform "Bar" { impl Foo �someFuntion� } statement may

be written without modifying any previous platform "Bar" { · · · } statements:

This ends the specification of the X Language. This chapter introduced the X Language

terminology and constructs, from algorithm and architecture design to mapping, by incre-

mental example and by formal specification. The next chapter will discuss the implemen-

tation and use of X-Com, a compiler for the X Language, and the two currently supported

generation targets, C and HDL.
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Chapter 3

Using the X Compiler

The central program that processes X Language files into deployable executables is X-

Com, the X compiler. This chapter examines the design and function of X-Com and its

code generation components. The introduction of X-Com components is divided into three

categories, corresponding to the three primary development roles that users of X-Com will

take. This division is discussed in the following section.

3.1 Development Roles

X-Com may be used in a variety of capacities, and as such, there are numerous types of

users who will use the compiler and its codebase. These users can be grouped into three

broad categories or “roles”:

1. Application authors, who develop applications entirely in the X Language and sim-

ulate or deploy them on supported processing architectures.

2. Block implementation programmers, who write the platform-specific code (e.g., C or

HDL code) to perform the tasks encapsulated within X Language blocks.

3. System extension programmers, who build upon the X-Com codebase to enable

greater functionality and device support.
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The knowledge required to perform each role is incremental; block implementation pro-

grammers must be competent in the steps performed by application authors, and system

extension programmers must be capable of the block implementation interfaces as well as

authoring procedures.

Application authoring involves developing X algorithms by creating networks of blocks

and edges, describing combinations of resources into processing architectures, and deploy-

ing the application to real devices or simulations of such devices. Application authoring is

envisioned as the most common operation when doing X application development. Thus

to further overall ease of use, little knowledge of the entire system is required of these

developers. This role is discussed further in Section 3.2.

Block implementation involves writing, for instance, C or HDL code implementations

which perform the tasks described by blocks. Users taking on the block implementation

role must be knowledgable of the API used to realize the input port, output port, and

configuration constructs in the respective implementation language(s). In general, it is

also beneficial to the users to understand at a high level the way in which the blocks are

then connected to each other (e.g. in terms of implied structure in HDL implementations

and scheduling and memory management in C implementations). This role is discussed

further in Section 3.3.

System extension involves development of the X-Com codebase itself. Users who extend

the X-Com system must know to some degree how the compiler functions, particularly

the overall order of operation and the design of the code generation components. We

expect that the most common type of system extension will be creating support for new

interconnect resources, followed by support for new classes and subclasses of platforms.

This role is discussed further in Section 3.4.
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3.2 X Application Authoring

Users authoring applications entirely within the X Language need only assume the basic

X dataflow model introduced in Chapter 1. In this model, blocks execute independently of

one another, and edges transmit data directly from output port to input port. All edges in-

corporate “infinite” queues, which simplifies the syncronization and coordination required

of the algorithm. Block port semantics (e.g., how many data are consumed/produced in

a “firing” of a block) are not controlled from the X Language, however this information

must be communicated between the X application author and the block implementor.

X application authors develop an X Language file description of the algorithm and the

processing architecture. Authors then run X-Com on the language file to generate nearly-

executable code for the general processing architecture, then run the X-Dep deployment

tool on that code to create and deploy the final executables.

During execution of X-Com, the X Language input file is parsed into an internal represen-

tation. Syntax errors and many semantic errors are detected and reported. These include

such errors as data type or array inconsistencies and missing edges. The precise mapping

of program entities (blocks and edges) to code generation classes is performed, using the

guidelines provided in the input file. Using this mapping, code is generated for each com-

putation resource which can be transformed into the appropriate executable format for

that platform.

3.2.1 Deployment

Whereas resources are abstract entities to which X Language objects are mapped, devices

are the real-world entities on which the application is actually executed. As mentioned

in Chapter 1, the X-Dep deployment tool is used to link the code generated for compute

resources by X-Com into programs that can be executed on either real devices or simulat-

ed/emulated devices.
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An X Language file is used to describe the devices (both computation and interconnect)

available to the system. This file is generally kept separate from the application descrip-

tion file, as it does not change except with the installation or reconfiguration of the de-

vices in the real-world architecture. Also, by keeping these separate, it becomes easier for

mapped X applications to be shared among developers with different sets of devices. For

instance, an application mapped to a cluster of ten (generic x86) processors can be trivially

redeployed to any cluster with at least ten such processors, because the local programming

details such as IP and bus addresses, and simulation details such as clock frequency, can

be kept within the deployment description.

The X-Dep tool is currently under development, and its syntax is not yet settled. Current

plans use a nearly identical syntax to the resource declaration. This enables users to move

device configuration into either resource or device description in an arbitrary manner, in-

creasing the flexibility of parameterization.

The actual mechanism used to perform the deployment is an automatically generated

Makefile script. The X-Dep Makefile will invoke the final executable compilers with the

linking options required to generate device-specific executables. It will also provide rules

that run the X-Sim simulation of the application, or distribute and execute the application

on the real system.

3.2.2 Usage

X-Com is invoked in the follow manner:xom soure1.x [soure2.x [soure3.x ...℄ ℄
The X-Com executable (xom) is passed a list of X Language source files. These files are

each parsed, in order, to define and instantiate the entities used by the compiler. Recall

that the C pre-processor is applied to each source file before parsing, so each individual X

Language file may also include other X Language files (i.e., with the “#inlude” directive).
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Future work may likely introduce numerous command line options, such as defining sym-

bols and setting configuration parameters from outside the X Language description. See

Section 5.3 for more on future work.
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Figure 3.1: X-Com flow (same as Figure 1.8)

After the input files have been parsed, X-Com generates a source file output for each com-

pute resource (e.g., proessor_1., fpga_3.vhdl). These outputs are then be compiled

by the appropriate compiler (e.g., the GNU C Compiler, or an HDL synthesis compiler).

Compilation generally requires a language-specific “helper” file defining useful operations

(e.g., X.h for C and xpkg.vhdl for HDL). It also requires the proper linking to system-

specific libraries and system resources. This device-specific compilation step, the deploy-

ment of executable files, and the execution of the system, are currently performed by a

manually generated Makefile. Future work, discussed further in Section 5.3, will employ

the X-Dep deployment tool and a Makefile generator to automate the processor of device-

specific compilation, deployment, and execution.
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3.2.3 Support Tools

Additional tools are provided to aid the user in developing X applications. Currently,

these support tools include an algorithm graph visualizer, and a generator for block im-

plementation skeletons. More productivity support tools may be developed in response to

feedback from users.

Algo  app

a b

Cross xprod
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RunSum sum_2_ 

sum

x

RunSum sum_1_ 

sum

RNG gen1  

y

RNG gen2  

y

in

SendData send

xviz dot generated from example_2_2_2.x

Figure 3.2: Visualization of the Section 2.2.2 example using X-Viz

The graph visualizer, X-Viz, takes X Language descriptions as inputs, and outputs a “dot”

format file for use with the graphviz graph visualization package [10]. Figure 3.2 shows an

example of using X-Viz on the example from Section 2.2.2. X-Viz displays the blocks and

edges of the instantiated (i.e., with the “use” statement) algorithms, and can optionally

show edge labels and data types, and the final post-parsing structure before code gener-

ation (see Section 3.4). Figure 3.3 demonstrates a portion of the visualization of a large

algorithm.
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Another tool is available that helps users quickly get started writing block implementa-

tions. This tool, currently named “impgen,” generates the skeleton code that provides the

API for a specified X block in C or VHDL. It also can optionally rename input and output

variables to their X port names, which is particularly valuable when using array structures

in VHDL. Using impgen, one can avoid the tedious writing of implementation-specific in-

terfaces and data structures using the information already available in the X block descrip-

tion. Users then simply fill in the remaining functions (in C) or process body (in VHDL)

to perform the appropriate action. impgen produces code for the most general case, so it

is up to the user to make the minor alterations for their particular implementation when

desired.

3.3 Block Implementation Programming

Block implemenation programmers assume the same basic dataflow model as application

authors, but no longer treat blocks as a simple abstract task. An individual block imple-

mentation must conform to the abstract task in two ways:

• Implementations must provide certain structures and language constructs that ex-

press the interfaces (inputs, outputs, and configuration) of their respective block us-

ing the appropriate language-specific API.

• Implementations must semantically operate in a way that is expected and explicitly

or implicitly expressed to application authors. For instance, it must be clear to ap-

plication authors if a block with two inputs consumes either input as soon as it is

available, or if the block consumes both inputs at the same time.

The latter can be communicated implicitly (e.g., a simple “add” should consume all its

inputs simultaneously to produce one output) or explicitly (e.g., through comments in the

X block declaration). The former is the topic of the next two sections, which describe the

APIs used for interfacing block implementations written in C and HDL.
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3.3.1 The C Code Generator and API

The C code generator is the component of the X compiler responsible for creating the top-

level files that implement a mapping of C-compatible (e.g. C, C++, and wrappers around

certain languages) block implementations to “C” platforms. These platforms may include

most modern software resources, simulation of resources, and the default “generic” map-

ping used for testing. Currently this is the only software generator, although more may be

developed in the future (see Section 5.3). This section examines the application program-

mer interface (API) for user-supplied code, an overview of the code generator’s function,

and some semantics and limitations of the current implementation.

The API for a block consists of four functions and a state-storing structure. The code gen-

erated by X-Com links to each of these functions, so they must be defined in the user-

supplied or library code. Figure 3.4 provides an example of these constructs. The func-

tions perform initialization (X_BlokA_init), finalization (X_BlokA_destroy), and data-

synchronous and data-asynchronous operations (X_BlokA_push and X_BlokA_go). The

data-synchronous push operation is called when an external entity transmits (“pushes”)

data on an edge connected to one of the block’s inputs; most function-like operations use

push alone. The data-asynchronous go operation is called on a potentially indeterminate

schedule; I/O and scheduler blocks will generally use asynchronous operation.

The state structure contains a performance-capturing structure (lok), port status register

(portmask[℄), and pointers to the block’s interface ports (inputs, outputs, and configura-

tion). The input variables (iportN ) are made available by the API immediately before the

push function is called, whereas an output variable (oportN ) must be valid and available

to the API before transmitting data on any output port. Configuration variables, named

after their X block identifiers, are initialized before any block functions are called, and may

be used by the block at any point.

Memory management of communication data in X’s C API is handled by the blocks them-

selves, with some assistance from the system. Data are transmitted from and to a block as
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block BlockA {
input FLOAT64 x;
input FLOAT64 y;
output FLOAT64 out;
config UNSIGNED32 order;

};

struct X_BlockA_data {
Xclock_t clock;
// pointer to BlockA’s send function
// this is called to transmit data to downstream blocks
void (∗send)(int);
// pointer to BlockA’s release function
// this is called to release inputs (and optionally free data)
void (∗release)(int,char);
portmask_t portmask[1]; // bitmask of ports with available data

FLOAT64 ∗iport0; // input port: x
FLOAT64 ∗iport1; // input port: y
FLOAT64 ∗oport0; // output port: out
UNSIGNED32 ∗order; // config: order

};

// initialization −− called on startup
void X_BlockA_init(struct X_BlockA_data ∗) { ... }
// destruction −− called on completion
void X_BlockA_destroy(struct X_BlockA_data ∗) { ... }
// push −− called when data is received on any port
int X_BlockA_push(int p, struct X_BlockA_data ∗) { ... }
// go −− called by the main loop
int X_BlockA_go(struct X_BlockA_data ∗) { ... }

Figure 3.4: Example X Block and corresponding X Language C API structure

a pointer to memory containing the appropriate data structure, with typical expectations

on how the pointer is treated:

• When data is received, the block may read, modify, resize, and free the segment (as

long as it is only freed once).

• To transmit data, a pointer to the beginning of a valid allocated memory segment

must be provided. After using send to transmit, that segment may no longer be

accessed by the block.
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• Block implementations with both input(s) and output(s) may choose to reuse input

pointers as output as long as the data structures are the same (or they are resized/re-

structured appropriately). This can greatly reduce the overhead incurred from un-

necessary memory management operations.

• As C does not implement garbage collection, it is necessary for any received memory

allocations to be either freed or sent, to avoid “memory leaks.”

All memory operations (allocate, free, and resize) are performed by the GLib (discussed

further in this section) memory management functions such as g_mallo, g_free, andg_reallo. These functions are both syntax compatible and run-time compatible with the

ANSI C memory functions (i.e., mallo, etc.), but the GLib wrapper aids in the debugging

of the generated and user-supplied code and integration with GLib data types.

Two functions are provided to the block via its state structure: send() and release().

The release function is used to indicate that the block has finished using the data made

available to it on a input port, indicated via the function argument. Calling the function

will clear the specified port’s bit in the portmask (if there is no more data on that port) and

optionally free the memory buffer for the received data on that port. The send function

pushes data out of a single port, indicated via the function argument. Data is indicated

by the pointer provided in the port’s oport variable; after sending, the block is no longer

permitted to access the pointed-to memory. Figure 3.5 demonstrates a sequence diagram

of typical edge communications using the send and release functions. The figure depicts

the above function calls surrounding the BlockB push function. The surrounding functions

are not shown at this point; these are discussed further in this section (see Figures 3.6 and

3.7).

Both generated C code and the API make use of the GLib [26] low-level portability and

utility library. The generated code uses GLib data structures for memory management

and queuing to facilitate the queueing system on which the data flow organization relies.

Within the API, GLib data types are used for safety and robust management of non-trivial

data structures such as arrays. In particular, the GArray structure is used for both constant



67

BlockB’s push is called when an
upstream block transmits data.

B calls release to accept the input
data (&optionally free the buffer).

B performs its operation and
places output on the q oport, then

Downstream operations are
performed, and then send returns.

BlockB_push completes,
returning to the upstream caller.

x

BlockB b
qsend(q)

push(b,x)
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BlockB_push

calls send for that oport.

(return)

Figure 3.5: Sequence diagram of edge communication using the C API
With time in the vertical axis, the shaded portion indicates the thread of execution. Solid

arrows are function calls, and dashed arrows are returns.

and variable sized arrays. Table 3.1 provides an overview of the currently implemented C

data types, including their X counterparts.

y
BlockA a

x

BlockB b

BlockA BlockB

send(y)
push(b,x)

Edge a.y−>b.x

release(x)

send(...)

Figure 3.6: Sequence diagram of communication between two blocks in one processor
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Table 3.1: C API Data Types

X Type C TypeUNSIGNED8/16/32/64 Pointer to typedef’dSIGNED8/16/32/64 type of the same nameFLOAT32/64/128STRING STRING, which is
defined as har*ARRAY<BasicType>[n ℄ GArray* withlen=n and elements
of type BasicTypeARRAY<ARRAY<>[℄>[n ℄ GPtrArray* withlen=n and elementsg_pointers to GArrays

Figure 3.5 provided a sequence diagram for the operations surrounding one block. Two

blocks can be contained within a single processor, however, and Figure 3.6 provides an ex-

ample of the connected functions created by such a mapping. The X-Com-generated code

for each edge will connect the outputting block’s send function to the inputting block’spush function, and perform the necessary queuing operations in-between.

BlockA BlockBtransmit receive

send(y)

send(...)

release(x)

push(b,x)

go

medium
transmit over

y
BlockA a

x

BlockB b

Figure 3.7: Sequence diagram of communication between two blocks on two processors

Figure 3.7 demonstrates how the communications between these two blocks would look if

they were mapped to two different processors. Note the opportunity for parallelism that
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has been introduced in this multi-processor execution sequence. In this diagram, BlockA’ssend calls the medium-specific transmit operation, which sends data to the second pro-

cessor. This data is received by system buffers and is retrieved by the medium-specific

receiving operation once its go function has been called (scheduled round-robin in the

same thread as the other blocks’ go functions). After it has been retrieved, BlockB’s push is

called in the usual manner.

3.3.2 The HDL Code Generator and API

The HDL code generator component generates VHDL top-level entities suitable for sim-

ulation or deployment on an FPGA. The generated code is a VHDL entity, however code

written in any compatible HDL (e.g., Verilog or AHDL) may be instantiated, using the

standard port and generi interface (e.g., input, output, and parameter in Verilog). Cur-

rently, the top-level entity is entirely self-contained, as inter-resource communications are

only implemented using a simulated file system interface. Future interfaces such as a PCI

bus DMA engine will be supported and connected to the device pins using the X-Dep tool,

permitting the use of actual (non-simulated) FPGAs on supported development boards.

The HDL API to user-created blocks consists of a set of three signals, for each block-input,input, read, and avail; two signals for each block-output, output and write; and a back-

pressure signal. Figure 3.8 depicts the interaction handshake of a block with one input (x)

and one output (f) with the API. When data is available on the block’s input_x input, theavail_x signal is asserted. The block then responds, when it is ready and has made use

of the input data, by asserting read_x. In the clock cycle following the read_x response,

the avail_x input goes back to low and input_x is no longer valid — unless more data is

available on the same input, in which case avail_x will remain high during the cycle.

Following the processing within the block implementation, the block makes data available

on its output_f port and asserts write_f. The data is queued on the block-output in the

first rising clock-edge following the write_f, and the block must deassert write_f during

that cycle unless it wishes to queue a second datum on the block-output.
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data queued
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avail_x

output_f

write_f

read_x

clk

Figure 3.8: Timing diagram of the HDL API

The back-pressure signal to a block is created from the logical-OR of the “almost-full” sig-

nals on the output queues, and any other conditions that would require the block to stop

producing output. The handling of back-pressure is simplified to the block writer, how-

ever, because the signal is also delivered to the entities containing the block’s input queues.

These entities will not deliver more data to the block under back-pressure conditions. This

means that blocks without deep pipelining can actually ignore the back-pressure signal

and rely on the API to handle those conditions, reducing the design complexity and area

required within the block implementation.

An HDL example parallel to the C API sequence diagram (Figure 3.5) is provided in Figure

3.9. Here, the generated infrastructure connects BlockA to BlockB, with each block having

one input and one output. The block-input and block-output signals for each edge are

shown connected to each edge’s FIFO queue structure. Not shown is the nontrivial logic,

described functionally above, that generates the avail signals and the backpressure sig-

nals. Note that a common clock signal (lk) and reset signal (rst) are connected to every

component. The current implementation requires that all communication take place un-

der control of a common clock. Blocks may internally use a faster or slower clock, however

they must still interact at the global rate.

The data types used in the HDL API and their corresponding X type are shown in Table

3.2. The basic data types directly follow from their names, with IEEE 754 and 854 floating
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Figure 3.9: Interface diagram of edge communication using the HDL API

point values being implemented using the IEEE 1076.3 (VHDL200x) floating point exten-

sion to VHDL. Arrays of basic types are treated as wide concatenations of their contained

data. Automatically generated utility functions are relied upon to make accessing their

contents sufficiently convenient. Arrays of array types are transmitted in sequence; the

first subarray is sent, then the second, and so on. The choice of treating multi-dimensional

arrays differently from single-dimension arrays was made for convenience and efficiency

in initial test applications. Further development will support a more flexible treatment of

array data types in generated VHDL, with respect to the parallel or serial transmission of

data.

Table 3.2: HDL API Data Types

X Type VHDL TypeUNSIGNED8/16/32/64 unsigned(7/15/31/63 downto 0)SIGNED8/16/32/64 signed(7/15/31/63 downto 0)FLOAT32 float(8 downto -23)FLOAT64 float(11 downto -52)FLOAT128 float(15 downto -112)ARRAY<BasicType>[n℄ std_logi_vetor of concatenated data,
ascending indexARRAY<ARRAY<>[℄>[n ℄ sequential packets of the subarray type
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Block configuration parameters in the HDL API are passed in at HDL compile-time as

generics (VHDL) or parameters (Verilog). The types used for block configuration are the

same as for ports, as described in Table 3.2. Note that this interface requires that blocks

with run-time configuration be configured using standard input ports, rather than config-

uration “ports,” as compile-time generics cannot change during execution.

3.4 X System Extension

Users who extend the X system are no longer able to treat the system as an ideal dataflow

model, however they must ensure that their extensions do not break the uniform develop-

ment interface and simplified programming model provided to other users.

Users in this class might be interested in modifying nearly any part of the X compiler. Cer-

tain operations, however, are expected to be relatively more common. Thus, efforts have

been made when writing X-Com to make such extensions easier by employing clear and

concise interfaces with the other components. Examples of common extensions include:

• Addition of new interconnect resource type implementations for existing platforms.

• Addition of new platforms based on other platforms.

• Addition of entirely new platforms.

• Moderate changes to C and HDL code generator templates.

This section presents the X-Com compilation procedure, the code generator interface, and

some detail of the function of the C code generator. The HDL code generator, being struc-

turally described and naturally parallel, is sufficiently described in the previous section.

The last subsection contains an overview to the steps involved in adding new resource

types.
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It is important to note that the goal of this section is only to provide an introduction to

the extension of X-Com. A user wishing to modify the X-Com source code will naturally

have to read the relevant portion of the actual source code and become familiar with its

function.

3.4.1 X-Com Function

X-Com operates in a series of steps to transform an X Language description of an appli-

cation into a set of code ready to be deployed with X-Dep. These steps are summarized

below:

1. Parse X Language file into an internal representation.

2. Form connections between identifiers and objects. This is done as a second pass to

remove nonintuitive “declare before using” requirements such as in C.

3. Instantiate the block tree, with the indicated “use” blocks as the root nodes and in-

stantiated blocks as child nodes to their containing blocks.

Create split/merge
B[1]

B[2]

B[3]

A !s !m C

B[1]

B[2]

B[3]

CA
split merge

blocks

Figure 3.10: Edge collapse operation

4. Convert split and merge edges to internally generated blocks connecting simple

edges, as shown in Figure 3.10. Note that the ! character is used in the block name;

this is not a legal character in user-specified blocks, so internally generated block

names use this to avoid name collisions. The actual block names follow the pattern:!split_Ablok_outport_Bblok_inport.

5. Identify blocks as atomic or compound.
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Y
B

A C A C

BCollapse
X

Figure 3.11: Edge simplification operation

6. Collapse edges to only single edges connecting atomic blocks as shown in Figure

3.11. This flattens the graph to a simple network of implementable blocks connected

by point-to-point edges.

7. Instantiate and configure code generators for every resource, and pass the relevant

blocks, internal edges, and interconnect edges to each generator.

Each code generator uses a simple interface, outlined in Figure 3.12 using an abbreviated

sample of the abstract Generator class, from which all code generators are derived. The

main compile operation determines which subclass of Generator (e.g. C_Gen, HDL_Gen) to

create, and then instantiates such an object and attaches it to a computational resource.

Then, resource configuration options are passed to the generator object with addConfig(),

followed by the blocks (addBlok()) and edges (addEdge()) that are completely contained

within that resource. Edges that cross resource boundaries are given to the generator, usingaddInput() and addOutput(), with a tag identifier that is unique for each edge using the

same interconnect. Finally, the generate() function is called to cause the generation of

source files.

3.4.2 The C Code Generator

C code generation uses the Generator interface as shown in Figure 3.12. When addBlok,addEdge, addInput, or addOutput is called, a reference to the corresponding Blok or Edge
object is recorded. A string is then generated for that object, describing (for edges) the

edge data structure and send/release functions, or (for blocks) the state structure decla-

ration and initialization. Functions are created for every edge endpoint contained in the
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class Generator {
public:

Generator(Resource ∗, string name);

virtual void addBlock(const Block ∗) = 0;
virtual void addEdge(const Edge ∗) = 0;
virtual void addConfig(std::string name, const DataType ∗data) = 0;
virtual void addInput(const Edge ∗, unsigned int tag) = 0;
virtual void addOutput(const Edge ∗, unsigned int tag) = 0;

virtual void generate(std::ostream &os) = 0; // os is used for runtime status output
};

Figure 3.12: The Generator code generation class (abbreviated)

computation resource, while any interconnection points are replaced by internal blocks

which implement (in C) the appropriate data source or sink for that IR. The C generator’sgenerate() function causes the creation of the complete C source file, combining together

all the previously generated strings and creating the main execution loop.

When splits and merges are encountered by the compiler, they are passed as blocks to the

generator, which can then decide how to implement the operation. The C code generator

implements splits and merges as simple blocks that perform the appropriate operation and

handle memory reallocation. Split blocks divide up the input GArray amongst the output

ports. If the input is an array of basic types, then the individual outputs must each be

allocated. Array-of-arrays types do not require reallocation, as each subarray is individ-

ually allocated and may thus be directly used. Merge operations operate by appending

each input value to a new GArray or GPtrArray, and freeing the input subtypes if they are

scalars.

Currently, the main execution loop consists of a round-robin execution of each block’sgo() function, the portion which executes independent of input. Each block may return

a value indicating that it has completed such operations, and thus remove itself from the

main loop. Generally after the first loop, only data source blocks will remain in the loop,

as the input-synchronous blocks (which are often the vast majority) will have removed

themselves. Once removed from the loop, there is no mechanism for a block to re-insert
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itself back into the loop. It is important to note that there may be applications for which

round-robin scheduling of the go() functions is not desired. The ability to specify other

internal scheduling schemes is a topic for future research.

3.4.3 Adding Resource Types

Adding a new interconnect resource is a potentially very common operation, especially

when considering embedded systems and prototyping devices (e.g., FPGA development

boards) which can use a very diverse set of interconnect mechanisms to connect to other

devices. Interconnect resources are created using the LinkGenerator class interface, which

is a special case of the Generator class shown in Figure 3.12.

Creating a LinkGenerator requires writing the addEdge function, which updates the inter-

nal variables of the LinkGenerator and is called for every edge which connects using that

interconnect. The addConfig function is also available here to parameterize the intercon-

nect and the endpoints (e.g., unique addresses for each resource connected to a network).

class LinkCode {
public:

virtual string genSend(const Edge ∗e, LinkGenerator ∗l, Generator ∗g);
virtual string genRecv(const Edge ∗e, LinkGenerator ∗l, Generator ∗g);
virtual string genTop(LinkGenerator ∗l, Generator ∗g);

};

Figure 3.13: The LinkCode I/O code generation interface (abbreviated)

The LinkGenerator is ignorant of specific types of compute resources; to generate I/O

code for individual platforms, the LinkCode class is used, shown in Figure 3.13. EachLinkCode class corresponds to one linktype implementation on one platform. The class is

registered with the compiler before code generation, so that when the Generator finds that

it must output to an interconnect, it will retrieve the implementation of the output from

the appropriate LinkCode’s genSend() function (similarly with inputs using genRev()).genTop() is called once for every Generator-LinkGenerator combination. Each of these

functions are permitted to modify the Generator object, so the internal data structures
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(e.g., global variables, function prototypes, etc.) may be modified as needed for LinkCode’s

code generation.

Adding new platforms is a more involved process, however they use the same basic in-

terface described above and shown in Figure 3.12. The C and HDL code generators are

easily extended using traditional class inheritance, as their code generation templates are

distributed among a set of functions, so changes to single mechanisms (e.g., internal block

communication, scheduling) requires minimal repetition of code. Creating an entirely new

platform is possible, although naturally much more difficult. The existing code generators

provide two good examples of generation for two very different types of programming

language.
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Chapter 4

Sample Applications

This chapter presents a set of example applications written using the X Language. For each

application, the algorithm design is presented, as well as a selection of mapping arrange-

ments. Where useful, application output is provided. Finally, each section examines the

performance of the application under the selected mappings.

Measurement Techniques and Issues

All native-execution timing measurements in this chapter were made using the RDTSC ma-

chine instruction to read the system clock. These times are accumulated in a set of variables

associated with each block; this is part of the X-Com C API profiling mechanism. Block

execution times are measured from the beginning of a push or go call, until a send call is

made or the push returns — during this time, only block-specific code will be executing.

The time to send or receive data from another device is similarly measured, although the

time to check if data is available is not recorded.

Some performance measurements in this section are made using symmetric multi-processor

systems running Linux. In such systems, the Linux scheduler could cause processes to

switch from execution on one processor to execution on another in an effort to balance

processor load, in a process called migration. Core-to-core migration was avoided by us-

ing the Linux-specific shed_setaffinity() system call to set the “affinity” of the process
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to a single logical processor. This causes the Linux scheduler to only schedule the process

for execution on a specified subset of the available logical processors.

As all HDL execution was done in a discrete event simulator (i.e., ModelSim), the times

were manually recorded by inspection of the waveform. Later work will automate this

step.

Some issues arise when comparing performance measurements of real-world systems such

as those gathered from native execution in this section. The effects of multitasking present

one such issue, where many kernel-space and user-space programs can take processing

time away from a program being measured. This is particularly an issue using the native

profiling technique when an initial clock time is read, but another program is scheduled

before the final clock time is recorded. The time spent running the intervening program

is then measured as part of the measured block execution time. In the measurements

taken in this section, this effect usually accounted for a very small portion (no more than

0.5%) of the total execution time 1. During some measurements, however, ModelSim was

running alongside the native execution. In these cases, the outlying processing times were

pruned from the results, and the total execution time was extrapolated from the “clean”

measurements. As a side effect, the overhead (the remaining time not accounted by any

block) was not measureable and was thus left out from the results.

Where it is helpful to understanding the system, the issues involving the accuracy of mea-

surements and nonideal performance scaling are discussed further in each application sec-

tion as they arise.

1This is an estimated figure, based on the proportion of noticeably outlying processing times in each mea-
surement run.
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4.1 Triple-DES Encryption

The Triple-DES application is a short example design that performs encryption on streams

of data. Encryption involves transforming unsecured “plaintext” information into en-

coded information under the control of a key. Triple-DES is a variation of the Data Encryp-

tion Standard (DES) that employs three DES blocks in sequence to increase the effective

key size.

In a single DES block, a 56-bit key encrypts 64 bits of data at a time. The block divides the

data into two halves which are permuted and XORed with a portion of the key. That result

is reorganized and the process is repeated seven more times, eventually using all portions

of the key.

To perform Triple-DES encryption, three DES blocks each operate on the data stream in

sequence, giving an effective key size of 168 bits. The three blocks can be three DES-encrypt

blocks, or a DES-encrypt followed by a DES-decrypt and then another DES-encrypt. The

implementation of Triple-DES in this section uses the latter.

4.1.1 Design

Figure 4.1 depicts the design of the Triple-DES application, alongside its implementation

in the X Language. To provide a sink and source to the stream, the FileReader block reads

data from disk and outputs it a “phrase” (an array of 8 bytes) at a time and the FileWriter
writes the same data type to disk. Each DES block takes the phrase, encrypts (or decrypts)

the data using the key preloaded from a specified keyfile, and outputs it to the following

stage.

To implement the application, three mappings were created (Figure 4.1) using different

combinations of resources. Figure 4.2 provides the code for each of these mappings. The

first mapping creates a single C_x86 resource named pro, to which the entire algorithm is

mapped. The second mapping also creates an HDL_Sim resource named hwsim and places
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typedef ARRAY<UNSIGNED8>[8] phrase;
block DESencrypt {

input phrase in;
output phrase out;
config STRING keyfile;

};
block DESdecrypt {

input phrase in;
output phrase out;
config STRING keyfile;

};
block FileReader {

output phrase out;
config STRING file;

};
block FileWriter {

input phrase in;
config STRING file;

};

block top {
FileReader rd(file="plaintext.dat");
FileWriter wr(file="encrypted.dat");
DESencrypt e1(keyfile="key1");
DESdecrypt d2(keyfile="key2");
DESencrypt e3(keyfile="key3");

rd −> e1 −> d2 −> e3 −> wr;
};

Figure 4.1: Triple-DES algorithm flow and X code

the middle DESderypt block, d2, on this resource. The third mapping places all of the DES

blocks on the hwsim resource.

4.1.2 Performance

The performance results found in this section were obtained through compiling the algo-

rithm and various mappings (from Figure 4.1 and Figure 4.2, respectively) using X-Com.

The resulting processor executables were then executed on a machine containing a 3.4GHz

Intel Pentium 4 processor, using the Cygwin environment running on Windows XP.
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// mapping 1
use top;
resource proc is C_x86;

map { top } to proc;

proc

rd e1

wr e3
d2

// mapping 2
use top;
resource proc is C_x86;
resource hwsim is HDL_Sim;

resource io is File;

map { top } to io;
map { top.rd, top.wr, top.e1,

top.e3 } to proc;
map { top.d2 } to hwsim;

hwsim

rd e1

e3
d2

wr

proc

// mapping 3
use top;
resource proc is C_x86;
resource hwsim is HDL_Sim;

resource io is File;

map { top } to io;
map { top.rd, top.wr }

to proc;
map { top.e1, top.d2,

top.e3 } to hwsim;

hwsim

rd e1

e3
d2

wr

proc

Figure 4.2: Triple-DES mappings

Hardware executables (each a VHDL entity) were executed in the ModelSim simulator,

assuming a clock rate of 100MHz for hardware simulation. Communication times to send

data between pro and hwsim were modeled as a constant 850MB per second, divided

evenly between the sending and receiving streams 2. The actual overhead measurements

are ignored during these conditions, due to the increased inaccuracies in measuring native

execution times while a simulator (i.e., ModelSim) is running.

All performance results below show the aggregate execution times of encrypting a single

67MB file.

Where multiple resources are used in this example (i.e. hwsim and pro), they form a

pipeline. Therefore, the performance graphs presented in those cases are drawn as two

bars, where the overall execution time is the maximum of the bars.

2This data rate has been measured in similar types of streaming applications, using a 100MHz PCI-X bus
and incorporating the overhead to initiate DMA transfers.
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Figure 4.3: Results of mapping 1

Figure 4.3 presents the performance results of executing the first mapping on a single pro-

cessor. The total runtime was 338.9 seconds, of which about 7.5 seconds were spent in each

file I/O block, and 107 seconds were spent in each DES block.

The overhead time, measured as the remaining time not spent in any block, was measured

at 3.3 seconds aggregated over the entire run.

Figure 4.4: Results of mapping 2

Figure 4.4 presents the performance results of executing the second mapping, which si-

multaneously simulates the d2 block in ModelSim and executes the remainder of the algo-

rithm natively. Communication times between these two parts were modeled as described

above. Overhead was not measurable in this case, due to the simultaneous simulation and

execution, so this figure retains the overhead measurement from the previous results.
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Total run time (using the simulated results) is 256.8 seconds, limited by the execution on

the processor. The simulated hardware, running in parallel to the processor execution,

spent 0.0197 seconds operating on data and 4.067 seconds in communications. The total

run time under these conditions is a speedup of 1.32 over the first mapping, compared to

a theoretical speedup of 1.46 if there was no communication delay.

Figure 4.5: Results of mapping 3

Figure 4.5 presents the performance results of executing the third mapping under the same

conditions as used in the previous mapping. In this mapping, all DES operations are per-

formed in the hardware simulation, which is capable of pipelining the operations and thus

running them in parallel. These results assume the same communication delays as before,

and the removal of the non-communication overhead.

The total run time of this configuration is 21.9 seconds, and is still limited by the execution

time of the processor. The simulated hardware again spent 0.0197 seconds opreating on the

data, due to the pipelining within the hardware of the three DES blocks. This configuration

attains a speedup of 15.5 over the single processor configuration, compared to a theoretical

speedup of 18.5 if there was no communication delay.

These performance results demonstrate the effectiveness of executing portions of the Triple-

DES application on hardware resources, even with the inclusion of system bus communi-

cations.
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4.2 Signal Cleaner

The Signal Cleaner application is a test design that creates a cleaned, high-resolution sig-

nal from a lower-resolution signal. This particular design was chosen because a similar

structure plays a significant role in the gamma ray event parameterization application, to

be presented in Section 4.3.

4.2.1 Design

Figure 4.6 depicts the layout of the signal cleaner algorithm as a nine-stage pipeline. The

corresponding X Language code is shown on the right of the figure.

  1024x U8

    1024x F64

    8192x F64

                4096x F64 

               4096x F64

    8192x F64

ZeroPad

FFT

iFFT

CurveArea

Convert

TestSignal

    4096x F64  

   4096x F64 

Amultiply 
lp_real

F64

(Sink)

Amultiply 
lp_imag

Amultiply 
dc_imag

Amultiply 
dc_real

block SigClean {
TestSignal genwave(noise=20.0);
Convert convert;
ZeroPad pad;
FFT fft(width=8192);
AMultiply lp_real(coeffs=LPFILT_R);
AMultiply lp_imag(coeffs=LPFILT_I);
AMultiply dc_real(coeffs=VFILT_R);
AMultiply dc_imag(coeffs=VFILT_I);
IFFT ifft(width=8192);
CurveArea sum;
Sink drop;

genwave −> convert −> pad −> fft;
fft.out_real −> lp_real −> dc_real

−> ifft.in_real;
fft.out_imag −> lp_imag −> dc_imag

−> ifft.in_imag;
ifft −> sum −>drop;

};

Figure 4.6: Signal cleaner algorithm flow and X code

U8 and F64 refer to the X types UNSIGNED8 and FLOAT64, respectively.

In this algorithm, signals are generated by TestSignal, a block that approximates the in-

put from an analog-to-digital converter. TestSignal creates samples of log-normal shaped
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pulses with random background noise, and outputs one sample per block cycle as an ar-

ray of 1024 unsigned 8-bit values. This output is sent to Convert, which converts the array

into 1024, 64-bit floating-point values. ZeroPad then pads this array up to 8192 elements

by inserting seven zero elements between each original floating-point value. This array

is transformed from a time-domain signal into a frequency domain signal using FFT, a

block which performs the fast Fourier transform (FFT). FFT outputs two half-sized signals,

the real and the imaginary part of the frequency domain. Four AMultiply blocks perform

two element-wise array multiplies on each of the two frequency domain arrays, to do a

low-pass filter and a deconvolution. The cutoff point of the low-pass filter is chosen to cor-

respond to the high frequencies introduced by the zero-padding operation; the combina-

tion of zero-padding and this particular filter performs a sinc interpolation, a high-quality

upsampling interpolation technique. The deconvolution filter corrects for errors intro-

duced by the transduction of the electrical signal from its physical source. The convolved

frequency-domain halves are converted back into a time-domain signal by the inverse FFT

block, IFFT. Finally the total charge of the pulse is found with the CurveArea block, that

takes the sum of the elements in the array. The result is then dropped in the Sink block.

In a real application implementing the signal cleaner, the edge into the Sink block would

connect to further blocks that make use of this value (e.g., Section 4.3).

Four mappings of the signal cleaner onto a networked set of processors have been chosen

here for analysis. The first mapping, depicted pictorally and with the corresponding X

Language code in Figure 4.7, places the entire algorithm onto a single processor.

The second and third mappings, depicted in Figure 4.8 and Figure 4.9, partition the algo-

rithm onto two processors. Mapping 2 places the AMultiply filter blocks in the first proces-

sor, while mapping 3 places them in the second processor. The fourth mapping, similarly

shown in Figure 4.10, maps genwave and onvert to the first processor, pad through the

filter blocks to the second processor, and the remaining blocks to the third.
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pad

fft

lp_imag

v_imag

ifft

sum

convert

genwave

lp_real

v_real

drop

Proc

resource proc is C_x86;

use SigClean t; // t is the instance name for
// compound block SigClean

map { t } to proc;

Figure 4.7: Mapping 1
(Using instance names rather than block type names)

pad

fft

lp_imag

v_imag

ifft

sum

convert

genwave

lp_real

v_real

drop

Proc[1]

Proc[2]

resource proc[2] is C_x86;
resource net is TCP (

{ proc[1], proc[2] }
);

use SigClean t;
map { t } to net;
map { t.genwave, t.convert,

t.pad, t.fft }
to proc[1];

map { t.lp_real, t.lp_imag,
t.dc_real, t.dc_imag,
t.ifft, t.sum, t.drop }

to proc[2];

Figure 4.8: Mapping 2

pad

fft

lp_imag

v_imag

ifft

sum

convert

genwave

lp_real

v_real

drop

Proc[1]

Proc[2]

resource proc[2] is C_x86;
resource net is TCP (

{ proc[1], proc[2] }
);

use SigClean t;
map { t } to net;
map { t.genwave, t.convert,

t.pad, t.fft,
t.lp_real, t.lp_imag,
t.dc_real, t.dc_imag }

to proc[1];
map { t.ifft, t.sum, t.drop }

to proc[2];

Figure 4.9: Mapping 3

pad

fft

lp_imag

v_imag

ifft

sum

convert

genwave

lp_real

v_real

drop

Proc[1]

Proc[3]

Proc[2]

resource proc[3] is C_x86;
resource net is TCP (

{ proc[1], proc[2], proc[3] }
);

use SigClean t;
map { t } to net;
map { t.genwave, t.convert }

to proc[1];
map { t.fft, t.lp_real,

t.lp_imag, t.dc_real,
t.dc_imag }

to proc[2];
map { t.ifft, t.sum, t.drop }

to proc[3];

Figure 4.10: Mapping 4
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4.2.2 Performance

The four mappings (figures 4.7 through 4.10) of the Figure 4.6 algorithm were compiled

using X-Com. The resulting executables were then evaluated on a set of one, two, or three

machines connected with a Gigabit Ethernet switch. The machines each contain an AMD

Athlon 64 X2 4400+ processor (dual core, although only one core of each was used) with

1MB L2 cache, 2GB of system memory, and a Broadcom Corp. BCM5271 PCI-Express

Gigabit Ethernet controller. All machines were running Red Hat Enterprise Linux AS 4,

with Linux kernel 2.6.9-22 for x86-64 architecture.

Figure 4.11 and Table 4.1 each show the result of running Signal Cleaner on a single ma-

chine. The segments of the bar in the figure shows the aggregate time spent executing each

block. All times are normalized to show the time to process 100,000 input waveforms.

Figure 4.11: Results of mapping 1

Table 4.1: Results of mapping 1

Block name Cumulative time

genwave 100.8 seconds

convert 3.16

pad 27.0

fft 189.4

(filters) 8.96

ifft 194.8

sum 10.9

drop 0.044

Overhead 0.037

Total 535.1
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97.7% of the total time of 535.1 seconds were spent in five of the blocks: genwave (with

100.75 aggregate seconds per 100,000 samples), pad (27.0), fft (189.4), ifft (194.8), andsum (10.9).

0.036 aggregate seconds (less than .01%) were spent in unaccounted “overhead” time, mea-

sured from the beginning of the first block go() call to the last push(). This negligible

overhead time corresponds to the overhead of the X round-robin scheduler and inter-block

communication manager in this application.

One can use the results of this first mapping to attempt to create an efficient partitioning of

the algorithm onto two equal processors. Ignoring the communication overhead, this can

be done analytically by finding the partitioning that comes closest to evenly dividing the

processing times. To minimize the effects of communication overhead, even though the

value is not known, such a partitioning is done under the additional constraint of making

only one “cut” of the pipeline. This is the technique performed by pipeline optimizations

such as those found in [7] (which can also improve the partition if communication time is

known and employ more complex performance models). In this example, this is trivial to

do manually, and the result is the second mapping. Ideally, and with no communication

overhead, the execution time would be the larger of the sums of the Table 4.1 execution

times for blocks on each processor: 320.4 seconds for the first stage and 214.7 seconds for

the second, thus 320.4 seconds for the whole application.

Figure 4.12 shows the result of running Signal Cleaner on two machines, using the organi-

zation shown in Figure 4.8. Again, times shown are aggregate over the total execution and

normalized to 100,000 samples.

78.7% of the total distributed time of 677.8 processor-seconds were spent in the same five

blocks as before: genwave (with 103.7 aggregate seconds per 100,000 samples), pad (28.9),fft (190.2), ifft (201.0), and sum (9.6). The total runtime of 338.9 seconds represents an

improvement of 57.9% over the time of 535.1 seconds in mapping 1. It is 5.8% slower than

the ideal execution time of 320.4 seconds calculated earlier. This is due to the increase
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Figure 4.12: Results of mapping 2

in time spent performing communications between the processors, additional memory

management overhead, and other effects of partitioning the algorithm.

Overhead time, including X scheduling and inter-block overhead as before, was measured

at 0.006% of the runtime in processor 1, and 7.7% in processor 2. This overhead time

also contains a portion of the time spent busy-waiting on communications, thus it may be

somewhat inflated in these figures.

Communication time, the time spent transmitting data over TCP, was measured at about

2.9% of the runtime in processor 1, and 5.3% of the runtime in processor 2.

The remaining time (about 22.1%) found in processor 2 is wait time. This is wasted exe-

cution time, created by an imperfectly balanced pipeline where the rate of production in

the first process is slower than the rate of consumption in the second. Processor 2 is able

to complete the processing of its data quickly, so it spends a significant amount of time

waiting for data to arrive.

This demonstrates an important aspect of pipelining: the total system performance of a

pipeline (here, the two-parallel-stage pipeline formed by the two processors) is limited to

the time spent by the longest stage.
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Figure 4.13 shows the result of running Signal Cleaner on two machines, using the orga-

nization shown in Figure 4.9. This organization is similar to the previous mapping, except

the filter blocks (AMultiply) have been mapped to processor 1 instead of processor 2.

Figure 4.13: Results of mapping 3

In this mapping, the five larger blocks take up 76.1% of the total distributed time of 701.0

seconds. Each of these larger blocks executed in within 0.5% of the time recorded in the

previous mapping. The total runtime of 350.5 seconds represents an improvement of 52.7%

over the time of 535.1 seconds in mapping 1.

The time spent outside blocks follows a pattern similar to the previous mapping. Overhead

time here was measured at 1.5% in processor 1 and 8.4% in processor 2. Communication

time was measured at 2.1% in processor 1 and 4.0% in processor 2.

Unaccounted time was measured at 0.6% in processor 1, and 27.4% in processor 2. In this

case, moving the filters from processor 2 to processor 1 caused the imbalance between the

two stages to grow. The filters account for 9.7 seconds in mapping 2 and 10.0 seconds in

mapping 3. The total time has increased by 11.6 seconds going to mapping 3, which sug-

gests that the relative slow-down in performance is directly and primarily caused by the

approximately 10 seconds spent in the added filter blocks. This clearly demonstrates the

system-wide performance effect of the slowest stage discussed in the previous mapping.
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Figure 4.14 shows the result of running Signal Cleaner on three machines, using the orga-

nization shown in Figure 4.10.

Figure 4.14: Results of mapping 4

This mapping increases the available process-level parallelism by introducing a third pro-

cessor to the pipeline. The improvement on application performance is apparent: runtime

for 100,000 samples is reduced to 310.3 total seconds, compared to 338.9 seconds in map-

ping 2, the next-best arragement. This is an improvement of 57.9% over mapping 1, and

9.2% over mapping 2.

The block-accounted portion of Figure 4.14 indicates that ideally, even better performance

could be seen with optimal data availability — as low as 230 seconds (a 133% improvement

over mapping 1, or 47.3% over mapping 2).

The significant increase in unaccounted (overhead) time is most likely due to increase in

wasted time spent blocking on transmitting data between the processors. This effect is

compounded in this mapping because, for instance, processor 2 waiting to send to pro-

cessor 3 will stall the receiving of data from processor 1, and vice versa. Much of this

overhead can be overcome with the threading of inter-resource communications, or the
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increased use of nonblocking I/O with queuing on the outputs. Future implementations

of TCP (and other linktypes) will improve the performance in these conditions.

4.3 Gamma Ray Event Parametrization

The third example application is from the field of astrophysics, and demonstrates the ef-

fectiveness of the X Language in describing large algorithmic structures in real scientific

applications. This application, called gamma ray event parameterization, involves the

processing of large amounts of sensor data with the goal of identifying and characterizing

interstellar cosmic rays, particularly high-energy gamma rays.

Gamma rays are emitted from a wide variety of interesting extraterrestrial sources. Cur-

rently, astrophysicists believe that common gamma ray sources may include:

• Pulsars (very quickly spinning neutron stars)

• Expanding gas surrounding supernova explosions

• Supermassive black holes in galactic nuclei

• Neutron star collisions (uncertain)

• Hypernovae, very large supernovae resulting in black holes (uncertain)

The first three phenomona are relatively periodic sources of gamma rays, while the last two

are potential candidate sources of gamma ray bursts (GRBs). This distinction is important,

because it represents two separate scientific applications which use the same equipment

and processing techniques. Ground-based gamma ray telescopes generally examine the

periodic sources during their nightly observations. GRBs, however, are very rare events

that are seldom detectable with any advanced warning. In order to analyze GRBs, a “rare

event search” is performed over large spans of the database of nightly observations. While
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the first application can be performed online (i.e., during the observation itself) if the ap-

plication throughput can keep up with the sensor rate, the second application must be

performed over potentially very large storage-based databases.

A handful of ground-based (e.g., HESS [13], VERITAS [32], MAGIC [20]) and space-based

gamma ray observatories (e.g., GLAST, not yet deployed) have been developed in recent

years following the success of past gamma ray observatories such as the Fred Lawrence

Whipple Observatory and EGRET [17]. The ground-based systems all follow similar detec-

tion techniques, employing relatively large (10 to 16 meter) parabolically-arranged arrays

of smaller mirrors focused on arrays of hundreds of photomultiplier tubes (PMTs); many

employ multiple (usually four) telescopes of this configuration to perform stereoscopic

observation.

In these ground-based experiments, the high-energy gamma rays are not directly mea-

sured. Rather, the lower-frequency photons produced by the gamma rays’ interaction

with atmospheric particles are measured using what is called the Imaging Atmospheric

Cherenkov Technique. With this technique, high-energy gamma rays interact with the

Earth’s upper atmosphere, forming electron-positron pairs which subsequently generate

showers of electrons moving at velocities near the absolute speed of light. As they fall to

earth, the fast-moving particles are slowed to the speed of light in the atmosphere, result-

ing in electromagnetic shockwaves called Cherenkov radiation. These shockwaves appear

as faint glowing streaks of light in the blue through near ultraviolet portion of the spec-

trum. In an experiment, the streaks of light reflect off the mirror arrays and strike the

PMTs. The PMTs then convert this light, which may be on the order of single photons and

last only 3–10 ns, into electrical pulses which are then be converted into digital waveforms

by a high-frequency “flash” analog-to-digital converter (FADC).

The measured Cherenkov radiation can be on the order of 100 total incident photons from

one gamma ray, and this is recorded against a strong background of diffuse light from

starlight and city light. In the VERITAS telescopes, for example, when the ADC sam-

ples are only 2ns long, the individual measured photoelectrons register around 2–4 digital
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counts in the FADC, against background light of 15–20 digital counts and a variance of

5–10. As a result, a significant amount of signal processing in each channel and image pro-

cessing in each telescope is required to “clean” the recorded waveforms and discriminate

the Cherenkov pulses from background light fluctuations.

The processing of waveform data into telescope event characteristics is performed in two

main stages, per-channel (PMT) signal processing and per-event image processing. Signal

processing needs to perform the following steps on each channel:

1. Up-sample the waveform, using sinc (sin(x)−1) interpolation.

2. Deconvolve the waveform using a matched filter, which corrects for the PMT ca-

pacitance and analog transmission defects caused by transducing the photons and

transmitting the signal to the FADC.

3. Window the waveform to select only the expected location of the charge pulse on

that channel.

4. Subtract the “pedestal,” or baseline noise value from the waveform.

5. Scale the waveform, as necessary, to correct for differences in the gain between mul-

tiple PMTs.

6. Find the area under the curve of the cleaned, scaled waveform; this is the charge

incurred by the Cherenkov photon, if any.

7. Threshold the charge, to filter out charges within some factor of the typical variation

in background light.

Note that steps 1, 2, and 6 comprise the signal cleaning application presented in Section

4.2.

Once this has been performed on every channel, a clean image of significant charges de-

tected in the event will be created. Then, image processing must be performed:
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1. Calculate the moments M[x], M[x2], M[y], M[y2], M[xy] over the charges in the im-

age, using the (x, y) coordinates of each channel’s corresponding PMT in the array.

2. Compute the Hillas parameters using various algebraic combinations of the five mo-

ments above. The Hillas parameters are a set of values describing the image cast onto

the telescope by cosmic particles. For instance, a gamma ray typically looks like an

elongated ellipse, and Hillas parameters will characterize the ellipse’s width, height,

distance from the center of the array, and angle relative to the center of the array.

3. Store the Hillas parameters for each event for use in the final step described below.

The procedure to process the digital waveforms, with an emphasis on an optimal matched

filter for the VERITAS electronics, is discussed further in [9].

The final step in scientific analysis of the experiment is cutting, a less computationally-

intensive process that filters images by their parameters and generates statistics of the

filtered events. This step does not require sophisticated computational resources, and the

filtering parameters are likely to change quite drastically for each scientific objective. For

this reason it is left out of the X Language application design.

Figure 4.15: VERITAS PMT array with sample event superimposed
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Figure 4.15 depicts a schematic of the PMT array found in each telescope of the VERITAS

system. Each VERITAS telescope contains an array of 499 PMTs arranged in a packed-

circle pattern as seen in the diagram. Superimposed over the schematic is a simulation of

a single gamma-ray event, with the total charge per pixel indicated by the shade of the

filled circle within each PMT. Image processing of the event results in a set of parameters,

particularly those that describe the hollow ellipse that rougly contains the pixels of high

charge.

The above steps describe the general processing steps required for the Imaging Atmo-

spheric Cherenkov Technique. A processing pipeline designed for a specific telescope

using this technique must be parameterized to account for the particular set of physical

sensors used to capture the data, such as the particular packed-circle pattern above. The

VERITAS events are digitized only after passing multiple levels of triggering (per-channel,

per-telescope, and across telescopes), and the data for each channel in an event are avail-

able at the same time. VERITAS consists of four telescopes (currently two are operational),

however the stereoscopic analysis is well-suited for the cutting step, performed after the

computationally-intensive portion of the analysis.

The following section will examine the particular approach used in designing an X ap-

plication to perform gamma ray event parameterization for the VERITAS telescopes. X

blocks performing many of the above steps are connected in a pipeline suitable to deploy-

ment on pipelined processing architectures. Following the application description is a set

of performance results found by different mappings of the algorithm within a multi-core,

multi-processor system.

4.3.1 Design

Figure 4.16 depicts the design of the VERITAS gamma ray event parameterization algo-

rithm developed in the X Language. Two of the 499 channel processing pipelines are

shown, one of which is annotated with the data types transmitted on the edges.
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Figure 4.16: VERITAS gamma ray signal processing pipeline in X
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One input to the application is a telescope configuration file, containing the pedestal value,

gain coefficient, and charge threshold for each PMT in the telescope for that run. The

“Array Config” block in Figure 4.16 distributes these values to the three corresponding

blocks in each of the 499 signal processing pipelines. The (x, y) coordinates of the PMTs do

not change between telescopes, so they are instead provided as compile-time configuration

values to the moment generator.

The second input to the application is the data file, in VERITAS Bank File format, contain-

ing waveforms collected during one “run” of the experiment. A typical 28-minute run will

yield approximately 1.4 GB of data, varying with the triggering rate. The “VERITAS Bank

File reader” block wraps around a C++ event reader which uses the VERITAS-provided

Bank File library. It reads each event from the file (uncompressing if necessary) and creates

two variable arrays, one containing the waveforms themselves and the second containing

the channel numbers for each waveform.

The two variable arrays are read by the “Array Orderer” block and distributed among the

499 signal cleaning pipelines (contained in the dashed lines in Figure 4.16).

The pipeline contains the signal processing steps described at the beginning of this section.

To perform interpolated upsampling and deconvolution, the signal is first padded and

then converted into the frequency domain. Zero-padding followed by a perfect low-pass

filter in the frequency domain directly corresponds to the sinc-interpolation operation. The

second filter in the frequency domain performs the matched filter. It is convenient to do

this in the frequency domain as the complicated matched filter operation can be quite com-

plex as a FIR filter in the time domain. Note that the two filter operations are performed

in two smaller pipelines; this is because the FFT and IFFT operations treat the real and

imaginary portions as two distinct arrays for compatibility with other library operations.

The remaining time-domain operations directly follow the previously described outline of

steps: the waveform is windowed around the pulse, the pedestal is subtracted, the curve

area (charge) is computed, and the resulting charge is multiplied by the PMT gain.
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The output of each channel’s signal processing pipeline is a cleaned charge value, cor-

responding to the charge from high-energy photons in the event. Any below-threshold

charges (less than typical variance) are zeroed to further clean the event image. The first,

second, and correlated moments of all these charges are then computed, and Hillas param-

eters are found using their values. Finally, the Hillas parameters for each array event are

received by the “Histogram” block, which bins each parameter in each event for scientific

analysis of the whole run.

Four different mappings of the X blocks onto one to four processors were created to demon-

strate the performance of different partitioning techniques. Each mapping is described

below and is depicted along with a simplified version of the gamma ray event parameter-

ization algorithm (Figure 4.16).

• The trivial mapping, mapping 1 (Figure 4.17), simply places all blocks on one pro-

cessor.

• Mapping 2 (Figure 4.18) places the front blocks (reader, config, order) and one half

of the signal processing pipelines on one processor, and the remaining blocks on

another.

• Mapping 3 (Figure 4.19) places the front blocks and the first five stages of each of the

pixel pipelines (convert, zeropad, fft, two filters) on one processor, and the remaining

blocks on another.

• Mapping 4 (Figure 4.20) is similar to mapping 2, but across four processor resources.

It places the front blocks and 90 of the signal processing pipelines on one resource,

the back blocks and 90 pipelines on the second, 160 pipelines on the third, and 160

pipelines on the fourth. These proportions were chosen (by hand) to roughly provide

equal amounts of computational work to each processor.
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4.3.2 Performance

The mappings found in the previous section section were all evaluated by executing the

X-Com generated programs on a single machine. This machine contains 8GB of mem-

ory distributed to two AMD Opteron 270 processors, which are dual-core devices and thus

total four cores, operating at approximately 2000 MHz, with 1MB of L2 cache per core.

The machine was running Red Hat Enterprise Linux AS 4, with Linux kernel 2.6.9-34

for x86-64 architecture. As before, the processor mapping was maintained by use of theshed_setaffinity Linux system call to restrict each program to scheduling on only one

of the four logical processors.

Figure 4.21: Results of mapping 1

Figure 4.21 presents the results of running the gamma ray event parameterization appli-

cation with the trivial, single-context mapping. Processing 350000 events takes a total of

5945 seconds. The FFT and IFFT blocks are clearly the most computationally-intensive

operations in the application, taking up 3420 cumulative seconds, or 57.5% of the total

runtime. The filters (four elementwise array multiplications per channel) also take a sig-

nificant portion of the runtime, with 593 seconds (10.0%). Overhead for this mapping is

642 cumulative seconds (10.7%), corresponding to the time not spent in any individual

processing block.

Figure 4.22 presents the results of running the same application and dataset of 350000

events on mapping 2. The total runtime was 4776 seconds, 80.3% of the time to run the
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Figure 4.22: Results of mapping 2

trivially mapped version. While this mapping was developed to almost equally partition

the application across two processors, it falls short of the ideal of 50% of the execution time

of the first mapping. This is due to a number of factors, such as the increase in individ-

ual block processing time, the imbalance of the pipeline due to these different processing

times, and the introduction of a significant communication delay.

Each class of blocks in this mapping takes somewhat longer to execute than in mapping 1,

from 2–3% longer for the FFT/IFFT blocks to 110% longer for the threshold block. This is

probably due to the increased strain on memory due to multiple simultaneous contexts.

The idle time for this mapping was 1211 cumulative seconds in the second core, or 25.4%

of that core’s runtime. This indicates that the second core was starved for data, and that

in an ideal case, an approximate 12.7% reduction in runtime could be achieved with a

better-balanced pipeline.

Communication time is a major component of the runtime of mapping 2, at 1505.5 seconds

(31.5%) of the first core’s total runtime. The large magnitude of communication time is

likely due to inefficiencies of the Unix socket communication code. Better queueing and

threading are possible techniques to improve this time, discussed further in Section 5.3.

Even with improvements, however, the communication involves the transmission of very

many small (8–192 byte) packets, for which the messaging overhead of individual Unix

socket packets is not efficient.
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Figure 4.23: Results of mapping 3

Figure 4.23 presents the results of running the same application and dataset on mapping 3.

The total runtime was 5755 seconds, 96.8% of the time to run the trivially mapped version.

This mapping is similar to mapping 2, with two processor cores, but with a “horizontal”

partition between stages of the algorithm pipeline, rather than a “vertical” partition be-

tween equal numbers of nearly identical pipelines.

Most of the individual block classes perform slightly better in this mapping, possibly due

to better locality of execution, however the communication time is much greater. The

larger of the two communication times was 2741.8 (47.6%) seconds in the first core. The

much larger communication time (compared to mapping 2) is probably due to the much

greater amount of data transferred over the interconnect. In this mapping, 998 arrays of

128 FLOAT64s (about 1 MB) per event are sent from filters to IFFT in each event, compared

to 250 arrays of 24 UNSIGNED8s and 250 FLOAT64s per event (8 kB).

Figure 4.24 presents the results of running the same application and dataset on mapping 4.

The total runtime was 3299 seconds, 55.5% of the time to run the trivially mapped version,

and 69.1% of the time to run mapping 2.

This mapping demonstrates the scalability of “vertical” algorithm partitionings. The per-

channel signal processing pipelines are partitioned in such a manner. In mapping 2, the

per-channel processing operations took an aggregate total of 5484 seconds divided among
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Figure 4.24: Results of mapping 4

two cores, while the same operations in mapping 4 took 6440 seconds (17.4% more) di-

vided among four cores. Ideally, this could yield a 41.2% reduction in runtime over this

portion of the algorithm, although a 32.5% reduction was actually seen due to imperfect

partitioning in both mappings.

As expected by the increased communication between cores, communication took longer

in mapping 4 than mapping 2. The core containing the front blocks took 1743 cumulative

seconds (16% more than mapping 2), while the longest other core took 754 seconds (42%

more than the second core in mapping 2).

4.3.3 Further performance analysis

The above results of mapping 4 demonstrated a speedup of only 1.8 over the single-

processor case. At first, this may seem low when compared to a speedup of 4 under ideal

scaling. To understand the nonideal scaling of the problem, consider the performance

degradation of mapping 4 broken into the following categories:
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• Communication overhead. The time spent transmitting or receiving data from another

processor.

• Memory contention overhead. The increased time spent executing each block due to

contention for the memory controller between multiple cores in a processor, and for

the memory bus between multiple processors in the system. Blocks will vary in their

sensitivity to this overhead depending on their utilization of memory.

• Partition imbalance. The idle time spent waiting to receive data from a busy upstream

process (starvation) or waiting to send data to a busy downstream device (blocking

on a filled queue). This also includes time wasted by an upstream device having

finished its work before the downstream devices.

• Removed parallelism. Some operations that proceed in parallel within a processor, for

instance input stream caching from disk, can reveal previously hidden delays if the

main computational processing time goes down.

• Other overhead. The additional processing time introduced by the generated X code,

for instance due to reduced spatial locality.

The accuracy of measuring each of these types of performance degradation varies greatly.

Communication overhead is easily measured by the time it takes to perform the transmit or

receive operation (although note that communication affects partition imbalance as well).

In mapping 4, the communication overhead accounted for 1743 out of 3299 seconds in the

first core, 754 seconds in the second, 666 seconds in the third, and 688 seconds in the fourth.

In the 13196 seconds of distributed execution, 3851 seconds (29.5%) were spent performing

communication operations.

Memory contention overhead is difficult to directly measure without hardware support.

However, the overhead can be estimated by executing four copies of the application in

parallel and measuring the relative slowdown. Four copies, each executing one quarter of

a 120000-event run, were simultaneously executed on the same four-core system used in

mapping 4 (twice, to mitigate disk I/O time). In this configuration, the copies each took
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626–628 seconds to execute, with a sum of 2504 seconds. Compared to 2191 seconds to run

all events in one process, this is a 14.3% increase in distributed execution time. Assuming

that the disk I/O effects have been reduced by caching in the OS, this increase in time is

probably mostly due to contention for memory resources between the cores in the system.

The partition imbalance is more difficult to properly measure without a detailed trace of

the data production and consumption times 3. The measured “idle” time can be used, how-

ever, as an effective first-order estimate of the wasted time introduced by an imbalanced

partition. In mapping 4, a total of 493 seconds, distributed over the 4 cores, were measured

as time spent idle. Additionally, about 1150 seconds of distributed time was spent by core

1, 3, and 4, waiting for core 2 to complete its operations. By perfectly redistributing the op-

erations and assuming no variation in block execution time, these 1650 seconds of wasted

time (12.5% of the total) could be entirely removed.

Table 4.2 summarizes the three components discussed above. The sum of these is 7388

seconds, or 56.0% of the total execution time. From this number alone, one estimates a

speedup over mapping 1 (which ran in 5945 seconds) of

5945 s

1

4 processors

5945 s

1 − .56

= 1.76

This comes close to the realized speedup of 1.8.

It is important to note that using the sum of the components is only valid for a rough es-

timate, as the delays may be strongly interrelated, creating both constructive and destruc-

tive interference between their overheads. Additionally, this estimate ignores the final two

overheads discussed above, which are more difficult to measure, and are assumed to affect

the system performance to a lesser extent.

3This is one advantage of using the X-Sim tools, under development
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Table 4.2: Estimated contributions of non-ideal scaling effects in mapping 4

Category Distributed time Percent of total

Communication 3851 29.5%

Memory contention 1887* 14.3%

Partition imbalance 1650 12.5%

Sum** 7388 56.0%
*: Extrapolated from separate simulation. **: See text for important note.
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Chapter 5

Summary

This thesis has presented the overall design of the Auto-Pipe toolset, the X Language, and

X-Com, an X Language compiler. This final chapter summarizes the conclusions drawn

from this work, the notable contributions that have been made, and presents an outline of

future opportunities for research and development with Auto-Pipe and the X Language.

5.1 Conclusions

Developing parallel, performance-sensitive applications distributed across complex, pos-

sibly heterogeneous sets of computation resources is a difficult task. This requires a great

deal of time and effort during the initial programming, the debugging, and the optimiza-

tion stages of development.

Auto-Pipe is a toolset that reduces the effort required in these stages while improving the

developer’s understanding of the system performance. An important part of Auto-Pipe

is the X Language, in which all applications are described at a high, structural level. The

X Language compiler, X-Com, has been written to perform the core functionality of the

Auto-Pipe system. The remaining simulator (X-Sim), optimizer (X-Opt), and deployment

(X-Dep) components are currently being developed.

Even though the full Auto-Pipe system is not yet complete, X-Com shows promise as an

easy-to-use and effective means of trying many different partitionings of an application



110

onto different sets of computational resources, connected with different types of intercon-

nects. It also provides a useful infrastructure for combining different forms of execution

such as native execution and hardware simulation; this aspect will be further enhanced

when automated with X-Sim.

5.2 Contributions and Implementation Status

Section 1.3 introduced the design of Auto-Pipe, a flexible set of design tools that improve

the development of heterogeneous, parallel applications. A set of architypical flow dia-

grams were introduced (Figures 1.8, 1.9, 1.10) which illustrate the flexibility of X-Com and

X-Sim to enhance the development process from initial testing through completion. In the

future the system will employ the power of an optimizer to improve the performance of the

application. While the initial goals are for X-Opt to optimize the performance of pipelines

through currently available analytic tools, the design framework, using the combination of

X-Sim and X-Opt, permits a variety of optimization metrics, limited only by the supported

set of simulators and models. Section 5.3 examines some possible future directions for this

capability.

The contributions represented in this thesis include:

• An initial design (Section 1.3) of the structure and organization of the Auto-Pipe tool

set.

• The X Language (Chapter 2), a hybrid dataflow coordination language with support

for complex heterogeneous systems of computation and interconnect resources.

• X-Com (Chapter 3), a compiler that supports the X Language specification and cur-

rently performs code generation for C and HDL targets.

• Three applications (Chapter 4) which have been developed in the X Language. They

demonstrate the effectiveness of the Auto-Pipe development flows to analyze the

performance of a distributed application and improve its performance.
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At the time of the publication of this thesis, the X-Com compiler core (excluding code gen-

erations) supports nearly all of the X Language specification presented in Chapter 2. The

only omission is handling of the STRUCT composite data type. The C and VHDL generators

support most of the remaining language structures. Missing from both C and VHDL gen-

erator implementations are proper handling of the VARRAY data type. The VHDL generator

does not permit ARRAY data types to be provided as configuration. Irregularities exist in

the handling of edge sets which are merged and then immediately split again; a temporary

work-around is currently in use where a pass-through block is placed between the outputs

and inputs, and the generated code is indistinguishible from a working implementation.

The binding operation is not yet automated. Eventually, a tool will perform the binding of

code generated for resources by X-Com to locally available devices. Currently, the binding

is performed by hand through the design of a Makefile script for each application (gener-

ally a one-time operation per resource allocation).

X-Sim is under development. Interconnect generators for the interface between simulators

are being developed for X-Sim. The simulator bindings and simulator automation steps

have not yet been designed. X-Sim is planned to be completed in the early summer of

2006.

X-Dep is under development. Currently, a manually created deployment Makefile exists,

however work still needs to be done to automatically generate the deployment scripts for

simulation and real device execution. X-Dep will be developed and completed during the

summer of 2006.

X-Opt has only been designed at a conceptual level, and the nontrivial optimization algo-

rithms have yet to be designed.

Currently, the available code generators in X-Com generate general-purpose C and VHDL

coordination code. The C generator works under POSIX-compliant systems, and has been

tested under 32-bit and 64-bit Linux 2.6, and 32-bit and 64-bit Cygwin. The HDL generator

has been written structurally, but has not yet been tested under synthesis to a real device.
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Interconnects are available for TCP and Unix sockets between C resources, but not inter-

connects are currently available for HDL resources (a rudimentary file I/O interconnect

does currently exist for testing). Both TCP and Unix sockets use blocking I/O operations

to send, and thus create a noticeable overhead when block processing times are small.

5.3 Future Work

While X-Com is nearly complete and the Auto-Pipe tools have been well defined, there

is still work to be done in implementing the remaining parts, improving the performance

of the generated code, and developing more targets for computation and interconnect re-

sources and simulators. Many of the improvements will draw from current design tech-

niques and recent research, but even yet-unfinished research may have a great impact on

the Auto-Pipe tools and X Language design. This section outlines potential future work

that may be done in the Auto-Pipe system, both planned and hypothetical.

The usability of the X Language should be analyzed and improved:

• Productivity could be recorded in a properly designed experiment, consisting of a

reasonable sample size and control group of programmers developing applications

using the X Language. Performance (time to develop, time to debug, resulting ap-

plication performance) could then be compared between the two groups to quantita-

tively measure the effectiveness of the X Language compared to traditional method-

ologies.

• In general, expansion of the X-Com user base will result in more feedback, thus im-

proving the “user-friendliness” of the compiler and X Language and help to remove

any possible bugs.

The current C code generator, which is expected to be the most often used generator, may

benefit from improvements to its API performance and scheduling techniques:
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• The memory allocation calls need to be individually profiled in a variety of cases; cur-

rently, the standard mallo() and free() calls are used, however a special-purpose

low-overhead allocater for small data elements might provide better performance.

• More scheduling models should be supported. Currently, the go() functions are

scheduled in a round-robin manner, and all push() functions are called through di-

rect function calls.

– Dynamic and profile-based static scheduling of block calls could result in im-

proved performance in certain applications.

– Scheduling techniques optimized for pipelines could also improve performance

in certain applications. An example of such techniques applied to heteroge-

neous systems may be found in [22].

• The performance of various schedules for I/O on external edges (those edges that

connect across interconnect resources) should be examined. Currently, there may be

a significant amount of time spent performing communications between resources

that could be hidden by better software pipelining of inter-resource I/O.

Further generation targets may be developed for use with X-Com (and thus X-Sim):

• Computation resources, such as:

– Specific FPGA resources (using brand-specific implementations of queues and

chip resources).

– Network processors (NPs), including potentially multiple models for imple-

mentation, such as treating the NP as a single resource with limited capacity

(like an FPGA), or treating each “micro-engine” as an individual resource, con-

nected using an on-chip interconnect fabric.

• Interconnect resources, such as:
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– Customized Internet Protocol communications, similar to TCP (currently avail-

able) but with relaxed timing requirements, reflecting the flexibility of one-way,

already queued data links.

– Special-purpose, high-performance clustering interconnects, such as InfiniBand,

Myrinet, Fibre Channel, and others as they are developed.

– DMA transfers between system memory and typical PCI-connected (or PCI-X,

PCI-Express, etc.) FPGA development boards.

– Custom protocols for on-board and inter-board interconnects between FPGAs.

The optimizer, X-Opt, needs to be developed:

• A framework for X-Opt needs to be created which will take as input the X algorithm

description and the results of X-Sim, and produce a new resource allocation.

• Multiple optimization algorithms should be developed to improve performance un-

der a number of different metrics, for instance:

– Total amortized throughput per unit time

– Average and maximum latency per unit time

– Total amortized throughput per unit time per resource cost (a function of the

used resources)

– Total amortized throughput per unit time per resource utilization (e.g. logic

elements on an FPGA)

• Depending on simulator accuracy (of both X-Sim and the supported simulator set),

“embedded” applications with hard real-time constraints could be analyzed and op-

timized using X-Opt.
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