
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1994

Animation of a process for identifying and merging raster polygon Animation of a process for identifying and merging raster polygon

areas areas

Katherine J. Kahl
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Kahl, Katherine J., "Animation of a process for identifying and merging raster polygon areas" (1994).
Graduate Student Theses, Dissertations, & Professional Papers. 5109.
https://scholarworks.umt.edu/etd/5109

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5109&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5109?utm_source=scholarworks.umt.edu%2Fetd%2F5109&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

Maureen and Mike
MANSFIELD LIBRARY

The University ofMontana
Permission is granted by the author to reproduce this material in its entirety,
provided that this material is used for scholarly purposes and is properly cited
in published works and reports.

* * Please check “Yes " or "No " and provide signature

Yes, I grant permission .V
No, I do not grant permission____

Author’s Signature 4 PifhiXOuJ. V r

Date: te -r f-W ___________

Aliy copying for commercial purposes or financial gain m ay be undertaken only with
the author's explicit consent.

Animation o f a Process for Identifying and Merging

Raster Polygon Areas

by

Katherine J. Kahl

B.A. The University of Michigan, 1975

presented in partial fulfillment of the requirements

for the degree of

Master of Science

The University of Montana

1994

Approved by

Chairperson, Project Committee

Dean, Graduate School

1^1 / f 9 y
Date

UMI Number: EP40573

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

D is« ft ir tto n PyW iitetgf

UMI EP40573

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest
ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106 - 1346

Kahl, Katherine J., M.S., June 1994 Computer Science

Animation of a Process for Identifying and Merging Raster Polygon Areas
(93 pp.)

Director: Ray Ford

Algorithm animation is designed to reveal the logic, progress, and internal
workings of an executing program. The implementation of an effective
visualization of an intricate algorithm requires a specialized environment for both
programmers and end-users. The potential for discovery of previously
undiscovered properties of the algorithm is great, but only if the environment is
sufficiently easy and enjoyable to use. This project investigates the requirements
for algorithm animation by using a scientific data visualization package to produce
animated prototypes of an image classification algorithm.

The MERGE algorithm is currently under development to satisfy variable
application constraints defined by biologists at the Montana Biodiversity Project.
After a satellite image is processed to classify areas of similar vegetation
characteristics, MERGE analyzes the 2-dimensional data array and identifies raster
polygons characterized by similar data values. The algorithm merges and
eliminates insignificant areas by applying a set of user-defined rules and criteria
based on properties of neighboring cells, effectively operating as a noise
elimination function.

The ultimate long-term goal of the MERGE algorithm animation project is to be
able to demonstrate the algorithm in real time, in animated graphical form, with
a specific set of user controls over the algorithm’s progress. The goal at the
current project level is to propose and investigate a set of alternatives based on
related work and background. Detailed intermediate goals and successive stages
of implementation are anticipated and described by the spiral model of software
development. Prototype animations are implemented using the IBM Data
Explorer software on an RS/6000 platform with user modules written in the C
programming language. The final results of this project include use of the spiral
model to document that capabilities for effective algorithm animation are limited
by properties of the current visualization system.

iii

Table of Contents

ABSTRACT... ii

Table of C ontents... iii

List of F ig u r e s .. v

List of T a b les... vi

Acknowledgements.................. vii

1 Project Formulation .. 1
1.1 Scenario .. 1
1.2 Application Background and Terminology...................................... 3
1.3 The MERGE Algorithm .. 5
1.4 The Spiral Model of Software Development 6

2 Related Work and Background .. 9
2.1 Scientific Visualization... 9
2.2 Visual Programming.. 11
2.3 Algorithm A nim ation... 13
2.4 Computer Animation 22
2.5 The Data Explorer Software ... 23

3 Im plem entation... 28
3.1 Introduction... 28
3.2 Analysis .. 28
3.3 Project D eta ils .. 30

3.3.1 Spiral 1 ... 34
3.3.2 Spiral 2 ... 49
3.3.3 Spiral 3 ... 62
3.3.4 Future Spirals... 72

4 Conclusion ... 76
4.1 What was accomplished .. 76
4.2 Future Enhancements ... 78
4.3 Lessons Learned ... 78
4.4 Summary .. 79

Bibliography ... 81

Appendix A: D X Data Model Class D ia g ra m .. 83

iv

Appendix B: User-written D X Modules .. 84

Appendix C: Hardcopy Output of Animation Sequences........................ 90

Appendix D: DX Network Descriptions and Instructions 93

V

List of Figures

Figure 1.1: Generic Spiral Model of Software D evelopm ent.......................... 8
Figure 1.2: Attributes of Algorithm Animation [Brown-88]............................ 16
Figure 3.1: MERGE Algorithm Animation Main Spiral 33
Figure 3.2: Spiral 1.0 Feasibility Subtasks .. 35
Figure 3.3: Static Visualization of MERGE D a ta .. 43
Figure 3.4: Series of Changed C e lls ... 47
Figure 3.5: Spiral 2.0 Development Subtasks 50
Figure 3.6: Sample Network of Caching Modules .. 57
Figure 3.7: Similarity M atrix.. 60
Figure 3.8: Spiral 3.0 Interactivity Subtasks .. 62
Figure 3.9: Interprocess Communication.. 66
Figure 3.10: MERGE Dataflow Network.. 67
Figure 3.11: Performance T im ings.. 69

vi

List of Tables

Table 3.1. Spiral 1 .1 .. 36
Table 3.2. Spiral 1 .2 .. 39
Table 3.3. Spiral 1 .3 .. 41
Table 3.4. Spiral 1 .4 .. 44
Table 3.5. Spiral 2 .1 ... 51
Table 3.6. Spiral 2 .2 ... 54
Table 3.7. Spiral 2 .3 ... 56
Table 3.8. Spiral 2 .4 ... 59
Table 3.9. Spiral 3 .1 ... 63
Table 3.10. Spiral 3 .2 ... 65
Table 3.11. Spiral 3 .3 ... 68
Table 3.12. Spiral 4 . 0 ... 72
Table 3.13. Spiral 5 .0 ... 74

Acknowledgements

vii

I gratefully acknowledge the wise and patient support of Dr. Ray Ford and Dr.

Alden Wright of the Computer Science Department, and committee members Dr.

Jim Ullrich and Dr. Roly Redmond. I’d also like to thank Mike Sweet, Dick

Thompson, Ron Righter, and Saxon Holbrook.

This effort is dedicated to my family.

1 Project Formulation

This project addresses a problem in the application area of geoprocessing which combines

the fields of image processing and geographic information systems (GIS). The application

is a computationally intensive model of a classification algorithm applied to a raster GIS

data set. The area of interest is the detection of boundary conditions in 2-D raster images

and the potential for merging regions of relatively uniform properties. The specific task

of this project paper is to address the following problem: we would like to better

understand this large, computationally intense, analytical process. Algorithms are the

"stuff of computer science, the specific problem-solving methods. The approach we’ve

taken is algorithm animation, which involves knowledge and concepts from the fields of

analysis of algorithms, the human visual process, scientific visualization, visual

programming and programming environments, animation as an art and as an applied

computer graphics technique. A review of the literature on algorithm animation and

related topics is covered in Chapter 2, followed by a description of the specific

visualization software system. Implementation details are the focus of Chapter 3, and

Chapter 4 summarizes the results.

This chapter gives a brief introduction to the different subjects that are necessary to

understand the context and significance of this research. The first section defines some

image processing terminology and the second section describes the MERGE algorithm.

The last section outlines the chosen software methodology which determines the entire

approach to the project.

1.1 Scenario

Picture a scientist at the console o f a graphics workstation. The monitor

displays two images, where one image, the "raw” input image, never changes.

1

2

The other, a "derived" image resulting from the application o f a rule-driven

image enhancement process, changes constantly as a sequence o f image

transforming rules are applied. The scientist is able to observe the sequence

o f changes and interact with the image enhancement process in a number of

ways. A t any point he/she can adjust the system controls to speed up, slow

down, or replay the sequence o f intermediate images. He/she can directly

modify the image enhancement program by graphical manipulation o f the

visual program representation. Finally, the scientist is able to halt the

derivation process in a particular state and demonstrate a new rule by simply

"painting" a new image illustrating the desired result over the current image.

In this mode, the underlying system is directed to deduce the rule that

appropriately describes the transformation.

Once a mere "vision" shared by a few ambitious designers, interactive computational

discovery is now a reality, achievable in the laboratory. This is specifically due to

conceptual and technical breakthroughs in scientific data visualization, visual

programming languages and environments, and algorithm animation, which is the

visualization of program execution. These areas have advanced rapidly over the past few

years to suggest the convergence of an emerging set of paradigms for programming and

design that define the conceptual framework and enable discoveries at the intersection of

these disciplines by providing us with whole new patterns and modes of thinking

[Ambler-92].

This project paper is a contribution to the intersection of these technologies. The

application domain is an image enhancement process that is critical in the domain of

ecosystem analysis. The goal is to combine the best aspects of visualization, visual

programming, and algorithm animation to build an interactive user interface. Appropriate

principles of data visualization are applied in order to depict the exact structure and

observable properties of the data. The goal is to improve user understanding of the

3

underlying processes of the algorithm. Our general approach is based on the spiral model

of software development [Boehm-88]. Our visual programming environment is the IBM

Visualization Data Explorer software on an IBM RS/6000 platform [IBM-93]. For

extensibility, the system is based on this general purpose scientific visualization package

with a visual programming interface, rather than a customized but obscure collection of

graphics and window manipulation components. The results at the end of this project fall

short of the concepts described by the scenario regarding complete interactivity, real-time

algorithm animation and communication with the algorithm process, and the inferential

capabilities. However, assuming that increased functionality is supported by new versions

of the visual programming environment, these features can easily be scheduled as iterative

enhancements paralleling development of the application algorithm.

1.2 Application Background and Terminology

Image Processing

Image processing techniques include image reduction, magnification, aggregation,

subsetting, classification, contrast enhancement, edge detection and enhancement, filtering,

etc. There are two main purposes of the methods: 1) to appeal to the senses by

improving the visual appearance of the image to the user; and 2) to prepare images for

automatic analysis, such as the measuring and detection of inherent features.

A satellite image is similar to a photograph of the earth, but is made up of overlapping

bands of data where each band represents a range of spectral reflectance values of the

features. Satellite data is a primary source of digital raster images. A digital raster image

is a two-dimensional grid of pixels. Each pixel represents a certain size area on the earth

and can be denoted by a unique (<ith row, jth column>) ordered pair. The size of the

grid is determined by the spatial resolution of the data. Image subsetting is used to

extract target portions of an image. Image aggregation is used to transform an image to

4

a higher level of abstraction by collecting groups of pixels into areas called raster

polygons based on both their spatial and attribute-dependent relationships. Raw or

unclassified satellite images yield the spectral reflectance values of the features on the

ground which is not enough to identify the features themselves. Spectral classification

algorithms contained in some of the commercially-available packages, such as ERDAS,

process the data to produce classified images which identify features.

Classification

The example of image classification applied here is the identification of classes of

existing vegetation and land cover from analysis of satellite imagery. Each cell in a

classified image contains one of a set of class values. In essence, the class value

identifies the class to which that cell belongs. There are two methods of assigning

spectral classes. In a supervised classification, the user defines the classes by identifying

areas of interest among the spectral statistics and parameters. Unsupervised classification

is where the user allows the classification program to identify significantly different areas

by statistical data clustering. Classification details are dependent on characteristics of the

remote sensing equipment used, properties of the dataset, and the intended application.

Aggregation

In general, aggregation is a process that combines pixels into polygon areas determined

by size and shared properties determined after the initial classification. The MERGE

algorithm implementation is based on the premise that aggregation details should be under

user control in order to address application-specific (e.g. expert system) constraints. These

details include information such as the following.

• The user specifies minimum area size to merge to
(threshold value) and any class values where areas should
be excluded from aggregation.

• Only areas smaller than the threshold size are to be merged.
• Merge areas in increasing order of size and don’t reorder to-be-merged

areas when their size changes, unless their new size exceeds the threshold
value.

5

• Merge areas according to a user supplied selection function which
indicates the relative similarity of attributes between data values of
neighboring areas.

The inherent complexity of the aggregation and the large size of target images leads to

any algorithm which implements aggregation being both memory and compute bound.

Thus the technical considerations of the tradeoff between memory and the processing time

involved in the implementation of an effective algorithm become significant issues. The

goal of the MERGE algorithm animation project is to clarify some of these issues by

illuminating the rule application process.

1.3 The MERGE Algorithm

The MERGE program was written as an implementation of a general aggregation process

by Prof. Ray Ford of the Computer Science Department. MERGE takes input in the form

of any remotely sensed image data which has been preprocessed from a 3-D array of raw

pixel data into a classified image. The classified image is a 2-D grid of cells, where each

cell has been assigned a discrete value based on analysis of the spectral bands from the

remote sensing instrumentation. The problem is to "refine" the image by combining

adjacent cells with similar class values into regions. For both visual and measurement

analysis, regions below a certain threshold size are considered "noise", and must be

eliminated by combining them with their larger neighbors according to certain ordering,

selection, and similarity criteria. After the "uncluttering" process of MERGE, the image

will only contain regions larger than the threshold size. Thus MERGE operates on the

data structure as a noise elimination function, efficiently combining adjacent polygons

according to user-specified parameters and rules.

The inputs to MERGE are a file containing integer values for an n x n grid, a threshold

size, and in cases incorporating a neighbor selection function, an array defining similarity

6

values within the range of valid cell values. Additionally, the user can specify particular

class values to be excluded from the merging process. The outputs of MERGE are the

updated classified image file that contains only regions larger than the threshold size, and

a statistical summary of the results and internal performance.

1.4 The Spiral Model of Software Development

Implementation of the algorithm animation project is prescribed by the spiral model of

software development [Boehm-88]. The spiral model is one candidate that addresses a

weakness of traditional software process models: that they tend to discourage the effective

approaches of prototyping and software reuse. The main characteristic and strength of

process models is that they answer the following software project questions.

• What process should be done next?
• How long should the process continue?

The spiral model is an iterative risk-driven approach to software development. It is

graphically illustrated by an outwardly spiralling curve that reflects the concept that each

cycle of redesign addresses the same processes as in prior cycles, but with more detail

and in the context of new information. The radial distance of the curve from the center

reflects the cumulative "cost" to date; the angular dimension measures the relative

progress toward completing each cycle. Use of the model removes the negative

connotation that the reworking of a product of an earlier stage has under a document-

driven or code-driven development model. That is, the spiral model suggests that such

reworking is natural and inevitable, rather than the result of errors or failure in earlier

stages of development.

A typical spiral cycle involves four phases, represented in two dimensions by the four

7

quadrants defined by the intersecting jc and y axes. A new cycle starts with the

hypothesis that there is a software project deserving implementation. The spiral is

terminated at any time if the hypothesis fails.

The first phase involves identification of the objectives, alternatives, and constraints of

the proposed project. The second phase is evaluation of the alternatives with respect to

the objectives and constraints in order to identify areas of uncertainty and the probabilities

and costs of potential failures. A required output of the second phase is the formulation

of a plan to resolve the causes of these risks. The plan may involve some form of

prototyping, specific test plan, user questionnaires, or other appropriate action to target

the risk factors. Depending on the relative nature of the unresolved risks after phase two,

the third phase may be implementation or another round of design. Each cycle of the

spiral culminates in the fourth quadrant with a review involving the people and

organizations involved in the product. The main purpose of the review is to assure that

all concerned parties are committed to the approach for the next round.

The spiral model is extremely flexible, permitting overlapping curves for concurrent tasks,

three dimensional spirals, etc. A generic spiral for the software development process

from [Boehm-88] is illustrated in Figure 1.1.

Evaluate alternatives,
identify, resolve risks

Determine
objectives,
alternatives,
constraints

R is k A n a l y s i

P r o to ty p e l

R equirem ents p la nReview]e ta i le d design

Concept o fy C p e r a t io n Code

D evelopm ent p la n
U nit t e s t

I n te g r a tio n & te .

I n te g r a tio n and t e s t p la n A ccep ta n ce t e s t

Implementation

Develop, verify
next-level productPlan next phases

Figure 1.1: Generic Spiral Model of Software Development

2 Related Work and Background

Scientific visualization, visual programming, and algorithm animation share the premise

that critical processes of intellectual discovery can be enhanced through the use of visual

depiction of appropriate phenomena. New programming paradigms are emerging to

structure the visibility of data, program modules, and program execution in these three

areas. The goals and paradigms of these three intersecting disciplines are discussed and

illustrated by application of the capabilities of IBM’s Visual Data Explorer package.

2.1 Scientific Visualization

The desired product of visualization is comprehension, not graphics. Visual images

provide the greatest bandwidth to the human brain, with over half the neurons dedicated

to visual processing [Earnshaw-92]. The development of written language using letters

and numbers as abstract symbols of reality is a much more recent development than the

biological evolution of our optic nerve and visual cortex system with its advanced visual

processing abilities. Vision gives us direct representations of rates of change, direction,

depth cues, light and dark, and surface properties. Researchers who use visual techniques

immediately begin to make new discoveries about their data. New details and patterns,

or not-yet-discovered errors are more readily apparent in images than from statistically

tabulated numbers and textual reports. Vast quantities of data can be summarized

pictorially in a coherent image whereas the same data volume would be overwhelming

to analyze both in terms of time and organization.

Scientific data visualization provides the scientist with pictures of data. The goal is to

promote an understanding of the outputs of some modeling process, in the hope that this

understanding will provide the sort of insight required for the author of the modeling

9

10

process to enhance it to better match the characteristics of some physical process.

A range of techniques combine to make up scientific visualization: data representation

techniques, to define data definitions and relationships and facilitate import and export

operations between applications, three-dimensional graphics using depth cues and

perspective to portray spatial relationships, rendering using texture, color, and shading to

portray multiple values and dimensions, and, increasingly, animation, presenting a rapid

succession of images to portray the added dimension of time. The advent of data

visualization has come with advances in computer storage capacity and processor speed.

The entire nature of visualization software is changing. The software problem is no

longer just to render a single static image but to create efficient ways to store data with

varying characteristics for strategic access to create an effective visualization, particularly

one composed of a sequence of images (i.e., a pseudo-animation) to support dynamic

modelling.

New data representation techniques have been developed to accept data from any source

and automatically translate it to a compatible format for display. Two distinct classes of

architecture for general-purpose visualization systems have evolved, and both allow the

user to display and manage data easily without having to do any textual programming.

The first, exemplified by systems such as Fieldview and The Data Visualizer, provide a

fixed set of powerful tools. Pop-up menus and simple icons allow objects to be picked,

probed, rotated, scaled, colored, and transformed. This tool-kit approach is limited by the

lack of interaction between these tools [Lucas-92]. The second set, which includes DX

and software such as AVS, apE, and IRIS Explorer, provides a large number of modules

which can be connected by a dataflow graph to produce a visualization. Icons for

individual modules are provided and applications are built by connecting predefined

inputs and outputs. Streams of data flow like liquid through a network of nodes. The

scientist controls only the parameterized connections between modules. Evaluation

ordering is automatically scheduled by the system based on either the data-driven or

11

demand-driven execution model. In the data-driven model, a node is scheduled for

execution as soon as all required input is available. In the demand-driven model, a node

is not executed unless its required inputs are all available, and unless its results are

directly needed for output by another node whose results are needed.

2.2 Visual Programming

The goal of visual programming is to simplify the programming process. Examples of

visual programming language approaches include languages whose syntax is dataflow

diagrams, programming-by-demonstration languages in which program logic is

demonstrated by manipulating data on the screen, and form-based languages whose syntax

incorporates spatial relationships on a form. The effect of visual programming applied

to data visualization is to interactively control program flow in order to obtain a more

natural expression of the modelling process and its components. A visual programming

language can apply more expressive power to the control of data visualization than a

textual programming language since the semantics incorporate spatial relationships.

Visual programs are not self-documenting, however. The program interface should

support the association of additional documentation with the graphical elements.

A visualization system requires support for data import/export operations, data

manipulations, and data display. Williams categorizes the state of the art of visual

languages for visualization [Williams-92]. Dataflow is the standard programming

paradigm, but the entire process is represented by differing data models, execution

models, operators, and monitoring facilities. An interactive, dataflow-based visual

language has proven to facilitate the rapid prototyping of solutions to complex data

analysis and visualization problems. The syntax of a visual language may be thought of

as the graphical elements which are the nodes (modules or operators) and their

connections. The semantics refers to the definitions provided by the valid constructs in

12

the language. Several systems allow efficient access to predefined functions through a

hierarchical arrangement of operators classified into categories. Sample categories are

input/output, transformation, extractors, rendering, and transfer and control, or structuring.

Control modules are part of the semantics of the execution model required to solve

complex problems using visual languages. They provide run-time decisions to order the

execution of operators. Control operators may include for loops, while loops, if-then-else

constructs, merge and trigger functions. Data dependent control operators extract

information and may set values to change operator inputs to direct the flow of program

execution. Facilities for animation in the current set of visual language systems are of

two kinds: image-based and geometry-based. Image-based animation involves generating

a sequence of images and playing them back to form an animation loop. Geometry-based

animation refers to saving geometries and the use of rendering hardware to render them

as a sequence.

None of the current visual systems supports recursion. This would require that each

instance of an operator have its own local data per execution. Some support graphical

hierarchies where a higher level operator can be built as a visual program consisting of

lower level operators. The implementation of abstract operators which hide the

complexity of the data model from the user rely on polymorphism and overloading to

allow the output of any operator to serve as the input to any other operator. This depends

on the operators not producing any side effects. Data granularity refers to the size of the

data blocks flowing through the system. Fine-grained dataflow operators can manipulate

small atomic elements and are necessary for real-time process control. Large-grain

dataflow systems are the norm where the block size passed between modules is the size

of the data model. Large-grain dataflow systems may not save intermediate results since

memory costs are prohibitive. Thus these systems do not save state. Intermediate results

must be recomputed to produce new output. Program execution cannot be interrupted nor

can partially executed programs be recovered.

13

Burnett’s Taxonomy

Burnett describes a taxonomy of characteristics of visual programming systems that

provide increasing levels of power to the scientist to interface with the application in

ways that involve much more than simply changing parameter values [Burnett-92]. The

lowest level of control is post-processing, which implies that data must be generated off

line, prior to the invocation of the visual programming environment. The visual

representation of data is available only after the application has completed. There is no

opportunity to dynamically change parameters or analyze the results in progress to affect

the scientific application. The next level of ability which involves the ability to generate

and continually update the visual representation of the data as the application executes is

called tracking. At this level the scientist’s wait loop for feedback is effectively

diminished yet the information flow under tracking is still unidirectional. The most

powerful systems are those which allow the scientist to provide feedback to the computer

during the visualization and computation itself through a two-way flow of information.

Two levels of systems with bidirectional information flow are categorized. Interactive

visualization is a term used to describe tracking with feedback to allow dynamic changes

in how the graphical information is to appear. Steering is the ability of the scientist to

make unanticipated changes to any aspect of the data and logic of the scientific

application. It is the ultimate goal of visual programming.

2.3 Algorithm Animation

Algorithm animation focuses on illustrating the process rather than the final results of

a complex task, i.e. on program visualization as opposed to data visualization. The goal

is a clear understanding of the structure and form of an implemented program, specifically

aimed to edify and enlighten the programmers and algorithm designers. By incorporating

the display of program code and system performance documentation, designers gain

understanding of the current implementation through a graphical representation of the

imation can

Dn displays,

n animation

mts in color

resolution, sound, and parallel processing capabilities.

Program Visualization Systems

Program visualization systems can be classified by whether they illustrate code or data,

whether the displays are static or dynamic, and if dynamic, either interactive or passive.

Static displays of code include flowcharts, scoping, and module interconnection diagrams.

They can be automatically generated and animated by highlighting appropriate sections

as the code executes. Static displays of program data are more difficult to generate than

program structure, since data structures can be implemented in many different ways and

have many representations, the most effective of which are only found through

experimentation. Ron Baecker’s movie Sorting Out Sorting, first shown at Siggraph ’81,

illustrated several sorting techniques applied to large and small data sets and is a classic

example of an effective dynamic yet passive program visualization.

15

Brown’s Model

Brown provides a definitive outline of the field of algorithm animation in his dissertation

where he developed a model for an algorithm animation system in active collaboration

with the teaching of computer science courses dealing with algorithms and data structures

[Brown-88]. Animations developed for instruction can be used for research, and vice

versa. Whole libraries of useful animations have been developed for well-known

algorithms and have lead to improved variations. Other applications include the

production of technical drawings, performance tuning, program documentation, and

systems modelling, especially with respect to multiprocessing applications. Brown

mentions one area that has met with limited success. Graphical views of program

structure and code, when tied directly to syntax, are limited in their usefulness and do not

provide any significant advantage over textual aids in program development environments.

He provides a useful history of algorithm animation efforts, ranging from making movies

using graphic stills to various models based on annotating code with "interesting events"

or using temporal constraints as external triggers. Several approaches used Smalltalk to

create an algorithm animation system with almost a trivial amount of effort. Brown

points out that the primary drawback of using a general-purpose programming

environment for algorithm animation efforts is that end-users are restricted to using only

the features found in the environment. Some of these restrictions include not being able

to use multiple windows, zoom facilities, script facilities, or playing algorithms

backwards.

Brown describes algorithm animation displays using three dimensions, as shown in

Figure 1.2 [Brown-88]. First, looking at the content axis, direct displays are pictures that

could be contructed from the data structures with no additional information needed.

Synthetic images represent operations causing changes in the data, or abstractions of the

data. The persistence dimension ranges from displays that show only the current state of

information to those that show a complete history of the information. The third aspect

of displays is based on the nature of the transitions as either discrete or incremental,

characterized by either abrupt changes or smooth transitions. Discrete transformations are

16

effective on large sets of data, whereas incremental transformations are most effective

when running on small sets of data.

Incremental

History

Content
> SyntheticDirect <

Discrete
Current

Figure 1.2: Attributes of Algorithm Animation [Brown-88]

The primary contribution of Brown’s thesis is the implementation of a dedicated

algorithm animation system consistent with his theoretical models. Separate models are

defined for 1) programmers creating animations, 2) end-users interacting with the

animation, and 3) end-users creating, editing, and replaying dynamic documents, or

scripts. Each model is independent of the algorithms, inputs, and views, which makes it

easy to animate new algorithms and interact with them consistently. Scripts are semantic

interpretations of an end-users session that can be replayed for passive viewing or active

exploration. Algorithms are annotated with event stubs to indicate interesting phenomena

that drive updated displays. Additionally, these events provide the abstraction for end-

users to control the execution in the following ways: 1) algorithm events name segments

of code so end-users can refer to them; 2) the end-user can associate a cost with the

event; 3) an output event signals the views to update themselves; 4) an input event signals

the input generator to provide the algorithm with data. A view defines a synthesized,

17

dynamic graphical entity. It does not access an algorithm’s data structures, but updates

the screen image as a result of update messages received from an adapter translating

algorithm output events.

Characteristics

Algorithm animation introduces some problems not faced by the classical graphics

program designer. Brown provides specific guidelines for effective algorithm animation.

Multiple views are recommended rather than a single overly complicated one [Brown-85].

The content of each view should be a picture of a separate process component, such as

a tree, queue, or list, with indications of process completion, efficiency, and history. With

multiple views on one console, windows are necessarily smaller. Displaying multiple

views consistently is a task requiring robust control over timing services, and high-level

access to a toolkit for program features of shape, line style, and color mapping. It has

been shown that information is lost if the animation is too fast or too slow. The viewer

and the purpose of the display determine the best speed. Fast speeds provide high-level

intuition; relatively slow speeds are required to understand details or unfamiliar

representations of the algorithm. Color is the essential tool for highlighting activity,

representing state transitions while tying views together and emphasizing patterns. Recent

reports indicate the effectiveness of highlighting subtle changes with sound-producing

components. Scientific sonification is a new area where the multiple properties of sound

such as tone, volume, and duration are being studied as appropriate mappings to process

parameters. Other traditionally useful features include control panels with start/stop

buttons, sliders for speed control, customized data menus, and snapshot/restore

capabilities.

Algorithm animation involves the high-level paradigms of sequential control, real-time

processing, parallel environments, and the simulation of continuous movement, or the

appearance of continuous transitions from one state to another, as well as those of graphic

representations of standard programming constructs. It also involves principles of spatial

data management. Research is providing a better understanding of the role of diagrams,

18

particularly the role of dynamic diagrams in the role of the software development life

cycle. Elements of diagramming, including polygonal and circular objects, connectors of

different widths and styles are the basic graphical building blocks, with support for static

and dynamic icons, whose representation changes with their attribute values. How they

are defined and constrained is critical to algorithm animation. The controlled use of

dynamic graphics including highlighting techniques illustrate the need for a more

complete dynamic vocabulary to ensure that the dynamic results of algorithm animation

enhance clarity of vision.

Roman’s Taxonomy

Previous classifications of program visualization systems had focused on degrees of

sophistication, from pretty printing to complex algorithm animations [Shu-88], static vs

dynamic display styles of code, data, or algorithms [Myers-90], direct or synthetic levels

o f content, discrete or smooth transformation capabilities, persistence, with regard to the

current state or entire execution history [Brown-88], and finally categories of aspect,

abstraction, animation, and automation [Stasko/Patterson-92].

The taxonomy of Roman, et al, is based on a well-defined model of the field [Roman-93],

"Program visualization is a mapping, or transformation, of a program to a graphical

representation." The model is a function of the interactions of three variables, or

participants: the programmer who is responsible for developing the original program, the

animator who defines and constructs the mapping, and the viewer who observes and

reacts to the graphical representation. Although these theoretical roles may not filled by

three distinct real-world personages, the specialized techniques of each stage represent a

natural division of identified functions. Based on this mapping, program visualization

systems are classified according to five criteria: scope, abstraction level, specification

method, interface, and presentation.

19

1) Scope What aspect o f the program is demonstrated?
A program is characterized by its code, data, algorithm, or control state
and execution behavior.

2) Abstraction What kind o f information is conveyed?
This criterion divides the animation into levels of concepts presented much
as Shu and Brown do with levels of sophistication and content,
transformation, and persistence. Highlighted lines of code would be at the
very low level of abstraction, while a module interconnection diagram with
active modules highlighted would be a structural representation at a higher
level of abstraction.

3) Specification What mechanisms does the animator
use to construct the visualization?

How flexible is the mapping of program states to graphic events - does
code have to be written or modified, or can the mapping be dynamically
specified?

4) Interface What facilities does the system provide fo r
the visual representation o f information?

The interface is how the viewer sees and controls the outputs of the
system.

5) Presentation How does the system convey information?
What means does the animator use to convey meaning, rather than just
visual events?

The Development of Program Visualization Systems

The evolution of algorithm animation and program visualization systems can be

summarized by the capabilities of several successful implementations of systems

specifically for program visualization: Balsa, Zeus, Tango, and Pavane. Balsa [Brown-

88] represents the first system that attempt to organize the task of constructing complex

program visualizations. It implements program annotation by adding procedure calls to

a program to capture system event changes and update the associated graphical views.

Zeus [Brown-91] is directly descended from Balsa and inherits many of Balsa's

capabilities plus some innovative features such as support for direct mappings of values

to graphical objects. The next generation of systems attempted to minimize the effort

20

required to construct graphic objects and define display events. Tango [Stasko-90]

incorporates the encapsulation features of object-oriented programming in the

implementation of abstract data types for animation such as location, images, paths, and

transitions, and demonstrates a significant effort at specialized modelling components for

program visualization. Control interaction is provided with facilities to identify the

derivation of program data from image attributes. Depending on state variables, the same

program event may be mapped to different display events at different times. Pavane

[Roman-92] represents the latest implementation and involves a radical design shift in

order to demonstrate the properties of concurrent programs. In the domain of concurrent

events, it is difficult to portray a program in terms of event sequences. Code annotation,

for example, is impractical because events are not associated with a specific location in

the program code. In Pavane, the mapping of program states to images is specified as

a set of rules to apply with each state change. Objects are also allowed to have time-

dependent attributes. These combination of features enable the abstract visualization of

concurrent programs with relatively few rules, display code, or program annotations.

Table 2.1 summarizes the taxonomic criteria outlined in [Roman-92] and includes a

description of the level of support of the features using IBM’s Data Explorer.

21

Taxonomic Criteria Examples DX Capabilities

Scope (what is shown)

Code visualization highlighted statements not directly, w/ debugger?

Data state graphical representation of data yes

Control State highlighted current module user-written modules

Behavior event trace of sequence of states program w/ sequencer

Abstraction Level (level of sophistication or context)

Direct representation gauges to display values, colormaps colormaps, grids,interactors

Structural representation properly-sized blocks programmable

Synthesized representation 3D representation of shortest path -

Specification method (level o f automation)

Predefmition application specific programmable

Annotation program calls animation routines programmable

Declaration direct mappings graphical objects no support

M anipulation mapping of gestures to program events no support

Interface (graphical vocabulary)

Simple objects points, lines, glyphs, text yes

Composite objects predefined collections of objects groups and fields

Visual events discrete or smooth animation sequencer, discrete +
morphing?

W orld (dimensionality) multiple dimensions 3+
absolute vs constraint-based absolute

M ultiple worlds multiple windows multiple images

Control interaction predefined controls control panels, no nesting

Image interaction]* graphical input pick, probe

Presentation (semantics of presentation)

Analytical program correctness, not mechanics no support

Explanatory visual events to convey info no support

Orchestration collection of selected visualizations limited control mechanisms

Table 2.1: Program Visualization Taxonomy Applied to DX (adapted from [Roman-93])

22

2.4 Computer Animation

Sophisticated computer animation techniques have been developed for special effects in

the communications industry. The best animation techniques that incorporate interaction

are still evolving. Simone provides a breakdown of the features significant to three areas

of products [Simone-92].

Business presentations
speed and ease of generation
playback ability in a variety of environments
high quality fonts
pause, stop, branch ability

Creative animation
tracing, in-betweening (morphing), looping, keyframing
defining paths and actors, via splining or interactive editing
parameterized scripting
scene description, object, light source, camera parameters
canned motion and transition effects
onion skin techniques
palette optimization (color encoding and enhancement techniques)

Multimedia control
access various audio and video inputs (MIDI, wavelength audio, CD-based audio, digital and
analog video)
output to video
video editing capabilities

The evolution of animation for scientific visualization purposes adds a fourth product to

this list and involves many of the features. The most significant element is the

mathematical model and object definition with appropriate dataflow transformations.

Lucas describes four characteristics of scientific data rendering that add to the

requirements for algorithm animation [Lucas-92].

Scientific Data and Algorithm Animation
mathematical and hierarchical data definitions
variety o f data representations
large quantities of data
depiction of real-world data require volumetric rendering (3D)

23

Large quantities of data (even gigabytes with multiple variables and time frames) are the

norm, so animation systems for scientific applications need to take advantage of

parallelism. The rendering of volumes, i.e. in 3-D, requires a few useful capabilities such

as the ability to render translucency for both volumes and surfaces and clip both in render

time and object space. This category does requires a traditional rendering repertoire with

the goal of accurate and appropriate data representation, yet not to the extent of photo

realism or illusionary effects included in commercial packages. Finally, a wide variety

of data representations and the ability to correlate modelling methods is necessary for the

support of mathematical and hierarchical data representions.

2.5 The Data Explorer Software

The target platform for project implementation is IBM’s Visualization Data Explorer

(DX). DX has several powerful elements that distinguish it from the others in the second

set:

• a powerful set of interoperable visualization modules;
• consistent use of an object-oriented data model;
• various levels of system tools; and
• a system execution model that facilitates parallel execution and

performance optimizations such as caching.

Modules

DX consists of a large set of highly interoperable visualization modules. Interoperability

is the property that modules may be connected in a variety of ways to achieve different

effects. Module design and selection is guided by two design goals: that they be

sufficiently primitive yet as powerful as possible to aid the model building process. All

modules are available in the visual programming interface, where the modelling process

is specified entirely by selecting modules from category menus. Each module is

represented by an icon that can be dragged and dropped into position in the visual

programming environment window (VPE). The visual program editor allows predefined

24

input and output tabs to be preset, connected, or disabled. The object-oriented data model

provides strong type checking and error detection at each connection. Execution is

controlled by control panel access to interactors for setting values of variables, switches

to control execution flow, and a sequencer for controlling a series of objects with

different time-dependent attributes. Modules are included for importing and exporting

data, transformations such as mappings of one field to another, "rubbersheeting" a surface,

and computing slabs, slices, and streamlines. Annotation modules enable captions, axes,

glyphs, tubes, and debugging support. Rendering is supported by modules that perform

3-D viewing transformation using properties of camera settings, surface characteristics,

color transformations, and lighting models.

Data Model

The DX data model is based on the object-oriented paradigm where data is viewed as a

hierarchy of abstract data types with support for inheritance, encapsulation, information-

hiding, and message-passing. All data that is passed between modules in the system is

passed in the form of pointers to objects. Thus objects in this model are the arguments

of messages passed between modules, rather than being themselves active entities that

create and receive messages.

The data model defines a field object as a mapping from one space to another space.

Each field is defined as a set of positions and connections, or interpolation elements. The

actual mapping is the set of data values which are in a one-to-one correspondence with

either the positions component, implying an interpolation function between values, or the

connections component, in which case each element of the implied grid has a constant

value. Data fields can be defined on spaces of any dimensionality and connected by

primitives of multiple dimensionality. This allows a wide variety of data definitions, from

objects defining completely unstructured data components to volumes and surfaces with

a variety of regular and irregular structures. A field may contain additional components

such as colors, opacities, normals, and statistics, and may be aggregated into groups

combined with other fields. The hierarchy of these relationships is represented in the

25

class diagram of the DX data model in Appendix A using Booch’s notation to illustrate

the data hierarchies [Booch-91].

An object in this system is implemented as an object header in global memory that points

to an array of data. The header contains information such as type-dependent attributes

and a reference count. Access to objects is controlled entirely by a set of information-

hiding access routines. To actually operate on the data, a module calls a procedure to get

a pointer to the data. Considerable performance advantages of both time and space are

derived from the scheme of passing pointers rather than the "stream-oriented" method

used by other visualization systems where data is copied from module input to module

output without sharing of unchanged data. Data sharing is enabled and encouraged by

enforcing a rule of the dataflow paradigm that a module not modify its inputs. Module

output must be recreatable and a strict function of the inputs. Consequently the dataflow

network must be implemented as a graph with no cycles. DX allows data sharing to be

overridden with explicit control over caching the effects of each module. There is,

however, no facility built in at the module level for accumulating the results of repetitive

transformations.

System Tools

DX system tools provide uniform support for the data model. A sophisticated graphical

user interface provides visual programming capabilities with immediate type-checking for

consistency as soon as connections are made between module inputs and outputs. Each

graphical dataflow program, or network, is maintained as a script program available in

text form for manipulation as a program or macro. The Application Programmers’

Interface (API) provides the ability to customize the system with user-written modules in

the programming language C. The API documents the set of access routines which are

procedures and functions that take pointers to objects as parameters. Each procedure can

pass and receive a variety of object types, implementing polymorphism, and is responsible

for type-checking its arguments and processing them recursively. The application builder

26

program and module description file simplify the module building process by providing

a stub program that includes extensive error checking. The data browser and data

prompter are separate programs that are provided as support tools for the data definition

and import process. The import process effectively instantiates the user data as instances

of the DX data classes. Support is provided for dynamically generated data through Unix

pipes or externally linked modules. Thus, the data source is not limited to static arrays

generated offline by a different process.

Execution Model

IBM’s Data Explorer takes a system-wide approach to supporting parallelism. It is

composed of two major subsystems, the user interface and the executive. These two

components execute as separate processes that communicate via a socket interface. They

may be run on the same or different machines, such as the user’s workstation or a

departmental server. The user interface consists of the visual program interface, which

translates the visual program into a script which is sent to the executive for interpretation.

The user controls the executive by the execution pull-down menu options, which include

control for starting and stopping execution, control for executing on change, and

sequencing both forward and backward through a series of objects either continuously or

in step mode. The executive executes the dataflow program by calling visualization

modules as needed, passing pointers to objects, caching results, and displaying the

resulting images on the user’s workstation. Overhead is minimized by combining the

modules into a single binary (the executive) rather than dispatching each module as a

separate process. This somewhat complicates the process of adding new modules to the

system with the necessity of having to relink the executive, but the option is available to

specify user-written modules as external outboard modules to be dynamically loaded and

linked by different dataflow networks as needed.

DX is designed from the start to support multiple processors with high-speed access to

global memory at the level of coarse-grained parallelism. Pre-processing support is

27

provided to designate execution groups of modules to run on separate processors and to

define explicit partitioning of data sets. This two-fold approach was taken for the

following reasons: most datasets are naturally partitioned; most module sets parallelize

rather easily; fine-grained (such as loop-level) parallelism involves expensive inter-process

communication; and, inter-module parallelism does not achieve full processor utilization.

The Dataflow Paradigm

By facilitating software reuse, module flexibility, and extensibility, successful dataflow

visualization systems are enabling research to progress at a much faster rate than

traditional programming environments. The accessibility of the modular system

components enables DX to address the needs of various levels of users. The novice user

can load previously configured dataflow networks to access data visually. Intermediate

users are able to arrange modules in different ways to produce a variety of visualizations.

Advanced users can challenge system potential in the area of customization, not only by

assembling modules into reusable popular arrangements, but by building new system

components. High-end users expect consistent design capabilities and performance from

any combination of system features, relying on the system to perform well with respect

to several issues of scaling. Not only is high performance expected in the area of data

management with support for managing hundreds or thousands of modules in a dataflow

network, but real-world applications require support for parallelism and explicit control

over the execution model at the module level. Embedded applications require control

flow mechanisms equivalent to if\ while, and/or constructs, subroutining, complex event-

handling, and other synchronization primitives. A user, for example, may want to redirect

an input event to a module higher up in the control flow and reset execution control

dynamically. Such capabilities are foreseen but not yet available in current dataflow

execution models such as DX. Shortcomings in the area of control flow have a significant

impact in projects such as this one involving algorithm animation which require facilities

for flexible user interaction and inter-process communication.

28

3 Implementation

3.1 Introduction

The various background areas for this project are scientific visualization, visual

programming, algorithm animation, as well as program visualization systems. Each of

these areas of research is very new, and as such, has been defined and categorized in the

literature only recently. Each new development effort spanning any or all of these areas

may match some of the goals and fit some of the categories, or may challenge and refine

these definitions. This chapter focuses on using the ideas reviewed in Chapters 1 and 2

to develop a visualization tool for better understanding of the MERGE program. The

chapter starts with a general discussion of the nature of the problem. The chapter then

provides a statement of project goals and an outline of the projected software

development schedule. The tasks of the project are formulated as individual spiral cycles,

each of which is detailed using the standard spiral template [Boehm-88]. The template

lists the goals, risks, and resolution of each spiral in tabular form. Following each

template is a narrative of the goals, discussion, and evaluation of the subtask.

3.2 Analysis

The original domain of this project is labelled algorithm animation. A standard

customizable software package is being developed based on a complex internal algorithm

designed to efficiently "match" or "implement" the detailed specifications of a real-world

process. The demands of meeting the specifications as they become increasingly detailed

require more concrete feedback as to the performance of the algorithm in specific cases.

The successful implementation of the process is highly dependent upon the flexibility and

appropriateness of the algorithm in handling each individual case. The specific nature of

28

29

the individual cases is how to merge each-less-than-minimally-sized polygon area

according to both global rules regarding the type of scene analysis desired and individual

rules regarding size, position, and value of neighboring areas. The large number of

individual cases are derived from the spatial properties of both the target polygon to be

merged and each of the polygon neighbors. The combinatorial effect of rule applications

and neighbor properties make it impossible to efficiently document each individual case.

This provides the motivation for presenting a visualization to view the solution space at

several levels of detail.

The nature of the objects and properties being modelled lend themselves to a direct visual

representation. Polygons and individual cells have two-dimensional spatial properties of

area, size, and proximity. The "target" or "source" data value and neighbor area data

values serve as inputs to a selection function which selects the "best" neighbor in which

to merge a small "target" area.

"The least abstract type of graphical representations map some
aspect of a program directly to a picture ...

The level of abstraction of the graphical representation of programs
control complexity during debugging and monitoring and facilitating
program understanding in pedagogical settings ...

Direct visualizations are appealing because they can often be
constructed mechanically, without knowledge of the programmer’s intent.
But often a visualization must convey that intent, particularly when
sophisticated algorithms are involved" [Roman-88].

A classification of levels of algorithm animation based on abstraction parallels one of the

basic concepts of object oriented design and implementation. Abstraction and

encapsulation are complementary concepts: abstraction focuses on the outside view of an

object; encapsulation, also known as information hiding, prevents users or clients from

viewing the inside information, where the behavior of the abstraction is implemented. For

abstraction to work, implementations must be encapsulated. The abstraction of an object

should precede implementation decisions. "Once an implementation is selected, it should

30

be treated as a secret of the abstraction and hidden from most clients" [Booch-88]. No

part of a complex system should be dependent on the internal details of any other part.

While abstraction helps designers and implementors think about what they are doing,

encapsulation allows software changes that involve implementation details to be made

reliably with minimal effort.

This is the essence of what amounts to a distinct classification of the levels of algorithm

animation and program visualization, referred to here as "process illumination". Another

descriptive yet unwieldy title might be "specification animation". According to the

criteria developed by Roman et al, visualizations that involve a low level of abstraction,

a broad view of scope, irregardless of the method of specification, level of interface or

presentation categories can provide significant insight to the system designer at the level

of specification detail. The viewers of the visualization are not subjected to details of

how or why the programmer chose to implement the specifications, but are directly able

to verify the programmer’s intent to implement the specifications in terms of accuracy and

completeness. By specifically concealing program implementation details, the application

process is the focus rather than the details of algorithm selection, appropriateness, or

efficiency.

The above discussion previews the final placement of this project in the spectrum of

program visualization research. This discovery was evident only after several iterations

of project development.

3.3 Project Details

The original project proposal is in the form of the following project statement:

Use D X to produce "appropriate" animations of the output of
M ERGE , where "appropriate" is a balance between static visualization
of algorithm features, real time linkage with M ERGE , and user control
over input parameters to the M ERGE program.

31

The initial concept of the project is based on the four phase approach of the spiral model,

restated here as:

1) propose a set of capabilities;
2) investigate capabilities;
3) show what can be done;
4) project future directions.

An early breakdown predicted three rounds of the spiral.

Round 1: Feasibility
Round 2: Development
Round 3: Extensions

These three spirals were expanded into subtasks which were developed concurrently as

suggested by Boehm. Thus the review stage for this level of task analysis may range

from a walk-through of each individual component to a major requirements review

encompassing a composition of elements.

"Visualize a series of parallel spiral cycles, one for each component,
adding a third dimension to the concept presented in (Figure 3.1).
Separate spirals are described for separate software components or
increments" [Boehm-88].

The spiral model is both descriptive and prescriptive. A descriptive outline of the

elements of each phase serves as documentaton of the software development process. By

answering the questions of how long should each process go on, and what process should

be pursued next, the model effectively prescribes future activity. The final phase of each

subspiral may include recommendations for proceeding with the development of

individual components.

32

The three main spiral processes are outlined with their subtasks which were developed

as parallel spirals, as follows:

Spiral 1.0 Explore and learn capabilities of D X
1.1 Learn DX visual program syntax
1.2 Learn about MERGE (its critical states)

and import MERGE data
1.3 Show static visualization of MERGE output
1.4 Determine what to show during the animation

Spiral 2.0 Develop visualization at the tracking level of visualization
2.1 Develop method to apply iterative changes
2.2 Develop data inquiry & manipulation {Pick & Probe)
2.3 Explore method to retain iterative changes (Caching)
2.4 Develop desired interface with user

Spiral 3.0 Approach real-time communication and interactivity
3.1 Link to external modules written in other languages
3.2 Inter-process communication
3.3 Explore performance issues

At this point in the MERGE animation project, both the research and prescriptions of the

three completed spirals suggest several extensions to the development of the animation.

These are included in the appropriate spiral. In addition, two phases of future

development extending in completely new directions are partitioned as follows:

Spiral 4.0 Approach dynamic feedback capabilities {Steering)

Spiral 5.0 Approach inferential capabilities (Constraint & By-Demonstration)

33

Evaluate alternatives,
identify, resolve risks

Determine
objectives,
alternatives,
constraints

5. Inference

4. Feedbac] Risk Analysis

. Real-time interactivity
Prototype3

2. DeveloRn^sualiza ion
Prototypel

Prototype2

Review l. Learn DX

letailed desiin

Code

Unit test

Integration & test

Acceptance test

Implementation

Plan next phases Develop, verify
next-level product

Figure 3.1: MERGE Algorithm Animation Main Spiral

3.3.1 Spiral 1.0: Primary goal: Feasibility

34

The goal of the first top-level spiral is to explore the feasibility of the project in several

different ways. These are broken down into overlapping subtasks, as shown in Figure 3.1.

The primary constraint of this main spiral is technology, in reference to the available

system software. The first subtask is to learn the Data Explorer visualization system. In

general, the learning of a complex system incorporates new paradigms and the

requirement is on-going to meet the completion of each specific programming task.

Spiral 1.1 continues until the end of the project or until a different software system is

chosen. Learning a specific subset of DX, the data model and import format, is a

requirement of the second subtask, which is to apply the syntax to be able to successfully

import the MERGE data. This is the goal of Spiral 1.2 which is specifically formulated

to meet the requirements of phase 2 of Spiral 1.3. The import process only needed to be

understood at this point as far as the representation of static data arrays. Further

knowledge from Spirals 1.1 and 1.2 helps guide the formulation of alternatives in Spiral

1.4. Thorough knowledge of the capabilities of the system are required to evaluate the

different alternatives and risks of what and how to animate.

35

Determine
objectives,
alternatives
constraints

Evaluate alternatives,
identify, resolve risks

show during the animation1.4 Determine what to

1.3 Show s.tati-* i-visualizatiorNof MERGE output

1 . ^ - h e a r n a oout~~MEI^GE

Review

letailed design

Code

in it te s t

it ion & te s t

Acceptance te s t

Implementation

Plan next phase Develop, verify
next-level product

Figure 3.2: Spiral 1.0 Feasibility Subtasks

36

3.3.1.1 Spiral 1.1: Learn DX visual program syntax

Table 3.1. Spiral 1.1

Objectives Learn DX visual program syntax

Constraints TIME: spring ’94 semester deadline
TECHNOLOGY: DX in beta-test mode

limited access to manuals
manuals often inaccurate
MERGE program documentation minimal

PERSONNEL: programming staff o f 1 with sharp learning curve required
FACILITIES: on-campus

Alternatives "Stay home & bake cookies"
Program in Fortran forever

Risks DX capabilities insufficient, full o f bugs, or too complex

Risk resolution Audit status in CS495: Scientific Visualization w/ DX
studied /usr/lpp/dx/sample programs
Prototypes: solid geometry model, unix pipe to create import file

Risk resolution results Beta-test version of DX is full o f bugs & holes
Release 1.0 1/94 vast improvement so far

Plan for next phase Focus on import formats aimed for efficiency and flexibility as input to Spiral
1.2

Commitment On-going

Goal

My goals at this stage were to learn enough of the DX system capabilities to use as input

in determining the objectives, alternatives, and constraints of subsequent design and

programming tasks.

Discussion

I was able to attend an introductory class incorporating visualization with DX and learn

from the examples given. My first prototype was a solid geometry model which uses the

DX faces, loops, and edges internal model and an external program to dynamically

compute the data positions and connections from user input and "pipe" the data

descriptions to DX. Several capabilities of the faces, loops, and edges data model

described in the manuals turn out to be not fully implemented, and incompatible with

various display and render modules on a system-wide basis. Knowledge of these

37

unimplemented features comes only by trial and error. As an experienced programmer

with a foundation in various assembler languages, Fortran, PL/I, Lisp, Ada, and C++, I

found the visual programming interface and dataflow programming paradigm completely

unfamiliar. It was easy and exciting to compose visualizations at the simple import,

transform, and render level. Still, the graphical manipulation of modules and filling in

of predefined parameters involved making a lot of mistakes before things "clicked1'. The

syntax and semantics of DX modules do not parallel the programming constructs of most

textual languages. Complex control mechanisms require thorough familiarity with the

available tools. Later at a more advanced level of using DX , I continued to find indexing

problems easy to "see" in the visualization but difficult to diagnose. When debugging

textual programs a listing is of the utmost importance to track down elusive bugs. The

DX message window receives trace output but there is nothing to print out to illuminate

the structure of a visual program. A listing of the .net file is available but not particularly

helpful in that there is additional unfamiliar syntax introduced which obscures the logic.

Once a dataflow network gets large and complex, it overflows the maximum window size

on the screen and is impossible to view it in its entirety. At this point it seems helpful

to organize groups of modules into macros to encapsulate logic and unclutter the screen

even if those macros are only used once.

Evaluation/Conclusions

The Data Explorer software involves a number of components, and the expenditure in the

learning curve on startup time is considerable, even for an experienced programmer.

Concepts from object oriented design and programming, the dataflow paradigm, geometric

representations and 3D transformations are basic requirements for understanding the data

model and visual program editor. Simple visualizations of complex datasets are easy to

construct in DX especially from a good set of examples, yet manipulating modules to

build a complex program requires a complete paradigm shift from textual to visual

programming. Much practice is needed before the syntax and semantics of the module

definitions are mastered and become natural to work with. Control and sequencing

38

mechanisms that are second nature to an experienced programmer used to working in a

variety of textual languages ranging from machine code to procedural and object oriented

languages must be worked out with a completely different set of tools. Non-programmers

may actually have an advantage at the beginning and intermediate levels of visualization

development.

This particular spiral is continuous throughout the extent of the project. Direct input to

the next phase (Spiral 1.2) is knowledge of the import process. The on-going risk

analysis of this task involves building prototypes to demonstrate both the understanding

of DX and its operational status. Concurrent with this spiral is the incremental

improvement of DX itself, through the release of new software versions and updated

documentation. As DX stabilizes, the risk analysis of the system goes from high to low

in terms of reliability. However, risks involving the complexity and extensibility of the

system remain high. The examples and literature give warnings of how easy it is to

construct visualizations that are misleading both in terms of scale and validity of

transformations. Future plans regarding DX involve an on-going learning curve,

paralleling continued development of system capabilities in new releases of the software.

39

3.3.1.2 Spiral 1.2: Learn about MERGE and import data

Table 3.2. Spiral 1.2

Objectives Learn about MERGE critical states and import the MERGE data

Constraints TIME: spring ’94 semester deadline
TECHNOLOGY: DX in beta-test mode with limited support for connections-
based data

Alternatives DX file format
General Array Importer
Browser program can scan files (capability added in Release 1.0)
Size of arrays range from small to huge(3x3 ... 7500x7500)

Risks Direct data representation used by MERGE may require a pre-processing filter
potential bugs or limitations of connections-dependent data

Risk resolution Prototyped DX file format, used Browser to scan the data files

Risk resolution results DX file format works for full array import

Plan for next phase Go on to import scattered data points as Sequencer input required in Spiral 1.4

Commitment Continue with next format required; subject to rework

Goal

The goal at this stage is to demonstrate the ability of the DX import facility to

successfully represent the MERGE data by developing a prototype that imports a small

sample grid. Small data sets are useful to demonstrate actual details; large data sets

confirm overall system performance and behavior [Brown-92].

Discussion

Results indicate that the data can be specified in 2D as an n+1 by n+1 grid of n x n

integer data values defined as dependent upon the connections component.

Connections-based data allocates a constant data value to the area defined by the

intersecting grid lines, rather than interpolating a value based on values at neighboring

grid intersection points. The DX General Array Import facility is used to construct a

header definition that details how to read the actual MERGE input file. MERGE

documentation indicates that the rectangular data grid is processed row by row from upper

left to lower right. To provide visual consistency with the way that MERGE addresses

40

the data, the grid is to be accessed in row majority order defined at the origin with unit

increments in the positive x direction and the negative y direction. The default storage
o

order in DX is specified by MAJORITY = row, yet the MAJORITY keyword is only

available in the General Array Import format and not the DX data format specification

or the Applications Program Interface in this initial release of DX.

Evaluation/Conclusions

An evaluation of the import process is that it is sufficiently flexible to handle data based

on regular positions and connections, such as MERGE input and output data arrays. Test

files for MERGE input are available in both ASCII and binary (unsigned byte) format.

Both are able to be read by changing the type and format statements of the header section

of the General Array Import specification for the data grid defined below.

Data Explorer import file for 10 x 10 image
file = ImlO.in
grid = 1 1 x 1 1
dependency = connections
type = ubyte
structure = scalar
format = msb ieee
header = bytes 128
majority = column
positions = 0,1,0,-1
end

3.3.1.3 Spiral 1.3:

Table 3.3. Spiral 1.3

Show static visualization of MERGE input

41

Objectives Show static visualization of MERGE output

Constraints TIME
TECHNOLOGY

Alternatives Color options: autocolor, colormap, direct color table
Data layout & origin
Grid specification
Size most useful?
2D or 3D
plan for compatibility with changing data

Risks Incompatible with future requirements

Risk resolution Show simple 2D view using Autocolor
Experiment with different array sizes

Risk resolution results Different amounts o f data appropriate for different purposes
Specific color mapping not too significant

Plan for next phase Determine animation and how to modify data values before doing much more

Commitment complete, subject to rework

Goal

The goal of this cycle is to produce a static visualization of MERGE data that satisfies

several different criteria based on future plans for animation:

• Allow differentiation between raster polygon areas. This is satisfied by
applying a continuous colormap to the discrete cell values to show
similarly colored adjacent cells as large polygons.

• Designate areas with data values that are to be ignored by not coloring them at all.
• Lay out data compatible with MERGE addressing scheme, by row from top

left to bottom right.
• Be able to illustrate the "merging" of cells. Color displays global patterns very

effectively.
• Minimize bandwidth, i.e. the amount of information that is passed between

processes.
• Highlight activity.
• Allow for control over the animation by storing sequences to be replayed.
• Allow graphical data query and manipulation.

42

Discussion

Implementing a static visualization of the MERGE data is relatively simple. The input

is already defined as an n x n array of integer cell values which translates easily into a

DX object via the various import facilities as discussed in Spiral 1.2. Text glyphs are

useful on the smaller grid sizes to identify class values. Additional attributes of the data

are communicated by the addition of color which has the potential of conveying a lot of

information efficiently. The data values of the cells are colormapped to an eye-pleasing

spectrum ranging from blue to red. At this point neither the absolute or relative color

assignments are significant. Color is used in this static view primarily to encode the state

of implied data structures by differentiating area polygons. Consideration is given to the

five ways of implementing color for animation purposes for application to future dynamic

views, specifically how color can be used to highlight activity [Brown-88].

Evaluation/Conclusions

In summary, the selection of input data strongly influences the message conveyed by a

visualization. The amount of input data is significant to convey information for different

purposes. Sizes ranging from 3 x 3 to 10 x 10 grids are good for experimenting with

"cooked" data and to introduce the detail required to examine special cases. A larger 100

x 100 grid is useful as an overview of the process without incurring too much overhead.

Textual annotation is useful to introduce small data cases and aid the users in relating

these initial visualization displays to their previous understanding of the process and the

application specifications. Once the user makes these connections, larger and more

interesting data sets convey larger patterns and the same degree of annotation only adds

unnecessary clutter to the picture.

It is foreseen that this spiral may be reworked after an animated prototype has been

developed. Revisiting this spiral after developing the visualization of the similarity matrix

in Spiral 2.4 has afready yielded an idea for an alternative visualization that involves

shading the polygons relative to the selection function value.

43

0 10

2 2 1 1 5 5 6 6 6 6

2 2 1 1 1 5 6 6 6 6

2 6 1 1 8 8 5 5 3 3

2 6 1 1 8 8 5 5 3 3

2 6 1 5 8 8 8 8 4 4

2 6 6 5 8 8 8 8 8 2

6 6 6 5 8 8 1 8 8 7

6 6 6 8 8 1 1 1 2 8

6 6 6 8 8 1 1 4 4 8

3 3 3 3 3 3 3 5 5 4

Figure 3.3: Static Visualization of MERGE Data

44

3.3.1.4 Spiral 1.4: Determine What and How to Animate

Table 3.4. Spiral 1.4

Objectives Determine what to show during the animation

Constraints TIME; TECHNOLOGY

Alternatives l.O ffline / Fu ll A rray : Prior to initiating DX, run M ERGE to generate
successive images of full array data.
Read in to D X as series objects; currently working with 100x100 array of integer
values on D X regular grid.
2 .Synchronous / Full A rray : Run M ERGE as a synchronized communicating
process with DX. Read in series(s) o f n x n gridded data values as generated.
3 .0 fflin e / S cattered cells to u pdate : Prior to initiating DX, run M ERGE to
generate marked sets of scattered data values to update.
Pass i,j,data points: Bandwidth = #points * (sizeof(j) + sizeof(j) + sizeof(data)
^S y n ch ro n o u s / S cattered cells to u pdate : Run M ERGE as a D X synchronized
communicating process, generating marked sets o f scattered data values to
update.

Risks M ERGE logic unknown
SEQUENCER: enough control over series objects
FRAME RATE - THROTTLE: enough control?
CONTROL PANEL: access to interactors: integer, scalar, selector

Risk resolution Prototype 1: Implemented Alternative 1 with several variations:
a) 3x3 array, artificial values
b) 10x10 array, real M ERGE input
c) 100x100 array, real M ERGE input

Prototype 2. 3-D simulation of 5 series o f 10x10 arrays generated off-line with
different threshold values controlled by the sequencer

Risk resolution results Requested modification to MERGE for intermediate results
New control state information available from trace output

Plan for next phase Determine how to visualize data from this stage

Commitment Refine during Spiral 2.4

Goal

The goal of this final subtask of the initial round of feasibility spirals is to determine what

is possible to animate based on preliminary knowledge of the system and the application,

as well as an understanding of the purpose and classification of algorithm animation

projects. An algorithm animation should be designed to illuminate the logic, progress,

and internal workings of the executing program. The MERGE program is an

implementation of a set of aggregation rules as outlined in Section 1.5. The early goal

45

of the animation project was set to graphically illustrate the sequence of "merges" within

the aggregation process to facilitate this collaboration. The application easily lends itself

to a direct graphical interpretation. The data is laid out as a rectangular (usually square)

grid of data cells. On a macro level, the application experts are interested in seeing the

development of polygon areas using different threshold values. On a more detailed level,

the individual rule applications are of interest on a case by case basis of properties and

arrangements of neighboring cells.

Discussion

At this point in the project, the material that I had available to specifically detail

algorithm animation was [Brown-881 and the accompanying video. The specific

techniques of algorithm animation mentioned by Brown are concrete and well-specified

yet the levels of abstraction of Brown’s examples and the capabilities with respect to DX

differ to the extreme. The level of abstraction of Zeus capabilities according to Roman,

et al, is at a very high level of structure and synthesis. Animation of the MERGE

algorithm at that level would require detailed knowledge of the implementation with

respect to internal data structures as well as a meta-language built on top of DX to map

program features to graphic primitives. [Guo-93] provides some documentation and a

C++ version based on the actual Ada implementation. These sources provide insight into
o

the complexity of the still-evolving nature of the data structures, yet the problem of

determining what to animate at the high level of abstraction necessary to characterize

algorithm animation with the capabilities of DX seem to involve a wide range of

unavailable alternatives and a high degree of risk. Successful illustration of the MERGE

process under the current set of constraints at a low level of abstraction can be classified

as effective process visualization.

I decided to limit the alternatives to what appeared feasible on a first round of using DX

to produce an animation. The first significant problem is the lack of time-dependent data.

MERGE takes as input a grid of data cells, several parameters including a threshold value,

46

and runs to completion which culminates in the output of one final array where all

polygon areas are larger than the threshold. Currently there are no intermediate results

to indicate the succession of merges. I decided to focus on intermediate results later, and

pursue an initial prototype of animating full images that were merged to different

threshold values using the sequencer as a tool to control the animation. The full image

prototype was successful yet showed some shortcomings of DX regarding speed control.

DX has a throttle parameter denoting the number of seconds to allocate to each frame, but

the actual animation speed is more a function of the complexity of the scene and whether

it has been cached or not, and the computational power of the workstation on which the

visualization is executing. Images can be shown in either forward or reverse and

continuous or step mode. Again I found it helpful to annotate the series. Several

different 3D views and levels of abstraction were experimented with in Prototype 2, none

of which were extremely illuminating.

The real goal of animating the MERGE process is to graphically illustrate the

implementation of the MERGE aggregation rules as outlined in Section 1.2. The

intermediate results of each merge operation are required to demonstrate this.

Considerations of bandwidth being the amount of data passed between two processes,

affect alternatives 2, 3, and 4. Passing the full array as Alternative 2 was not seen as

desirable, leading to overhead as follows:

Bandwidth Analysis: 0 (N2)
100x100 grid -> 10,000K
1000x1000 -> 1 Mg
7500x7500 -> 50 Mg

Alternative 3 (Spiral 1.4) and Alternative 4 (future Spiral 4.0) were decided on after the

prototype implementing Alternative 1 was successful. An alternative method of

implementing the visualization within Alternatives 3 and 4 is to preprocess the data value

changes for each cell into a vector of value for each cell. The vector field can be built

47

in 3-space, and sliced to reveal all values less than the current time stamp. This

alternative was rejected as being inconsistent with future real-time goals but does feed

into a suggested alternative in Spiral 3.3 which involves a version based on building the

vectors dynamically. A specification for the desired import format of scattered data cells

to update was agreed upon and tested before the actual modification was made to the

MERGE code. The General Array Import file is listed below.

Data Explorer import file for series of scattered points
file = merge.trace
points = 3
series = 17,separator = lines 1
field=locations, olddata, newdata
structure = 2-vector,scalar,scalar
type = int, int, int
format = ascii
header = marker "*** Series # l\n"
interleaving = field
end

Prof. Ford modified a version of the program (MERGE 18) to produce the necessary

output to generate an animated trace of "merges". A succession of the desired image

frames is illustrated in Figure 3.4.

Initial Image Series 1 Series 2 Final Image

3 4 3

3

• ' ' '

4 3

1 1 2 3

1 4 2- 3

2 ip : 4 3

i 2
i l l l !

4 3

1 l : f - S j U " 3

1 4 * 3

2 3

2 12
..... 2.....

3

1 l
•: •:?

3

1 4 3

S i z e = 4 x 4 S e n d : 1 1 3 2 S e n d : 1 3 4 2 S e n d : 4 2 4 2
a 2 3 4 2T h r e s h o l d = 3 1 2 3 2

Figure 3.4: Series of Changed Cells

48

Examination of this level of output is illuminating. At first there appears to be no reason

to pass over the old data value with the new data value. After all, the old data value is

currently known at the receiving end. Having two data variables in one series is certainly

possible, yet the resulting hierarchy of the imported data is surprising in that two separate

series are actually created. The DX documentation implies that the data series share the

same positions and connections components, and effectively they do, with separate

pointers to the positions and connections components for each of the series objects. The

number and sequence of modules to extract the desired information from this structure,

however, is sufficiently complicated that it should be represented by an example and

available as a standard macro.

The merge trace records are the output that is created to show which cells are to be

changed with each ’’merge". A listing of the merge trace records occasionally shows old

values equal to the new values. This first appeared (to me) to be a bug in the MERGE

trace records but the explanation is that these values indicate a significant control state.

These records are the "cascaded effects" [Ford-94], where adjacent polygons with the

same cell value are being merged.

Evaluation/Conclusions

This cycle is significant in resolving one of the biggest outstanding risks - that the

application has been up until now essentially a black box. A certain set of rules are

implemented yet there is no evidence of the process except the final single output image.

At this point, the form of the intermediate results is known, and the question of what to

animate is clear; how to do it is the subject of Spiral 2.0. It is also apparent that once

it is determined how to animate, it will be worthwhile to show different versions of the

algorithm side by side (Spiral 2.4).

49

3.3.2 Spiral 2.0: Primary Goal: Development

The goal at this point is to develop a visualization based on the results of the initial round

of feasibility studies. Three separate subtasks involving the technical development details

dependent on DX module semantics are apparent during Spiral 1.4.

1. A technique is needed for mapping the individual points
and new cell values to the existing grid (Spiral 2.1).

2. Graphical data inquiry and manipulation are necessities for
interaction and are available through the facilities of the
Pick and Probe modules which are implemented in Release
1.0. This is the topic of Spiral 2.2.

3. Once the individual cell values are applied to the grid
object, a method is needed to retain changes for the next
application (Spiral 2.3).

After these three technical difficulties are resolved, Spiral 2.4 can commence to

incorporate them into a useful animation and user-friendly interface.

The geometry of the three concurrent spirals and the fourth sequential spiral is illustrated

in Figure 3.5.

50

Determine
objectives,
alternatives,
constraints

Evaluate alternatives,
identify, resolve risks

Risk Analysis

Review

Detailed design
.l\pevelop method to a:>ply iterative,''changes

N / /
\ \ / / / ■2 >2 Deveiop data inqu: manipulation / Code

Unit test

.3 explore method to retain changes Integration & test

Acceptance test2.4 Develop desired interface^iLli user
Implementation

Develop, verify
next-level productPlan next phase

Figure 3.5: Spiral 2.0 Development Subtasks

51

3.3.2.1 Spiral 2.1: Develop method to apply individual changes

Table 3.5. Spiral 2.1

Objectives Develop method to apply individual changes to cells

Constraints TIME; TECHNOLOGY
(specifically, support for connections based data and scattered points)

Alternatives 1. Import series of scattered points. Map to grid.
2. Preprocess scattered points to generate invalid connections.
3. Write specialized routine to process cell by cell.

Risks Modules Import, Map, Regrid, Rubbersheet won’t do it;
No support in D X for this requirement.

Risk resolution Prototypes:
1. Import o f scattered data points, using a) regrid b) map.
2. Reviewed support o f invalid positions and connections.
3. Designed user-written module to read individual data points to index into the
data arrays and change individual cell values.

Risk resolution results Prototype 1: failure.
D X likes #data values = #connections. Haven’t had success
with using Map & Regrid on cell-centered data without
interpolation. Conclusion: D X import format and data model
does not have this capability in the form required.

Prototype 2: not desirable.
This would just be a delay of 0 (N 2) processing. W arnings of
invalid positions & connections components are not compatible
with all modules.

Prototype 3: success with user-written CHANGECELL module.

Plan for next phase Expand on flexibility of CHANGECELL module

Commitment Subject to rework (see discussion under Spiral 3.3)

Goal

The goal is to apply the data for each individual "merge". This spiral exists because there

does not appear to be an obvious way to implement this with the given set of DX

modules.

Discussion

Given a set of positions and new data values, the problem is to change the corresponding

data values in a DX object. Specifically, the plan is to import a set of scattered data

52

points and update the appropriate data element in a regular connections-based object

without interpolation. The data is in the form of a row number, column number, old data

value, and new data value for a set of individual data points, and needs to be mapped to

the corresponding data cell in the original image. There are an indeterminate number of

sets of points in the series, depending on how many "merges" are necessary to combine

all polygon areas to the minimum threshold size. Each set may include from one up to

the threshold number of points.

Three alternatives are considered. First, experimentation with DX modules for Import,

Map, Regrid, Rubbersheet, etc., in Prototype 1 reveals inconsistencies in support for

scattered points based on connnections-based data. Data is interpolated when it should

be constant for any point mapped to a cell. There also appears to be no way to modify

an individual cell value. Discussions with IBM support personnel confirm this and also

the approach suggested by Alternative 3. Meanwhile the second alternative is suggested

by the DX invalid positions and connections approach. This designation of flagging

certain elements of the positions and connections components as invalid is available to

process only parts of an object. However, other student visualization results and warnings

in the manuals indicate that this is not uniformly supported by all modules. Also, it

appears that this option retains the 0(N 2) overhead.

Alternative 3 is implemented successfully. It involves a user-written module in C

currently implemented as CHANGECELL(object,index,datum) with an cell-centered grid

object to accept an integer as an index into the cells and output a new cell-centered grid

with that cell modified to the integer input value datum. Writing a DX user module is

a good introductory education into DX internals and inspired the attempt to diagram the

class hierarchies implied by the data model included in Appendix A. The use of the

Builder program to generate an outboard module is recommended and the class

hierarchies aid in understanding the recursive code that is generated. Listings of the mdf

file, source code, and makefile for the CHANGECELL module are listed in Appendix B.

53

Data Explorer can be configured to automatically load outboard module descriptions with

the -mdf filename environment variable on the command line. The user module assigned

categories then appear on the category menu. If the mdf file is not specified user modules

are not found when network programs are opened, and are deleted from the VPE window

along with all their connections which is a very efficient reminder but not very helpful.

Evaluation/ Conclusions

The experience of writing a user module provides good insight into the workings of the

DX dataflow model, but it is necessary to devote a lot of time to implementation details.

The DX Repository at Cornell University is collecting and promoting the creation of user-

written modules, but in this case, CHANGECELL seems to be necessary to correct a

deficiency in DX that could be consistently handled with an extension to the current

library of modules.

54

3.3.2.2 Spiral 2.2: Explore graphical data inquiry and update

Table 3.6. Spiral 2.2

Objectives Explore graphical data inquiry and update

Constraints TIME; TECHNOLOGY

Alternatives PICK, PROBE modules, pick data structure

Risks Above features not working or poorly documented

Risk resolution Testing of Pick:
a) graphical data inquiry
b) graphical data update

Risk resolution results PICK works, must be careful to map coordinates to "picked” object to get world
coordinates and correct data values; bug in Pick output with autoaxes option on;
Pick data structure procedures unclear.

Plan for next phase Avoid using autoaxes with images in PICK mode
Try accessing the pick structure

Commitment Can delay trying pick structure until really needed

Goal

Interactivity depends on user input and appropriate system response. The basic tool for

interactive visualization is the ability to graphically, select objects and query on attribute

values. The user should also be able to modify attributes as needed to influence future

system behavior. The goal of this subspiral is to investigate the capabilities of DX with

respect to these requirements.

Discussion

The PICK and PROBE modules are new additions to Release 1.0. PROBE returns any

selected point in 3-space whereas PICK anchors a selection to the surface of an object or

multiple objects. The PICK module also constructs a pick structure which is documented

as being able to return the exact component of a complex object, even down to the

individual positions element [IBM-94, PG p.7-1]. It is necessary to write a user module

to access the pick structure but the documentation on how to traverse it is unclear. More

sample programs would be useful. The risk of using this facility successfully appears too

high to be attempted at this point.

55

PICK returns an [x y z] vector in screen coordinates. The Map module is required to

convert to world coordinates. Misleading coordinates are currently returned when the

autoaxes option is selected for the image window due to the axes generation "changing

the geometry" of the objects in the rendered image. Currently the PICK module is used

in the algorithm animation to select the source cell to inquire on. Data values are written

to the message window in addition to this information being apparent from the display.

Future development of the animation may find a more useful purpose for data inquiry.

Evaluation/Conclusions

Due to the simple geometry and low level of abstraction of the display, the data inquiry

feature is not an essential part of the algorithm animation. The main result of this spiral

is to demonstrate the implementation of this capability in DX. The mapping of screen to

world coordinates does work with respect to connections-based data as it should, yet the

output of the pick data structure appears to be a more useful implementation in terms of

reliably connecting to the physically picked component. Currently an index into the data

array that corresponds to the "picked" cell must be computed from world coordinates

mapped from PICK. The pick data structure documentation implies that this index is

available directly, but other problems with respect to the order of data storage have been

inconsistent. Hence the decision to delay accessing the pick structure until really needed.

The disadvantage of computing the index is having to know details of the import process

and internal data organization.

56

3.3.2.3 Spiral 2.3: Implement iterative changes

Table 3.7. Spiral 2.3

Objectives Be able to retain iterative changes to an object

Constraints TIME; TECHNOLOGY

Alternatives 1. CACHE
2. EXPORT & re-IMPORT the new image each time
3. script mode
4. User module read and write updated image implicitly

Risks Nothing will work

Risk resolution 1. Test the caching routines to accumulate iterative changes to data.
2. Try EXPORT & re-IM PORT - document performance impact
3. Read up on it.
4. Same effect as Alt #2.

Risk resolution results 1. Cache routines are incompletely specified, and not working yet across module
executions. CACHING: "DX not tailored to maintain state"
2. Using this option for now, need to turn module caching off for the IMPORT
module that reads the last image.
3. WHILE and IF are marked for future implementation in script mode.
4. Currently used in MODFLOW visualization

Plan for next phase Retry caching at later date.

Commitment Medium

Goal

Individual data cells in the main DX object that represents the MERGE data grid are

updated and rendered for display. Subsequent executions do not retain the data cell

changes which are necessary to achieve the desired animation results. The goal of this

spiral is to determine how to retain or accumulate the results of successive changes to a

DX object.

Discussion

The DX dataflow model includes implicit support for reusing the results of previous

computations. Options for caching each input are available at the module level. Explicit

access to cached results is what is needed. If the output of CHANGECELL can be

cached with a known key, it can be retrieved for use as input by subsequent executions.

IBM support confirms the validity of this approach and suggests the addition of the

57

Cacheln and CacheOut modules. Current problems caching the results of outboard

modules are also confirmed.

Cacheln retrieves the cached object from the previous execution. Output is possibly null

and should be Inquired upon before depending on the results. CHANGECELL represents

any set of operations to modify the object. The output is passed to CacheOut to store the

object with a known key and a permanent caching designation (explicit deletes of cached

items no longer used should be done but are not shown here). Any set of keys (such as

one for each object in a series) can be constructed. A sample network diagram of how

to use these facilities is shown in Figure 3.6.

Key

Cacheln
DXGetCac h e E n tr y (" k e y " , 0 , 0)

I n q u ir e on " i s n u l l"

object
CHANGECELL

(" futz" with o b j e c t)

object key
CacheOut

D X R e fe r e n c e (o b je c t)
D X SetC acheEntry(object,C A C H E_PER M A N EN T,"key", 0 ,0)

Figure 3.6: Sample Network of Caching Modules

Evaluation/Conclusions

"Because Data Explorer modules follow pure function semantics, the cache
should not be used to store state that affects the output of the module. A
module must always be able to recreate the object from the same set of
inputs; the cache should only be used as an optimizing tool." [IBM-93,

58

Programmers’ Reference Manual, p. A-70]

Thus, the dataflow network model places some restrictions on the behavior of the

modules. A module’s outputs must be based completely on the inputs rather than on

some internal or external state derived from a previous execution. In this project

implementation, the object is currently maintained on disk using the export and import

facilities. This method of maintaining state has some impact on performance but has

proven reliable.

3.3.2.4 Spiral 2.4:

Table 3.8. Spiral 2.4

Develop desired user interface

59

Objectives Develop desired user interface

Constraints TIME; TECHNOLOGY; application goals

Alternatives Initial, final image, animated image
Single or multiple windows
Sequencing control
What do update with PICK
Similarity function
Different colormaps and labelling options

Risks Can’t do simple sequence of animated tasks

Risk resolution Construct and demonstrate prototype

Risk resolution results Most features implemented in complex dataflow network;
Complex visual program hard to reprogram

Plan for next phase Continue

Commitment Medium/High

Goal

The desired user interface at this level of development is to provide the initial data grid,

the derived data grid, and the similarity matrix with several control options to demonstrate

the process and progress of the MERGE algorithm. The process to be demonstrated is

the order of merges and the selection of the "best" neighbor with which to merge.

Discussion

The sequencer provides control over the series of "merges". The sequence can be played

forward or backward, in single step or continuous mode. Applying changes to the

updated image in reverse, however, yields illogical results. There is no way to prevent

the user from doing this. Also, sequencer controls are not adequate enough. The user

must click on the ellipses of the sequencer and reset the next value to zero. Instead there

should be a way to have explicit control over restarting the sequence by clicking on a

control panel option. Next should be an input tab on the Sequencer module. Another

constraint is that only one sequencer is allowed per network. Another looping mechanism

60

is needed to cycle through the points in each series. This is programmed by passing the

points as a generic array and looping within the CHANGECELL module, explicitly

skipping values that denote dummy data points.

BUILDSIM, arbitrarily written in C++, dynamically builds the similarity matrix, shown

in Figure 3.7, according to the maximum size of the data values of the imported grid.

BUILDSIM runs as a Unix shell program initiated dynamically but not linked to DX.

Parameters are dynamically determined and passed to the shell program, which is

relatively easy to do and works well, using the Statistics module to pass the value to

Format and generate the string. Once the target cell and its source and neighbor data

values are known, the function value can be highlighted and used to color the data grid

with the colormap of the similarity matrix object. The mapping to different data values

is extremely tricky to program with the given modules. Logically, this is a very simple

operation that merely exchanges data values in one array for another, and again should

be available as a standard macro. Also, control facilities for managing the two options

of picking or sequencing are cumbersome. This approach was abandoned due to the high

level of confusion, the lack of ability to specify defaults for the control paths, and the

lack of control over the necessary sequence of user events. After several iterations,

output appears to be non-deterministic. Debugging different sequences giving the lack

of control over asynchronous user options is difficult.

1

2
Source

3

Neighbor
1 2 3 4

- 1. C . 5 . 6

1 . 0 - . 9 . 8

. 5 . 9 - - . 2

. 6 . 8 - . 2 -

Figure 3.7: Similarity Matrix

61

The sample similarity matrix is symmetric, but selection functions are not necessarily so,

i.e. merging 1 to 2 may not be the same function as 2 to 1. Here a source data value of

2 has a higher value if merged to a 1 than a 3 or 4.

The derived image is labelled with the old and new data values as the cell changes are

applied. A different message is put up if the merge is a cascaded effect since no new cell

value or color change is indicated yet a significant state change is to be noted. The

similarity matrix value of the merged-with neighbor is highlighted.

Evaluation/Conclusions

Many possibilities for extending the animation are seen at this point, but not undertaken

due to the time constraint. A brief list follows:

• Animate two different versions of MERGE, side by side
• Automate the input generation with flexible parameters for

handling different sizes of data grids.
• Revise the implementation with respect to efficiency;

specifically, generate quads for new cell values, see
discussion of Spiral 3.3.

• Partition large data sets across processors
• Build polygon lists in the small simulation

3.3.3 Spiral 3.0: Primary Goal: interactivity

62

Bumett, et al, emphasize the power of a visual program as a spectrum of capabilities with

interactivity as the basic goal [Burnett-92]. The final implementation spiral in this project

explores issues approaching real-time communication which is necessary for interactivity.

Three subtasks are identified: Spiral 3.1 addresses the question of linking to external

modules written in other languages. Spiral 3.2 is about inter-process communication.

Finally, Spiral 3.3 raises some performance issues.

Determine
objectives,
alternatives,
constraints

Evaluate alternatives,
identify, resolve risks

:ototype3

\Protot'ype2
PrototypelReview

t e r n a l moduj/s3 . 1 . L in k t o 63

Detailed design
3 . 2 . - i n t e r - p r o c e s s com lu n ic a t io H '

Code

3 .3 E x p lo r e p e r fo r m a n c e i s s Unit test

Integration & test

Acceptance test

Implementation

Plan next phase Develop, verify
next-level product

Figure 3.8: Spiral 3.0 Interactivity Subtasks

63

3.3.3.1 Spiral 3.1: Link to external modules

Table 3.9. Spiral 3.1

Objectives Be able to link to MERGE as an external process

Constraints TIME; TECHNOLOGY; C vs C++ vs Ada linkage

Alternatives 1. OUTBOARD modules
2. Modules written in other languages

Risks Can’t do it for several reasons, one being a reported bug in C compiler linking
to C++ modules

Risk resolution Prototype 1. Successful link & execution of OUTBOARD modules.
Prototype 2. Successful compile & link to C++ subprogram

Risk resolution results Bug in OUTBOARD specifications

Plan for next phase Diagram processes in Spiral 3.2;
Test link to Ada;
Review inter-process communication plans with D X support

Commitment On hold

Goal

The goal here is to address a particular problem with the RS/6000 C compiler, that C

programs cannot call C++ modules. The risk is that this could impact the ability to

communicate with the MERGE program from DX.

Discussion

Most development of MERGE has been in the Ada programming language. A version

of MERGE is implemented in C++ [Guo-93]. Prototype 2 addresses the reported bug in

the C compiler. The resolution is that a C++ subprogram must include the EXTERN C+ +

directive and be compiled with the C++ compiler. The main program written in C is

compiled with the C compiler. The final link must also be done with the C compiler.

Successful results are observed except for the loss of any output directed to stdout with

cout « statements. Output in the C++ MERGE9 implementation is written using printf,

which functions as expected.

64

Evaluation/ Conclusions

A specific risk involving a compiler bug was resolved. In reality, this is not an essential

part of the animation. There is no direct need to link to the C++ version; the Ada version

is more current, yet the prototype successfully addresses a risky area. With a successful

resolution within a relatively small spiral effort (time investment = 1 day), the issue is

clarified rather than avoided or obscured.

65

3.3.3.2 Spiral 3.2: Interprocess communication

Table 3.10. Spiral 3.2

Objectives Enable D X to pass input to and receive output from another process.

Constraints Time constraint

Alternatives 1. IMPORT: !pgml p i p2 p3 p4 (execute shell pgm l and import what pgm l
writes to stdout)
2. OUTBOARD, ASYNCHRONOUS - parameters for a used-defined module to
facilitate asynchronous control over an external program
3. DXRegisterlnputHandler
4. RPC code

Risks exact implications of EXECUTE ON CHANGE, DXReadyToRun, and the M DF
parameter re side effects are unclear

Risk resolution Prototype 1: "!BUILDSIM %d < Sim.std"
Prototype 2: D X sample program async.c, async.mdf, Makefile.ibm6000,
outboard.c, outboard.mdf

Risk resolution results Inconsistent results, same reported by Dick Thompson

Plan for next phase Pursue synchronous approach (FileHandler)

Commitment On hold; review with DX support

Goal

The specific goal is to be able to initiate and communicate with an application program

running as a separate process. Communication should be able to go either way. Also,

DX should be able to send data to the application and receive data directly from the

application without writing to a file.

Discussion

The first alternative demonstrates one option for dynamically executing an external

program from DX. Command line parameters can be formatted and passed to a shell

program that generates a DX import file with each execution of the network. This method

is used to build the similarity matrix yet does not appear flexible enough for

communication with MERGE. Prototype 2 involves testing the DX facilities for

asynchronous communication with an externally linked module. The sample module

async functions as expected to reinitiate itself every n seconds under DX control. What

66

is really needed is the synchronous control suggested by the DXRegisterlnputHandler

facility, even though this requires file I/O. Figure Figure 3.10 illustrates a sample

dataflow network with MERGE represented as a user-written module able to receive input

from user control panels and pass output on to the graphics modules. In effect, MERGE

needs to run as a separate continuously cycling process. The following diagram

(Figure 3.9) illustrates a possible configuration:

DX Process MERGE Process

MergeMonitor MERGE
(d x Module) (Ada Progi am)

Wait on FileHandler "MERGEfile" Write "MERGEfile"

Figure 3.9: Interprocess Communication

Evaluation/Conclusions

It is not clear at this point what options are desired for real-time communication with

MERGE. The fourth alternative may be the direction to go, once interactive options for

MERGE are specified. Given that DX currently lacks synchronization of Unix file

timestamps on successive "import" executions, and various reported bugs exist with

OUTBOARD modules, this spiral is on hold. There is no software effort worth pursuing

at this point.

67

Control Panel

I n i t i a l Input File, Array Size, MERGE Options:
th re sho ld . . .Execution Options: S ta t i s t i c s , Replay,Inquire on c e l l . . .

In terac to rs

Switch
(Other measurements) N

MERGE

Histogram

Pick

ColorPrint
CHANGECELL

Import ImageCollectSeries

Caption
Sequencer

Glyph Select

Color Color
ColorMapColor

Image

T__
Cc i le c t

Image

Figure 3.10: MERGE Dataflow Network

3.3.3.3 Spiral 3.3:

Table 3.11. Spiral 3.3

Explore performance issues

6 8

Objectives Explore performance issues

Constraints TIME; TECHNOLOGY

Alternatives Available MERGE versions: MERGE 9(9K), 17, 18(18K)1
Local memory: 32M, 64M, 128M, 256M, ...
RS/6000 Processors: 220, 25T, ...
Wall clock time vs Trace("tim e",l) and Usage("memory",1)

Risks Insufficient knowledge of D X internals

Risk resolution Benchmark wall clock time
Guess at D X overhead

Risk resolution results Summarized below

Plan for next phase Determine feasibility based on results, rework dataflow design

Commitment Plan further tests

1 The K designations refer to versions modified to produce the merge.trace file for this project.

Goal

By exploring performance issues at this stage, the goal is to approach the whole issue of

scaling by determining the feasibility of the current approach in handling different

magnitudes of data.

Discussion

Rough measurements using wall clock time were deemed sufficient but DX has a timing

facility that appeared to be a more repeatable method. Timing samples can be gathered

by running the target networks remotely on each of several workstations using the

following procedure:

login (to workstation x)
xhost + workstation w
rlogin w
setenv DISPLAY x:0
dx -timing on -memory 64/256 -macros .

A module specifying TRACE("time","0") from the Debugging category is placed on the

69

canvas to cause execution timestamps to be written to the message window. Results were

inconclusive and non-repeatable, with wide variations in module entry and exit times.

Therefore, the results using elapsed wall clock time are summarized in Figure 3.11. The

static rendering was generated with the execute once option. The full image series was

timed using a set of 10 series objects, each being a full array of the specified size. The

updated point series was generated with a threshold of 3 for each size. Ten sets of points,

each representing an individual "merge", were applied to gather the timings in order to

do a rough comparision with the same number of full image updates. These results do

not include processor time for running MERGE to generate the images or the merge trace

file.

Figure 3.11: Performance Timings

R S/6000 Model 220 25T

SpecMarks(int/ffp) 17/29 62/72

Local Memory 64 MB 256 MB

Workstation Grid Size (Capron) (Eisgate)

Static Rendering 10 x 10 7 4

100 x 100 8 5

200 x 200 10 5

400 x 400 17 7

500 x 500 21 8

800 x 800 34 13

1000 x 1000 105 17

Full Image 100 x 100 41 16

200 x 200 56 18

400 x 400 130 32

500 x 500 234 46

800 x 800 406 98

1000 x 1000 1320 216

Updated Point Series 10 x 10 108 45

100 x 100 - 274

70

The effects of caching were not measured here since the exact overhead of caching

outputs of each module is unknown. The results of caching, however, are very

observable; once an image is rendered and cached, the speed of the animation is

parameter bound rather than compute and storage bound.

Evaluation/Conclusions

A gross analysis of the MERGE algorithm overhead in [Ford-94] explores the feasibility

of the computation for large datasets, summarized below.

Cost of Processing N x N Image, Threshold = T

TIME SPACE
Algorithm Costs

N**2 process to store and process N**2 N**2 + K
K < N**2 areas to order and process K * log(K)
K < N**2 areas to describe K

TOTAL costs N**2 + K*logK + K N**2 + K

A gross analysis of the complexity of processing by each module in the network

regarding the n x n array is as follows.

Animation Costs

Initial Image size = N**2 N**2 N**2
L modules processing full image L * N**2
M <= L modules caching full image M * N**2
J Full image updates from

individual area merges (J=f(T,K)) J * N**2 J * N**2

TOTAL costs (L*J+1) * N ‘*2 (M*J+1) * N**2

Final Analysis: 0 (N 2) 0 (N 2)

71

Lack of knowledge regarding DX internals and further behavior of the algorithm with

respect to scale prevents further analysis, but the attempt has shed light on a weakness

of the current animation scheme. The CHANGECELL module addresses the problem of

how to modify one element of the n x n array by processing the entire array to make one

data substitution. Instead the original grid should be retained and new elements added

to it one by one, or T by T, where T is the threshold value. Each new cell value can be

added to the visualization by constructing a quad and rendering it in 3-space in front of

the original grid. By estimating the overhead of each DX module, an entirely new

approach is suggested, similar to Alternative 4 of Spiral 1.4.

The goal is to redo the prototype and minimize the quantities J, L, and M in the above

equations. The final quadrant of Spiral 3, where the next phases are planned, also points

to a new spiral to analyze the theoretical implications of the dataflow networks with

respect to synchronization and performance. The effect of passing large quantities of data

(0(N 2)) from one module to the next is as significant as the concern of bandwidth

between processes.

72

3.3.4 Future Spirals

Two future spirals are discussed in this section. Constraints for these spirals have yet to

be determined by the continuation of previous spirals as mentioned. Risks and

alternatives are not known at this point either. The templates are included here for

completeness while the discussion serves to clarify goals and objectives.

3.3.4.1 Spiral 4: Primary Goal: Dynamic feedback capabilites
Table 3.12. Spiral 4.0

Objectives Steering capabilities

Constraints Depends on interactive capabilities, especially Spiral 3.2 for interprocess
communication

Alternatives Unknown

Risks Will implement something not useful to developers

Risk resolution Prototype & demo for the user

Risk resolution results -

Plan for next phase -

Commitment Future

Goal

The goal of this next spiral is work toward steering. Steering means "the scientist can

provide feedback to the computation affecting the visualization and the computation itself

as it progresses" [Burnett-92]. Feedback is to be dynamic and bi-directional. The

scientist should be able to make unanticipated changes to any aspect of the program as

the calculations proceed, thereby aggressively debugging and refining the process to

produce better answers.

Discussion

The following description depicts a potential implementation of the animated MERGE

73

process and how steering capabilities might be used with respect to current and future

implementations of DX.

A full scene (-7500 x 7500 pixels) is the target image fo r MERGE. DX
allows explicit data partitioning to take advantage o f parallelism. The DX
Partition module chooses the size and number o f partitions dependent on the
number o f processors available, or the user can explicitly control these
parameters. Complications o f boundary conditions trying to join separately
processed regions together can be avoided. Different thresholds and other
parameter settings can be applied to individual data areas. The rule
application process can be directed interactively and rule sets defined to
handle different conditions in different areas o f the target data. Visual
processes can be fired up to manipulate individual sections o f already
processed data fo r specific purposes. Data values relevant to selection
functions o f different classification schemes can be chosen dynamically.

Evaluation/ Conclusions

Only the developers and application experts are able to specify what options are useful

for modifying aspects of MERGE. The interactive level of communication necessary to

support the above scenario is implied but not yet available in the DX visualization

software package.

74

3.3.4.2 Spiral 5: Primary Goal: Inferential capabilities

Table 3.13. Spiral 5.0

Risk resolution

Objectives

Constraints

Risks

Alternatives

Inferential capabilites

Depends on interactive and dynamic feedback abilities

Simulate with cooked data
Type of knowledge-based system, programmer-assisted?
Reworking of MERGE rules and implementation

Compute-bound

Propose simulation first

Risk resolution results

Plan for next phase

Commitment Future

Goal

It is possible to imagine a visual interface to an intelligent, rule-based system. The goal

of this spiral projecting future development is to include animated interactive expert

system capabilities in the goal of completely flexible aggregation software.

Discussion

Inferential capabilites are suggested by the paradigms of constraint and demonstrational

programming. "The central idea of the constraint-programming paradigm is to sufficiently

constrain the solution value set such that only the desired solution or solutions are

possible. Then, ideally, an intelligent system will employ some means to realize what the

solution must be. Programmers can demonstrate solutions to specific instances of similar

problems and let the system generalize an operational solution from these demonstrations"

[Ambler-92].

Evaluation/ Conclusions

Only a few references are available in the area of graphical user interface tools and icons

to represent expert system constructs, however the goals and rule-based logic of this

project suggest development of this ultimate capability. Any further analysis is beyond

75

the scope of this project, but scenarios of what would be useful to application and

algorithm designers at this level could influence alternatives being considered at the level

of implementing interactive capabilities in Spiral 3.

4 Conclusion

4.1 What was accomplished

The accomplishments are organized into two sections, product and process. A summary

of the product of the algorithm animation project is of interest to the application experts

and perhaps to future developers of visual algorithm animations using DX. The

discussion of the process results of using the spiral software development model is

subjective, yet potentially of interest to other users of process models of software

development.

Product

This project refines the category of algorithm animation by implementing the early stages

of a complicated "process visualization". Current visualization results effectively simulate

the merge process with a "specification demonstration" at a low level of abstraction, yet

high level of direct information. Specification details are revealed and implementation

details are hidden in accordance with the principles of object oriented design.

The final product of this project consists of three separate visualizations, detailed in

Appendix D. First, the macro view (Spiral 1.3) demonstrates the effects of merging the

same image to different thresholds. Although it is relatively unsophisticated in the level

of abstraction or detail as a non-interactive simulation using inputs generated off-line, it

is of interest to the application developers as an overview of the entire process, and is

easily extended to demonstrate multiple algorithms side-by-side. Second, the micro view

(Spiral 2.4) is designed to integrate as much information as is available with a limited

bandwidth regarding the MERGE algorithm rule application process. It needs to be

expanded to flexibly handle different input sizes, yet is successful as a simulation to

illustrate what is unavailable regarding internal data structures (specifically neighbor lists)

76

77

to the animation process at this point of still using purely off-line data generation for

tracking purposes. Third, the interactive view of the selection function demonstrates more

potential for animation of the rule application process.

Process

This project had the production of this paper under a time limit as its primary constraint.

The spiral process model is very appropriate for this software development situation. The

initial directive to show what’s possible within the framework of current DX capabilities

was satisfied just within the time allotted. However, the built-in flexibility of the model

can be taken advantage of. In retrospect and rereading the exact steps for each phase, the

model was not strictly adhered to in regard to the following points:

• prioritize risks;
• fully evaluate alternatives (would have presented more alternatives

to caching);
• complete each cycle with a review or walkthrough; and
• partition product into increments outlined for successive

development and documentation before cycle is completed.

Only after two cycles were complete did it seem possible to break the tasks into separate

spirals. Once the templates were created, it was easy to fill them out from a sequential

log of computerized notes. A strong recommendation would be to do this as each task

is recognized and determine the groupings of the tasks later. Admittedly this takes

practice and discipline.

It should be realized that a meta-spiral of documenting the process is defined outside of

all of the development spirals described. Documentation is the most effective (and time-

consuming) influence on the final outcome of the development. Only by writing about,

not actually performing, the timing tasks at the same time as other tasks, are the

connections made that lead to further development. It does appear that without a time

constraint the revisiting of each stage could involve an infinite spiral of discovery.

78

4.2 Future Enhancements

The outlook for extensions of this project is optimistic from both the developer and

application area point of view. Animated demonstrations are useful to generate support

for future projects that involve detailed specifications of hard-to-picture results. Truly,

a picture is worth a thousand words in future discussions between the algorithm and

application developers. Future enhancements to the IBM Data Explorer platform will

provide an appropriate environment for continuation of this effort. The MERGE

algorithm appears to be an ideal application for algorithm animation, being significantly

compute and memory bound, yet conceptually simple to visualize.

4.3 Lessons Learned

I gained valuable experience in practical application of the spiral model of project

development and new paradigms for programming in a visual environment. I would

choose to use elements of the spiral model in even more general (and non-software

development) decision-making situations. Even though the content of this paper will

technologically be out of date very soon, hopefully the structure and practice of

documenting the spiral process will be applicable to real-world projects with real-world

constraints. I was able to match a personal interest in the areas of math and art with

"hands-on" knowledge of the field of visualization. I find interactive design of three-

dimensional data forms very exciting, and plan to continue development of software to

aid the design of 3D art forms (specifically new wildflower patterns for Tiffany-style

stained glass lamps). The current status of DX rekindles fond memories of debugging

systems software and working with IBM’s full level of support, as well as a tendency as

systems programmer to play with software package design problems longer than

warranted.

79

Object-oriented principles were brought to life with the application of the DX data model,

yet were most convincingly portrayed by observing the method teaching of Prof. Ray

Ford. He consistently personifies the beneficial characteristics of encapsulation, message-

passing, and information hiding both in the classroom and as a project leader. Finally,

I gained insight into the real-world requirements of scientific laboratories for tangible

research tools.

4.4 Summary

This project explores the intersection of scientific data visualization, visual programming,

and algorithm animation, with interactivity as the ultimate goal. The state of the art of

interactivity, where the scientist affects the computation as it progresses, is still

cumbersome. A flexible, easy-to-use, experimentation environment for the researcher is

still to be realized, yet initial prototypes have been implemented for animation of this

specific application that incorporate sophisticated graphical techniques without having to

deal with the lower-level nitty-gritty details of a textual graphical programming language

such as XWindows. The visualizations incorporate static data display, data and process

animation, and a user interface for graphical data query and manipulation at the tracking

level of visual programming capabilities. The application goal, "to create a general

purpose, user-friendly aggregation package that provides predictable and repeatable

results, and which is usable in a wide variety of applications" [Ford-94], will be enhanced

by the continuation of the MERGE algorithm animation project.

The state of the art of visual languages for visualization is demonstrated by the current

implementation of DX , and its successes and failures. The semantics of the visual

language constructs, execution model, plus restrictions on the dataflow model in this

implementation raise questions of computability. Current constraints categorize this

project on the low end of abstraction levels possible for algorithm animation, yet effective

80

as "process visualization". Highly volatile algorithm implementation details are hidden

while the fulfillment of the specifications are available for visual confirmation. Most

significant in a practical sense, this project outlines manageable goals for iterative

enhancements of the MERGE algorithm animation project. Credit for this is due to the

descriptive and prescriptive properties of the spiral model. Finally, programming

paradigms that define the conceptual patterns underneath these emergent fields are

described. They control how we think about solutions to new problems, and whether we

are able to formulate them at all.

81

[Ambler-92]

[Baecker-86]

[Boehm-88]

[Booch-91]

[Brown-85]

[Brown-88]

[Brown-92]

[Bumett-92]

[Clark-92]

[Eamshaw-92]

[Ford-93]

[Ford-94]

Bibliography

A. Ambler, M.Burnett, E. Zimmerman, "Operational Versus Definitional:
A Perspective on Programming Paradigms", C o m p u ter , (September 1992),
pp.28-42.

Baecker, Ronald M., "An Application Overview
of Program Visualization", Computer Graphics,
20, 4 (July 1986), p.325.

Barry W. Boehm. "A Spiral Model of Software Development and
Enhancement", C o m p u ter , May 1988, pp. 61-72.

Grady Booch. O b jec t-O rien ted D esign. Benjamin/Cummings Publishing
Co., 1991.

M.Brown, R.Sedgewick, "Techniques for Algorithm Animation", IE E E
S o ftw a re , Vol. 21, No. 1 (January 1985), pp.28-39.

M.Brown, A lg o rith m A n im a tion : A C M D is tin g u ish ed D isserta tio n s; 198 7 ,
The MIT Press, 1988.

Marc H. Brown and John Hershberger, "Color and Sound in Computer
Animation", C o m p u ter , May 1988, pp. 61-72.

M.Bumett, R.Hossli, T.Pulliam, B.VanVoorst, X.Yang, "Toward Visual
Programming Languages for Steering in Scientific Visualization: a
Taxonomy", Computer Science Department Technical Report
CS-TR-92-12, Michigan Technological University, December 1992.

Jim Clark, "Roots and Branches of 3-D", B y te , May 1992, pp. 153-164.

Rae A. Earnshaw and Norman Wiseman, A n In tro d u c to ry G uide to
Scien tific V isua liza tion . Springer-Verlag, 1922.

Ray Ford, Roland Redmond and Zhenkui Ma. "Aggregation of Image
Classification Units for Mapping Large Area", lecture script on 1993
Northwest Arc/Info Users Conference.

Ray Ford, Alden Wright, "A P roposa l S u b m itted in
R esponse to N R A -94-M T P E -02 In form a tion System
Techno logy A p p lica b le to E O S D IS ", Computer Science
Department, University of Montana, 1994.

82

[Guo-93]

[IBM-93]

[Keller-93]

[Lucas-92]

[Ma-93]

[Roman-92]

[Roman-93]

[Shu-88]

[Simone-92]

[Stasko-90]

[Stasko/Patterson-92]

Jin Guo. "An Object Oriented Model with Efficient Algorithms for
Identifying and Merging Raster Polygons", Masters’ Thesis, Department
of Computer Science, University of Montana, 1993.

IBM Visual Data Explorer P ro g ra m m er 's R e fe ren ce , 4th Ed.,
SC38-0497-03, U ser 's R e feren ce , 1st Ed., SC38-0486-03, U ser 's G u id e ,
4th Ed., SC38-0496-03, IBM Corporation, Fourth Edition, October 1993,
SC38-0497-03.

Keller and Keller, V isual C ues: P ra c tica l D a ta V isu a liza tio n . IEEE Press,
1993.

B. Lucas, G. Abram, N. Collins, D. Epstein, D. Gresh, K. McAuliffe, "An
Architecture for a Scientific Visualization System", P ro ceed in g s o f
V isualiza tion '9 2 , Boston, October 1992.

Zhenkui Ma and Roland L. Redmond. "Using LANDSAT TM Data and
a G IS to Classify and Map Existing Vegetation", paper for Second
International Conference/Workshop on Integrating Geographic
Information Systems and Environmental Modeling, Breckenridge,
Colorado, USA, 1993.

Gruia-Catalin Roman et al, "Pavane: A System for Declarative
Visualization of Concurrent Com[utations,", J. V isual L a n g u a g es a n d
C om p u tin g , Vol. 3, No. 2, June 1992, 161-193.

Gruia-Catalin Roman and Kenneth C. Cox, "A Taxonomy of Program
Visualization Systems", C om puter, December 1993, pp. 11-24.

N.C. Shu, V isual P ro g ra m m in g , Van Nostrand Reinhold, New York,
1988.

Luisa Simone. "The Motion is the Message", P C M a g a zin e , August,
1992, pp. 435-467.

J.T. Stasko, "Tango: A Framework and System for Algorithm
Animation," C om puter, Vol. 23, No. 9, Sept. 1990, pp.27-39.

J.T. Stasko and C Patterson, "Understanding and Characterizing Software
Visualization Systems," Proc. IE E E W orkshop V isual L a n g u a g es , IEEE
CS Press, Los Alamitos, CA, Order No. 3090, 1992, pp.3-10.

[Weinstock-86] Neal Weinstock, C om pu ter A n im a tio n , Addison-Wesley Publishing Co.,
1986.

Appendix A: D X Data Model Class Diagram

✓ String /J
O bject

X fo rm >

/ Screen

Clipped^
Group >

Camera >

C om posite
Field Light

M ultigrid
Series / Private >

RegularField

A rray .Irregular/ Positions^;
C om ponents

V-irifcX Connections
/ Compact

Color

/ Constant 'DataA ttribu tes^ 'V alue

Opacities
/ MeshPath >

/ Element,'
"- Ty pe \ / Product 'vNormals

Box

y7 Neighbors)
r- i

84

Appendix B: User-written DX Modules
Buildsim.c:
#include <iostream.h>
#include <stdlib.h>
int main (int argc, char* argv[])
{

int row, col, num;
int npline = 10;
int grid;
float matrix [256] [256];
int size = atoi(argv[l]);
if (size < 1 II size > 256) return 1;
for (row = 0; row < size; row ++)
{

for (col = 0; col <= row; col++)
{ cin » matrix[row][col]; }

}
for (row = 0; row < size-1; row++)
{

for (col = row+1; col < size; col++)
{

matrix[row][col] = matrix [col] [row];
}

}
grid = size + 1;
cout « "# buildsim.dx: size = " « size « endl;
cout « "object 1 class array type float rank 0 items " « size*size « " data follows" « endl;

/* put data here " can’t use forward offsets in this file in this mode */
if (size < npline) npline = size;
for (row = 0; row < size; row ++)
{

for (col = 0; col < size; col++)
{

num = size*row + col;
cout « "\t" « matrix[row][col];
// npline numbers per line
if ((num+1) % npline == 0) cout « endl;

}
}
if (num % 10 != 0) cout « endl;

cout « "attribute Y'depV string Y'connectionsY'" « endl;
cout « "object 2 class gridpositions counts " « grid « " " « grid « endl;
cout « " origin 0 0" « endl;
cout « " delta 1 0" « endl;
cout « " delta 0 -1" « endl;
cout « "attribute \"dep\" string V'positionsY"' « endl;
cout « "object 3 class gridconnections counts " « grid « " " « grid « endl;
cout « "attribute \"element typeV string \ ,'quads\"" « endl;
cout « "attribute \"ref\" string V'positionsY"' « endl;
cout « "#" « endl;
cout « "object \"sim\" class field" « endl;
cout « "component \"data\" value 1" « endl;
cout « "component \"positions\" value 2" « endl;
cout « "component Y'connectionsY' value 3" « endl;
cout « "attribute \"name\" string Y'simV'" « endl;
cout « "end" « endl;

85

Makefile for CHANGECELL:

FILES_CHANGECELL = CHANGECELL.o
BASE = /usr/lpp/dx
CFLAGS = -Dibm6000 -O -I$(BASE)/include
LDFLAGS = \

-bl: $(B A S E)/l ib_ibm6000/dxexec .i mp \
-bE:$(BASE)/lib_ibm6000/dxexec.exp \
-L$(BASE)/lib_ibm6000

LIBS = -1DX -ly -11 -1X11 -lm
OLIBS = -lDXlite -lm
CHANGECELL: $(FILES_CHANGECELL) outboard.o

$(CC) $(LDFLAGS) $(FILES_CHANGECELL) outboard.o $(OLIBS) -o CHANGECELL
how to make the outboard main routine
outboard.o: $(BASE)/lib/outboard.c

$(CC) $(CFLAGS) -DUSERMODULE=m_CHANGECELL -c $(BASE)/lib/outboard.c
make the user files
userCHANGECELL.c: CHANGECELL.mdf

mdf-c CHANGECELL.mdf > userCHANGECELL.c

CHANGECELL.mdf

MODULE CHANGECELL
CATEGORY USER
DESCRIPTION Change the value of a cell
OUTBOARD CHANGECELL;
INPUT data; field; (no default); array of data values: either unsigned bytes or integers
INPUT index; integer list; 0; index into array
INPUT cellvalue; integer list; 0; value to change cell to
OUTPUT result; field; array of changed values

86

CHANGECELL.c: (comments denote sections of code deleted for clarity)

/*
* Automatically generated on "/tmp/CHANGECELL.mb" by DX Module Builder
* /

#include "dx/dx.h"
static Error traverse(Object *, Object *);
static Error doLeaf(Object *, Object *);
/*

* Declare the interface routine.
*/

int CHANGECELL_worker(
int, int, int *, float *, float *, int, int, int *,
int, ubyte *, int, int *, int, int *, int, ubyte *);

Error m_CHANGECELL(Object *in, Object *out)
{ int i;

/* * Initialize all outputs to NULL */
out[0] = NULL;

/* * Error checks: required inputs are verified. */

/* Parameter "data" is required. */
if (in[0] = NULL)
{

DXSetError(ERROR_MISSING_DATA, "\"data\" must be specified");
return ERROR;

}

/*

* Parameter "index" not required, but default object could
* have its default (0) set up here.
* /

/*
* Parameter "cellvalue" not required, but default object could
* have its default (0) set up here.
*/

/*

* Since output "result" is structure Field/Group, it initially
* is a copy of input "data".
* /

out[0] = DXCopy(in[0], COPY_STRUCTURE);
if (! out[0])

goto error;

/*
* If in[0] was an array, then no copy is actually made - Copy
* returns a pointer to the input object. Since this can’t be written to
* we postpone explicitly copying it until the leaf level, when we’ll need
* to be creating writable arrays anyway.
* /

if (out[0] == in[0])
out[0] = NULL;

/*

* Call the hierarchical object traversal routine
* /

if (!traverse(in, out))
goto error;

87

return OK;

error:
/ *
* On error, any successfully-created outputs are deleted.
* /

for (i = 0; i < 1; i++)
{

if (in[i] != out[i])
DXDelete(out[i]);

outfi] = NULL;
}

return ERROR;
}

static Error
traverse(Object *in, Object *out)
{ switch(DXGetObjectClass(in[0]))

{
case CLASS_FIELD:
case CLASS_ARRAY:

/* * If we have made it to the leaf level, call the leaf handler. */
if (! doLeaf(in, out))

return ERROR;

return OK;

case CLASS_GROUP:
{

/* recursive group stu ff.................... */

default:
{

DXSetError(ERROR_BAD_CLASS, "encountered in object traversal");
return ERROR;

}

}

}

static int
doLeaf(Object *in, Object *out)
{

int i, result;
Array array;
Field field;
Pointer *in_data[3], *out_data[l];
int in_knt[3], out_knt[l];
Type type;
Category category;
int rank, shape;
Object attr, src_dependency_attr = NULL;
char *src_dependency = NULL;
Object element_type_attr;
char *element_type;
/*

* Regular positions info
*/

int p_knt = -1, p_dim, *p_counts = NULL;
float *p_origin = NULL, *p_deltas = NULL;
I*
* Regular connections info
* /

88

int c_knt, c_nv, c_dim, *c_counts = NULL;

/*
* positions and/or connections are required, so the first must
* be a field.
*/

if (DXGetObjectClass(in[0]) != CLASS.FIELD)
{

DXSetError(ERROR_INVALID_DATA,
"positions and/or connections unavailable in array object");

goto error;
}
else

field = (Field)in[0];

if (DXEmptyField(field))
return OK;

/ *

* Determine the dependency of the source object’s data
* component.
* /

src_dependency_attr = DXGetComponentAttribute(field, "data”, "dep");
if (! src_dependency_attr)
{

DXSetError(ERROR_MISSlNG_DATA, "\"data\" data component is missing a dependency attribute”);
goto error;

}

/* NO! - this error check commented out ! KK 3/94
* get the dependency of the data component

attr = DXGetAttribute((Object)array, "dep”);
if (! attr)
{

DXSetError(ERROR_MISSING_DATA, "data component of V'dataY' has no dependency");
goto error;

}
• */

/*25 more error checks................ */

int CHANGECELL_worker(
int p_knt, int p_dim, int *p_counts, float *p_origin, float *p_deltas,
int c_knt, int c_nv, int *c_counts,
int data_knt, ubyte *data_data,
int index_knt, int *index_data,
int cellvalue_knt, int *cellvalue_data,
int result_knt, ubyte *result_data)

* The arguments to this routine are:
*

* p_knt: total count of input positions
* p_dim: dimensionality of input positions
* p_counts: count along each axis of regular positions grid
* p_origin: origin of regular positions grid
* p_deltas: regular positions delta vectors
* c_knt: total count of input connections elements

89

* c_nv: number of vertices per element
* c_counts: vertex count along each axis of regular positions grid
*

* The following are inputs and therefore are read-only. The default
* values are given and should be used if the knt is 0.
*
* data_knt, data_data: count and pointer for input "data"
* no default value given.
* index_knt, index_data: count and pointer for input "index"
* non-descriptive default value is "0"
* cellvalue_knt, cellvalue_data: count and pointer for input "cellvalue"
* non-descriptive default value is "0"
*
* The following are outputs and therefore are writable.
*

* result_knt, result_data: count and pointer for output "result"
* /

/* * User’s code goes here - FINALLY ! */
int i;
if (index_knt != cellvalue_knt) {

DXSetError(ERROR_INVALID_DATA,
"mismatch in size o f index and cellvalue arrays’’);
return ERROR;

}
/* set most o f the data */

for (i = 0; i < c_knt; i++)
result_data[i] = data_data[i];

/* now set the changed data */
for (i = 0; i < index_knt; i++) {

/* check valid index */
i f (index_data[i] >= c_knt) {

DXSetError(ERROR_INVALID_DATA,
"index greater than #cells in object");
return ERROR;

}

/* set new value but skip negative indices */
if (index_data[i] >= 0)

result_data[index_data[i]j = (u by te)cel 1 val ue_data[i];

result_knt = data_knt;

90

Appendix C: Hardcopy Output of Animation Sequences

M threshold.net - animated series o f MERGE output grids merged to different thresholds

File Execute Windows Connection Options, ■—; ■ . .nr- .■, r'

MERGE9K: Threshold = 22
'fed

MERGE18K: Threshold = 22

Windows for Original and Updated image
I same window r-

4
Label cell values:

, -

Control Panel

File Edit Execute Panels Options Help/■ ■.***". —~ ,J~*’

Windows for Original and Updated Image
I same window r-

4
Label cell values:, -

Similarity Matrix

Windows Connection Options Control Panel

File Edit Execute Panels Options Help
/■ ■.***". —~ ,J~*’

Neighbor

MM

Series 4: Source= 2, Neighbor= 4

S i m i l a r i t y Mat r i x

Mseries.net animated series o f individual "merges" from merge trace output

Sequence Control | » □Original Image

*S> V

10 x 10 Image
Threshold = 3

ir.: ■ .sSM4

Old Value; 2
L o m e s 5

2‘-Js
2
2
2
6
6
6
6

1.1 5

6 6
6 6

6 . 1 A v S.-".S 5 5 3 3

6 1 5 8 8 8 1 4 4*-."4 **■-»• • _

6 ‘ 8 K"f§IS
6 8 8 1 . 1- 4 4 8'
6 3 3 3 r 3 3 3

3 3 3 ,3 3 3 3

Original Image

5 5 4

New Value: 4

2 2 f | 3 | 5 5 6 6 6 6
6 6 6 62 - r 2 f « | g g g 5

& isfs^sacei c c: s 8 6 6
P i ; ^ 1 ^ 8 ‘" 8 ^ 4 '4

e 5 ;» « « , 81
6 5: 8 8 1 8 , 8
6"8 8 1 1 1 2 8

:*r ■-'■j-'n&a s*£rj

2
2
2
6
6
6
6 6
3 3

11 ■ I ‘ . -
6= 8 - 8 1 1 4 ' 4 ®
6 - 3 3 3 1 3 3 3

. . j& % • ■’4m ; W :
3 3 3 3 3 5 5 4

Series #4

i

92

M sim.net - interactive simulation o f MERGE process

Bwaa
Control Panel

Similarity Matrix
tions' - ' itioris

Neighbor

Source= 2, Neighbor= 8

S im ila rity Matrix

Similarity Function Colored Image_______ Updated Image (for Pick)

ic Windows Connection" Options File Executi — "

Merge 2 with neighbor orea 810 x 10 Image

93

Appendix D: DX Network Descriptions and Instructions

Three dataflow programs are implemented to demonstrate the MERGE process. More
detailed instructions are available in the online help facility under comments for each
visual program. These instructions should be stable with respect to DX versions but are
to be updated with changes to the visual programs.

DX is initialized with the following command line:
dx -mdf ALL.mdf -directory /ul/student/kathy/d.demos -macro .

Mthreshold.net - animated series o f MERGE output grids merged to different thresholds
(dynamic, passive macro view showing differnet versions side-by-side in
single synchronized window)

Start the program by selecting the sequencer from the execute menu, click
on the ellipses, and set next to 0. Close the ellipses box and select the
forward play button of the sequencer.

Mseries.net - animated series o f individual "merges" from merge trace output
(dynamic, passive visualization with highlighted activity, demonstrates
processing order & "cascaded effects" with multiple windows and
minimum bandwidth communication with off-line process)

Start the program with all control panels open and select the sequencer.

Msim.net - interactive simulation o f MERGE process
(dynamic, highly interactive simulation of source and neighbor cell
selection, multiple windows, demonstrates missing attributes of polygon
and neighbor
lists)

Start the program with all control panels open. To apply the changes
consistently, Initialize must be set to Original Image and Apply Changes
to Off. Select Execute Once and enter <control-i> with the cursor on the
updated image window. Then set Initialize to Last Image and Apply
Changes to On, and select Execute on change.

The user picks a source or target cell to be merged. It is highlighted in
white and its neighbors are colored according to the similarity function.
The target cell is merged with the neighbor polygon with the highest
similarity value.

	Animation of a process for identifying and merging raster polygon areas
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1459808976.pdf.JmHjh

